This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Quantitative hh-principle in symplectic geometry

Lev Buhovsky and Emmanuel Opshtein
Abstract

We prove a quantitative hh-principle statement for subcritical isotropic embeddings. As an application, we construct a symplectic homeomorphism that takes a symplectic disc into an isotropic one in dimension at least 66.

Dedicated to Claude Viterbo, on the occasion of his 60th birthday

1 Introduction

Gromov’s hh-principle lies at the core of symplectic topology, by reducing many questions on the existence of embeddings or immersions to verifying their compatibility with algebraic topology. Symplectic topology focuses mainly on the other problems, that do not abide by an hh-principle : Lagrangian embeddings, existence of symplectic hypersurfaces in specific homology classes etc. In [BO16], we have proved a refined version of hh-principle, which in turn yielded applications to π’ž0\mathbb{\mathcal{C}}^{0}-symplectic geometry. For instance, we proved in [BO16] that in dimension at least 66, π’ž0\mathbb{\mathcal{C}}^{0}-close symplectic 22-discs of the same area are isotopic by a small symplectic isotopy, while in dimension 44, this does no longer hold. A similar quantitative hh-principle was also used in [BHS18] in order to show that the symplectic rigidity manifested in the Arnold conjecture for the number of fixed points of a Hamiltonian diffeomorphism completely disappears for Hamiltonian homeomorphisms in dimension at least 44.

The goal of this note is to prove a quantitative hh-principle for isotropic embeddings and to derive some flexibility statements on symplectic homeomorphisms.

Theorem 1 (Quantitative hh-principle for subcritical isotropic embeddings).

Let VV be an open subset of β„‚n\mathbb{C}^{n}, k<nk<n, u0,u1:Dkβ†ͺVu_{0},u_{1}:D^{k}\hookrightarrow V be isotropic embeddings of closed discs. We assume that there exists a homotopy F:DkΓ—[0,1]β†’VF:D^{k}\times[0,1]\to V between u0u_{0} and u1u_{1} (so F​(β‹…,0)=u0F(\cdot,0)=u_{0}, F​(β‹…,1)=u1F(\cdot,1)=u_{1}) of size less than Ξ΅\varepsilon (i.e. Diam​F​({z}Γ—[0,1])<Ξ΅\text{Diam}\,F(\{z\}\times[0,1])<\varepsilon for all z∈Dkz\in D^{k}).

Then there exists a compactly supported in V Hamiltonian isotopy (Ξ¨t)t∈[0,1](\Psi^{t})_{t\in[0,1]} of size 2​Ρ2\varepsilon (i.e. Diam​{Ξ¨t​(z)|t∈[0,1]}<2​Ρ\text{Diam}\,\{\Psi^{t}(z)\,|\,t\in[0,1]\}<2\varepsilon for every z∈Vz\in V), such that Ξ¨1∘u0=u1\Psi^{1}\circ u_{0}=u_{1}.

The proof shows that the theorem holds in the relative case, provided u0,u1u_{0},u_{1} are symplectically isotopic, relative to the boundary. The method of the proof of theorem 1 follows a very similar track as the quantitative hh-principle for symplectic discs that we established in [BO16]. Paralleling the construction of a symplectic homeomorphism whose restriction to a symplectic 22-disc is a contraction in dimension 66, we can deduce from theorem 1 the following statement:

Theorem 2.

There exists a symplectic homeomorphism with compact support in β„‚3\mathbb{C}^{3} which takes a symplectic 22-disc to an isotropic one.

Of course, by considering products, we infer that there exists symplectic homeomorphisms that take some codimension 44 symplectic submanifolds to submanifolds which are nowhere symplectic.

The note is organized as follows. We prove theorem 1 in the next section. The construction of a symplectic homeomorphism that takes a symplectic disc to an isotropic one is explained in section 3, where we also explain a relation to relative Eliashberg-Gromov type questions, as posed in [BO16].

Acknowledgments:

We are very much indebted to Claude Viterbo for his support and interest in our research. Claude’s fundamental contributions to symplectic geometry and topology, and in particular to the field π’ž0\mathbb{\mathcal{C}}^{0} symplectic geometry, are widely recognized. We wish Claude all the best, and to continue enjoying math and delighting us with his creative and inspiring mathematical works.

This paper is a result of the work done during visits of the first author at Strasbourg University, and a visit of the second author at Tel Aviv University. We thank both universities and their symplectic teams for a warm hospitality. We thank Maksim Stokic for pointing our attention to a gap in our proofs in a previous version of the paper. We thank the referee for careful reading and useful comments. The first author was partially supported by ERC Starting Grant 757585 and ISF Grant 2026/17.

Conventions and Notations

We convene the following in the course of this paper:

  • β€’

    All our homotopies and isotopies have parameter space [0,1][0,1]. For instance (gt)(g_{t}) denotes an isotopy (gt)t∈[0,1](g_{t})_{t\in[0,1]}.

  • β€’

    Similarly, by concatenation of homotopies we always mean reparametrized concatenation.

  • β€’

    If F:[0,1]Γ—Xβ†’YF:[0,1]\times X\to Y is a homotopy with value in a metric space, Size​(F):=max⁑{Diam​(F​([0,1]Γ—{x})),x∈X}\textnormal{Size}\,(F):=\max\{\text{Diam}\,\big{(}F([0,1]\times\{x\})\big{)},\;x\in X\}.

  • β€’

    For AβŠ‚BA\subset B, Op​(A,B)\textnormal{Op}\,(A,B) stands for an arbitrarily small neighbourhood of AA in BB. To keep light notation, we omit BB whenever there is no possible ambiguity.

  • β€’

    A homotopy F:[0,1]Γ—Nβ†’MF:[0,1]\times N\to M is said relative to AβŠ‚NA\subset N if for every z∈Az\in A, F​(t,z)F(t,z) is independent on t∈[0,1]t\in[0,1].

  • β€’

    A homotopy G:[0,1]2Γ—Nβ†’MG:[0,1]^{2}\times N\to M between F0,F1:[0,1]Γ—Nβ†’MF_{0},F_{1}:[0,1]\times N\to M (that is a continuous map such that G​(i,t,z)=Fi​(t,z)G(i,t,z)=F_{i}(t,z) for i=0,1i=0,1) is said relative to AA and {0,1}\{0,1\} if G​(s,t,z)=F0​(t,z)=F1​(t,z)G(s,t,z)=F_{0}(t,z)=F_{1}(t,z) for all z∈Az\in A and if G​(s,i,z)=F0​(i,z)G(s,i,z)=F_{0}(i,z) for all s∈[0,1]s\in[0,1].

2 Quantitative hh-principle for isotropic discs

The aim of this section is to prove theorem 1.

2.1 Standard hh-principle for subcritical isotropic embeddings

We recall in this section the main properties of the action of the Hamiltonian group on isotropic embeddings, as described in [Gro86, EM02]. To this purpose, we first fix some notations. In the current note, a disk DkD^{k} is always assumed to be closed, unless explicitly stated (hence an embedding of DD inside an open set is always compactly embedded). Since we only deal with isotropic embeddings, it is enough to prove theorem 1 for subcritical isotropic embeddings of [βˆ’1,1]k[-1,1]^{k} rather than of a closed disc. By abuse of notation, in this section we denote Dk=[βˆ’1,1]kD^{k}=[-1,1]^{k}. The set of isotropic framings Giso​(k,n)G^{{\textnormal{iso}}}(k,n) is the space of (k,2​n)(k,2n)-matrices of rank kk whose columns span an isotropic vector space in (ℝ2​n,Ο‰st)(\mathbb{R}^{2n},\omega_{\textnormal{st}}).

Recall that the hh-principle for subcritical isotropic embeddings provides existence of isotropic embeddings or homotopies whose derivatives realize homotopy classes of maps to Giso​(k,n)G^{\textnormal{iso}}(k,n). We will need a specialization of the hh-principle for subcritical isotropic embeddings to β„‚n\mathbb{C}^{n}, which in particular addresses a relative setting. In order to present its formulation, we will use the following terminology: if AβŠ‚DkA\subset D^{k}, a homotopy of f:Dkβ†’Giso​(k,n)f:D^{k}\to G^{\textnormal{iso}}(k,n) rel Op​(A)\textnormal{Op}\,(A) is a continuous map F:[0,1]Γ—Dkβ†’Giso​(k,n)F:[0,1]\times D^{k}\to G^{\textnormal{iso}}(k,n) such that F​(t,z)=f​(z)F(t,z)=f(z) for all z∈Op​(A)z\in\textnormal{Op}\,(A). A homotopy G:[0,1]2Γ—Dkβ†’Giso​(k,n)G:[0,1]^{2}\times D^{k}\to G^{\textnormal{iso}}(k,n) between F0,F1:[0,1]Γ—Dkβ†’Giso​(k,n)F_{0},F_{1}:[0,1]\times D^{k}\to G^{\textnormal{iso}}(k,n) (that is a continuous map such that G​(i,t,z)=Fi​(t,z)G(i,t,z)=F_{i}(t,z) for i=0,1i=0,1) is said relative to Op​(A)\textnormal{Op}\,(A) and {0,1}\{0,1\} if G​(s,t,z)=F0​(t,z)=F1​(t,z)G(s,t,z)=F_{0}(t,z)=F_{1}(t,z) for all z∈Op​(A)z\in\textnormal{Op}\,(A) and if G​(s,i,z)=F0​(i,z)G(s,i,z)=F_{0}(i,z) for all s∈[0,1]s\in[0,1] and i∈{0,1}i\in\{0,1\}.

Theorem 2.1 (Parametric π’ž0\mathbb{\mathcal{C}}^{0}-dense relative hh-principle for isotropic embeddings [EM02]).

Let k<nk<n:

  • a)

    Let ρ:Dkβ†’β„‚n\rho:D^{k}\to\mathbb{C}^{n} be a continuous map whose restriction to a neighbourhood of a closed subset AβŠ‚DkA\subset D^{k} is an isotropic embedding. Assume that d​ρd\rho is homotopic to a map G:Dkβ†’Giso​(k,n)G:D^{k}\to G^{\textnormal{iso}}(k,n) relative to Op​(A)\textnormal{Op}\,(A). Then, for any Ξ΅>0\varepsilon>0, there exists an isotropic embedding u:Dkβ†ͺβ„‚nu:D^{k}\hookrightarrow\mathbb{C}^{n} which coincides with ρ\rho on Op​(A)\textnormal{Op}\,(A), dπ’ž0​(ρ,u)<Ξ΅d_{\mathbb{\mathcal{C}}^{0}}(\rho,u)<\varepsilon and such that d​u:Dkβ†’Giso​(k,n)du:D^{k}\to G^{\textnormal{iso}}(k,n) is homotopic to GG rel Op (A).

