This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Quantum parity conservation in planar quantum electrodynamics

O.M. Del Cima [email protected]    D.H.T. Franco [email protected]    L.S. Lima [email protected]    E.S. Miranda [email protected] Universidade Federal de Viçosa (UFV),
Departamento de Física - Campus Universitário,
Avenida Peter Henry Rolfs s/n - 36570-900 - Viçosa - MG - Brazil.
Ibitipoca Institute of Physics (IbitiPhys),
36140-000 - Conceição do Ibitipoca - MG - Brazil.
Abstract

Quantum parity conservation is verified at all orders in perturbation theory for a massless parity-even U(1)×U(1)U(1)\times U(1) planar quantum electrodynamics (QED3) model. The presence of two massless fermions requires the Lowenstein-Zimmermann (LZ) subtraction scheme, in the framework of the Bogoliubov-Parasiuk-Hepp-Zimmermann-Lowenstein (BPHZL) renormalization method, in order to subtract the infrared divergences induced by the ultraviolet subtractions at 1- and 2-loops, however thanks to the superrenormalizability of the model the ultraviolet divergences are bounded up to 2-loops. Finally, it is proved that the BPHZL renormalization method preserves parity for the model taken into consideration, contrary to what happens to the ordinary massless parity-even U(1)U(1) QED3.

I Introduction

The quantum electrodynamics in three space-time dimensions (QED3) deser-jackiw-templeton-schonfeld has been considered as a potential theoretical framework for some condensed matter phenomena, namely high-temperature superconductivity high-Tc , quantum Hall effect quantum-hall-effect , graphene graphene , topological insulators topological-insulators and topological superconductors topological-superconductors . Some interesting properties may arise in massless, mixed or massive QED3, as parity violation, anyons, topological gauge fields, superrenormalizability and the appearance of infrared divergences. The ordinary massless U(1)U(1) QED3 is infrared and ultraviolet perturbatively finite, parity and infrared anomaly free at all orders massless-all-orders , however at 1-loop parity is explicitly broken in the course of Lowenstein-Zimmermann (LZ) infrared subtractions in the Bogoliubov-Parasiuk-Hepp-Zimmermann-Lowenstein (BPHZL) renormalization scheme massless-1-loop , signalizing that the 1-loop radiatively induced parity-odd Chern-Simons term to the vacuum-polarization tensor is nothing but a counterterm owing to parity-violating LZ infrared subtractions in the BPHZL program111In perturbation theory, the proof on the absence of a parity anomaly in massless U(1)U(1) QED3 has also been performed by the Epstein-Glaser renormalization method epstein-glaser .. In the meantime, a fundamental question arises if regardless of model the LZ subtraction scheme necessarily violates parity in three space-time dimensions, more specifically, if whether or not parity is broken at any order throughout the infrared subtraction in the Bogoliubov-Parasiuk-Hepp-Zimmermann-Lowenstein (BPHZL) renormalization procedure. Accordingly, the latter issue is dealt in this work by considering a massless parity-even U(1)×U(1)U(1)\times U(1) Maxwell-Chern-Simons QED3 model masslessU1U1QED3 , with two massless fermions, ψ+\psi_{+} and ψ\psi_{-}, where the gauge mediating bosons, AμA_{\mu} (electromagnetic field) and aμa_{\mu} (pseudochiral field), associated to the both U(1)U(1) symmetries, are massive through a mixed Chern-Simons term.

The proof presented in this work is organized as follows. In Section II the action of the model is introduced and some useful gamma matrices relations are established. Moreover, in Subsections II.1 and II.2, the continuous and discrete classical symmetries, gauge and parity, the propagators and the interactions Feynman rules are presented, the ultraviolet and infrared power countings are fixed for the model, the 1-loop Feynman graphs are identified and the BPHZL subtraction operator defined. In Subsections II.3 and II.4, the 1-loop vacuum-polarization tensor and self-energy graphs are presented, and among those ones, the divergents are renormalized. The 2-loop graphs and their BPHZL analyses are left to Section III.

II BPHZL: 1-loop

In this section the Bogoliubov-Parasiuk-Hepp-Zimmermann momentum space subtraction scheme (BPHZ) BPHZ , which does not use any regularization procedure, is applied to 1-loop vacuum-polarization tensor and self-energy divergent graphs. However, due to the presence of massless fermions, ψ+\psi_{+} and ψ\psi_{-}, the momentum subtraction scheme modified by Lowenstein-Zimmermann (BPHZL) lz has to be adopted in order to deal with the infrared (IR) divergences that shall arise in the process of ultraviolet (UV) subtractions.

The action for the massless parity-even U(1)×U(1)U(1)\times U(1) Maxwell-Chern-Simons QED3 model masslessU1U1QED3 222A quantum electrodynamics model describing electron-polaron–electron-polaron scattering and four-fold broken degeneracy of the Landau levels in pristine graphene., with the parity and gauge invariant Lowenstein-Zimmermann mass term added, is given by:

Σ(s1)\displaystyle\Sigma^{(s-1)} =\displaystyle= d3x{14FμνFμν14fμνfμν+μεμανAμαaν+iψ¯+/Dψ++iψ¯/Dψ+\displaystyle\int{d^{3}x}\bigg{\{}-\frac{1}{4}F^{\mu\nu}F_{\mu\nu}-\frac{1}{4}f^{\mu\nu}f_{\mu\nu}+\mu\varepsilon^{\mu\alpha\nu}A_{\mu}\partial_{\alpha}a_{\nu}+i{\overline{\psi}_{+}}{\hbox to0.0pt{\hbox{$\mskip 3.0mu/$}\hss}D}\psi_{+}+i{\overline{\psi}_{-}}{\hbox to0.0pt{\hbox{$\mskip 3.0mu/$}\hss}D}\psi_{-}+ (1)
m(s1)ψ¯+ψ++m(s1)ψ¯ψLowenstein-Zimmermann mass term+bμAμ+α2b2+c¯c+πμaμ+β2π2+ξ¯ξ},\displaystyle\underbrace{-\,m(s-1){\overline{\psi}_{+}}\psi_{+}+m(s-1){\overline{\psi}_{-}}\psi_{-}}_{\textrm{\small Lowenstein-Zimmermann mass term}}+\,b\partial^{\mu}A_{\mu}+\frac{\alpha}{2}b^{2}+\overline{c}\square c+\pi\partial^{\mu}a_{\mu}+\frac{\beta}{2}\pi^{2}+\overline{\xi}\square\xi\bigg{\}}~{},

where /Dψ±(/+ie/A±ig/a)ψ±{\hbox to0.0pt{\hbox{$\mskip 3.0mu/$}\hss}D}\psi_{\pm}\!\equiv\!(\hbox to0.0pt{\hbox{$\mskip 1.0mu/$}\hss}\partial+ie\hbox to0.0pt{\hbox{$\mskip 3.0mu/$}\hss}A\pm ig\hbox to0.0pt{\hbox{$\mskip 1.0mu/$}\hss}a)\psi_{\pm}, mm and μ\mu are mass parameters with mass dimension 11 and the coupling constants ee (electric charge) and gg (pseudochiral charge) are dimensionful with mass dimension 12\frac{1}{2}. The field strengths, Fμν=μAννAμF_{\mu\nu}=\partial_{\mu}A_{\nu}-\partial_{\nu}A_{\mu} and fμν=μaννaμf_{\mu\nu}=\partial_{\mu}a_{\nu}-\partial_{\nu}a_{\mu}, are related to the electromagnetic field (AμA_{\mu}) and the pseudochiral gauge field (aμa_{\mu}), respectively. The Dirac spinors ψ+\psi_{+} and ψ\psi_{-} are two kinds of fermions where the ±\pm subscripts are related to their pseudospin sign masslessU1U1QED3 ; Binegar . Also, the fields cc and ξ\xi are two kind of ghosts333It is appropriated to stress that neither the ghosts (cc and ξ\xi) nor the antighosts (c¯\overline{c} and ξ¯\overline{\xi}) take part of vacuum-polarization tensor, self energy or vertex function Feynman diagrams at any perturbative order, since they are free quantum fields, thus they decouple. and, c¯\overline{c} and ξ¯\overline{\xi}, the two antighosts, whereas bb and π\pi are the Lautrup-Nakanishi fields lautrup-nakanishi playing the role of Lagrange multiplier fields for the gauge conditions. The adopted gamma matrices are γμ=(σz,iσx,iσy)\gamma^{\mu}=(\sigma_{z},-i\sigma_{x},i\sigma_{y}). Finally, the Lowenstein-Zimmermann parameter ss lies in the interval 0s10\leq s\leq 1 and has the same status of an additional subtraction variable (as the external momentum) in the BPHZL renormalization scheme, in such a way that the massless model masslessU1U1QED3 is recovered by taking s=1s=1 at the end of calculations. Furthermore, some conventions and useful relations that shall be used in subsequent calculations follow:

ημν=diag(+),γμγν=ημν𝕀+iεμναγα,Tr{γμγν}=2ημν,Tr{γμγνγα}=2iεμνα,\displaystyle\eta^{\mu\nu}=\textrm{diag}(+--)~{},~{}~{}\gamma^{\mu}\gamma^{\nu}=\eta^{\mu\nu}{\mathbb{I}}+i\varepsilon^{\mu\nu\alpha}\gamma_{\alpha}~{},~{}~{}{\rm Tr}\{\gamma^{\mu}\gamma^{\nu}\}=2\eta^{\mu\nu}~{},~{}~{}{\rm Tr}\{\gamma^{\mu}\gamma^{\nu}\gamma^{\alpha}\}=2i\varepsilon^{\mu\nu\alpha}~{},
Tr{γμ1γμn}=ημn1μnTr{γμ1γμn2}+iεμn1μnαTr{γμ1γμn2γα}.\displaystyle{\rm Tr}\{\gamma^{\mu_{1}}\cdots\gamma^{\mu_{n}}\}=\eta^{\mu_{n-1}\mu_{n}}{\rm Tr}\{\gamma^{\mu_{1}}\cdots\gamma^{\mu_{n-2}}\}+i\varepsilon^{\mu_{n-1}\mu_{n}\alpha}{\rm Tr}\{\gamma^{\mu_{1}}\cdots\gamma^{\mu_{n-2}}\gamma_{\alpha}\}~{}. (2)

It should be pointed out that the trace (Tr{\rm Tr}) of product of an even number of gamma matrices does not exhibit the Levi-Civita symbol, on the other hand, the trace of product of an odd number (greater than one) of gamma matrices does.

