This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Quantum fluctuations on top of a 𝒫​𝒯\mathcal{PT}-symmetric Bose-Einstein Condensate

Xiaoling Cui [email protected] Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China Songshan Lake Materials Laboratory , Dongguan, Guangdong 523808, China
Abstract

We investigate the effects of quantum fluctuations in a parity-time(𝒫​𝒯\mathcal{PT}) symmetric two-species Bose-Einstein Condensate(BEC). It is found that the 𝒫​𝒯\mathcal{PT}-symmetry, though preserved by the macroscopic condensate, can be spontaneously broken by its Bogoliubov quasi-particles under quantum fluctuations. The associated 𝒫​𝒯\mathcal{PT}-breaking transitions in the Bogoliubov spectrum can be conveniently tuned by the interaction anisotropy in spin channels and the strength of 𝒫​𝒯\mathcal{PT} potential. In the 𝒫​𝒯\mathcal{PT}-unbroken regime, the real Bogoliubov modes are generally gapped, in contrast to the gapless phonon mode in Hermitian case. Moreover, the presence of 𝒫​𝒯\mathcal{PT} potential is found to enhance the mean-field collapse and thereby intrigue the droplet formation after incorporating the repulsive force from quantum fluctuations. These remarkable interplay effects of 𝒫​𝒯\mathcal{PT}-symmetry and interaction can be directly probed in cold atoms experiments, which shed light on related quantum phenomena in general 𝒫​𝒯\mathcal{PT}-symmetric systems.

I Introduction

The parity-time(𝒫​𝒯\mathcal{PT}) symmetry governs a fascinating class of non-Hermitian Hamiltonians whose energy spectra can be purely real and bounded belowBender , analogous to the Hermitian ones. Nevertheless, very different from the Hermitian counterpart, their eigenstates are generally non-orthogonal and can even coalesce at exceptional points(EPs), where the 𝒫​𝒯\mathcal{PT}-breaking transition occurs and the spectra after the transition become complexbook . The single-particle 𝒫​𝒯\mathcal{PT}-symmetric Hamiltonian and the associated breaking transitions have been successfully explored earlier in various photonic, electronic and acoustic systems (see reviewsreview1 ; review2 ), and recently also in the quantum walk interferometerQW_PT , superconducting circuitSC_PT , nitrogen-vacancy centerNV_PT , trapped ionsion_PT1 ; ion_PT2 and ultracold gasesLuo ; Gadway ; Jo .

Given the intriguing single-particle property of 𝒫​𝒯\mathcal{PT}-symmetry, its interplay with interaction has become a rapidly developing research frontier in recent yearsWunner ; Konotop ; Mott1 ; Ueda ; Das ; Pan ; Yu ; Zhou ; Littlewood ; Littlewood2 ; Mott2 ; Yi ; Zhang ; Scheurer . Previous studies have focused on the interacting 𝒫​𝒯\mathcal{PT}-symmetric bosons and fermions based on mean-field analysesWunner ; Konotop ; Das ; Zhou ; Zhang ; Pan ; Yu , and the phase transitions and critical phenomena near EPsMott1 ; Ueda ; Littlewood ; Littlewood2 ; Mott2 . To date, little has been said about beyond-mean-field effects with 𝒫​𝒯\mathcal{PT}-symmetry, and whether such effects can generate equally significant quantum phenomena far from EPs. Answering these questions will help to capture the very intrinsic physics in the interplay of interaction and 𝒫​𝒯\mathcal{PT}-symmetry, which will in turn shed light on related quantum phenomena in a much broader context.

In this work, we explore the effects of quantum fluctuations on top of a 𝒫​𝒯\mathcal{PT}-symmetric two-species(↑,↓\uparrow,\downarrow) Bose-Einstein Condensate(BEC) with the non-Hermitian potential

VPT=Ω​(Οƒx+i​γ​σz),V_{\rm PT}=\Omega(\sigma_{x}+i\gamma\sigma_{z}), (1)

where σα\sigma_{\alpha}(Ξ±=x,y,z\alpha=x,y,z) are the Pauli matrices. Obviously VPTV_{\rm PT} commutes with the 𝒫​𝒯\mathcal{PT} operator, with 𝒫\mathcal{P} flipping the spin(↑⁣↔⁣↓\uparrow\leftrightarrow\downarrow) and 𝒯\mathcal{T} changing ii to βˆ’i-i. In the single-particle level, the physics of VPTV_{\rm PT} has been well studied in literaturereview1 ; review2 ; QW_PT ; SC_PT ; NV_PT ; ion_PT1 ; ion_PT2 ; Luo ; Gadway ; Jo and the 𝒫​𝒯\mathcal{PT}-symmetry is preserved for Ξ³<1\gamma<1. Here we show that when turn on boson-boson interactions, quantum fluctuations can significantlly affect the elementary excitation of the system even far from the single-particle EP. Specifically, our main findings are listed as below:

(I) The 𝒫​𝒯\mathcal{PT}-symmetry, though preserved by the condensate, can be spontaneously broken by the Bogoliubov quasi-particles. The 𝒫​𝒯\mathcal{PT}-breaking transition in the Bogoliubov spectrum can be conveniently tuned by the strength of VPTV_{\rm PT} and the interaction anisotropy in spin channels.

(II) The quasi-particle in the 𝒫​𝒯\mathcal{PT}-unbroken regime is generally gapped, on contrary to the gapless mode in the Hermitian case. Moreover, the mean-field instability of a non-Hermitian system does not necessarily lead to imaginary excitations therein.

(III) The presence of VPTV_{\rm PT} can enhance the mean-field collapse of the BEC, and thereby extend the droplet formation to a broader interaction regime than the Hermitian counterpart.

The experimental relevance of our results and the implication to a general 𝒫​𝒯\mathcal{PT}-symmetric system will also be discussed in this paper.

The rest of the paper is organized as follows. In section II we present the basic model of the system, including the single-particle physics and mean-field treatment. The followed section III is contributed to the mean-field ground state. In section IV, we build up a systematic theory for the Bogoliubov analysis of the non-Hermitian BEC. The resulted excitation spectrum and the droplet properties are presented, respectively, in section V and VI. Finally, we discuss the experimental relevance of our results in section VII and summarize the whole work in section VIII.

II Model

We consider the following Hamiltonian for the interacting two-species bosons under the 𝒫​𝒯\mathcal{PT}-symmetric potential (we take ℏ=1\hbar=1 throughout the paper)

H\displaystyle H =\displaystyle= ∫dπ«βˆ‘Ξ±β€‹Ξ²{Ψα†(𝐫)[βˆ’βˆ‡22​mαδα​β+Ξ©(Οƒxα​β+iΞ³Οƒzα​β)]Ψβ(𝐫)\displaystyle\int d{\mathbf{r}}\sum_{\alpha\beta}\left\{\Psi^{{\dagger}}_{\alpha}({\mathbf{r}})\big{[}-\frac{\nabla^{2}}{2m_{\alpha}}\delta_{\alpha\beta}+\Omega(\sigma^{\alpha\beta}_{x}+i\gamma\sigma^{\alpha\beta}_{z})\big{]}\Psi_{\beta}({\mathbf{r}})\right. (2)
+gα​β2Ψα†(𝐫)Ψβ†(𝐫)Ψβ(𝐫)Ψα(𝐫)}.\displaystyle+\left.\frac{g_{\alpha\beta}}{2}\Psi^{{\dagger}}_{\alpha}({\mathbf{r}})\Psi^{{\dagger}}_{\beta}({\mathbf{r}})\Psi_{\beta}({\mathbf{r}})\Psi_{\alpha}({\mathbf{r}})\right\}.

Here Ξ±,Ξ²={↑,↓}\alpha,\beta=\{\uparrow,\downarrow\}, and {Ψα†,Ψα}\{\Psi^{{\dagger}}_{\alpha},\Psi_{\alpha}\} are the field operators of spin-Ξ±\alpha bosons. In order to ensure the 𝒫​𝒯\mathcal{PT}-symmetry of (2), we take the equal mass m↑=m↓≑mm_{\uparrow}=m_{\downarrow}\equiv m and equal intra-species coupling g↑↑=g↓↓≑gg_{\uparrow\uparrow}=g_{\downarrow\downarrow}\equiv g. In this case, the property of a homogeneous BEC is determined by three dimensionless parameters: the dissipation parameter Ξ³\gamma, and two dimensionless combinations η≑g↑↓/g\eta\equiv g_{\uparrow\downarrow}/g and Ξ©~≑Ω/(g​n)\tilde{\Omega}\equiv\Omega/(gn) (nn the total density of the BEC).

II.1 Single-particle physics

The non-interacting part of (2) can be diagonalized as

H0=βˆ‘Ξ½Ο΅Ξ½;𝐀​Ψν;𝐀,R†​Ψν;𝐀,LH_{0}=\sum_{\nu}\epsilon_{\nu;{\mathbf{k}}}\Psi^{{\dagger}}_{\nu;{\mathbf{k}},R}\Psi_{\nu;{\mathbf{k}},L} (3)

where Ξ½={+,βˆ’}\nu=\{+,-\} is the index of single-particle eigenstate with eigen-energy ϡν;𝐀=𝐀2/(2​m)+ν​Ω​1βˆ’Ξ³2\epsilon_{\nu;{\mathbf{k}}}={\mathbf{k}}^{2}/(2m)+\nu\Omega\sqrt{1-\gamma^{2}}; Ψν;𝐀,R†\Psi^{{\dagger}}_{\nu;{\mathbf{k}},R} (Ψν;𝐀,L\Psi_{\nu;{\mathbf{k}},L}) is the associated creation (annilation) operator of the right (left) eigenstate, which satisfies the commutation relation

[Ψν′;𝐀′,L,Ψν;𝐀,R†]=δ𝐀𝐀′​δν​ν′.[\Psi_{\nu^{\prime};{\mathbf{k}^{\prime}},L},\Psi^{{\dagger}}_{\nu;{\mathbf{k}},R}]=\delta_{{\mathbf{k}}{\mathbf{k}}^{\prime}}\delta_{\nu\nu^{\prime}}. (4)

This relation is equivalent to the bi-orthogonality of right and left eigen-states, which is crucially important for building the theories of non-Hermitian BECs as presented later.

