This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Quantum phase measurement of two-qubit states in an open waveguide

Ya. S. Greenberg [email protected] Novosibirsk State Technical University, Novosibirsk, Russia    A. A. Shtygashev Novosibirsk State Technical University, Novosibirsk, Russia
Abstract

We present a new method for quantum state tomography within a single-excitation subspace of two-qubit states in an open waveguide. The system under investigation consists of three qubits in an open waveguide, separated by a distance comparable to the wavelength of the electromagnetic field. We show that the modulation of the frequency of the central ancillary qubit allows us to obtain unambiguous information about the initial phase difference φ1φ3\varphi_{1}-\varphi_{3} of the edge qubits via the measurement of the evolution of their probability amplitudes.

Keywords

open quantum systems, two-qubit states, quantum state tomography, waveguides

I Introduction

Extracting information about the quantum state is an essential task in the benchmarks of quantum devices or quantum information algorithms. This is referred to as quantum state tomography (QST). As in the classical tomography, when we reconstruct a three dimensional image of the object by the use of its various projections on a two-dimensional plane, quantum state tomography reconstructs the state by the use of sequences of quantum gates and projective measurements Toninelli2019 . A consequence of projective measurements is that the state is destroyed, therefore these sequences should be implemented onto a set of identical quantum systems or onto the same system prepared repeatedly in the same state Schmied2016 . In circuit Quantum Electrodynamics (cQED) one can perform directly measurements in the energy basis of qubits, or equivalently, measurement of the z-projection on the Bloch sphere. These measurements are typically dispersive-shift based, where the resonance frequency of the readout resonator is qubit-state dependent Blais2004 . To obtain the two remaining projections, one implements XX and YY gates prior to the measurement Steffen2006 . To reconstruct the state of a single qubit at least three different gates are needed, and the density matrix has three independent elements that can be reconstructed using the measurement results. For two qubits the problem is already considerably more resource-demanding, as the number of gates increases to 9 for a two qubit state, and the full density matrix has 15 independent elements that have to be determined Wallraff2006 .

Open quantum systems without additional resonators are of the special interest both experimentally Brehm2021 ; Forn-Diaz2017 ; Koshino2013 ; Mirhosseini2019 and theoretically Kornovan2015 ; Fang2014 ; Fang2015 ; Issah2021 ; Kockum2018 ; Albrecht2019 ; Greenberg2017 ; Sultanov2018 . In these systems interference effects appear when the distance between qubits is comparable to a characteristic wavelength. The interference is caused by the effective interaction between the qubits via virtual photons. There are several theoretical works devoted to mentioned interference effects Greenberg2015 ; vanLoo2013 , synchronization and superradiance Cattaneo2021 , as well as experimental realizations of long-distance interacting superconducting qubits Wen2019 ; Zhong2019 .

Here we investigate an open quantum system consisting of an open waveguide, two main qubits and one ancillary central qubit, and we restrict the Hilbert space to a single-excitation subspace. By employing frequency modulation of the ancillary qubit Silveri2017 we obtain a one-to-one mapping between the phase of the two qubit off-diagonal density matrix element in the single-excitation subspace and the measurement result in the energy basis. Thus, the quantum state could be reconstructed by two measurements: the σz\sigma_{z}-components of the two qubits without modulation, to get the absolute values of the amplitude probabilities; and the σz\sigma_{z}-components of two qubits with modulation, to get the phases of the amplitude probabilities.

In contrast to a common practice where for tomography reconstruction the gate pulses are applied to the measured qubits, in our method the measurement pulse is applied to the ancillary qubit. Until the projective measurements two qubits do not undergo any external influence.

The paper is structured as follows.

In Section II we obtain the time-dependent differential equations for the probability amplitudes β1,2,3(t)\beta_{1,2,3}(t) of the three qubits, which account for the modulation of the frequency of the central qubit.

The main results of the paper are described in Section III. In Subsection III.1 we consider the free evolution of three-qubit system. We show that the free evolution probabilities |β1(t)|2|\beta_{1}(t)|^{2} and |β3(t)|2|\beta_{3}(t)|^{2} depend on the phase difference φ1φ3\varphi_{1}-\varphi_{3}. However, the population difference |β1(t)|2|β3(t)|2|\beta_{1}(t)|^{2}-|\beta_{3}(t)|^{2} is phase independent. It is shown that from free evolution measurements we can find both the initial values of probability amplitudes β1,3(0)\beta_{1,3}(0) and the quantity cos(φ1φ3)\cos{(\varphi_{1}-\varphi_{3})}. In Subsection III.2 we consider the solution of the equations obtained in Section II under frequency modulation, f(t)0f(t)\neq 0 with the initial conditions β1(t)|t=0=β1(0);β2(t)|t=0=0;β3(t)|t=0=β3(0)\left.{\beta_{1}(t)}\right|_{t=0}=\beta_{1}(0);\;\left.{\beta_{2}(t)}\right|_{t=0}=0;\;\left.{\beta_{3}(t)}\right|_{t=0}=\beta_{3}(0). From the results obtained in this section, we may conclude that modulating the frequency of the second qubit allows us to obtain unambiguous information about the initial phase difference φ1φ3\varphi_{1}-\varphi_{3} via the measurement of the evolution of the probability amplitudes |β1(t)|2|\beta_{1}(t)|^{2}, |β3(t)|2|\beta_{3}(t)|^{2}.

II Formulation of the problem

We consider a linear chain of three equally spaced qubits which are coupled to the photon field in an open waveguide (see Fig. 1).

Refer to caption
Figure 1: Schematic illustration of the single-excitation subspace for a three-qubit chain in an open waveguide. (a) One qubit is excited, while the other two qubits are in the ground state. (b) All three qubits are in the ground state and a single photon propagates in the waveguide.

The distance between neighboring qubits is equal to dd. The Hilbert space of each qubit is spanned by the excited state vector |e|e\rangle and the ground state vector |g|g\rangle. The Hamiltonian that accounts for the interaction between qubits and the electromagnetic field is as follows (we use =1\hbar=1 throughout the paper):

H=H0+kωkak+ak+HintH=H_{0}+\sum\limits_{k}{\omega_{k}a_{k}^{+}a_{k}}+H_{int} (1)

where H0H_{0} is the Hamiltonian of the bare qubits and HintH_{\operatorname{int}} is the interaction Hamiltonian between the qubits and the photons in the waveguide

H0=12Ωn=13(1+σz(n))+12f(t)(1+σz(2)),{H_{0}}=\frac{1}{2}\Omega\sum\limits_{n=1}^{3}{\left({1+\sigma_{z}^{\left(n\right)}}\right)}+\frac{1}{2}f\left(t\right)\left({1+\sigma_{z}^{\left(2\right)}}\right), (2)
Hint=n=13kgk(n)eikxnσ(n)ak++h.c..H_{\operatorname{int}}=\sum\limits_{n=1}^{3}{}\sum\limits_{k}{}g_{k}^{(n)}e^{-ikx_{n}}\sigma_{-}^{(n)}a_{k}^{+}+h.c.. (3)

In Eq. (2) the two edge qubits have equal frequencies, Ω\Omega, while the frequency of a central qubit, ΩC(t)\Omega_{C}(t) may be time-dependent: ΩC(t)=f(t)+Ω\Omega_{C}(t)=f(t)+\Omega, i.e. detuned by f(t)f(t) from the edge qubits. The quantity gk(n)g_{k}^{(n)} in Eq. (3) denotes the coupling between nn-th qubit and the photon field, while xnx_{n} is the position of nn-th qubit.

Below we consider a single-excitation subspace with either a single photon in the waveguide and all qubits in the ground state, or with no photons in a waveguide and only one qubit in the chain being excited. The Hamiltonian Eq. (3) conserves the number of excitations (number of excited qubits + number of photons). Therefore, at any instant of time the system will remain within the single-excitation subspace. The wave function of an arbitrary single-excitation state can then be written in the form:

|Ψ(t)=n=13βn(t)eiΩt|n,0k+kγk(t)eiωkt|G,1k,\left|\Psi(t)\right\rangle=\sum\limits_{n=1}^{3}{\beta_{n}(t)e^{-i\Omega t}}\left|{n,0_{k}}\right\rangle+\sum\limits_{k}{\gamma_{k}(t)e^{-i\omega_{k}t}}\left|{G,1_{k}}\right\rangle, (4)

where βn(t)\beta_{n}(t) is the amplitude of nn-th qubit, |G,1k=|g1,g2,g3|1k\left|{G,1_{k}}\right\rangle=\left|{g_{1},g_{2},g_{3}}\right\rangle\otimes\left|{1_{k}}\right\rangle, |1,0k=|e1,g2,g3|0k\left|{1,0_{k}}\right\rangle=\left|{e_{1},g_{2},g_{3}}\right\rangle\otimes\left|{0_{k}}\right\rangle, |2,0k=|g1,e2,g3|0k\left|{2,0_{k}}\right\rangle=\left|{g_{1},e_{2},g_{3}}\right\rangle\otimes\left|{0_{k}}\right\rangle, |3,0k=|g1,g2,e3|0k\left|{3,0_{k}}\right\rangle=\left|{g_{1},g_{2},e_{3}}\right\rangle\otimes\left|{0_{k}}\right\rangle, and γk(t)\gamma_{k}(t) is a single-photon probability amplitude which is related to a spectral density of spontaneous emission.

