This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Quantum gravitational states
of ultracold neutrons as a tool for probing of beyond-Riemann gravity

A. N. Ivanov [email protected] Atominstitut, Technische Universität Wien, Stadionallee 2, A-1020 Wien, Austria    M. Wellenzohn [email protected] Atominstitut, Technische Universität Wien, Stadionallee 2, A-1020 Wien, Austria FH Campus Wien, University of Applied Sciences, Favoritenstraße 226, 1100 Wien, Austria    H. Abele [email protected] Atominstitut, Technische Universität Wien, Stadionallee 2, A-1020 Wien, Austria
Abstract

We analyze a possibility to probe beyond-Riemann gravity (BRG) contributions, introduced by Kostelecký and Li (see Phys. Rev. D 103, 024059 (2021) and Phys. Rev. D 104, 044054 (2021)) on the basis of the Effective Field Theory (EFT) by Kostelecký Phys. Rev. D 69, 105009 (2004). We carry out such an analysis by calculating the BRG contributions to the transition frequencies of the quantum gravitational states of ultracold neutrons (UCNs). These states are being used for a test of interactions beyond the Standard Model (SM) and General Relativity (GR) in the qBOUNCE experiments. We improve by order of magnitude some constraints obtained by Kostelecký and Li (2106.11293 [gr-qc]).

pacs:
11.10.Ef, 11.30.Cp, 12.60.-i, 14.20.Dh

I Introduction

Nowadays the effective field theories (EFT) are a powerful tool for the analysis of the Nature Weinberg2021 ; Weinberg2016 ; Weinberg2009 . The general EFT by Kostelecký Kostelecky2004 , based on the General Gravity (GR) coupled to the Standard Model (SM), has been extended by Kostelecký and Li Kostelecky2021a ; Kostelecky2021b by the contributions of interactions, caused by beyond-Riemann gravity (BRG). These contributions are closely overlapped with the contributions of interactions violating Lorentz-invariance Kostelecky1997a ; Kostelecky1998a ; Kostelecky2002a ; Kostelecky2002b ; Kostelecky2003 ; Kostelecky2009 ; Kostelecky2016 . In Kostelecky2021b Kostelecký and Li have proposed to investigate the BRG as well as Lorentz-invariance violation (LV) contributions to the energy spectrum and transition frequencies of the quantum gravitational states of ultracold neutrons (UCNs).

This paper is addressed to the analysis of the BRG and LV contributions to the energy spectrum and transition frequencies of the quantum gravitational states of ultracold neutrons (UCNs). For the analysis of these problems we follow Ivanov2019 . In Ivanov2019 we have calculated the LV contributions to the energy spectrum and transition frequencies of the quantum gravitational states of UCNs, caused by the effective low-energy potential, derived by Kostelecký and Lane Kostelecky1999 in the frame work of the Standard Model Extension (SME) Kostelecky1997a ; Kostelecky1998a (see also Kostelecky2004 ) by using the Foldy-Wouthuysen transformations Foldy1950 ; Itzykson1980 .

The paper is organized as follows. In section II we discuss the effective low-energy potential, derived by Kostelecký and Li Kostelecky2021b for the analysis of BRG interactions in the terrestrial laboratories. We define such a potential in the standard coordinate frame related to the laboratory at the Institut Laue Langevin (ILL) in Grenoble. We specify the BRG and LV contributions to the phenomenological coupling constants of this potential. We adduce the wave functions of the quantum gravitational states of polarized and unpolarized UCNs. In section III we calculate the BRG and LV contributions to the energy spectrum and transition frequencies of the quantum gravitational states of polarized and unpolarized UCNs. Using the current experimental sensitivity of the qBOUNCE experiments we give some estimates of the phenomenological constants of the BRG and LV interactions. In section IV we discuss the obtained results and perspectives of further investigations of the BRG and LV interactions by using the quantum gravitational states of UCNs.

II Effective non–relativistic potential of beyond-Riemann gravity interactions

For the experimental analysis of the BRG and LV interactions in the terrestrial laboratories by using the quantum gravitational states of UCNs Kostelecký and Li propose to use the following Hamilton operator Kostelecky2021b

H=H0+ΦRG+ΦBRG=p 22mmgz+ΦnRG+ΦnBRG,\displaystyle{\rm H}={\rm H}_{0}+\Phi_{\rm RG}+\Phi_{\rm BRG}=\frac{\vec{p}^{\,2}}{2m}-m\vec{g}\cdot\vec{z}+\Phi_{\rm nRG}+\Phi_{\rm nBRG}, (1)

where the first two terms are the operators of the UCN energy and the Newtonian gravitational potential of the gravitational field of the Earth, respectively, with the gravitational acceleration g\vec{g} such as gz=gz\vec{g}\cdot\vec{z}=-gz Kostelecky2021b . Then, ΦnRG\Phi_{\rm nRG} is the effective low-energy potential of the neutron-gravity interaction, calculated to next-to-leading order in the large neutron mass mm expansion and related to the contribution of Riemann gravity. It is equal to Kostelecky2021b

ΦnRG=34m(σ×p)g34m(p 2gz+gzp 2).\displaystyle\Phi_{\rm nRG}=\frac{3}{4m}\,\big{(}\vec{\sigma}\times\vec{p}\,\big{)}\cdot\vec{g}-\frac{3}{4m}\,\big{(}\vec{p}^{\,2}\,\vec{g}\cdot\vec{z}+\vec{g}\cdot\vec{z}\,\vec{p}^{\,2}\big{)}. (2)

In turn, the potential ΦnBRG\Phi_{\rm nBRG} describes the BRG and LV contributions to neutron-gravity interactions

ΦnBRG=Hϕ+Hσϕ+Hg+Hσg,\displaystyle\Phi_{\rm nBRG}=H_{\phi}+H_{\sigma\phi}+H_{g}+H_{\sigma g}, (3)

where the operators HjH_{j} for j=ϕ,σϕ,gj=\phi,\sigma\phi,g and σg\sigma g are equal to Kostelecky2021b

Hϕ\displaystyle H_{\phi} =\displaystyle= (kϕNR)ngz+(kϕpNR)nj12(pj(gz)+(gz)pj)+(kϕppNR)njk12(pjpk(gz)+(gz)pjpk),\displaystyle(k^{\rm NR}_{\phi})_{n}\vec{g}\cdot\vec{z}+(k^{\rm NR}_{\phi p})^{j}_{n}\frac{1}{2}\Big{(}p^{j}(\vec{g}\cdot\vec{z}\,)+(\vec{g}\cdot\vec{z}\,)p^{j}\Big{)}+(k^{\rm NR}_{\phi pp})^{jk}_{n}\frac{1}{2}\Big{(}p^{j}p^{k}(\vec{g}\cdot\vec{z}\,)+(\vec{g}\cdot\vec{z}\,)p^{j}p^{k}\Big{)},
Hσϕ\displaystyle H_{\sigma\phi} =\displaystyle= (kσϕNR)njσj(gz)+(kσϕp(NR))njk12σj(pk(gz)+(gz)pk)+(kσϕppNR)njk12σj(pkp(gz)+(gz)pkp),\displaystyle(k^{\rm NR}_{\sigma\phi})^{j}_{n}\sigma^{j}(\vec{g}\cdot\vec{z}\,)+(k^{(NR)}_{\sigma\phi p})^{jk}_{n}\frac{1}{2}\,\sigma^{j}\Big{(}p^{k}(\vec{g}\cdot\vec{z}\,)+(\vec{g}\cdot\vec{z}\,)p^{k}\Big{)}+(k^{\rm NR}_{\sigma\phi pp})^{jk\ell}_{n}\frac{1}{2}\,\sigma^{j}\Big{(}p^{k}p^{\ell}(\vec{g}\cdot\vec{z}\,)+(\vec{g}\cdot\vec{z}\,)p^{k}p^{\ell}\Big{)},
Hg\displaystyle H_{g} =\displaystyle= (kg(NR))njgj+(kgp(NR))njkpjgk+(kgpp(NR))njkpjpkg,\displaystyle(k^{(NR)}_{g})^{j}_{n}g^{j}+(k^{(NR)}_{gp})^{jk}_{n}p^{j}g^{k}+(k^{(NR)}_{gpp})^{jk\ell}_{n}p^{j}p^{k}g^{\ell},
Hσg\displaystyle H_{\sigma g} =\displaystyle= (kσgNR)njkσjgk+(kσgpNR)njkσjpkg+(kσgppNR)njkmσjpkpgm.\displaystyle(k^{\rm NR}_{\sigma g})^{jk}_{n}\sigma^{j}g^{k}+(k^{\rm NR}_{\sigma gp})^{jk\ell}_{n}\sigma^{j}p^{k}g^{\ell}+(k^{\rm NR}_{\sigma gpp})^{jk\ell m}_{n}\sigma^{j}p^{k}p^{\ell}g^{m}. (4)