Since VPTV_{\rm PT} decouples from the kinetic term, the right/left eigenstates can be decoupled as

Ψν;𝐀,R/L†​|0βŸ©β‰‘|π€βŸ©β€‹|ν⟩R/L,\Psi^{{\dagger}}_{\nu;{\mathbf{k}},R/L}|0\rangle\equiv|{\mathbf{k}}\rangle|\nu\rangle_{R/L}, (5)

where |0⟩|0\rangle is the vacuum, |𝐀⟩|{\mathbf{k}}\rangle is the plane-wave state with momentum 𝐀{\mathbf{k}}, and |ν⟩R/L|\nu\rangle_{R/L} is the spin part of the eigenstate that is solely determined by VPTV_{\rm PT}. Specifically, the right and left eigenstates are defined through the Schrâdinger equations:

VPT​|ν⟩R=ϡν​|ν⟩R,VPT†​|ν⟩L=Ο΅Ξ½βˆ—β€‹|ν⟩L,V_{\rm PT}|\nu\rangle_{R}=\epsilon_{\nu}|\nu\rangle_{R},\ \ \ \ \ \ \ V^{{\dagger}}_{\rm PT}|\nu\rangle_{L}=\epsilon^{*}_{\nu}|\nu\rangle_{L}, (6)

with ϡν=ν​Ω​1βˆ’Ξ³2\epsilon_{\nu}=\nu\Omega\sqrt{1-\gamma^{2}}. In the regime Ξ³<1\gamma<1, |ν⟩R/L|\nu\rangle_{R/L} can be expressed as

|+⟩R=C+,R​(u​|β†‘βŸ©+|β†“βŸ©);|βˆ’βŸ©R=Cβˆ’,R​(|β†‘βŸ©βˆ’u​|β†“βŸ©).\displaystyle|+\rangle_{R}=C_{+,R}\left(u|\uparrow\rangle+|\downarrow\rangle\right);\ \ \ \ |-\rangle_{R}=C_{-,R}\left(|\uparrow\rangle-u|\downarrow\rangle\right).
|+⟩L=C+,L​(|β†‘βŸ©+u​|β†“βŸ©);|βˆ’βŸ©L=Cβˆ’,L​(u​|β†‘βŸ©βˆ’|β†“βŸ©),\displaystyle|+\rangle_{L}=C_{+,L}\left(|\uparrow\rangle+u|\downarrow\rangle\right);\ \ \ \ |-\rangle_{L}=C_{-,L}\left(u|\uparrow\rangle-|\downarrow\rangle\right),

with the parameter

u=1βˆ’Ξ³2+i​γ.u=\sqrt{1-\gamma^{2}}+i\gamma. (8)

Here CΞ½,R,CΞ½,LC_{\nu,R},C_{\nu,L} are all normalization factors. For the Hermitian case (Ξ³=0\gamma=0 and u=1u=1), we can see that the right and left eigenvectors become identical, i.e., |+⟩R∼|+⟩L|+\rangle_{R}\sim|+\rangle_{L}, |βˆ’βŸ©R∼|βˆ’βŸ©L|-\rangle_{R}\sim|-\rangle_{L}, and different levels are orthogonal to each other βŸ¨βˆ’|+⟩R,LR,L=0{}_{R,L}\langle-|+\rangle_{R,L}=0. In comparison, for the non-Hermitian case (Ξ³β‰ 0\gamma\neq 0 and uu is complex), these relations are no longer satisfied, i.e., |ν⟩Rβ‰ |ν⟩L|\nu\rangle_{R}\neq|\nu\rangle_{L} and βŸ¨βˆ’|+⟩RRβ‰ 0{}_{R}\langle-|+\rangle_{R}\neq 0, βŸ¨βˆ’|+⟩LLβ‰ 0{}_{L}\langle-|+\rangle_{L}\neq 0. However, given the definition of right/left eigenstates in Eq.6, the bi-orthogonality can be satisfied as long as Ο΅+β‰ Ο΅βˆ’\epsilon_{+}\neq\epsilon_{-}:

βŸ¨βˆ’|+⟩RL=0,L⟨+|βˆ’βŸ©R=0.{}_{L}\langle-|+\rangle_{R}=0,\ \ \ \ \ \ \ \ _{L}\langle+|-\rangle_{R}=0. (9)

Therefore, the normalization can be carried out between the right and left eigenvectors:

⟨ν|ν⟩RL=1,ν=±;{}_{L}\langle\nu|\nu\rangle_{R}=1,\ \ \ \ \ \ \ \nu=\pm; (10)

which gives

CΞ½,Lβˆ—β€‹CΞ½,R=1u+uβˆ—,Ξ½=Β±.C^{*}_{\nu,L}C_{\nu,R}=\frac{1}{u+u^{*}},\ \ \ \ \ \ \ \nu=\pm. (11)

Note that Eqs.(9,10) guarantees the commutation relation (4). In this work, we choose a specific gauge such that the normalization factors are all real and identical:

CΞ½,R=CΞ½,L=1u+uβˆ—.C_{\nu,R}=C_{\nu,L}=\frac{1}{\sqrt{u+u^{*}}}. (12)

In this way, when the 𝒫​𝒯\mathcal{PT} operator acts on these eigenvectors, we have

𝒫​𝒯​|ν⟩R=ν​uβˆ—β€‹|ν⟩R;𝒫​𝒯​|ν⟩L=ν​uβˆ—β€‹|+⟩L.\mathcal{PT}|\nu\rangle_{R}=\nu u^{*}|\nu\rangle_{R};\ \ \ \mathcal{PT}|\nu\rangle_{L}=\nu u^{*}|+\rangle_{L}. (13)

This demonstrates that, in the Ξ³<1\gamma<1 regime, |ν⟩R/L|\nu\rangle_{R/L} are both the eigenstates of 𝒫​𝒯\mathcal{PT}-operator with eigenvalue ν​uβˆ—\nu u^{*}. If one chooses a different gauge other than (12), the eigenvalues in (13) will be changed. However, we have checked that the gauge choice will not affect the physical quantities studied in this work, given that (11) is satisfied.

II.2 Mean-field treatment of the 𝒫​𝒯\mathcal{PT}-symmetric BEC

In the mean-field framework, we can write down a general coherent ansatz for the right state of the BEC:

|Ξ¨0⟩R=π’œβ€‹βˆ‘n(βˆ‘Ξ½Nν​ei​θν​Ψν;𝐀=0,R†)nn!​|0⟩.|\Psi_{0}\rangle_{R}={\cal A}\sum_{n}\frac{\big{(}\sum_{\nu}\sqrt{N_{\nu}}e^{i\theta_{\nu}}\Psi^{{\dagger}}_{{\nu};{\mathbf{k}=0},R}\big{)}^{n}}{n!}|0\rangle. (14)

Here NΞ½N_{\nu} and ΞΈΞ½\theta_{\nu} are respectively the mean number and the phase of the condensate at level Ξ½\nu. In the regime Ξ³<1\gamma<1, since the single-particle state Ψν;𝐀,R/L†​|0⟩\Psi^{{\dagger}}_{{\nu};{\mathbf{k}},R/L}|0\rangle preserves the 𝒫​𝒯\mathcal{PT}-symmetry, it is natural to require the condensate (14) equally preserve such symmetry. Given Eq.(13), this requirement leads to

e2​i​θν=ν​uβˆ—.e^{2i\theta_{\nu}}=\nu u^{*}. (15)

Following the same strategy, we can obtain the left state of the BEC, |Ξ¨0⟩L|\Psi_{0}\rangle_{L}, which shares the same form as (14) except replacing Ψν;𝐀=0,R†\Psi^{{\dagger}}_{{\nu};{\mathbf{k}=0},R} by Ψν;𝐀=0,L†\Psi^{{\dagger}}_{{\nu};{\mathbf{k}=0},L}.

Given the commutation relation (4) and the coherent ansatz (14), we can obtain the following expectation values under the bi-orthogonal basis:

⟨Ψ0|Ψν;𝐀=0,R†|Ξ¨0⟩RL=NΞ½eβˆ’i​θν,L⟨Ψ0|Ψν;𝐀=0,L|Ξ¨0⟩R=NΞ½ei​θν;{}_{L}\langle\Psi_{0}|\Psi^{{\dagger}}_{{\nu};{\mathbf{k}=0},R}|\Psi_{0}\rangle_{R}=\sqrt{N_{\nu}}e^{-i\theta_{\nu}},\ \ \ _{L}\langle\Psi_{0}|\Psi_{{\nu};{\mathbf{k}=0},L}|\Psi_{0}\rangle_{R}=\sqrt{N_{\nu}}e^{i\theta_{\nu}};
⟨Ψ0|Ψν;𝐀=0,R†Ψν′;𝐀=0,L|Ξ¨0⟩RL=Nν​NΞ½β€²ei​(ΞΈΞ½β€²βˆ’ΞΈΞ½);{}_{L}\langle\Psi_{0}|\Psi^{{\dagger}}_{{\nu};{\mathbf{k}=0},R}\Psi_{{\nu^{\prime}};{\mathbf{k}=0},L}|\Psi_{0}\rangle_{R}=\sqrt{N_{\nu}N_{\nu^{\prime}}}e^{i(\theta_{\nu^{\prime}}-\theta_{\nu})};
⟨Ψ0|Ψν;𝐀=0,R†Ψν′;𝐀=0,R†Ψν′′;𝐀=0,LΨν′′′;𝐀=0,L|Ξ¨0⟩RL=Nν​Nν′​Nν′′​NΞ½β€²β€²β€²ei​(ΞΈΞ½β€²β€²β€²+ΞΈΞ½β€²β€²βˆ’ΞΈΞ½β€²βˆ’ΞΈΞ½).{}_{L}\langle\Psi_{0}|\Psi^{{\dagger}}_{{\nu};{\mathbf{k}=0},R}\Psi^{{\dagger}}_{{\nu^{\prime}};{\mathbf{k}=0},R}\Psi_{{\nu^{\prime\prime}};{\mathbf{k}=0},L}\Psi_{{\nu^{\prime\prime\prime}};{\mathbf{k}=0},L}|\Psi_{0}\rangle_{R}=\sqrt{N_{\nu}N_{\nu^{\prime}}N_{\nu^{\prime\prime}}N_{\nu^{\prime\prime\prime}}}e^{i(\theta_{\nu^{\prime\prime\prime}}+\theta_{\nu^{\prime\prime}}-\theta_{\nu^{\prime}}-\theta_{\nu})}. (16)

This shows that in the mean-field framework under the bi-orthogonal basis, one can replace the zero-momentum operators Ψν;𝐀=0,R†\Psi^{{\dagger}}_{{\nu};{\mathbf{k}=0},R} and Ψν;𝐀=0,L\Psi_{{\nu};{\mathbf{k}=0},L} with their mean values:

Ψν;𝐀=0,R†→Nν​eβˆ’i​θν,Ψν;𝐀=0,Lβ†’Nν​ei​θν.\Psi^{{\dagger}}_{{\nu};{\mathbf{k}=0},R}\rightarrow\sqrt{N_{\nu}}e^{-i\theta_{\nu}},\ \ \ \Psi_{{\nu};{\mathbf{k}=0},L}\rightarrow\sqrt{N_{\nu}}e^{i\theta_{\nu}}. (17)

In this way, we can go on to study the mean-field ground state and examine the effects of quantum fluctuations on top of it.

Here we would like to emphasize that the mean-field treatment is only valid under the bi-orthogonal basis, but not if only use one of the basis (right or left). For instance, we cannot obtain the expectation values as the form in Eq.(16) if only under the right basis (βŸ¨β€¦βŸ©RR{}_{R}\langle...\rangle_{R}) or the left basis (βŸ¨β€¦βŸ©LL{}_{L}\langle...\rangle_{L}), and as a result we cannot replace the operators by their according mean-field values as in (17).

