This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Quantum Algorithm for DOA Estimation in Hybrid Massive MIMO

Fan-Xu Meng National Mobile Communications Research Laboratory, Southeast University, Nanjing 211189, China Frontiers Science Center for Mobile Information Communication and Security, Nanjing, Jiangsu 211111, China Quantum Information Center of Southeast University, Nanjing 211189, China    Xu-Tao Yu [email protected] State Key Lab of Millimeter Waves, Southeast University, Nanjing 211189, China Frontiers Science Center for Mobile Information Communication and Security, Nanjing, Jiangsu 211111, China Quantum Information Center of Southeast University, Nanjing 211189, China    Ze-Tong Li State Key Lab of Millimeter Waves, Southeast University, Nanjing 211189, China Frontiers Science Center for Mobile Information Communication and Security, Nanjing, Jiangsu 211111, China Quantum Information Center of Southeast University, Nanjing 211189, China    Zai-Chen Zhang National Mobile Communications Research Laboratory, Southeast University, Nanjing 211189, China Frontiers Science Center for Mobile Information Communication and Security, Nanjing, Jiangsu 211111, China Quantum Information Center of Southeast University, Nanjing 211189, China Purple Mountain Laboratories, Nanjing, Jiangsu 211111, China
Abstract

The direction of arrival (DOA) estimation in array signal processing is an important research area. The effectiveness of the direction of arrival greatly determines the performance of multi-input multi-output (MIMO) antenna systems. The multiple signal classification (MUSIC) algorithm, which is the most canonical and widely used subspace-based method, has a moderate estimation performance of DOA. However, in hybrid massive MIMO systems, the received signals at the antennas are not sent to the receiver directly, and spatial covariance matrix, which is essential in MUSIC algorithm, is thus unavailable. Therefore, the spatial covariance matrix reconstruction is required for the application of MUSIC in hybrid massive MIMO systems. In this article, we present a quantum algorithm for MUSIC-based DOA estimation in hybrid massive MIMO systems. Compared with the best-known classical algorithm, our quantum algorithm can achieve an exponential speedup on some parameters and a polynomial speedup on others under some mild conditions. In our scheme, we first present the quantum subroutine for the beam sweeping based spatial covariance matrix reconstruction, where we implement a quantum singular vector transition process to avoid extending the steering vectors matrix into the Hermitian form. Second, a variational quantum density matrix eigensolver (VQDME) is proposed for obtaining signal and noise subspaces, where we design a novel objective function in the form of the trace of density matrices product. Finally, a quantum labeling operation is proposed for the direction of arrival estimation of the signal.

pacs:
03.67.Hk

I Introduction

The direction of space signal arrival estimation Boyer and Bouleux (2008) is a crucial issue in signal processing, which has also gained significant attention in many applications, including smart antenna systems and wireless locations. The core of the direction of arrival estimation is to determine signal source location in a certain space area where the entire spatial spectrum consists of the target, observation, and estimation stages Zheng and Kaveh (2013). As the signals are assumed to be distributed in the space of all the directions, the spatial spectrum of the signal can be exploited to provide a good effect for the direction of arrival estimation. Spatial spectrum-based algorithms are the most successful algorithmic frameworks in the past few decades. Among these are the famous estimation of signal parameters via rotational invariance technique (ESPRIT) and multiple signal classification (MUSIC). ESPRIT Duofang et al. (2008); Jinli et al. (2008); Zhang and Xu (2011); Zheng et al. (2012); Liao (2018) has exploited the invariance property for direction estimation. However, these algorithms Duofang et al. (2008); Jinli et al. (2008); Zhang and Xu (2011); Zheng et al. (2012); Liao (2018) have almost the same performance and can only be applied to array structures with some peculiar geometries. MUSIC was first proposed by Schmidt in SCHMIDT (1981). It is the most widely used subspace and spectral estimation method based on the decomposition of eigenvalues. Moreover, MUSIC algorithm can also match some types of irregularly spaced arrays.

Compared with conventional MIMO, Massive MIMO, which is one of the most important enabling technologies in the fifth generation (5G) systems Larsson et al. (2014), can obtain significant array gain with a large number of antennas. Moreover, the frequency resources at the millimeterwave system can be used efficiently with massive MIMO. To reduce the cost of radio frequency chains at millimeterwave bands, the hybrid massive MIMO structure Liang et al. (2014); El Ayach et al. (2014); Venkateswaran and van der Veen (2010); Lin and Li (2015) have been proposed, where received signals are fed to the analog phase shifters and then combined in the analog domain before being sent to the receiver. Therefore, the receiver cannot directly obtain the received signals at the antennas, which results in the failure of constructing the spatial covariance matrix in DOA estimation. For the application of MUSIC in the hybrid massive MIMO, a novel technique for spatial covariance matrix reconstruction Li et al. (2020) was designed. In this approach, analog beamformer switches the beam direction to predetermined DOA angles in turn, and the average of received power in each sweeping beam is only required. Thus, the spatial covariance matrix can be reconstructed by solving the regularized least square problem, which can ensure that MUSIC can be appropriate for hybrid massive MIMO systems. In this technique, the reconstruction of the spatial covariance matrix can be implemented in the runtime O(Mω+M2Q){\rm O}\left({M^{\omega}+M^{2}Q}\right), where ω(5,6)\omega\in\left({{\rm{5,6}}}\right), MM and QQ are the number of antenna elements and predetermined DOA angles, respectively. Subsequently, based on the spatial covariance matrix, MUSIC algorithm can be performed with the complexity O(M3+M2K){\rm O}\left({M^{3}+M^{2}K}\right), where KK is the size of the direction searching space. Therefore, MUSIC-based DOA estimation in hybrid massive MIMO system runs in approximate O(Mω+M2KQ){\rm O}\left({\ M^{\omega}}+M^{2}KQ\right) complexity. However, in the 6G and post 6G era, with the increase of the number of antenna elements, signal sources, and snapshots, high time and space complexity will be the limit and the drawback of the classical algorithm for the hybrid massive MIMO systems.

Quantum computing was established as a promising extension to classical computation and was theoretically shown to perform significantly better in selected computational problems. We are witnessing the influence of quantum information processing on its classical counterpart. Following the discovery of quantum algorithms for factoring Ekert and Jozsa (1996), database searching Grover (1997) and quantum matrix inverse Harrow et al. (2009), a range of quantum algorithms Wiebe et al. (2012); Clader et al. (2013); Lloyd et al. (2013, 2014); Rebentrost et al. (2014); Cong and Duan (2016); Kerenidis and Prakash (2017, 2020); Wossnig et al. (2018) have shown the capability of outperforming classical algorithms in machine learning. However, only a very small number of research works focus on connecting quantum algorithms to wireless communication systems. Among these are quantum search algorithms assisted multi-user detection Botsinis et al. (2014), quantum-inspired tabu search algorithm for antenna selection in massive MIMO Abdullah et al. (2018), and quantum-assisted routing optimization Alanis et al. (2014) and quantum-aided multi-user transmission Botsinis et al. (2016). All of the aforementioned research makes full use of Grover algorithm and its variants to solve the search problems, which achieve quadratic speedup over classical counterparts. Moreover, the quantum algorithm for MUSIC Meng et al. (2020) has also been proposed with the polynomial speedup. However, above these algorithms will require the enormous number of qubits, quantum gates and circuit structures with deep depth.

Fortunately, noisy intermediate-scale quantum (NISQ) devices Preskill (2018) are considered as a significant step toward more powerful quantum computer and shown quantum supremacy. Therefore, an important direction is to find useful algorithms that can work on NISQ devices. The leading strategy for various problems using NISQ devices are called variational quantum algorithms (VQA) McClean et al. (2016), which can be implemented in a shallow-depth parameterized quantum circuit. These parameters will be optimized in classical computers with respect to certain loss functions. Recently, a number of variational quantum algorithms have been proposed, including the ground and excited states preparation of Hamiltonian or density matrix Kandala et al. (2017); Cerezo et al. (2020a); Liu et al. (2019); Higgott et al. (2019); Jones et al. (2019), singular value decomposition Wang et al. (2020a); Bravo-Prieto et al. (2020), matrix operations Huang et al. (2019); Xu et al. (2019); Bravo-Prieto et al. (2019), quantum state fidelity estimation Cerezo et al. (2020b), quantum Gibbs state preparation Chowdhury et al. (2020); Wang et al. (2020b) and the calculation of the Green’s function Endo et al. (2019). Furthermore, unlike the strong need for error correction in fault-tolerant quantum computation, the noise in shallow quantum circuits can be suppressed via quantum error mitigation Temme et al. (2017); McArdle et al. (2019); Strikis et al. (2020), which can demonstrate the feasibility of quantum computing with NISQ devices.

In the present study, we propose a quantum algorithm for MUSIC-based DOA estimation in the hybrid massive MIMO system. Our work consists of three contributions. First, we present the quantum subroutine for the reconstruction of the spatial covariance matrix, where the efficient quantum circuit is designed to prepare any row vector of the steering vectors matrix, and propose the quantum singular vector transition process to avoid extending the steering vectors matrix into a Hermitian form. Second, we design the variational quantum density matrix eigensolver (VQDME) algorithm for the eigen-decomposition part of MUSIC algorithm, where orthogonal base vectors of signal subspace and noise subspace are obtained, effectively. Third, a quantum labeling algorithm is presented for the direction estimation. Consequently, the time complexity of our quantum algorithm is analyzed, and an exponential speedup on some parameters and a polynomial speedup on others compared with classical counterparts are shown under some mild conditions.

The remainder of this paper is organized as follows. In Sec.II, we provide some requisite background information and give a brief overview of the reconstruction of the spatial covariance matrix in hybrid massive MIMO systems and the classical MUSIC algorithm. In Sec.III, the key quantum subroutines are introduced in detail. Finally, a summary and discussions are included in Sec.IV.

II Preliminaries

In this section, we provide the necessary background to better understand this paper. In Sec.II A, we briefly view some basic notations used in this paper. In Sec.II B, a detailed overview of the reconstruction of the spatial covariance matrix algorithm is presented. Then, a detailed overview of MUSIC algorithms is depicted in Sec.II C.

II.1 Notation

Throughout, we obey the following conventions. 𝐼N\mathop{I}\nolimits_{N} refers to an N×NN\times N identity matrix. For an arbitrary matrix ACM×NA\in C^{M\times N}, let A=UΛVHA=U\Lambda V^{H} be the singular value decomposition (SVD) of AA. Here, U=[𝑢1,𝑢2𝑢M]U=\left[{\mathop{u}\nolimits_{1},\mathop{u}\nolimits_{2}\ldots\mathop{u}\nolimits_{M}}\right] and V=[𝑣1,𝑣2𝑣N]V=\left[{\mathop{v}\nolimits_{1},\mathop{v}\nolimits_{2}\ldots\mathop{v}\nolimits_{N}}\right] are unitary matrices with the left and right singular vectors of XX as columns, respectively. Λ\Lambda is a diagonal matrix with a singular value 𝜎i{\mathop{\sigma}\nolimits_{i}} as a diagonal element. The economy-sized SVD can be A=i=1r𝜎i𝑢i𝑣iHA=\sum\limits_{i=1}^{r}{\mathop{\sigma}\nolimits_{i}\mathop{u}\nolimits_{i}\mathop{v}\nolimits_{i}^{H}}, where rr is the rank of AA. The form of eigenvalue decomposition of AAHAA^{H} can be expressed as AAH=i=1r𝜎i2𝑢i𝑢iHAA^{H}{\rm{=}}\sum\limits_{i=1}^{r}{\mathop{\sigma}\nolimits_{i}^{2}\mathop{u}\nolimits_{i}\mathop{u}\nolimits_{i}^{H}}, where 𝜎i2{\mathop{\sigma}\nolimits_{i}^{2}} is the eigenvalue of AAHAA^{H}. F\left\|\cdot\right\|_{F} refers to Frobenius norm, and \otimes denotes Kronecker product. The vectorization of a matrix AA can be denoted as vec(A)=(x11,x21xM1,x12,x22xM2,,xMN)T{\rm{vec}}\left(A\right)=\left(x_{11},x_{21}\ldots x_{M1},x_{12},x_{22}\ldots x_{M2},\ldots,x_{MN}\right)^{T} and vec(A)=i=1r𝜎i𝑢i𝑣i{\rm{vec}}\left(A\right)=\sum\limits_{i=1}^{r}{\mathop{\sigma}\nolimits_{i}\mathop{u}\nolimits_{i}\otimes\mathop{v}\nolimits_{i}}.

II.2 REVIEW OF THE SPATIAL COVARIANCE MATRIX RECONSTRUCTION

Without loss of generality, we assume that there exists a set of predetermined DOA angles {θ(i)}i=1Q,θ(1)<θ(2)<<θ(Q)\left\{\theta^{\left(i\right)}\right\}_{i=1}^{Q},{\kern 1.0pt}{\kern 1.0pt}{\kern 1.0pt}\theta^{\left(1\right)}<\theta^{\left(2\right)}<\ldots<\theta^{\left(Q\right)}. The beam direction is switched by the analog beamformer to the predetermined DOA angle in turn. Then, the combination of the received signals in the receiver can be represented by cq(t)=aH(θ(q))y(t)c_{q}\left(t\right)=a^{H}\left({\theta^{\left(q\right)}}\right)y\left(t\right), which is shown in Fig. 1.

Refer to caption
Figure 1: Signal combination is sampled via analog-to-digital converter (ADC) before sending to the digital receiver.