  • b)

    Let u0,u1:Dkβ†ͺβ„‚nu_{0},u_{1}:D^{k}\hookrightarrow\mathbb{C}^{n} be isotropic embeddings, which coincide on a neighbourhood of a closed subset AβŠ‚DkA\subset D^{k}. Let G:[0,1]Γ—Dkβ†’Giso​(k,n)G:[0,1]\times D^{k}\to G^{\textnormal{iso}}(k,n) be a homotopy between d​u0,d​u1du_{0},\;du_{1} rel Op​(A)\textnormal{Op}\,(A) and ρt:Dkβ†’β„‚n\rho_{t}:D^{k}\to\mathbb{C}^{n} a homotopy between u0,u1u_{0},u_{1} rel Op​(A)\textnormal{Op}\,(A). For any Ξ΅>0\varepsilon>0, there exists an isotropic isotopy ut:Dkβ†ͺβ„‚nu_{t}:D^{k}\hookrightarrow\mathbb{C}^{n} (t∈[0,1]t\in[0,1]) relative to Op​(A)\textnormal{Op}\,(A) such that dπ’ž0​(ρt,ut)<Ξ΅d_{\mathbb{\mathcal{C}}^{0}}(\rho_{t},u_{t})<\varepsilon and {d​ut}\{du_{t}\} is homotopic to GG rel Op​(A)\textnormal{Op}\,(A) and {0,1}\{0,1\}.

The next lemma will be used in the proof of theorem 1.

Lemma 2.2.

Let A,BA,B be two closed subsets of DkD^{k}. Let u0,u1:Dkβ†ͺβ„‚nu_{0},u_{1}:D^{k}\hookrightarrow\mathbb{C}^{n} be subcritical isotropic embeddings that coincide on Op​(A)\textnormal{Op}\,(A). Assume that we are given a homotopy Gt:Dkβ†’Giso​(k,n)G_{t}:D^{k}\to G^{\textnormal{iso}}(k,n) between d​u0du_{0} and d​u1du_{1} rel Op​(A)\textnormal{Op}\,(A). Let vt:Dkβ†ͺβ„‚nv_{t}:D^{k}\hookrightarrow\mathbb{C}^{n} be an isotropic isotopy between u0u_{0} and v1v_{1} rel Op​(A)\textnormal{Op}\,(A), such that v1|Op​(B)=u1v_{1|\textnormal{Op}\,(B)}=u_{1}, and such that {d​vt|Op​(B)}\{dv_{t|\textnormal{Op}\,(B)}\} is homotopic to {Gt|Op​(B)}\{G_{t|\textnormal{Op}\,(B)}\} relative to Op​(A)\textnormal{Op}\,(A) and {0,1}\{0,1\}111Recall that this means there exists a continuous map G:[0,1]2Γ—Op​(B)β†’Giso​(k,n)G:[0,1]^{2}\times\textnormal{Op}\,(B)\to G^{\textnormal{iso}}(k,n) such that G​(0,t,z)=Gt​(z)G(0,t,z)=G_{t}(z) and G​(1,t,z)=d​vt​(z)G(1,t,z)=dv_{t}(z) βˆ€(t,z)∈[0,1]Γ—Op​(B)\forall(t,z)\in[0,1]\times\textnormal{Op}\,(B), G​(s,t,z)=d​u0​(z)G(s,t,z)=du_{0}(z) βˆ€(s,t,z)∈[0,1]2Γ—Op​(A∩B)\forall(s,t,z)\in[0,1]^{2}\times\textnormal{Op}\,(A\cap B), G​(s,0,z)=G0​(z)=d​u0​(z)G(s,0,z)=G_{0}(z)=du_{0}(z) and G​(s,1,z)=G1​(z)=d​v1​(z)G(s,1,z)=G_{1}(z)=dv_{1}(z) βˆ€(s,z)∈[0,1]Γ—Op​(B)\forall(s,z)\in[0,1]\times\textnormal{Op}\,(B).. Then d​v1dv_{1} and d​u1du_{1} are homotopic rel Op​(AβˆͺB)\textnormal{Op}\,(A\cup B) among maps Dkβ†’Giso​(k,n)D^{k}\to G^{\textnormal{iso}}(k,n).

Remark 2.3.

In the setting of lemma 2.2, since v1v_{1} and u1u_{1} are homotopic rel Op​(AβˆͺB)\textnormal{Op}\,(A\cup B) (just consider the linear homotopy between them), the lemma and theorem 2.1 immediately imply that v1v_{1} is in fact isotropic isotopic to u1u_{1} rel Op​(AβˆͺB)\textnormal{Op}\,(A\cup B).

Proof of lemma 2.2: Consider the homotopy Kt:=d​vt:Dkβ†’Giso​(k,n)K_{t}:=dv_{t}:D^{k}\to G^{\textnormal{iso}}(k,n) between d​u0du_{0} and d​v1dv_{1} relative to Op​(A)\textnormal{Op}\,(A), and the homotopy Gt:Dkβ†’Giso​(k,n)G_{t}:D^{k}\to G^{\textnormal{iso}}(k,n) between d​u0du_{0} and d​u1du_{1} rel Op​(A)\textnormal{Op}\,(A), provided by the assumption. Letting KΒ―t:=K1βˆ’t\overline{K}_{t}:=K_{1-t}, we now consider the concatenation Ht:=KΒ―t⋆GtH_{t}:=\overline{K}_{t}\star G_{t}. Since {d​vt|Op​(B)}\{dv_{t|\textnormal{Op}\,(B)}\} is homotopic to {Gt|Op​(B)}\{G_{t|\textnormal{Op}\,(B)}\} relative to Op​(A)\textnormal{Op}\,(A) and {0,1}\{0,1\} (as assumed by the lemma), there exists a homotopy Hs,tH_{s,t} (s∈[0,1]s\in[0,1]) between Ht|Op​(B)H_{t|\textnormal{Op}\,(B)} and ItI_{t} relative to Op​(A)\textnormal{Op}\,(A) and {0,1}\{0,1\}, where It≑d​u1|Op​(B)=d​v1|Op​(B)I_{t}\equiv du_{1|\textnormal{Op}\,(B)}=dv_{1|\textnormal{Op}\,(B)} is a constant homotopy. Let Ο‡:Dkβ†’[0,1]\chi:D^{k}\rightarrow[0,1] be a continuous function such that χ​(x)=0\chi(x)=0 on a complement of a sufficiently small neighborhood of BB in DkD^{k}, and χ​(x)=1\chi(x)=1 on a (smaller) neighborhood of BB. Now define a homotopy G~t:Dkβ†’Giso​(k,n)\tilde{G}_{t}:D^{k}\rightarrow G^{\textnormal{iso}}(k,n) (t∈[0,1]t\in[0,1]) by

G~t​(z):={Hχ​(z),t​(z)​ when ​z∈Op​(B),Gt​(z)Β otherwise.\tilde{G}_{t}(z):=\left\{\begin{array}[]{l}H_{\chi(z),t}(z)\,\,\text{ when }z\in\textnormal{Op}\,(B),\\ G_{t}(z)\,\,\,\,\,\,\,\,\,\,\,\,\,\text{ otherwise.}\end{array}\right.

Then G~t\tilde{G}_{t} is a desired homotopy between d​u1du_{1} and d​v1dv_{1} rel Op​(AβˆͺB)\textnormal{Op}\,(A\cup B). β–‘\square

We will also need the following lemma, which allows to achieve general positions by Hamiltonian perturbations.

Lemma 2.4.

Let VβŠ‚β„‚nV\subset\mathbb{C}^{n} be an open set. We consider the following two possible scenarios:

  1. 1.

    Let Ξ£1,Ξ£2\Sigma_{1},\Sigma_{2} be two smooth proper submanifolds of VV, which are transverse in a neighbourhood of βˆ‚V\partial V. Then there exists an arbitrarily π’ž1\mathbb{\mathcal{C}}^{1}-small Hamiltonian flow (Ο†t)t∈[0,1](\varphi^{t})_{t\in[0,1]} whose generating Hamiltonian is compactly supported in VV, such that Ο†1​(Ξ£1)β‹”Ξ£2\varphi^{1}(\Sigma_{1})\pitchfork\Sigma_{2}.

  2. 2.

    Let Ξ£1\Sigma_{1} be a smooth proper submanifold of VV, and let Ξ£2\Sigma_{2} be a smooth manifold such that dimΞ£1+dimΞ£2β©½2​nβˆ’2\dim\Sigma_{1}+\dim\Sigma_{2}\leqslant 2n-2. Furthermore, let ΞΉt:Ξ£2β†’V\iota_{t}:\Sigma_{2}\rightarrow V be a smooth proper family of embeddings for t∈[0,1]t\in[0,1], such that Ξ£1\Sigma_{1} and ΞΉt​(Ξ£2)\iota_{t}(\Sigma_{2}) do not intersect near the boundary of VV (uniformly in tt). Then there exists an arbitrarily π’ž1\mathbb{\mathcal{C}}^{1}-small Hamiltonian flow (Ο†t)t∈[0,1](\varphi^{t})_{t\in[0,1]} whose generating Hamiltonian is compactly supported in VV, such that Ο†1​(Ξ£1)∩ιt​(Ξ£2)=βˆ…\varphi^{1}(\Sigma_{1})\cap\iota_{t}(\Sigma_{2})=\emptyset for any t∈[0,1]t\in[0,1].

Proof.

For both statements, it is enough to show the following claim: if Ξ£1\Sigma_{1}, Ξ£2\Sigma_{2} are smooth manifolds (possibly with boundary), and if f1:Ξ£1β†’Vf_{1}:\Sigma_{1}\rightarrow V and f2:Ξ£2β†’Vf_{2}:\Sigma_{2}\rightarrow V are smooth proper maps such that f1β‹”f2f_{1}\pitchfork f_{2} near βˆ‚V\partial V, then there exists an arbitrarily small Hamiltonian flow (Ο†t)t∈[0,1](\varphi^{t})_{t\in[0,1]} with compact support in VV, such that Ο†1∘f1β‹”f2\varphi^{1}\circ f_{1}\pitchfork f_{2}. Indeed, the first statement of the lemma readily follows from this, and for the second statement we can apply the claim with maps the maps f1=Id:Ξ£1β†’Vf_{1}=\textnormal{Id}\,:\Sigma_{1}\rightarrow V and f2:Ξ£2Γ—[0,1]β†’Vf_{2}:\Sigma_{2}\times[0,1]\rightarrow V, f2​(w,t)=ΞΉt​(w)f_{2}(w,t)=\iota_{t}(w).

Now let us show the above claim. Assume that Ξ£1\Sigma_{1}, Ξ£2\Sigma_{2} are smooth manifolds (possibly with boundary), and let f1:Ξ£1β†’Vf_{1}:\Sigma_{1}\rightarrow V and f2:Ξ£2β†’Vf_{2}:\Sigma_{2}\rightarrow V be smooth maps such that f1β‹”f2f_{1}\pitchfork f_{2} on Vβˆ–KV\setminus K where KβŠ‚VK\subset V is a compact subset. Pick a smooth compactly supported function h:V→ℝh:V\rightarrow\mathbb{R} such that h=1h=1 on a neighbourhood of KK. Now define the smooth map F:Ξ£1Γ—Ξ£2β†’β„‚nF:\Sigma_{1}\times\Sigma_{2}\rightarrow\mathbb{C}^{n} by F​(w1,w2)=f2​(w2)βˆ’f1​(w1)F(w_{1},w_{2})=f_{2}(w_{2})-f_{1}(w_{1}). Then by the Sard theorem, the set of critical values of FF has measure zero. Hence there exist arbitrarily small (in norm) regular critical values vβˆˆβ„‚nv\in\mathbb{C}^{n} of FF. Picking such a value vv, define the autonomous Hamiltonian function H:V→ℝH:V\rightarrow\mathbb{R} by H​(z)=h​(z)​ωs​t​d​(v,z)H(z)=h(z)\omega_{std}(v,z), where Ο‰s​t​d\omega_{std} is the standard symplectic form of β„‚n\mathbb{C}^{n}. Then its Hamiltonian flow verifies Ο†Ht​(z)=z+v\varphi_{H}^{t}(z)=z+v for z∈Op​(K)z\in\textnormal{Op}\,(K), and it is now easy to see that Ο†H1∘f1β‹”f2\varphi_{H}^{1}\circ f_{1}\pitchfork f_{2} (provided that vv is sufficiently close to the origin). ∎

We finally state a version of theorem 2.1 which we will use later on:

Proposition 2.5.