The non-relativistic Hamilton operator Eq.(1) is written in the coordinate system shown in Fig. 1, where mm is the neutron mass, z\vec{z} is a radius-vector of a position of an UCN on the zz-axis, p=i\vec{p}=-i\nabla is a 3-momentum of an UCN and σ\vec{\sigma} is the Pauli 2×22\times 2 matrix of the UCN spin Itzykson1980 . The coefficients (kϕNR)n(k^{\rm NR}_{\phi})_{n}, (kNR)nj(k^{\rm NR}_{\ldots})^{j}_{n}, (kNR)njk(k^{\rm NR}_{\ldots})^{jk}_{n}, (kNR)njk(k^{\rm NR}_{\ldots})^{jk\ell}_{n}, and (kNR)njkm(k^{\rm NR}_{\ldots})^{jk\ell m}_{n} define the BRG and LV contributions, which can be tested in experiments with neutrons Kostelecky2021b in the following way.

The system of a Schrödinger quantum particle with mass mm bouncing in a linear gravitational field is known as the quantum bouncer Gibbs1975 ; Gea-Banacloche1999 ; Rosu2001 ; Robinett2004 . Above a horizontal mirror, the linear gravity potential leads to discrete energy eigenstates of a bouncing quantum particle. An UCN, bound on a reflecting mirror in the gravity potential of the earth, can be found in a superposition of quantum gravitational energy eigen-states. The quantum gravitational states of UCNs have been verified and investigated Nesvizhevsky2002 ; Nesvizhevsky2003 ; Nesvizhevsky2005 ; Abele2007 at the UCN beamline PF2 at the Institute Laue-Langevin (ILL), where the highest UCN flux is available worldwide. The qBOUNCE collaboration develops a gravitational resonant spectroscopy (GRS) method Abele2010 , which allows to measure the energy difference between quantum gravitational states with increasing accuracy. Recent activities Sedmik2019 , and a summary can be found in Jenke2019 . The energy difference can be related to the frequency of a mechanical modulator, in analogy to the Nuclear Magnetic Resonance technique, where the Zeeman energy splitting of a magnetic moment in an outer magnetic field is connected to the frequency of a radio-frequency field. The frequency range in GRS used so far is in the acoustic frequency range between 100 and 1000 Hz{\rm Hz}. The quantum gravitational states of UCNs have peV energy, on a much lower energy scale compared to other bound quantum systems. Any gravity-like potential or a deviation from Riemann gravity would shift these energy levels Jenke2021 ; Jenke2011 ; Jenke2014a ; Cronenberg2018 and an observation would point to new physical understanding.

Our choice of the laboratory frame is related to the following. Indeed, the qBOUNCE experiments are being performed in the laboratory at Institut Laue Langevin (ILL) in Grenoble. The ILL laboratory is fixed to the surface of the Earth in the northern hemisphere. Following Kostelecky2002a ; Kostelecky2002b ; Kostelecky2003 ; Kostelecky2009 ; Kostelecky2016 (see also Kostelecky2021b ; Ivanov2019 ) we choose the ILL laboratory or the standard laboratory frame with coordinates (t,x,y,z)(t,x,y,z), where the xx, yy and zz axes point south, east and vertically upwards, respectively, with northern and southern poles on the axis of the Earth’s rotation with the Earth’s sidereal frequency Ω=2π/(23hr 56min 4.09s=7.2921159×105rad/s\Omega_{\oplus}=2\pi/(23\,{\rm hr}\,56\,{\rm min}\,4.09\,{\rm s}=7.2921159\times 10^{-5}\,{\rm rad/s}. The position of the ILL laboratory on the surface of the Earth is determined by the angles χ\chi and ϕ\phi, where χ=44.833330\chi=44.83333^{0} N is the colatitude of the laboratory and ϕ\phi is the longitude of the laboratory measured to east with the value ϕ=5.716670\phi=5.71667^{0} E Grenoble . The beam of UCNs moves from south to north antiparallel to the xx–direction and with energies of UCNs quantized in the zz–direction. The gravitational acceleration in Grenoble is g=9.80507m/s2g=9.80507\,{\rm m/s^{2}} Ivanov2019 ; Grenoble . Following Ivanov2019 we may neglect the Earth’s rotation assuming that the ILL laboratory frame is an inertial one.

Refer to caption
Figure 1: The position of the ILL laboratory of the qBOUNCE experiments on the surface of the Earth.

The analysis of contributions to the effective low-energy potential ΦnBRG\Phi_{\rm nBRG} in Eq.(3) violating of Lorentz-invariance

Before we proceed to calculating the contributions of the effective potential Eq.(3) to the energy spectrum and transition frequencies of the quantum gravitational states of UCNs we would like to compare the potential ΦnBRG\Phi_{\rm nBRG} with the effective low-energy potential ΦnLV\Phi_{\rm nLV} of the LV interactions (see Eq.(II) in Ivanov2019 ), calculated in Kostelecky1999 . The effective low-energy potential ΦnLV\Phi_{\rm nLV} is equal to