Thus, a sample of the signal combination can be given by

cq[n]=cq(nTs)=aH(θq)y[n]c_{q}\left[n\right]=c_{q}\left({nT_{s}}\right)=a^{H}\left({\theta^{q}}\right)y\left[n\right] (1)

where Ts{T_{s}} denotes the sample period and y[n]=y(n𝑇s)y\left[n\right]=y\left({n\mathop{T}\nolimits_{s}}\right). The steering vector a(θ(q))a\left({\theta^{\left(q\right)}}\right) is defined as follows

a(θ(q))=[1,ej2πdλsin(θ(q)),,ej2πd(M1)λsin(θ(q))]Ta\left({{\theta^{\left(q\right)}}}\right)={\left[{1,{e^{-j\frac{{2\pi d}}{\lambda}\sin\left({{\theta^{\left(q\right)}}}\right)}},\ldots,{e^{-j\frac{{2\pi d\left({M-1}\right)}}{\lambda}\sin\left({{\theta^{\left(q\right)}}}\right)}}}\right]^{T}} (2)

where the distance dd between consecutive elements is equal to half of the signal wavelength λ\lambda. Let PqP_{q} be the average power of c[n]c\left[n\right], then we can obtain

Pq=1Nn=0N1|cq[n]|2=aH(θ(q))1Nn=0N1y[n]yH[n]a(θ(q))\begin{array}[]{l}P_{q}=\frac{1}{N}\sum_{n=0}^{N-1}{{\left|{c_{q}\left[n\right]}\right|}^{2}}\\ =a^{H}\left({\theta^{\left(q\right)}}\right)\frac{1}{N}\sum_{n=0}^{N-1}{y\left[n\right]y^{H}\left[n\right]}a\left({\theta^{\left(q\right)}}\right)\end{array} (3)

When the number of samples is large enough, the sample average in Eq. (3) can be replaced by the statistical average, and we can obtain

𝑃q=𝑎H(𝜃(q))Ra(𝜃(q))\mathop{P}\nolimits_{q}=\mathop{a}\nolimits^{H}\left({\mathop{\theta}\nolimits^{\left(q\right)}}\right)Ra\left({\mathop{\theta}\nolimits^{\left(q\right)}}\right) (4)

Using the vectorization definition to Eq. (4),

vec{𝑎H(𝜃(q))Ra(𝜃(q))}=[𝑎T(𝜃(q))𝑎H(𝜃(q))]Tvec(R)\begin{array}[]{l}vec\left\{{\mathop{a}\nolimits^{H}\left({\mathop{\theta}\nolimits^{\left(q\right)}}\right)Ra\left({\mathop{\theta}\nolimits^{\left(q\right)}}\right)}\right\}\\ =\left[{\mathop{a}\nolimits^{T}\left({\mathop{\theta}\nolimits^{\left(q\right)}}\right)\otimes\mathop{a}\nolimits^{H}\left({\mathop{\theta}\nolimits^{\left(q\right)}}\right)}\right]^{T}vec\left(R\right)\end{array} (5)

Let aq=a(θ(q))a(θ(q))a_{q}=a\left({\theta^{\left(q\right)}}\right)\otimes a^{*}\left({\theta^{\left(q\right)}}\right) and r=vec(R)r=vec\left(R\right), then Eq. (4) can be rewritten as

𝑎qTr=𝑃q\mathop{a}\nolimits_{q}^{T}r=\mathop{P}\nolimits_{q} (6)

Given the group of predetermined DOA angles, we can obtain

Ar=PAr=P (7)

where A=(a1,a2,aQ)TA={\left({a_{1},a_{2},\ldots a_{Q}}\right)}^{T} is a Q×M2Q\times M^{2} matrix and P=(P1,P2,PQ)TP={\left({P_{1},P_{2},\ldots P_{Q}}\right)}^{T} is a Q×1Q\times 1 vector. To avoid the ill-conditioned result, diagonal loading is adopted, and then we can obtain the vector form of the spatial covariance matrix as follows

r^=(AHA+σ2IM2)1AHP\hat{r}={\left({A^{H}A+\sigma^{2}I_{M^{2}}}\right)}^{-1}A^{H}P (8)

where R^=unvec(r^)\hat{R}=unvec\left({\hat{r}}\right) is the desired spatial covariance matrix.

II.3 REVIEW OF THE CLASSICAL MUSIC ALGORITHM

We assume that there are LL narrowband source signals incident upon an array of MM antenna elements. These MM elements are linearly spaced with equal distance between consecutive elements shown in Fig. 2.

Refer to caption
Figure 2: One-dimensional structure of an antenna array.

Without loss of generality, we assume that the number of antenna elements is greater than the number of signals, i.e., (ML)\left({M\gg L}\right). The distance between consecutive elements is equal to half of the signal wavelength λ\lambda; namely, d1=d2=d3==dM=λ2d_{1}=d_{2}=d_{3}=\cdots=d_{M}=\frac{\lambda}{2}.

Let y(k)=[y1(k),y2(k),yM(k)]Ty\left(k\right)={\left[{y_{1}\left(k\right),y_{2}\left(k\right),\ldots y_{M}\left(k\right)}\right]}^{T} be the kkth observation data from LL source signals impinging on an array of MM elements; that is,

y(k)=i=0L1𝑠i(k)a(𝜃i)+n(k)=As(k)+n(k)y\left(k\right)=\sum\limits_{i=0}^{L-1}{\mathop{s}\nolimits_{i}\left(k\right)a\left({\mathop{\theta}\nolimits_{i}}\right)}+n\left(k\right)=As\left(k\right)+n\left(k\right) (9)

where A=[a(θ0),a(θ1),a(θL1)]A=\left[{a\left({{\theta_{0}}}\right),a\left({{\theta_{1}}}\right),\ldots a\left({{\theta_{L-1}}}\right)}\right] is an M×LM\times L array matrix, signal vector and noise vector are independent. s(k)=[𝑠0(k),𝑠1(k),,𝑠L1(k)]Ts\left(k\right)=\mathop{\left[{\mathop{s}\nolimits_{0}\left(k\right),\mathop{s}\nolimits_{1}\left(k\right),\ldots,\mathop{s}\nolimits_{L-1}\left(k\right)}\right]}\nolimits^{T} is an incident signal vector with zero mean value, n(k)n\left(k\right) is the Gaussian noise vector with zero mean value and σ2IN\sigma^{2}I_{N} covariance matrix. Then, the M×MM\times M spatial covariance matrix of the received signal vector in Eq. (9) can be obtained as

R=E{y(k)yH(k)}R=E\left\{{y\left(k\right)y^{H}\left(k\right)}\right\} (10)

As the spatial covariance matrix is Hermitian, the eigen-decomposition form can be represented as

R=UsΛsUsH+UnΛnUnHR{\rm{=}}{U_{s}}{\Lambda_{s}}{\rm{}}U_{s}^{H}+{\rm{}}{U_{n}}{\Lambda_{n}}{\rm{}}U_{n}^{H} (11)

where Us=[u1,u2,,uL]{U_{s}}=\left[u_{1},u_{2},\dots,u_{L}\right] is an M×LM\times L matrix representing signal subspace, Un=[uL+1,uL+2,,uM]{U_{n}}=\left[u_{L+1},u_{L+2},\dots,u_{M}\right] is a group of the orthogonal base vectors of noise subspace.

The object of the direction angle estimation is

θMUSIC=argminθaH(θ)UnUnHa(θ)\begin{array}[]{c}{\theta_{MUSIC}}=\mathop{\arg\min}\limits_{\theta}{\rm{}}{a^{H}}\left(\theta\right){\rm{}}{U_{n}}{\rm{}}U_{n}^{H}a\left(\theta\right)\end{array} (12)

Analogously, direction angle estimation can also be represented in terms of its reciprocal to obtain peaks; that is,

𝑃MUSIC=1𝑎H(θ)𝑈n𝑈nHa(θ)\begin{array}[]{c}\mathop{P}\nolimits_{MUSIC}=\frac{1}{{\mathop{a}\nolimits^{H}\left(\theta\right)\mathop{U}\nolimits_{n}\mathop{U}\nolimits_{n}^{H}a\left(\theta\right)}}\end{array} (13)

In conventional MUSIC algorithm, the distribution of received signal vector y(k){y\left(k\right)} is unknown. Therefore, the spatial covariance matrix in Eq. (10) can be estimated by the sample average, that is R1Nk=1Ny(k)yH(k)R\approx\frac{1}{N}\sum_{k=1}^{N}{y\left(k\right)y^{H}\left(k\right)} where NN indicates the number of samples.

III QUANTUM ALGORITHM FOR DOA ESTIMATION

In this section, we propose a quantum algorithm for MUSIC-based DOA estimation. We first characterize the quantum subroutine for the reconstruction of the spatial covariance matrix in Sec.III A. Next, in Sec.III B, the variational quantum density matrix eigensolver (VQDME) algorithm is designed for the eigen-decomposition in MUSIC algorithm. In this subroutine, we design a novel cost function, which can be effectively computed in a quantum computer. Then, we present a quantum labeling operation based on a set of quantum states for finding directions satisfying Eq. (12) or (13). Finally, the combination of these parts can implement the quantum DOA estimation in hybrid massive MIMO systems.

III.1 The quantum subroutine for the reconstruction of the spatial covariance matrix

In this subroutine, to obtain the vector form of the spatial covariance matrix in Eq. (8), we assume that PP is stored in quantum random access memory Kerenidis and Prakash (2017) with a suitable data structure of binary trees. Then, the quantum state |P\left|P\right\rangle can be prepared as

UP:|01P2i=0Q1Pi|iU_{P}:\left|0\right\rangle\to\frac{1}{{{\left\|P\right\|}_{2}}}\sum\nolimits_{i=0}^{Q-1}{P_{i}}\left|i\right\rangle (14)

Next, we design an efficient quantum circuit to prepare any row of AA. As every row of AA can be presented as Kronecker product of the steering vector and its conjugate aq=a(θ(q))a(θ(q)),q=1,2,,Qa_{q}=a\left({\theta^{\left(q\right)}}\right)\otimes a^{*}\left({\theta^{\left(q\right)}}\right),q=1,2,\dots,Q. Therefore, we first design a quantum circuit to prepare |a(θq)\left|a\left(\theta^{q}\right)\right\rangle, the detailed circuit can be shown in Fig. 3.

Refer to caption
Figure 3: Quantum circuit for steering vector and 𝑅ZZ(𝜑i)=(𝑒j𝜑i00𝑒j𝜑i)\mathop{R}\nolimits_{ZZ}\left({\mathop{\varphi}\nolimits_{i}}\right)=\left({\begin{array}[]{*{20}{c}}{\mathop{e}\nolimits^{j\mathop{\varphi}\nolimits_{i}}}&0\\ 0&{\mathop{e}\nolimits^{j\mathop{\varphi}\nolimits_{i}}}\end{array}}\right)

Here, we shown an example of preparing a 4×14\times 1 steering vector to demonstrate the quantum circuit implementation.

12|2πdsinθλ(|0+|1)(|0+|1)|0=12|2πdsinθλ(|0|0+|0|1+|1|0+|1|1)|0=12|2πdsinθλ(|0|0|0+|0|1𝑒j2πdsinθλ|0+|1|0𝑒j2π2dsinθλ|0+|1|1𝑒j2π3dsinθλ|0)=12|2πdsinθλ(|0|0+𝑒j2πdsinθλ|0|1+𝑒j2π2dsinθλ|1|0+𝑒j2π3dsinθλ|1|1)|0=|2πdsinθλ|a(θ)|0\displaystyle\begin{array}[]{l}\frac{1}{2}\left|{\frac{{2\pi d\sin\theta}}{\lambda}}\right\rangle\left({\left|0\right\rangle+\left|1\right\rangle}\right)\left({\left|0\right\rangle+\left|1\right\rangle}\right)\left|0\right\rangle=\frac{1}{2}\left|{\frac{{2\pi d\sin\theta}}{\lambda}}\right\rangle\left({\left|0\right\rangle\left|0\right\rangle+\left|0\right\rangle\left|1\right\rangle+\left|1\right\rangle\left|0\right\rangle+\left|1\right\rangle\left|1\right\rangle}\right)\left|0\right\rangle\\ =\frac{1}{2}\left|{\frac{{2\pi d\sin\theta}}{\lambda}}\right\rangle\left({\left|0\right\rangle\left|0\right\rangle\left|0\right\rangle+\left|0\right\rangle\left|1\right\rangle\mathop{e}\nolimits^{-j\frac{{2\pi d\sin\theta}}{\lambda}}\left|0\right\rangle+\left|1\right\rangle\left|0\right\rangle\mathop{e}\nolimits^{-j\frac{{2\pi 2d\sin\theta}}{\lambda}}\left|0\right\rangle+\left|1\right\rangle\left|1\right\rangle\mathop{e}\nolimits^{-j\frac{{2\pi 3d\sin\theta}}{\lambda}}\left|0\right\rangle}\right)\\ =\frac{1}{2}\left|{\frac{{2\pi d\sin\theta}}{\lambda}}\right\rangle\left({\left|0\right\rangle\left|0\right\rangle+\mathop{e}\nolimits^{-j\frac{{2\pi d\sin\theta}}{\lambda}}\left|0\right\rangle\left|1\right\rangle+\mathop{e}\nolimits^{-j\frac{{2\pi 2d\sin\theta}}{\lambda}}\left|1\right\rangle\left|0\right\rangle+\mathop{e}\nolimits^{-j\frac{{2\pi 3d\sin\theta}}{\lambda}}\left|1\right\rangle\left|1\right\rangle}\right)\left|0\right\rangle\\ =\left|{\frac{{2\pi d\sin\theta}}{\lambda}}\right\rangle\left|{a\left(\theta\right)}\right\rangle\left|0\right\rangle\end{array} (19)

Thus, any row of AA can be prepared in following quantum circuit Fig. 4, and then we define two unitary mappings 𝑈M\mathop{U}\nolimits_{\rm M} and 𝑈N\mathop{U}\nolimits_{\rm N} as follows

Refer to caption
Figure 4: Quantum circuit implementing any row of AA
UM:|i|01Ai2j=0M21Aij|i|j=j=0M21AijM|i|j\begin{array}[]{l}U_{\rm M}:\left|i\right\rangle\left|0\right\rangle\to\frac{1}{{{\left\|{A_{i}}\right\|}_{2}}}\sum\nolimits_{j=0}^{M^{2}-1}{A_{ij}\left|i\right\rangle\left|j\right\rangle}=\sum\nolimits_{j=0}^{M^{2}-1}{\frac{A_{ij}}{M}\left|i\right\rangle\left|j\right\rangle}\end{array} (20)
𝑈N:|0|j1AFi=0Q1𝐴i2|i|j=1MQi=0Q1M|i|j\begin{array}[]{l}\mathop{U}\nolimits_{\rm N}:\left|0\right\rangle\left|j\right\rangle\to\frac{1}{{\mathop{\left\|A\right\|}\nolimits_{F}}}\sum\nolimits_{i=0}^{Q-1}{\mathop{\left\|{\mathop{A}\nolimits_{i}}\right\|}\nolimits_{2}\left|i\right\rangle\left|j\right\rangle}\\ =\frac{1}{{M\sqrt{Q}}}\sum\nolimits_{i=0}^{Q-1}{M\left|i\right\rangle\left|j\right\rangle}\end{array} (21)

where Ai{A_{i}} is the iith row of AA. Obviously, UNU_{\rm N} can be implemented with the complexity O(logQ){\rm O}\left(\log Q\right) , and based on circuit Fig. 3 and 4, the implementation of UMU_{\rm M} can be performed in the complexity O(polylogMQ){\rm O}\left(\mathrm{poly}\log MQ\right). Moreover, we can obtain the following normalization form of AA,

i|0|𝑈MH𝑈N|0|j=𝐴ijAF=𝐴ijMQ\left\langle i\right|\left\langle 0\right|\mathop{U}\nolimits_{\rm M}^{H}\mathop{U}\nolimits_{\rm N}\left|0\right\rangle\left|j\right\rangle=\frac{{\mathop{A}\nolimits_{ij}}}{{\mathop{\left\|A\right\|}\nolimits_{F}}}=\frac{{\mathop{A}\nolimits_{ij}}}{{M\sqrt{Q}}} (22)