II.1 Classical symmetries: BRS and parity

The action Σ(s1)\Sigma^{(s-1)} (1) is invariant under the Becchi-Rouet-Stora (BRS) transformations brs :

sψ+=i(c+ξ)ψ+,sψ¯+=i(c+ξ)ψ¯+;\displaystyle s\psi_{+}=i(c+\xi)\psi_{+}~{},~{}~{}s\overline{\psi}_{+}=-i(c+\xi)\overline{\psi}_{+}~{};
sψ=i(cξ)ψ,sψ¯=i(cξ)ψ¯;\displaystyle s\psi_{-}=i(c-\xi)\psi_{-}~{},~{}~{}s\overline{\psi}_{-}=-i(c-\xi)\overline{\psi}_{-}~{};
sAμ=1eμc,sc=0;saμ=1gμξ,sξ=0;\displaystyle\displaystyle sA_{\mu}=-\frac{1}{e}\partial_{\mu}c~{},~{}~{}sc=0~{};~{}~{}\displaystyle sa_{\mu}=-\frac{1}{g}\partial_{\mu}\xi~{},~{}~{}s\xi=0~{};
sc¯=be,sb=0;sξ¯=πg,sπ=0;\displaystyle\displaystyle s\overline{c}=\frac{b}{e}~{},~{}~{}sb=0~{};~{}~{}\displaystyle s\overline{\xi}=\frac{\pi}{g}~{},~{}~{}s\pi=0~{}; (3)

as well as under the parity transformations:

ψ+Pψ+P=iγ1ψ,ψPψP=iγ1ψ+,ψ¯+Pψ¯+P=iψ¯γ1,ψ¯Pψ¯P=iψ¯+γ1;\displaystyle\psi_{+}\stackrel{{\scriptstyle{P}}}{{\longrightarrow}}\psi_{+}^{P}=-i\gamma^{1}\psi_{-}~{},~{}~{}\psi_{-}\stackrel{{\scriptstyle{P}}}{{\longrightarrow}}\psi_{-}^{P}=-i\gamma^{1}\psi_{+}~{},~{}~{}\overline{\psi}_{+}\stackrel{{\scriptstyle{P}}}{{\longrightarrow}}\overline{\psi}_{+}^{P}=i\overline{\psi}_{-}\gamma^{1}~{},~{}~{}\overline{\psi}_{-}\stackrel{{\scriptstyle{P}}}{{\longrightarrow}}\overline{\psi}_{-}^{P}=i\overline{\psi}_{+}\gamma^{1}~{};
AμPAμP=(A0,A1,A2);ϕPϕP=ϕ,ϕ={b,c,c¯};\displaystyle A_{\mu}\stackrel{{\scriptstyle{P}}}{{\longrightarrow}}A_{\mu}^{P}=(A_{0},-A_{1},A_{2})~{};~{}~{}\phi\stackrel{{\scriptstyle{P}}}{{\longrightarrow}}\phi^{P}=\phi~{},~{}~{}\phi=\{b,c,\overline{c}\}~{};
aμPaμP=(a0,a1,a2);χPχP=χ,χ={π,ξ,ξ¯}.\displaystyle a_{\mu}\stackrel{{\scriptstyle{P}}}{{\longrightarrow}}a_{\mu}^{P}=(-a_{0},a_{1},-a_{2})~{};~{}~{}\chi\stackrel{{\scriptstyle{P}}}{{\longrightarrow}}\chi^{P}=-\chi~{},~{}~{}\chi=\{\pi,\xi,\overline{\xi}\}~{}. (4)

The tree-level propagators are obtained by taking the free part of the action Σ(s1)\Sigma^{(s-1)} (1), i.e., by switching off the coupling constants ee and gg, thence the propagators in momenta space read:

ΔAAμν(k)=i{1k2μ2(ημνkμkνk2)+αk2kμkνk2},Δaaμν(k)=i{1k2μ2(ημνkμkνk2)+βk2kμkνk2},\displaystyle\Delta^{\mu\nu}_{AA}(k)=-i\bigg{\{}\frac{1}{k^{2}-\mu^{2}}\left(\eta^{\mu\nu}-\frac{k^{\mu}k^{\nu}}{k^{2}}\right)+\frac{\alpha}{k^{2}}\frac{k^{\mu}k^{\nu}}{k^{2}}\Bigg{\}}~{},~{}~{}\Delta^{\mu\nu}_{aa}(k)=-i\Bigg{\{}\frac{1}{k^{2}-\mu^{2}}\left(\eta^{\mu\nu}-\frac{k^{\mu}k^{\nu}}{k^{2}}\right)+\frac{\beta}{k^{2}}\frac{k^{\mu}k^{\nu}}{k^{2}}\Bigg{\}}~{},
ΔAaμν(k)=μk2(k2μ2)ϵμανkα,ΔAbμ(k)=Δaπμ(k)=kμk2,Δbb(k)=Δππ(k)=0,Δc¯c(k)=Δξ¯ξ(k)=ik2,\displaystyle\Delta_{Aa}^{\mu\nu}(k)=\frac{\mu}{k^{2}(k^{2}-\mu^{2})}\epsilon^{\mu\alpha\nu}k_{\alpha}~{},~{}~{}\Delta_{Ab}^{\mu}(k)=\Delta_{a\pi}^{\mu}(k)=\frac{k^{\mu}}{k^{2}}~{},~{}~{}\Delta_{bb}(k)=\Delta_{\pi\pi}(k)=0~{},~{}~{}\Delta_{\overline{c}c}(k)=\Delta_{\overline{\xi}\xi}(k)=-\frac{i}{k^{2}}~{},
Δ++(k)=i/km(s1)k2m2(s1)2,Δ(k)=i/k+m(s1)k2m2(s1)2.\displaystyle\Delta_{++}(k)=i\frac{{\hbox to0.0pt{\hbox{$\mskip 1.0mu/$}\hss}k}-m(s-1)}{k^{2}-m^{2}(s-1)^{2}}~{},~{}\Delta_{--}(k)=i\frac{{\hbox to0.0pt{\hbox{$\mskip 1.0mu/$}\hss}k}+m(s-1)}{k^{2}-m^{2}(s-1)^{2}}~{}. (5)

Notice that from this point forward, all 1- and 2-loops Feynman graphs calculations will be performed in the Landau gauge, α=β=0\alpha=\beta=0.

The graphical conventions for the propagators are assumed as below: {fmffile}feynmanrules

ΔAAμν {fmfgraph*} (13,10) \fmflefti \fmfrighto \fmfphotoni,o ,Δaaμν {fmfgraph*} (13,10) \fmflefti \fmfrighto \fmfgluono,i ,ΔAaμν {fmfgraph*} (13,10) \fmflefti \fmfrighto \fmfphotoni,v \fmfgluono,v ,Δ±± {fmfgraph*} (13,10) \fmflefti \fmfrighto \fmfplaini,o ,\Delta_{AA}^{\mu\nu}\equiv\parbox{40.0pt}{ \fmfgraph*(13,10) \fmfleft{i} \fmfright{o} \fmf{photon}{i,o} }\quad,\quad\Delta_{aa}^{\mu\nu}\equiv\parbox{40.0pt}{ \fmfgraph*(13,10) \fmfleft{i} \fmfright{o} \fmf{gluon}{o,i} }\quad,\quad\Delta_{Aa}^{\mu\nu}\equiv\parbox{40.0pt}{ \fmfgraph*(13,10) \fmfleft{i} \fmfright{o} \fmf{photon}{i,v} \fmf{gluon}{o,v} }\quad,\quad\Delta_{\pm\pm}\equiv\parbox{40.0pt}{ \fmfgraph*(13,10) \fmfleft{i} \fmfright{o} \fmf{plain}{i,o} }\quad, (6)

and the Feynman rules for the interaction vertices are given by: {fmffile}vertexrules

V±Aμ± {fmfgraph*} (15,15) \fmfbottomi,o \fmftopu \fmfplaini,v \fmfplaino,v \fmfphotonv,u \fmfvdecor.shape=circle,decor.filled=full,decor.size=1.3thick,label=ieγμ,label.angle=130,label.dist=.2cmv ,V±aμ± {fmfgraph*} (15,15) \fmfbottomi,o \fmftopu \fmfplaini,v \fmfplaino,v \fmfgluonv,u \fmfvdecor.shape=circle,decor.filled=full,decor.size=1.3thick,label=±igγμ,label.angle=150,label.dist=.3cmv .V_{\pm A^{\mu}\pm}\equiv\quad\parbox{40.0pt}{ \fmfgraph*(15,15) \fmfbottom{i,o} \fmftop{u} \fmf{plain}{i,v} \fmf{plain}{o,v} \fmf{photon}{v,u} \fmfv{decor.shape=circle,decor.filled=full,decor.size=1.3thick,label=$ie\gamma^{\mu}$,label.angle=130,label.dist=.2cm}{v} }\quad\quad,\quad\quad V_{\pm a^{\mu}\pm}\equiv\quad\quad\parbox{40.0pt}{ \fmfgraph*(15,15) \fmfbottom{i,o} \fmftop{u} \fmf{plain}{i,v} \fmf{plain}{o,v} \fmf{gluon}{v,u} \fmfv{decor.shape=circle,decor.filled=full,decor.size=1.3thick,label=$\pm ig\gamma^{\mu}$,label.angle=150,label.dist=.3cm}{v} }\quad\quad. (7)

II.2 The BPHZL scheme: power counting, subtraction operator, vacuum-polarization and self-energy

For the purpose of renormalizing the ultraviolet (UV) and infrared (IR) divergences of all divergent graphs, UV and IR subtraction degrees have to be fixed, to do so the UV and IR dimensions of all the fields shall be determined firstly. For any propagator ΔXY(k,s)\Delta_{XY}(k,s), the UV (dd) and IR (rr) dimensions of the fields, XX and YY, are defined by means of the asymptotical UV and IR behaviour of the propagator, dXYd_{XY} (for k,sk,s\rightarrow\infty) and rXYr_{XY} (for k,(s1)0k,(s-1)\rightarrow 0), respectively, furthermore the following inequalities hold BPHZ :

dX+dY3+dXYandrX+rY3+rXY,d_{X}+d_{Y}\geq 3+d_{XY}\;\;\;\mbox{and}\;\;\;r_{X}+r_{Y}\leq 3+r_{XY}~{}, (8)

where, in the Landau gauge, α=β=0\alpha=\beta=0, the UV (dd) and IR (rr) dimensions of all the fields are summarized in the Table 1. Thus, by taking into account all previous results, the UV (d(γ)d(\gamma)) and IR (r(γ)r(\gamma)) superficial degrees of divergence of a 1-particle irreducible Feynman diagram γ\gamma stems:

( d(γ)) r(γ)=3f( df) rfNfb( db) 32rbNb+( ) +12Ne+( ) +12NgNAa,\bordermatrix{&\cr&d(\gamma)\cr&r(\gamma)}=3-\sum\limits_{f}\bordermatrix{&\cr&d_{f}\cr&r_{f}}N_{f}-\sum\limits_{b}\bordermatrix{&\cr&d_{b}\cr&\frac{3}{2}r_{b}}N_{b}+\bordermatrix{&\cr&-\cr&+}\frac{1}{2}N_{e}+\bordermatrix{&\cr&-\cr&+}\frac{1}{2}N_{g}-N_{Aa}~{}, (9)

where NfN_{f} and NbN_{b} are the numbers of external lines of fermions and bosons, respectively, whereas NAaN_{Aa} is the number of internal lines associated to the mixed propagator ΔAa\Delta_{Aa}. Also, NeN_{e} and NgN_{g} are the powers of the coupling constants, ee and gg, in the integral corresponding to the graph γ\gamma.