Let VβŠ‚β„2​nV\subset\mathbb{R}^{2n} be an open set, u0,u1:Dβˆ˜Γ—l[βˆ’1,1]kβˆ’lβ†ͺVu_{0},u_{1}:\overset{\vspace*{-1pt}\circ}{D}{}^{l}\times[-1,1]^{k-l}\hookrightarrow V be proper subcritical isotropic embeddings which coincide on Op​(βˆ‚DlΓ—[βˆ’1,1]kβˆ’l)\textnormal{Op}\,(\partial D^{l}\times[-1,1]^{k-l}), such that u0u_{0} and u1u_{1} are homotopic in VV relative to Op​(βˆ‚DlΓ—[βˆ’1,1]kβˆ’l)\textnormal{Op}\,(\partial D^{l}\times[-1,1]^{k-l}), and moreover their differentials d​u0du_{0}, d​u1du_{1} are homotopic in Giso​(k,n)G^{\textnormal{iso}}(k,n) relative to Op​(βˆ‚DlΓ—[βˆ’1,1]kβˆ’l)\textnormal{Op}\,(\partial D^{l}\times[-1,1]^{k-l}). We fix such a relative homotopy G:[0,1]Γ—Dβˆ˜Γ—l[βˆ’1,1]kβˆ’lβ†’Giso(k,n)G:[0,1]\times\overset{\vspace*{-1pt}\circ}{D}{}^{l}\times[-1,1]^{k-l}\to G^{\textnormal{iso}}(k,n) between d​u0du_{0} and d​u1du_{1}. If l=1l=1, we further assume that the curves given by restrictions of u0u_{0} and u1u_{1} to Dβˆ˜Γ—1{0}=(βˆ’1,1)Γ—{0}βŠ‚β„k\overset{\vspace*{-1pt}\circ}{D}{}^{1}\times\{0\}=(-1,1)\times\{0\}\subset\mathbb{R}^{k} have the same actions, i.e. for a 11-form Ξ»\lambda which is a primitive of Ο‰\omega in VV,

∫(βˆ’1,1)Γ—{0}u1βˆ—β€‹Ξ»βˆ’u0βˆ—β€‹Ξ»=0.\int_{(-1,1)\times\{0\}}u_{1}^{*}\lambda-u_{0}^{*}\lambda=0.

Then there exists a Hamiltonian isotopy (Ο†t)(\varphi^{t}) with compact support in VV such that Ο†1∘u0=u1\varphi^{1}\circ u_{0}=u_{1} and for the induced isotropic isotopy ut=Ο†t∘u0u_{t}=\varphi^{t}\circ u_{0}, {d​ut}\{du_{t}\} is homotopic to GG rel Op​(βˆ‚DlΓ—[βˆ’1,1]kβˆ’l)\textnormal{Op}\,(\partial D^{l}\times[-1,1]^{k-l}) and {0,1}\{0,1\}.

Proof: Consider the closed ball D:=Dl=BΒ―l​(0,1)D:=D^{l}=\overline{B}^{l}(0,1), denote D​(r):=BΒ―l​(0,r)D(r):=\overline{B}^{l}(0,r), AΞ΅β€²,Ξ΅:=D​(1βˆ’Ξ΅β€²)\Dβˆ˜β€‹(1βˆ’Ξ΅)A_{\varepsilon^{\prime},\varepsilon}:=D(1-\varepsilon^{\prime})\backslash\overset{\vspace*{-1pt}\circ}{D}{}(1-\varepsilon) and AΞ΅:=D∘\Dβˆ˜β€‹(1βˆ’Ξ΅)A_{\varepsilon}:=\overset{\vspace*{-1pt}\circ}{D}{}\backslash\overset{\vspace*{-1pt}\circ}{D}{}(1-\varepsilon). By assumption, there exists Ξ΅0>0\varepsilon_{0}>0 such that u0,u1u_{0},u_{1} coincide on AΞ΅0Γ—[βˆ’1,1]kβˆ’lA_{\varepsilon_{0}}\times[-1,1]^{k-l} and moreover the homotopy GG is relative to AΞ΅0Γ—[βˆ’1,1]kβˆ’lA_{\varepsilon_{0}}\times[-1,1]^{k-l} and {0,1}\{0,1\}. We fix 0<Ξ΅1<Ξ΅00<\varepsilon_{1}<\varepsilon_{0}.

The restrictions of the maps u0,u1u_{0},u_{1} to D​(1βˆ’Ξ΅1)Γ—[βˆ’1,1]kβˆ’lD(1-\varepsilon_{1})\times[-1,1]^{k-l} coincide on A:=AΞ΅1,Ξ΅0Γ—[βˆ’1,1]kβˆ’lA:=A_{\varepsilon_{1},\varepsilon_{0}}\times[-1,1]^{k-l}, and GG provides a homotopy between their differentials relative to AA. By theorem 2.1, there exists a compactly supported time-dependent Hamiltonian function H:[0,1]Γ—V→ℝH:[0,1]\times V\rightarrow\mathbb{R} whose flow Ο†Ht\varphi_{H}^{t} isotopes u0|D​(1βˆ’Ξ΅1)Γ—[βˆ’1,1]kβˆ’lu_{0|D(1-\varepsilon_{1})\times[-1,1]^{k-l}} to u1u_{1} relative to AA, with {d​(Ο†Ht∘u0)|D(1βˆ’Ξ΅1)Γ—[βˆ’1,1]kβˆ’l}\{d(\varphi_{H}^{t}\circ u_{0})_{|D(1-\varepsilon_{1})\times[-1,1]^{k-l}}\} homotopic to GG relative to AA and {0,1}\{0,1\}. The subcritical assumption allows us to apply lemma 2.4 and assume that

Ο†Ht∘u0​(D​(1βˆ’Ξ΅0)Γ—[βˆ’1,1]kβˆ’l)∩u0​(AΞ΅1Γ—[βˆ’1,1]kβˆ’l)=βˆ…\varphi_{H}^{t}\circ u_{0}(D(1-\varepsilon_{0})\times[-1,1]^{k-l})\cap u_{0}(A_{\varepsilon_{1}}\times[-1,1]^{k-l})=\emptyset (2.1.1 )

for every t∈[0,1]t\in[0,1]. Since we moreover have

Ο†Ht∘u0|AΞ΅1,Ξ΅0Γ—[βˆ’1,1]kβˆ’l=u0,\varphi_{H}^{t}\circ u_{0|A_{\varepsilon_{1},\varepsilon_{0}}\times[-1,1]^{k-l}}=u_{0}, (2.1.2 )

we obtain the family of embeddings

ut:Dβˆ˜Γ—l[βˆ’1,1]kβˆ’l⟢V(x,y)⟼{Ο†Ht∘u0​(x,y)Β if ​x∈D​(1βˆ’Ξ΅1),u0​(x,y)Β if ​x∈AΞ΅1\begin{array}[]{rcccl}u_{t}&:&\overset{\vspace*{-1pt}\circ}{D}{}^{l}\times[-1,1]^{k-l}&\longrightarrow&V\\ &&(x,y)&\longmapsto&\left\{\begin{array}[]{ll}\varphi_{H}^{t}\circ u_{0}(x,y)&\text{ if }x\in D(1-\varepsilon_{1}),\\ u_{0}(x,y)&\text{ if }x\in A_{\varepsilon_{1}}\end{array}\right.\end{array}

that provides an isotropic isotopy between u0u_{0} and u1u_{1} relative to AΞ΅0Γ—[βˆ’1,1]kβˆ’lA_{\varepsilon_{0}}\times[-1,1]^{k-l}, whose differential realizes GG. At this point a distinction is necessary.
βˆ™\bullet If lβ‰₯2l\geq 2, AA is connected, pointwise fixed by Ο†Ht\varphi_{H}^{t}, hence the differential of H​(t,β‹…)H(t,\cdot) vanishes on u0​(A)u_{0}(A) and in particular H​(t,β‹…)H(t,\cdot) assumes a constant value ctc_{t} on u0​(A)u_{0}(A). The Hamiltonian H′​(t,β‹…):=H​(t,β‹…)βˆ’ctH^{\prime}(t,\cdot):=H(t,\cdot)-c_{t} therefore vanishes on u0​(A)u_{0}(A) together with its differential, and induces the same isotopy between u0|D​(1βˆ’Ξ΅1)Γ—[βˆ’1,1]kβˆ’lu_{0|D(1-\varepsilon_{1})\times[-1,1]^{k-l}} and u1u_{1} relative to AA. Then, (2.1.1)(\ref{eq:gicpos}) and (2.1.2)(\ref{eq:relcond}) guarantee that if we cut Hβ€²H^{\prime} off away from a sufficiently small neighborhood of βˆͺt∈[0,1]ut​(D​(1βˆ’Ξ΅0)Γ—[βˆ’1,1]kβˆ’l)\cup_{t\in[0,1]}u_{t}(D(1-\varepsilon_{0})\times[-1,1]^{k-l}) then we obtain a compactly supported in VV Hamiltonian function FF such that Ο†Ft∘u0=ut\varphi_{F}^{t}\circ u_{0}=u_{t} for each t∈[0,1]t\in[0,1].
βˆ™\bullet If l=1l=1, AA is not connected and the above argument cannot be carried out unless we ensure that

Ξ±t:=∫(βˆ’1,1)Γ—{0}utβˆ—β€‹Ξ»βˆ’u0βˆ—β€‹Ξ»\alpha_{t}:=\int_{(-1,1)\times\{0\}}u_{t}^{*}\lambda-u_{0}^{*}\lambda (2.1.3 )

vanishes. Since however this is not automatic because AA is no longer connected, we first alter utu_{t} to another isotopy utβ€²u_{t}^{\prime} that satisfies this property.