Then, the quantum state form of r^{\hat{r}} can be represented

|r^(AHA+σ2IM2)1AH|P=i=1γαiσiσi2+σ2|vi\displaystyle\left|{\hat{r}}\right\rangle\propto{\left({A^{H}A+\sigma^{2}I_{M^{2}}}\right)}^{-1}A^{H}\left|P\right\rangle=\sum\nolimits_{i=1}^{\gamma}{\frac{{{\alpha_{i}\sigma}_{i}}}{{\sigma_{i}^{2}+\sigma^{2}}}}\left|{v_{i}}\right\rangle (23)

where αi=ui|P\alpha_{i}=\left\langle{u_{i}}\right|\left.P\right\rangle and γ\gamma is the rank of AA, and |vi\left|{v_{i}}\right\rangle, |ui\left|{u_{i}}\right\rangle and σi\sigma_{i} are the right, left singular vectors and corresponding singular value, respectively. By considering UMU_{\rm M} and UNU_{\rm N}, we prove the following singular vector transition theorem,

Theorem 1

Given a Q×M2Q\times M^{2} matrix AA and the quantum state iβi|ui{\textstyle\sum_{i}}\beta_{i}\left|u_{i}\right\rangle, there exists a quantum algorithm implementing the following mapping

T:iβi|uiiβi|vi\mathrm{T}:{\textstyle\sum_{i}}\beta_{i}\left|u_{i}\right\rangle\longrightarrow{\textstyle\sum_{i}}\beta_{i}\left|v_{i}\right\rangle (24)

and the complexity can be approximately estimated as O(AFpoly(logQM)ε){\rm O}\left(\frac{\left\|A\right\|_{F}\mathrm{poly}\left(\mathrm{log}QM\right)}{\varepsilon}\right).

See Appendix A for details of the singular vector transition theorem. Therefore, based on the definition of UMU_{\rm M}, UNU_{\rm N} and the above theorem, the detailed quantum algorithm is as follows:
(1) Prepare the state as follows

|φ^=|0|P=i=1Q𝛼i|0|𝑢i\left|{\hat{\varphi}}\right\rangle{\rm{=}}\left|0\right\rangle\left|P\right\rangle{\rm{=}}\sum\nolimits_{i=1}^{Q}{\mathop{\alpha}\nolimits_{i}\left|0\right\rangle\left|{\mathop{u}\nolimits_{i}}\right\rangle} (25)

(2) Apply the quantum singular value estimation (QSVE) technique Kerenidis and Prakash (2017), we have the state

|φ^=i=1Q𝛼i|𝜎i|𝑢i\left|{\hat{\varphi}}\right\rangle{\rm{=}}\sum\nolimits_{i=1}^{Q}{\mathop{\alpha}\nolimits_{i}\left|{\mathop{\sigma}\nolimits_{i}}\right\rangle\left|{\mathop{u}\nolimits_{i}}\right\rangle} (26)

(3) Add a register with |0{\left|0\right\rangle} and perform the controlled rotation operation, controlled by the register storing the singular value, we have the following state

|φ^=i=1Q𝛼i(C𝜎i𝜎i2+𝜎2|0+1(C𝜎i𝜎i2+𝜎2)2|1)|𝜎i|𝑢i\begin{array}[]{l}\left|{\hat{\varphi}}\right\rangle=\\ \sum\nolimits_{i=1}^{Q}{\mathop{\alpha}\nolimits_{i}\left({\frac{{C\mathop{\sigma}\nolimits_{i}}}{{\mathop{\sigma}\nolimits_{i}^{2}+\mathop{\sigma}\nolimits^{2}}}\left|0\right\rangle+\sqrt{1-\mathop{\left({\frac{{C\mathop{\sigma}\nolimits_{i}}}{{\mathop{\sigma}\nolimits_{i}^{2}+\mathop{\sigma}\nolimits^{2}}}}\right)}\nolimits^{2}}\left|1\right\rangle}\right)\left|{\mathop{\sigma}\nolimits_{i}}\right\rangle\left|{\mathop{u}\nolimits_{i}}\right\rangle}\end{array} (27)

where CC is a constant, that is C=1/maxi𝜎i𝜎i2+𝜎2C={\raise 3.01385pt\hbox{$1$}\!\mathord{\left/{\vphantom{1{\mathop{\max}\limits_{i}\frac{{\mathop{\sigma}\nolimits_{i}}}{{\mathop{\sigma}\nolimits_{i}^{2}+\mathop{\sigma}\nolimits^{2}}}}}}\right.\kern-1.2pt}\!\lower 3.01385pt\hbox{${\mathop{\max}\limits_{i}\frac{{\mathop{\sigma}\nolimits_{i}}}{{\mathop{\sigma}\nolimits_{i}^{2}+\mathop{\sigma}\nolimits^{2}}}}$}}.
(4) Uncomputing the second register and measure the first register |0\left|0\right\rangle with the probability P(|0)P\left({\left|0\right\rangle}\right), we have the state

|φ^=1i=1γ|𝛼i|2(𝜎i𝜎i2+𝜎2)2i=1γ𝛼i𝜎i𝜎i2+𝜎2|𝑢i\left|{\hat{\varphi}}\right\rangle{\rm{=}}\frac{1}{{\sqrt{\sum\nolimits_{i=1}^{\gamma}{\mathop{\left|{\mathop{\alpha}\nolimits_{i}}\right|}\nolimits^{2}\mathop{\left({\frac{{\mathop{\sigma}\nolimits_{i}}}{{\mathop{\sigma}\nolimits_{i}^{2}+\mathop{\sigma}\nolimits^{2}}}}\right)}\nolimits^{2}}}}}\sum\nolimits_{i=1}^{\gamma}{\frac{{\mathop{\alpha}\nolimits_{i}\mathop{\sigma}\nolimits_{i}}}{{\mathop{\sigma}\nolimits_{i}^{2}+\mathop{\sigma}\nolimits^{2}}}}\left|{\mathop{u}\nolimits_{i}}\right\rangle (28)

where P(|0)=i=1γ|𝛼i|2(Cσi𝜎i2+𝜎2)2P\left({\left|0\right\rangle}\right)=\sum\nolimits_{i=1}^{\gamma}{\mathop{\left|{\mathop{\alpha}\nolimits_{i}}\right|}\nolimits^{2}\mathop{\left({\frac{{\mathop{C\sigma}\nolimits_{i}}}{{\mathop{\sigma}\nolimits_{i}^{2}+\mathop{\sigma}\nolimits^{2}}}}\right)}\nolimits^{2}}.
(5) Perform the unitary transformation T:|𝑢i|𝑣i{\rm T}:\left|{\mathop{u}\nolimits_{i}}\right\rangle\to\left|{\mathop{v}\nolimits_{i}}\right\rangle, we can obtain

|r^=|φ^=1i=1γ|𝛼i|2(𝜎i𝜎i2+𝜎2)2i=1γ𝛼i𝜎i𝜎i2+𝜎2|𝑣i\left|{\hat{r}}\right\rangle=\left|{\hat{\varphi}}\right\rangle{\rm{=}}\frac{1}{{\sqrt{\sum\nolimits_{i=1}^{\gamma}{\mathop{\left|{\mathop{\alpha}\nolimits_{i}}\right|}\nolimits^{2}\mathop{\left({\frac{{\mathop{\sigma}\nolimits_{i}}}{{\mathop{\sigma}\nolimits_{i}^{2}+\mathop{\sigma}\nolimits^{2}}}}\right)}\nolimits^{2}}}}}\sum\nolimits_{i=1}^{\gamma}{\frac{{\mathop{\alpha}\nolimits_{i}\mathop{\sigma}\nolimits_{i}}}{{\mathop{\sigma}\nolimits_{i}^{2}+\mathop{\sigma}\nolimits^{2}}}}\left|{\mathop{v}\nolimits_{i}}\right\rangle (29)

where more details of T{\rm T} is deferred to Appendix A. Thus, we can obtain the quantum state |φ^\left|{\hat{\varphi}}\right\rangle, which is proportional to the vector form of the spatial covariance matrix. Subsequently, for the goal of eigen-decomposition in MUSIC, we transform |φ^\left|{\hat{\varphi}}\right\rangle into a density matrix based on Schmidt decomposition theorem,

Theorem 2

Given compound system |χ\left|\chi\right\rangle, there exist subsystems AA and BB so that

|χ=iλi|φA|φB\left|\chi\right\rangle=\sum\nolimits_{i}{\lambda_{i}}\left|{\varphi_{A}}\right\rangle\left|{\varphi_{B}}\right\rangle (30)

where λi\lambda_{i} is the Schmidt coefficient and iλi2=1\sum\nolimits_{i}\lambda_{i}^{2}=1, and |φA\left|\varphi_{A}\right\rangle and |φB\left|\varphi_{B}\right\rangle are the standard orthogonal basises of subsystems AA and BB, respectively.

By Schmidt decomposition theorem, |φ^\left|{\hat{\varphi}}\right\rangle can be rewritten as follows

|φ^=1i=1γ|αi|2(σiσi2+σ2)2i=1γαiσiσi2+σ2|vi=j=1γσjr^|ujr^A|vjr^B\begin{array}[]{c}\left|{\hat{\varphi}}\right\rangle{\rm{=}}\frac{1}{{\sqrt{\sum\nolimits_{i=1}^{\gamma}{{{\left|{{\alpha_{i}}}\right|}^{2}}{{\left({\frac{{{\sigma_{i}}}}{{\sigma_{i}^{2}+{\sigma^{2}}}}}\right)}^{2}}}}}}\sum\nolimits_{i=1}^{\gamma}{\frac{{{\alpha_{i}}{\sigma_{i}}}}{{\sigma_{i}^{2}+{\sigma^{2}}}}}\left|{{\rm{}}{v_{i}}}\right\rangle\\ {\rm{=}}\sum\nolimits_{j=1}^{\gamma}{\sigma_{j}^{\hat{r}}}{{\left|{{\rm{}}u_{j}^{\hat{r}}}\right\rangle}_{A}}{{\left|{{\rm{}}v_{j}^{\hat{r}}}\right\rangle}_{B}}\end{array} (31)

where |ujr^\left|u_{j}^{{\hat{r}}}\right\rangle and |vjr^\left|v_{j}^{\hat{r}}\right\rangle are left and right singular vectors of |r^\left|{\hat{r}}\right\rangle, σjr^\sigma_{j}^{\hat{r}} is corresponding singular value, respectively. As the spatial covariance matrix is positive definite, its singular vectors are the same as eigenvectors, namely, |ujr^A=|vjr^B\left|u_{j}^{\hat{r}}\right\rangle_{A}=\left|v_{j}^{\hat{r}}\right\rangle_{B}. Therefore, we take the partial trace on the BB register of |φ^φ^|\left|{\hat{\varphi}}\right\rangle\left\langle{\hat{\varphi}}\right| and the density matrix representation 𝜌R^\mathop{\rho}\nolimits_{\hat{R}} can be denoted as

ρR^=tr2(|φ^φ^|)=i=1γ(σjr^)2|ujr^Aujr^|\rho_{\hat{R}}={{\rm tr}}_{2}\left({\left|{\hat{\varphi}}\right\rangle\left\langle{\hat{\varphi}}\right|}\right)=\sum\nolimits_{i=1}^{\gamma}{{\left({\sigma_{j}^{\hat{r}}}\right)}^{2}}{\left|{u_{j}^{\hat{r}}}\right\rangle}_{A}\left\langle{u_{j}^{\hat{r}}}\right| (32)

where ρR^\rho_{\hat{R}} have the same eigenvectors as the spatial covariance matrix.

III.2 The variational quantum density matrix eigensolver for MUSIC

Here, we propose the variational quantum eigensolver for the density matrix, which variationally learns the largest nozero eigenvalues of the density matrix as well as a gate sequence V(θ)V\left(\theta\right) that prepares the corresponding eigenvectors. Before elaborately introuducing our variational quantum eigensolver, we first briefly review following von Neumann theorem,

Theorem 3

Given a symmetric matrix HRM×MH\in R^{M\times M}, for k{1,2,,M}k\in\left\{{1,2,\ldots,M}\right\}, there exists the following form

i=1k𝜆i=max𝑉HV=Itr(𝑉HHV)=max𝑣i|𝑣j=𝛿ij𝑣i|H|𝑣j\sum\nolimits_{i=1}^{k}{\mathop{\lambda}\nolimits_{i}}=\mathop{\max}\limits_{\mathop{V}\nolimits^{H}V=I}{\mathop{\rm tr}\nolimits}\left({\mathop{V}\nolimits^{H}HV}\right)=\mathop{\max}\limits_{\left\langle{\mathop{v}\nolimits_{i}}\right|\left.{\mathop{v}\nolimits_{j}}\right\rangle=\mathop{\delta}\nolimits_{ij}}\left\langle{\mathop{v}\nolimits_{i}}\right|H\left|{\mathop{v}\nolimits_{j}}\right\rangle (33)

where λ1,λ2,λk\lambda_{1},\lambda_{2},\dots\lambda_{k} are eigenvalues of HH and V=[𝑣1,𝑣2,𝑣k]V=\left[{\mathop{v}\nolimits_{1},\mathop{v}\nolimits_{2},\ldots\mathop{v}\nolimits_{k}}\right] are corresponding eigenvectors.