ψ+\psi_{+} ψ\psi_{-} AμA_{\mu} aμa_{\mu} bb π\pi cc c¯{\overline{c}} ξ\xi ξ¯\bar{\xi} ss s1s-1
dd 1 1 12{1\over 2} 12{1\over 2} 32{3\over 2} 32{3\over 2} 0 1 0 1 1 1
rr 1 1 1 1 1 1 0 1 0 1 0 1
Table 1: UV (dd) and IR (rr) dimensions.

The 1-loop vacuum-polarization tensors, self energies and vertex functions diagrams are identified in Fig. 1, whereas their respectives UV and IR superficial degrees of divergence are displayed in Table 2. At this time, it should be mentioned that for any graph γi±\gamma_{i_{\pm}} the subscript ±\pm refers to external legs or internal lines of either ψ+\psi_{+} or ψ\psi_{-}.

{fmffile}

vacuumpolarization {fmfgraph*}(30,20) \fmflefti \fmfvlabel=γ1±\gamma_{1_{\pm}},label.angle=80,label.dist=1cmi\fmfrighto \fmfphotoni,v1 \fmfphotonv2,o \fmfplain,left,tension=0.4v1,v2,v1   {fmfgraph*}(30,20) \fmflefti \fmfvlabel=γ2±\gamma_{2_{\pm}},label.angle=80,label.dist=1cmi \fmfrighto \fmfgluonv1,i \fmfgluono,v2 \fmfplain,left,tension=0.4v1,v2,v1   {fmfgraph*}(30,20) \fmflefti \fmfvlabel=γ3±\gamma_{3_{\pm}},label.angle=80,label.dist=1cmi \fmfrighto \fmfphotoni,v1 \fmfgluono,v2 \fmfplain,left,tension=0.4v1,v2,v1  {fmfgraph*}(40,20) \fmftopi1 \fmflefti2,i4 \fmfvlabel=γ4±\gamma_{4_{\pm}},label.angle=80,label.dist=2cmi2 \fmfrighto,o1 \fmfdashesi1,v1 \fmfplaini2,v2 \fmfplainv3,o \fmfplainv2,v1 \fmfplainv3,v1 \fmfdashesv2,v3

{fmffile}

SelfenergyAa {fmfgraph*}(30,10) \fmfipairi,b,c,o \fmfiequi(0,0) \fmfivlabel=γ5±\gamma_{5_{\pm}},label.angle=80,label.dist=1cmi \fmfiequb(.3w,0) \fmfiequc(.7w,0) \fmfiequo(.9w,0) \fmfiphotoncup .. tension .9 .. downb \fmfiplainiright .. leftb \fmfiplainbright .. leftc \fmfiplaincright .. lefto   {fmfgraph*}(30,10) \fmfipairi,b,c,o \fmfiequi(0,0) \fmfivlabel=γ6±\gamma_{6_{\pm}},label.angle=80,label.dist=1cmi \fmfiequb(.3w,0) \fmfiequc(.7w,0) \fmfiequo(.95w,0) \fmfigluoncup .. tension 1 .. downb \fmfiplainiright .. leftb \fmfiplainbright .. leftc \fmfiplaincright .. lefto   {fmfgraph*}(30,10) \fmfipairi,b,a,c,o \fmfiequi(0,0) \fmfivlabel=γ7±\gamma_{7_{\pm}},label.angle=80,label.dist=1cmi \fmfiequb(.3w,0)\fmfiequc(.7w,0) \fmfiequa(.5w,0.8cm) \fmfiequo(.95w,0) \fmfiphotonbup .. tension 1 .. righta \fmfigluoncup .. tension 1 .. lefta \fmfiplainiright .. leftb \fmfiplainbright .. leftc \fmfiplaincright .. lefto

Figure 1: The 1-loop diagrams γ1±\gamma_{1_{\pm}}, γ2±\gamma_{2_{\pm}} and γ3±\gamma_{3_{\pm}} are the vacuum-polarization tensors, γ4±\gamma_{4_{\pm}} is the vertex functions and γ5±\gamma_{5_{\pm}}, γ6±\gamma_{6_{\pm}} and γ7±\gamma_{7_{\pm}} are the self-energies. The continuous line represents external legs or propagators of either ψ+\psi_{+} or ψ\psi_{-}, whereas the dashed lines in γ4±\gamma_{4_{\pm}} denote the propagator of AμA_{\mu}, aμa_{\mu} or the mixed one, and the external leg of either AμA_{\mu} or aμa_{\mu}.
γ1±\gamma_{1_{\pm}} γ2±\gamma_{2_{\pm}} γ3±\gamma_{3_{\pm}} γ4±(a)\gamma_{4_{\pm}}^{(a)} γ4±(b)\gamma_{4_{\pm}}^{(b)} γ5±\gamma_{5_{\pm}} γ6±\gamma_{6_{\pm}} γ7±\gamma_{7_{\pm}}
dd 1 1 1 1-1 2-2 0 0 1-1
rr 1 1 1 1 0 2 2 1
Table 2: UV (dd) and the IR (rr) superficial degrees of divergence of a 1-particle irreducible Feynman diagrams of Fig. 1, where for the vertex functions γ4±(a)\gamma_{4_{\pm}}^{(a)} the dashed internal line represents either ΔAA\Delta_{AA} or Δaa\Delta_{aa} propagators, while for γ4±(b)\gamma_{4_{\pm}}^{(b)} it symbolizes the mixed propagator ΔAa\Delta_{Aa}.

Accordingly to the power counting theorem, in view of the fact that the 1-loop diagrams γ1±\gamma_{1_{\pm}}, γ2±\gamma_{2_{\pm}}, γ3±\gamma_{3_{\pm}}, γ5±\gamma_{5_{\pm}} and γ6±\gamma_{6_{\pm}} (see Fig. 1 and Table 2) are superficially UV divergent, they have to be UV and IR subtracted. Whenever a graph γ\gamma is possibly UV divergent, i.e. d(γ)0d(\gamma)\geq 0, the BPHZL renormalization method is followed so as to make the graph convergent lz by also subtracting the IR divergences induced by the UV subtractions. The BPHZL subtraction program consists of performing UV and IR subtraction operations upon a UV divergent Feynman graph integrand, Iγ(p,k,s)I_{\gamma}(p,k,s):

Rγ(p,k,s)=(1tp,s1ρ(γ)1)(1tp,sδ(γ))Iγ(p,k,s),R_{\gamma}(p,k,s)=\left(1-t^{\rho(\gamma)-1}_{p,s-1}\right)\left(1-t^{\delta(\gamma)}_{p,s}\right)I_{\gamma}(p,k,s)~{}, (10)

where Rγ(p,k,s)R_{\gamma}(p,k,s) is the renormalized integrand, which is UV convergent. Moreover, δ(γ)\delta(\gamma) and ρ(γ)\rho(\gamma) are the UV and IR degrees of subtraction, respectively, given by lz :

δ(γ)=d(γ)+b(γ)andρ(γ)=r(γ)c(γ),\delta(\gamma)=d(\gamma)+b(\gamma)\;\;\;\mbox{and}\;\;\;\rho(\gamma)=r(\gamma)-c(\gamma)~{}, (11)

where at 1-loop b(γ)b(\gamma) and c(γ)c(\gamma) are non-negative integers constrained as follows:

ρ(γ)δ(γ)+1,\rho(\gamma)\leq\delta(\gamma)+1~{}, (12)

with tx,yτt^{\tau}_{x,y} being the Taylor expansion operator about x=y=0x=y=0 to order τ\tau, provided τ0\tau\geq 0.

II.3 The vacuum-polarization tensor

The BPHZL renormalization procedures of all 1-particle irreducible vacuum-polarization tensor divergent diagrams (see Fig. 1 and Table 2) are rather similar, since they possess the same loop structure, their integrands are equal up to coupling constants dependent factors, ±e2\pm e^{2}, ±g2\pm g^{2} and eg\mp eg, corresponding to the 1-loop graphs, γ1±\gamma_{1_{\pm}}, γ2±\gamma_{2_{\pm}} and γ3±\gamma_{3_{\pm}}, respectively. Initially, the analysis is carried out for the γ1±\gamma_{1_{\pm}} Feynman graphs, where the 1-loop vacuum-polarization tensor, Πγ1±μν(p,s)\Pi_{\gamma_{1_{\pm}}}^{\mu\nu}(p,s), reads

Πγ1±μν(p,s)=d3k(2π)3{e2Tr[γμ/km(s1)k2m2(s1)2γν/k/pm(s1)(kp)2m2(s1)2]}Iγ1±μν(p,k,s).\displaystyle\Pi_{\gamma_{1_{\pm}}}^{\mu\nu}(p,s)=\int{\frac{d^{3}k}{(2\pi)^{3}}}\underbrace{\left\{-e^{2}{\rm Tr}\left[\gamma^{\mu}\frac{{\hbox to0.0pt{\hbox{$\mskip 1.0mu/$}\hss}k}\mp m(s-1)}{k^{2}-m^{2}(s-1)^{2}}\gamma^{\nu}\frac{{\hbox to0.0pt{\hbox{$\mskip 1.0mu/$}\hss}k-\hbox to0.0pt{\hbox{$\mskip 1.0mu/$}\hss}p}\mp m(s-1)}{(k-p)^{2}-m^{2}(s-1)^{2}}\right]\right\}}_{I_{\gamma_{1_{\pm}}}^{\mu\nu}(p,k,s)}~{}. (13)

Bearing in mind the conditions (11) and the inequality (12), by taking b(γ1±)=c(γ1±)=0b(\gamma_{1_{\pm}})=c(\gamma_{1_{\pm}})=0, the UV and IR subtraction degrees are such that δ(γ1±)=ρ(γ1±)=1\delta(\gamma_{1_{\pm}})=\rho(\gamma_{1_{\pm}})=1. Consequently, the 1-loop BPHZL subtracted (renormalized) integrand, Rγ1±μν(p,k,s)R_{\gamma_{1_{\pm}}}^{\mu\nu}(p,k,s), is written in terms of the unsubtracted one, Iγ1±μν(p,k,s)I_{\gamma_{1_{\pm}}}^{\mu\nu}(p,k,s), in the following way:

Rγ1±μν(p,k,s)\displaystyle R_{\gamma_{1_{\pm}}}^{\mu\nu}(p,k,s) =\displaystyle= (1tp,s10)(1tp,s1)Iγ1±μν(p,k,s)\displaystyle(1-t^{0}_{p,s-1})(1-t^{1}_{p,s})I_{\gamma_{1_{\pm}}}^{\mu\nu}(p,k,s) (14)
=\displaystyle= (1tp,s10tp,s1+tp,s10tp,s1)Iγ1±μν(p,k,s).\displaystyle(1-t^{0}_{p,s-1}-t^{1}_{p,s}+t^{0}_{p,s-1}t^{1}_{p,s})I_{\gamma_{1_{\pm}}}^{\mu\nu}(p,k,s)~{}.