II.3 Interaction channels

To facilitate later discussions, we rewrite the interaction part of (2) in the following form:

U=βˆ‘Ξ½1​ν2​ν3​ν4UΞ½1​ν2;Ξ½3​ν4β€‹βˆ‘ππ€π€β€²Ξ¨Ξ½1;πβˆ’π€,R†​Ψν2;𝐀,R†​Ψν3;𝐀′,L​Ψν4;πβˆ’π€β€²,L.U=\sum_{\nu_{1}\nu_{2}\nu_{3}\nu_{4}}U_{\nu_{1}\nu_{2};\nu_{3}\nu_{4}}\sum_{{\mathbf{Q}}{\mathbf{k}}{\mathbf{k}^{\prime}}}\Psi^{{\dagger}}_{\nu_{1};{\mathbf{Q}}-{\mathbf{k}},R}\Psi^{{\dagger}}_{\nu_{2};{\mathbf{k}},R}\Psi_{\nu_{3};{\mathbf{k}^{\prime}},L}\Psi_{\nu_{4};{\mathbf{Q}}-{\mathbf{k}^{\prime}},L}. (18)

Here UΞ½1​ν2;Ξ½3​ν4U_{\nu_{1}\nu_{2};\nu_{3}\nu_{4}} is invariant under the permutation of Ξ½1↔ν2\nu_{1}\leftrightarrow\nu_{2} or Ξ½3↔ν4\nu_{3}\leftrightarrow\nu_{4}, and thus there are totally nine different coupling channels, with five even-parity combinations {Ξ½1Ξ½2;Ξ½3Ξ½4}={++;++},{βˆ’βˆ’;βˆ’βˆ’},{++;βˆ’βˆ’},{βˆ’βˆ’;++},{+βˆ’;+βˆ’}\{\nu_{1}\nu_{2};\nu_{3}\nu_{4}\}=\{++;++\},\ \{--;--\},\ \{++;--\},\ \{--;++\},\ \{+-;+-\}, and four odd-parity ones {+βˆ’;++},{+βˆ’;βˆ’βˆ’},{++;+βˆ’},{βˆ’βˆ’;+βˆ’}\{+-;++\},\ \{+-;--\},\ \{++;+-\},\ \{--;+-\}. The coupling constants in these channels are:

U++;++=Uβˆ’βˆ’;βˆ’βˆ’=gV​uβˆ’4;\displaystyle U_{++;++}=U_{--;--}=\frac{g}{V}\frac{u_{-}}{4};
U++;βˆ’βˆ’=Uβˆ’βˆ’;++=gV​u+β€²;\displaystyle U_{++;--}=U_{--;++}=\frac{g}{V}u^{\prime}_{+};
U+βˆ’;+βˆ’=gV​u+;\displaystyle U_{+-;+-}=\frac{g}{V}u_{+};
U+βˆ’;++=βˆ’U+βˆ’;βˆ’βˆ’=U++;+βˆ’=βˆ’Uβˆ’βˆ’;+βˆ’=βˆ’gV​uβ€²β€²,\displaystyle U_{+-;++}=-U_{+-;--}=U_{++;+-}=-U_{--;+-}=-\frac{g}{V}u^{\prime\prime},
(19)

with

uβˆ’=4​uβˆ’β€²=1βˆ’2​γ2+Ξ·1βˆ’Ξ³2;u+=1βˆ’Ξ·β€‹Ξ³21βˆ’Ξ³2;\displaystyle u_{-}=4u^{\prime}_{-}=\frac{1-2\gamma^{2}+\eta}{1-\gamma^{2}};\ \ \ \ \ \ u_{+}=\frac{1-\eta\gamma^{2}}{1-\gamma^{2}};
u+β€²=1βˆ’Ξ·4​(1βˆ’Ξ³2);uβ€²β€²=βˆ’i​γ​(1βˆ’Ξ·)2​(1βˆ’Ξ³2).\displaystyle u^{\prime}_{+}=\frac{1-\eta}{4(1-\gamma^{2})};\ \ \ \ \ \ \ \ \ \ u^{\prime\prime}=-\frac{i\gamma(1-\eta)}{2(1-\gamma^{2})}. (20)

Here uβˆ’,u+u_{-},\ u_{+} and u+β€²u_{+}^{\prime} are the coupling constants for even-parity channels, and uβ€²β€²u^{\prime\prime} represents the coupling for odd-parity ones. uβ€²β€²u^{\prime\prime} is non-zero and purely imaginary only for the non-Hermitian case with spin-independent interaction, i.e., when Ξ³β‰ 0\gamma\neq 0 and Ξ·β‰ 1\eta\neq 1. As shown later, the presence of these odd-parity channels will greatly affect the elementary excitation of the BEC.


III Mean-field ground state

To determine the mean-field ground state, we examine the total mean-field energy Emf=L⟨Ψ0|H|Ξ¨0⟩RE_{\rm mf}=_{L}\langle\Psi_{0}|H|\Psi_{0}\rangle_{R}. It is found that under the phase constraint (15), EmfE_{\rm mf} solely depends on the parameter x≑Nβˆ’/Nx\equiv N_{-}/N, where N=Nβˆ’+Nβˆ’N=N_{-}+N_{-} is the total number. Explicitly, the energy per particle Ο΅mf≑Emf/N\epsilon_{\rm mf}\equiv E_{\rm mf}/N reads

Ο΅mf​(x)\displaystyle\epsilon_{\rm mf}(x) =\displaystyle= Ω​1βˆ’Ξ³2​(1βˆ’2​x)+\displaystyle\Omega\sqrt{1-\gamma^{2}}(1-2x)+ (21)
g​n1βˆ’Ξ³2​(Ξ³2​(Ξ·βˆ’1)​(x2βˆ’x)+1βˆ’2​γ2+Ξ·4).\displaystyle\frac{gn}{1-\gamma^{2}}\left(\gamma^{2}(\eta-1)(x^{2}-x)+\frac{1-2\gamma^{2}+\eta}{4}\right).

For simplicity, in this work we will focus on the Ξ·<1\eta<1 regime, where the minimum of Ο΅mf​(x)\epsilon_{\rm mf}(x) locates at x=1x=1, i.e., the bosons condense at the lower branch with energy

Ο΅mf=βˆ’Ξ©β€‹1βˆ’Ξ³2+g​n1βˆ’Ξ³2​1βˆ’2​γ2+Ξ·4.\displaystyle\epsilon_{\rm mf}=-\Omega\sqrt{1-\gamma^{2}}+\frac{gn}{1-\gamma^{2}}\frac{1-2\gamma^{2}+\eta}{4}. (22)

Accordingly, we can obtain the chemical potential ΞΌβ‰‘βˆ‚Emf/βˆ‚N\mu\equiv\partial E_{\rm mf}/\partial N and further the compressibility Ο‡β‰‘βˆ‚n/βˆ‚ΞΌ\chi\equiv\partial n/\partial\mu as

Ο‡=2g​1βˆ’Ξ³21βˆ’2​γ2+Ξ·.\chi=\frac{2}{g}\frac{1-\gamma^{2}}{1-2\gamma^{2}+\eta}. (23)

The mean-field stability against density fluctuations would require Ο‡>0\chi>0 and therefore

Ξ·>2​γ2βˆ’1.\eta>2\gamma^{2}-1. (24)

This condition is more stringent than the Hermitian case (Ξ·>βˆ’1\eta>-1). In other words, a non-Hermitian BEC (with finite Ξ³\gamma) can undergo mean-field collapse more easily than its Hermitian counterpart (Ξ³=0\gamma=0). This will be responsible for the Ξ³\gamma-induced droplet formation as discussed later.

IV Bogoliubov analysis

Given the 𝒫​𝒯\mathcal{PT}-symmetric BEC at 𝐀=0{\mathbf{k}}=0 and Ξ½=βˆ’\nu=-, we now study its elementary excitations due to quantum fluctuations. Following the standard Bogoliubov approach, we assume Ψν;𝐀,R†\Psi^{{\dagger}}_{\nu;{\mathbf{k}},R} and Ψν;𝐀,L\Psi_{\nu;{\mathbf{k}},L} (except for {Ξ½=βˆ’,𝐀=0}\{\nu=-,\ {\mathbf{k}}=0\}) are all small fluctuation operators and only keep in the Hamiltonian all the bi-linear terms of these operators, which gives H=N​ϡmf+HBGH=N\epsilon_{\rm mf}+H_{\rm BG} with

HBG\displaystyle H_{\rm BG} =\displaystyle= βˆ‘π€βˆ‘Ξ½((ϡν;π€βˆ’ΞΌ+g​n​uΞ½)​Ψν;𝐀,R†​Ψν;𝐀,L+g​n​uν′​(e2​iβ€‹ΞΈβˆ’β€‹Ξ¨Ξ½;𝐀,R†​Ψν;βˆ’π€,R†+eβˆ’2​iβ€‹ΞΈβˆ’β€‹Ξ¨Ξ½;𝐀,L​Ψν;βˆ’π€,L))\displaystyle\sum_{\mathbf{k}}\sum_{\nu}\left((\epsilon_{\nu;{\mathbf{k}}}-\mu+gnu_{\nu})\Psi^{{\dagger}}_{\nu;{\mathbf{k}},R}\Psi_{\nu;{\mathbf{k}},L}+gnu^{\prime}_{\nu}(e^{2i\theta_{-}}\Psi^{{\dagger}}_{\nu;{\mathbf{k}},R}\Psi^{{\dagger}}_{\nu;-{\mathbf{k}},R}+e^{-2i\theta_{-}}\Psi_{\nu;{\mathbf{k}},L}\Psi_{\nu;-{\mathbf{k}},L})\right) (25)
+g​n​uβ€²β€²β€‹βˆ‘π€(e2​iβ€‹ΞΈβˆ’β€‹Ξ¨+;𝐀,Rβ€ β€‹Ξ¨βˆ’;βˆ’π€,R†+eβˆ’2​iβ€‹ΞΈβˆ’β€‹Ξ¨+;𝐀,Lβ€‹Ξ¨βˆ’;βˆ’π€,L+2​Ψ+;𝐀,Rβ€ β€‹Ξ¨βˆ’;𝐀,L+2β€‹Ξ¨βˆ’;𝐀,R†​Ψ+;𝐀,L).\displaystyle\ \ \ \ +gnu^{\prime\prime}\sum_{\mathbf{k}}\left(e^{2i\theta_{-}}\Psi^{{\dagger}}_{+;{\mathbf{k}},R}\Psi^{{\dagger}}_{-;-{\mathbf{k}},R}+e^{-2i\theta_{-}}\Psi_{+;{\mathbf{k}},L}\Psi_{-;-{\mathbf{k}},L}+2\Psi^{{\dagger}}_{+;{\mathbf{k}},R}\Psi_{-;{\mathbf{k}},L}+2\Psi^{{\dagger}}_{-;{\mathbf{k}},R}\Psi_{+;{\mathbf{k}},L}\right).

Here HBGH_{\rm BG} naturally inherits 𝒫​𝒯\mathcal{PT}-symmetry from the full Hamiltonian (2), since we have taken the condensate (14) as 𝒫​𝒯\mathcal{PT}-symmetric. The first line in HBGH_{\rm BG} is reduced from even-parity channels, and the second line from odd-parity ones. Obviously, the effect of odd-parity channels is to couple fluctuations in different branches (βˆ’β£β†”β£+-\leftrightarrow+), and the coupling constant uβ€²β€²u^{\prime\prime} is purely imaginary in the presence of both non-Hermiticity and interaction anisotropy.