The equations for the amplitudes βn(t)\beta_{n}(t) and γk(t)\gamma_{k}(t) in Eq. (4) can be found from the time-dependent Schrödinger equation id|Ψ/dt=H|Ψid|\Psi\rangle/dt=H|\Psi\rangle. For the probability amplitudes βn(t)\beta_{n}(t) we obtain the following equations (the details of the derivation are given in Appendix A):

dβ1dt=Γ2(β1+β2eikd+β3ei2kd)dβ2dt=if(t)β2(t)Γ2(β1eikd+β2+β3eikd)dβ3dt=Γ2(β1ei2kd+β2eikd+β3),\begin{gathered}\frac{{d\beta_{1}}}{{dt}}=-\frac{\Gamma}{2}\left({\beta_{1}+\beta_{2}e^{ikd}+\beta_{3}e^{i2kd}}\right)\hfill\\ \frac{{d\beta_{2}}}{{dt}}=-if(t)\beta_{2}(t)-\frac{\Gamma}{2}\left({\beta_{1}e^{ikd}+\beta_{2}+\beta_{3}e^{ikd}}\right)\hfill\\ \frac{{d\beta_{3}}}{{dt}}=-\frac{\Gamma}{2}\left({\beta_{1}e^{i2kd}+\beta_{2}e^{ikd}+\beta_{3}}\right),\hfill\\ \end{gathered} (5)

where k=Ω/vgk=\Omega/v_{g} and Γ\Gamma is the rate of spontaneous emission of qubit into the waveguide mode.

The wave function which describing the dynamic evolution of the βn(t)\beta_{n}(t)’s is the projection of the single- excitation wavefunction Eq. (4) on the vacuum photon state:

|Ψ(t)0=0k|Ψ(t)=n=13βn(t)|n.\left|\Psi(t)\right\rangle_{0}=\left\langle{0_{k}|\Psi(t)}\right\rangle=\sum\limits_{n=1}^{3}{\beta_{n}(t)}\left|n\right\rangle. (6)

where |n=0k|n,0k\left|{\left.n\right\rangle}\right.=\left\langle{\left.{{0_{k}}}\right|}\right.\left.{n{{,0}_{k}}}\right\rangle describes the state with nn-th qubit excited.

We consider the initial state in the following form:

|Ψ(0)0=|β1(0)|eiφ1|1+|β3(0)|eiφ3|3,\left|{\Psi(0)}\right\rangle_{0}=\left|{\beta_{1}(0)}\right|e^{i\varphi_{1}}\left|1\right\rangle+\left|{\beta_{3}(0)}\right|e^{i\varphi_{3}}\left|3\right\rangle, (7)

therefore the second (central) qubit is initially not excited.

In Eq. (7) |β1(0)|,|β3(0)||\beta_{1}(0)|,|\beta_{3}(0)| determine the probability to find the 1-st and 3-rd qubit respectively in an excited state, and φ1,φ3\varphi_{1},\varphi_{3} are the phases of the amplitude probabilities of these qubits. By definition, this two-qubit state is described by the density matrix:

ρ(0)=(|β1(0)|2|β1(0)||β3(0)|ei(φ1φ3)|β1(0)||β3(0)|ei(φ1φ3)|β3(0)|2)\rho(0)=\left({\begin{array}[]{*{20}{c}}{{|\beta_{1}(0)|^{2}}}&{|\beta_{1}(0)||\beta_{3}(0)|{e^{i\left({{\varphi_{1}}-{\varphi_{3}}}\right)}}}\\ {|\beta_{1}(0)||\beta_{3}(0)|{e^{-i\left({{\varphi_{1}}-{\varphi_{3}}}\right)}}}&{{|\beta_{3}(0)|^{2}}}\end{array}}\right) (8)

The aim of tomography is to obtain all the elements of the density matrix. Here we suppose that one can measure |β1(0)|,|β3(0)||\beta_{1}(0)|,|\beta_{3}(0)|, i.e. zz-component for each qubit. The only left component is the phase difference φ1φ2\varphi_{1}-\varphi_{2} and finding it is the centerpiece of our proposal.

In what follows we show that modulating the frequency of the second qubit Silveri2017 allows for the extraction of the information about the initial values |β1(0)||\beta_{1}(0)|, |β3(0)||\beta_{3}(0)|, and about the phase difference φ1φ3\varphi_{1}-\varphi_{3} via the measurement of the probability amplitudes |β1(t)|2|\beta_{1}(t)|^{2}, |β3(t)|2|\beta_{3}(t)|^{2}. In a typical circuit QED setup, the frequency modulation is realized by varying the current through a line used to produce a bias magnetic field.

III Tomography of the two-qubit state

III.1 Free evolution of the three-qubit system

We consider first the solution of Eqs. (5) in the absence of a modulation signal, f(t)=0f(t)=0 with the initial conditions β1(t)|t=0=β1(0);β2(t)|t=0=0;β3(t)|t=0=β3(0)\left.{\beta_{1}(t)}\right|_{t=0}=\beta_{1}(0);\;\left.{\beta_{2}(t)}\right|_{t=0}=0;\;\left.{\beta_{3}(t)}\right|_{t=0}=\beta_{3}(0). For this case, we obtain for kd=2πkd=2\pi the following solution:

β1(t)=13(β1(0)+β3(0))e3Γ2t+23β1(0)13β3(0),\displaystyle\beta_{1}(t)=\frac{1}{3}\left({\beta_{1}(0)+\beta_{3}(0)}\right)e^{-\frac{{3\Gamma}}{2}t}+\frac{2}{3}\beta_{1}(0)-\frac{1}{3}\beta_{3}(0), (9)
β2(t)=13(β1(0)+β3(0))e3Γ2t13β1(0)13β3(0),\displaystyle\beta_{2}(t)=\frac{1}{3}\left({\beta_{1}(0)+\beta_{3}(0)}\right)e^{-\frac{{3\Gamma}}{2}t}-\frac{1}{3}{\beta_{1}(0)-\frac{1}{3}\beta_{3}(0)}, (10)
β3(t)=13(β1(0)+β3(0))e3Γ2t13β1(0)+23β3(0).\displaystyle\beta_{3}(t)=\frac{1}{3}\left({\beta_{1}(0)+\beta_{3}(0)}\right)e^{-\frac{{3\Gamma}}{2}t}-\frac{1}{3}\beta_{1}(0)+\frac{2}{3}\beta_{3}(0). (11)

Neglecting the first decaying terms in right hand side of equations (9)-(11) for the time t>t0t>t_{0} where Γt01\Gamma t_{0}\gg 1, we obtain

|β1(t)|2=19(4|β1(0)|2+|β3(0)|2)49|β1(0)||β3(0)|cos(φ1φ3)|β2(t)|2=19(|β3(0)|2+|β1(0)|2)+29|β1(0)||β3(0)|cos(φ1φ3)|β3(t)|2=19(4|β3(0)|2+|β1(0)|2)49|β1(0)||β3(0)|cos(φ1φ3)\begin{gathered}\left|{\beta_{1}(t)}\right|^{2}=\frac{1}{9}\left({4\left|{\beta_{1}(0)}\right|^{2}+\left|{\beta_{3}(0)}\right|^{2}}\right)\hfill\\ -\frac{4}{9}\left|{\beta_{1}(0)}\right|\left|{\beta_{3}(0)}\right|\cos\left({\varphi_{1}-\varphi_{3}}\right)\hfill\\ \left|{\beta_{2}(t)}\right|^{2}=\frac{1}{9}\left({\left|{\beta_{3}(0)}\right|^{2}+\left|{\beta_{1}(0)}\right|^{2}}\right)\hfill\\ +\frac{2}{9}\left|{\beta_{1}(0)}\right|\left|{\beta_{3}(0)}\right|\cos\left({\varphi_{1}-\varphi_{3}}\right)\hfill\\ \left|{\beta_{3}(t)}\right|^{2}=\frac{1}{9}\left({4\left|{\beta_{3}(0)}\right|^{2}+\left|{\beta_{1}(0)}\right|^{2}}\right)\hfill\\ -\frac{4}{9}\left|{\beta_{1}(0)}\right|\left|{\beta_{3}(0)}\right|\cos\left({\varphi_{1}-\varphi_{3}}\right)\hfill\\ \end{gathered} (12)
|β1(t)|2|β3(t)|2=13(|β1(0)|2|β3(0)|2)\begin{gathered}\left|{\beta_{1}(t)}\right|^{2}-\left|{\beta_{3}(t)}\right|^{2}=\frac{1}{3}\left({\left|{\beta_{1}(0)}\right|^{2}-\left|{\beta_{3}(0)}\right|^{2}}\right)\hfill\\ \end{gathered} (13)

It follows from Eq. (13) that if initially |β1(0)|=|β3(0)|=1/2|\beta_{1}(0)|=|\beta_{3}(0)|=1/\sqrt{2}, then at any time |β1(t)|=|β3(t)||\beta_{1}(t)|=|\beta_{3}(t)|.