ΦnLV\displaystyle\Phi_{\rm nLV} =\displaystyle= (bn+md0n12mεkjgkj0n+12εkjHkjn)σ+1m(ajn+m(c0jn+cj0n)+mejn)pj\displaystyle\Big{(}-b^{n}_{\ell}+md^{n}_{\ell 0}-\frac{1}{2}\,m\,\varepsilon_{\ell kj}g^{n}_{kj0}+\frac{1}{2}\,\varepsilon_{\ell kj}H^{n}_{kj}\Big{)}\sigma_{\ell}+\frac{1}{m}\,\Big{(}-a^{n}_{j}+m(c^{n}_{0j}+c^{n}_{j0})+me^{n}_{j}\Big{)}p_{j} (5)
+\displaystyle+ 1m(b0nδjm(djn+d00nδj)12mεkm(gmkjn+2gm00nδjk)εjkHk0n)pjσ12m(2cjkn+c00nδjk)pjpk\displaystyle\frac{1}{m}\,\Big{(}b^{n}_{0}\delta_{j\ell}-m(d^{n}_{\ell j}+d^{n}_{00}\delta_{\ell j})-\frac{1}{2}\,m\,\varepsilon_{\ell km}\big{(}g^{n}_{mkj}+2g^{n}_{m00}\delta_{jk}\big{)}-\varepsilon_{j\ell k}H^{n}_{k0}\Big{)}p_{j}\sigma_{\ell}-\frac{1}{2m}\,\Big{(}2c^{n}_{jk}+c^{n}_{00}\delta_{jk}\Big{)}p_{j}p_{k}
+\displaystyle+ [14m((4d0jn+2dj0nεjmngmn0n)δk+εmngmn0nδjk2εjm(gm0kn+gmk0n))\displaystyle\Big{[}\frac{1}{4m}\,\Big{(}\big{(}4d^{n}_{0j}+2d^{n}_{j0}-\varepsilon_{jmn}g^{n}_{mn0}\big{)}\,\delta_{k\ell}+\varepsilon_{\ell mn}g^{n}_{mn0}\,\delta_{jk}-2\,\varepsilon_{j\ell m}\,\big{(}g^{n}_{m0k}+g^{n}_{mk0}\big{)}\Big{)}
+\displaystyle+ 12m2((bj12εjmnHmn)δk+bδjk)]pjpkσ.\displaystyle\frac{1}{2m^{2}}\,\Big{(}\big{(}-b_{j}-\frac{1}{2}\,\varepsilon_{jmn}H_{mn}\big{)}\,\delta_{k\ell}+b_{\ell}\delta_{jk}\Big{)}\Big{]}\,p_{j}p_{k}\sigma_{\ell}.

The LV contributions to the energy spectrum and transition frequencies of the quantum gravitational states of UCNs, induced by the effective low-energy potential Eq.(5), have been calculated in Ivanov2019 .

From Eq.(II) one may see that the effective low-energy interactions HϕH_{\phi}, HσϕH_{\sigma\phi} and (kg(NR))njgj(k^{(NR)}_{g})^{j}_{n}g^{j} in HgH_{g} are new in comparison with Eq.(5). So this means that the coefficients or the phenomenological coupling constants in these interactions are induced by the BRG interactions. Of course, these terms are able to contain the LV contributions (see Table III of Ref.Kostelecky2021b ) but such contributions should not dominate in them.

In turn, the effective low-energy neutron-gravity interactions, defined by HgH_{g} and HσgH_{\sigma g}, have the structure of the effective low-energy potential ΦnLV\Phi_{\rm nLV} in Eq.(5). From the comparison we may write the following relations

(kσgNR)njkgk\displaystyle(k^{\rm NR}_{\sigma g})^{jk}_{n}g^{k} =\displaystyle= bjn+mdj0n12mεjkgk0n+12εjkHkn+,\displaystyle-b^{n}_{j}+md^{n}_{j0}-\frac{1}{2}\,m\,\varepsilon_{jk\ell}g^{n}_{k\ell 0}+\frac{1}{2}\,\varepsilon_{jk\ell}H^{n}_{k\ell}+\ldots,
(kgpNR)njkgk\displaystyle(k^{\rm NR}_{gp})^{jk}_{n}g^{k} =\displaystyle= 1m(ajn+m(c0jn+cj0n)+mejn)+,\displaystyle\frac{1}{m}\,\Big{(}-a^{n}_{j}+m(c^{n}_{0j}+c^{n}_{j0})+me^{n}_{j}\Big{)}+\ldots,
(kσgpNR)njkg\displaystyle(k^{\rm NR}_{\sigma gp})^{jk\ell}_{n}g^{\ell} =\displaystyle= 1m(b0nδjkm(dkjn+d00nδkj)12mεjtm(gmtkn+2gm00nδjk)εjkmHm0n)+,\displaystyle\frac{1}{m}\,\Big{(}b^{n}_{0}\delta_{jk}-m(d^{n}_{kj}+d^{n}_{00}\delta_{kj})-\frac{1}{2}\,m\,\varepsilon_{jtm}\big{(}g^{n}_{mtk}+2g^{n}_{m00}\delta_{jk}\big{)}-\varepsilon_{jkm}H^{n}_{m0}\Big{)}+\ldots,
(kgppNR)njkg\displaystyle(k^{\rm NR}_{gpp})^{jk\ell}_{n}g^{\ell} =\displaystyle= 12m(2cjkn+c00nδjk)+,\displaystyle-\frac{1}{2m}\,\Big{(}2c^{n}_{jk}+c^{n}_{00}\delta_{jk}\Big{)}+\ldots,
(kσgppNR)njkmgm\displaystyle(k^{\rm NR}_{\sigma gpp})^{jk\ell m}_{n}g^{m} =\displaystyle= 14m((4d0jn+2dj0nεjmngmn0n)δk+εmngmn0nδjk2εjm(gm0kn+gmk0n))\displaystyle\frac{1}{4m}\,\Big{(}\big{(}4d^{n}_{0j}+2d^{n}_{j0}-\varepsilon_{jmn}g^{n}_{mn0}\big{)}\,\delta_{k\ell}+\varepsilon_{\ell mn}g^{n}_{mn0}\,\delta_{jk}-2\,\varepsilon_{j\ell m}\,\big{(}g^{n}_{m0k}+g^{n}_{mk0}\big{)}\Big{)} (6)
+\displaystyle+ 12m2((bj12εjmnHmn)δk+bδjk)+,\displaystyle\frac{1}{2m^{2}}\,\Big{(}\big{(}-b_{j}-\frac{1}{2}\,\varepsilon_{jmn}H_{mn}\big{)}\,\delta_{k\ell}+b_{\ell}\delta_{jk}\Big{)}+\ldots,

where ellipses denote the BRG contributions of neutron-gravity interactions (see Table III in Ref.Kostelecky2021b ).

The rotation-invariant effective low-energy potential ΦnBRG(RI)\Phi^{(\rm RI)}_{\rm nBRG} for the qBOUNCE experiments

For the experimental analysis of the BRG as well as LV interactions by the quantum gravitational states of UCNs Kostelecký and Li proposed to use the following rotation-invariant (RI) effective low-energy potential Kostelecky2021b

ΦBRG(RI)\displaystyle\Phi^{(\rm RI)}_{\rm BRG} =\displaystyle= (kϕNR)ngz+(kσgNR)nσg+(kσgϕNR)n(σ×p)g+12(kσϕpNR)n((σp)(gz)+(gz)(σp))\displaystyle\big{(}k^{\rm NR}_{\phi})_{n}\,\vec{g}\cdot\vec{z}+\big{(}k^{\rm NR}_{\sigma g}\big{)}^{\prime}_{n}\,\vec{\sigma}\cdot\vec{g}+\big{(}k^{\rm NR}_{\sigma g\phi}\big{)}^{\prime}_{n}\,\big{(}\vec{\sigma}\times\vec{p}\,\big{)}\cdot\vec{g}+\frac{1}{2}\,\big{(}k^{\rm NR}_{\sigma\phi p}\big{)}^{\prime}_{n}\,\Big{(}(\vec{\sigma}\cdot\vec{p}\,)(\vec{g}\cdot\vec{z}\,)+(\vec{g}\cdot\vec{z}\,)(\vec{\sigma}\cdot\vec{p}\,)\Big{)} (7)
+\displaystyle+ (kσgppNR)np 2σg+(kσgppNR)n′′(σp)(gp).\displaystyle\big{(}k^{\rm NR}_{\sigma gpp}\big{)}^{\prime}_{n}\,\vec{p}^{\,2}\,\vec{\sigma}\cdot\vec{g}+\big{(}k^{\rm NR}_{\sigma gpp}\big{)}^{\prime\prime}_{n}\,(\vec{\sigma}\cdot\vec{p}\,)(\vec{g}\cdot\vec{p}\,).