To facilitate the diagonalization of the bilinear Hamiltonian (25), we rewrite it as

HBG=βˆ‘π€β€²{F𝐀T​ℳ​(𝐀)​Gπ€βˆ’βˆ‘Ξ½(ϡν;π€βˆ’ΞΌ+g​n​uΞ½)},\displaystyle H_{\rm BG}=\sum^{\prime}_{\mathbf{k}}\left\{F_{\mathbf{k}}^{T}{\cal M}({\mathbf{k}})G_{\mathbf{k}}-\sum_{\nu}(\epsilon_{\nu;{\mathbf{k}}}-\mu+gnu_{\nu})\right\}, (26)

where βˆ‘β€²\sum^{\prime} implies the summation be taken over half of 𝐀{\mathbf{k}}-space to avoid the double counting; the vectors are

F𝐀=(Ξ¨βˆ’;𝐀,Rβ€ Ξ¨βˆ’;βˆ’π€,LΞ¨+;𝐀,R†Ψ+;βˆ’π€,L),G𝐀=(Ξ¨βˆ’;𝐀,LΞ¨βˆ’;βˆ’π€,R†Ψ+;𝐀,LΞ¨+;βˆ’π€,R†);\displaystyle F_{\mathbf{k}}=\left(\begin{array}[]{c}\Psi^{{\dagger}}_{-;{\mathbf{k}},R}\\ \Psi_{-;-{\mathbf{k}},L}\\ \Psi^{{\dagger}}_{+;{\mathbf{k}},R}\\ \Psi_{+;-{\mathbf{k}},L}\end{array}\right),\ \ \ \ G_{\mathbf{k}}=\left(\begin{array}[]{c}\Psi_{-;{\mathbf{k}},L}\\ \Psi^{{\dagger}}_{-;-{\mathbf{k}},R}\\ \Psi_{+;{\mathbf{k}},L}\\ \Psi^{{\dagger}}_{+;-{\mathbf{k}},R}\end{array}\right); (35)

and the matrix β„³{\cal M} is

ℳ​(𝐀)=(Ο΅βˆ’;π€βˆ’ΞΌ+g​n​uβˆ’2​g​n​uβˆ’β€²β€‹e2​iβ€‹ΞΈβˆ’2​g​n​uβ€²β€²g​n​u′′​e2​iβ€‹ΞΈβˆ’2​g​n​uβˆ’β€²β€‹eβˆ’2​iβ€‹ΞΈβˆ’Ο΅βˆ’;π€βˆ’ΞΌ+g​n​uβˆ’g​n​u′′​eβˆ’2​iβ€‹ΞΈβˆ’2​g​n​uβ€²β€²2​g​n​uβ€²β€²g​n​u′′​e2​iβ€‹ΞΈβˆ’Ο΅+;π€βˆ’ΞΌ+g​n​u+2​g​n​u+′​e2​iβ€‹ΞΈβˆ’g​n​u′′​eβˆ’2​iβ€‹ΞΈβˆ’2​g​n​uβ€²β€²2​g​n​u+′​eβˆ’2​iβ€‹ΞΈβˆ’Ο΅+;π€βˆ’ΞΌ+g​n​u+).\displaystyle{\cal M}({\mathbf{k}})=\left(\begin{array}[]{cccc}\epsilon_{-;{\mathbf{k}}}-\mu+gnu_{-}&2gnu^{\prime}_{-}e^{2i\theta_{-}}&2gnu^{\prime\prime}&gnu^{\prime\prime}e^{2i\theta_{-}}\\ 2gnu^{\prime}_{-}e^{-2i\theta_{-}}&\epsilon_{-;{\mathbf{k}}}-\mu+gnu_{-}&gnu^{\prime\prime}e^{-2i\theta_{-}}&2gnu^{\prime\prime}\\ 2gnu^{\prime\prime}&gnu^{\prime\prime}e^{2i\theta_{-}}&\epsilon_{+;{\mathbf{k}}}-\mu+gnu_{+}&2gnu^{\prime}_{+}e^{2i\theta_{-}}\\ gnu^{\prime\prime}e^{-2i\theta_{-}}&2gnu^{\prime\prime}&2gnu^{\prime}_{+}e^{-2i\theta_{-}}&\epsilon_{+;{\mathbf{k}}}-\mu+gnu_{+}\end{array}\right). (40)

We aim to diagonalize HBGH_{\rm BG} as the following form:

HBG=βˆ‘π€β€²F~𝐀T​(E1​𝐀E2​𝐀E3​𝐀E4​𝐀)​G~𝐀+const,\displaystyle H_{\rm BG}=\sum^{\prime}_{\mathbf{k}}\tilde{F}_{\mathbf{k}}^{T}\left(\begin{array}[]{cccc}E_{1{\mathbf{k}}}&&&\\ &E_{2{\mathbf{k}}}&&\\ &&E_{3{\mathbf{k}}}&\\ &&&E_{4{\mathbf{k}}}\end{array}\right)\tilde{G}_{\mathbf{k}}+{\rm const}, (45)

where Ei​𝐀E_{i{\mathbf{k}}} are the four eigen-modes for Bogoliubov quasi-particles, and the two eigen-vectors are

F~𝐀=(Ξ±1,𝐀,R†α2,𝐀,LΞ±3,𝐀,R†α4,𝐀,L),G~𝐀=(Ξ±1,𝐀,LΞ±2,𝐀,R†α3,𝐀,LΞ±4,𝐀,R†).\displaystyle\tilde{F}_{\mathbf{k}}=\left(\begin{array}[]{c}\alpha^{{\dagger}}_{1,{\mathbf{k}},R}\\ \alpha_{2,{\mathbf{k}},L}\\ \alpha^{{\dagger}}_{3,{\mathbf{k}},R}\\ \alpha_{4,{\mathbf{k}},L}\end{array}\right),\ \ \ \ \tilde{G}_{\mathbf{k}}=\left(\begin{array}[]{c}\alpha_{1,{\mathbf{k}},L}\\ \alpha^{{\dagger}}_{2,{\mathbf{k}},R}\\ \alpha_{3,{\mathbf{k}},L}\\ \alpha^{{\dagger}}_{4,{\mathbf{k}},R}\end{array}\right). (54)

The eigen-operators are required to satisfy the commutation relation

[Ξ±i,𝐀,L,Ξ±j,𝐀′,R†]=Ξ΄i​j​δ𝐀𝐀′,i,j=1,2,3,4.[\alpha_{i,{\mathbf{k}},L},\alpha^{{\dagger}}_{j,{\mathbf{k}}^{\prime},R}]=\delta_{ij}\delta_{{\mathbf{k}}{\mathbf{k}}^{\prime}},\ \ \ \ \ i,j=1,2,3,4. (55)

To find out eigen-spectra Ei​𝐀E_{i{\mathbf{k}}} as well as the relation between F~𝐀,G~𝐀\tilde{F}_{\mathbf{k}},\tilde{G}_{\mathbf{k}} and F𝐀,G𝐀F_{\mathbf{k}},G_{\mathbf{k}}, we start from the equation of motions(EoM) of these vectors. Based on the Heisenberg equation for non-Hermitian system (see derivation in Appendix A), we can write down the EoM of G𝐀G_{\mathbf{k}} and G~𝐀\tilde{G}_{\mathbf{k}}:

iβ€‹βˆ‚βˆ‚t​G𝐀=(1βˆ’11βˆ’1)​ℳ​(𝐀)​G𝐀;\displaystyle i\frac{\partial}{\partial t}G_{\mathbf{k}}=\left(\begin{array}[]{cccc}1&&&\\ &-1&&\\ &&1&\\ &&&-1\end{array}\right){\cal M}({\mathbf{k}})G_{\mathbf{k}}; (60)
iβ€‹βˆ‚βˆ‚t​G~𝐀=(E1β€‹π€βˆ’E2​𝐀E3β€‹π€βˆ’E4​𝐀)​G~𝐀.\displaystyle i\frac{\partial}{\partial t}\tilde{G}_{\mathbf{k}}=\left(\begin{array}[]{cccc}E_{1{\mathbf{k}}}&&&\\ &-E_{2{\mathbf{k}}}&&\\ &&E_{3{\mathbf{k}}}&\\ &&&-E_{4{\mathbf{k}}}\end{array}\right)\tilde{G}_{\mathbf{k}}. (65)

This implies that by diagonalizing the matrix Diag​(1,βˆ’1,1,βˆ’1)​ℳ​(𝐀){\rm Diag}(1,-1,1,-1){\cal M}({\mathbf{k}}), we can obtain the four Bogoliubov modes from its eigen-energies. Explicitly, by introducing a transformation matrix π’œ{\cal A} in G𝐀=π’œβ€‹G~𝐀G_{\mathbf{k}}={\cal A}\tilde{G}_{\mathbf{k}}, we have

π’œβˆ’1​[(1βˆ’11βˆ’1)​ℳ​(𝐀)]β€‹π’œ\displaystyle\ \ \ \ \ {\cal A}^{-1}\left[\left(\begin{array}[]{cccc}1&&&\\ &-1&&\\ &&1&\\ &&&-1\end{array}\right){\cal M}({\mathbf{k}})\right]{\cal A} (70)
=(E1β€‹π€βˆ’E2​𝐀E3β€‹π€βˆ’E4​𝐀).\displaystyle=\left(\begin{array}[]{cccc}E_{1{\mathbf{k}}}&&&\\ &-E_{2{\mathbf{k}}}&&\\ &&E_{3{\mathbf{k}}}&\\ &&&-E_{4{\mathbf{k}}}\end{array}\right). (75)

Similarly, we can write down the EoM for F𝐀F_{\mathbf{k}} and F~𝐀\tilde{F}_{\mathbf{k}}, and by introducing a transformation matrix ℬ{\cal B} in F𝐀T=F~𝐀T​ℬF^{T}_{\mathbf{k}}=\tilde{F}^{T}_{\mathbf{k}}{\cal B}, we have

ℬ​[ℳ​(𝐀)​(βˆ’11βˆ’11)]β€‹β„¬βˆ’1\displaystyle\ \ \ \ \ {\cal B}\left[{\cal M}({\mathbf{k}})\left(\begin{array}[]{cccc}-1&&&\\ &1&&\\ &&-1&\\ &&&1\end{array}\right)\right]{\cal B}^{-1} (80)
=(βˆ’E1​𝐀E2β€‹π€βˆ’E3​𝐀E4​𝐀)\displaystyle=\left(\begin{array}[]{cccc}-E_{1{\mathbf{k}}}&&&\\ &E_{2{\mathbf{k}}}&&\\ &&-E_{3{\mathbf{k}}}&\\ &&&E_{4{\mathbf{k}}}\end{array}\right) (85)

Therefore, the Bogoliubov modes can also be obtained by diagonalizing the matrix ℳ​(𝐀)​Diag​(βˆ’1,1,βˆ’1,1){\cal M}({\mathbf{k}}){\rm Diag}(-1,1,-1,1).

The two diagonalization schemes, i.e., one is based on (75) and the other is based on (85), produce the same solution of Ei​𝐀E_{i{\mathbf{k}}}, which satisfy

E𝐀=βˆ’b𝐀±b𝐀2βˆ’4​c𝐀2,E_{\mathbf{k}}=\sqrt{\frac{-b_{\mathbf{k}}\pm\sqrt{b_{\mathbf{k}}^{2}-4c_{\mathbf{k}}}}{2}}, (86)

with

b𝐀=βˆ’(Ο΅βˆ’;π€βˆ’ΞΌ+g​n​uβˆ’)2βˆ’(Ο΅+;π€βˆ’ΞΌ+g​n​u+)2βˆ’(g​n)2​(6​u′′⁣2βˆ’4​u+′⁣2βˆ’4​uβˆ’β€²β£2);\displaystyle b_{\mathbf{k}}=-(\epsilon_{-;{\mathbf{k}}}-\mu+gnu_{-})^{2}-(\epsilon_{+;{\mathbf{k}}}-\mu+gnu_{+})^{2}-(gn)^{2}\left(6u^{\prime\prime 2}-4u^{\prime 2}_{+}-4u^{\prime 2}_{-}\right);
c𝐀=[(Ο΅βˆ’;π€βˆ’ΞΌ+gnuβˆ’)2βˆ’(2gnuβˆ’β€²)2][(Ο΅+;π€βˆ’ΞΌ+gnu+)2βˆ’(2gnu+β€²)2]+(gnuβ€²β€²)2[9(gnuβ€²β€²)2βˆ’40(gn)2uβˆ’β€²u+β€²\displaystyle c_{\mathbf{k}}=\left[(\epsilon_{-;{\mathbf{k}}}-\mu+gnu_{-})^{2}-(2gnu^{\prime}_{-})^{2}\right]\left[(\epsilon_{+;{\mathbf{k}}}-\mu+gnu_{+})^{2}-(2gnu^{\prime}_{+})^{2}\right]+(gnu^{\prime\prime})^{2}\left[9(gnu^{\prime\prime})^{2}-40(gn)^{2}u^{\prime}_{-}u^{\prime}_{+}\right.
βˆ’10(Ο΅βˆ’;π€βˆ’ΞΌ+gnuβˆ’)(Ο΅+;π€βˆ’ΞΌ+gnu+)+16gnu+β€²(Ο΅βˆ’;π€βˆ’ΞΌ+gnuβˆ’)+16gnuβˆ’β€²(Ο΅+;π€βˆ’ΞΌ+gnu+)].\displaystyle\ \ \ \ \ \ \left.-10(\epsilon_{-;{\mathbf{k}}}-\mu+gnu_{-})(\epsilon_{+;{\mathbf{k}}}-\mu+gnu_{+})+16gnu^{\prime}_{+}(\epsilon_{-;{\mathbf{k}}}-\mu+gnu_{-})+16gnu^{\prime}_{-}(\epsilon_{+;{\mathbf{k}}}-\mu+gnu_{+})\right]. (87)