While the evolution of |β1(t)|2|\beta_{1}(t)|^{2} and |β3(t)|2|\beta_{3}(t)|^{2} each depend on the phase difference φ1φ3\varphi_{1}-\varphi_{3}, their difference is phase independent as seen from Eq. (13).

Therefore, from the normalization condition |β1(0)|2+|β3(0)|2=1|\beta_{1}(0)|^{2}+|\beta_{3}(0)|^{2}=1, we obtain from Eq. (13) |β1(0)|2=12(1+3d(t0))|\beta_{1}(0)|^{2}=\frac{1}{2}(1+3d(t_{0})), |β3(0)|2=12(13d(t0))|\beta_{3}(0)|^{2}=\frac{1}{2}(1-3d(t_{0})), where the measured quantity d(t0)=|β1(t0)|2|β3(t0)|2d(t_{0})=\left|{\beta_{1}(t_{0})}\right|^{2}-\left|{\beta_{3}(t_{0})}\right|^{2}. Then, from any of the Eqs. (12) we can obtain cos(φ1φ3)\cos{(\varphi_{1}-\varphi_{3})}.

However, an unambiguous knowledge of the phase difference would require some additional information, for example the value of sin(φ1φ3)\sin{(\varphi_{1}-\varphi_{3})}. In the following subsection we show that this quantity can be obtained by the frequency modulation of initially not excited central qubit.

III.2 Measurement of the phase difference by frequency modulation

Next we consider the solution of Eqs. (5) under frequency modulation, f(t)0f(t)\neq 0 with the initial conditions β1(t)|t=0=β1(0);β2(t)|t=0=0;β3(t)|t=0=β3(0)\left.{\beta_{1}(t)}\right|_{t=0}=\beta_{1}(0);\;\left.{\beta_{2}(t)}\right|_{t=0}=0;\;\left.{\beta_{3}(t)}\right|_{t=0}=\beta_{3}(0).

Solving Eqs. (5) for kd=2πkd=2\pi yields the following results (the details of the derivation are given in Appendix B):

|β1(t)|2|β3(t)|2=13eΛ(t)[(|β1(0)|2|β3(0)|2)cosu(t)+2|β1(0)||β3(0)|sin(ϕ1ϕ3)sinu(t)]\begin{gathered}\left|{\beta_{1}(t)}\right|^{2}-\left|{\beta_{3}(t)}\right|^{2}=\frac{1}{3}e^{-\Lambda(t)}[\left({\left|{\beta_{1}(0)}\right|^{2}-\left|{\beta_{3}(0)}\right|^{2}}\right)\cos u(t)\\ +2\left|{\beta_{1}(0)}\right|\left|{\beta_{3}(0)}\right|\sin(\phi_{1}-\phi_{3})\sin u(t)]\end{gathered} (14)
|β1(t)|2+|β3(t)|2=118(e2Λ(t)+9)+118(β1(0)β3(0)+β1(0)β3(0))(e2Λ(t)9)\begin{gathered}\left|{\beta_{1}(t)}\right|^{2}+\left|{\beta_{3}(t)}\right|^{2}=\frac{1}{{18}}\left({e^{-2\Lambda(t)}+9}\right)\hfill\\ +\frac{1}{18}\left({\beta_{1}^{*}(0)\beta_{3}(0)+\beta_{1}(0)\beta_{3}^{*}(0)}\right)\left({e^{-2\Lambda(t)}-9}\right)\hfill\\ \end{gathered} (15)
|β2(t)|2=19e2Λ(t)(1+2|β1(0)||β3(0)|cos(φ1φ3))\left|{\beta_{2}(t)}\right|^{2}=\frac{1}{9}e^{-2\Lambda(t)}\left({1+2\left|{\beta_{1}(0)}\right|\left|{\beta_{3}(0)}\right|\cos\left({\varphi_{1}-\varphi_{3}}\right)}\right) (16)

where

u(t)=230tf(τ)𝑑τu(t)=\frac{2}{3}\int\limits_{0}^{t}{f(\tau)d\tau} (17)
Λ(t)=427Γt(0tf(τ)𝑑τ)2=13Γtu2(t)\Lambda(t)=\frac{4}{{27\Gamma t}}\left({\int\limits_{0}^{t}{f(\tau)d\tau}}\right)^{2}=\frac{1}{3\Gamma t}{u^{2}(t)} (18)

It worth noting that Eqs. (14) and (15) are found for Γt|F(t)|\Gamma t\gg|F(t)| or equivalently ΓΔΩ\Gamma\gg\Delta\Omega, where ΔΩ\Delta\Omega is the deviation of the frequency of a second qubit from that of the edge qubits. From the formal point of view, it means that the quantity Λ(t)1\Lambda(t)\ll 1 and in (64) we neglect the decaying exponent eλ2e32Γte^{\lambda_{2}}\approx e^{-\frac{3}{2}\Gamma t}. Also, from Eqs. (17) and (18) , one sees that the dynamics is defined only by the area under the time-function f(τ)f(\tau). When f(τ)0f(\tau)\neq 0, periodic oscillations exist, see Eq. (14), with a time-dependent decay rate Λ(t)1\Lambda(t)\ll 1. As soon as the detuning between the central qubit and the side qubits goes to zero (f(τ)=0f(\tau)=0) the integral value becomes constant and the oscillatory dynamics stops. In this sense, f(τ)f(\tau) could be any arbitrary non-breaking function.

In principle, Eqs. (14), (15) allow us to obtain both the initial probability amplitudes β1(0),β3(0)\beta_{1}(0),\beta_{3}(0) and the phase difference φ1φ3\varphi_{1}-\varphi_{3}. For a π\pi pulse (u(tπ)=πu(t_{\pi})=\pi) we obtain from (14)

d(tπ)=13(|β1(0)|2|β3(0)|2)d(t_{\pi})=-\frac{1}{3}\left({\left|{\beta_{1}(0)}\right|^{2}-\left|{\beta_{3}(0)}\right|^{2}}\right) (19)

where the measured quantity is the population difference d(tπ)=|β1(tπ)|2|β3(tπ)|2d(t_{\pi})=\left|{\beta_{1}(t_{\pi})}\right|^{2}-\left|{\beta_{3}(t_{\pi})}\right|^{2}. Together with normalizing condition |β1(0)|2+|β3(0)|2=1|\beta_{1}(0)|^{2}+|\beta_{3}(0)|^{2}=1 we obtain from Eq. (19) |β1(0)|2=12(13d(tπ))|\beta_{1}(0)|^{2}=\frac{1}{2}(1-3d(t_{\pi})), |β3(0)|2=12(1+3d(tπ))|\beta_{3}(0)|^{2}=\frac{1}{2}(1+3d(t_{\pi})). We then repeat the measurements for the same initial conditions by applying a π/2\pi/2 pulse (u(tπ/2)=π/2u(t_{\pi/2})=\pi/2). We obtain

d(tπ/2)=23|β1(0)||β3(0)|sin(φ3φ1)d(t_{\pi/2})=\frac{2}{3}|\beta_{1}(0)||\beta_{3}(0)|\sin(\varphi_{3}-\varphi_{1}) (20)
Refer to caption
Figure 2: Population difference (a,b) and sum (c,d) dependence on the initial state parameters (populations and phase difference) after modulation pulses columnwise corresponding to u(t)=π/2u(t)=\pi/2 and u(t)=πu(t)=\pi.

In Eq. (20) the amplitudes β1(0),β3(0)\beta_{1}(0),\beta_{3}(0) can be obtained either from the free evolution (subsection A) or from the π\pi pulse measurements in Eq. (14). Therefore, the quantity sin(φ1φ3)\sin{(\varphi_{1}-\varphi_{3})} is obtained from Eq. (20). In order to obtain the phase difference φ1φ3\varphi_{1}-\varphi_{3} unambiguously we may use Eq. (15) which, under the assumption Λ1\Lambda\ll 1, can be written as

S(tπ/2)=5989|β1(0)||β3(0)|cos(φ1φ3)S(t_{\pi/2})=\frac{5}{9}-\frac{{8}}{9}\left|{\beta_{1}(0)}\right|\left|{\beta_{3}(0)}\right|\cos\left({\varphi_{1}-\varphi_{3}}\right) (21)

where S(tπ/2)=|β1(tp)|2+|β3(tp)|2S(t_{\pi/2})=\left|{\beta_{1}(t_{p})}\right|^{2}+\left|{\beta_{3}(t_{p})}\right|^{2}.

From Eq. (14) we see that the measurable value |β1(t)|2|β3(t)|2\left|{\beta_{1}(t)}\right|^{2}-\left|{\beta_{3}(t)}\right|^{2} presents a mix of two types of information. The first term depends only on the initial population difference, while the phase information is contained in the second term. Moreover, Λ\Lambda characterizes the information leak rate from the system to the measurable value. So, at t=0t=0 the exponent Λ(0)\Lambda(0) is infinite, u(0)u(0) tends to zero, and no information can be obtained. This rate depends naturally on coupling between the qubits and the open waveguide, as well as on strength of the modulation.