Based on von Neumann theorem and Subspace-search variational quantum eigensolver Nakanishi et al. (2019), our variational quantum eigensolver can be depicted in Algorithm 1

Algorithm 1 : The variational quantum density matrix eigensolver

Input : the density matrix ρR^\rho_{\hat{R}}, a set of positive real weights 𝑞1>𝑞2>>𝑞L>0\mathop{q}\nolimits_{1}>\mathop{q}\nolimits_{2}>\cdots>\mathop{q}\nolimits_{L}>0
step 1: Construct an ansatz circuit V(θ)V\left(\overrightarrow{\theta}\right) and choose input states {|𝜑i}i=1L\mathop{\left\{{\left|{\mathop{\varphi}\nolimits_{i}}\right\rangle}\right\}}\nolimits_{i=1}^{L}, which are mutually orthogonal quantum states.
step 2: Define an objective function L(θ)=(i=1Lqi)i=1Lqi(i=1Lqi)φi|VH(θ)ρR^V(θ)|φiL\left(\overrightarrow{\theta}\right)=\left({\textstyle\sum_{i=1}^{L}}q_{i}\right)\sum\nolimits_{i=1}^{L}\frac{{q_{i}}}{\left({\textstyle\sum_{i=1}^{L}}q_{i}\right)}\left\langle{\varphi_{i}}\right|V^{H}\left(\overrightarrow{\theta}\right)\rho_{\hat{R}}V\left(\overrightarrow{\theta}\right)\left|{\varphi_{i}}\right\rangle.
step 3: Rewritten the objective function L(θ)L\left(\overrightarrow{\theta}\right) as (i=1Lqi)C(θ)\left({\textstyle\sum_{i=1}^{L}}q_{i}\right)C\left(\overrightarrow{\theta}\right).
step 4: Compute C(θ)C\left(\overrightarrow{\theta}\right) in a quantum computer and apply the classical optimization algorithm to maximize C(θ)C\left(\overrightarrow{\theta}\right). The optimal θ\overrightarrow{\theta} can be represented as θ\overrightarrow{\theta}^{\ast}.
Output : {V(θ)|φi}i=1L\left\{V\left(\overrightarrow{\theta}^{\ast}\right)\left|\varphi_{i}\right\rangle\right\}_{i=1}^{L} are approximate eigenvectors.

In step 1, given a series of parameter vectors θ=(θ1,θ2,θm)\overrightarrow{\theta}=\left(\theta_{1},\theta_{2},\dots\theta_{m}\right), the quantum circuit VV is defined as

V(θ)=Vm(θm)Vm1(θm1)V1(θ1)V\left(\overrightarrow{\theta}\right)=V_{m}\left(\theta_{m}\right)V_{m-1}\left(\theta_{m-1}\right)\dots V_{1}\left(\theta_{1}\right) (34)

where the ansatz circuit can be shown in Fig. 5. Note that the number of parameters is logarithmically proportional to the dimension of the density matrix. These parameterized quantum circuits have shown significant potential power in quantum neural network and quantum circuit Born machines Marcello et al. (2019); Killoran et al. (2019); Perdomo et al. (2019).

Refer to caption
Figure 5: The structure of the ansatz circuit.

In step 3, C(θ)C\left(\overrightarrow{\theta}\right) can be denoted as

C(θ)=i=1Lqi(i=1Lqi)φi|VH(θ)ρR^V(θ)|φiC\left(\overrightarrow{\theta}\right)=\sum\nolimits_{i=1}^{L}\frac{{q_{i}}}{\left({\textstyle\sum_{i=1}^{L}}q_{i}\right)}\left\langle{\varphi_{i}}\right|V^{H}\left(\overrightarrow{\theta}\right)\rho_{\hat{R}}V\left(\overrightarrow{\theta}\right)\left|{\varphi_{i}}\right\rangle (35)

Further, we can transform C(θ)C\left(\overrightarrow{\theta}\right) into a trace form as follows

C(θ)=tr(VH(θ)ρR^V(θ)ρf)C\left(\overrightarrow{\theta}\right)=\mathrm{tr}\left(V^{H}\left(\overrightarrow{\theta}\right)\rho_{\hat{R}}V\left(\overrightarrow{\theta}\right)\rho_{f}\right) (36)

where ρf=i=1Lqii=1Lqi|φiφi|\rho_{f}={\textstyle\sum_{i=1}^{L}}\frac{q_{i}}{{\textstyle\sum_{i=1}^{L}}q_{i}}\left|\varphi_{i}\right\rangle\left\langle\varphi_{i}\right|. Unlike existing variational quantum eigensolvers, the density matrix ρR^\rho_{\hat{R}} can not be represented as a linear combination of unitary matrices. This is because the density matrix is the output of the quantum algorithm in the previous quantum subroutine, we do not have any prior information on ρR^\rho_{\hat{R}} without quantum tomography. However, we transform the expection form in the objective function into the trace of two density matrices. Thus, in our quantum algorithm, a linear combination of unitary matrices is not required and the objective function C(θ)C\left(\overrightarrow{\theta}\right) can effectively be implemented in Destructive Swap Test, which is shown in Fig. 6. Moreover, the detailed quantum implementation scheme is depicted in Fig. 7, and for the implementation, we consider the following a 4×44\times 4 density matrix (using two qubit).

Example: An random density matrix ρin\rho_{in} with four fixed eigenvalues λ1=0.4,λ2=0.3,λ3=0.2,λ4=0.1\lambda_{1}=0.4,\lambda_{2}=0.3,\lambda_{3}=0.2,\lambda_{4}=0.1, a group of positive real weights are q1=4,q2=3,q3=2,q4=1q_{1}=4,q_{2}=3,q_{3}=2,q_{4}=1 and |φ1=|1,|φ2=|2,|φ3=|3,|φ4=|4\left|\varphi_{1}\right\rangle=\left|1\right\rangle,\left|\varphi_{2}\right\rangle=\left|2\right\rangle,\left|\varphi_{3}\right\rangle=\left|3\right\rangle,\left|\varphi_{4}\right\rangle=\left|4\right\rangle. The experiment’s results of the VQDME implementation are shown in Fig. 8. As shown in the above figures, we can obtain four eigenvalues and eigenvectors within 200 quantum-classical hybrid iterations, which are very close to the exact ones.

Refer to caption
Figure 6: Destructive Swap Test for loss function CC.
Refer to caption
Figure 7: Schematic diagram for VQDME algorithm
Refer to caption
(a) The convergence to the first eigenvalue.
Refer to caption
(b) The convergence to the second eigenvalue.
Refer to caption
(c) The convergence to the third eigenvalue.
Refer to caption
(d) The convergence to the fourth eigenvalue.
Figure 8: Convergence curve of the VQDME implementation for example

III.3 The quantum labeling operation for directions searching

To implement the direction angles estimation, we can rewrite the object (12) as

𝜃MUSIC=minθ𝑎H(θ)𝑈n𝑈nHa(θ)=minθ𝑎H(θ)(I𝑈s𝑈sH)a(θ)=minθ(M𝑎H(θ)𝑈s𝑈sHa(θ))=maxθ𝑎H(θ)𝑈s𝑈sHa(θ)=maxθi=1L(αiθ)2\begin{array}[]{l}\mathop{\theta}\nolimits_{MUSIC}=\mathop{\min}\limits_{\theta}\mathop{a}\nolimits^{H}\left(\theta\right)\mathop{U}\nolimits_{n}\mathop{U}\nolimits_{n}^{H}a\left(\theta\right)=\\ \mathop{\min}\limits_{\theta}\mathop{a}\nolimits^{H}\left(\theta\right)\left({I-\mathop{U}\nolimits_{s}\mathop{U}\nolimits_{s}^{H}}\right)a\left(\theta\right)=\\ \mathop{\min}\limits_{\theta}\left({M-\mathop{a}\nolimits^{H}\left(\theta\right)\mathop{U}\nolimits_{s}\mathop{U}\nolimits_{s}^{H}a\left(\theta\right)}\right)=\\ \mathop{\max}\limits_{\theta}\mathop{a}\nolimits^{H}\left(\theta\right)\mathop{U}\nolimits_{s}\mathop{U}\nolimits_{s}^{H}a\left(\theta\right)=\mathop{\max}\limits_{\theta}{\textstyle\sum_{i=1}^{L}}\left(\alpha_{i}^{\theta}\right)^{2}\end{array} (37)

where αiθ=aH(θ)ui,i=1,2,,L\alpha_{i}^{\theta}=a^{H}\left(\theta\right)u_{i},i=1,2,\dots,L are the projections on the signal subspace. Although we have implemented the optimal quantum network V(θ)V\left(\overrightarrow{\theta}^{\ast}\right), it is hard to construct the controlled V(θ)V\left(\overrightarrow{\theta}^{\ast}\right). Namely, we can not prepare a coherent state of {|ui}i=1L\left\{\left|u_{i}\right\rangle\right\}_{i=1}^{L} and the projections on the signal subspace can also be calculated by the quantum parallelism. Fortunately, the projections on entire space can be obtained by the quantum computing, and a quantum labeling algorithm is required to extract the projections on the signal subspace from ones on entire space. Here, we design a quantum labeling operation based on the set {|φi}i=1L\left\{\left|\varphi_{i}\right\rangle\right\}_{i=1}^{L} and the detailed implementation is as follows:
(1) Prepare the coherent quantum state |ϕS\left|{\mathop{\phi}\nolimits_{S}}\right\rangle for the searching space vector set |a(𝜃n)\left|{a\left({\mathop{\theta}\nolimits_{n}}\right)}\right\rangle, n=1,2,,Kn=1,2,\ldots,K, as

|ϕS=1Kn=1K|n|a(𝜃n)=1Kn=1K|ni=1M𝛼in|𝑢ir^\begin{array}[]{l}\left|{\mathop{\phi}\nolimits_{S}}\right\rangle=\frac{1}{{\sqrt{K}}}\sum\nolimits_{n=1}^{K}{\left|n\right\rangle\left|{a\left({\mathop{\theta}\nolimits_{n}}\right)}\right\rangle}=\\ \frac{1}{{\sqrt{K}}}\sum\nolimits_{n=1}^{K}{\left|n\right\rangle\sum\nolimits_{i=1}^{M}{\mathop{\alpha}\nolimits_{i}^{n}\left|{\mathop{u}\nolimits_{i}^{\hat{r}}}\right\rangle}}\end{array} (38)

where |𝑢ir^{\left|{\mathop{u}\nolimits_{i}^{\hat{r}}}\right\rangle} is the eigenvector of 𝜌R^\mathop{\rho}\nolimits_{\hat{R}} and 𝛼in=𝑢ir^|a(𝜃n),i=1,2,,M\mathop{\alpha}\nolimits_{i}^{n}=\left\langle{\mathop{u}\nolimits_{i}^{\hat{r}}}\right.\left|{a\left({\mathop{\theta}\nolimits_{n}}\right)}\right\rangle,i=1,2,\dots,M is the projections on the entire space of searching space vector.

(2) Perform the inverse optimal quantum network 𝑉H(𝜃)\mathop{V}\nolimits^{H}\left({\mathop{\theta}\nolimits^{*}}\right) on the second register, we have the following state

|ϕS=1Kn=1K|ni=1M𝛼in|𝜑i\left|{\mathop{\phi}\nolimits_{S}}\right\rangle=\frac{1}{{\sqrt{K}}}\sum\nolimits_{n=1}^{K}{\left|n\right\rangle\sum\nolimits_{i=1}^{M}{\mathop{\alpha}\nolimits_{i}^{n}\left|{\mathop{\varphi}\nolimits_{i}}\right\rangle}} (39)

(3) Append a single qubit label register with the initial |0\left|0\right\rangle. As we select some certain orthogonal basis vectors as |𝜑i{\left|{\mathop{\varphi}\nolimits_{i}}\right\rangle}, without loss of generality let {|𝜑i}i=1L\left\{\left|{\mathop{\varphi}\nolimits_{i}}\right\rangle\right\}_{i=1}^{L} be the computational basis set {|i}i=1L\left\{\left|i\right\rangle\right\}_{i=1}^{L}, then we can construct the labeling mapping as

k=1L|kk|X+(IMk=1L|kk|)I2{\textstyle\sum_{k=1}^{L}}\left|k\right\rangle\left\langle k\right|\otimes X+\left(I_{M}-{\textstyle\sum_{k=1}^{L}}\left|k\right\rangle\left\langle k\right|\right)\otimes I_{2} (40)

and the operation on {|𝜑i}i=1L\left\{\left|{\mathop{\varphi}\nolimits_{i}}\right\rangle\right\}_{i=1}^{L} can be denoted as

CU:|𝜑i|0label|𝜑i|1label,i=1,2,,LCU:\left|{\mathop{\varphi}\nolimits_{i}}\right\rangle\mathop{\left|0\right\rangle}\nolimits^{{\mathop{\rm label}\nolimits}}\to\left|{\mathop{\varphi}\nolimits_{i}}\right\rangle\mathop{\left|1\right\rangle}\nolimits^{{\mathop{\rm label}\nolimits}},{\kern 1.0pt}{\kern 1.0pt}{\kern 1.0pt}{\kern 1.0pt}{\kern 1.0pt}{\kern 1.0pt}i=1,2,\ldots,L (41)
CU:|𝜑i|0label|𝜑i|0label,i=L+1,,MCU:\left|{\mathop{\varphi}\nolimits_{i}}\right\rangle\mathop{\left|0\right\rangle}\nolimits^{{\mathop{\rm label}\nolimits}}\to\left|{\mathop{\varphi}\nolimits_{i}}\right\rangle\mathop{\left|0\right\rangle}\nolimits^{{\mathop{\rm label}\nolimits}},{\kern 1.0pt}{\kern 1.0pt}{\kern 1.0pt}{\kern 1.0pt}{\kern 1.0pt}{\kern 1.0pt}i=L+1,\ldots,M (42)

Thus, we have the state as follows

CU:|ϕSn=1K|nK(i=1L𝛼in|𝜑i|1label+i=L+1M𝛼in|𝜑i|0label)\begin{array}[]{l}CU:\left|{\mathop{\phi}\nolimits_{S}}\right\rangle\to\\ \sum\nolimits_{n=1}^{K}{\frac{{\left|n\right\rangle}}{{\sqrt{K}}}\left({\sum\nolimits_{i=1}^{L}{\mathop{\alpha}\nolimits_{i}^{n}\left|{\mathop{\varphi}\nolimits_{i}}\right\rangle\mathop{\left|1\right\rangle}\nolimits^{{\mathop{\rm label}\nolimits}}+\sum\nolimits_{i=L+1}^{M}{\mathop{\alpha}\nolimits_{i}^{n}\left|{\mathop{\varphi}\nolimits_{i}}\right\rangle\mathop{\left|0\right\rangle}\nolimits^{{\mathop{\rm label}\nolimits}}}}}\right)}\end{array} (43)