However, as previously mentioned by setting s=1s=1 at the end of all Taylor expansion operations, to retrieve the massless condition, the subtracted integrand, Rγ1±μν(p,k,1)R_{\gamma_{1_{\pm}}}^{\mu\nu}(p,k,1), results:

Rγ1±μν(p,k,1)=Iγ1±μν(p,k,1)parityevenIγ1±μν(0,k,1)parityevenpρpρIγ1±μν(p,k,s)parityodd|p=s=0,R_{\gamma_{1_{\pm}}}^{\mu\nu}(p,k,1)=\underbrace{I_{\gamma_{1_{\pm}}}^{\mu\nu}(p,k,1)}_{\rm parity-even}-\underbrace{I_{\gamma_{1_{\pm}}}^{\mu\nu}(0,k,1)}_{\rm parity-even}-\underbrace{p^{\rho}\frac{\partial}{\partial p^{\rho}}I_{\gamma_{1_{\pm}}}^{\mu\nu}(p,k,s)}_{\rm parity-odd}\Bigg{|}_{p=s=0}~{}, (15)

where

Iγ1±μν(p,k,1)=e2Tr{γμ/kk2γν/k/p(kp)2},Iγ1±μν(0,k,1)=e2Tr{γμ/kk2γν/kk2},\displaystyle I_{\gamma_{1_{\pm}}}^{\mu\nu}(p,k,1)=-e^{2}{\rm Tr}~{}\left\{\gamma^{\mu}\frac{{\hbox to0.0pt{\hbox{$\mskip 1.0mu/$}\hss}k}}{k^{2}}\gamma^{\nu}\frac{{\hbox to0.0pt{\hbox{$\mskip 1.0mu/$}\hss}k-\hbox to0.0pt{\hbox{$\mskip 1.0mu/$}\hss}p}}{(k-p)^{2}}\right\}~{},~{}~{}I_{\gamma_{1_{\pm}}}^{\mu\nu}(0,k,1)=-e^{2}{\rm Tr}~{}\left\{\gamma^{\mu}\frac{{\hbox to0.0pt{\hbox{$\mskip 1.0mu/$}\hss}k}}{k^{2}}\gamma^{\nu}\frac{{\hbox to0.0pt{\hbox{$\mskip 1.0mu/$}\hss}k}}{k^{2}}\right\}~{}, (16)
pρpρIγ1±μν(p,k,s)|p=s=0=e2Tr{γμ/kmk2m2γν[/pk2m2+2pk/km(k2m2)2]}.\displaystyle p^{\rho}\frac{\partial}{\partial p^{\rho}}I_{\gamma_{1_{\pm}}}^{\mu\nu}(p,k,s)\Bigg{|}_{p=s=0}=-e^{2}{\rm Tr}~{}\left\{\gamma^{\mu}\frac{{\hbox to0.0pt{\hbox{$\mskip 1.0mu/$}\hss}k}\mp m}{k^{2}-m^{2}}\gamma^{\nu}\left[-\frac{\hbox to0.0pt{\hbox{$\mskip 1.0mu/$}\hss}p}{k^{2}-m^{2}}+2p\cdot k\frac{{\hbox to0.0pt{\hbox{$\mskip 1.0mu/$}\hss}k}\mp m}{(k^{2}-m^{2})^{2}}\right]\right\}~{}. (17)

In addition to that, since the renormalized vacuum-polarization tensor, Πγ1±(R)μν(p,s)\Pi_{\gamma_{1_{\pm}}}^{(R)\mu\nu}(p,s), is defined by

Πγ1±(R)μν(p,s)=d3k(2π)3Rγ1±μν(p,k,s),\Pi_{\gamma_{1_{\pm}}}^{(R)\mu\nu}(p,s)=\int\frac{d^{3}k}{(2\pi)^{3}}~{}R^{\mu\nu}_{\gamma_{1_{\pm}}}(p,k,s)~{}, (18)

and recalling to the fact that the issue here is to verify if Levi-Civita symbol ϵμνρ\epsilon^{\mu\nu\rho} dependent terms might be induced by UV and IR subtractions, only parity-odd pieces of the subtracted integrand, Roddγ1±μν(p,k,1)R_{{\rm odd}\gamma_{1_{\pm}}}^{\mu\nu}(p,k,1) (15), shall be taken into account, then from the Eqs.(15)–(17), leads to

Πoddγ1±(R)μν=±e2m4π|m|ϵμανpα,\Pi^{(R)\mu\nu}_{{\rm odd}\gamma_{1_{\pm}}}=\pm\frac{e^{2}m}{4\pi|m|}\epsilon^{\mu\alpha\nu}p_{\alpha}~{}, (19)

with Πoddγ1±(R)μνΠoddγ1±(R)μν(p,1)\Pi^{(R)\mu\nu}_{{\rm odd}\gamma_{1_{\pm}}}\equiv\Pi^{(R)\mu\nu}_{{\rm odd}\gamma_{1_{\pm}}}(p,1).

Analogously to the previous case, Πoddγ1±(R)μν\Pi^{(R)\mu\nu}_{{\rm odd}\gamma_{1_{\pm}}}, the renormalized parity-odd vacuum-polarization tensors Πoddγ2±(R)μν\Pi^{(R)\mu\nu}_{{\rm odd}\gamma_{2_{\pm}}} and Πoddγ3±(R)μν\Pi^{(R)\mu\nu}_{{\rm odd}\gamma_{3_{\pm}}}, corresponding to γ2±\gamma_{2_{\pm}} and γ3±\gamma_{3_{\pm}} diagrams, are respectively given by

Πoddγ2±(R)μν=±g2m4π|m|ϵμανpαandΠoddγ3±(R)μν=egm4π|m|ϵμανpα.\Pi^{(R)\mu\nu}_{{\rm odd}\gamma_{2_{\pm}}}=\pm\frac{g^{2}m}{4\pi|m|}\epsilon^{\mu\alpha\nu}p_{\alpha}\;\;\;\mbox{and}\;\;\;\Pi^{(R)\mu\nu}_{{\rm odd}\gamma_{3_{\pm}}}=\mp\frac{egm}{4\pi|m|}\epsilon^{\mu\alpha\nu}p_{\alpha}~{}. (20)

Finally, the 1-loop renormalized parity-odd vacuum polarization tensors, Πoddγ1(R)μν\Pi^{(R)\mu\nu}_{{\rm odd}\gamma_{1}}, Πoddγ2(R)μν\Pi^{(R)\mu\nu}_{{\rm odd}\gamma_{2}} and Πoddγ3(R)μν\Pi^{(R)\mu\nu}_{{\rm odd}\gamma_{3}} :

Πoddγ1(R)μν=Πoddγ1+(R)μν+Πoddγ1(R)μν0,Πoddγ2(R)μν=Πoddγ2+(R)μν+Πoddγ2(R)μν0,Πoddγ3(R)μν=Πoddγ3+(R)μν+Πoddγ3(R)μν0,\Pi^{(R)\mu\nu}_{{\rm odd}\gamma_{1}}=\Pi^{(R)\mu\nu}_{{\rm odd}\gamma_{1_{+}}}+\Pi^{(R)\mu\nu}_{{\rm odd}\gamma_{1_{-}}}\equiv 0~{},~{}~{}\Pi^{(R)\mu\nu}_{{\rm odd}\gamma_{2}}=\Pi^{(R)\mu\nu}_{{\rm odd}\gamma_{2_{+}}}+\Pi^{(R)\mu\nu}_{{\rm odd}\gamma_{2_{-}}}\equiv 0~{},~{}~{}\Pi^{(R)\mu\nu}_{{\rm odd}\gamma_{3}}=\Pi^{(R)\mu\nu}_{{\rm odd}\gamma_{3_{+}}}+\Pi^{(R)\mu\nu}_{{\rm odd}\gamma_{3_{-}}}\equiv 0~{}, (21)

vanishes identically. In conclusion, besides there is no 1-loop counterterm for the mixed Chern-Simons term, εμανAμαaν\varepsilon^{\mu\alpha\nu}A_{\mu}\partial_{\alpha}a_{\nu} – which sets out that the 1-loop β\beta-function associated to the Chern-Simons mass parameter (μ\mu) vanishes – the BPHZL subtraction scheme applied to the 1-loop vacuum-polarization tensor preserves parity, being the opposite to what takes place in ordinary massless U(1)U(1) QED3 massless-1-loop .

II.4 The self-energy

Among the six self-energy diagrams (see Fig. 1 and Table 2), two are UV finite, γ7±\gamma_{7_{\pm}}, while the four remaining, γ5±\gamma_{5_{\pm}} and γ6±\gamma_{6_{\pm}}, are UV divergent, thus those which have to be renormalized. However, the BPHZL subtraction procedures for the 1-particle irreducible self-energy divergent diagrams are analogous, differing only by coupling constants dependent factors, ±e2\pm e^{2} and ±g2\pm g^{2}, corresponding to the 1-loop graphs, γ5±\gamma_{5_{\pm}} and γ6±\gamma_{6_{\pm}}, respectively. Starting the analysis with γ5±\gamma_{5_{\pm}} Feynman graphs, the 1-loop self-energy, Σ(γ5±)\Sigma(\gamma_{5_{\pm}}), reads

Σ(γ5±)=d3k(2π)3{e2γμ[1k2μ2(ημνkμkνk2)][(/k/p)m(s1)(kp)2m2(s1)2]γν}Iγ5±(p,k,s).\Sigma(\gamma_{5_{\pm}})=\int\frac{d^{3}k}{(2\pi)^{3}}\underbrace{\left\{-e^{2}\gamma^{\mu}\left[\frac{1}{k^{2}-\mu^{2}}\left(\eta_{\mu\nu}-\frac{k_{\mu}k_{\nu}}{k^{2}}\right)\right]\left[\frac{(\hbox to0.0pt{\hbox{$\mskip 1.0mu/$}\hss}k-\hbox to0.0pt{\hbox{$\mskip 1.0mu/$}\hss}p)\mp m(s-1)}{(k-p)^{2}-m^{2}(s-1)^{2}}\right]\gamma^{\nu}\right\}}_{I_{\gamma_{5_{\pm}}}(p,k,s)}. (22)

Keeping in mind one more time the conditions (11) and the inequality (12), the UV and IR subtraction degrees are δ(γ5±)=δ(γ6±)=0\delta(\gamma_{5_{\pm}})=\delta(\gamma_{6_{\pm}})=0 and ρ(γ6±)=ρ(γ5±)=1\rho(\gamma_{6_{\pm}})=\rho(\gamma_{5_{\pm}})=1, where it has been fixed b(γ5±)=b(γ6±)=0b(\gamma_{5_{\pm}})=b(\gamma_{6_{\pm}})=0 and c(γ5±)=c(γ6±)=1c(\gamma_{5_{\pm}})=c(\gamma_{6_{\pm}})=1. The 1-loop BPHZL subtracted (renormalized) integrand, Rγ5±(p,k,s)R_{\gamma_{5_{\pm}}}(p,k,s), can be expressed in terms of the unsubtracted one, Iγ5±(p,k,s)I_{\gamma_{5_{\pm}}}(p,k,s), as follows:

Rγ5±(p,k,s)\displaystyle R_{\gamma_{5_{\pm}}}(p,k,s) =\displaystyle= (1tp,s10)(1tp,s0)Iγ5±(p,k,s)\displaystyle(1-t^{0}_{p,s-1})(1-t^{0}_{p,s})I_{\gamma_{5_{\pm}}}(p,k,s) (23)
=\displaystyle= (1tp,s10tp,s0+tp,s10tp,s0)Iγ5±(p,k,s).\displaystyle(1-t^{0}_{p,s-1}-t^{0}_{p,s}+t^{0}_{p,s-1}t^{0}_{p,s})I_{\gamma_{5_{\pm}}}(p,k,s)~{}.