The interplay between phase and amplitude information in Eq. (14) is shown in Fig. 2, where the difference |β1(t)|2|β3(t)|2\left|{\beta_{1}(t)}\right|^{2}-\left|{\beta_{3}(t)}\right|^{2} is taken in the limit eΛ(t)1e^{-\Lambda(t)}\to 1 . We suppress the first term by choosing u(t)=π/2u(t)=\pi/2 and from Fig. 2 one sees that for any initial phase difference between qubit states |1\left|1\right\rangle and |3\left|3\right\rangle there is a unique value of the population differences. We also note that in limit when |β3(t)|2=0,1\left|{\beta_{3}(t)}\right|^{2}=0,1 the measurable value equals 0, which becomes clear from Eq. (8) where off-diagonal elements vanish and the phases are totally uncertain.

As a demonstration of our method we verified the validity of Eq. (14) by numerical simulation for initially equal probability amplitudes |β1(0)|=|β3(0)|=1/2|\beta_{1}(0)|=|\beta_{3}(0)|=1/\sqrt{2}, β2(0)=0\beta_{2}(0)=0, and φ3φ1=0.4π\varphi_{3}-\varphi_{1}=0.4\pi. In this case, the only non zero term in the right hand side of Eq. (14) is proportional to sinu(t)\sin{u(t)}. For a π/2\pi/2 modulation (u(t)=π/2u(t)=\pi/2) the population difference at the end of the pulse is proportional to sin(φ1φ3)\sin{(\varphi_{1}-\varphi_{3})} as it follows from (20). This behavior is shown in Fig. 3.

Refer to caption
Figure 3: Evolution of probabilities under modulation of the frequency of the central qubit, with parameters kd=2πkd=2\pi, u(t)=π/2u(t)=\pi/2, |β1(0)|=|β3(0)|=1/2,|β2(0)|=0,φ3φ1=0.4π|\beta_{1}(0)|=|\beta_{3}(0)|=1/\sqrt{2},|\beta_{2}(0)|=0,\varphi_{3}-\varphi_{1}=0.4\pi. (a) The modulation is realized as a pulse, starting at t0Γ=10t_{0}\cdot\Gamma=10 and ending at tendΓ=151t_{\rm end}\cdot\Gamma=151. (b) Probabilities |β1(t)|2|\beta_{1}(t)|^{2} (solid red line), |β3(t)|2|\beta_{3}(t)|^{2} (dotted blue line), |β2(t)|2|\beta_{2}(t)|^{2} (dashed green line) and population difference |β1(t)|2|β3(t)|2|\beta_{1}(t)|^{2}-|\beta_{3}(t)|^{2} (dashdotted black line).

Alternatively, for a π\pi modulation pulse (u(t)=πu(t)=\pi) the population difference |β1(t)|2|β3(t)|2|\beta_{1}(t)|^{2}-|\beta_{3}(t)|^{2} after the end of the pulse becomes equal to zero which is shown in Fig. 4.

Refer to caption
Figure 4: Evolution of probabilities under modulation of the frequency of the central qubit, with parameters kd=2πkd=2\pi, u(t)=πu(t)=\pi, |β1(0)|=|β3(0)|=1/2,|β2(0)|=0,φ3φ1=0.4π|\beta_{1}(0)|=|\beta_{3}(0)|=1/\sqrt{2},|\beta_{2}(0)|=0,\varphi_{3}-\varphi_{1}=0.4\pi. (a) The modulation is realized as a pulse, starting at t0Γ=10t_{0}\cdot\Gamma=10 and ending at tendΓ=151t_{\rm end}\cdot\Gamma=151. (b) Probabilities |β1(t)|2|\beta_{1}(t)|^{2} (solid red line), |β3(t)|2|\beta_{3}(t)|^{2} (dotted blue line), |β2(t)|2|\beta_{2}(t)|^{2} (dashed green line) and population difference |β1(t)|2|β3(t)|2|\beta_{1}(t)|^{2}-|\beta_{3}(t)|^{2} (dashdotted black line).

Also, it is worth mentioning that after the modulation pulse |β1(t)|2+|β3(t)|21\left|{\beta_{1}(t)}\right|^{2}+\left|{\beta_{3}(t)}\right|^{2}\neq 1, because the central qubit becomes partially excited. Nevertheless, we are interested only in a combination of measured populations. In summary to this section, we may conclude that modulating the frequency of the second qubit allows us to obtain the unambiguous information about the phase difference φ1φ3\varphi_{1}-\varphi_{3} via the measurement of the evolution of the probability amplitudes |β1(t)|2|\beta_{1}(t)|^{2}, |β3(t)|2|\beta_{3}(t)|^{2}.

To emulate the reconstruction procedure we take the state with an unknown phase difference φ1φ3{\varphi_{1}}-{\varphi_{3}} in range π-\pi to π\pi and with unknown populations β1,3\beta_{1,3}. Then, we simulate the dynamics after the u=πu=\pi pulse and get the difference of populations d(tπ)=|β1|2|β3|2d(t_{\pi})=\left|{\beta_{1}}\right|^{2}-\left|{\beta_{3}}\right|^{2}. The estimation of the populations from Eq. (19) is:

|β1est(0)|=12[13d(tπ)],|β3est(0)|=12[1+3d(tπ)].\begin{gathered}\left|\beta_{1}^{est}\left(0\right)\right|=\sqrt{\frac{1}{2}\left[{1-3d\left({{t_{\pi}}}\right)}\right]},\\ \left|\beta_{3}^{est}\left(0\right)\right|=\sqrt{\frac{1}{2}\left[{1+3d\left({{t_{\pi}}}\right)}\right]}.\end{gathered} (22)

At the next step we simulate the dynamics after a u=π/2u=\pi/2 pulse and take the populations |β1|2\left|{\beta_{1}}\right|^{2} and |β3|2\left|{\beta_{3}}\right|^{2} after the pulse. Then, following equations Eqs. (20) and (21), where SS and d(tπ/2)d(t_{\pi/2}) are in fact the measured values, we find the sin\sin and cos\cos values of estimated phase φest\varphi_{\rm est}:

sin(φest)=32d(tπ/2)|β1est(0)||β3est(0)|,cos(φest)=(S59)98|β1est(0)||β3est(0)|\begin{gathered}\begin{array}[]{l}\sin\left({{\varphi_{est}}}\right)=\frac{3}{2}\frac{{d\left({{t_{{\pi\mathord{\left/{\vphantom{\pi 2}}\right.\kern-1.2pt}2}}}}\right)}}{{\left|{\beta_{1}^{est}\left(0\right)}\right|\left|{\beta_{3}^{est}\left(0\right)}\right|}},\\ \\ \cos\left({{\varphi_{est}}}\right)=-\left({S-\frac{5}{9}}\right)\frac{9}{{8\left|{\beta_{1}^{est}\left(0\right)}\right|\left|{\beta_{3}^{est}\left(0\right)}\right|}}\end{array}\end{gathered} (23)

which allows to explicitly get φest\varphi_{\rm est} through arctangent. These two steps are enough to reconstruct the state in the form Eq. (8).

IV Conclusion

In this paper we have considered three non interacting qubits embedded in an open waveguide. For this system we have described experimentally accessible method for the reconstruction within a single-excitation subspace of arbitrary two-qubit state. The method is based on the modulation of the frequency of a central ancillary qubit which allows us to determine the elements of reduced density matrix for two edge qubits.

In contrast to a common quantum tomography reconstruction where the gate pulses are applied to the measured qubits, in our method the measurement pulse is applied to the ancillary qubit. Until the projective measurements two edge qubits do not undergo any external influence.

Acknowledgements Ya. S. G. and A. A. Sh. acknowledge the support from the Ministry of Science and Higher Education of Russian Federation under grant FSUN-2020-0004.