By assumption we have Ξ±0=Ξ±1=0\alpha_{0}=\alpha_{1}=0. Let K:V→ℝK:V\rightarrow\mathbb{R} be a compactly supported Hamiltonian function such that

K|Op(u0([βˆ’1+Ξ΅1,βˆ’1+Ξ΅0]Γ—[βˆ’1,1]kβˆ’1))≑0​ and ​K|Op(u0([1βˆ’Ξ΅0,1βˆ’Ξ΅1]Γ—[βˆ’1,1]kβˆ’1))≑1.K_{|\textnormal{Op}\,(u_{0}([-1+\varepsilon_{1},-1+\varepsilon_{0}]\times[-1,1]^{k-1}))}\equiv 0\,\,\text{ and }\,\,K_{|\textnormal{Op}\,(u_{0}([1-\varepsilon_{0},1-\varepsilon_{1}]\times[-1,1]^{k-1}))}\equiv 1. (2.1.4 )

Then u~t:=Ο†Kβˆ’Ξ±t∘ut\tilde{u}_{t}:=\varphi_{K}^{-\alpha_{t}}\circ u_{t} agrees with u0u_{0} on A=([βˆ’1+Ξ΅1,βˆ’1+Ξ΅0]βˆͺ[1βˆ’Ξ΅0,1βˆ’Ξ΅1])Γ—[βˆ’1,1]kβˆ’1A=\left([-1+\varepsilon_{1},-1+\varepsilon_{0}]\cup[1-\varepsilon_{0},1-\varepsilon_{1}]\right)\times[-1,1]^{k-1}, we have u~0=u0\tilde{u}_{0}=u_{0}, and by Ξ±1=0\alpha_{1}=0 we moreover have u~1=u1\tilde{u}_{1}=u_{1}. In addition, by (2.1.4)(\ref{eq:action-cond}) and (2.1.3)(\ref{eq:action-def}) we get

∫(βˆ’1+Ξ΅1,1βˆ’Ξ΅1)Γ—{0}u~tβˆ—β€‹Ξ»βˆ’u0βˆ—β€‹Ξ»=βˆ’Ξ±t+∫(βˆ’1+Ξ΅1,1βˆ’Ξ΅1)Γ—{0}utβˆ—β€‹Ξ»βˆ’u0βˆ—β€‹Ξ»=0.\begin{gathered}\int_{(-1+\varepsilon_{1},1-\varepsilon_{1})\times\{0\}}\tilde{u}_{t}^{*}\lambda-u_{0}^{*}\lambda=-\alpha_{t}+\int_{(-1+\varepsilon_{1},1-\varepsilon_{1})\times\{0\}}u_{t}^{*}\lambda-u_{0}^{*}\lambda=0.\end{gathered} (2.1.5 )

for each t∈[0,1]t\in[0,1]. Now, by applying lemma 2.4 we may assume that

u~t​((βˆ’1+Ξ΅0,1βˆ’Ξ΅0)Γ—[βˆ’1,1]kβˆ’1)∩u0​(AΞ΅1)=βˆ…\tilde{u}_{t}((-1+\varepsilon_{0},1-\varepsilon_{0})\times[-1,1]^{k-1})\cap u_{0}(A_{\varepsilon_{1}})=\emptyset (2.1.6 )

for every t∈[0,1]t\in[0,1], where AΞ΅1=((βˆ’1,βˆ’1+Ξ΅1]βˆͺ[1βˆ’Ξ΅1,1))Γ—[βˆ’1,1]kβˆ’1A_{\varepsilon_{1}}=((-1,-1+\varepsilon_{1}]\cup[1-\varepsilon_{1},1))\times[-1,1]^{k-1}. Since we moreover have u~t=u0\tilde{u}_{t}=u_{0} on AA, we can define the family of embeddings

utβ€²:(βˆ’1,1)Γ—[βˆ’1,1]kβˆ’1⟢V(x,y)⟼{u~t​(x,y)Β if ​x∈(βˆ’1+Ξ΅1,1βˆ’Ξ΅1),u0​(x,y)Β if ​x∈(βˆ’1,βˆ’1+Ξ΅1]βˆͺ[1βˆ’Ξ΅1,1)\begin{array}[]{rcccl}u_{t}^{\prime}&:&(-1,1)\times[-1,1]^{k-1}&\longrightarrow&V\\ &&(x,y)&\longmapsto&\left\{\begin{array}[]{ll}\tilde{u}_{t}(x,y)&\text{ if }x\in(-1+\varepsilon_{1},1-\varepsilon_{1}),\\ u_{0}(x,y)&\text{ if }x\in(-1,-1+\varepsilon_{1}]\cup[1-\varepsilon_{1},1)\end{array}\right.\end{array}

that provides an isotropic isotopy between u0u_{0} and u1u_{1} relative to AΞ΅0Γ—[βˆ’1,1]kβˆ’1A_{\varepsilon_{0}}\times[-1,1]^{k-1}. To see that the path of differentials d​utβ€²du_{t}^{\prime} realizes GG, consider the family of isotropic immersions (us,tβ€²)s,t∈[0,1](u_{s,t}^{\prime})_{s,t\in[0,1]} given by

ut,sβ€²:(βˆ’1,1)Γ—[βˆ’1,1]kβˆ’1⟢V(x,y)⟼{Ο†Kβˆ’s​αt∘ut​(x,y)Β if ​x∈[βˆ’1+Ξ΅1,1βˆ’Ξ΅1],u0​(x,y)Β if ​x∈[βˆ’1,βˆ’1+Ξ΅1]βˆͺ[1βˆ’Ξ΅1,1]\begin{array}[]{rcccl}u_{t,s}^{\prime}&:&(-1,1)\times[-1,1]^{k-1}&\longrightarrow&V\\ &&(x,y)&\longmapsto&\left\{\begin{array}[]{ll}\varphi_{K}^{-s\alpha_{t}}\circ u_{t}(x,y)&\text{ if }x\in[-1+\varepsilon_{1},1-\varepsilon_{1}],\\ u_{0}(x,y)&\text{ if }x\in[-1,-1+\varepsilon_{1}]\cup[1-\varepsilon_{1},1]\end{array}\right.\end{array}

and then the induced family of differentials d​us,tβ€²du_{s,t}^{\prime} provides us a homotopy between the path d​ut=d​u0,tβ€²du_{t}=du_{0,t}^{\prime} and d​utβ€²=d​u1,tβ€²du_{t}^{\prime}=du_{1,t}^{\prime} relative to AΞ΅0Γ—[βˆ’1,1]kβˆ’1A_{\varepsilon_{0}}\times[-1,1]^{k-1} and {0,1}\{0,1\}, while the path d​utdu_{t} is in turn homotopic to GG relative to AΞ΅0Γ—[βˆ’1,1]kβˆ’1A_{\varepsilon_{0}}\times[-1,1]^{k-1} and {0,1}\{0,1\}.

Now we can proceed similarly as in the previous case (of lβ‰₯2l\geq 2). Denoting by H~\widetilde{H} the Hamiltonian function of the flow Ο†Kβˆ’Ξ±tβˆ˜Ο†Ht\varphi_{K}^{-\alpha_{t}}\circ\varphi_{H}^{t}, we have utβ€²=Ο†H~t∘u0u_{t}^{\prime}=\varphi_{\widetilde{H}}^{t}\circ u_{0} on [βˆ’1+Ξ΅1,1βˆ’Ξ΅1]Γ—[βˆ’1,1]kβˆ’1[-1+\varepsilon_{1},1-\varepsilon_{1}]\times[-1,1]^{k-1}. Then by (2.1.5)(\ref{eq:action-cond-true}) we have

∫(βˆ’1+Ξ΅1,1βˆ’Ξ΅1)Γ—{0}(utβ€²)βˆ—β€‹Ξ»βˆ’u0βˆ—β€‹Ξ»=0\int_{(-1+\varepsilon_{1},1-\varepsilon_{1})\times\{0\}}(u_{t}^{\prime})^{*}\lambda-u_{0}^{*}\lambda=0

for each t∈[0,1]t\in[0,1], and moreover the flow Ο†H~t=Ο†Kβˆ’Ξ±tβˆ˜Ο†Ht\varphi_{\widetilde{H}}^{t}=\varphi_{K}^{-\alpha_{t}}\circ\varphi_{H}^{t} is the identity when restricted to u0​(A)u_{0}(A) (where A=([βˆ’1+Ξ΅1,βˆ’1+Ξ΅0]βˆͺ[1βˆ’Ξ΅0,1βˆ’Ξ΅1])Γ—[βˆ’1,1]kβˆ’1A=\left([-1+\varepsilon_{1},-1+\varepsilon_{0}]\cup[1-\varepsilon_{0},1-\varepsilon_{1}]\right)\times[-1,1]^{k-1}), therefore H~​(t,β‹…)\widetilde{H}(t,\cdot) assumes a constant value ctc_{t} on u0​(A)u_{0}(A) and its differential vanishes on u0​(A)u_{0}(A), for each tt. Hence denoting H′​(t,β‹…):=H~​(t,β‹…)βˆ’ctH^{\prime}(t,\cdot):=\widetilde{H}(t,\cdot)-c_{t}, the transversality property (2.1.6)(\ref{eq:gicpos2}) implies that a Hamiltonian function FF obtained as a cutoff of Hβ€²H^{\prime} away from a sufficiently small neighborhood of βˆͺt∈[0,1]ut′​([βˆ’1+Ξ΅0,1βˆ’Ξ΅0]Γ—[βˆ’1,1]kβˆ’1)\cup_{t\in[0,1]}u_{t}^{\prime}([-1+\varepsilon_{0},1-\varepsilon_{0}]\times[-1,1]^{k-1}), satisfies Ο†Ft∘u0=utβ€²\varphi_{F}^{t}\circ u_{0}=u_{t}^{\prime} for each t∈[0,1]t\in[0,1]. β–‘\square

2.2 Proof of theorem 1

Let k<nk<n, Dk:=[βˆ’1,1]k,Dk​(ΞΌ):=[βˆ’1βˆ’ΞΌ,1+ΞΌ]kD^{k}:=[-1,1]^{k},D^{k}(\mu):=[-1-\mu,1+\mu]^{k}, u0,u1:Dkβ†ͺVβŠ‚β„‚nu_{0},u_{1}:D^{k}\hookrightarrow V\subset\mathbb{C}^{n} be smooth isotropic embeddings, and F:DkΓ—[0,1]β†’VF:D^{k}\times[0,1]\to V a homotopy between u0,u1u_{0},u_{1} with Size​F<Ξ΅\textnormal{Size}\,F<\varepsilon. We need to prove that there exists a Hamiltonian isotopy of size 2​Ρ2\varepsilon, which takes u0u_{0} to u1u_{1} on DkD^{k}.

Before passing to the proof, we need to modify slightly the framework. First, extend the isotropic embeddings and the homotopy to slightly larger isotropic embeddings: u0,u1:Dk​(ΞΌ)β†ͺVu_{0},u_{1}:D^{k}(\mu)\hookrightarrow V, F:Dk​(ΞΌ)Γ—[0,1]β†’VF:D^{k}(\mu)\times[0,1]\to V, where Dk​(ΞΌ)=[βˆ’ΞΌ,1+ΞΌ]kD^{k}(\mu)=[-\mu,1+\mu]^{k}. By lemma 2.4, we do not loose generality if we assume that the images of u0u_{0} and u1u_{1} are disjoint (since k<nk<n), which we do henceforth. Next, the homotopy FF can be turned into a more convenient object:

Lemma 2.6 (see [BO16, lemma A.1]).

There exists a smooth embedding F~:Dk​(ΞΌ)Γ—[0,1]β†ͺV\tilde{F}:D^{k}(\mu)\times[0,1]\hookrightarrow V, with F~​(x,0)=u0​(x)\tilde{F}(x,0)=u_{0}(x), F~​(x,1)=u1​(x)\tilde{F}(x,1)=u_{1}(x), with Diam​(F~​({x}Γ—[0,1]))<2​Ρ\text{Diam}\,(\tilde{F}(\{x\}\times[0,1]))<2\varepsilon for all x∈Dk​(ΞΌ)x\in D^{k}(\mu). In other words, F~\tilde{F} has size 2​Ρ2\varepsilon when considered as a homotopy between u0,u1u_{0},u_{1}.