Yet again, setting s=1s=1 at the end of the Taylor expansion operations, restoring the massless condition, the subtracted integrand, Rγ5±(p,k,1)R_{\gamma_{5_{\pm}}}(p,k,1), results:

Rγ5±(p,k,1)=Iγ5±(p,k,1)Iγ5±(0,k,1),R_{\gamma_{5_{\pm}}}(p,k,1)=I_{\gamma_{5_{\pm}}}(p,k,1)-I_{\gamma_{5_{\pm}}}(0,k,1)~{}, (24)

where,

Iγ5±(p,k,1)=2e2{1k2μ21(kp)2[/k/k(kp)k2]},Iγ5±(0,k,1)=2e2/kk2(k2μ2).I_{\gamma_{5_{\pm}}}(p,k,1)=2e^{2}\left\{\frac{1}{k^{2}-\mu^{2}}\frac{1}{(k-p)^{2}}\left[\hbox to0.0pt{\hbox{$\mskip 1.0mu/$}\hss}k-\frac{\hbox to0.0pt{\hbox{$\mskip 1.0mu/$}\hss}k(k\cdot p)}{k^{2}}\right]\right\}~{},~{}~{}I_{\gamma_{5_{\pm}}}(0,k,1)=2e^{2}\frac{\hbox to0.0pt{\hbox{$\mskip 1.0mu/$}\hss}k}{k^{2}(k^{2}-\mu^{2})}~{}. (25)

Additionally, once the renormalized self-energy, Σγ5±(R)(p,s)\Sigma_{\gamma_{5_{\pm}}}^{(R)}(p,s), is defined by

Σγ5±(R)(p,s)=d3k(2π)3Rγ5±(p,k,s),\Sigma_{\gamma_{5_{\pm}}}^{(R)}(p,s)=\int\frac{d^{3}k}{(2\pi)^{3}}~{}R_{\gamma_{5_{\pm}}}(p,k,s), (26)

such that, from the Eqs.(24)–(25), leads to

Σγ5±(R)=ie2/p4π[14p2(p2μ2+3μ2p2+2)ln(μ2p2(μ2p2)2)|μ|2(1μ2+3p2)+iπp24μ2p2],\Sigma^{(R)}_{\gamma_{5_{\pm}}}=-\frac{ie^{2}\hbox to0.0pt{\hbox{$\mskip 1.0mu/$}\hss}p}{4\pi}\left[\frac{1}{4\sqrt{p^{2}}}\left(\frac{p^{2}}{\mu^{2}}+\frac{3\mu^{2}}{p^{2}}+2\right)\ln\left(\frac{\mu^{2}-p^{2}}{(\sqrt{\mu^{2}}-\sqrt{p^{2}})^{2}}\right)-\frac{|\mu|}{2}\left(\frac{1}{\mu^{2}}+\frac{3}{p^{2}}\right)+i\pi\frac{p^{2}}{4\mu^{2}\sqrt{p^{2}}}\right]~{}, (27)

with Σγ5±(R)Σγ5±(R)(p,1)\Sigma^{(R)}_{\gamma_{5_{\pm}}}\equiv\Sigma^{(R)}_{\gamma_{5_{\pm}}}(p,1).

Similarly to the previous case, Σγ5±(R)\Sigma^{(R)}_{\gamma_{5_{\pm}}}, the renormalized self-energies Σγ6±(R)\Sigma^{(R)}_{\gamma_{6_{\pm}}}, corresponding to γ6±\gamma_{6_{\pm}} diagram, read

Σγ6±(R)=ig2/p4π[14p2(p2μ2+3μ2p2+2)ln(μ2p2(μ2p2)2)|μ|2(1μ2+3p2)+iπp24μ2p2].\Sigma^{(R)}_{\gamma_{6_{\pm}}}=-\frac{ig^{2}\hbox to0.0pt{\hbox{$\mskip 1.0mu/$}\hss}p}{4\pi}\left[\frac{1}{4\sqrt{p^{2}}}\left(\frac{p^{2}}{\mu^{2}}+\frac{3\mu^{2}}{p^{2}}+2\right)\ln\left(\frac{\mu^{2}-p^{2}}{(\sqrt{\mu^{2}}-\sqrt{p^{2}})^{2}}\right)-\frac{|\mu|}{2}\left(\frac{1}{\mu^{2}}+\frac{3}{p^{2}}\right)+i\pi\frac{p^{2}}{4\mu^{2}\sqrt{p^{2}}}\right]~{}. (28)

Accordingly, the 1-loop renormalized self-energies, Σ+(R)=Σγ5+(R)+Σγ6+(R)\Sigma^{(R)}_{+}=\Sigma^{(R)}_{\gamma_{5_{+}}}+\Sigma^{(R)}_{\gamma_{6_{+}}} and Σ(R)=Σγ5(R)+Σγ6(R)\Sigma^{(R)}_{-}=\Sigma^{(R)}_{\gamma_{5_{-}}}+\Sigma^{(R)}_{\gamma_{6_{-}}}, associated respectively to ψ+\psi_{+} and ψ\psi_{-}:

Σ+(R)=Σ(R)\displaystyle\Sigma^{(R)}_{+}=\Sigma^{(R)}_{-} =\displaystyle\!\!=\!\! i(e2+g2)/p4π[14p2(p2μ2+3μ2p2+2)ln(μ2p2(μ2p2)2)|μ|2(1μ2+3p2)+iπp24μ2p2]\displaystyle-\frac{i(e^{2}+g^{2})\hbox to0.0pt{\hbox{$\mskip 1.0mu/$}\hss}p}{4\pi}\left[\frac{1}{4\sqrt{p^{2}}}\left(\frac{p^{2}}{\mu^{2}}+\frac{3\mu^{2}}{p^{2}}+2\right)\ln\left(\frac{\mu^{2}-p^{2}}{(\sqrt{\mu^{2}}-\sqrt{p^{2}})^{2}}\right)-\frac{|\mu|}{2}\left(\frac{1}{\mu^{2}}+\frac{3}{p^{2}}\right)+i\pi\frac{p^{2}}{4\mu^{2}\sqrt{p^{2}}}\right] (29)
=\displaystyle\!\!=\!\! (e2+g2)4π/p𝒪(p2,μ),\displaystyle\frac{(e^{2}+g^{2})}{4\pi}{\hbox to0.0pt{\hbox{$\mskip 1.0mu/$}\hss}p}~{}{\cal O}(p^{2},\mu)~{},

contribute to the 1-loop effective action (in momenta space) with the following term:

ψ¯+Σ+(R)ψ++ψ¯Σ(R)ψ𝑃ψ¯Σ(R)ψ+ψ¯+Σ+(R)ψ+,\overline{\psi}_{+}\Sigma^{(R)}_{+}\psi_{+}+\overline{\psi}_{-}\Sigma^{(R)}_{-}\psi_{-}~{}~{}\overset{P}{\longmapsto}~{}~{}\overline{\psi}_{-}\Sigma^{(R)}_{-}\psi_{-}+\overline{\psi}_{+}\Sigma^{(R)}_{+}\psi_{+}~{}, (30)

that shows to be invariant under parity, thereby the BPHZL subtraction scheme does not break parity in the case of the 1-loop self-energy either. Finally, it has been finished the proof on the BPHZL parity invariance at 1-loop for the massless parity-even U(1)×U(1)U(1)\times U(1) Maxwell-Chern-Simons QED3 model masslessU1U1QED3 . Nevertheless, thanks to divergent 2-loops vacuum polarization tensor diagrams (see Fig. 2), it remains to verify if whether or not parity still be preserved in the course of the 2-loops BPHZL ultraviolet and infrared subtractions.

III BPHZL: 2-loops

In order to complete the proof if parity is broken or not by the BPHZL renormalization method, once the model into consideration here is superrenormalizable and the ultraviolet divergences are bounded up to 2-loops (9), it still remains to identify and investigate the potential UV divergent 2-loops diagrams in what concerns parity breakdown. By power-counting inspection (9), exclusively twenty four of the thirty six vacuum-polarization tensor Feynman graphs444It should be pointed that, for the sake of subsequent renormalization, the symmetrical diagrams corresponding to γ11±\gamma_{11_{\pm}}, γ12±\gamma_{12_{\pm}} and γ13±\gamma_{13_{\pm}} – those with the propagators ΔAAμν\Delta^{\mu\nu}_{AA}, Δaaμν\Delta^{\mu\nu}_{aa} or ΔAaμν\Delta^{\mu\nu}_{Aa} inside the loop in its upper part – have to be taken into consideration. show to be divergent at 2-loops (see Fig. 2), furthermore, it shall be verified if parity-odd local counterterms, with UV dimension 2, of the type ϵμανAμpαAν\epsilon^{\mu\alpha\nu}A_{\mu}p_{\alpha}A_{\nu} or ϵμανaμpαaν\epsilon^{\mu\alpha\nu}a_{\mu}p_{\alpha}a_{\nu} – local counterterm of the type ϵμανAμpαaν\epsilon^{\mu\alpha\nu}A_{\mu}p_{\alpha}a_{\nu} shall be discarded throughout this analysis because it is parity-even – might be generated by the UV and IR subtractions. However, power-counting (9) dimensional analysis reveals that even though parity-odd Levi-Civita symbol dependent counterterms could appear, they would be nonlocal since their coupling constant order should be of mass dimension 2, namely, e4e^{4}, e2g2e^{2}g^{2} or g4g^{4}.