In this expression the coefficients with primes denote suitably normalized irreducible representations of the rotation group obtained from the nonrelativistic coefficients in Eq.(II) (see Kostelecky2021b ). Then, according to Kostelecky and Li Kostelecky2021b , the effective low-energy potential Eq.(II) is of interest for certain experimental applications, in part because the rotation invariance ensures that all terms take the same form at leading order when expressed either in the laboratory frame or the Sun-centered frame. The latter implies, for example, no leading-order dependence on the local sidereal time or laboratory colatitude in experimental signals for these terms Kostelecky2021b .

Since the effective neutron-gravity interactions, proportional to (kσgϕ(NR))n\big{(}k^{(\rm NR)}_{\sigma g\phi}\big{)}^{\prime}_{n} and (kσϕp(NR))n\big{(}k^{(\rm NR)}_{\sigma\phi p}\big{)}^{\prime}_{n}, do not contribute to the energy spectrum of the quantum gravitational states of UCNs, the possible contributions should be proportional to the coefficients (kϕNR)n\big{(}k^{\rm NR}_{\phi})_{n}, (kσgNR)n\big{(}k^{\rm NR}_{\sigma g}\big{)}^{\prime}_{n}, (kσgppNR)n\big{(}k^{\rm NR}_{\sigma gpp}\big{)}^{\prime}_{n} and (kσgppNR)n′′\big{(}k^{\rm NR}_{\sigma gpp}\big{)}^{\prime\prime}_{n}, respectively. According to our discussion above, the coefficient (kϕNR)n\big{(}k^{\rm NR}_{\phi})_{n} is caused by the BRG interactions, whereas the coefficients (kσgNR)n\big{(}k^{\rm NR}_{\sigma g}\big{)}^{\prime}_{n}, (kσgppNR)n\big{(}k^{\rm NR}_{\sigma gpp}\big{)}^{\prime}_{n} and (kσgppNR)n′′\big{(}k^{\rm NR}_{\sigma gpp}\big{)}^{\prime\prime}_{n} should be saturated by the LV ones Ivanov2019 .

Wave functions and energy spectrum of quantum gravitational states of UCNs

The non-perturbed quantum gravitational states of UCNs obey the Schrödinger-Pauli equation Gibbs1975

iΨpkσ(0)(t,r)t=(p 22m+mgz)Ψpkσ(0)(t,r)\displaystyle i\frac{\partial\Psi^{(0)}_{\vec{p}_{\perp}k\sigma}(t,\vec{r}\,)}{\partial t}=\Big{(}\frac{\vec{p}^{\,2}}{2m}+mgz\Big{)}\Psi^{(0)}_{\vec{p}_{\perp}k\sigma}(t,\vec{r}\,) (8)

where r=z+r\vec{r}=\vec{z}+\vec{r}_{\perp} is a radius-vector of a position of an UCN with r=(x,y)\vec{r}_{\perp}=(x,y), the wave function Ψpkσ(t,r)\Psi_{\vec{p}_{\perp}k\sigma}(t,\vec{r}\,) is equal to Ψpkσ(t,r)=Ψkσ(0)(z)eipri(Ep+Ek(0))t/2π=|pkσ\Psi_{\vec{p}_{\perp}k\sigma}(t,\vec{r}\,)=\Psi^{(0)}_{k\sigma}(z)\,e^{\,i\vec{p}_{\perp}\cdot\vec{r}_{\perp}-i(E_{\vec{p}}+E^{(0)}_{k})t}/2\pi=|\vec{p}_{\perp}k\sigma\rangle, p\vec{p}_{\perp} and Ep=p 2/2m107eVE_{\vec{p}_{\perp}}=\vec{p}^{\,2}_{\perp}/2m\sim 10^{-7}\,{\rm eV} (for |p|24eV|\vec{p}_{\perp}|\sim 24\,{\rm eV} or v7m/sv_{\perp}\sim 7\,{\rm m/s}) are the momentum and kinetic energy of UCNs. Below all BRG and LV contributions will be calculated at p=0\vec{p}_{\perp}=0 Ivanov2019 , and k=1,2,k=1,2,\ldots is the principal quantum number Gibbs1975 . The wave function Ψpkσ(t,r)\Psi_{\vec{p}_{\perp}k\sigma}(t,\vec{r}\,) is normalized by σkp|pkσ=δ(2)(pp)δkkδσσ\langle\sigma^{\prime}k^{\prime}\vec{p}^{\,{}^{\prime}}_{\perp}|\vec{p}_{\perp}k\sigma\rangle=\delta^{(2)}(\vec{p}^{\,{}^{\prime}}_{\perp}-\vec{p}_{\perp})\,\delta_{k^{\prime}k}\delta_{\sigma^{\prime}\sigma} LL1965 ; Davydov1965 . Then, Ψkσ(0)(z)=ψk(0)(z)χσ=|kσ\Psi^{(0)}_{k\sigma}(z)=\psi^{(0)}_{k}(z)\,\chi_{\sigma}=|k\sigma\rangle is a two–component spinorial wave function of UCNs in the kk–gravitational state with the binding energy Ek(0)E^{(0)}_{k}, and in a spin eigenstate χσ\chi_{\sigma} with σ=\sigma=\uparrow or \downarrow. They are normalized by σk|kσ=δkkδσσ\langle\sigma^{\prime}k^{\prime}|k\sigma\rangle=\delta_{k^{\prime}k}\delta_{\sigma^{\prime}\sigma}. The wave functions ψk(0)(z)\psi^{(0)}_{k}(z) are given by Gibbs1975

ψk(0)(z)=Ai(ξξk)|Ai(ξk)|eiα,0dzψk(0)(z)ψk(0)(z)=δkk,\displaystyle\psi^{(0)}_{k}(z)=\frac{\displaystyle{\rm Ai}(\xi-\xi_{k})}{\sqrt{\ell}\,|{\rm Ai}^{\prime}(-\xi_{k})|}\,e^{\,i\alpha}\quad,\quad\int^{\infty}_{0}dz\,\psi^{(0)*}_{k^{\prime}}(z)\psi^{(0)}_{k}(z)=\delta_{k^{\prime}k}, (9)

where ξ=z/\xi=z/\ell, Ai(ξξk){\rm Ai}(\xi-\xi_{k}) is the Airy-function and Ai(ξk){\rm Ai}^{\prime}(-\xi_{k}) its derivative at z=0z=0 Gibbs1975 ; HMF72 ; Albright1977 ; AiryF2004 , eiαe^{\,i\,\alpha} is a constant complex factor, =(2m2g)1/3=5.88μm\ell=(2m^{2}g)^{-1/3}=5.88\,{\rm\mu m} is the scale of the quantum gravitational states of UCNs and ξk\xi_{k} is the root of the equation Ai(ξk)=0{\rm Ai}(-\xi_{k})=0, cased by the boundary condition ψk(0)(0)=0\psi^{(0)}_{k}(0)=0 Gibbs1975 . The latter defines the energy spectrum of the quantum gravitational states of UCNs Ek(0)=E0ξkE^{(0)}_{k}=E_{0}\,\xi_{k} for k=1,2,k=1,2,\ldots with E0=mg=mg2/23=0.6016peVE_{0}=mg\ell=\sqrt[3]{mg^{2}/2}=0.6016\,{\rm peV} Ivanov2019 . Experimentally the quantum gravitational states of UCNs have been investigated in Nesvizhevsky2002 ; Nesvizhevsky2003 ; Nesvizhevsky2005 .