The four eigen-modes in (86) fall into two identical pairs, and we choose E1​𝐀=E2​𝐀E_{1{\mathbf{k}}}=E_{2{\mathbf{k}}} and E3​𝐀=E4​𝐀E_{3{\mathbf{k}}}=E_{4{\mathbf{k}}}. This is also a natural choice since in non-interacting limit, ℳ​(𝐀){\cal M}({\mathbf{k}}) can exactly reduce to the diagonal matrix Diag​(E1​𝐀,E2​𝐀,E3​𝐀,E4​𝐀){\rm Diag}(E_{1{\mathbf{k}}},E_{2{\mathbf{k}}},E_{3{\mathbf{k}}},E_{4{\mathbf{k}}}) with E1​𝐀=E2​𝐀E_{1{\mathbf{k}}}=E_{2{\mathbf{k}}} and E3​𝐀=E4​𝐀E_{3{\mathbf{k}}}=E_{4{\mathbf{k}}}.

In fact, based on the commutation relations (4) and (55), we can find out the relation between the two transformation matrixes:

π’œβ€‹(1βˆ’11βˆ’1)​ℬ=(1βˆ’11βˆ’1),\displaystyle{\cal A}\left(\begin{array}[]{cccc}1&&&\\ &-1&&\\ &&1&\\ &&&-1\end{array}\right){\cal B}=\left(\begin{array}[]{cccc}1&&&\\ &-1&&\\ &&1&\\ &&&-1\end{array}\right), (96)

and then one can prove straightforwardly that ℬ​ℳ​(𝐀)β€‹π’œ=Diag​(E1​𝐀,E2​𝐀,E3​𝐀,E4​𝐀){\cal B}{\cal M}({\mathbf{k}}){\cal A}={\rm Diag}(E_{1{\mathbf{k}}},E_{2{\mathbf{k}}},E_{3{\mathbf{k}}},E_{4{\mathbf{k}}}). It follows that the first term in Eq.(26) is equal to the first term in Eq.(45). Therefore the constant terms in (26) and (45) are also identical. Now we can rewrite Eq.(45) as

HBG\displaystyle H_{\rm BG} =\displaystyle= βˆ‘π€β€²βˆ‘i=14Ei​𝐀​αi,𝐀,R†​αi,𝐀,L+\displaystyle\sum^{\prime}_{{\mathbf{k}}}\sum_{i=1}^{4}E_{i{\mathbf{k}}}\alpha^{{\dagger}}_{i,{\mathbf{k}},R}\alpha_{i,{\mathbf{k}},L}+ (97)
12β€‹βˆ‘π€{E1​𝐀+E3β€‹π€βˆ’βˆ‘Ξ½(ϡν;π€βˆ’ΞΌ+g​n​uΞ½)},\displaystyle\frac{1}{2}\sum_{\mathbf{k}}\Big{\{}E_{1{\mathbf{k}}}+E_{3{\mathbf{k}}}-\sum_{\nu}(\epsilon_{\nu;{\mathbf{k}}}-\mu+gnu_{\nu})\Big{\}},

Further incorporating the regularization of bare couplings gg and g12g_{12} from the mean-field interaction energy (22), we can obtain the Lee-Huang-Yang(LHY) energy as:

ELHY\displaystyle E_{\rm LHY} =\displaystyle= 12βˆ‘π€{E1​𝐀+E3β€‹π€βˆ’βˆ‘Ξ½(ϡν;π€βˆ’ΞΌ+gnuΞ½)\displaystyle\frac{1}{2}\sum_{\mathbf{k}}\Big{\{}E_{1{\mathbf{k}}}+E_{3{\mathbf{k}}}-\sum_{\nu}(\epsilon_{\nu;{\mathbf{k}}}-\mu+gnu_{\nu}) (98)
+1βˆ’2​γ2+Ξ·22​(1βˆ’Ξ³2)m​(g​n)2𝐀2}.\displaystyle\ \ \ \ +\frac{1-2\gamma^{2}+\eta^{2}}{2(1-\gamma^{2})}\frac{m(gn)^{2}}{{\mathbf{k}}^{2}}\Big{\}}.

We have checked that the summation in above equation converges at large 𝐀{\mathbf{k}} and the ultraviolet divergence can be avoided.

V Excitation spectrum

In this section, we present the result of Bogoliubov excitation spectrum for the 𝒫​𝒯\mathcal{PT}-symmetric BEC. Since E1​𝐀=E2​𝐀E_{1{\mathbf{k}}}=E_{2{\mathbf{k}}} and E3​𝐀=E4​𝐀E_{3{\mathbf{k}}}=E_{4{\mathbf{k}}}, we will only show the results of E1​𝐀E_{1{\mathbf{k}}} and E3​𝐀E_{3{\mathbf{k}}}.

To highlight the effect of non-Hermiticity to Bogoliubov excitations, we first go through the Hermitian case (Ξ³=0\gamma=0). In this case, all odd-parity terms in (25) are absent (uβ€²β€²=0u^{\prime\prime}=0) and the fluctuations in ++ and βˆ’- branches are well decoupled. This leads to a gapless spectrum E1​𝐀=(𝐀2/2​m)2+2β€‹ΞΌβˆ’β€‹π€2/(2​m)E_{1{\mathbf{k}}}=\sqrt{({\mathbf{k}}^{2}/2m)^{2}+2\mu_{-}{\mathbf{k}}^{2}/(2m)} and a gapped one E3​𝐀=(𝐀2/2​m+2​Ω)2+2​μ+​(𝐀2/2​m+2​Ω)E_{3{\mathbf{k}}}=\sqrt{({\mathbf{k}}^{2}/2m+2\Omega)^{2}+2\mu_{+}({\mathbf{k}}^{2}/2m+2\Omega)}, with ΞΌΒ±=g​n​(1βˆ“Ξ·)/2\mu_{\pm}=gn(1\mp\eta)/2. Clearly, in the mean-field collapse regime with Ξ·<βˆ’1\eta<-1, the lower spectrum E1​𝐀E_{1{\mathbf{k}}} becomes purely imaginary near 𝐀∼0{\mathbf{k}}\sim 0, signifying the dynamical instability. In addition, we note that under certain condition the two spectra become degenerate, i.e., E1​𝐀0=E3​𝐀0E_{1{\mathbf{k}}_{0}}=E_{3{\mathbf{k}}_{0}} at:

|𝐀0|=2​m​Ω​((Ξ·βˆ’2​Ω~)βˆ’1βˆ’1),if​ 0<Ξ·βˆ’2​Ω~<1.|{\mathbf{k}}_{0}|=\sqrt{2m\Omega((\eta-2\tilde{\Omega})^{-1}-1)},\ \ \ {\rm if}\ \ \ 0<\eta-2\tilde{\Omega}<1. (99)

The according plot is given in Fig.2 (a). This feature will lead to interesting excitation property when turn on Ξ³\gamma.

Refer to caption
Figure 1: (Color online). Diagrams in (Ξ³,Ξ·)(\gamma,\ \eta) plane that exhibit different excitation properties. Here Ξ©~=0.2\tilde{\Omega}=0.2. ’I’ marks the region where the excitation spectrum at low-𝐀{\mathbf{k}} is purely imaginary. ’II’ is the region where all spectra are real and gapped. The gray dashed line sets the mean-field collapse boundary, which further divides II into II(a) (Ο‡<0\chi<0) and II(b) (Ο‡>0\chi>0). 𝒫​𝒯\mathcal{PT}-breaking transition of Bogoliubov modes occurs in regions III, IV and V, where the spectra become complex either within intermediate |𝐀|≑k|{\mathbf{k}}|\equiv k(III), or at large kk(IV), or low kk(V). In VI, the complex spectra occur for all 𝐀{\mathbf{k}}. These regions are separated by the curves of Ξ³0\gamma_{0} and γ∞\gamma_{\infty}, which, respectively, are the values of Ξ³\gamma when the spectra becomes complex at k=0k=0 and kβ†’βˆžk\rightarrow\infty.

In the presence of non-Hermiticity(Ξ³β‰ 0\gamma\neq 0), the inter-branch fluctuations give two important impacts on the Bogoliubov modes, namely, the spontaneous 𝒫​𝒯\mathcal{PT}-symmetry breaking and the gapped excitation, as detailed below.

V.1 Spontaneous 𝒫​𝒯\mathcal{PT}-symmetry breaking

Although 𝒫​𝒯\mathcal{PT}-symmetry is preserved by H,HBGH,\ H_{\rm BG} and the condensate |Ξ¨0⟩R,L|\Psi_{0}\rangle_{R,L}, it can be spontaneously broken by the Bogoliubov quasi-particles, as manifested by the appearance of complex Ei​𝐀E_{i{\mathbf{k}}}. The 𝒫​𝒯\mathcal{PT}-broken region in 𝐀{\mathbf{k}}-space sensitively depends on parameters Ξ©~,Ξ·\tilde{\Omega},\ \eta and Ξ³\gamma. In Fig.1, we have divided (Ξ³,Ξ·)(\gamma,\ \eta) plane into different regions (I-VI) according to different 𝒫​𝒯\mathcal{PT}-breaking properties in the Bogoliubov spectra for a fixed Ξ©~=0.2\tilde{\Omega}=0.2. The complex spectra occur in regions III-VI.

Refer to caption
Figure 2: (Color online). Spontaneous 𝒫​𝒯\mathcal{PT}-symmetry breaking in the Bogoliubov spectra. Here Ξ©~=0.2\tilde{\Omega}=0.2, and Ξ·=0.6\eta=0.6 for (a-c). (a) Two real spectra for Hermitian case (Ξ³=0\gamma=0), which merge at k≑|𝐀|=k0k\equiv|{\mathbf{k}}|=k_{0}(see Eq.99). (b1,b2) Real and imaginary parts of the spectra at Ξ³=0.15\gamma=0.15 (staying in region III), which shows 𝒫​𝒯\mathcal{PT}-symmetry breaking for k∈(k1,k2)k\in(k_{1},k_{2}). (c) 𝒫​𝒯\mathcal{PT}-breaking boundaries k1k_{1} and k2k_{2} as functions of Ξ³\gamma. Dashed lines show linear fits for small Ξ³\gamma (see Eq.100). k1k_{1} touches zero at Ξ³0\gamma_{0} and k2k_{2} goes to ∞\infty at γ∞\gamma_{\infty}. (d) and (e): Excitation spectra for Ξ·=0.4,Ξ³=0.3\eta=0.4,\gamma=0.3 (region IV) and for Ξ·=βˆ’0.8,Ξ³=0.45\eta=-0.8,\gamma=0.45 (region V), where the 𝒫​𝒯\mathcal{PT}-breaking occurs, respectively, at high kk and low kk. Here the momentum and energy units are, repectively, 2​m​g​n\sqrt{2mgn} and g​ngn.