Therefore, the projections of |a(𝜃n)\left|{a\left({\mathop{\theta}\nolimits_{n}}\right)}\right\rangle on the signal subspace labeled |1label{\mathop{\left|1\right\rangle}\nolimits^{{\mathop{\rm label}\nolimits}}} are separated from projections on the noise subspace with label |0label{\mathop{\left|0\right\rangle}\nolimits^{{\mathop{\rm label}\nolimits}}}.
(4) Measure the label register in |1label{\mathop{\left|1\right\rangle}\nolimits^{{\mathop{\rm label}\nolimits}}} with the probability 𝑃S(|1)\mathop{P}\nolimits_{S}\left({\left|1\right\rangle}\right), then we have the state

|ϕS=1n=1Ki=1L(𝛼in)2n=1K|ni=1L𝛼in|𝜑i\left|{\mathop{\phi}\nolimits_{S}}\right\rangle=\frac{1}{{\sqrt{\sum\nolimits_{n=1}^{K}{\sum\nolimits_{i=1}^{L}{\mathop{\left({\mathop{\alpha}\nolimits_{i}^{n}}\right)}\nolimits^{2}}}}}}\sum\nolimits_{n=1}^{K}{\left|n\right\rangle\sum\nolimits_{i=1}^{L}{\mathop{\alpha}\nolimits_{i}^{n}\left|{\mathop{\varphi}\nolimits_{i}}\right\rangle}} (44)

(5) Perform a small amount of sampling on the first register of |ϕS\left|{\mathop{\phi}\nolimits_{S}}\right\rangle with the probability P(|n)=i=1L(𝛼in)2n=1Ki=1L(𝛼in)2P\left({\left|n\right\rangle}\right)=\frac{{\sum\nolimits_{i=1}^{L}{\mathop{\left({\mathop{\alpha}\nolimits_{i}^{n}}\right)}\nolimits^{2}}}}{{\sqrt{\sum\nolimits_{n=1}^{K}{\sum\nolimits_{i=1}^{L}{\mathop{\left({\mathop{\alpha}\nolimits_{i}^{n}}\right)}\nolimits^{2}}}}}}, and satisfy

i=1L(𝛼in)2n=1Ki=1L(𝛼in)2𝑎H(θ)𝑈s𝑈sHa(θ)\frac{{\sum\nolimits_{i=1}^{L}{\mathop{\left({\mathop{\alpha}\nolimits_{i}^{n}}\right)}\nolimits^{2}}}}{{\sqrt{\sum\nolimits_{n=1}^{K}{\sum\nolimits_{i=1}^{L}{\mathop{\left({\mathop{\alpha}\nolimits_{i}^{n}}\right)}\nolimits^{2}}}}}}\propto\mathop{a}\nolimits^{H}\left(\theta\right)\mathop{U}\nolimits_{s}\mathop{U}\nolimits_{s}^{H}a\left(\theta\right) (45)

As sample can be more easily selected with higher probability, the most frequently selected samples can represent the direction estimation values that satisfy the object (33).

III.4 Time complexity and error analysis

Time complexity for |φ^\left|{\hat{\varphi}}\right\rangle: The state |P\left|P\right\rangle can be prepared with the complexity O(poly(logQ)){\rm O}\left({{\mathop{\rm poly}\nolimits}\left({\log Q}\right)}\right), 𝑈N\mathop{U}\nolimits_{\rm N} and 𝑈M\mathop{U}\nolimits_{\rm M} can be implemented in the runtime O(logQ){\rm O}\left({\log Q}\right) and O(poly(logQM)){\rm O}\left({{\mathop{\rm poly}\nolimits}\left({\log QM}\right)}\right), respectively. Let the error in SVE be 𝜀pAF\mathop{\varepsilon}\nolimits_{p}\mathop{\left\|A\right\|}\nolimits_{F}, where 𝜀p\mathop{\varepsilon}\nolimits_{p} is the error in the phase estimation. We define the function h(σ)h\left(\sigma\right) as

h(λ)=λ𝜆2+𝜎2,λ[1𝜅A,1]h\left(\lambda\right)=\frac{\lambda}{{\mathop{\lambda}\nolimits^{2}+\mathop{\sigma}\nolimits^{2}}},{\kern 1.0pt}{\kern 1.0pt}{\kern 1.0pt}{\kern 1.0pt}\lambda\in\left[{\frac{1}{{\mathop{\kappa}\nolimits_{A}}},1}\right] (46)

where 𝜅A{\mathop{\kappa}\nolimits_{A}} is the condition number of AA. Then, we take the derivative of h(σ)h\left(\sigma\right) as

h(λ)={𝜎2𝜆2(𝜆2+𝜎2)<0,λ>σ𝜎2𝜆2(𝜆2+𝜎2)0,0λσh^{\prime}\left(\lambda\right)=\left\{{\begin{array}[]{*{20}{c}}{\frac{{\mathop{\sigma}\nolimits^{2}-\mathop{\lambda}\nolimits^{2}}}{{\left({\mathop{\lambda}\nolimits^{2}+\mathop{\sigma}\nolimits^{2}}\right)}}<0,\lambda>\sigma{\kern 1.0pt}{\kern 1.0pt}{\kern 1.0pt}}\\ {\frac{{\mathop{\sigma}\nolimits^{2}-\mathop{\lambda}\nolimits^{2}}}{{\left({\mathop{\lambda}\nolimits^{2}+\mathop{\sigma}\nolimits^{2}}\right)}}\geq 0,0\leq\lambda\leq\sigma{\kern 1.0pt}{\kern 1.0pt}}\end{array}}\right. (47)

As the parameter 𝜎2{\mathop{\sigma}\nolimits^{2}} is required to be a number closed to 0 in the reconstruction of the spatial covariance matrix, we can deduce σ1𝜅A\sigma\leq\frac{1}{{\mathop{\kappa}\nolimits_{A}}}. Therefore, h(σ)h\left(\sigma\right) is demonstrated to be monotonic decreasing with [1𝜅A,1]\left[{\frac{1}{{\mathop{\kappa}\nolimits_{A}}},1}\right]. Thus, we can estimate

11+𝜎2i=1Q|𝛼i|2(𝜎i𝜎i2+𝜎2)2<𝜅A\frac{1}{{1+\mathop{\sigma}\nolimits^{2}}}\leq\sqrt{\sum\nolimits_{i=1}^{Q}{\mathop{\left|{\mathop{\alpha}\nolimits_{i}}\right|}\nolimits^{2}\mathop{\left({\frac{{\mathop{\sigma}\nolimits_{i}}}{{\mathop{\sigma}\nolimits_{i}^{2}+\mathop{\sigma}\nolimits^{2}}}}\right)}\nolimits^{2}}}<\mathop{\kappa}\nolimits_{A} (48)

, C=1𝜅A+𝜅A𝜎2C=\frac{1}{{\mathop{\kappa}\nolimits_{A}}}+\mathop{\kappa}\nolimits_{A}\mathop{\sigma}\nolimits^{2} and

P(|0)=i=1Q|𝛼i|2(Cσi𝜎i2+𝜎2)2𝐶2(11+𝜎2)2=(1𝜅A+𝜅A𝜎2)2(11+𝜎2)2>14(1𝜅A+𝜅A𝜎2)2\displaystyle P\left({\left|0\right\rangle}\right)=\sum\nolimits_{i=1}^{Q}{\mathop{\left|{\mathop{\alpha}\nolimits_{i}}\right|}\nolimits^{2}\mathop{\left({\frac{{\mathop{C\sigma}\nolimits_{i}}}{{\mathop{\sigma}\nolimits_{i}^{2}+\mathop{\sigma}\nolimits^{2}}}}\right)}\nolimits^{2}}\geq\mathop{C}\nolimits^{2}\mathop{\left({\frac{1}{{1+\mathop{\sigma}\nolimits^{2}}}}\right)}\nolimits^{2}=\mathop{\left({\frac{1}{{\mathop{\kappa}\nolimits_{A}}}+\mathop{\kappa}\nolimits_{A}\mathop{\sigma}\nolimits^{2}}\right)}\nolimits^{2}\mathop{\left({\frac{1}{{1+\mathop{\sigma}\nolimits^{2}}}}\right)}\nolimits^{2}>\frac{1}{4}\mathop{\left({\frac{1}{{\mathop{\kappa}\nolimits_{A}}}+\mathop{\kappa}\nolimits_{A}\mathop{\sigma}\nolimits^{2}}\right)}\nolimits^{2} (49)

Moreover, we can estimate |h(λ)h(λ~)|\left|{h\left(\lambda\right)-h\left({\tilde{\lambda}}\right)}\right| as

|h(λ)h(λ~)||h(λ)h(λ~)||λλ~||λλ~||h(λ)||λλ~|<𝜅A𝜀pAF1+𝜎2κA2\begin{array}[]{l}\left|{h\left(\lambda\right)-h\left({\tilde{\lambda}}\right)}\right|\approx\frac{{\left|{h\left(\lambda\right)-h\left({\tilde{\lambda}}\right)}\right|}}{{\left|{\lambda-\tilde{\lambda}}\right|}}\left|{\lambda-\tilde{\lambda}}\right|\approx\left|{h^{\prime}\left(\lambda\right)}\right|\left|{\lambda-\tilde{\lambda}}\right|<\\ \frac{{\mathop{\kappa}\nolimits_{A}\mathop{\varepsilon}\nolimits_{p}\mathop{\left\|A\right\|}\nolimits_{F}}}{{1+\mathop{\mathop{\sigma}\nolimits^{2}\kappa}\nolimits_{A}^{2}}}\end{array} (50)

We define the ideal state |𝜑\left|{\mathop{\varphi}\nolimits^{*}}\right\rangle, then we have

|φ^|𝜑2i=1Q𝜎i𝜎i2+𝜎2|𝑣ii=1Qσ~iσ~i2+𝜎2|𝑣i2i=1Q(𝜎i𝜎i2+𝜎2σ~iσ~i2+𝜎2)|𝑣i2(𝜅A𝜀pAF1+𝜎2κA2)2\begin{array}[]{l}\mathop{\left\|{\left|{\hat{\varphi}}\right\rangle-\left|{\mathop{\varphi}\nolimits^{*}}\right\rangle}\right\|}\nolimits^{2}\leq\mathop{\left\|{\sum\nolimits_{i=1}^{Q}{\frac{{\mathop{\sigma}\nolimits_{i}}}{{\mathop{\sigma}\nolimits_{i}^{2}+\mathop{\sigma}\nolimits^{2}}}\left|{\mathop{v}\nolimits_{i}}\right\rangle-\sum\nolimits_{i=1}^{Q}{\frac{{\mathop{\tilde{\sigma}}\nolimits_{i}}}{{\mathop{\tilde{\sigma}}\nolimits_{i}^{2}+\mathop{\sigma}\nolimits^{2}}}\left|{\mathop{v}\nolimits_{i}}\right\rangle}}}\right\|}\nolimits^{2}\\ \leq\mathop{\left\|{\sum\nolimits_{i=1}^{Q}{\left({\frac{{\mathop{\sigma}\nolimits_{i}}}{{\mathop{\sigma}\nolimits_{i}^{2}+\mathop{\sigma}\nolimits^{2}}}-\frac{{\mathop{\tilde{\sigma}}\nolimits_{i}}}{{\mathop{\tilde{\sigma}}\nolimits_{i}^{2}+\mathop{\sigma}\nolimits^{2}}}}\right)\left|{\mathop{v}\nolimits_{i}}\right\rangle}}\right\|}\nolimits^{2}\leq\mathop{\left({\frac{{\mathop{\kappa}\nolimits_{A}\mathop{\varepsilon}\nolimits_{p}\mathop{\left\|A\right\|}\nolimits_{F}}}{{1+\mathop{\mathop{\sigma}\nolimits^{2}\kappa}\nolimits_{A}^{2}}}}\right)}\nolimits^{2}\end{array} (51)

Let the final error be ε\varepsilon, that is |φ^|𝜑<ε\left\|{\left|{\hat{\varphi}}\right\rangle-\left|{\mathop{\varphi}\nolimits^{*}}\right\rangle}\right\|<\varepsilon, we have

𝜀p=ε(1+𝜎2κA2)𝜅AAF\mathop{\varepsilon}\nolimits_{p}=\frac{{\varepsilon\left({1+\mathop{\mathop{\sigma}\nolimits^{2}\kappa}\nolimits_{A}^{2}}\right)}}{{\mathop{\mathop{\kappa}\nolimits_{A}\left\|A\right\|}\nolimits_{F}}} (52)

Considering the complexity of the singular vector transition, applying the amplitude amplification technique Brassard et al. (2002), the complexity of implementing |φ^\left|{\hat{\varphi}}\right\rangle is estimated as

O(𝜅A2AFε(1+𝜎2κA2)poly(logMQ))=O(𝜅A2AFpoly(logMQ)ε)\begin{array}[]{l}{\rm O}\left({\frac{{\mathop{\mathop{\kappa}\nolimits_{A}^{2}\left\|A\right\|}\nolimits_{F}}}{{\varepsilon\left({1+\mathop{\mathop{\sigma}\nolimits^{2}\kappa}\nolimits_{A}^{2}}\right)}}{\mathop{\rm poly}\nolimits}\left({\log MQ}\right)}\right)=\\ {\rm O}\left({\frac{{\mathop{\mathop{\kappa}\nolimits_{A}^{2}\left\|A\right\|}\nolimits_{F}{\mathop{\rm poly}\nolimits}\left({\log MQ}\right)}}{\varepsilon}}\right)\end{array} (53)

Time complexity for VQDME: Let the error of VQDME algorithm be ε\varepsilon. Based on Wang et al. (2020a), we can approximately estimate the complexity of VQDME as

O(𝑇VQDMEpoly(logM)𝜀2){\rm O}\left({\frac{{\mathop{T}\nolimits_{VQDME}\mathrm{poly}\left(\log M\right)}}{{\mathop{\varepsilon}\nolimits^{2}}}}\right) (54)

where 𝑇VQDME{\mathop{T}\nolimits_{VQDME}} is the iteration number of the optimization. Therefore, we can obtain the signal subspace with O(𝑇VQDMEpoly(logM)𝜀2){\rm O}\left({\frac{{\mathop{T}\nolimits_{VQDME}\mathrm{poly}\left(\log M\right)}}{{\mathop{\varepsilon}\nolimits^{2}}}}\right) times quantum-classical hybrid operations.