The wave functions Ψkσ(0)(z)=ψk(0)(z)χσ\Psi^{(0)}_{k\sigma}(z)=\psi^{(0)}_{k}(z)\,\chi_{\sigma} describe the quantum gravitational states of polarized UCNs, whereas for the quantum gravitational states of unpolarized UCNs the wave functions are given by Ivanov2019

Ψk(0)(z)=ψk(0)(z)cχ+ψk(0)(z)cχ,\displaystyle\Psi^{(0)}_{k}(z)=\psi^{(0)}_{k}(z)\,c_{\uparrow}\,\chi_{\uparrow}+\psi^{(0)}_{k}(z)\,c_{\downarrow}\,\chi_{\downarrow}, (10)

where the coefficients cc_{\uparrow} and cc_{\downarrow} are normalized by |c|2+|c|2=1|c_{\uparrow}|^{2}+|c_{\downarrow}|^{2}=1 and determine the probabilities to find an UCN in the kk–quantum gravitational state with spin up and down, respectively. The quantum gravitational states of UCNs with the wave function Eq.(II) are 2–fold degenerate LL1965 ; Davydov1965 .

III The BRG and LV contributions to the energy spectrum and transition frequencies of quantum gravitational states of UCNs

The energy spectrum of the quantum gravitational states of polarized UCNs with the RG, BRG and LV corrections are defined by the integrals

Ekσ=σk|H|kσ=0𝑑zΨkσ(0)(z)HΨkσ(0)(z)=Ek(0)+σk|ΦnRG|kσ+σk|ΦnBRG(RI)|kσ.\displaystyle E_{k\sigma}=\langle\sigma k|{\rm H}|k\sigma\rangle=\int^{\infty}_{0}dz\,\Psi^{(0)\dagger}_{k\sigma}(z){\rm H}\Psi^{(0)}_{k\sigma}(z)=E^{(0)}_{k}+\langle\sigma k|\Phi_{\rm nRG}|k\sigma\rangle+\langle\sigma k|\Phi^{(\rm RI)}_{\rm nBRG}|k\sigma\rangle. (11)

Using the table of integrals in Albright1977 ; AiryF2004 we obtain the RG, BRG and LV contributions to the energy spectrum of the quantum gravitation states of unpolarized UCNs. We get

σk|ΦnRG|kσ\displaystyle\langle\sigma k|\Phi_{\rm nRG}|k\sigma\rangle =\displaystyle= 0𝑑zΨkσ(0)(z)ΦnRGΨkσ(0)(z)=25(Ek(0))2m,\displaystyle\int^{\infty}_{0}dz\,\Psi^{(0)\dagger}_{k\sigma}(z)\Phi_{\rm nRG}\Psi^{(0)}_{k\sigma}(z)=\frac{2}{5}\,\frac{(E^{(0)}_{k})^{2}}{m},
k|ΦnBRG(RI)|k\displaystyle\langle\uparrow k|\Phi^{(\rm RI)}_{\rm nBRG}|k\uparrow\rangle =\displaystyle= 0𝑑zΨk(0)(z)ΦnBRG(RI)Ψk(0)(z)=23(kϕ(NR))nEk(0)mg(kσg(NR))n\displaystyle\int^{\infty}_{0}dz\,\Psi^{(0)\dagger}_{k\uparrow}(z)\Phi^{(\rm RI)}_{\rm nBRG}\Psi^{(0)}_{k\uparrow}(z)=-\frac{2}{3}\,\big{(}k^{(\rm NR)}_{\phi})_{n}\,\frac{E^{(0)}_{k}}{m}-g\,\big{(}k^{(\rm NR)}_{\sigma g}\big{)}^{\prime}_{n}
\displaystyle- 23mgEk(0)((kσgpp(NR))n+(kσgpp(NR))n′′),\displaystyle\frac{2}{3}\,mg\,E^{(0)}_{k}\Big{(}\big{(}k^{(\rm NR)}_{\sigma gpp}\big{)}^{\prime}_{n}+\big{(}k^{(\rm NR)}_{\sigma gpp}\big{)}^{\prime\prime}_{n}\Big{)},
k|ΦnBRG(RI)|k\displaystyle\langle\downarrow k|\Phi^{(\rm RI)}_{\rm nBRG}|k\downarrow\rangle =\displaystyle= 0𝑑zΨk(0)(z)ΦnBRG(RI)Ψk(0)(z)=23(kϕ(NR))nEk(0)m+g(kσg(NR))n\displaystyle\int^{\infty}_{0}dz\,\Psi^{(0)\dagger}_{k\uparrow}(z)\Phi^{(\rm RI)}_{\rm nBRG}\Psi^{(0)}_{k\uparrow}(z)=-\frac{2}{3}\,\big{(}k^{(\rm NR)}_{\phi})_{n}\,\frac{E^{(0)}_{k}}{m}+g\,\big{(}k^{(\rm NR)}_{\sigma g}\big{)}^{\prime}_{n} (12)
+\displaystyle+ 23mgEk(0)((kσgpp(NR))n+(kσgpp(NR))n′′).\displaystyle\frac{2}{3}\,mg\,E^{(0)}_{k}\Big{(}\big{(}k^{(\rm NR)}_{\sigma gpp}\big{)}^{\prime}_{n}+\big{(}k^{(\rm NR)}_{\sigma gpp}\big{)}^{\prime\prime}_{n}\Big{)}.

Since the binding energies of the quantum gravitational states of UCNs are of a few parts of 1012eV10^{-12}\,{\rm eV}, the RG contribution is of order of a few parts of 1033eV10^{-33}\,{\rm eV} and can be neglected. This concerns also the contributions proportional to 23mgEk(0)1025eV3\frac{2}{3}\,mgE^{(0)}_{k}\leq 10^{-25}\,{\rm eV^{3}} for k10k\leq 10 Jenke2019 ; Sedmik2019 .

As a result, the energy spectrum of the quantum gravitational states of UCNs together with the BRG and LV contributions is equal to

Ek/k=Ek(0)23(kϕ(NR))nEk(0)mg(kσg(NR))n,\displaystyle E_{k\uparrow/k\downarrow}=E^{(0)}_{k}-\frac{2}{3}\,\big{(}k^{(\rm NR)}_{\phi})_{n}\,\frac{E^{(0)}_{k}}{m}\mp g\,\big{(}k^{(\rm NR)}_{\sigma g}\big{)}^{\prime}_{n}, (13)

where g=2.15×1023eVg=2.15\times 10^{-23}\,{\rm eV} Ivanov2019 . The LV contribution, proportional to (kσg(NR))n\big{(}k^{(\rm NR)}_{\sigma g}\big{)}^{\prime}_{n}, is the same for all energy level. It depends only on the neutron spin-polarization.

According to the energy spectrum Eq.(13), for the non-spin-flip |kσ|kσ|k\sigma\rangle\to|k^{\prime}\sigma\rangle and spin-flip |kσ|kσ|k\sigma\rangle\to|k^{\prime}\sigma^{\prime}\rangle transitions we get Ivanov2019

δνkσkσ\displaystyle\delta\nu_{k^{\prime}\sigma k\sigma} =\displaystyle= (kϕNR)nEk(0)Ek(0)3πm,\displaystyle-\big{(}k^{\rm NR}_{\phi})_{n}\,\frac{E^{(0)}_{k^{\prime}}-E^{(0)}_{k}}{3\pi m},
δνkσkσ\displaystyle\delta\nu_{k^{\prime}\sigma^{\prime}k\sigma} =\displaystyle= ±gπ(kσg(NR))n(kϕNR)nEk(0)Ek(0)3πm.\displaystyle\pm\,\frac{g}{\pi}\,\big{(}k^{(\rm NR)}_{\sigma g}\big{)}^{\prime}_{n}-\big{(}k^{\rm NR}_{\phi})_{n}\,\frac{E^{(0)}_{k^{\prime}}-E^{(0)}_{k}}{3\pi m}. (14)

for (σ=,σ=)(\sigma=\uparrow,\sigma^{\prime}=\downarrow) or (σ=,σ=)(\sigma=\downarrow,\sigma^{\prime}=\uparrow), respectively.