Let us start from region III with a small Ξ³\gamma and 2​Ω~<Ξ·<12\tilde{\Omega}<\eta<1 (satisfying the condition in (99)). In this case, a finite Ξ³\gamma will lead to the 𝒫​𝒯\mathcal{PT}-breaking of excitation spectra near 𝐀0{\mathbf{k}}_{0}. As shown in Fig.2(b1,b2), for Ξ³=0.15\gamma=0.15, E1​𝐀E_{1{\mathbf{k}}} and E3​𝐀E_{3{\mathbf{k}}} are complex and conjugate to each other within a finite window |𝐀|≑k∈(k1,k2)|{\mathbf{k}}|\equiv k\in(k_{1},k_{2}). Thus, as increasing kk from zero, the 𝒫​𝒯\mathcal{PT}-symmetry breaks at k1k_{1} and then revives at k2k_{2}. The critical boundaries k1,k2k_{1},\ k_{2}, which are determined by the solutions to b𝐀2βˆ’4​c𝐀=0b_{\mathbf{k}}^{2}-4c_{\mathbf{k}}=0, sensitively depend on Ξ³\gamma, see Fig.2(c). At small Ξ³\gamma, we find that k1,2k_{1,2} deviate from k0k_{0} by a small shift δ≑|kβˆ’k0|\delta\equiv|k-k_{0}|, with

Ξ΄k0=γ​(1βˆ’Ξ·)​16​k~04+2​k~02​(4+3​η+10​Ω~)+(1+Ξ·)​(2​Ω~βˆ’Ξ·+1)4​k~02​(Ξ·βˆ’2​Ω~)\displaystyle\frac{\delta}{k_{0}}=\gamma\frac{(1-\eta)\sqrt{16\tilde{k}_{0}^{4}+2\tilde{k}_{0}^{2}(4+3\eta+10\tilde{\Omega})+(1+\eta)(2\tilde{\Omega}-\eta+1)}}{4\tilde{k}_{0}^{2}(\eta-2\tilde{\Omega})}
+o​(Ξ³2).\displaystyle\ \ \ \ \ \ \ \ \ +o(\gamma^{2}). (100)

Here k~0=k0/2​m​g​n\tilde{k}_{0}=k_{0}/\sqrt{2mgn}. As shown by the dashed lines in Fig.2(c), the dominant linear shifts based on above equation fit well to k1,2k_{1,2} in small Ξ³\gamma limit.

Continuously increasing Ξ³\gamma, k2k_{2} and k1k_{1} respectively flow to ∞\infty and 0 at γ∞\gamma_{\infty} and Ξ³0\gamma_{0}. This tells that the spectra at large kk become complex if Ξ³>γ∞\gamma>\gamma_{\infty}, and the complex spectra extend to k=0k=0 if Ξ³>Ξ³0\gamma>\gamma_{0}. Numerically, Ξ³0\gamma_{0} is determined by satisfying bk=02=4​ck=0b_{k=0}^{2}=4c_{k=0}. To find out γ∞\gamma_{\infty} accurately, we expand the function F𝐀≑b𝐀2βˆ’4​c𝐀F_{\mathbf{k}}\equiv b_{\mathbf{k}}^{2}-4c_{\mathbf{k}} at large kβ†’βˆžk\rightarrow\infty and only keep its leading order ∼k4\sim k^{4}. Then γ∞\gamma_{\infty} is determined by the coefficient of this leading term crossing zero, which gives the equation:

Ξ·2+4β€‹Ξ³βˆž2​(Ξ·βˆ’1)1βˆ’Ξ³βˆž2+4​Ω~2​(1βˆ’Ξ³βˆž2)=4​Ω~​(Ξ·+γ∞2​(Ξ·βˆ’2))1βˆ’Ξ³βˆž2.\eta^{2}+\frac{4\gamma_{\infty}^{2}(\eta-1)}{1-\gamma_{\infty}^{2}}+4\tilde{\Omega}^{2}(1-\gamma_{\infty}^{2})=\frac{4\tilde{\Omega}(\eta+\gamma_{\infty}^{2}(\eta-2))}{\sqrt{1-\gamma_{\infty}^{2}}}. (101)

We can see that the above equation support a solution γ∞=0\gamma_{\infty}=0 at Ξ·=2​Ω~\eta=2\tilde{\Omega}. This is also consistent with Eq.(99), which tells that the degenerate point k0k_{0} goes to ∞\infty in the Hermitian case if Ξ·=2​Ω~\eta=2\tilde{\Omega}.

In Fig.1, Ξ³0\gamma_{0} and γ∞\gamma_{\infty} are plotted as functions of Ξ·\eta, and accordingly regions III-IV are separated. Specifically, the 𝒫​𝒯\mathcal{PT}-breaking of Bogoliubov modes occur within a finite kk-window in III (with Ξ³<Ξ³0,γ∞\gamma<\gamma_{0},\gamma_{\infty}), at large kk in IV (γ∞<Ξ³<Ξ³0\gamma_{\infty}<\gamma<\gamma_{0}), at small kk in V (Ξ³0<Ξ³<γ∞\gamma_{0}<\gamma<\gamma_{\infty}), and extend the whole kk-space in VI(Ξ³>Ξ³0,γ∞\gamma>\gamma_{0},\gamma_{\infty}). The typical spectra in regions IV and V are given in Fig.2(d,e). Therefore, the 𝒫​𝒯\mathcal{PT}-breaking transition takes place twice in III, once in IV and V, and no transition in VI. This shows that the 𝒫​𝒯\mathcal{PT}-symmetry of Bogoliubov modes can be conveniently tuned by Ξ³\gamma and Ξ·\eta.

V.2 Gapped excitation

In the 𝒫​𝒯\mathcal{PT}-unbroken region, such as II in Fig.1, the real Bogoliubov modes are gapped, instead of gapless as in Hermitian case. For Ξ³β‰ͺ1\gamma\ll 1, we find that the excitation gap scales linearly with Ξ³\gamma:

E1​𝐀=0g​n=γ​1βˆ’Ξ·2​1+Ξ·2​Ω~.\frac{E_{1{\mathbf{k}}=0}}{gn}=\gamma\frac{1-\eta}{2}\sqrt{\frac{1+\eta}{2\tilde{\Omega}}}. (102)

Such a gapped spectrum is in distinct contrast to the gapless mode in the Hermition BEC. It is closely related to the presence of imaginary odd-parity terms in (25), such as Ξ¨+;𝐀,Rβ€ β€‹Ξ¨βˆ’;𝐀,L\Psi^{{\dagger}}_{+;{\mathbf{k}},R}\Psi_{-;{\mathbf{k}},L} which directly couple the condensed atoms at βˆ’β€²β€²{}^{\prime}-^{\prime}-branch with higher +β€²β€²{}^{\prime}+^{\prime}-branch crossing a finite energy gap. Such coupling takes no effect for a 𝒫​𝒯\mathcal{PT}-symmetric BEC in the mean-field level but plays an important role in its quantum fluctuations. Because such imaginary coupling only exists for Ξ³β‰ 0\gamma\neq 0 and Ξ·β‰ 1\eta\neq 1, the quasi-particle is gapped in the same regime (see (102)). In Fig.3, we extract the energy gap as a function of Ξ³\gamma for two typical Ξ·\eta, which fit well to (102) in small Ξ³\gamma regime.

Refer to caption
Figure 3: (Color online). Excitation gap as a function of Ξ³\gamma for Ξ·=βˆ’0.6\eta=-0.6 and 0.60.6. Dashed lines show the respective function fit according to Eq.102. Here Ξ©~=0.2\tilde{\Omega}=0.2. The energy unit is g​ngn.

Interestingly, the gapped excitation appears not only in the mean-field stable regime (region II(b)), but can also extend to the collapse regime (II(a)). This is in distinct contrast to the Hermitian case where the low-kk spectrum is purely imaginary in the mean-field collapse side. It is to say, the mean-field instability in non-Hermitian system does not necessarily lead to imaginary excitations. In fact, for a given Ξ·<βˆ’1\eta<-1, the excitation spectra can turn from purely imaginary to purely real as increasing Ξ³\gamma across a critical Ξ³c\gamma_{c}, at which point the spectrum is gapless E1,𝐀=0=0E_{1,{\mathbf{k}}=0}=0. In Fig.1, we mark the Ξ³<Ξ³c\gamma<\gamma_{c} region (’I’) as shaded area, where the low-energy excitation spectra are purely imaginary.

Numerically, γc\gamma_{c} is determined by c𝐀=0=0c_{{\bf k}=0}=0, and thus

9​γc2​(1βˆ’Ξ·)24=βˆ’(1+Ξ·βˆ’2​γc2)​[2​Ω~​(1βˆ’Ξ³c2)3/2+(1βˆ’Ξ·)​(1+Ξ³c2)].\frac{9\gamma_{c}^{2}(1-\eta)^{2}}{4}=-(1+\eta-2\gamma_{c}^{2})\left[2\tilde{\Omega}(1-\gamma_{c}^{2})^{3/2}+(1-\eta)(1+\gamma_{c}^{2})\right]. (103)

We can see that Ξ³c=0\gamma_{c}=0 when Ξ·=βˆ’1\eta=-1, reproducing the mean-field collapse point for the Hermitian case. When Ξ·\eta slightly deviates from βˆ’1-1, we have

Ξ³c=βˆ’(1+Ξ·)​2​Ω~+25βˆ’4​Ω~,\gamma_{c}=\sqrt{-(1+\eta)\frac{2\tilde{\Omega}+2}{5-4\tilde{\Omega}}}, (104)

which shows that Ξ³c\gamma_{c} scales as the square root of the deviation, as displayed by the orange dash-dot line in Fig.1.

VI Ξ³\gamma-induced droplet

The fact that the non-Hermiticity Ξ³\gamma enhances the mean-field collapse (as inferred by Eq.(24)) renders the formation of a self-bound droplet after incorporating the LHY correction from quantum fluctuations. In general, Eq.(98) gives β„°LHY≑ELHY/V{\cal E}_{\rm LHY}\equiv E_{\rm LHY}/V as:

β„°LHY=(2​m)3/2​(g​n)5/2​f​(Ξ³,Ξ·,Ξ©~){\cal E}_{\rm LHY}=(2m)^{3/2}(gn)^{5/2}f(\gamma,\eta,\tilde{\Omega}) (105)

where ff is a dimensionless functional. In Fig.4, we show the contour plot of ff in (Ξ³,Ξ·)(\gamma,\eta) plane given a fixed Ξ©~=0.2\tilde{\Omega}=0.2. We can see that ff, or equivalently β„°LHY{\cal E}_{\rm LHY}, decreases continuously as Ξ³\gamma increases and can even turn negative. Fortunately, in region II(a), which is the mean-field collapse regime with real and gapped spectra, the LHY force is always repulsive. A self-bound droplet state can then be supported in this region with zero pressure, i.e., βˆ‚(E/N)/βˆ‚n=0\partial(E/N)/\partial n=0, with E=Emf+ELHYE=E_{\rm mf}+E_{\rm LHY}. This gives the equilibrium density of the droplet as

neq=(1βˆ’2​γ2+Ξ·1βˆ’Ξ³2)2​136​(2​m​g)3​f2​(Ξ³,Ξ·,Ξ©~).n_{\rm eq}=\left(\frac{1-2\gamma^{2}+\eta}{1-\gamma^{2}}\right)^{2}\frac{1}{36(2mg)^{3}f^{2}(\gamma,\eta,\tilde{\Omega})}. (106)
Refer to caption
Figure 4: (Color online). Contour plot of ff-function (see Eq.105) in the (Ξ³,Ξ·)(\gamma,\eta) plane with Ξ©~=0.2\tilde{\Omega}=0.2.