Time complexity for quantum labeling: First, the searching space can be prepared with the complexity O(polylogKM){\rm O}\left({{\rm{poly}}\log KM}\right), and then we can estimate

𝑃S(|1)=1Kn=1Ki=1L|𝛼in|2=Θ(1)\mathop{P}\nolimits_{S}\left({\left|1\right\rangle}\right)=\frac{1}{K}\sum\nolimits_{n=1}^{K}{\sum\nolimits_{i=1}^{L}{\mathop{\left|{\mathop{\alpha}\nolimits_{i}^{n}}\right|}\nolimits^{2}}}=\Theta\left(1\right) (55)

Moreover, a small amount of sampling are required for the direction estimation satisfying the object (33).

Therefore, Combining the above three quantum subroutines, our MUSIC-based DOA estimation algorithm can be implemented with the complexity

O(𝜅A2TVQDMEAFpolylogMKQ𝜀3){\rm O}\left({\frac{{\mathop{\mathop{\kappa}\nolimits_{A}^{2}T_{VQDME}\left\|A\right\|}\nolimits_{F}{\rm{poly}}\log MKQ}}{{\mathop{\varepsilon}\nolimits^{3}}}}\right){\kern 1.0pt}{\kern 1.0pt}{\kern 1.0pt}{\kern 1.0pt}{\kern 1.0pt}{\kern 1.0pt}{\kern 1.0pt}{\kern 1.0pt}{\kern 1.0pt}{\kern 1.0pt}{\kern 1.0pt} (56)

Without loss of generality, the amplitude of the element in AA is less than or equal to 11 and QMQ\gg M, thus AF\left\|A\right\|_{F} is approximate O(Q){\rm O}\left(Q\right).

IV Conclusion

In the present study, we design the quantum algorithm for MUSIC-based DOA estimation. In classical DOA, the time complexity for the reconstruction of the spatial covariance matrix, the eigenvalue decomposition and direction parameter search are approximate O(polyMQK){\rm O}\left({{\rm{poly}}MQK}\right). The exponentially large number of array and signal is intricate in classical computers. Compared with classical MUSIC-based DOA estimation, our quantum algorithm can provide an exponential speedup on MM and KK, and a polynomial speedup on QQ over classical counterparts when TVQDMET_{VQDME}, κA\kappa_{A} and 1ε\frac{1}{\varepsilon} can be approximately estimated as O(poly(logMKQ)){\rm O}\left(\mathrm{poly}\left(\mathrm{log}MKQ\right)\right). In our algorithm, we first develop the quantum subroutine for the vector form of the spatial covariance matrix. The subroutine based on SVE can be implemented without the extending Hermitian form of the matrix. Second, a variational quantum density matrix eigensolver (VQDME) is proposed for obtaining signal and noise subspaces, where we design a novel objective function in the form of the trace of density matrices product. Finally, a quantum labeling operation is proposed for the direction of arrival estimation of signal.

Acknowledgements.
This work was supported by the National Science Foundation of China (No. 61871111 and No. 61960206005).

Appendix A NUMERICAL SIMULATIONS

We define two isometry operators M{\rm M} and N{\rm N} so that

M=i=0Q1|i|𝐴ii|:|i|i|𝐴i=1𝐴i2j=0𝑀21𝐴ij|i|j\begin{array}[]{l}{\rm M}{\rm{=}}\sum\nolimits_{i=0}^{Q-1}{\left|i\right\rangle\left|{\mathop{A}\nolimits_{i}}\right\rangle}\left\langle i\right|:\left|i\right\rangle\to\left|i\right\rangle\left|{\mathop{A}\nolimits_{i}}\right\rangle\\ =\frac{1}{{\mathop{\left\|{\mathop{A}\nolimits_{i}}\right\|}\nolimits_{2}}}\sum\nolimits_{j=0}^{\mathop{M}\nolimits^{2}-1}{\mathop{A}\nolimits_{ij}\left|i\right\rangle\left|j\right\rangle}\end{array} (57)
N=j=0𝑀21|AF|jj|:|j|AF|j=1AFi=0Q1𝐴i2|i|j\begin{array}[]{l}{\rm N}{\rm{=}}\sum\nolimits_{j=0}^{\mathop{M}\nolimits^{2}-1}{\left|{\mathop{\left\|A\right\|}\nolimits_{F}}\right\rangle}\left|j\right\rangle\left\langle j\right|:\left|j\right\rangle\to\left|{\mathop{\left\|A\right\|}\nolimits_{F}}\right\rangle\left|j\right\rangle\\ =\frac{1}{{\mathop{\left\|A\right\|}\nolimits_{F}}}\sum\nolimits_{i=0}^{Q-1}{\mathop{\left\|{\mathop{A}\nolimits_{i}}\right\|}\nolimits_{2}\left|i\right\rangle\left|j\right\rangle}\end{array} (58)

Similarly, we can obtain

MHN=1AFi=0Q1j=0𝑀21𝐴ij|ij|=AAF{\rm M}^{H}{\rm N}=\frac{1}{{\mathop{\left\|A\right\|}\nolimits_{F}}}\sum\nolimits_{i=0}^{Q-1}{\sum\nolimits_{j=0}^{\mathop{M}\nolimits^{2}-1}{\mathop{A}\nolimits_{ij}\left|i\right\rangle\left\langle j\right|}}=\frac{A}{{\mathop{\left\|A\right\|}\nolimits_{F}}} (59)

and MHM=𝐼Q{\rm M}^{H}{\rm M}=\mathop{I}\nolimits_{Q} and NHN=IM2{\rm N}^{H}{\rm N}=I_{M^{2}}. Let the unitary transformation WW be

W=(2NNHI)(2MMHI)W=\left({2{\rm N}{\rm N}^{H}-I}\right)\left({2{\rm M}{\rm M}^{H}-I}\right) (60)

where WW can be efficiently implemented with the complexity O(poly(logMQ)){\rm{O}}\left({{\rm{poly}}\left({\log MQ}\right)}\right) based on unitaries UMU_{\rm M} and UNU_{\rm N}. Then, we perform WW on N|vi{\rm N}\left|{v_{i}}\right\rangle and M|ui{\rm M}\left|{u_{i}}\right\rangle as

(2NNHI)(2MMHI)M|𝑢i=(2NNHI)M|ui=2NNHM|uiM|ui=2NAHAF|uiM|ui=2σiN|viAFM|ui\begin{array}[]{l}\left({2{\rm N}{\rm N}^{H}-I}\right)\left({2{\rm M}{\rm M}^{H}-I}\right){\rm M}\left|{\mathop{u}\nolimits_{i}}\right\rangle\\ =\left({2{\rm N}{\rm N}^{H}-I}\right){\rm M}\left|{u_{i}}\right\rangle=2{\rm N}{\rm N}^{H}{\rm M}\left|{u_{i}}\right\rangle-{\rm M}\left|{u_{i}}\right\rangle\\ =2{\rm N}\frac{{A^{H}}}{{{\left\|A\right\|}_{F}}}\left|{u_{i}}\right\rangle-{\rm M}\left|{u_{i}}\right\rangle=2\frac{{\sigma_{i}{\rm N}\left|{v_{i}}\right\rangle}}{{{\left\|A\right\|}_{F}}}-{\rm M}\left|{u_{i}}\right\rangle\end{array} (61)
(2NNHI)(2MMHI)N|𝑣i=(2NNHI)(2MMHN|𝑣iN|𝑣i)=(2NNHI)(2MAAF|𝑣iN|𝑣i)=(2NNHI)(2M𝜎i|𝑢iAFN|𝑣i)=4N𝐴HAF𝜎i|𝑢iAF2N|𝑣i2M𝜎i|𝑢iAF+N|𝑣i=4N𝜎i2|𝑣iAF22M𝜎i|𝑢iAFN|𝑣i=(4σi2AF21)N|𝑣i2M𝜎i|𝑢iAF\begin{array}[]{l}\left({2{\rm N}\mathop{\rm N}\nolimits^{H}-I}\right)\left({2{\rm M}\mathop{\rm M}\nolimits^{H}-I}\right){\rm N}\left|{\mathop{v}\nolimits_{i}}\right\rangle\\ =\left({2{\rm N}\mathop{\rm N}\nolimits^{H}-I}\right)\left({2{\rm M}\mathop{\rm M}\nolimits^{H}{\rm N}\left|{\mathop{v}\nolimits_{i}}\right\rangle-{\rm N}\left|{\mathop{v}\nolimits_{i}}\right\rangle}\right)\\ =\left({2{\rm N}\mathop{\rm N}\nolimits^{H}-I}\right)\left({2{\rm M}\frac{A}{{\mathop{\left\|A\right\|}\nolimits_{F}}}\left|{\mathop{v}\nolimits_{i}}\right\rangle-{\rm N}\left|{\mathop{v}\nolimits_{i}}\right\rangle}\right)=\\ \left({2{\rm N}\mathop{\rm N}\nolimits^{H}-I}\right)\left({2{\rm M}\frac{{\mathop{\sigma}\nolimits_{i}\left|{\mathop{u}\nolimits_{i}}\right\rangle}}{{\mathop{\left\|A\right\|}\nolimits_{F}}}-{\rm N}\left|{\mathop{v}\nolimits_{i}}\right\rangle}\right)=\\ 4{\rm N}\frac{{\mathop{A}\nolimits^{H}}}{{\mathop{\left\|A\right\|}\nolimits_{F}}}\frac{{\mathop{\sigma}\nolimits_{i}\left|{\mathop{u}\nolimits_{i}}\right\rangle}}{{\mathop{\left\|A\right\|}\nolimits_{F}}}-2{\rm N}\left|{\mathop{v}\nolimits_{i}}\right\rangle-2{\rm M}\frac{{\mathop{\sigma}\nolimits_{i}\left|{\mathop{u}\nolimits_{i}}\right\rangle}}{{\mathop{\left\|A\right\|}\nolimits_{F}}}+{\rm N}\left|{\mathop{v}\nolimits_{i}}\right\rangle=\\ 4{\rm N}\frac{{\mathop{\sigma}\nolimits_{i}^{2}\left|{\mathop{v}\nolimits_{i}}\right\rangle}}{{\mathop{\left\|A\right\|}\nolimits_{F}^{2}}}-2{\rm M}\frac{{\mathop{\sigma}\nolimits_{i}\left|{\mathop{u}\nolimits_{i}}\right\rangle}}{{\mathop{\left\|A\right\|}\nolimits_{F}}}-{\rm N}\left|{\mathop{v}\nolimits_{i}}\right\rangle=\\ \left({\frac{{\mathop{4\sigma}\nolimits_{i}^{2}}}{{\mathop{\left\|A\right\|}\nolimits_{F}^{2}}}-1}\right){\rm N}\left|{\mathop{v}\nolimits_{i}}\right\rangle-2{\rm M}\frac{{\mathop{\sigma}\nolimits_{i}\left|{\mathop{u}\nolimits_{i}}\right\rangle}}{{\mathop{\left\|A\right\|}\nolimits_{F}}}\end{array} (62)

where |𝑢i\left|{\mathop{u}\nolimits_{i}}\right\rangle and |𝑣i\left|{\mathop{v}\nolimits_{i}}\right\rangle are the left and right singular vectors of AA, and 𝜎i{\mathop{\sigma}\nolimits_{i}} is the corresponding singular value. Obviously, the subspace {N|𝑣i,M|𝑢i}\left\{{{\rm N}\left|{\mathop{v}\nolimits_{i}}\right\rangle,{\rm M}\left|{\mathop{u}\nolimits_{i}}\right\rangle}\right\} is invariant under WW, and M|𝑢i{{\rm M}\left|{\mathop{u}\nolimits_{i}}\right\rangle} and N|𝑣i{{\rm N}\left|{\mathop{v}\nolimits_{i}}\right\rangle} are lineary independent. Therefore, we apply the Gram-Schmidt process on M|𝑢i{{\rm M}\left|{\mathop{u}\nolimits_{i}}\right\rangle} and N|𝑣i{{\rm N}\left|{\mathop{v}\nolimits_{i}}\right\rangle} to obtain the orthogonal states |ϖi1\left|{\mathop{\varpi}\nolimits_{i}^{1}}\right\rangle and |ϖi2\left|{\mathop{\varpi}\nolimits_{i}^{2}}\right\rangle as follows

|ϖi1=M|𝑢i|ϖi2=N|𝑣i𝑣i|NHM|𝑢iM|𝑢iN|𝑣i𝑣i|NHM|𝑢iM|𝑢i2=N|𝑣i𝜎i/AFM|𝑢iN|𝑣i𝜎i/AFM|𝑢i2\begin{array}[]{l}\left|{\mathop{\varpi}\nolimits_{i}^{1}}\right\rangle={\rm M}\left|{\mathop{u}\nolimits_{i}}\right\rangle\\ \left|{\mathop{\varpi}\nolimits_{i}^{2}}\right\rangle=\frac{{{\rm N}\left|{\mathop{v}\nolimits_{i}}\right\rangle-\left\langle{\mathop{v}\nolimits_{i}}\right|\mathop{\rm N}\nolimits^{H}{\rm M}\left|{\mathop{u}\nolimits_{i}}\right\rangle{\rm M}\left|{\mathop{u}\nolimits_{i}}\right\rangle}}{{\mathop{\left\|{{\rm N}\left|{\mathop{v}\nolimits_{i}}\right\rangle-\left\langle{\mathop{v}\nolimits_{i}}\right|\mathop{\rm N}\nolimits^{H}{\rm M}\left|{\mathop{u}\nolimits_{i}}\right\rangle{\rm M}\left|{\mathop{u}\nolimits_{i}}\right\rangle}\right\|}\nolimits_{2}}}\\ =\frac{{{\rm N}\left|{\mathop{v}\nolimits_{i}}\right\rangle-{\raise 2.1097pt\hbox{${\mathop{\sigma}\nolimits_{i}}$}\!\mathord{\left/{\vphantom{{\mathop{\sigma}\nolimits_{i}}{\mathop{\left\|A\right\|}\nolimits_{F}}}}\right.\kern-1.2pt}\!\lower 2.1097pt\hbox{${\mathop{\left\|A\right\|}\nolimits_{F}}$}}{\rm M}\left|{\mathop{u}\nolimits_{i}}\right\rangle}}{{\mathop{\left\|{{\rm N}\left|{\mathop{v}\nolimits_{i}}\right\rangle-{\raise 2.1097pt\hbox{${\mathop{\sigma}\nolimits_{i}}$}\!\mathord{\left/{\vphantom{{\mathop{\sigma}\nolimits_{i}}{\mathop{\left\|A\right\|}\nolimits_{F}}}}\right.\kern-1.2pt}\!\lower 2.1097pt\hbox{${\mathop{\left\|A\right\|}\nolimits_{F}}$}}{\rm M}\left|{\mathop{u}\nolimits_{i}}\right\rangle}\right\|}\nolimits_{2}}}\end{array} (63)

where N|𝑣i𝜎i/AFM|𝑢i2{\mathop{\left\|{{\rm N}\left|{\mathop{v}\nolimits_{i}}\right\rangle-{\raise 3.01385pt\hbox{${\mathop{\sigma}\nolimits_{i}}$}\!\mathord{\left/{\vphantom{{\mathop{\sigma}\nolimits_{i}}{\mathop{\left\|A\right\|}\nolimits_{F}}}}\right.\kern-1.2pt}\!\lower 3.01385pt\hbox{${\mathop{\left\|A\right\|}\nolimits_{F}}$}}{\rm M}\left|{\mathop{u}\nolimits_{i}}\right\rangle}\right\|}\nolimits_{2}} can be deduced as