Appendix A Derivation of the equations for the probability amplitudes βn(t)\beta_{n}(t)

The equations for probability amplitudes βn(t)\beta_{n}(t) of the qubits and that of the photon γk(t)\gamma_{k}(t) from Eq. (4) can be found from the time-dependent Schrodinger equation id|Ψ/dt=H|Ψid\left|\Psi\right\rangle/dt=H\left|\Psi\right\rangle . For the amplitudes we obtain:

dβ1dt=ikgkeikdγk(t)ei(ωkΩ)t,\frac{{d\beta_{1}}}{{dt}}=-i\sum\limits_{k}{}g_{k}e^{-ikd}\gamma_{k}(t)e^{-i(\omega_{k}-\Omega)t}, (24)
dβ2dt=if(t)β2(t)ikgkγk(t)ei(ωkΩ)t,\frac{{d\beta_{2}}}{{dt}}=-if(t)\beta_{2}(t)-i\sum\limits_{k}{}g_{k}\gamma_{k}(t)e^{-i(\omega_{k}-\Omega)t}, (25)
dβ3dt=ikgk2eikdγk(t)ei(ωkΩ)t,\frac{{d\beta_{3}}}{{dt}}=-i\sum\limits_{k}{}g_{k}^{2}e^{ikd}\gamma_{k}(t)e^{-i(\omega_{k}-\Omega)t}, (26)
dγk(t)dt=igkFk(t)ei(ωkΩ)t,\frac{{d\gamma_{k}(t)}}{{dt}}=-ig_{k}F_{k}(t)e^{i(\omega_{k}-\Omega)t}, (27)

where

Fk(t)=β1(t)eikd+β2(t)+β3(t)eikd.F_{k}(t)=\beta_{1}(t)e^{ikd}+\beta_{2}(t)+\beta_{3}(t)e^{-ikd}. (28)

From (27) we obtain:

γk(t)=igk0tFk(t)ei(ωkΩ)t𝑑t.\gamma_{k}(t)=-ig_{k}\int\limits_{0}^{t}{}F_{k}(t^{\prime})e^{i(\omega_{k}-\Omega)t^{\prime}}dt^{\prime}. (29)

The expression (29) allows us to remove the photon amplitude γk(t)\gamma_{k}(t) from the equations for the qubits’ amplitudes (24), (25), and (26). The result is as follows:

dβ1dt=kgk2eikd0tFk(t)ei(ωkΩ)(tt)𝑑t,dβ2dt=if(t)β2(t)kgk20tFk(t)ei(ωkΩ)(tt)𝑑t,dβ3dt=kgk2eikd0tFk(t)ei(ωkΩ)(tt)𝑑t,\begin{gathered}\frac{{d\beta_{1}}}{{dt}}=-\sum\limits_{k}{}g_{k}^{2}e^{-ikd}\int\limits_{0}^{t}{}F_{k}(t^{\prime})e^{-i(\omega_{k}-\Omega)(t-t^{\prime})}dt^{\prime},\hfill\\ \frac{{d\beta_{2}}}{{dt}}=-if(t)\beta_{2}(t)-\sum\limits_{k}{}g_{k}^{2}\int\limits_{0}^{t}{}F_{k}(t^{\prime})e^{-i(\omega_{k}-\Omega)(t-t^{\prime})}dt^{\prime},\hfill\\ \frac{{d\beta_{3}}}{{dt}}=-\sum\limits_{k}{}g_{k}^{2}e^{ikd}\int\limits_{0}^{t}{}F_{k}(t^{\prime})e^{-i(\omega_{k}-\Omega)(t-t^{\prime})}dt^{\prime},\hfill\\ \end{gathered} (30)

In accordance with Wigner-Weiskopff approximation we take the quantity Fk(t)F_{k}(t) out the integrands,

dβ1dt=kgk2eikdFk(t)Ik(Ω,t),dβ2dt=if(t)β2(t)kgk2Fk(t)Ik(Ω,t),dβ3dt=kgk2eikdFk(t)Ik(Ω,t),\begin{gathered}\frac{{d\beta_{1}}}{{dt}}=-\sum\limits_{k}{}g_{k}^{2}e^{-ikd}F_{k}(t)I_{k}(\Omega,t),\hfill\\ \frac{{d\beta_{2}}}{{dt}}=-if(t)\beta_{2}(t)-\sum\limits_{k}{}g_{k}^{2}F_{k}(t)I_{k}(\Omega,t),\hfill\\ \frac{{d\beta_{3}}}{{dt}}=-\sum\limits_{k}{}g_{k}^{2}e^{ikd}F_{k}(t)I_{k}(\Omega,t),\hfill\\ \end{gathered} (31)

where

Ik(Ω,t)=0tei(ωkΩ)(tt)𝑑t=0tei(ωkΩ)τ𝑑τ0ei(ωkΩ)τ𝑑τ=πδ(ωkΩ)iP.v.(1ωkΩ)\begin{gathered}I_{k}(\Omega,t)=\int\limits_{0}^{t}{e^{-i(\omega_{k}-\Omega)(t-t^{\prime})}dt^{\prime}}=\int\limits_{0}^{t}{e^{-i(\omega_{k}-\Omega)\tau}d\tau}\hfill\\ \approx\int\limits_{0}^{\infty}{e^{-i(\omega_{k}-\Omega)\tau}d\tau}=\pi\delta(\omega_{k}-\Omega)-iP.v.\left({\frac{1}{{\omega_{k}-\Omega}}}\right)\hfill\\ \end{gathered} (32)

We assume gk=gk,Ik(Ω,t)=Ik(Ω,t)g_{-k}=g_{k},I_{-k}(\Omega,t)=I_{k}(\Omega,t) and leave the summation in (31) over positive valued of kk (positive frequencies).

dβ1dt=k>0gk2(eikdFk(t)+eikdFk(t)Ik(Ω,t),dβ2dt=if(t)β2(t)k>0gk2(Fk(t)+Fk(t)Ik(Ω,t),dβ3dt=k>0gk2(eikdFk(t)+eikdFk(t)Ik(Ω,t).\begin{gathered}\frac{{d\beta_{1}}}{{dt}}=-\sum\limits_{k>0}{}g_{k}^{2}\left({e^{-ikd}F_{k}(t)+e^{ikd}F_{-k}(t}\right)I_{k}(\Omega,t),\hfill\\ \frac{{d\beta_{2}}}{{dt}}=-if(t)\beta_{2}(t)-\sum\limits_{k>0}{}g_{k}^{2}\left({F_{k}(t)+F_{-k}(t}\right)I_{k}(\Omega,t),\hfill\\ \frac{{d\beta_{3}}}{{dt}}=-\sum\limits_{k>0}{}g_{k}^{2}\left({e^{ikd}F_{k}(t)+e^{-ikd}F_{-k}(t}\right)I_{k}(\Omega,t).\hfill\\ \end{gathered} (33)

Inserting the explicit form of Fk(t)F_{k}(t) (28) in (33) results in the following expressions:

dβ1dt=2k>0gk2(β1+β2coskd+β3cos2kd)Ik(Ω,t),dβ2dt=if(t)β2(t)2k>0gk2(β1coskd+β2+β3coskd)Ik(Ω,t),dβ3dt=2k>0gk2(β1cos2kd+β2coskd+β3)Ik(Ω,t).\begin{gathered}\frac{{d\beta_{1}}}{{dt}}=-2\sum\limits_{k>0}{}g_{k}^{2}\left({\beta_{1}+\beta_{2}\cos kd+\beta_{3}\cos 2kd}\right)I_{k}(\Omega,t),\hfill\\ \frac{{d\beta_{2}}}{{dt}}=-if(t)\beta_{2}(t)\hfill\\ -2\sum\limits_{k>0}{}g_{k}^{2}\left({\beta_{1}\cos kd+\beta_{2}+\beta_{3}\cos kd}\right)I_{k}(\Omega,t),\hfill\\ \frac{{d\beta_{3}}}{{dt}}=-2\sum\limits_{k>0}{}g_{k}^{2}\left({\beta_{1}\cos 2kd+\beta_{2}\cos kd+\beta_{3}}\right)I_{k}(\Omega,t).\hfill\\ \end{gathered} (34)

The next step is to relate the coupling constants gkg_{k} to the qubit decay rate of spontaneous emission into the waveguide mode. In accordance with Fermi golden rule we define the qubit decay rates by the following expressions:

Γ=2πkgk2δ(ωkΩ)\Gamma=2\pi\sum\limits_{k}{g_{k}^{2}\delta(\omega_{k}-\Omega)} (35)

For the 1D case, a summation over kk is replaced by an integration over ω\omega in accordance with the prescription

2k>0L2π20d|k|=Lπυg0𝑑ωk,2\sum\limits_{k>0}{}\Rightarrow\frac{L}{{2\pi}}2\int\limits_{0}^{\infty}{d\left|k\right|}=\frac{L}{{\pi\upsilon_{g}}}\int\limits_{0}^{\infty}{d\omega_{k}}, (36)

where LL is a length of the waveguide, and we assumed a linear dispersion law, ωk=vg|k|\omega_{k}=v_{g}|k|. The application of (36) to (35), allows to derive a relation between the coupling constant gkg_{k} and the decay rate Γ\Gamma,

gk=(vgΓ2L)1/2.g_{k}=\left({\frac{{v_{g}\Gamma}}{{2L}}}\right)^{1/2}. (37)

Now we can calculate the different terms in (34).