At small particle number NN, the quantum pressure becomes important and drives the droplet to gas transition. To estimate the critical number NcN_{c} at the transition, we take the similar strategy as in Ref.Petrov and write down the extended Gross-Pitaevskii(GP) equation as

iβ€‹βˆ‚tΨ​(𝐫)=(βˆ’12​mβ€‹βˆ‡π«2+1βˆ’2​γ2+Ξ·2​(1βˆ’Ξ³2)​g​|Ξ¨|2+βˆ‚β„°LHYβˆ‚n)​Ψ​(𝐫),i\partial_{t}\Psi({\bf r})=\left(-\frac{1}{2m}\nabla_{\bf r}^{2}+\frac{1-2\gamma^{2}+\eta}{2(1-\gamma^{2})}g|\Psi|^{2}+\frac{\partial{\cal E}_{\rm LHY}}{\partial n}\right)\Psi({\bf r}), (107)

where Ψ​(𝐫)\Psi({\bf r}) is the wave function of the BEC and the particle number is determined by N=∫d3​𝐫​|Ψ​(𝐫)|2N=\int d^{3}{\bf r}|\Psi({\bf r})|^{2}. By rescaling 𝐫,Ξ¨,t{\bf r},\ \Psi,\ t through

𝐫=𝐫~​ξ,Ξ¨=Ξ¨~​neq,t=t~​m​ξ2,{\bf r}=\tilde{\bf r}\xi,\ \ \ \ \Psi=\tilde{\Psi}\sqrt{n_{\rm eq}},\ \ \ \ \ t=\tilde{t}m\xi^{2}, (108)

with

ΞΎ=6​(1βˆ’Ξ³2)m​g​neq​|1βˆ’2​γ2+Ξ·|,\xi=\sqrt{\frac{6(1-\gamma^{2})}{mgn_{\rm eq}|1-2\gamma^{2}+\eta|}}, (109)

we can reduce the GP equation to

iβ€‹βˆ‚t~Ξ¨~​(𝐫~)=(βˆ’12β€‹βˆ‡π«~2βˆ’3​|Ξ¨~|2+52​|Ξ¨~|3)​Ψ~​(𝐫~).i\partial_{\tilde{t}}\tilde{\Psi}(\tilde{\bf r})=\left(-\frac{1}{2}\nabla_{\tilde{{\bf r}}}^{2}-3|\tilde{\Psi}|^{2}+\frac{5}{2}|\tilde{\Psi}|^{3}\right)\tilde{\Psi}(\tilde{\bf r}). (110)

It is found that Eq.110 shares the same structure as the reduced GP equation in Hermitian casePetrov , which leads to the rescaled critical number N~cβ‰‘βˆ«d3​𝐫~​|Ξ¨~|2=18.65\tilde{N}_{c}\equiv\int d^{3}\tilde{\bf r}|\tilde{\Psi}|^{2}=18.65 at the vanishing of droplet solution (droplet-gas transition). Given the scaling relation in (108), we can obtain the critical Nc=neq​ξ3​N~cN_{c}=n_{\rm eq}\xi^{3}\tilde{N}_{c} in our system as

Nc=2​2​f​N~c​(6​(1βˆ’Ξ³2)|1βˆ’2​γ2+Ξ·|)5/2.N_{c}=2\sqrt{2}f\tilde{N}_{c}\left(\frac{6(1-\gamma^{2})}{|1-2\gamma^{2}+\eta|}\right)^{5/2}. (111)

We can see that both neqn_{\rm eq} and NcN_{c} can be conveniently tuned by Ξ³\gamma and Ξ·\eta.

VII Experimental relevance

A 𝒫​𝒯\mathcal{PT}-symmetric two-species BEC can be realized using two hyperfine states of 87Rb bosons, |β†‘βŸ©=|F=1,mF=1⟩|\uparrow\rangle=|F=1,m_{F}=1\rangle and |β†“βŸ©=|F=2,mF=βˆ’1⟩|\downarrow\rangle=|F=2,m_{F}=-1\rangle. The intra-species scattering lengths are a↑↑=95​aB,a↓↓=100​aBa_{\uparrow\uparrow}=95a_{B},\ a_{\downarrow\downarrow}=100a_{B}, which have very small relative asymmetry |aβ†‘β†‘βˆ’a↓↓|/(a↑↑+a↓↓)∼2.5%|a_{\uparrow\uparrow}-a_{\downarrow\downarrow}|/(a_{\uparrow\uparrow}+a_{\downarrow\downarrow})\sim 2.5\%. Such a small asymmety is expected to take little effect as long as it is much smaller than Ξ©~,Ξ³\tilde{\Omega},\ \gamma. The inter-species coupling is highly tunable via Feshbach resonance around B0=9.1B_{0}=9.1GFR_Rb1 ; FR_Rb2 ; FR_Rb3 .

For the 𝒫​𝒯\mathcal{PT}-symmetric potential (1), the Οƒx\sigma_{x} term can be implemented through the two-photon microwave and rf transitionRb_rf , and i​σzi\sigma_{z} can be realized using the laser-induced state-selective dissipation up to a constant loss term i​Ω​γi\Omega\gammaLuo ; Jo ; Gadway . For realistic atomic system with such constant loss, the overall number of the system decays with time. However, the physics governed by the effective non-Hermitian Hamiltonian can still be probed under the post-selection scheme, as have been successfully explored in the non-interacting atomic gasesLuo ; Jo . The validity of the effective non-Hermitian Hamiltonian requires a short-time dynamics within timescale tβ‰ͺ1/(Ω​γ)t\ll 1/(\Omega\gamma), where the impact of quantum jump can be neglected. As here we consider the weak coupling regime with n​a3β‰ͺ1na^{3}\ll 1, which is a natural extension of and can be smoothly connected to the non-interacting regime, we do not expect the validity of the effective non-Hermitian Hamiltonian would alter too much. Moreover, it should be noted that the existing experiments on quantum droplet have exactly made use of the atom loss to observe the droplet-gas transitionTarruell_1 ; Tarruell_2 ; Inguscio ; Modugno_2 ; Wang . We thus expect that the Ξ³\gamma-induced droplet can be directly probed in realistic experiments.

The property of excitation spectrum can be explored by the Bragg spectroscopy as implemented previously in various cold atoms systemsexcitation_expt1 ; excitation_expt2 ; excitation_expt3 ; excitation_expt4 . Since such spectroscopy detects the linear response of the system to external perturbations, we expect it can directly probe the excitation spectrum of non-Hermitian system as predicted in this work. Our results, which are directly relevant to atomic gases confined in a uniform trapbox_trap1 ; box_trap2 ; box_trap3 ; box_trap4 ; box_trap5 , can also be utilized for the trapped system under local density approximation, as successfully implemented in previous experiments excitation_expt1 ; excitation_expt2 ; excitation_expt4 .

VIII Summary and discussion

In summary, we have revealed the ground state and excitation properties of a 𝒫​𝒯\mathcal{PT}-symmetric BEC, including the spontaneous 𝒫​𝒯\mathcal{PT}-breaking and gapped spectrum for Bogoliubov quasi-particles, and the enhanced mean-field collapse and the facilitated droplet formation. These results show that the quantum fluctuations on top of a 𝒫​𝒯\mathcal{PT}-symmetric BEC can lead to important and visible collective phenomena even far from the single-particle EPs, thus demonstrating the significant interplay of interaction and non-Hermiticity in bosonic system.

Finally, we point out that the intriguing excitation properties revealed in this work can be traced back to the fundamental character of non-Hermitian systems, i.e., the non-orthogonality of eigenstates. Such non-orthogonality character covers both the single-particle states and the elementary quasi-particles. This is why the 𝒫​𝒯\mathcal{PT}-symmetry breaking can also occur in the latter. We thus expect the phenomena revealed here are not limited to the specific 𝒫​𝒯\mathcal{PT}-potential considered in this work, but applicable to a broad class of non-Hermitian systems with 𝒫​𝒯\mathcal{PT}-symmetry. Indeed, a recent study has pointed out the spontaneous 𝒫​𝒯\mathcal{PT}-breaking of elementary excitations on top of a fermion superfluidYi . These 𝒫​𝒯\mathcal{PT}-breaking phenomena are generally associated with the collective many-body EP and may lead to giant fluctuation effectLittlewood ; Littlewood2 . In future, it is worth to explore the impact of collective EPs in the quantum and thermal depletions, as well as the property of BEC in other parameter regime (Ξ³,Ξ·,Ξ©~\gamma,\eta,\tilde{\Omega}) beyond the scope of this work.


Acknowledgement. We thank Dajun Wang for helpful discussion on experimental realization of the system. The work is supported by the National Key Research and Development Program of China (2018YFA0307600), the National Natural Science Foundation of China (No.12074419), and the Strategic Priority Research Program of Chinese Academy of Sciences (No. XDB33000000).


Appendix A Heisenberg equation for non-Hermitian system

We first derive the Heisenberg equation for non-Hermitian system under the bi-orthogonal basis. Given the definition of right and left states, at time tt they evolve as

|Ο•R​(t)⟩=eβˆ’i​H​t​|Ο•R​(0)⟩,\displaystyle|\phi_{R}(t)\rangle=e^{-iHt}|\phi_{R}(0)\rangle, (112)
|Ο•L​(t)⟩=eβˆ’i​H†​t​|Ο•L​(0)⟩,\displaystyle|\phi_{L}(t)\rangle=e^{-iH^{\dagger}t}|\phi_{L}(0)\rangle, (113)

here |Ο•R​(0)⟩|\phi_{R}(0)\rangle (|Ο•L​(0)⟩|\phi_{L}(0)\rangle) is the initial right (left) state at t=0t=0. Define the time-dependent expectation value of operator A^\hat{A} as

⟨A^⟩tβ‰‘βŸ¨Ο•L​(t)|A^|Ο•R​(t)⟩,\langle\hat{A}\rangle_{t}\equiv\langle\phi_{L}(t)|\hat{A}|\phi_{R}(t)\rangle, (114)

we then have

⟨A^⟩t=βŸ¨Ο•L​(0)|ei​H​t​A^​eβˆ’i​H​t|Ο•R​(0)⟩,\langle\hat{A}\rangle_{t}=\langle\phi_{L}(0)|e^{iHt}\hat{A}e^{-iHt}|\phi_{R}(0)\rangle, (115)

and thus the Heisenberg equation can be written as

iβ€‹βˆ‚βˆ‚tβ€‹βŸ¨A^⟩t=⟨[A^,H]⟩t.i\frac{\partial}{\partial t}\langle\hat{A}\rangle_{t}=\langle[\hat{A},H]\rangle_{t}. (116)

We can see that the form of Heisenberg equation (116) is identical to the Hermitian case. Nevertheless, it has a remarkable consequence for the non-Hermitian case, i.e., ⟨A^β€ βŸ©tβ‰ βŸ¨A^⟩tβˆ—\langle\hat{A}^{{\dagger}}\rangle_{t}\neq\langle\hat{A}\rangle^{*}_{t}, which is very different from the Hermitian case. Similar relation for the time-dependent non-Hermitian operators has been given in Ref.Zhou2 .