N|𝑣i𝜎i/AFM|𝑢i2=(N|𝑣i𝜎i/AFM|𝑢i)H(N|𝑣i𝜎i/AFM|𝑢i)=1(𝜎i/AF)2(𝜎i/AF)2+(𝜎i/AF)2=1(𝜎i/AF)2\begin{array}[]{l}\mathop{\left\|{{\rm N}\left|{\mathop{v}\nolimits_{i}}\right\rangle-{\raise 3.01385pt\hbox{${\mathop{\sigma}\nolimits_{i}}$}\!\mathord{\left/{\vphantom{{\mathop{\sigma}\nolimits_{i}}{\mathop{\left\|A\right\|}\nolimits_{F}}}}\right.\kern-1.2pt}\!\lower 3.01385pt\hbox{${\mathop{\left\|A\right\|}\nolimits_{F}}$}}{\rm M}\left|{\mathop{u}\nolimits_{i}}\right\rangle}\right\|}\nolimits_{2}\\ {\rm{=}}\sqrt{\mathop{\left({{\rm N}\left|{\mathop{v}\nolimits_{i}}\right\rangle-{\raise 3.01385pt\hbox{${\mathop{\sigma}\nolimits_{i}}$}\!\mathord{\left/{\vphantom{{\mathop{\sigma}\nolimits_{i}}{\mathop{\left\|A\right\|}\nolimits_{F}}}}\right.\kern-1.2pt}\!\lower 3.01385pt\hbox{${\mathop{\left\|A\right\|}\nolimits_{F}}$}}{\rm M}\left|{\mathop{u}\nolimits_{i}}\right\rangle}\right)}\nolimits^{H}\left({{\rm N}\left|{\mathop{v}\nolimits_{i}}\right\rangle-{\raise 3.01385pt\hbox{${\mathop{\sigma}\nolimits_{i}}$}\!\mathord{\left/{\vphantom{{\mathop{\sigma}\nolimits_{i}}{\mathop{\left\|A\right\|}\nolimits_{F}}}}\right.\kern-1.2pt}\!\lower 3.01385pt\hbox{${\mathop{\left\|A\right\|}\nolimits_{F}}$}}{\rm M}\left|{\mathop{u}\nolimits_{i}}\right\rangle}\right)}\\ =\sqrt{1-\mathop{\left({{\raise 3.01385pt\hbox{${\mathop{\sigma}\nolimits_{i}}$}\!\mathord{\left/{\vphantom{{\mathop{\sigma}\nolimits_{i}}{\mathop{\left\|A\right\|}\nolimits_{F}}}}\right.\kern-1.2pt}\!\lower 3.01385pt\hbox{${\mathop{\left\|A\right\|}\nolimits_{F}}$}}}\right)}\nolimits^{2}-\mathop{\left({{\raise 3.01385pt\hbox{${\mathop{\sigma}\nolimits_{i}}$}\!\mathord{\left/{\vphantom{{\mathop{\sigma}\nolimits_{i}}{\mathop{\left\|A\right\|}\nolimits_{F}}}}\right.\kern-1.2pt}\!\lower 3.01385pt\hbox{${\mathop{\left\|A\right\|}\nolimits_{F}}$}}}\right)}\nolimits^{2}+\mathop{\left({{\raise 3.01385pt\hbox{${\mathop{\sigma}\nolimits_{i}}$}\!\mathord{\left/{\vphantom{{\mathop{\sigma}\nolimits_{i}}{\mathop{\left\|A\right\|}\nolimits_{F}}}}\right.\kern-1.2pt}\!\lower 3.01385pt\hbox{${\mathop{\left\|A\right\|}\nolimits_{F}}$}}}\right)}\nolimits^{2}}\\ =\sqrt{1-\mathop{\left({{\raise 3.01385pt\hbox{${\mathop{\sigma}\nolimits_{i}}$}\!\mathord{\left/{\vphantom{{\mathop{\sigma}\nolimits_{i}}{\mathop{\left\|A\right\|}\nolimits_{F}}}}\right.\kern-1.2pt}\!\lower 3.01385pt\hbox{${\mathop{\left\|A\right\|}\nolimits_{F}}$}}}\right)}\nolimits^{2}}\end{array} (64)

Thus, we have

W|ϖi1=WM|𝑢i=2𝜎iAFN|𝑣i|ϖi1=2𝜎iAF(1(𝜎iAF)2|ϖi2+𝜎iAF|ϖi1)|ϖi1=2𝜎iAF1(𝜎iAF)2|ϖi2+(2(𝜎iAF)21)|ϖi1\begin{array}[]{l}W\left|{\mathop{\varpi}\nolimits_{i}^{1}}\right\rangle=W{\rm M}\left|{\mathop{u}\nolimits_{i}}\right\rangle=2\frac{{\mathop{\sigma}\nolimits_{i}}}{{\mathop{\left\|A\right\|}\nolimits_{F}}}{\rm N}\left|{\mathop{v}\nolimits_{i}}\right\rangle-\left|{\mathop{\varpi}\nolimits_{i}^{1}}\right\rangle=\\ 2\frac{{\mathop{\sigma}\nolimits_{i}}}{{\mathop{\left\|A\right\|}\nolimits_{F}}}\left({\sqrt{1-\mathop{\left({\frac{{\mathop{\sigma}\nolimits_{i}}}{{\mathop{\left\|A\right\|}\nolimits_{F}}}}\right)}\nolimits^{2}}\left|{\mathop{\varpi}\nolimits_{i}^{2}}\right\rangle+\frac{{\mathop{\sigma}\nolimits_{i}}}{{\mathop{\left\|A\right\|}\nolimits_{F}}}\left|{\mathop{\varpi}\nolimits_{i}^{1}}\right\rangle}\right)-\left|{\mathop{\varpi}\nolimits_{i}^{1}}\right\rangle=\\ 2\frac{{\mathop{\sigma}\nolimits_{i}}}{{\mathop{\left\|A\right\|}\nolimits_{F}}}\sqrt{1-\mathop{\left({\frac{{\mathop{\sigma}\nolimits_{i}}}{{\mathop{\left\|A\right\|}\nolimits_{F}}}}\right)}\nolimits^{2}}\left|{\mathop{\varpi}\nolimits_{i}^{2}}\right\rangle+\left({2\mathop{\left({\frac{{\mathop{\sigma}\nolimits_{i}}}{{\mathop{\left\|A\right\|}\nolimits_{F}}}}\right)}\nolimits^{2}-1}\right)\left|{\mathop{\varpi}\nolimits_{i}^{1}}\right\rangle\end{array} (65)
W|ϖi2=WN|𝑣i𝜎iAFWM|𝑢i1(𝜎iAF)2=2σiAF1(𝜎iAF)2|ϖi1+(2(𝜎iAF)21)|ϖi2\begin{array}[]{l}W\left|{\mathop{\varpi}\nolimits_{i}^{2}}\right\rangle=\frac{{W{\rm N}\left|{\mathop{v}\nolimits_{i}}\right\rangle-\frac{{\mathop{\sigma}\nolimits_{i}}}{{\mathop{\left\|A\right\|}\nolimits_{F}}}W{\rm M}\left|{\mathop{u}\nolimits_{i}}\right\rangle}}{{\sqrt{1-\mathop{\left({\frac{{\mathop{\sigma}\nolimits_{i}}}{{\mathop{\left\|A\right\|}\nolimits_{F}}}}\right)}\nolimits^{2}}}}=\\ -\frac{{\mathop{2\sigma}\nolimits_{i}}}{{\mathop{\left\|A\right\|}\nolimits_{F}}}\sqrt{1-\mathop{\left({\frac{{\mathop{\sigma}\nolimits_{i}}}{{\mathop{\left\|A\right\|}\nolimits_{F}}}}\right)}\nolimits^{2}}\left|{\mathop{\varpi}\nolimits_{i}^{1}}\right\rangle+\left({2\mathop{\left({\frac{{\mathop{\sigma}\nolimits_{i}}}{{\mathop{\left\|A\right\|}\nolimits_{F}}}}\right)}\nolimits^{2}-1}\right)\left|{\mathop{\varpi}\nolimits_{i}^{2}}\right\rangle\end{array} (66)

Then, we define 2(𝜎i/AF)21{2\mathop{\left({{\raise 3.01385pt\hbox{${\mathop{\sigma}\nolimits_{i}}$}\!\mathord{\left/{\vphantom{{\mathop{\sigma}\nolimits_{i}}{\mathop{\left\|A\right\|}\nolimits_{F}}}}\right.\kern-1.2pt}\!\lower 3.01385pt\hbox{${\mathop{\left\|A\right\|}\nolimits_{F}}$}}}\right)}\nolimits^{2}-1} to be cos𝜒i\cos\mathop{\chi}\nolimits_{i}, that is cos𝜒i/2=𝜎i/AF\cos{\raise 3.01385pt\hbox{${\mathop{\chi}\nolimits_{i}}$}\!\mathord{\left/{\vphantom{{\mathop{\chi}\nolimits_{i}}2}}\right.\kern-1.2pt}\!\lower 3.01385pt\hbox{$2$}}={\raise 3.01385pt\hbox{${\mathop{\sigma}\nolimits_{i}}$}\!\mathord{\left/{\vphantom{{\mathop{\sigma}\nolimits_{i}}{\mathop{\left\|A\right\|}\nolimits_{F}}}}\right.\kern-1.2pt}\!\lower 3.01385pt\hbox{${\mathop{\left\|A\right\|}\nolimits_{F}}$}}, we can represent the Eqs. (A9) and (A10) as

W|ϖi1=sin𝜒i|ϖi2+cos𝜒i|ϖi1W\left|{\mathop{\varpi}\nolimits_{i}^{1}}\right\rangle=\sin\mathop{\chi}\nolimits_{i}\left|{\mathop{\varpi}\nolimits_{i}^{2}}\right\rangle+\cos\mathop{\chi}\nolimits_{i}\left|{\mathop{\varpi}\nolimits_{i}^{1}}\right\rangle (67)
W|ϖi2=sin𝜒i|ϖi1+cos𝜒i|ϖi2W\left|{\mathop{\varpi}\nolimits_{i}^{2}}\right\rangle=-\sin\mathop{\chi}\nolimits_{i}\left|{\mathop{\varpi}\nolimits_{i}^{1}}\right\rangle+\cos\mathop{\chi}\nolimits_{i}\left|{\mathop{\varpi}\nolimits_{i}^{2}}\right\rangle (68)

Moreover, the matrix form of WW in basis |ϖi1\left|{\mathop{\varpi}\nolimits_{i}^{1}}\right\rangle and |ϖi2\left|{\mathop{\varpi}\nolimits_{i}^{2}}\right\rangle can be denoted as

(cos𝜒isin𝜒isin𝜒icos𝜒i)=𝑒i𝜒i𝜎y\left({\begin{array}[]{*{20}{c}}{\cos\mathop{\chi}\nolimits_{i}}&{\sin\mathop{\chi}\nolimits_{i}}\\ {-\sin\mathop{\chi}\nolimits_{i}}&{\cos\mathop{\chi}\nolimits_{i}}\end{array}}\right)=\mathop{e}\nolimits^{i\mathop{\chi}\nolimits_{i}\mathop{\sigma}\nolimits_{y}} (69)

where 𝜎y{\mathop{\sigma}\nolimits_{y}} is a Pauli matrix in basis |ϖi1\left|{\mathop{\varpi}\nolimits_{i}^{1}}\right\rangle and |ϖi2\left|{\mathop{\varpi}\nolimits_{i}^{2}}\right\rangle . Therefore, the eigenvalues of WW are 𝑒i±χi\mathop{e}\nolimits^{i\mathop{\pm\chi}\nolimits_{i}} and the corresponding eigenvectors are |𝜆i±=12(|ϖi1±i|ϖi2)\left|{\mathop{\lambda}\nolimits_{i}^{\pm}}\right\rangle=\frac{1}{{\sqrt{2}}}\left({\left|{\mathop{\varpi}\nolimits_{i}^{1}}\right\rangle\pm i\left|{\mathop{\varpi}\nolimits_{i}^{2}}\right\rangle}\right). Then, M|𝑢i{{\rm M}\left|{\mathop{u}\nolimits_{i}}\right\rangle} and N|𝑣i{{\rm N}\left|{\mathop{v}\nolimits_{i}}\right\rangle} can be reformulated as