For current sensitivity ΔE=2×1015eV\Delta E=2\times 10^{-15}\,{\rm eV} Jenke2019 (see also Ivanov2019 ) and for the |1|4|1\rangle\to|4\rangle transition Ivanov2019 we are able to obtain the upper bound on the BRG contribution |(kϕ(NR))n|\big{|}\big{(}k^{(\rm NR)}_{\phi})_{n}\big{|} and an estimate for (kσg(NR))n\big{(}k^{(\rm NR)}_{\sigma g}\big{)}^{\prime}_{n}, i.e.,

|(kϕ(NR))n|<103GeV,(kσg(NR))n=0.\displaystyle\big{|}\big{(}k^{(\rm NR)}_{\phi})_{n}\big{|}<10^{-3}\,{\rm GeV}\quad,\quad\big{(}k^{(\rm NR)}_{\sigma g}\big{)}^{\prime}_{n}=0. (15)

The upper bound |(kϕ(NR))n|<103GeV\big{|}\big{(}k^{(\rm NR)}_{\phi})_{n}\big{|}<10^{-3}\,{\rm GeV} is one order of magnitude better in comparison with the result |(kϕ(NR))n|<1.3×102GeV\big{|}\big{(}k^{(\rm NR)}_{\phi})_{n}\big{|}<1.3\times 10^{-2}\,{\rm GeV}, obtained in Kostelecky2021b . Then, our result (kσg(NR))n=0\big{(}k^{(\rm NR)}_{\sigma g}\big{)}^{\prime}_{n}=0 agrees well with that by Kostelecký and Li Kostelecky2021b . The spin-flip transitions may also admit an upper bound |(kσg(NR))n|<108\big{|}\big{(}k^{(\rm NR)}_{\sigma g}\big{)}^{\prime}_{n}\big{|}<10^{8}. However, it seems unrealistic, since the main contribution to (kσg(NR))n\big{(}k^{(\rm NR)}_{\sigma g}\big{)}^{\prime}_{n} is caused by LV interactions Kostelecky2011b .

It is important to emphasize that in the coefficient (kϕNR)n(k^{\rm NR}_{\phi})_{n} the dominate role belongs to the BRG interactions. According to Kostelecky2021b , the coefficient (kϕNR)n(k^{\rm NR}_{\phi})_{n} has the following structure (see Table III in Ref.Kostelecky2021b ):

(kϕNR)n=2(m)Lnss2(aL)ntss+2m(ehL)ntss2m(chL)ntss+2m2(m)h(5)Lnttss2m2(a)h(5)Lnttss,\displaystyle\big{(}k^{\rm NR}_{\phi})_{n}=2\,(m{{}^{\prime}}{}^{\rm L})^{ss}_{n}-2\,(a^{\rm L})^{tss}_{n}+2\,m\,(e^{\rm L}_{h})^{tss}_{n}-2\,m\,(c^{\rm L}_{h})^{tss}_{n}+2\,m^{2}\,(m{{}^{(5)}_{h}}{}^{\rm L})^{ttss}_{n}-2\,m^{2}\,(a{{}^{(5)}_{h}}{}^{\rm L})^{ttss}_{n}, (16)

where the phenomenological coupling constants in the right-hand-side of Eq.(16) are fully induced by the BRG interactions (see Table I in Ref.Kostelecky2021b ).

The energy spectrum of the quantum gravitational states of unpolarized UCNs, calculated by taking into account the 2-fold degeneracy of the energy levels Ivanov2019 (see also LL1965 ; Davydov1965 ), is equal to

Ek(±)=Ek(0)23(kϕ(NR))nEk(0)m±|g(kσg(NR))n|.\displaystyle E^{(\pm)}_{k}=E^{(0)}_{k}-\frac{2}{3}\,\big{(}k^{(\rm NR)}_{\phi})_{n}\,\frac{E^{(0)}_{k}}{m}\pm\Big{|}g\,\big{(}k^{(\rm NR)}_{\sigma g}\big{)}^{\prime}_{n}\Big{|}. (17)

Using Eq.(15) in Ref.Ivanov2019 we define the contributions to the transition frequencies of the quantum gravitational states of UCNs

δνkk(±±)\displaystyle\delta\nu^{(\pm\pm)}_{k^{\prime}k} =\displaystyle= (kϕ(NR))nEk(0)Ek(0)3πm,\displaystyle-\big{(}k^{(\rm NR)}_{\phi})_{n}\,\frac{E^{(0)}_{k^{\prime}}-E^{(0)}_{k}}{3\pi m}, (18)

and

δνkk(±)\displaystyle\delta\nu^{(\pm\mp)}_{k^{\prime}k} =\displaystyle= (kϕ(NR))nEk(0)Ek(0)3πm±|gπ(kσg(NR))n|.\displaystyle-\big{(}k^{(\rm NR)}_{\phi})_{n}\,\frac{E^{(0)}_{k^{\prime}}-E^{(0)}_{k}}{3\pi m}\pm\Big{|}\frac{g}{\pi}\,\big{(}k^{(\rm NR)}_{\sigma g}\big{)}^{\prime}_{n}\Big{|}. (19)

One may see that the experimental analysis of the transition frequencies between the quantum gravitational states of unpolarized UCNs should lead to the estimates Eq.(15).

IV Discussion

We have analyzed a possibility to test contributions of interactions, induced by non-Riemann geometry beyond the standard Riemann General Relativity and the Lorentz-invariance violation (LV), by Kostelecký and Li Kostelecky2021b . Using the effective low-energy potential, derived in Kostelecky2021b , we have calculated the contributions of beyond-Riemann gravity or the BRG contributions and the LV contributions to the energy spectrum and transition frequencies of the quantum gravitational states of polarized and unpolarized UCNs. Such UCNs are used as test-particles for probes of contributions of interactions beyond the Standard Model (SM) and Einstein’s gravity Jenke2019 ; Sedmik2019 ; Abele2021 ; Abele2003 ; Abele2009 ; Jenke2009 ; Abele2010 ; Jenke2011 ; Abele2011c ; Abele2012 ; Jenke2014a ; Jenke2014b ; Schmiedmayer2015 ; Cronenberg2015 ; Abele2016 ; Konrad2017 ; Cronenberg2018 ; Ivanov2020 . We have got the following constraints |(kϕ(NR))n|<103GeV\big{|}\big{(}k^{(\rm NR)}_{\phi})_{n}\big{|}<10^{-3}\,{\rm GeV} and (kσg(NR))n=0\big{(}k^{(\rm NR)}_{\sigma g}\big{)}^{\prime}_{n}=0. The upper bound |(kϕ(NR))n|<103GeV\big{|}\big{(}k^{(\rm NR)}_{\phi})_{n}\big{|}<10^{-3}\,{\rm GeV} is one order of magnitude better in comparison with the constraint obtained in Kostelecky2021b . Then, from our analysis of the transition frequencies of the quantum gravitational states of UCNs follows that (kσg(NR))n=0\big{(}k^{(\rm NR)}_{\sigma g}\big{)}^{\prime}_{n}=0, whereas in Kostelecky2021b such a value (kσg(NR))n=0\big{(}k^{(\rm NR)}_{\sigma g}\big{)}^{\prime}_{n}=0 has been imposed by assumption. It is important to emphasize that for the experimental sensitivity ΔE=2×1017eV\Delta E=2\times 10^{-17}\,{\rm eV}, which should be reached in the qBOUNCE experiments in a nearest future Abele2010 , we should expect the upper bound |(kϕ(NR))n|<105GeV\big{|}\big{(}k^{(\rm NR)}_{\phi})_{n}\big{|}<10^{-5}\,{\rm GeV}.