kgk2Ik(Ω,t)=kgk2(πδ(ωkΩ)iP.v.(1ωkΩ))=Γ2iP.v.(gk2ωkΩ)Γ2,\begin{gathered}\sum\limits_{k}{g_{k}^{2}I_{k}(\Omega,t)}=\sum\limits_{k}{g_{k}^{2}}\left({\pi\delta(\omega_{k}-\Omega)-iP.v.\left({\frac{1}{{\omega_{k}-\Omega}}}\right)}\right)\hfill\\ =\frac{\Gamma}{2}-iP.v.\left({\frac{{g_{k}^{2}}}{{\omega_{k}-\Omega}}}\right)\approx\frac{\Gamma}{2},\hfill\\ \end{gathered} (38)
2k>0gk2cos(kd)Ik(Ω,t)=Lυg0gk2cos(kd)δ(ωkΩ)𝑑ωk2ik>0P.v.(gk2cos(kd)ωkΩ)=LυggΩ2cos(kΩd)iLvgπgΩ2P.v.0cos(ωvgd)ωΩ\begin{gathered}2\sum\limits_{k>0}{g_{k}^{2}\cos(kd)}I_{k}(\Omega,t)\hfill\\ =\frac{L}{{\upsilon_{g}}}\int\limits_{0}^{\infty}{g_{k}^{2}\cos(kd)\delta(\omega_{k}-\Omega)d\omega_{k}}-2i\sum\limits_{k>0}{}P.v.\left({\frac{{g_{k}^{2}\cos(kd)}}{{\omega_{k}-\Omega}}}\right)\hfill\\ =\frac{L}{{\upsilon_{g}}}g_{\Omega}^{2}\cos(k_{\Omega}d)-i\frac{L}{{v_{g}\pi}}g_{\Omega}^{2}P.v.\int\limits_{0}^{\infty}{}\frac{{\cos\left({\frac{\omega}{{v_{g}}}d}\right)}}{{\omega-\Omega}}\hfill\\ \end{gathered} (39)

For the principal value integral in (39) we obtain:

P.v.0𝑑ωcos(ωvgd)ωΩ=πsin(kΩd)P.v.\int\limits_{0}^{\infty}{d\omega}\frac{{\cos\left({\frac{\omega}{{v_{g}}}d}\right)}}{{\omega-\Omega}}=-\pi\sin\left({k_{\Omega}d}\right) (40)

where kΩ=Ω/vgk_{\Omega}=\Omega/v_{g}.

The expression (40) is exact if counter-rotating terms in the qubit-field interaction are taken into account (Suppl. in Gonz2013 ). Nevertheless, within a rotating wave approximation the Eq. 40 provides a good accuracy for d>λ/4d>\lambda/4 Green2021 .

2k>0gk2cos(kd)Ik(Ω,t)=LυggΩ2eikΩd=Γ2eikΩd.2\sum\limits_{k>0}{g_{k}^{2}\cos(kd)}I_{k}(\Omega,t)=\frac{L}{{\upsilon_{g}}}g_{\Omega}^{2}e^{ik_{\Omega}d}=\frac{\Gamma}{2}e^{ik_{\Omega}d}. (41)

Similar calculations also give for the sum in (34):

2k>0gk2cos(2kd)Ik(Ω,t)=Γ2e2ikd.2\sum\limits_{k>0}{g_{k}^{2}\cos(2kd)}I_{k}(\Omega,t)=\frac{\Gamma}{2}e^{2ikd}. (42)

In (38) the decay rate Γ\Gamma is defined by (35). The principal value in (38) gives rise to the shift of the qubit frequency. Therefore, we incorporate it in the renormalized qubit frequency and will not write it explicitly any more.

Collecting together (38), (41), and (42) we write the final form of the equations (34):

dβ1dt=Γ2(β1+β2eikd+β3ei2kd),dβ2dt=if(t)β2(t)Γ2(β1eikd+β2+β3eikd),dβ3dt=Γ2(β1ei2kd+β2eikd+β3),\begin{gathered}\frac{{d\beta_{1}}}{{dt}}=-\frac{\Gamma}{2}\left({\beta_{1}+\beta_{2}e^{ikd}+\beta_{3}e^{i2kd}}\right),\hfill\\ \frac{{d\beta_{2}}}{{dt}}=-if(t)\beta_{2}(t)-\frac{\Gamma}{2}\left({\beta_{1}e^{ikd}+\beta_{2}+\beta_{3}e^{ikd}}\right),\hfill\\ \frac{{d\beta_{3}}}{{dt}}=-\frac{\Gamma}{2}\left({\beta_{1}e^{i2kd}+\beta_{2}e^{ikd}+\beta_{3}}\right),\hfill\\ \end{gathered} (43)

Appendix B Derivation of equation (14)

Equations (5) can be written in the matrix form:

dβ^dt=A(t)β^(t),\frac{d\widehat{\beta}}{dt}=A(t)\widehat{\beta}(t), (44)

where

β^(t)=(β1(t)β2(t)β3(t)),{\widehat{\beta}(t){=}}\left({\begin{array}[]{*{20}c}{\beta_{1}(t)}\\ {\beta_{2}}(t)\\ {\beta_{3}(t)}\\ \end{array}}\right), (45)
A(t) = Γ2(1eikde2ikdeikd1+if(t)2Γeikde2ikdeikd1).{\text{A(t) = }}-\frac{\Gamma}{2}\left({\begin{array}[]{*{20}c}1&{e^{ikd}}&{e^{2ikd}}\\ {e^{ikd}}&{1+if(t)\frac{2}{\Gamma}}&{e^{ikd}}\\ {e^{2ikd}}&{e^{ikd}}&1\\ \end{array}}\right). (46)

It is easy to verify that the matrices A(t)A(t) do not commute at different times [A(t1),A(t2)]0[A(t_{1}),A(t_{2})]\neq 0. In this case the solution of (44) can be obtained in the form:

β^(t)=eM(t)β^(0)\widehat{\beta}(t)=e^{M(t)}\widehat{\beta}(0) (47)

where the Magnus operator M(t)M(t) can be written as infinite series expansion Blanes2009 :

M(t)=n=1Mn(t).M(t)=\sum\limits_{n=1}^{\infty}{M_{n}}(t). (48)

The first two terms in (48) are as follows:

M1(t)=0t𝑑t1A(t1),M2(t)=120t𝑑t20t2𝑑t1[A(t1)A(t2)].\begin{gathered}M_{1}(t)=\int\limits_{0}^{t}{dt_{1}A(t_{1})},\hfill\\ M_{2}(t)=\frac{1}{2}\int\limits_{0}^{t}{dt_{2}\int\limits_{0}^{t_{2}}{dt_{1}}\left[{A(t_{1})A(t_{2})}\right]}.\hfill\\ \end{gathered} (49)

According to Silvester’s matrix theorem (named after J. J. Sylvester) any analytic function z(M)z(M) of a quadratic n×nn\times n matrix MM can be expressed as a polynomial in MM, in terms of the eigenvalues and eigenvectors of MM Horn1991 . Specifically, the theorem states that

z(M)=i=1nz(λi)Bi,z(M)=\sum\limits_{i=1}^{n}{z(\lambda_{i})B_{i}}, (50)

where λi\lambda_{i} are the characteristic roots of the equation

det|MλI|=0,\det\left|{M-\lambda I}\right|=0, (51)

and

Bi=j=1,ijnMλjIλiλj,B_{i}=\prod\limits_{j=1,i\neq j}^{n}{\frac{{M-\lambda_{j}I}}{{\lambda_{i}-\lambda_{j}}}}, (52)

where II is the identity matrix.

The Silvester’s formula (50) holds for any quadratic diagonalizable matrix all roots of which are different.

In the sum of (48) we neglect all terms except for the first one, M(t)=M1(t)M(t)=M_{1}(t):

M1(t)=0t𝑑t1A(t1) = Γt2(1eikde2ikdeikdΩ(t)eikde2ikdeikd1),M_{1}(t)=\int\limits_{0}^{t}{dt_{1}A(t_{1})}{\text{ = }}-\frac{{\Gamma t}}{2}\left({\begin{array}[]{*{20}c}1&{e^{ikd}}&{e^{2ikd}}\\ {e^{ikd}}&{\Omega(t)}&{e^{ikd}}\\ {e^{2ikd}}&{e^{ikd}}&1\\ \end{array}}\right), (53)

where

Ω(t)=1+i2Γt0tf(t1)𝑑t1=12ΓtF(t),\Omega(t)=1+i\frac{2}{{\Gamma t}}\int\limits_{0}^{t}{f(t_{1})dt_{1}}=1-\frac{2}{{\Gamma t}}F(t), (54)
F(t)=i0tf(t1)𝑑t1.F(t)=-i\int\limits_{0}^{t}{f(t_{1})dt_{1}}. (55)

Next, we find the characteristic roots λi(t)\lambda_{i}(t) of the matrix M1(t)M_{1}(t), which are the roots of the equation

det|M1(t)λ(t)I|=0.\det\left|{M_{1}(t)-\lambda(t)I}\right|=0. (56)

The equation (56) is a cubic equation

(1λ)2(Ωλ)+2e4ikde4ikd(Ωλ)2e2ikd(1λ)=0,\left({1-\lambda}\right)^{2}\left({\Omega-\lambda}\right)+2e^{4ikd}-e^{4ikd}\left({\Omega-\lambda}\right)-2e^{2ikd}\left({1-\lambda}\right)=0, (57)

with the following three roots

λ1,2(t)=Γt2(1+12e2ikd)+12F(t)±14eikd(8+e2ikd)Γ2t2+4F2(t)e2ikd+4F(t)Γt,\begin{gathered}\lambda_{1,2}(t)=-\frac{{\Gamma t}}{2}\left({1+\frac{1}{2}e^{2ikd}}\right)+\frac{1}{2}F(t)\hfill\\ \pm\frac{1}{4}e^{ikd}\sqrt{\left({8+e^{2ikd}}\right)\Gamma^{2}t^{2}+4F^{2}(t)e^{-2ikd}+4F(t)\Gamma t},\hfill\\ \end{gathered} (58)
λ3(t)=Γt2(e2ikd1).\lambda_{3}(t)=\frac{{\Gamma t}}{2}\left({e^{2ikd}-1}\right). (59)

In the equation (58) the roots λ1\lambda_{1}, λ2\lambda_{2} correspond to ++, - sign, respectively.