M|𝑢i=|ϖi1=12(|𝜆i++|𝜆i){\rm M}\left|{\mathop{u}\nolimits_{i}}\right\rangle=\left|{\mathop{\varpi}\nolimits_{i}^{1}}\right\rangle=\frac{1}{{\sqrt{2}}}\left({\left|{\mathop{\lambda}\nolimits_{i}^{+}}\right\rangle+\left|{\mathop{\lambda}\nolimits_{i}^{-}}\right\rangle}\right) (70)
N|𝑣i=sin𝜒i2|ϖi2+cos𝜒i2|ϖi1=sin𝜒i2i2(|𝜆i+|𝜆i)+cos𝜒i212(|𝜆i++|𝜆i)=12(𝑒i𝜒i2|𝜆i++𝑒i𝜒i2|𝜆i)\begin{array}[]{l}{\rm N}\left|{\mathop{v}\nolimits_{i}}\right\rangle=\sin\frac{{\mathop{\chi}\nolimits_{i}}}{2}\left|{\mathop{\varpi}\nolimits_{i}^{2}}\right\rangle+\cos\frac{{\mathop{\chi}\nolimits_{i}}}{2}\left|{\mathop{\varpi}\nolimits_{i}^{1}}\right\rangle=\\ \sin\frac{{\mathop{\chi}\nolimits_{i}}}{2}\frac{{-i}}{{\sqrt{2}}}\left({\left|{\mathop{\lambda}\nolimits_{i}^{+}}\right\rangle-\left|{\mathop{\lambda}\nolimits_{i}^{-}}\right\rangle}\right)+\cos\frac{{\mathop{\chi}\nolimits_{i}}}{2}\frac{1}{{\sqrt{2}}}\left({\left|{\mathop{\lambda}\nolimits_{i}^{+}}\right\rangle+\left|{\mathop{\lambda}\nolimits_{i}^{-}}\right\rangle}\right)\\ =\frac{1}{{\sqrt{2}}}\left({\mathop{e}\nolimits^{-i\frac{{\mathop{\chi}\nolimits_{i}}}{2}}\left|{\mathop{\lambda}\nolimits_{i}^{+}}\right\rangle+\mathop{e}\nolimits^{i\frac{{\mathop{\chi}\nolimits_{i}}}{2}}\left|{\mathop{\lambda}\nolimits_{i}^{-}}\right\rangle}\right)\end{array} (71)

Therefore, the detailed implementation of the transformation T{\rm T} can be shown as follows:
(1) Given a vector |y=𝛽i|𝑢i\left|y\right\rangle=\sum{\mathop{\beta}\nolimits_{i}}\left|{\mathop{u}\nolimits_{i}}\right\rangle, we prepare the state

|ϑ=M|y=𝛽iM|𝑢i=𝛽i2(|𝜆i++|𝜆i)\begin{array}[]{l}\left|\vartheta\right\rangle={\rm M}\left|y\right\rangle=\sum{\mathop{\beta}\nolimits_{i}}{\rm M}\left|{\mathop{u}\nolimits_{i}}\right\rangle=\\ \sum{\frac{{\mathop{\beta}\nolimits_{i}}}{{\sqrt{2}}}\left({\left|{\mathop{\lambda}\nolimits_{i}^{+}}\right\rangle+\left|{\mathop{\lambda}\nolimits_{i}^{-}}\right\rangle}\right)}\end{array} (72)

(2) Perform the phase estimation algorithm 𝑈PE(W)\mathop{U}\nolimits_{PE}\left(W\right), we have the state

𝑈PE(W):|ϑ𝛽i2(|𝜆i+|𝜒i+|𝜆i|χi)\mathop{U}\nolimits_{PE}\left(W\right):\left|\vartheta\right\rangle\to\sum{\frac{{\mathop{\beta}\nolimits_{i}}}{{\sqrt{2}}}\left({\left|{\mathop{\lambda}\nolimits_{i}^{+}}\right\rangle\left|{\mathop{\chi}\nolimits_{i}}\right\rangle+\left|{\mathop{\lambda}\nolimits_{i}^{-}}\right\rangle\left|{\mathop{-\chi}\nolimits_{i}}\right\rangle}\right)} (73)

(3) Apply the controlled phase rotation operation, the state is transformed into

|ϑ=𝛽i2(𝑒i𝜒i2|𝜆i+|𝜒i+𝑒i𝜒i2|𝜆i|χi)\left|\vartheta\right\rangle=\sum{\frac{{\mathop{\beta}\nolimits_{i}}}{{\sqrt{2}}}\left({\mathop{e}\nolimits^{-i\frac{{\mathop{\chi}\nolimits_{i}}}{2}}\left|{\mathop{\lambda}\nolimits_{i}^{+}}\right\rangle\left|{\mathop{\chi}\nolimits_{i}}\right\rangle+\mathop{e}\nolimits^{i\frac{{\mathop{\chi}\nolimits_{i}}}{2}}\left|{\mathop{\lambda}\nolimits_{i}^{-}}\right\rangle\left|{\mathop{-\chi}\nolimits_{i}}\right\rangle}\right)} (74)

(4) Undo the phase estimation algorithm, we have the state

|ϑ=𝛽i2(𝑒i𝜒i2|𝜆i++𝑒i𝜒i2|𝜆i)=𝛽iN|𝑣i\left|\vartheta\right\rangle=\sum{\frac{{\mathop{\beta}\nolimits_{i}}}{{\sqrt{2}}}\left({\mathop{e}\nolimits^{-i\frac{{\mathop{\chi}\nolimits_{i}}}{2}}\left|{\mathop{\lambda}\nolimits_{i}^{+}}\right\rangle+\mathop{e}\nolimits^{i\frac{{\mathop{\chi}\nolimits_{i}}}{2}}\left|{\mathop{\lambda}\nolimits_{i}^{-}}\right\rangle}\right)}=\sum{\mathop{\beta}\nolimits_{i}}{\rm N}\left|{\mathop{v}\nolimits_{i}}\right\rangle (75)

(5) Perform the inverse operation 𝑈N1\mathop{U}\nolimits_{\rm N}^{-1}, we can obtain

𝑈N1=𝑈NH:|ϑ𝛽i|𝑣i\mathop{U}\nolimits_{\rm N}^{-1}{\rm{=}}\mathop{U}\nolimits_{\rm N}^{H}:\left|\vartheta\right\rangle\to\sum{\mathop{\beta}\nolimits_{i}}\left|{\mathop{v}\nolimits_{i}}\right\rangle (76)

References

  • Boyer and Bouleux (2008) R. Boyer and G. Bouleux, IEEE Transactions on Signal Processing 56, 1374 (2008).
  • Zheng and Kaveh (2013) J. Zheng and M. Kaveh, IEEE Transactions on Signal Processing 61, 2767 (2013).
  • Duofang et al. (2008) C. Duofang, C. Baixiao,  and Q. Guodong, Electronics Letters 44, 770 (2008).
  • Jinli et al. (2008) C. Jinli, G. Hong,  and S. Weimin, Electronics Letters 44, 1422 (2008).
  • Zhang and Xu (2011) X. Zhang and D. Xu, Electronics Letters 47, 283 (2011).
  • Zheng et al. (2012) G. Zheng, B. Chen,  and M. Yang, Electronics Letters 48, 179 (2012).
  • Liao (2018) B. Liao, IEEE Transactions on Aerospace and Electronic Systems 54, 2091 (2018).
  • SCHMIDT (1981) R. SCHMIDT, Ph. D. Dissertation. Stanford Univ.  (1981).
  • Larsson et al. (2014) E. G. Larsson, O. Edfors, F. Tufvesson,  and T. L. Marzetta, IEEE communications magazine 52, 186 (2014).
  • Liang et al. (2014) L. Liang, W. Xu,  and X. Dong, IEEE Wireless Communications Letters 3, 653 (2014).
  • El Ayach et al. (2014) O. El Ayach, S. Rajagopal, S. Abu-Surra, Z. Pi,  and R. W. Heath, IEEE transactions on wireless communications 13, 1499 (2014).
  • Venkateswaran and van der Veen (2010) V. Venkateswaran and A.-J. van der Veen, IEEE Transactions on Signal Processing 58, 4131 (2010).
  • Lin and Li (2015) C. Lin and G. Y. Li, IEEE Transactions on Communications 63, 2985 (2015).
  • Li et al. (2020) S. Li, Y. Liu, L. You, W. Wang, H. Duan,  and X. Li, IEEE Wireless Communications Letters  (2020).
  • Ekert and Jozsa (1996) A. Ekert and R. Jozsa, Reviews of Modern Physics 68, 733 (1996).
  • Grover (1997) L. K. Grover, Physical review letters 79, 325 (1997).
  • Harrow et al. (2009) A. W. Harrow, A. Hassidim,  and S. Lloyd, Physical review letters 103, 150502 (2009).
  • Wiebe et al. (2012) N. Wiebe, D. Braun,  and S. Lloyd, Physical review letters 109, 050505 (2012).
  • Clader et al. (2013) B. D. Clader, B. C. Jacobs,  and C. R. Sprouse, Physical review letters 110, 250504 (2013).
  • Lloyd et al. (2013) S. Lloyd, M. Mohseni,  and P. Rebentrost, arXiv preprint arXiv:1307.0411  (2013).
  • Lloyd et al. (2014) S. Lloyd, M. Mohseni,  and P. Rebentrost, Nature Physics 10, 631 (2014).
  • Rebentrost et al. (2014) P. Rebentrost, M. Mohseni,  and S. Lloyd, Physical review letters 113, 130503 (2014).
  • Cong and Duan (2016) I. Cong and L. Duan, New Journal of Physics 18, 073011 (2016).
  • Kerenidis and Prakash (2017) I. Kerenidis and A. Prakash, in 8th Innovations in Theoretical Computer Science Conference (ITCS 2017), Leibniz International Proceedings in Informatics (LIPIcs), Vol. 67, edited by C. H. Papadimitriou (Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany, 2017) pp. 49:1–49:21.
  • Kerenidis and Prakash (2020) I. Kerenidis and A. Prakash, Physical Review A 101, 022316 (2020).
  • Wossnig et al. (2018) L. Wossnig, Z. Zhao,  and A. Prakash, Physical review letters 120, 050502 (2018).
  • Botsinis et al. (2014) P. Botsinis, S. X. Ng,  and L. Hanzo, in 2014 IEEE International Conference on Communications (ICC) (IEEE, 2014) pp. 5592–5597.
  • Abdullah et al. (2018) Z. Abdullah, C. C. Tsimenidis,  and M. Johnston, in 2018 IEEE Wireless Communications and Networking Conference (WCNC) (IEEE, 2018) pp. 1–6.
  • Alanis et al. (2014) D. Alanis, P. Botsinis, S. X. Ng,  and L. Hanzo, IEEE Access 2, 614 (2014).
  • Botsinis et al. (2016) P. Botsinis, D. Alanis, Z. Babar, H. V. Nguyen, D. Chandra, S. X. Ng,  and L. Hanzo, IEEE Access 4, 7402 (2016).
  • Meng et al. (2020) F.-X. Meng, X.-T. Yu,  and Z.-C. Zhang, Physical Review A 101, 012334 (2020).
  • Preskill (2018) J. Preskill, Quantum 2, 79 (2018).
  • McClean et al. (2016) J. R. McClean, J. Romero, R. Babbush,  and A. Aspuru-Guzik, New Journal of Physics 18, 023023 (2016).
  • Kandala et al. (2017) A. Kandala, A. Mezzacapo, K. Temme, M. Takita, M. Brink, J. M. Chow,  and J. M. Gambetta, Nature 549, 242 (2017).
  • Cerezo et al. (2020a) M. Cerezo, K. Sharma, A. Arrasmith,  and P. J. Coles, arXiv preprint arXiv:2004.01372  (2020a).
  • Liu et al. (2019) J.-G. Liu, Y.-H. Zhang, Y. Wan,  and L. Wang, Physical Review Research 1, 023025 (2019).
  • Higgott et al. (2019) O. Higgott, D. Wang,  and S. Brierley, Quantum 3, 156 (2019).
  • Jones et al. (2019) T. Jones, S. Endo, S. McArdle, X. Yuan,  and S. C. Benjamin, Physical Review A 99, 062304 (2019).
  • Wang et al. (2020a) X. Wang, Z. Song,  and Y. Wang, arXiv preprint arXiv:2006.02336  (2020a).
  • Bravo-Prieto et al. (2020) C. Bravo-Prieto, D. García-Martín,  and J. I. Latorre, Physical Review A 101, 062310 (2020).
  • Huang et al. (2019) H.-Y. Huang, K. Bharti,  and P. Rebentrost, arXiv preprint arXiv:1909.07344  (2019).
  • Xu et al. (2019) X. Xu, J. Sun, S. Endo, Y. Li, S. C. Benjamin,  and X. Yuan, arXiv preprint arXiv:1909.03898  (2019).
  • Bravo-Prieto et al. (2019) C. Bravo-Prieto, R. LaRose, M. Cerezo, Y. Subasi, L. Cincio,  and P. J. Coles, arXiv preprint arXiv:1909.05820  (2019).
  • Cerezo et al. (2020b) M. Cerezo, A. Poremba, L. Cincio,  and P. J. Coles, Quantum 4, 248 (2020b).
  • Chowdhury et al. (2020) A. N. Chowdhury, G. H. Low,  and N. Wiebe, arXiv preprint arXiv:2002.00055  (2020).
  • Wang et al. (2020b) Y. Wang, G. Li,  and X. Wang, arXiv preprint arXiv:2005.08797  (2020b).
  • Endo et al. (2019) S. Endo, I. Kurata,  and Y. O. Nakagawa, arXiv preprint arXiv:1909.12250  (2019).
  • Temme et al. (2017) K. Temme, S. Bravyi,  and J. M. Gambetta, Physical review letters 119, 180509 (2017).
  • McArdle et al. (2019) S. McArdle, X. Yuan,  and S. Benjamin, Physical review letters 122, 180501 (2019).
  • Strikis et al. (2020) A. Strikis, D. Qin, Y. Chen, S. C. Benjamin,  and Y. Li, arXiv preprint arXiv:2005.07601  (2020).
  • Nakanishi et al. (2019) K. M. Nakanishi, K. Mitarai,  and K. Fujii, Physical Review Research 1, 033062 (2019).
  • Marcello et al. (2019) B. Marcello, G.-P. Delfina, O. Perdomo, V. Leyton-Ortega, N. Yunseong,  and A. Perdomo-Ortiz, NPJ Quantum Information 5 (2019).
  • Killoran et al. (2019) N. Killoran, T. R. Bromley, J. M. Arrazola, M. Schuld, N. Quesada,  and S. Lloyd, Physical Review Research 1, 033063 (2019).
  • Perdomo et al. (2019) A. Perdomo, V. Leyton-Ortega,  and O. Perdomo, APS 2019, C42 (2019).
  • Brassard et al. (2002) G. Brassard, P. Hoyer, M. Mosca,  and A. Tapp, Contemporary Mathematics 305, 53 (2002).