Now F~\tilde{F} can be further extended to an embedding, still denoted F~\tilde{F},

F~:Dk​(ΞΌ)Γ—[βˆ’ΞΌ,1+ΞΌ]Γ—[βˆ’ΞΌ,ΞΌ]2​nβˆ’kβˆ’1β†ͺV.\tilde{F}:D^{k}(\mu)\times[-\mu,1+\mu]\times[-\mu,\mu]^{2n-k-1}\hookrightarrow V.

Consider now a regular grid Ξ“0:=ν​℀k∩Dk\Gamma_{0}:=\nu\mathbb{Z}^{k}\cap D^{k} in DkβŠ‚Dk​(ΞΌ)D^{k}\subset D^{k}(\mu), of step Ξ½β‰ͺ1\nu\ll 1 (to be specified later), where Ξ½βˆ’1βˆˆβ„•\nu^{-1}\in\mathbb{N}. This grid generates a cellular decomposition of DkD^{k}, whose ll-skeleton Ξ“l\Gamma_{l} is the union of the ll-faces. The set of kk-faces has a natural integer-valued distance, where the distance between kk-faces xx and xβ€²x^{\prime} is the minimal mm such that there exists a sequence x=x0,x1,…,xm=xβ€²x=x_{0},x_{1},\ldots,x_{m}=x^{\prime} of kk-faces and xj∩xj+1β‰ βˆ…x_{j}\cap x_{j+1}\neq\emptyset for each j∈[0,mβˆ’1]j\in[0,m-1] (note that those intersections are not required to be along full (kβˆ’1)(k-1)-faces). Fix some Ξ·<Ξ½/2\eta<\nu/2, and for each xβˆˆΞ“0x\in\Gamma_{0}, let UxU_{x} be the Ξ·\eta-neighbourhood of {x}Γ—[0,1]Γ—{0}2​nβˆ’kβˆ’1\{x\}\times[0,1]\times\{0\}^{2n-k-1} in β„‚n\mathbb{C}^{n}, and then denote Wx:=F~​(Ux)W_{x}:=\tilde{F}(U_{x}). Similarly, for each kk-face xkx_{k}, denote by UxkU_{x_{k}} the Ξ·\eta-neighbourhood of xkΓ—[0,1]Γ—{0}2​nβˆ’kβˆ’1x_{k}\times[0,1]\times\{0\}^{2n-k-1} in β„‚n\mathbb{C}^{n}, and then put Wxk:=F~​(Uxk)W_{x_{k}}:=\tilde{F}(U_{x_{k}}). For a kk-face xx and mβ©Ύ0m\geqslant 0 we denote Wxm:=βˆͺWxβ€²W^{m}_{x}:=\cup W_{x^{\prime}}, where the union is over all the kk-faces xβ€²x^{\prime} which are at distance at most mm from xx. Note that Wx0=WxW_{x}^{0}=W_{x}, and that WxmW_{x}^{m} is a topological ball. Finally, we put W:=βˆͺxWxβŠ‚VW:=\cup_{x}W_{x}\subset V, where the union is over all the kk-faces. Hence, W=F~​(U)W=\tilde{F}(U) where UU is the Ξ·\eta-neighborhood of DkΓ—[0,1]Γ—{0}2​nβˆ’kβˆ’1D^{k}\times[0,1]\times\{0\}^{2n-k-1} in β„‚n\mathbb{C}^{n}.

We will prove theorem 1 by successively isotopying the ll-skeleton with a control on each isotopy. Precisely, arguing by induction on ll, we prove the following:

Proposition 2.7.

There exist Hamiltonian isotopies (Ξ¨lt)(\Psi^{t}_{l}), l∈[0,k]l\in[0,k] with support in WW, and modified embeddings v0:=Ξ¨01∘u0v_{0}:=\Psi^{1}_{0}\circ u_{0}, vl:=Ξ¨l1∘vlβˆ’1v_{l}:=\Psi^{1}_{l}\circ v_{l-1}, such that

  • (ℐ​1\mathcal{I}1)

    vl≑u1v_{l}\equiv u_{1} on a neighbourhood of the ll-skeleton Ξ“l\Gamma_{l}, for every l∈[0,k]l\in[0,k].

  • (ℐ​2\mathcal{I}2)

    vl​(x)βŠ‚Wx3lβˆ’1v_{l}(x)\subset W_{x}^{3^{l}-1} for each kk-face xx and every l∈[0,kβˆ’1]l\in[0,k-1].

  • (ℐ​3\mathcal{I}3)

    Ξ¨lt​(Wx)βŠ‚Wx2β‹…3lβˆ’1\Psi^{t}_{l}(W_{x})\subset W_{x}^{2\cdot 3^{l-1}} for each kk-face xx and l∈[1,kβˆ’1]l\in[1,k-1],
    and Ξ¨0t​(Wx)βŠ‚Wx\Psi^{t}_{0}(W_{x})\subset W_{x}, Ξ¨kt​(Wx)βŠ‚Wx3k​(k+1)\Psi^{t}_{k}(W_{x})\subset W_{x}^{3^{k(k+1)}}, for every kk-face xx.

  • (ℐ​4\mathcal{I}4)

    vl(x∘l+1)∩u1(x∘)l+1β€²=βˆ…v_{l}(\overset{\vspace*{-1pt}\circ}{x}_{l+1})\cap u_{1}(\overset{\vspace*{-1pt}\circ}{x}{}_{l+1}^{\prime})=\emptyset for every pair of distinct (l+1)(l+1)-faces, βˆ€l∈[0,kβˆ’1]\forall l\in[0,k-1].

  • (ℐ​5\mathcal{I}5)

    d​vldv_{l} and d​u1du_{1} are homotopic rel Op​(Ξ“l)\textnormal{Op}\,(\Gamma_{l}) among maps Dk​(ΞΌ)β†’Giso​(k,n)D^{k}(\mu)\to G^{\textnormal{iso}}(k,n), for each l∈[0,kβˆ’1]l\in[0,k-1].

Proposition 2.7 readily implies theorem 1. Indeed, denoting by (Ξ¨t)t∈[0,1](\Psi^{t})_{t\in[0,1]} the (reparamet-rized) concatenation {Ξ¨kt}⋆⋯⋆{Ξ¨1t}\{\Psi^{t}_{k}\}\star\dots\star\{\Psi^{t}_{1}\} of the flows, from (ℐ​3\mathcal{I}3) we conclude that for each kk-face xx and each tt we have Ξ¨t​(Wx)βŠ‚Wx3k2+k+1\Psi^{t}(W_{x})\subset W_{x}^{3^{k^{2}+k+1}} since (βˆ‘j=1kβˆ’12β‹…3j)+3k​(k+1)<3k2+k+1\left(\sum_{j=1}^{k-1}2\cdot 3^{j}\right)+3^{k(k+1)}<3^{k^{2}+k+1}. The flow (Ξ¨t)(\Psi^{t}) is supported in W=βˆͺxβˆˆΞ“kWxβŠ‚VW=\cup_{x\in\Gamma_{k}}W_{x}\subset V, and if the step Ξ½\nu of the grid is chosen to be sufficiently small, then for each kk-face xx, the diameter of Wx3k2+k+1W_{x}^{3^{k^{2}+k+1}} is less than 2​Ρ2\varepsilon. Consequently, the size of the flow (Ξ¨t)t∈[0,1](\Psi^{t})_{t\in[0,1]} is less than 2​Ρ2\varepsilon. Moreover, by (ℐ​1\mathcal{I}1) we have Ξ¨1∘u0=vk=u1\Psi^{1}\circ u_{0}=v_{k}=u_{1} on DkD^{k}. β–‘\square

Proof of proposition 2.7: As already explained, the proof goes by induction over the dimension of the skeleton Ξ“l\Gamma_{l}.

Since Dk​(ΞΌ)D^{k}(\mu) is contractible, there exists a homotopy Gt:Dkβ†’Giso​(k,n)G_{t}:D^{k}\to G^{\textnormal{iso}}(k,n) between d​u0du_{0} and d​u1du_{1}.

The 0-skeleton: Let xβˆˆΞ“0x\in\Gamma_{0} be a 0-face, ρ<Ξ·\rho<\eta, and Dρ​(x)D_{\rho}(x) the ρ\rho-neighbourhood of xx in Dk​(ΞΌ)D^{k}(\mu). Then u0​(Dρ​(x)),u1​(Dρ​(x))u_{0}(D_{\rho}(x)),u_{1}(D_{\rho}(x)) both lie in WxW_{x}, and F~\tilde{F} provides an isotopy between u0|Dρ​(x)u_{0|D_{\rho}(x)} and u1|Dρ​(x)u_{1|D_{\rho}(x)} in WxW_{x}. By theorem 2.1.b), there exists a Hamiltonian isotopy (ψxt)(\psi^{t}_{x}) with support in WxW_{x}, such that ψx1∘u0=u1\psi^{1}_{x}\circ u_{0}=u_{1} on Dρ​(x)D_{\rho}(x) and dβ€‹Οˆxt∘d​u0|Dρ​(x)d\psi^{t}_{x}\circ du_{0|D_{\rho}(x)} is homotopic to GtG_{t} rel {0,1}\{0,1\}. Since Wx∩Wxβ€²=βˆ…W_{x}\cap W_{x^{\prime}}=\emptyset for different 0-faces x,xβ€²x,x^{\prime}, the isotopies ψx\psi_{x} have pairwise disjoint supports.

The flow ψ0t:=∘xψxt\psi_{0}^{t}:=\circ_{x}\psi_{x}^{t} (where the composition runs over all 0-faces xx of Ξ“\Gamma) and the disc v0β€²:=ψ01∘u0v_{0}^{\prime}:=\psi_{0}^{1}\circ u_{0} verify (ℐ​1\mathcal{I}1) by construction. Moreover, the flow satisfies (ℐ​3\mathcal{I}3) because it is supported inside the disjoint union βˆͺxβˆˆΞ“0Wx\cup_{x\in\Gamma_{0}}W_{x}, and for every xβˆˆΞ“0x\in\Gamma_{0} and kk-face xβ€²x^{\prime} we have either WxβŠ‚Wxβ€²W_{x}\subset W_{x^{\prime}} or Wx∩Wxβ€²=βˆ…W_{x}\cap W_{x^{\prime}}=\emptyset. In addition, dβ€‹Οˆ0t∘d​u0|Op​(Ξ“0)d\psi_{0}^{t}\circ du_{0|\textnormal{Op}\,(\Gamma_{0})} is homotopic to GtG_{t} rel {0,1}\{0,1\}. In the next steps of the proof we will need proposition 2.5 for performing relative isotopies via localized Hamiltonians. Note however that in the case of l=1l=1, in addition to the formal obstructions, the proposition requires the actions of the edges to coincide. Hence in order to proceed, we have to adjust the actions of the edges.