The application of 50 to z(M)=eMz(M)=e^{M} gives rise to the following equation:

eM1(t)=B1eλ1+B2eλ2+B3eλ3,e^{M_{1}(t)}=B_{1}e^{\lambda_{1}}+B_{2}e^{\lambda_{2}}+B_{3}e^{\lambda_{3}}, (60)

where

B1=(M1λ2Iλ1λ2)(M1λ3Iλ1λ3)=M12(λ2+λ3)M1+λ2λ3I(λ1λ2)(λ1λ3),\begin{gathered}B_{1}=\left({\frac{{M_{1}-\lambda_{2}I}}{{\lambda_{1}-\lambda_{2}}}}\right)\left({\frac{{M_{1}-\lambda_{3}I}}{{\lambda_{1}-\lambda_{3}}}}\right)\hfill\\ \quad=\frac{{M_{1}^{2}-(\lambda_{2}+\lambda_{3})M_{1}+\lambda_{2}\lambda_{3}I}}{{(\lambda_{1}-\lambda_{2})(\lambda_{1}-\lambda_{3})}},\hfill\\ \end{gathered} (61)
B2=(M1λ1Iλ2λ1)(M1λ3Iλ2λ3)=M12(λ1+λ3)M1+λ1λ3I(λ2λ1)(λ2λ3),\begin{gathered}B_{2}=\left({\frac{{M_{1}-\lambda_{1}I}}{{\lambda_{2}-\lambda_{1}}}}\right)\left({\frac{{M_{1}-\lambda_{3}I}}{{\lambda_{2}-\lambda_{3}}}}\right)\hfill\\ \quad=\frac{{M_{1}^{2}-(\lambda_{1}+\lambda_{3})M_{1}+\lambda_{1}\lambda_{3}I}}{{(\lambda_{2}-\lambda_{1})(\lambda_{2}-\lambda_{3})}},\hfill\\ \end{gathered} (62)
B3=(M1λ1Iλ3λ1)(M1λ2Iλ3λ2)=M12(λ1+λ2)M1+λ2λ1I(λ3λ1)(λ3λ2).\begin{gathered}B_{3}=\left({\frac{{M_{1}-\lambda_{1}I}}{{\lambda_{3}-\lambda_{1}}}}\right)\left({\frac{{M_{1}-\lambda_{2}I}}{{\lambda_{3}-\lambda_{2}}}}\right)\hfill\\ \quad=\frac{{M_{1}^{2}-(\lambda_{1}+\lambda_{2})M_{1}+\lambda_{2}\lambda_{1}I}}{{(\lambda_{3}-\lambda_{1})(\lambda_{3}-\lambda_{2})}}.\hfill\\ \end{gathered} (63)

The equations (60)-(63) are valid for any value of kdkd.

Below we assume kd=πnkd=\pi n, where nn is a positive integer. For this case λ3=0\lambda_{3}=0 and we obtain

eM1(t)=B1eλ1+B2eλ2+B3,e^{M_{1}(t)}=B_{1}e^{\lambda_{1}}+B_{2}e^{\lambda_{2}}+B_{3}, (64)
B1=M12λ2M1(λ1λ2)λ1,B2=M12λ1M1(λ2λ1)λ2,B3=M12(λ1+λ2)M1λ1λ2+I,\begin{gathered}B_{1}=\frac{{M_{1}^{2}-\lambda_{2}M_{1}}}{{(\lambda_{1}-\lambda_{2})\lambda_{1}}},\hfill\\ B_{2}=\frac{{M_{1}^{2}-\lambda_{1}M_{1}}}{{(\lambda_{2}-\lambda_{1})\lambda_{2}}},\hfill\\ B_{3}=\frac{{M_{1}^{2}-(\lambda_{1}+\lambda_{2})M_{1}}}{{\lambda_{1}\lambda_{2}}}+I,\hfill\\ \end{gathered} (65)

where

λ1,2(t)=3Γt4+12F(t)±(1)n149Γ2t2+4F2(t)+4F(t)Γt.\begin{gathered}\lambda_{1,2}(t)=-\frac{{3\Gamma t}}{4}+\frac{1}{2}F(t)\hfill\\ \quad\quad\pm(-1)^{n}\frac{1}{4}\sqrt{9\Gamma^{2}t^{2}+4F^{2}(t)+4F(t)\Gamma t}.\hfill\\ \end{gathered} (66)

Below we perform the calculations for kd=2πkd=2\pi. Using the equation (47) and the explicit expression (53) for the matrix M1(t)M_{1}(t) we obtain from (64), (65), (66) the expressions for qubits amplitudes β1(t)\beta_{1}(t), β3(t)\beta_{3}(t).

β1(t,2π)=ΓtR(β1(0)+β3(0))((3Γt2+FR2)(3Γt2+F+12R)eλ1(32Γt+F+R2)(3Γt2+F12R)eλ2)+12(β1(0)β3(0)),\beta_{1}(t,2\pi)=\frac{{\Gamma t}}{R}\left({\beta_{1}(0)+\beta_{3}(0)}\right)\left({\frac{{\left({\frac{{3\Gamma t}}{2}+F-\frac{R}{2}}\right)}}{{\left({-\frac{{3\Gamma t}}{2}+F+\frac{1}{2}R}\right)}}e^{\lambda_{1}}-\frac{{\left({\frac{3}{2}\Gamma t+F+\frac{R}{2}}\right)}}{{\left({-\frac{{3\Gamma t}}{2}+F-\frac{1}{2}R}\right)}}e^{\lambda_{2}}}\right)+\frac{1}{2}\left({\beta_{1}(0)-\beta_{3}(0)}\right), (67)
β3(t,2π)=ΓtR(β1(0)+β3(0))((3Γt2+FR2)(3Γt2+F+12R)eλ1(32Γt+F+R2)(3Γt2+F12R)eλ2)12(β1(0)β3(0)),\beta_{3}(t,2\pi)=\frac{{\Gamma t}}{R}\left({\beta_{1}(0)+\beta_{3}(0)}\right)\left({\frac{{\left({\frac{{3\Gamma t}}{2}+F-\frac{R}{2}}\right)}}{{\left({-\frac{{3\Gamma t}}{2}+F+\frac{1}{2}R}\right)}}e^{\lambda_{1}}-\frac{{\left({\frac{3}{2}\Gamma t+F+\frac{R}{2}}\right)}}{{\left({-\frac{{3\Gamma t}}{2}+F-\frac{1}{2}R}\right)}}e^{\lambda_{2}}}\right)-\frac{1}{2}\left({\beta_{1}(0)-\beta_{3}(0)}\right), (68)

where

R=9Γ2t2+4F2(t)+4F(t)Γt.R=\sqrt{9\Gamma^{2}t^{2}+4F^{2}(t)+4F(t)\Gamma t}. (69)

Now we analyze the quantities RR, λ1\lambda_{1}, λ2\lambda_{2} for Γt|F|\Gamma t\gg|F|. We obtain

R3Γt+23F+1627F2Γt,R\approx 3\Gamma t+\frac{2}{3}F+\frac{{16}}{{27}}\frac{{F^{2}}}{{\Gamma t}}, (70)
λ1(t)=3Γt4+12F(t)+14R23F+427F2Γt,\lambda_{1}(t)=-\frac{{3\Gamma t}}{4}+\frac{1}{2}F(t)+\frac{1}{4}R\approx\frac{2}{3}F+\frac{4}{{27}}\frac{{F^{2}}}{{\Gamma t}}, (71)
λ2(t)=3Γt4+12F(t)14R32Γt+13F427F2Γt.\lambda_{2}(t)=-\frac{{3\Gamma t}}{4}+\frac{1}{2}F(t)-\frac{1}{4}R\approx-\frac{3}{2}\Gamma t+\frac{1}{3}F-\frac{4}{{27}}\frac{{F^{2}}}{{\Gamma t}}. (72)

Therefore, in (67), (68) we neglect the decaying exponent eλ2e32Γte^{\lambda_{2}}\approx e^{-\frac{3}{2}\Gamma t}. The quantity eλ1e^{\lambda_{1}} we write in the following form:

eλ1exp(23F+427F2Γt)eiu(t)eΛ(t),e^{\lambda_{1}}\approx\exp\left({\frac{2}{3}F+\frac{4}{{27}}\frac{{F^{2}}}{{\Gamma t}}}\right)\equiv e^{-iu(t)}e^{-\Lambda(t)}, (73)

where

u(t)=230tf(τ)𝑑τ,u(t)=\frac{2}{3}\int\limits_{0}^{t}{f(\tau)d\tau}, (74)
Λ(t)=427Γt(0tf(τ)𝑑τ)2.\Lambda(t)=\frac{4}{{27\Gamma t}}\left({\int\limits_{0}^{t}{f(\tau)d\tau}}\right)^{2}. (75)