As has been pointed out by Kostelecký and Li Kostelecky2021b , the coefficient (kϕNR)n(k^{\rm NR}_{\phi})_{n} should appear in the nonrelativistic Hamilton operator in Minkowski spacetime Kostelecky1999a but it produces no measurable effects in that context because it amounts to an unobservable redefinition of the zero of energy or, equivalently, because it can be removed from the theory via field redefinitions Kostelecky1997a ; Kostelecky1998a . The observability of (kϕNR)n(k^{\rm NR}_{\phi})_{n} is thus confirmed to be a consequence of the coupling to the gravitational potential, the presence of which restricts the applicability of field redefinitions Kostelecky2021a .

In the perspective of the further analysis of BRG and LV interactions by the quantum gravitation states of UCNs we see in the use of i) the total effective low-energy potential Eq.(3) for the calculation of the BRG and LV contributions to the energy spectrum and the transition frequencies of the quantum gravitational states of UCNs, and of ii) the quantum bouncing ball experiments with a free fall of UCNs in the gravitational field of the Earth Abele2011c ; Abele2012 .

V Acknowledgements

We are grateful to Alan Kostelecký for fruitful discussions and comments. The work of A. N. Ivanov was supported by the Austrian “Fonds zur Förderung der Wissenschaftlichen Forschung” (FWF) under the contracts P31702-N27, P26636-N20 and P33279-N and “Deutsche Förderungsgemeinschaft” (DFG) AB 128/5-2. The work of M. Wellenzohn was supported by the MA 23.