Let us show that there exists a Hamiltonian isotopy (Οˆπ’œt)(\psi^{t}_{\mathcal{A}}), supported in an arbitrarily small neighborhood v0′​(Ξ“0)=u1​(Ξ“0)v_{0}^{\prime}(\Gamma_{0})=u_{1}(\Gamma_{0}), whose flow is the identity on a (smaller) neighbourhood of Ξ“0\Gamma_{0}, such that

π’œβ€‹(Οˆπ’œ1∘v0β€²βˆ˜Ξ³):=βˆ«Οˆπ’œ1∘v0β€²βˆ˜Ξ³Ξ»=∫u1∘γλ=π’œβ€‹(u1∘γ)for every edgeΒ Ξ³Β ofΒ Ξ“,\mathcal{A}\big{(}\psi_{\mathcal{A}}^{1}\circ{v_{0}^{\prime}}\circ\gamma\big{)}:=\int_{\psi^{1}_{\mathcal{A}}\circ{v_{0}^{\prime}}\circ\gamma}\lambda=\int_{u_{1}\circ\gamma}\lambda=\mathcal{A}\big{(}u_{1}\circ\gamma\big{)}\hskip 14.22636pt\text{for every edge $\gamma$ of $\Gamma$,}

where by an edge Ξ³\gamma of Ξ“\Gamma here we mean a parametrized 11-face of Ξ“\Gamma. The argument is very similar to the one for symplectic 22-discs given in [BO16, Page 17], however a small modification is needed since here we are dealing with isotropic discs (instead of symplectic 22-discs). Look at the discs v0β€²v_{0}^{\prime} and u1u_{1}. For any edge (i.e. a parametrized 11-face) Ξ³\gamma of Ξ“\Gamma, the actions π’œβ€‹(v0β€²βˆ˜Ξ³)=∫v0β€²βˆ˜Ξ³Ξ»\mathcal{A}(v_{0}^{\prime}\circ\gamma)=\int_{v_{0}^{\prime}\circ\gamma}\lambda and π’œβ€‹(u1∘γ)=∫u1∘γλ\mathcal{A}(u_{1}\circ\gamma)=\int_{u_{1}\circ\gamma}\lambda do not necessarily coincide. Fix a 0-face z0βˆˆΞ“0z_{0}\in\Gamma_{0}, and for any other 0-face zβˆˆΞ“0z\in\Gamma_{0}, choose a path Ξ³z\gamma_{z} made of successive edges of Ξ“\Gamma which joins z0z_{0} to zz. Define

az:=∫u1∘γzΞ»βˆ’βˆ«v0β€²βˆ˜Ξ³zΞ».a_{z}:=\int_{u_{1}\circ\gamma_{z}}\lambda-\int_{v_{0}^{\prime}\circ\gamma_{z}}\lambda.

Notice that these numbers depend on the choice of z0z_{0} but not of Ξ³z\gamma_{z} since v0,u1v_{0},u_{1} are isotropic. Then, for each edge Ξ³\gamma of Ξ“\Gamma,

π’œβ€‹(v0β€²βˆ˜Ξ³)+aγ​(1)βˆ’aγ​(0)=π’œβ€‹(u1∘γ)\mathcal{A}(v_{0}^{\prime}\circ\gamma)+a_{\gamma(1)}-a_{\gamma(0)}=\mathcal{A}(u_{1}\circ\gamma)

(because aγ​(1)a_{\gamma(1)} can be obtained by integrating Ξ»\lambda along a path that joins z0z_{0} to γ​(0)\gamma(0), concatenated with Ξ³\gamma). Now choose disjoint spherical shells Az={wβˆˆβ„‚n|ρz<|wβˆ’z|<ρzβ€²}βŠ‚WzA_{z}=\{w\in\mathbb{C}^{n}\;|\;\rho_{z}<|w-z|<\rho_{z}^{\prime}\}\subset W_{z}, for all zβˆˆΞ“0z\in\Gamma_{0}. Consider a Hamiltonian function Hπ’œH_{\mathcal{A}} with support in βˆͺzB​(z,ρzβ€²)\cup_{z}B(z,\rho_{z}^{\prime}), and which is equal to βˆ’az-a_{z} on B​(z,ρz)B(z,\rho_{z}). The induced Hamiltonian isotopy (Οˆπ’œt)(\psi_{\mathcal{A}}^{t}) is supported inside βˆͺzWz\cup_{z}W_{z}, and its time-11 map Οˆπ’œ1\psi_{\mathcal{A}}^{1} is such that for every edge Ξ³\gamma of Ξ“\Gamma, the area between v0β€²βˆ˜Ξ³v_{0}^{\prime}\circ\gamma and Οˆπ’œ1∘v0β€²βˆ˜Ξ³\psi_{\mathcal{A}}^{1}\circ v_{0}^{\prime}\circ\gamma equals aγ​(1)βˆ’aγ​(0)a_{\gamma(1)}-a_{\gamma(0)}, hence now the actions of u1u_{1} and Οˆπ’œ1∘v0β€²\psi_{\mathcal{A}}^{1}\circ v_{0}^{\prime} coincide on each edge. Since Οˆπ’œt≑Id\psi_{\mathcal{A}}^{t}\equiv\textnormal{Id}\, near Ξ“0\Gamma_{0}, Ξ¨~0t:=(Οˆπ’œt)⋆(ψ0t)\tilde{\Psi}_{0}^{t}:=(\psi_{\mathcal{A}}^{t})\star(\psi_{0}^{t}) and v~0:=Ξ¨~01∘u0=Οˆπ’œ1∘v0β€²\tilde{v}_{0}:=\tilde{\Psi}_{0}^{1}\circ u_{0}=\psi_{\mathcal{A}}^{1}\circ v_{0}^{\prime} still verify (ℐ​1\mathcal{I}1), and the restriction of d​Ψ~0t∘d​u0=dβ€‹Οˆπ’œt∘dβ€‹Οˆ0t∘d​u0d\tilde{\Psi}_{0}^{t}\circ du_{0}=d\psi_{\mathcal{A}}^{t}\circ d\psi_{0}^{t}\circ du_{0} to Op​(Ξ“0)\textnormal{Op}\,(\Gamma_{0}) is still homotopic to GtG_{t} rel {0,1}\{0,1\}. Also, since (Οˆπ’œt)(\psi_{\mathcal{A}}^{t}) is supported in βˆͺzWz\cup_{z}W_{z}, (ℐ​3\mathcal{I}3) remains to hold for the flow (Ξ¨~0t)(\tilde{\Psi}_{0}^{t}), and in addition we have π’œβ€‹(v~0∘γ)=π’œβ€‹(u1∘γ)\mathcal{A}(\tilde{v}_{0}\circ\gamma)=\mathcal{A}(u_{1}\circ\gamma) for every edge Ξ³\gamma of Ξ“\Gamma.

However, v~0\tilde{v}_{0} might not verify (ℐ​4\mathcal{I}4). Still, since v~0\tilde{v}_{0} coincides with u1u_{1} on a neighbourhood of Ξ“0\Gamma_{0}, there exist closed balls BΒ―x0=B¯​(u1​(x0),r)βŠ‚Wx0\overline{B}_{x_{0}}=\overline{B}(u_{1}(x_{0}),r)\subset W_{x_{0}} for each 0-face x0x_{0} of Ξ“\Gamma, such that (ℐ​4\mathcal{I}4) is verified inside these balls. Therefore the traces of the submanifolds v~0​(x1)\tilde{v}_{0}(x_{1}) and u1​(x1β€²)u_{1}(x_{1}^{\prime}) inside βˆͺx0βˆˆΞ“0​(Wx0\BΒ―x0)\underset{x_{0}\in\Gamma_{0}}{\cup}\left(W_{x_{0}}\backslash\overline{B}_{x_{0}}\right) verify the hypothesis of lemma 2.4 (1), for every pair of distinct 11-faces x1,x1β€²x_{1},x_{1}^{\prime}. Thus an arbitrarily π’ž1\mathbb{\mathcal{C}}^{1}-small Hamiltonian flow (Ο†0t)(\varphi_{0}^{t}) whose generating Hamiltonian is supported in βˆͺx0βˆˆΞ“0​(Wx0\BΒ―x0)βŠ‚βˆͺx0βˆˆΞ“0​Wx0\underset{x_{0}\in\Gamma_{0}}{\cup}\left(W_{x_{0}}\backslash\overline{B}_{x_{0}}\right)\subset\underset{x_{0}\in\Gamma_{0}}{\cup}W_{x_{0}} achieves Ο†01∘v~0​(x1)β‹”u1​(x1β€²)\varphi_{0}^{1}\circ\tilde{v}_{0}(x_{1})\pitchfork u_{1}(x_{1}^{\prime}), for every pair x1,x1β€²x_{1},x_{1}^{\prime} of different 11-faces of Ξ“\Gamma (hence these intersections are empty). Now the (reparametrized) concatenation Ξ¨0t:=(Ο†0t)⋆(Ξ¨~0t)\Psi_{0}^{t}:=(\varphi_{0}^{t})\star(\tilde{\Psi}_{0}^{t}) of the flows verifies (ℐ​4\mathcal{I}4), still verifies (ℐ​1\mathcal{I}1), and (ℐ​3\mathcal{I}3) still holds for v0:=Ξ¨01∘u0v_{0}:=\Psi_{0}^{1}\circ u_{0}. Since Ο†0t≑Id\varphi_{0}^{t}\equiv\textnormal{Id}\, near Ξ“0\Gamma_{0}, the restriction d​Ψ0t∘d​u0|Op​(Ξ“0)d\Psi_{0}^{t}\circ du_{0|\textnormal{Op}\,(\Gamma_{0})} is still homotopic to GtG_{t} rel {0,1}\{0,1\}. Since the flow Ο†0t\varphi_{0}^{t} is generated by a Hamiltonian function that vanishes on βˆͺx0βˆˆΞ“0​BΒ―x0\underset{x_{0}\in\Gamma_{0}}{\cup}\overline{B}_{x_{0}}, the equality of actions π’œβ€‹(v0∘γ)=π’œβ€‹(u1∘γ)\mathcal{A}(v_{0}\circ\gamma)=\mathcal{A}(u_{1}\circ\gamma) remains to hold for every edge Ξ³\gamma of Ξ“\Gamma. Finally, (ℐ​2\mathcal{I}2) follows immediately from (ℐ​3\mathcal{I}3), and v0v_{0} satisfies (ℐ​5\mathcal{I}5) by direct application of lemma 2.2.

The ll-skeleton (1β©½l<nβˆ’11\leqslant l<n-1): Here we assume that Ξ¨1,…,Ξ¨lβˆ’1\Psi_{1},\dots,\Psi_{l-1} have been constructed, and we proceed with the induction step. Recall that vlβˆ’1=Ξ¨lβˆ’11βˆ˜β‹―βˆ˜Ξ¨01∘u0v_{l-1}=\Psi_{l-1}^{1}\circ\dots\circ\Psi_{0}^{1}\circ u_{0} coincides with u1u_{1} on Op​(Ξ“lβˆ’1)\textnormal{Op}\,(\Gamma_{l-1}) and that vlβˆ’1​(xk)βŠ‚Wxk3lβˆ’1βˆ’1v_{l-1}(x_{k})\subset W_{x_{k}}^{3^{l-1}-1} for every kk-face xkx_{k}. Recall also that we have a homotopy Gtl:Dkβ†’Giso​(k,n)G_{t}^{l}:D^{k}\to G^{\textnormal{iso}}(k,n) between d​vlβˆ’1dv_{l-1} and d​u1du_{1} rel Op​(Ξ“lβˆ’1)\textnormal{Op}\,(\Gamma_{l-1}). Now our aim is to find a Hamiltonian flow (Ξ¨lt)(\Psi_{l}^{t}) which in particular isotopes vlβˆ’1|Op​(xl)v_{l-1|\textnormal{Op}\,(x_{l})} to u1|Op​(xl)u_{1|\textnormal{Op}\,(x_{l})}, for each ll-face xlx_{l}.