{fmffile}

twoloopgraphs {fmfgraph*}(37,25) \fmfipairi,va,vb,vc,vd,o \fmfiequi(0,.5h) \fmfivlabel=γ8±\gamma_{8_{\pm}},label.angle=80,label.dist=1cmi \fmfiequva(.3w,.5h) \fmfiequvb(.5w,.8h) \fmfiequvc(.7w,.5h) \fmfiequvd(.5w,.2h) \fmfiequo(w,.5h) \fmfidashesi–va \fmfidashesvcright .. righto \fmfiplainvaup .. tension 1 .. rightvb \fmfiplainvbright .. tension 1 .. downvc \fmfiplainvcdown .. tension 1 .. leftvd \fmfiplainvdleft .. tension 1 .. upva \fmfiphotonvbdown .. downvd  {fmfgraph*}(37,25) \fmfipairi,va,vb,vc,vd,o \fmfiequi(0,.5h) \fmfivlabel=γ9±\gamma_{9_{\pm}},label.angle=80,label.dist=1cmi \fmfiequva(.3w,.5h) \fmfiequvb(.5w,.8h) \fmfiequvc(.7w,.5h) \fmfiequvd(.5w,.2h) \fmfiequo(w,.5h) \fmfidashesi–va \fmfidashesvcright .. righto \fmfiplainvaup .. tension 1 .. rightvb \fmfiplainvbright .. tension 1 .. downvc \fmfiplainvcdown .. tension 1 .. leftvd \fmfiplainvdleft .. tension 1 .. upva \fmfigluonvdup .. upvb  {fmfgraph*}(37,25) \fmfipairi,va,vb,vc,vd,o,c \fmfiequi(0,.5h) \fmfivlabel=γ10±\gamma_{10_{\pm}},label.angle=80,label.dist=1cmi \fmfiequva(.3w,.5h) \fmfiequvb(.5w,.8h) \fmfiequvc(.7w,.5h) \fmfiequvd(.5w,.2h) \fmfiequo(w,.5h) \fmfiequc(.5w,.5h) \fmfidashesi–va \fmfidashesvcright .. righto \fmfiplainvaup .. tension 1 .. rightvb \fmfiplainvbright .. tension 1 .. downvc \fmfiplainvcdown .. tension 1 .. leftvd \fmfiplainvdleft .. tension 1 .. upva \fmfiphotonvbdown .. downc \fmfigluonvdup .. upc

{fmffile}

2loops {fmfgraph*}(37,25) \fmfipairi,va,vb,vc,vd,o,c,ve,vf \fmfiequi(0,.5h) \fmfivlabel=γ11±\gamma_{11_{\pm}},label.angle=80,label.dist=1cmi \fmfiequva(.3w,.5h) \fmfiequvb(.5w,.8h) \fmfiequvc(.7w,.5h) \fmfiequvd(.5w,.2h) \fmfiequo(w,.5h) \fmfiequc(.5w,.5h) \fmfiequvec+(-.17w,-.15h) \fmfiequvfc+(.17w,-.15h) \fmfiphotonveup .. tension 2.3 .. downvf \fmfidashesi–va \fmfidashesvcright .. righto \fmfiplainvaup .. tension 1 .. rightvb \fmfiplainvbright .. tension 1 .. downvc \fmfiplainvcdown .. tension 1 .. leftvd \fmfiplainvdleft .. tension 1 .. upva  {fmfgraph*}(37,25) \fmfipairi,va,vb,vc,vd,o,c,ve,vf \fmfiequi(0,.5h) \fmfivlabel=γ12±\gamma_{12_{\pm}},label.angle=80,label.dist=1cmi \fmfiequva(.3w,.5h) \fmfiequvb(.5w,.8h) \fmfiequvc(.7w,.5h) \fmfiequvd(.5w,.2h) \fmfiequo(w,.5h) \fmfiequc(.5w,.5h) \fmfiequvec+(-.17w,-.15h) \fmfiequvfc+(.17w,-.15h) \fmficurlyvf .. tension 1 .. ve \fmfidashesi–va \fmfidashesvcright .. righto \fmfiplainvaup .. tension 1 .. rightvb \fmfiplainvbright .. tension 1 .. downvc \fmfiplainvcdown .. tension 1 .. leftvd \fmfiplainvdleft .. tension 1 .. upva  {fmfgraph*}(37,25) \fmfipairi,va,vb,vc,vd,o,c,ve,vf \fmfiequi(0,.5h) \fmfivlabel=γ13±\gamma_{13_{\pm}},label.angle=80,label.dist=1cmi \fmfiequva(.3w,.5h) \fmfiequvb(.5w,.8h) \fmfiequvc(.7w,.5h) \fmfiequvd(.5w,.2h) \fmfiequo(w,.5h) \fmfiequc(.5w,.5h) \fmfiequvec+(-.17w,-.15h) \fmfiequvfc+(.17w,-.15h) \fmficurlyvf–c \fmfiphotoncleft .. tension .8 .. ve \fmfidashesi–va \fmfidashesvcright .. righto \fmfiplainvaup .. tension 1 .. rightvb \fmfiplainvbright .. tension 1 .. downvc \fmfiplainvcdown .. tension 1 .. leftvd \fmfiplainvdleft .. tension 1 .. upva

Figure 2: The 2-loops vacuum-polarization tensor graphs, which the continuous lines represent propagators of either ψ+\psi_{+} or ψ\psi_{-}, and the dashed lines the external legs of either AμA_{\mu} or aμa_{\mu}.

Complementary to the previous dimensional discussion, a tensor structure analysis of the 2-loops vacuum-polarization tensor integrands is opportune. First of all, the thirty six 2-loops vacuum-polarization tensors diagrams (γi±\gamma_{i_{\pm}}, i=813i=8\dots 13) are displayed in Fig. 2, and their UV superficial degrees of divergence (d(γi±)d(\gamma_{i_{\pm}})) are d(γ8±)=d(γ9±)=d(γ11±)=d(γ12±)=0d(\gamma_{8_{\pm}})=d(\gamma_{9_{\pm}})=d(\gamma_{11_{\pm}})=d(\gamma_{12_{\pm}})=0 and d(γ10±)=d(γ13±)=1d(\gamma_{10_{\pm}})=d(\gamma_{13_{\pm}})=-1, thus from the former UV degree of divergences, the graphs γ8±\gamma_{8_{\pm}}, γ9±\gamma_{9_{\pm}}, γ11±\gamma_{11_{\pm}} and γ12±\gamma_{12_{\pm}} have to be renormalized, on the other hand the graphs γ10±\gamma_{10_{\pm}} and γ13±\gamma_{13_{\pm}} are already UV finite. Also, prior to the proof on the non generation of possible parity-odd Levi-Civita symbol dependent counterterms, it is suitable to write down explicitly the divergent vacuum-polarization tensors corresponding to the diagrams555As already mentioned, since possible parity-even local counterterm of the type ϵμανAμpαaν\epsilon^{\mu\alpha\nu}A_{\mu}p_{\alpha}a_{\nu} has not been taken into consideration, it remains sixteen graphs that could generate parity-odd-like counterterms ϵμανAμpαAν\epsilon^{\mu\alpha\nu}A_{\mu}p_{\alpha}A_{\nu} and ϵμανaμpαaν\epsilon^{\mu\alpha\nu}a_{\mu}p_{\alpha}a_{\nu}. γ8±\gamma_{8_{\pm}}, γ9±\gamma_{9_{\pm}}, γ11±\gamma_{11_{\pm}} and γ12±\gamma_{12_{\pm}}:

Πγ8±μν(p,s)=λ82d3k1(2π)3d3k2(2π)3e2I^±μν(k1,k2,p,s),\displaystyle\Pi_{\gamma_{8_{\pm}}}^{\mu\nu}(p,s)=\lambda_{8}^{2}\int{\frac{d^{3}k_{1}}{(2\pi)^{3}}}\int{\frac{d^{3}k_{2}}{(2\pi)^{3}}}~{}e^{2}~{}{\widehat{I}}_{\pm}^{\mu\nu}(k_{1},k_{2},p,s)~{}, (31)
Πγ9±μν(p,s)=λ92d3k1(2π)3d3k2(2π)3g2I^±μν(k1,k2,p,s);\displaystyle\Pi_{\gamma_{9_{\pm}}}^{\mu\nu}(p,s)=\lambda_{9}^{2}\int{\frac{d^{3}k_{1}}{(2\pi)^{3}}}\int{\frac{d^{3}k_{2}}{(2\pi)^{3}}}~{}g^{2}~{}{\widehat{I}}_{\pm}^{\mu\nu}(k_{1},k_{2},p,s)~{}; (32)

and

Πγ11±μν(p,s)=λ112d3k1(2π)3d3k2(2π)3e2I~±μν(k1,k2,p,s),\displaystyle\Pi_{\gamma_{11_{\pm}}}^{\mu\nu}(p,s)=\lambda_{11}^{2}\int{\frac{d^{3}k_{1}}{(2\pi)^{3}}}\int{\frac{d^{3}k_{2}}{(2\pi)^{3}}}~{}e^{2}~{}{\widetilde{I}}_{\pm}^{\mu\nu}(k_{1},k_{2},p,s)~{}, (33)
Πγ12±μν(p,s)=λ122d3k1(2π)3d3k2(2π)3g2I~±μν(k1,k2,p,s);\displaystyle\Pi_{\gamma_{12_{\pm}}}^{\mu\nu}(p,s)=\lambda_{12}^{2}\int{\frac{d^{3}k_{1}}{(2\pi)^{3}}}\int{\frac{d^{3}k_{2}}{(2\pi)^{3}}}~{}g^{2}~{}{\widetilde{I}}_{\pm}^{\mu\nu}(k_{1},k_{2},p,s)~{}; (34)

such that λi=e\lambda_{i}=e (i=8,9,11,12i=8,9,11,12) if the two external legs are of AμA_{\mu}, otherwise, if aμa_{\mu} as the two external legs, λi=g\lambda_{i}=g, and