For this approximation the equations (67), (68) take the form:

β1(t,2π)=16(β1(0)+β3(0))eiu(t)eΛ(t)+12(β1(0)β3(0)),\begin{gathered}\beta_{1}(t,2\pi)=\frac{1}{6}\left({\beta_{1}(0)+\beta_{3}(0)}\right)e^{-iu(t)}e^{-\Lambda(t)}\hfill\\ +\frac{1}{2}\left({\beta_{1}(0)-\beta_{3}(0)}\right),\hfill\\ \end{gathered} (76)
β3(t,2π)=16(β1(0)+β3(0))eiu(t)eΛ(t)12(β1(0)β3(0)),\begin{gathered}\beta_{3}(t,2\pi)=\frac{1}{6}\left({\beta_{1}(0)+\beta_{3}(0)}\right)e^{-iu(t)}e^{-\Lambda(t)}\hfill\\ -\frac{1}{2}\left({\beta_{1}(0)-\beta_{3}(0)}\right),\hfill\\ \end{gathered} (77)
β2(t)=(β1(0)+β3(0))3eiu(t)eΛ(t).\beta_{2}(t)=-\frac{{\left({\beta_{1}(0)+\beta_{3}(0)}\right)}}{3}e^{-iu(t)}e^{-\Lambda(t)}. (78)

From (76), (77) we finally obtain for kd=2πkd=2\pi

|β1(t)|2|β3(t)|2=13(|β1(0)|2|β3(0)|2)eΛ(t)cosu(t)13i(β1(0)β3(0)β1(0)β3)eΛ(t)sinu(t),\begin{gathered}\left|{\beta_{1}(t)}\right|^{2}-\left|{\beta_{3}(t)}\right|^{2}=\frac{1}{3}\left({\left|{\beta_{1}(0)}\right|^{2}-\left|{\beta_{3}(0)}\right|^{2}}\right)e^{-\Lambda(t)}\cos u(t)\hfill\\ -\frac{1}{3}i\left({\beta_{1}^{*}(0)\beta_{3}(0)-\beta_{1}(0)\beta_{3}^{*}}\right)e^{-\Lambda(t)}\sin u(t),\hfill\\ \end{gathered} (79)
|β1(t)|2+|β3(t)|2=118(eΛ(t)+9)+19(β1(0)β3(0)+β1(0)β3)(eΛ(t)9),\begin{gathered}\left|{\beta_{1}(t)}\right|^{2}+\left|{\beta_{3}(t)}\right|^{2}=\frac{1}{{18}}\left({e^{-\Lambda(t)}+9}\right)\hfill\\ +\frac{1}{9}\left({\beta_{1}^{*}(0)\beta_{3}(0)+\beta_{1}(0)\beta_{3}^{*}}\right)\left({e^{-\Lambda(t)}-9}\right),\hfill\\ \end{gathered} (80)
|β2(t)|2=19e2Λ(t)(1+2|β1(0||β3(0)|cos(φ1φ3).)\left|{\beta_{2}(t)}\right|^{2}=\frac{1}{9}e^{-2\Lambda(t)}\left({1+2\left|{\beta_{1}(0}\right|\left|{\beta_{3}(0)}\right|\cos\left({\varphi_{1}-\varphi_{3}}\right)}.\right) (81)

which are the equations (14), (19), (16) from the main text.

References

  • (1) E.Toninelli, B. Ndagano, A. Valles et. al. Concepts in quantum state tomography and classical implementation with intense light: a tutorial, Adv. Opt. Photonics Vol.11, No. 1 ,344254 (2019)
  • (2) R.Schmied, Quantum state tomography of a single qubit: comparison of methods, J. Mod. Opt., Vol.63, pp.1744-1758 (2016)
  • (3) A. Blais, R. S. Huang, A. Wallraff, S. M. Girvin, and R. J.Schoelkopf, Cavity quantum electrodynamics for superconducting electrical circuits: An architecture for quantum computation, Phys. Rev. A 69,062320 (2004).
  • (4) M. Steffen, M.Ansmann, R.McDermott et.al. State tomography of capacitively shunted phase qubits with high fidelity, Phys. Rev. Lett. 97,050502 (2006).
  • (5) M. Steffen, M.Ansmann, R.C. Bialczak et.al. Measurement of the entanglement of two superconducting qubits via state tomography, Sci. Rep., Vol. 13 Iss. 5792, pp. 1423-1425 (2006)
  • (6) J. D. Brehm, A. N. Poddubny, A. Stehli, Tim Wolz, H. Rotzinger and A. V. Ustinov, Waveguide bandgap engineering with an array of superconducting qubits, npj Quantum Mater., 6, 10(2021)
  • (7) Forn-Díaz, P., García-Ripoll, J., Peropadre, B. et al. Ultrastrong coupling of a single artificial atom to an electromagnetic continuum in the nonperturbative regime. Nature Phys 13, 39–43 (2017).
  • (8) K. Koshino, H. Terai, K. Inomata, T. Yamamoto, W. Qiu, Z. Wang, and Y. Nakamura, Observation of the Three-State Dressed States in Circuit Quantum Electrodynamics, Phys. Rev. Lett. 110, 263601 (2013)
  • (9) Mirhosseini, M., Kim, E., Zhang, X. et al. Cavity quantum electrodynamics with atom-like mirrors. Nature 569, 692–697 (2019).
  • (10) D. Kornovan et. al.,Doubly excited states in a chiral waveguide-QED system: description and properties, J. Phys.: Conf. Ser. 2015 012070 (2021)
  • (11) Fang, YL.L., Zheng, H. Baranger, H.U. One-dimensional waveguide coupled to multiple qubits: photon-photon correlations. EPJ Quantum Technol. 1, 3 (2014).
  • (12) Y.-L. L. Fang, Harold U. Baranger, Waveguide QED: Power spectra and correlations of two photons scattered off multiple distant qubits and a mirror Phys. Rev. A 91, 053845 (2015)
  • (13) I. Issah, H. Caglayan, Qubit–qubit entanglement mediated by epsilon-near-zero waveguide reservoirs, Appl. Phys. Lett. 119, 221103 (2021);
  • (14) A. F. Kockum, G. Johansson and F. Nori, Decoherence-Free Interaction between Giant Atoms in Waveguide Quantum Electrodynamics, Phys. Rev. Lett. 120, 140404 (2018)
  • (15) A. Albrecht, L. Henriet, A. Asenjo-Garcia, P. B. Dieterle, O. Painter and D. E. Chang, Subradiant states of quantum bits coupled to a one-dimensional waveguide, New J. Phys. 21 025003 (2019)
  • (16) Ya. S. Greenberg, A. N. Sultanov, Influence of the nonradiative decay of qubits into a common channel on the transport properties of microwave photons, JETP Letters 106,406-410 (2017)
  • (17) A.N. Sultanov, Ya. S. Greenberg, Transfer of excited state between two qubits in an open waveguide, Low Temperature Physics 44, 203 (2018)
  • (18) Y. P. Zhong, H.S. Chang, K. J. Satzinger et. al Violating Bell’s inequality with remotely connected superconducting qubits, Nat. Phys. 15, 741-744 (2019)
  • (19) Ya. S. Greenber, A. A. Shtygashev, Non-Hermitian Hamiltonian approach to the microwave transmission through a one-dimensional qubit chain, Phys. Rev. A 92, 063835 (2015)
  • (20) A.F. van Loo, A. Fedorov, K. Laluniere et. al. Photon-mediated interactions between distant artificial atoms, Science 342, 1494 (2013)
  • (21) M. Cattaneo, G. L. Giorgi, S. Maniscalco, G. S. Paraoanu, and R. Zambrini, Ann. Phys. (Berlin) 533, 2100038 (2021)
  • (22) P.Y. Wen, K.T. Lin, A. F. Kockum et.al. Large Collective Lamb Shift of Two Distant Superconducting Artificial Atoms, Phys. Rev. Lett. 123, 233602 (2019)
  • (23) M. P. Silveri, J. A. Tuorila, E. V. Thuneberg, and G. S. Paraoanu, Quantum systems under frequency modulation, Rep. Prog. Phys. 80, 056002 (2017).
  • (24) A. Gonzalez-Tudela and D. Porras, Mesoscopic Entanglement Induced by Spontaneous Emission in Solid-State Quantum Optics, Phys. Rev. Lett. 110, 080502 (2013).
  • (25) Ya. S. Greenberg, A. A. Shtygashev, and A. G. Moiseev, Spontaneous decay of artificial atoms in a three-qubit system. Eur. Phys. J. B94, 221 (2021).
  • (26) S. Blanes, F. Casas, J.A. Oteo, and J. Ros, The Magnus expansion and some of its applications. Physics Reports 470, 151 (2009).
  • (27) R. A. Horn and Ch. R. Johnson Topics in Matrix Analysis. Cambridge University Press, 1991.