Fix an ll-face xlx_{l} of Ξ“\Gamma. By (ℐ​1\mathcal{I}1), there exists an open box x^l⋐xl∘\hat{x}_{l}\Subset\overset{\vspace*{-1pt}\circ}{x_{l}} such that vlβˆ’1{v_{l-1}} and u1u_{1} coincide on Op​(xl\x^l)\textnormal{Op}\,(x_{l}\backslash\hat{x}_{l}). Choose a kk-face xkx_{k} which contains xlx_{l}. Since u1​(x^l)u_{1}(\hat{x}_{l}) and vlβˆ’1​(x^l){v_{l-1}}(\hat{x}_{l}) both lie in the topological ball Wxk3lβˆ’1βˆ’1W_{x_{k}}^{3^{l-1}-1} and coincide near their boundary, there exists a homotopy

Οƒxl:x^lΓ—[0,1]β†’Wxk3lβˆ’1βˆ’1\sigma_{x_{l}}:\hat{x}_{l}\times[0,1]\to W_{x_{k}}^{3^{l-1}-1}

such that Οƒxl​(β‹…,0)=vlβˆ’1\sigma_{x_{l}}(\cdot,0)={v_{l-1}}, Οƒxl​(β‹…,1)=u1\sigma_{x_{l}}(\cdot,1)=u_{1}, and Οƒxl​(z,t)=u1​(z)\sigma_{x_{l}}(z,t)=u_{1}(z) βˆ€z∈Op​(βˆ‚x^l),t∈[0,1]\forall z\in\textnormal{Op}\,(\partial\hat{x}_{l}),t\in[0,1]. Since x^l⋐xl∘\hat{x}_{l}\Subset\overset{\vspace*{-1pt}\circ}{x_{l}} and l<nl<n, (ℐ​4\mathcal{I}4) allows to use a general position argument to ensure that moreover Im​σxl\textnormal{Im}\,\sigma_{x_{l}} admits a regular neighbourhood 𝒱xlβŠ‚Wxk3lβˆ’1βˆ’1\mathcal{V}_{x_{l}}\subset W_{x_{k}}^{3^{l-1}-1} (a topological ball), such that all these neighbourhoods 𝒱xl\mathcal{V}_{x_{l}} are pairwise disjoint when xlx_{l} runs over the ll-faces (this is the only point in the proof where we need that l<nβˆ’1l<n-1), and such that the restrictions of vlβˆ’1v_{l-1} and u1u_{1} to x^l\hat{x}_{l} are proper embeddings into 𝒱xl\mathcal{V}_{x_{l}} for every ll-face xlx_{l} of Ξ“\Gamma.

By assumption, there exists a homotopy Glt:[0,1]Γ—Dkβ†’Giso​(k,n)G^{t}_{l}:[0,1]\times D^{k}\to G^{\textnormal{iso}}(k,n) between d​vlβˆ’1dv_{l-1} and d​u1du_{1}, with Gl|Op​(Ξ“lβˆ’1)t=d​u1=d​vlβˆ’1G^{t}_{l|\textnormal{Op}\,(\Gamma_{l-1})}=du_{1}=dv_{l-1}. Also, vlβˆ’1|Op​(x^l)v_{l-1|\textnormal{Op}\,(\hat{x}_{l})} is clearly homotopic to u1|Op​(x^l)u_{1|\textnormal{Op}\,(\hat{x}_{l})} rel Op​(βˆ‚x^l)\textnormal{Op}\,(\partial\hat{x}_{l}) in 𝒱xl\mathcal{V}_{x_{l}}, and when l=1l=1, π’œβ€‹(vlβˆ’1​(x^l))=π’œβ€‹(u1​(x^l))\mathcal{A}(v_{l-1}(\hat{x}_{l}))=\mathcal{A}(u_{1}(\hat{x}_{l})) (in this equality of actions, x^lβŠ‚xl\hat{x}_{l}\subset x_{l} is equipped with a chosen orientation, and the equality holds since the actions of vlβˆ’1​(xl)v_{l-1}(x_{l}) and u1​(xl)u_{1}(x_{l}) coincide and since vlβˆ’1{v_{l-1}} and u1u_{1} agree on xl\x^lx_{l}\backslash\hat{x}_{l}). Hence by proposition 2.5, there exist Hamiltonian diffeomorphisms ψxlt\psi^{t}_{x_{l}}, where xlx_{l} runs over the ll-faces, which have support in 𝒱xl\mathcal{V}_{x_{l}}, and are such that ψxl1∘vlβˆ’1|Op​(x^l)=u1\psi^{1}_{x_{l}}\circ v_{l-1|\textnormal{Op}\,(\hat{x}_{l})}=u_{1}, and the restriction of d​(ψxlt∘vlβˆ’1)d(\psi^{t}_{x_{l}}\circ v_{l-1}) to Op​(βˆ‚x^l)\textnormal{Op}\,(\partial\hat{x}_{l}) is homotopic to GltG^{t}_{l} relative to Op​(βˆ‚x^l)\textnormal{Op}\,(\partial\hat{x}_{l}) and {0,1}\{0,1\}. Let now ψlt:=∘ψxlt\psi^{t}_{l}:=\circ\psi_{x_{l}}^{t} and v^l:=ψl1∘vlβˆ’1\hat{v}_{l}:=\psi_{l}^{1}\circ v_{l-1}. Since the (ψxlt)(\psi_{x_{l}}^{t}) have pairwise disjoint supports, we have v^l|Op​(xl)=u1|Op​(xl)\hat{v}_{l|\textnormal{Op}\,(x_{l})}=u_{1|\textnormal{Op}\,(x_{l})} for each ll-face xlx_{l} of Ξ“\Gamma. Hence v^l\hat{v}_{l} and u1u_{1} coincide on a neighbourhood of the ll-skeleton of Ξ“\Gamma, so v^l\hat{v}_{l} verifies (ℐ​1\mathcal{I}1). By lemma 2.2, v^l\hat{v}_{l} verifies (ℐ​5\mathcal{I}5) as well.

The flow (ψlt)(\psi_{l}^{t}) is supported in the disjoint union βˆͺxlβˆˆΞ“l𝒱xl\cup_{x_{l}\in\Gamma_{l}}\mathcal{V}_{x_{l}}. Let xx be any kk-face, and assume that we have an ll-face xlx_{l} such that 𝒱xl∩Wxβ‰ βˆ…\mathcal{V}_{x_{l}}\cap W_{x}\neq\emptyset. Let xkβŠƒxlx_{k}\supset x_{l} be a kk-face as above, so that 𝒱xlβŠ‚Wxk3lβˆ’1βˆ’1\mathcal{V}_{x_{l}}\subset W_{x_{k}}^{3^{l-1}-1}. Then the distance between xx and xkx_{k} is not larger than 3lβˆ’13^{l-1}, and we conclude 𝒱xlβŠ‚Wxk3lβˆ’1βˆ’1βŠ‚Wx2β‹…3lβˆ’1βˆ’1\mathcal{V}_{x_{l}}\subset W_{x_{k}}^{3^{l-1}-1}\subset W_{x}^{2\cdot 3^{l-1}-1}. To summarise, for any kk-face xx, if xlx_{l} is an ll-face with 𝒱xl∩Wxβ‰ βˆ…\mathcal{V}_{x_{l}}\cap W_{x}\neq\emptyset, then 𝒱xlβŠ‚Wx2β‹…3lβˆ’1βˆ’1\mathcal{V}_{x_{l}}\subset W_{x}^{2\cdot 3^{l-1}-1}. As a result, we get

ψlt​(Wx)βŠ‚Wx2β‹…3lβˆ’1βˆ’1.\psi_{l}^{t}(W_{x})\subset W_{x}^{2\cdot 3^{l-1}-1}\,\,. (2.2.7 )

The embedding v^l\hat{v}_{l} may fail to satisfy (ℐ​4\mathcal{I}4): there might be two different (l+1)(l+1)-faces xl+1,xl+1β€²x_{l+1},x_{l+1}^{\prime} such that

v^l(x∘l+1)∩u1(x∘)l+1β€²β‰ βˆ….\hat{v}_{l}(\overset{\vspace*{-1pt}\circ}{x}_{l+1})\cap u_{1}(\overset{\vspace*{-1pt}\circ}{x}{}_{l+1}^{\prime})\neq\emptyset.

Notice however that since v^l\hat{v}_{l} and u1u_{1} coincide on a neighbourhood of Ξ“l\Gamma_{l}, the set v^l​(xl+1)∩u1​(xl+1β€²)\hat{v}_{l}(x_{l+1})\cap u_{1}(x_{l+1}^{\prime}) is compactly contained in W\u1​(Ξ“l)W\backslash u_{1}(\Gamma_{l}). By lemma 2.4 (1), there exists an arbitrarily small Hamiltonian flow (Ο†lt)t∈[0,1](\varphi_{l}^{t})_{t\in[0,1]}, with compact support in W\Ξ“lW\backslash\Gamma_{l} such that vl:=Ο†l1∘v^lv_{l}:=\varphi_{l}^{1}\circ\hat{v}_{l} verifies (ℐ​4\mathcal{I}4). By the smallness of the flow (Ο†lt)(\varphi_{l}^{t}) and by (2.2.7)(\ref{eq:I5prelim}), the flow (Ξ¨lt):=(Ο†lt)⋆(ψlt)(\Psi^{t}_{l}):=(\varphi_{l}^{t})\star(\psi_{l}^{t}) satisfies Ξ¨lt​(Wx)βŠ‚Wx2β‹…3lβˆ’1\Psi_{l}^{t}(W_{x})\subset W_{x}^{2\cdot 3^{l-1}} for any kk-face xx. Hence (ℐ​3\mathcal{I}3) holds for (Ξ¨lt)(\Psi^{t}_{l}). Since the support of (Ο†lt)(\varphi_{l}^{t}) is compactly contained in W\Ξ“lW\backslash\Gamma_{l}, (ℐ​1\mathcal{I}1) and (ℐ​5\mathcal{I}5) still holds for vlv_{l}. Finally, (ℐ​2\mathcal{I}2) follows as well: if xx is any kk-face, then by assumption, vlβˆ’1​(x)βŠ‚Wx3lβˆ’1βˆ’1v_{l-1}(x)\subset W_{x}^{3^{l-1}-1}, hence by (2.2.7)(\ref{eq:I5prelim}) and (ℐ​3\mathcal{I}3) we get

vl​(x)=Ξ¨l1∘vlβˆ’1​(x)βŠ‚Ξ¨l1​(Wx3lβˆ’1βˆ’1)=⋃d​(x,y)β©½3lβˆ’1βˆ’1Ξ¨l1​(Wy)βŠ‚βŠ‚β‹ƒd​(x,y)β©½3lβˆ’1βˆ’1Wy2β‹…3lβˆ’1=Wx3lβˆ’1βˆ’1+2β‹…3lβˆ’1=Wx3lβˆ’1.\begin{array}[]{rcl}v_{l}(x)&=&\displaystyle\Psi_{l}^{1}\circ v_{l-1}(x)\subset\Psi_{l}^{1}(W_{x}^{3^{l-1}-1})=\bigcup_{d(x,y)\leqslant 3^{l-1}-1}\Psi_{l}^{1}(W_{y})\subset\\ &\subset&\displaystyle\bigcup_{d(x,y)\leqslant 3^{l-1}-1}W_{y}^{2\cdot 3^{l-1}}=W_{x}^{3^{l-1}-1+2\cdot 3^{l-1}}=W_{x}^{3^{l}-1}.\end{array} (2.2.8 )