I^±μν(k1,k2,p,s)=Tr{γμ[i/k1m(s1)k12m2(s1)2]γα[i1(k1k2)2μ2(ηαβ(k1αk2α)(k1βk2β)(k1k2)2)]××[i/k2m(s1)k22m2(s1)2]γν[i(/k2/p)m(s1)(k2p)2m2(s1)2]γβ[i(/k1/p)m(s1)(k1p)2m2(s1)2]},{\widehat{I}}_{\pm}^{\mu\nu}(k_{1},k_{2},p,s)=-{\rm Tr}\left\{\gamma^{\mu}\underbrace{\left[i\frac{\hbox to0.0pt{\hbox{$\mskip 1.0mu/$}\hss}k_{1}\mp m(s-1)}{k_{1}^{2}-m^{2}(s-1)^{2}}\right]}\gamma_{\alpha}\left[-i\frac{1}{(k_{1}-k_{2})^{2}-\mu^{2}}\left(\eta^{\alpha\beta}-\frac{(k_{1}^{\alpha}-k_{2}^{\alpha})(k_{1}^{\beta}-k_{2}^{\beta})}{(k_{1}-k_{2})^{2}}\right)\right]\times\right.\\ \times\left.\underbrace{\left[i\frac{\hbox to0.0pt{\hbox{$\mskip 1.0mu/$}\hss}k_{2}\mp m(s-1)}{k_{2}^{2}-m^{2}(s-1)^{2}}\right]}\gamma^{\nu}\underbrace{\left[i\frac{(\hbox to0.0pt{\hbox{$\mskip 1.0mu/$}\hss}k_{2}-\hbox to0.0pt{\hbox{$\mskip 1.0mu/$}\hss}p)\mp m(s-1)}{(k_{2}-p)^{2}-m^{2}(s-1)^{2}}\right]}\gamma_{\beta}\underbrace{\left[i\frac{(\hbox to0.0pt{\hbox{$\mskip 1.0mu/$}\hss}k_{1}-\hbox to0.0pt{\hbox{$\mskip 1.0mu/$}\hss}p)\mp m(s-1)}{(k_{1}-p)^{2}-m^{2}(s-1)^{2}}\right]}\right\}~{}, (35)
I~±μν(k1,k2,p,s)=Tr{γμ[i/k1m(s1)k12m2(s1)2]γν[i(/k1/p)m(s1)(k1p)2m2(s1)2]γα[i1k22μ2(ηαβk2αk2βk22)]××[i(/k1/k2/p)m(s1)(k1k2p)2m2(s1)2]γβ[i(/k1/p)m(s1)(k1p)2m2(s1)2]},{\widetilde{I}}_{\pm}^{\mu\nu}(k_{1},k_{2},p,s)=-{\rm Tr}\left\{\gamma^{\mu}\underbrace{\left[i\frac{\hbox to0.0pt{\hbox{$\mskip 1.0mu/$}\hss}k_{1}\mp m(s-1)}{k_{1}^{2}-m^{2}(s-1)^{2}}\right]}\gamma^{\nu}\underbrace{\left[i\frac{(\hbox to0.0pt{\hbox{$\mskip 1.0mu/$}\hss}k_{1}-\hbox to0.0pt{\hbox{$\mskip 1.0mu/$}\hss}p)\mp m(s-1)}{(k_{1}-p)^{2}-m^{2}(s-1)^{2}}\right]}\gamma_{\alpha}\right.\left[-i\frac{1}{k_{2}^{2}-\mu^{2}}\left(\eta^{\alpha\beta}-\frac{k_{2}^{\alpha}k_{2}^{\beta}}{k_{2}^{2}}\right)\right]\times\\ \times\left.\underbrace{\left[i\frac{(\hbox to0.0pt{\hbox{$\mskip 1.0mu/$}\hss}k_{1}-\hbox to0.0pt{\hbox{$\mskip 1.0mu/$}\hss}k_{2}-\hbox to0.0pt{\hbox{$\mskip 1.0mu/$}\hss}p)\mp m(s-1)}{(k_{1}-k_{2}-p)^{2}-m^{2}(s-1)^{2}}\right]}\gamma_{\beta}\underbrace{\left[i\frac{(\hbox to0.0pt{\hbox{$\mskip 1.0mu/$}\hss}k_{1}-\hbox to0.0pt{\hbox{$\mskip 1.0mu/$}\hss}p)\mp m(s-1)}{(k_{1}-p)^{2}-m^{2}(s-1)^{2}}\right]}\right\}~{}, (36)

where pp is the external momentum and the subscripts ++ and - refer to the internal lines of ψ+\psi_{+} and ψ\psi_{-}, respectively.

Drawing attention to the integrands I~±μν{\widetilde{I}}_{\pm}^{\mu\nu} (35) and I~±μν{\widetilde{I}}_{\pm}^{\mu\nu} (36), it can be seen that trace of the product of four to eight gamma matrices is generated, notwithstanding that solely trace of five and seven gamma matrices produces the Levi-Civita symbol ϵμνρ\epsilon^{\mu\nu\rho} (2). Also, it shall be noticed from the terms of the integrands, I~±μν{\widetilde{I}}_{\pm}^{\mu\nu} (35) and I~±μν{\widetilde{I}}_{\pm}^{\mu\nu} (36), identified by under braces that they contribute each one to the trace product with at most one gamma matrix. Furthermore, as an example, by picking out from the integrand I~±μν{\widetilde{I}}_{\pm}^{\mu\nu} (35) a piece of trace product of five gamma matrices, e.g.: 𝒵5±μν(k1,k2,p,s)=Tr{γμ[im(s1)]γα[Δαβ(k1,k2)][im(s1)]γν[im(s1)]γβ[i(/k1/p)]}{\cal Z}_{5\pm}^{\mu\nu}(k_{1},k_{2},p,s)=-{\rm Tr}\{\gamma^{\mu}[\mp im(s-1)]\gamma_{\alpha}[\Delta^{\alpha\beta}(k_{1},k_{2})][\mp im(s-1)]\gamma^{\nu}[\mp im(s-1)]\gamma_{\beta}[i(\hbox to0.0pt{\hbox{$\mskip 1.0mu/$}\hss}k_{1}-\hbox to0.0pt{\hbox{$\mskip 1.0mu/$}\hss}p)]\}, it can be written as 𝒵5±μν(k1,k2,p,s)=±ϵμνρ𝒳5ρ(k1,k2,p,s)+𝒴5±μν(k1,k2,p,s){\cal Z}_{5\pm}^{\mu\nu}(k_{1},k_{2},p,s)=\pm\epsilon^{\mu\nu\rho}{\cal X}_{5\rho}(k_{1},k_{2},p,s)+{\cal Y}_{5\pm}^{\mu\nu}(k_{1},k_{2},p,s), where the first term is parity-odd whereas the second one is parity-even. In the sequence, using the same strategy applied to all five gamma matrices dependent terms, of the integrands (35) and (36), they can be rewritten as:

I^5±μν(k1,k2,p,s)=±ϵμνρ𝒜^5ρ(k1,k2,p,s)+𝒮^5±μν(k1,k2,p,s),\displaystyle{\widehat{I}}_{5\pm}^{\mu\nu}(k_{1},k_{2},p,s)=\pm\epsilon^{\mu\nu\rho}{\widehat{\cal A}}_{5\rho}(k_{1},k_{2},p,s)+{\widehat{\cal S}}_{5\pm}^{\mu\nu}(k_{1},k_{2},p,s)~{}, (37)
I~5±μν(k1,k2,p,s)=±ϵμνρ𝒜~5ρ(k1,k2,p,s)+𝒮~5±μν(k1,k2,p,s),\displaystyle{\widetilde{I}}_{5\pm}^{\mu\nu}(k_{1},k_{2},p,s)=\pm\epsilon^{\mu\nu\rho}{\widetilde{\cal A}}_{5\rho}(k_{1},k_{2},p,s)+{\widetilde{\cal S}}_{5\pm}^{\mu\nu}(k_{1},k_{2},p,s)~{}, (38)

where 𝒮^5±μν{\widehat{\cal S}}_{5\pm}^{\mu\nu} and 𝒮~5±μν{\widetilde{\cal S}}_{5\pm}^{\mu\nu} are parity-even tensors, and their subscripts ++ and - refer to the internal lines of ψ+\psi_{+} and ψ\psi_{-}, respectively. Consequently, the total integrands stemming from the trace of five gamma matrices, I^5μν=I^5+μν+I^5μν{\widehat{I}}_{5}^{\mu\nu}={\widehat{I}}_{5+}^{\mu\nu}+{\widehat{I}}_{5-}^{\mu\nu} and I~5μν=I~5+μν+I~5μν{\widetilde{I}}_{5}^{\mu\nu}={\widetilde{I}}_{5+}^{\mu\nu}+{\widetilde{I}}_{5-}^{\mu\nu}, read:

I^5μν(k1,k2,p,s)=𝒮^5+μν(k1,k2,p,s)+𝒮^5μν(k1,k2,p,s),\displaystyle{\widehat{I}}_{5}^{\mu\nu}(k_{1},k_{2},p,s)={\widehat{\cal S}}_{5+}^{\mu\nu}(k_{1},k_{2},p,s)+{\widehat{\cal S}}_{5-}^{\mu\nu}(k_{1},k_{2},p,s)~{}, (39)
I~5μν(k1,k2,p,s)=𝒮~5+μν(k1,k2,p,s)+𝒮~5μν(k1,k2,p,s),\displaystyle{\widetilde{I}}_{5}^{\mu\nu}(k_{1},k_{2},p,s)={\widetilde{\cal S}}_{5+}^{\mu\nu}(k_{1},k_{2},p,s)+{\widetilde{\cal S}}_{5-}^{\mu\nu}(k_{1},k_{2},p,s)~{}, (40)

thence there is no Levi-Civita symbol ϵμνρ\epsilon^{\mu\nu\rho} dependent terms emerged from the trace of five gamma matrices contributing to the total divergent integrand of vacuum-polarization tensor, remaining therefore only parity-even terms. Beyond that, it lacks to discuss the issue of non generation of possible parity-odd Levi-Civita symbol dependent counterterms for the case of the trace product of seven gamma matrices. Analogously to the preceding discussion, from the integrands I~±μν{\widetilde{I}}_{\pm}^{\mu\nu} (35) and I~±μν{\widetilde{I}}_{\pm}^{\mu\nu} (36), considering the terms highlighted by under braces, and for instance, by picking out from the integrand I~±μν{\widetilde{I}}_{\pm}^{\mu\nu} (35) a piece of trace product of seven gamma matrices, e.g.: 𝒵7±μν(k1,k2,p,s)=Tr{γμ[i(/k1)]γα[Δαβ(k1,k2)][i(/k2)]γν[i(/k2/p)]γβ[im(s1)]}{\cal Z}_{7\pm}^{\mu\nu}(k_{1},k_{2},p,s)=-{\rm Tr}\{\gamma^{\mu}[i(\hbox to0.0pt{\hbox{$\mskip 1.0mu/$}\hss}k_{1})]\gamma_{\alpha}[\Delta^{\alpha\beta}(k_{1},k_{2})][i(\hbox to0.0pt{\hbox{$\mskip 1.0mu/$}\hss}k_{2})]\gamma^{\nu}[i(\hbox to0.0pt{\hbox{$\mskip 1.0mu/$}\hss}k_{2}-\hbox to0.0pt{\hbox{$\mskip 1.0mu/$}\hss}p)]\gamma_{\beta}[\mp im(s-1)]\}, it follows that 𝒵7±μν(k1,k2,p,s)=±ϵμνρ𝒳7ρ(k1,k2,p,s)+𝒴7±μν(k1,k2,p,s){\cal Z}_{7\pm}^{\mu\nu}(k_{1},k_{2},p,s)=\pm\epsilon^{\mu\nu\rho}{\cal X}_{7\rho}(k_{1},k_{2},p,s)+{\cal Y}_{7\pm}^{\mu\nu}(k_{1},k_{2},p,s), with the first term being parity-odd whereas the second one being parity-even. In addition to, doing similarly to all seven gamma matrices dependent terms of (35) and (36), it can be shown that:

I^7±μν(k1,k2,p,s)=±ϵμνρ𝒜^7ρ(k1,k2,p,s)+𝒮^7±μν(k1,k2,p,s),\displaystyle{\widehat{I}}_{7\pm}^{\mu\nu}(k_{1},k_{2},p,s)=\pm\epsilon^{\mu\nu\rho}{\widehat{\cal A}}_{7\rho}(k_{1},k_{2},p,s)+{\widehat{\cal S}}_{7\pm}^{\mu\nu}(k_{1},k_{2},p,s)~{}, (41)
I~7±μν(k1,k2,p,s)=±ϵμνρ𝒜~7ρ(k1,k2,p,s)+𝒮~7±μν(k1,k2,p,s),\displaystyle{\widetilde{I}}_{7\pm}^{\mu\nu}(k_{1},k_{2},p,s)=\pm\epsilon^{\mu\nu\rho}{\widetilde{\cal A}}_{7\rho}(k_{1},k_{2},p,s)+{\widetilde{\cal S}}_{7\pm}^{\mu\nu}(k_{1},k_{2},p,s)~{}, (42)

where 𝒮^7±μν{\widehat{\cal S}}_{7\pm}^{\mu\nu} and 𝒮~7±μν{\widetilde{\cal S}}_{7\pm}^{\mu\nu} are parity-even tensors, and the internal lines of ψ+\psi_{+} and ψ\psi_{-} in the corresponding graphs are respectively represented by the subscripts ++ and -. Morover, from the trace of seven gamma matrices, the total integrands, I^7μν=I^7+μν+I^7μν{\widehat{I}}_{7}^{\mu\nu}={\widehat{I}}_{7+}^{\mu\nu}+{\widehat{I}}_{7-}^{\mu\nu} and I~7μν=I~7+μν+I~7μν{\widetilde{I}}_{7}^{\mu\nu}={\widetilde{I}}_{7+}^{\mu\nu}+{\widetilde{I}}_{7-}^{\mu\nu}, are given by:

I^7μν(k1,k2,p,s)=𝒮^7+μν(k1,k2,p,s)+𝒮^7μν(k1,k2,p,s),\displaystyle{\widehat{I}}_{7}^{\mu\nu}(k_{1},k_{2},p,s)={\widehat{\cal S}}_{7+}^{\mu\nu}(k_{1},k_{2},p,s)+{\widehat{\cal S}}_{7-}^{\mu\nu}(k_{1},k_{2},p,s)~{}, (43)
I~7μν(k1,k2,p,s)=𝒮~7+μν(k1,k2,p,s)+𝒮~7μν(k1,k2,p,s),\displaystyle{\widetilde{I}}_{7}^{\mu\nu}(k_{1},k_{2},p,s)={\widetilde{\cal S}}_{7+}^{\mu\nu}(k_{1},k_{2},p,s)+{\widetilde{\cal S}}_{7-}^{\mu\nu}(k_{1},k_{2},p,s)~{}, (44)

thus likewise the five gamma matrices case, there is no Levi-Civita symbol ϵμνρ\epsilon^{\mu\nu\rho} dependent terms yielded from the trace of seven gamma matrices, surviving only parity-even terms which contribute to the total divergent vacuum-polarization tensor.

Ultimately, based on the argumentations above, the 2-loops unsubtracted integrands associated to the vacuum-polarization tensors ΠAAμν\Pi_{AA}^{\mu\nu} and Πaaμν\Pi_{aa}^{\mu\nu} do not produce parity-violating counterterms of the type, ϵμανAμαAν\epsilon^{\mu\alpha\nu}A_{\mu}\partial_{\alpha}A_{\nu} and ϵμανaμαaν\epsilon^{\mu\alpha\nu}a_{\mu}\partial_{\alpha}a_{\nu}, therefore it is concluded that parity is still preserved at 2-loops under the BPHZL renormalization procedures. Besides, due to the fact that the UV divergences are restricted up to 2-loops, thus for higher perturbative orders greater than two there is no need of UV subtractions, consequently it is definitely proved that the BPHZL renormalization method preserves parity for the massless parity-even U(1)×U(1)U(1)\times U(1) Maxwell-Chern-Simons QED3 model masslessU1U1QED3 .

IV Conclusion

The massless parity-even U(1)×U(1)U(1)\times U(1) planar quantum electrodynamics (QED3) model masslessU1U1QED3 exhibits quantum parity conservation at all orders in perturbation theory. The proof has been performed using the Bogoliubov-Parasiuk-Hepp-Zimmermann-Lowenstein (BPHZL) renormalization method, however owing to the presence of two massless fermions in the spectrum, infrared divergences might emerge in the course of the ultraviolet divergences subtractions and must be subtracted as well, for this reason, the Lowenstein-Zimmermann (LZ) subtraction scheme has been adopted. The power-counting – the ultraviolet and infrared superficial degrees of divergence (9) of any 1-particle irreducible Feynman diagram – reveals that ultraviolet divergences are bounded at most to two loops. At one loop all six vacuum-polarization tensor diagrams are linear ultraviolet divergent, four of the six self-energy diagrams are logarithm ultraviolet divergent, while all the vertex-function diagrams are ultraviolet finite, beyond that at two loops, twenty four of the thirty six vacuum-polarization tensor Feynman graphs are ultraviolet divergent (Fig. 1 and Table 2). Although there are counterterms666The explicitly BPHZL renormalization and the calculations of all counterterms at 1- and 2-loops, whether parity-even or -odd, are left to another work BPHZL_masslessU1U1QED3 , since the purpose of this one was to verify if the LZ subtraction scheme in the framework of the BPHZ renormalization method would preserve or not parity symmetry. at one and two loops, none of them violate parity symmetry and together to the fact that the model is superrenormalizable, it stems as a byproduct that parity is guaranteed at any radiative order. As a final conclusion, for the model presented in this work, opposite to the case of the ordinary massless parity-even U(1)U(1) QED3 massless-1-loop , the BPHZL subtraction scheme with the Lowenstein’s adaptation of the Zimmermann’s forest formula lz preserves parity symmetry at all perturbative order.

Acknowledgements

O.M.D.C. dedicates this work to his father (Oswaldo Del Cima, in memoriam), mother (Victoria M. Del Cima, in memoriam), daughter (Vittoria), son (Enzo) and Glaura Bensabat. CAPES-Brazil is acknowledged for invaluable financial help.

References

  • (1) J.F. Schonfeld, Nucl. Phys. B185 (1981) 157; R. Jackiw and S. Templeton, Phys. Rev. D23 (1981) 2291; S. Deser, R. Jackiw and S. Templeton, Ann. Phys. (NY) 140 (1982) 372, Phys. Rev. Lett. 48 (1982) 975 and Ann. Phys. (NY) 281 (2000) 409.
  • (2) M. Franz, Z. Tešanović and O. Vafek, Phys. Rev. B66 (2002) 054535; I.F. Herbut, Phys. Rev. B66 (2002) 094504; H.R. Christiansen, O.M. Del Cima, M.M. Ferreira Jr and J.A. Helayël-Neto, Int. J. Mod. Phys. A18 (2003) 725.
  • (3) R.B. Laughlin, Phys. Rev. Lett. 50 (1983) 1395; A.M.J. Schakel, Phys. Rev. D43 (1991) 1428; A. Raya and E.D. Reyes, J. Phys. A: Math. Theor. 41 (2008) 355401.
  • (4) V.P. Gusynin, V.A. Miransky and I.A. Shovkovy, Phys. Rev. Lett. 73 (1994) 3499; K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, M.I. Katsnelson, I.V. Grigorieva, S.V. Dubonos, A.A. Firsov, Nature 438 (2005) 197; V.P. Gusynin, S.G. Sharapov and J.P. Carbotte, Int. J. Mod. Phys. B21 (2007) 4611; R. Jackiw and S.-Y. Pi, Phys. Rev. Lett. 98 (2007) 266402; M.I. Katsnelson and K.S. Novoselov, Solid State Comm. 143 (2007) 3; A.H. Castro Neto, F. Guinea, N.M.R. Peres, K.S. Novoselov and A.K. Geim, Rev. Mod. Phys. 81 (2009) 109; E.M.C. Abreu, M.A. De Andrade, L.P.G. De Assis, J.A. Helayël-Neto, A.L.M.A. Nogueira and R.C. Paschoal, J. High Energy Phys. 1105 (2011) 001; I. Fialkovsky and D.V. Vassilevich, Eur. Phys. J. B85 (2012) 384; O.M. Del Cima and E.S. Miranda, Eur. Phys. J. B91 (2018) 212.
  • (5) M.Z. Hasan and C.L. Kane, Rev. Mod. Phys. 82 (2010) 3045; C.L. Kane and J.E. Moore, Physics World 24 (2011) 32; J.M. Fonseca, W.A. Moura-Melo and A.R. Pereira, J. Appl. Phys. 111 (2012) 064913.
  • (6) M. Leijnse and K. Flensberg, Semicond. Sci. Technol. 27 (2012) 124003; S. Yonezawa, arXiv:1604.07930v3, AAPPS Bulletin 26 No.3 (2016) 3; M. Sato and Y. Ando, Rep. Prog. Phys. 80 (2017) 076501.
  • (7) O.M. Del Cima, D.H.T. Franco and O. Piguet, Phys. Rev. D89 (2014) 065001.
  • (8) O.M. Del Cima, D.H.T. Franco, O. Piguet and M. Schweda, Phys. Lett. B680 (2009) 108.
  • (9) P.H. De Moura, O.M. Del Cima, D.H.T. Franco, L.S. Lima and E.S. Miranda, “No parity anomaly in massless QED3: an Epstein-Glaser approach”, in preparation.
  • (10) W.B. De Lima, O.M. Del Cima and E.S. Miranda, Eur. Phys. J. B93 (2020) 187.
  • (11) W. Zimmermann, Comm. Math. Phys. 15 (1969) 208 and Lectures on Elementary Particles and Quantum Field Theory, 1970 Brandeis lectures, eds. S. Deser, M. Grisaru and H. Pendleton, MIT Press (Cambridge-USA), 1971.
  • (12) J.H. Lowenstein, Comm. Math. Phys. 47 (1976) 53; J.H. Lowenstein and W. Zimmermann, Nucl. Phys. B86 (1975) 77 and Renormalization Theory, eds. G. Velo and A.S. Wightman, D. Reidel (Dordrecht-Holland), 1976.
  • (13) B. Binegar, J. Math. Phys. 23 (1982) 1511.
  • (14) N. Nakanishi, Progr. Theor. Phys. 35 (1966) 1111; Progr. Theor. Phys. 37 (1967) 618; B. Lautrup, Mat. Fys. Medd. Dan. Vid. Selsk 35 (1967) No.11.
  • (15) C. Becchi, A. Rouet and R. Stora, Comm. Math. Phys. 42 (1975) 127 and Ann. Phys. (N.Y.) 98 (1976) 287; O. Piguet and A. Rouet, Phys. Rep. 76 (1981) 1; O. Piguet and S.P. Sorella, Algebraic Renormalization, Lecture Notes in Physics, m28, Springer-Verlag (Berlin-Heidelberg), 1995.
  • (16) O.M. Del Cima, D.H.T. Franco, L.S. Lima and E.S. Miranda, “The BPHZL renormalization of parity-preserving massless planar quantum electrodynamics”, in preparation.