References

  • (1) C. M. Bender and S. Boettcher, Real Spectra in Non-Hermitian Hamiltonians Having 𝒫\mathcal{P}𝒯\mathcal{T} Symmetry, Phys. Rev. Lett. 80, 5243 (1998).
  • (2) N. Moiseyev, Non-Hermitian Quantum Mechanics (Cambridge Univ. Press, 2011).
  • (3) V. V. Konotop, J. Yang, D. A. Zezyulin, Nonlinear waves in 𝒫\mathcal{P}𝒯\mathcal{T}-symmetric systems, Rev. Mod. Phys. 88, 035002 (2016).
  • (4) R. El-Ganainy, K. G. Makris, M. Khajavikhan, Z. H. Musslimani, S. Rotter, D. N. Christodoulides, Non-Hermitian physics and PT symmetry, Nat. Phys. 14, 11(2018).
  • (5) L. Xiao, X. Zhan, Z. H. Bian, K. K. Wang, X. Zhang, X. P. Wang, J. Li, K. Mochizuki, D. Kim, N. Kawakami, W. Yi, H. Obuse, B. C. Sanders, and P. Xue, Observation of topological edge states in parityΕ‘Ctime-symmetric quantum walks, Nat. Phys. 13, 1117 (2017).
  • (6) M. Naghiloo, M. Abbasi, Y. N. Joglekar, and K. W. Murch, Quantum state tomography across the exceptional point in a single dissipative qubit, Nat. Phys. 15, 1232 (2019).
  • (7) Y. Wu, W. Liu, J. Geng, X. Song, X. Ye, C.-K. Duan, X. Rong, J. Du, Observation of parity-time symmetry breaking in a single-spin system, Science 364, 878 (2019).
  • (8) L. Ding, K. Shi, Q. Zhang, D. Shen, X. Zhang, and W. Zhang, Experimental Determination of 𝒫\mathcal{P}𝒯\mathcal{T}-Symmetric Exceptional Points in a Single Trapped Ion, Phys. Rev. Lett. 126, 083604 (2021).
  • (9) W.-C. Wang, Y.-L. Zhou, H.-L. Zhang, J. Zhang, M.-C. Zhang, Y. Xie, C.-W. Wu, T. Chen, B.-Q. Ou, W. Wu, H. Jing, and P.-X. Chen, Observation of 𝒫\mathcal{P}𝒯\mathcal{T}-symmetric quantum coherence in a single-ion system, Phys. Rev. A 103, L020201 (2021).
  • (10) J. Li, A. K. Harter, J. Liu, L. de Melo, Y. N. Joglekar, and L. Luo, Observation of parity-time symmetry breaking transitions in a dissipative Floquet system of ultracold atoms, Nat. Comm. 10, 855 (2019).
  • (11) S. Lapp, J. Ang’ong’a, F. Alex An, B. Gadway, Engineering tunable local loss in a synthetic lattice of momentum states, New. J. Phys. 21, 045006 (2019).
  • (12) Z. Ren, D. Liu, E. Zhao, C. He, K. K. Pak, J. Li, G.-B. Jo, Chiral control of quantum states in non-Hermitian spin-orbit-coupled fermions, arxiv: 2106.04874.
  • (13) H. Cartarius and G. Wunner, Model of a 𝒫\mathcal{P}𝒯\mathcal{T}-symmetric Bose-Einstein condensate in a Ξ΄\delta-function double-well potential, Phys. Rev. A 86, 013612 (2012).
  • (14) D. A. Zezyulin and V. V. Konotop, Nonlinear currents in a ring-shaped waveguide with balanced gain and dissipation, Phys. Rev. A 94, 043853 (2016).
  • (15) V. Tripathi, A. Galda, H. Barman, and V. M. Vinokur, Parity-time symmetry-breaking mechanism of dynamic Mott transitions in dissipative systems, Phys. Rev. B 94, 041104(R) (2016).
  • (16) Y. Ashida, S. Furukawa, and M. Ueda, Parity-time-symmetric quantum critical phenomena, Nat. Commun. 8, 15791 (2017).
  • (17) A. Ghatak and T. Das, Theory of superconductivity with non-Hermitian and parity-time reversal symmetric Cooper pairing symmetry, Phys. Rev. B 97, 014512 (2018).
  • (18) L. Pan, S. Chen, and X. Cui, High-order exceptional points in ultracold Bose gases, Phys. Rev. A 99, 011601(R) (2019); ibid, Interacting non-Hermitian ultracold atoms in a harmonic trap: Two-body exact solution and a high-order exceptional point, Phys. Rev. A 99, 063616 (2019).
  • (19) Z. Zhou and Z. Yu, Interaction effects on the 𝒫\mathcal{P}𝒯\mathcal{T}-symmetry-breaking transition in atomic gases, Phys. Rev. A 99, 043412 (2019).
  • (20) L. Zhou and X. Cui, Enhanced Fermion Pairing and Superfluidity by an Imaginary Magnetic Field, iScience 14, 257 (2019).
  • (21) H. Shackleton and M. S. Scheurer, Protection of parity-time symmetry in topological many-body systems: Non-Hermitian toric code and fracton models, Phys. Rev. Res. 2, 033022 (2020).
  • (22) R. Hanai, and P. B. Littlewood, Critical fluctuations at a many-body exceptional point, Phys. Rev. Res. 2, 033018 (2020).
  • (23) M. Fruchart, R. Hanai, P. B. Littlewood, V. Vitelli, Non-reciprocal phase transitions, Nature 592, 363 (2021).
  • (24) L. Pan, X. Wang, X. Cui, S. Chen, Interaction-induced dynamical 𝒫\mathcal{P}𝒯\mathcal{T}-symmetry breaking in dissipative Fermi-Hubbard models, Phys. Rev. A 102, 023306 (2020).
  • (25) J.-S. Pan, W. Yi, J. Gong, Emergent 𝒫\mathcal{P}𝒯\mathcal{T}-symmetry breaking of Anderson-Bogoliubov modes in Fermi superfluids, arxiv:2103.00450.
  • (26) Y.-M. Li, X.-W. Luo, C. Zhang, 𝒫\mathcal{P}𝒯\mathcal{T}-Symmetry Enhanced Berezinskii-Kosterlitz-Thouless Superfluidity, arxiv:2107.10391.
  • (27) D.S. Petrov, Quantum Mechanical Stabilization of a Collapsing Bose-Bose Mixture, Phys. Rev. Lett. 115, 155302 (2015).
  • (28) M. Erhard, H. Schmaljohann, J. KronjΓ€ger, K. Bongs, and K. Sengstock, Measurement of a mixed-spin-channel Feshbach resonance in R87​b{}^{87}Rb, Phys. Rev. A 69, 032705 (2004);
  • (29) A. Widera, O. Mandel, M. Greiner, S. Kreim, Theodor W. HΓ€nsch, and I. Bloch, Entanglement Interferometry for Precision Measurement of Atomic Scattering Properties, Phys. Rev. Lett. 92, 160406 (2004).
  • (30) S. Tojo, Y. Taguchi, Y. Masuyama, T. Hayashi, H. Saito, T. Hirano, Controlling phase separation of binary Bose-Einstein condensates via mixed-spin-channel Feshbach resonance, Phys. Rev. A 82, 033609 (2010).
  • (31) A. M. Kaufman, R. P. Anderson, T. M. Hanna, E. Tiesinga, P. S. Julienne, and D. S. Hall, Radio-frequency dressing of multiple Feshbach resonances, Phys. Rev. A 80, 050701(R) (2009).
  • (32) C.R. Cabrera, L. Tanzi, J. Sanz, B. Naylor, P. Thomas, P. Cheiney, and L. Tarruell, Quantum liquid droplets in a mixture of Bose-Einstein condensates, Science 359, 301 (2018).
  • (33) P. Cheiney, C. R. Cabrera, J. Sanz, B. Naylor, L. Tanzi, L. Tarruell, Bright Soliton to Quantum Droplet Transition in a Mixture of Bose-Einstein Condensates, Phys. Rev. Lett. 120, 135301 (2018).
  • (34) G. Semeghini, G. Ferioli, L. Masi, C. Mazzinghi, L. Wolswijk, F. Minardi, M. Modugno, G. Modugno, M. Inguscio, M. Fattori, Self-Bound Quantum Droplets of Atomic Mixtures in Free Space, Phys. Rev. Lett. 120, 235301 (2018).
  • (35) C. D’Errico, A. Burchianti, M. Prevedelli, L. Salasnich, F. Ancilotto, M. Modugno, F. Minardi, and C. Fort, Observation of quantum droplets in a heteronuclear bosonic mixture, Phys. Rev. Res. 1, 033155 (2019).
  • (36) Z. Guo, F. Jia, L. Li, Y. Ma, J. M. Hutson, X. Cui, D. Wang, Lee-Huang-Yang effects in the ultracold mixture of N23​a{}^{23}Na andR87​b{}^{87}Rb with attractive interspecies interactions, Phys. Rev. Res. 3, 033247 (2021).
  • (37) J. Steinhauer, R. Ozeri, N. Katz, and N. Davidson, Excitation Spectrum of a Bose-Einstein Condensate, Phys. Rev. Lett. 88, 120407 (2002).
  • (38) S. B. Papp, J. M. Pino, R. J. Wild, S. Ronen, C. E. Wieman, D. S. Jin, and E. A. Cornell, Bragg Spectroscopy of a Strongly Interacting R85​b{}^{85}Rb Bose-Einstein Condensate, Phys. Rev. Lett. 101, 135301 (2008).
  • (39) P. T. Ernst, S. GΓΆtze, J. S. Krauser, K. Pyka, D.-S. LΓΌhmann, D. Pfannkuche, and K. Sengstock, Probing superfluids in optical lattices by momentum-resolved Bragg spectroscopy, Nat. Phys. 6, 56 (2010).
  • (40) S.-C. Ji, L. Zhang, X.-T. Xu, Z. Wu, Y. Deng, S Chen, J.-W. Pan, Softening of Roton and Phonon Modes in a Bose-Einstein Condensate with Spin-Orbit Coupling, Phys. Rev. Lett. 114,105301 (2015).
  • (41) A. L. Gaunt, T. F. Schmidutz, I. Gotlibovych, R. P. Smith, and Z. Hadzibabic, Bose-Einstein Condensation of Atoms in a Uniform Potential, Phys. Rev. Lett. 110, 200406 (2013).
  • (42) I. Gotlibovych, T. F. Schmidutz, A. L. Gaunt, N. Navon, R. P. Smith, Z. Hadzibabic, Observing properties of an interacting homogeneous Bose-Einstein condensate: Heisenberg-limited momentum spread, interaction energy, and free-expansion dynamics, Phys. Rev. A 89, 061604(R) (2014).
  • (43) C. Eigen, A. L. Gaunt, A. Suleymanzade, N. Navon, Z. Hadzibabic, R. P. Smith, Observation of Weak Collapse in a Bose-Einstein Condensate, Phys. Rev. X 6, 041058 (2016).
  • (44) B. Mukherjee, Z. Yan, P. B. Patel, Z. Hadzibabic, T. Yefsah, J. Struck, and M. W. Zwierlein, Homogeneous Atomic Fermi Gases, Phys. Rev. Lett. 118, 123401 (2017).
  • (45) K. Hueck, N. Luick, L. Sobirey, J. Siegl, T. Lompe, and H. Moritz, Two-Dimensional Homogeneous Fermi Gases, Phys. Rev. Lett. 120, 060402 (2018).
  • (46) L. Zhou, W. Yi and X. Cui, Dissipation-facilitated molecules in a Fermi gas with non-Hermitian spin-orbit coupling, Phys. Rev. A 102, 043310 (2020).