References

  • (1) S. Weinberg, On the development of effective field theory, EPJH 46, 6 (2021);
    DOI: https://doi.org/10.1140/epjh/s13129-021-00004-x; arXiv: 2101.04241 [hep-th].
  • (2) S. Weinberg,Effective field theory, past and future, Int. J. Mod. Phys. A 31, 1630007 (2016);
    DOI: https://doi.org/10.1142/S0217751X16300076.
  • (3) S. Weinberg, Effective field theory, past and future, Proc. Sci. CD 09, 001 (2009);
    DOI: https://doi.org/10.22323/1.086.0001; arXiv: 0908.1964 [hep-th].
  • (4) V. A. Kostelecký, Gravity, Lorentz violation, and the standard model, Phys. Rev. D 69, 105009 (2004);
    DOI: 10.1103/PhysRevD.69.105009.
  • (5) V. A. Kostelecký and Z. Li, Backgrounds in gravitational effective field theory, Phys. Rev. D 103, 024059 (2021);
    DOI: https://doi.org/10.1103/PhysRevD.103.024059; arXiv: 2008.12206 [gr-qc].
  • (6) V. A. Kostelecký and Z. Li, Searches for beyond-Riemann gravity; Phys. Rev. D 104, 044054 (2021);
    DOI: https://doi.org/10.1103/PhysRevD.104.044054; arXiv: 2106.11293 [gr-qc].
  • (7) D. Colladay and V. A. Kostelecký, CPT violation and the standard model, Phys. Rev. D 55, 6760 (1997);
    DOI: 10.1103/PhysRevD.55.6760.
  • (8) D. Colladay and V. A. Kostelecký, Lorentz violating extension of the standard model, Phys. Rev. D 58, 116002 (1998);
    DOI: 10.1103/PhysRevD.58.116002.
  • (9) R. Bluhm, V. A. Kostelecký, Ch. D. Lane, and N. Russell, Clock-comparison tests of Lorentz and CPT symmetry in space, Phys. Rev. Lett. 88, 090801 (2002);
    DOI: 10.1103/PhysRevLett.88.090801.
  • (10) V. A. Kostelecký and M. Mewes, Signals for Lorentz violation in electrodynamics, Phys. Rev. D 66, 056005 (2002);
    DOI: 10.1103/PhysRevD.66.056005.
  • (11) R. Bluhm, V. A. Kostelecký, Ch. D. Lane, and N. Russell, Probing Lorentz and CPT violation with space-based experiments, Phys. Rev. D 68, 125008 (2003);
    DOI: 10.1103/PhysRevD.68.125008.
  • (12) V. A. Kostelecký and M. Mewes, Electrodynamics with Lorentz-violating operators of arbitrary dimension, Phys. Rev. D 80, 015020 (2009); DOI: 10.1103/PhysRevD.80.015020.
  • (13) Y. Ding and V. A. Kostelecký, Lorentz-violating spinor electrodynamics and Penning traps, Phys. Rev. D 94, 056008 (2016);
    DOI: 10.1103/PhysRevD.94.056008.
  • (14) A. N. Ivanov, M. Wellenzohn, and H. Abele, Probing of violation of Lorentz invariance by ultracold neutrons in the Standard Model Extension, Phys. Lett. B 797, 134819 (2019);
    DOI: https://doi.org/10.1016/j.physletb.2019.134819; arXiv: 1908.01498 [hep-ph].
  • (15) V. A. Kostelecký and Ch. D. Lane, Nonrelativistic quantum Hamiltonian for Lorentz violation, J. Math. Phys. 40, 6245 (1999);
    DOI: 10.1063/1.533090.
  • (16) L. L. Foldy and S. A. Wouthuysen, On the Dirac theory of spin 1/2 particle and its nonrelativistic limit, Phys. Rev. 78, 29 (1950);
    DOI: 10.1103/PhysRev.78.29.
  • (17) C. Itzykson and J. Zuber, in Quantum Field Theory, McGraw–Hill, New York 1980.
  • (18) GPS coordinates of Grenoble, France; https://latitude.to/map/fr/france/cities/grenoble
  • (19) R. L. Gibbs, The quantum bouncer, Am. J. Phys. 43, 25 (1975);
    DOI: 10.1119/1.10024.
  • (20) Julio Gea-Banacloche, A quantum bouncing ball , Am. J. Phys. 67, 776 (1999);
    DOI: https://doi.org/10.1119/1.19124.
  • (21) H. C. Rosu, Gravitational bouncing of a quantum ball: Room for Airy’s function Bi, arXiv:quant-ph/0104003.
  • (22) R. W. Robinett, Quantum wave packet revivals, Phys. Reports 392, 1 (2004);
    DOI: https://doi:10.1016/j.physrep.2003.11.002.
  • (23) L. D. Landau and E. M. Lifshitz, in Quantum mechanics, Non–relativistic theory, Vol. 3 of Course of Theoretical Physics, second edition, revised and enlarged, Pergamon Press, Oxford \cdot London \cdot Edinburgh \cdot New York \cdot Paris \cdot Frankfurt, 1965.
  • (24) A. S. Davydov, in Quantum mechanics, Pergamon Press, Oxford \cdot London \cdot Edinburgh \cdot New York \cdot Paris \cdot Frankfurt, 1965.
  • (25) In Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, ed. by M. Abramowitz and I. A. Stegun, Tenth Printing with corrections, National Bureau of Standards Applied Mathematics Series \bullet 55, 1972.
  • (26) J. R. Albright, Integrals of products of Airy functions, J. Phys. A: Math. Gen. 10, 485 (1977);
    DOI: 10.1088/0305-4470/10/4/011.
  • (27) O. Valleé and M. Soares, in Airy functions and applications to physics, Imperial College Press, World Scientific, London 2004.
  • (28) V. V. Nesvizhevsky, H. G. Börner, A. K. Petukhov, H. Abele, S. Bäßler, F. J. Ruess, T. Stoferle, A. Westphal, A. M. Gagarski, G. A. Petrov, and A. V. Strelkov, Quantum states of neutrons in the Earth’s gravitational field, Nature 415, 297 (2002); DOI: 10.1038/415297a.
  • (29) V. V. Nesvizhevsky, H. G. Börner, A. M. Gagarski, A. K. Petukhov, H. Abele, S. Bäßler, G. Divkovic, F. J. Ruess, T. Stoferle, A. Westphal, A. V. Strelkov, K.V. Protasov, and A. Yu. Voronin, Measurement of quantum states of neutrons in the earth’s gravitational field, Phys. Rev. D 67, 102002 (2003);
    DOI: 10.1103/PhysRevD.67.102002.
  • (30) V. V. Nesvizhevsky, A. K. Petukhov, H. G. Börner, T. A. Baranova, A. M. Gagarski, G. A. Petrov, K. V. Protasov, A. Yu. Voronin, S. Bäßler, H. Abele, A. Westphal, and L. Lucovac, Study of the neutron quantum states in the gravity field, Eur. Phys. J. C 40, 479 (2005);
    DOI: 10.1140/epjc/s2005-02135-y.
  • (31) A. Westphal, H. Abele, S. Bäßler, V. V. Nesvizhevsky, K .V. Protasov, and A. Y. Voronin, A quantum mechanical description of the experiment on the observation of gravitationally bound states, Eur. Phys. J. C51, 367(2007); DOI: 10.1140/epjc/s10052-007-0283-x.
  • (32) V. A. Kostelecký and N. Russell, Data Tables for Lorentz and CPT Violation, Rev. Mod. Phys. 83, 11 (2011);
    DOI: 10.1103/RevModPhys.83.11; 2019 edition, arXiv: 0801.0287v14 [hep-ph].
  • (33) T. Jenke et al., Testing gravity at short distances: Gravity Resonance Spectroscopy with qBounce, EPJ Web Conf. 219, 05003 (2019), Contribution to International Workshop on Particle Physics at Neutron Sources (PPNS 2018);
    DOI: https://doi.org/10.1051/epjconf/201921905003.
  • (34) René I. P. Sedmik et al., Proof of Principle for Ramsey-type Gravity Resonance Spectroscopy with qBounce, EPJ Web Conf. 219, 05004 (2019);
    DOI: https://doi.org/10.1051/epjconf/201921905004.
  • (35) T. Jenke, J. Bosina, J. Micko, M. Pitschmann, R. Sedmik, and H. Abele, Gravity resonance spectroscopy and dark energy symmetron fields, Eur. Phys. J. Spec. Top. 230, 1131 (2021);
    DOI: https://doi.org/10.1140/epjs/s11734-021-00088-y.
  • (36) S. Sponar, R. I. P. Sedmik, M. Pitschmann, H. Abele, and Yu. Hasegawa, Tests of fundamental quantum mechanics and dark interactions with low-energy neutrons, Nature Rev. Phys. 3, 309 (2021);
    DOI: https://doi.org/10.1038/s42254-021-00298-2.
  • (37) H. Abele, S. Bäßler, and A. Westphal, Quantum states of neutrons in the gravitational field and limits for non-Newtonian interaction in the range between 1 micron and 10 microns, Lect. Notes Phys. 631, 355 (2003); DOI: 10.1007/978-3-540-45230-010{}_{-}{}\!10.
  • (38) H. Abele, T. Jenke, D. Stadler, and P. Geltenbort, QuBounce: the dynamics of ultra-cold neutrons falling in the gravity potential of the Earth, Nucl. Phys. A 827, 593c (2009); DOI: 10.1016/j.nuclphysa.2009.05.131.
  • (39) T. Jenke, D. Stadler, H. Abele, and P. Geltenbort, Q-BOUNCE—Experiments with quantum bouncing ultracold neutrons, Nucl. Instr. and Meth. in Physics Res. A 611, 318 (2009); DOI: 10.1016/j.nima.2009.07.073.
  • (40) H. Abele, T. Jenke, H. Leeb, and J. Schmiedmayer, Ramsey’s method of separated oscillating fields and its application to gravitationally induced quantum phaseshifts, Phys. Rev. D 81, 065019 (2010); DOI: 10.1103/PhysRevD.81.065019.
  • (41) T. Jenke, P. Geltenbort, H. Lemmel, and H. Abele, Realization of a gravity-resonance-spectroscopy technique, Nature Physics 7, 468 (2011);
    DOI: 10.1038/nphys1970.
  • (42) H. Abele, G. Cronenberg, P. Geltenbort, T. Jenke, T. Lins, and H. Saul, qBounce, the quantum bouncing ball experiment, Physics Procedia 17, 4 (2011);
    DOI: 10.1016/j.phpro.2011.06.011.
  • (43) H. Abele and H. Leeb, Gravitation and quantum interference experiments with neutrons, New J. Phys. 14, 055010 (2012);
    DOI: 10.1088/1367-2630/14/5/055010.
  • (44) T. Jenke, G. Cronenberg, J. Bürgdorfer, L. A. Chizhova, P. Geltenbort, A. N. Ivanov, T. Lauer, T. Lins, S. Rotter, H. Saul, U. Schmidt, and H. Abele, Gravity Resonance Spectroscopy constrains dark energy and dark matter scenarios, Phys. Rev. Lett. 112, 151105 (2014);
    DOI: 10.1103/PhysRevLett.112.151105.
  • (45) T. Jenke and H. Abele, Experiments with gravitationally-bound ultracold neutrons at the European Spallation Source ESS, Phys. Procedia 51, 67 (2014);
    DOI: 10.1016/j.phpro.2013.12.016.
  • (46) J. Schmiedmayer and H. Abele, Probing the dark side, Science 349, 786 (2015);
    DOI: 10.1126/science.aac9828.
  • (47) G. Cronenberg, H. Filter, M. Thalhammer, T. Jenke, H. Abele, and P. Geltenbort, A gravity of Earth measurement with a qBOUNCE experiment, PoS EPS-HEP2015 408, (2015);
    DOI: 10.22323/1.234.0408.
  • (48) H. Abele, Precision experiments with cold and ultracold neutrons, Hyperfine Interact. 237, 155 (2016);
    DOI: 10.1007/s10751-016-1352-z.
  • (49) G. Konrad and H. Abele, Cold and ultracold neutrons as probes of new physics, PoS INPC2016, 359 (2017);
    DOI: 10.22323/1.281.0359.
  • (50) G. Cronenberg, Ph. Brax, H. Filter, P. Geltenbort, T. Jenke, G. Pignol, M. Pitschmann, M. Thalhammer, and H. Abele, Acoustic Rabi oscillations between gravitational quantum states and impact on symmetron dark energy, Nature Phys. 14, 1022 (2018);
    DOI: 10.1038/s41567-018-0205-x.
  • (51) A. N. Ivanov and M. Wellenzohn, Can a chameleon field be identified with quintessence?, Universe 6, 221 (2020);
    DOI: https://doi.org/10.3390/universe6120221; arXiv:1607.00884 [gr-qc], where we discuss also a possibility to measure the contributions of effective low-energy torsion-neutron interactions in the qBounce experiments.
  • (52) V. A. Kostelecký and C. D. Lane, Constraints on Lorentz violation from clock-comparison experiments, Phys. Rev. D 60, 116010 (1999);
    DOI: https://doi.org/10.1103/PhysRevD.60.116010.