The kk-skeleton: When k<nβˆ’1k<n-1, the procedure described above works perfectly. However, when k=nβˆ’1k=n-1, the last step of the induction requires some adjustment. As before, for every kk-face xkx_{k}, vkβˆ’1​(xk){v_{k-1}(x_{k})} and u1​(xk)u_{1}(x_{k}) both lie in the topological ball Wxk3kβˆ’1βˆ’1W^{3^{k-1}-1}_{x_{k}} and coincide near the boundary, hence there exist homotopies

Οƒxk:x^kΓ—[0,1]β†’Wxk3kβˆ’1βˆ’1\sigma_{x_{k}}:\hat{x}_{k}\times[0,1]\to W^{3^{k-1}-1}_{x_{k}}

such that Οƒxk​(β‹…,0)=vkβˆ’1|xk\sigma_{x_{k}}(\cdot,0)={v_{k-1|x_{k}}}, Οƒxk​(β‹…,1)=u1|xk\sigma_{x_{k}}(\cdot,1)=u_{1|x_{k}} and Οƒxk​(z,t)=u1​(z)\sigma_{x_{k}}(z,t)=u_{1}(z) for all t∈[0,1]t\in[0,1], z∈Op​(βˆ‚xk)z\in\textnormal{Op}\,(\partial x_{k}) (as before, x^kβŠ‚xk∘\hat{x}_{k}\subset\overset{\vspace*{-1pt}\circ}{x_{k}} is a closed box such that u1u_{1} and vkβˆ’1{v_{k-1}} coincide on Op​(xk\x^∘k)\textnormal{Op}\,(x_{k}\backslash\overset{\vspace*{-1pt}\circ}{\hat{x}}_{k})). The difference with the previous steps of the induction is that general position does not make the sets Im​σxk\textnormal{Im}\,\sigma_{x_{k}} pairwise disjoint. Instead we proceed as follows.

By (ℐ​4\mathcal{I}4), vkβˆ’1​(x^k)∩u1​(xkβ€²)=u1​(x^k)∩u1​(xkβ€²)=βˆ…{v_{k-1}}(\hat{x}_{k})\cap u_{1}(x_{k}^{\prime})=u_{1}(\hat{x}_{k})\cap u_{1}(x_{k}^{\prime})=\emptyset for every pair of different kk-faces xk,xkβ€²x_{k},x_{k}^{\prime}. By a standard general position argument, since k<nk<n, we can therefore assume that Im​σxk∩u1​(xkβ€²)=βˆ…\textnormal{Im}\,\sigma_{x_{k}}\cap u_{1}(x_{k}^{\prime})=\emptyset, and that we have a regular neighbourhood 𝒱xkβŠ‚Wxk3kβˆ’1βˆ’1\mathcal{V}_{x_{k}}\subset W^{3^{k-1}-1}_{x_{k}} of Im​σxk\textnormal{Im}\,\sigma_{x_{k}}, such that

𝒱xk∩u1​(xkβ€²)=βˆ…βˆ€xkβ‰ xkβ€².\mathcal{V}_{x_{k}}\cap u_{1}(x_{k}^{\prime})=\emptyset\hskip 28.45274pt\forall x_{k}\neq x_{k}^{\prime}. (2.2.9 )

By (ℐ​5\mathcal{I}5), and since vkβˆ’1​(x^k),u1​(x^k)v_{k-1}(\hat{x}_{k}),u_{1}(\hat{x}_{k}) are homotopic relative to βˆ‚x^k\partial\hat{x}_{k} in 𝒱xk\mathcal{V}_{x_{k}}, there exists a Hamiltonian isotopy (ψxkt)(\psi^{t}_{x_{k}}) with support in 𝒱xk\mathcal{V}_{x_{k}} such that ψxk1∘vkβˆ’1|xk=u1\psi^{1}_{x_{k}}\circ{v_{k-1|x_{k}}}=u_{1}.

Consider now a partition of the set of kk-faces into (2β‹…3kβˆ’1)k=2kβ‹…3k​(kβˆ’1)(2\cdot 3^{k-1})^{k}=2^{k}\cdot 3^{k(k-1)} subsets FiF_{i} (i=1,…,2kβ‹…3k​(kβˆ’1)i=1,\dots,2^{k}\cdot 3^{k(k-1)}), such that any two faces xk,xkβ€²βˆˆFix_{k},x_{k}^{\prime}\in F_{i} are at distance at least 2β‹…3kβˆ’12\cdot 3^{k-1} from each other. Then for any ii and any pair xk,xkβ€²βˆˆFix_{k},x_{k}^{\prime}\in F_{i} of distinct kk-faces, we have Wxk3kβˆ’1βˆ’1∩Wxkβ€²3kβˆ’1βˆ’1=βˆ…W^{3^{k-1}-1}_{x_{k}}\cap W^{3^{k-1}-1}_{x_{k}^{\prime}}=\emptyset. Define (ψk,it):=∘xk∈Fiβ€‹Οˆxkt(\psi^{t}_{k,i}):=\underset{x_{k}\in F_{i}}{\circ}\psi^{t}_{x_{k}}, which is a composition of Hamiltonian isotopies, compactly supported in the disjoint union βˆͺxk∈FiWxk3kβˆ’1βˆ’1\cup_{x_{k}\in F_{i}}W^{3^{k-1}-1}_{x_{k}}. For any kk-face xx, if we have some xk∈Fix_{k}\in F_{i} such that Wx∩Wxk3kβˆ’1βˆ’1β‰ βˆ…W_{x}\cap W^{3^{k-1}-1}_{x_{k}}\neq\emptyset, then the distance between xx and xkx_{k} is at most 3kβˆ’13^{k-1}, and hence Wxk3kβˆ’1βˆ’1βŠ‚Wx2β‹…3kβˆ’1βˆ’1W^{3^{k-1}-1}_{x_{k}}\subset W^{2\cdot 3^{k-1}-1}_{x}. We conclude that for any kk-face xx we have ψk,it​(Wx)βŠ‚Wx2β‹…3kβˆ’1βˆ’1\psi^{t}_{k,i}(W_{x})\subset W^{2\cdot 3^{k-1}-1}_{x}.

Now, letting (Ξ¨kt):=(ψk,2kβ‹…3k​(kβˆ’1)t)⋆⋯⋆(ψk,1t)(\Psi^{t}_{k}):=(\psi^{t}_{k,2^{k}\cdot 3^{k(k-1)}})\star\dots\star(\psi^{t}_{k,1}) and arguing as in (2.2.8), we get for any kk-face xx

Ξ¨kt​(Wx)βŠ‚WxNkβŠ‚Wx3k​(k+1),\Psi^{t}_{k}(W_{x})\subset W^{N_{k}}_{x}\subset W^{3^{k(k+1)}}_{x}\,\,,

where Nk=2kβ‹…3k​(kβˆ’1)β‹…(2β‹…3kβˆ’1βˆ’1)<3k​(k+1)N_{k}=2^{k}\cdot 3^{k(k-1)}\cdot(2\cdot 3^{k-1}-1)<3^{k(k+1)}. Therefore, (ℐ​3\mathcal{I}3) holds for (Ξ¨kt)(\Psi^{t}_{k}).

Finally, ψk,i1∘vkβˆ’1|Op​(xk)=u1|Op​(xk)\psi^{1}_{k,i}\circ{v_{k-1|\textnormal{Op}\,(x_{k})}}=u_{1|\textnormal{Op}\,(x_{k})} for all xk∈Fix_{k}\in F_{i}, and by (2.2.9), ψxkβ€²1∘u1|Op​(xk)=u1|Op​(xk)\psi_{x_{k}^{\prime}}^{1}\circ u_{1|\textnormal{Op}\,(x_{k})}=u_{1|\textnormal{Op}\,(x_{k})} for any pair of kk-faces xkβ€²β‰ xkx_{k}^{\prime}\neq x_{k}. Thus,

Ξ¨k1∘vkβˆ’1|Op​(xk)=u1​ for everyΒ k-faceΒ xkΒ of ​Γ,\Psi^{1}_{k}\circ{v_{k-1|\textnormal{Op}\,(x_{k})}}=u_{1}\text{ for every $k$-face $x_{k}$ of }\Gamma,

which just means that Ξ¨k1∘vkβˆ’1|Op​(Dk)≑u1|Op​(Dk)\Psi^{1}_{k}\circ{v_{k-1|\textnormal{Op}\,(D^{k})}}\equiv u_{1|\textnormal{Op}\,(D^{k})}. We have verified (ℐ​1\mathcal{I}1) for vk:=Ξ¨k1∘vkβˆ’1v_{k}:=\Psi^{1}_{k}\circ{v_{k-1}}. β–‘\square

3 Action of symplectic homeomorphisms on symplectic submanifolds

3.1 Taking a symplectic disc to an isotropic one

We aim now at proving theorem 2. The proof relies on theorem 1 and is similar to the proof of the flexibility of disc area in the context of symplectic 2-discs considered in [BO16].

Proof of theorem 2:

Let

i0:DβŸΆβ„‚Γ—β„‚Γ—β„‚=β„‚3,x+i​y⟼(x,y,0)u0:DβŸΆβ„‚Γ—β„‚Γ—β„‚z⟼(z,0,0)\begin{array}[]{ll}\begin{array}[]{rcccl}i_{0}&:&D&\longrightarrow&\mathbb{C}\times\mathbb{C}\times\mathbb{C}=\mathbb{C}^{3},\\ &&x+iy&\longmapsto&(x,y,0)\end{array}&\begin{array}[]{rcccl}u_{0}&:&D&\longrightarrow&\mathbb{C}\times\mathbb{C}\times\mathbb{C}\\ &&z&\longmapsto&(z,0,0)\end{array}\end{array}

be the standard isotropic and symplectic embeddings of DD into β„‚3\mathbb{C}^{3}. Let also fk:D​(2)β†’D​(1/2k)f_{k}:D(2)\to D({\nicefrac{{1}}{{2^{k}}}}) be an area-preserving immersion and

uk:DβŸΆβ„‚Γ—β„‚Γ—β„‚x+i​y⟼(x,y,fk​(x+i​y)).\begin{array}[]{rcccl}u_{k}&:&D&\longrightarrow&\mathbb{C}\times\mathbb{C}\times\mathbb{C}\\ &&x+iy&\longmapsto&(x,y,f_{k}(x+iy)).\end{array}

Then, uku_{k} is a symplectic embedding of DD into β„‚3\mathbb{C}^{3} with dπ’ž0​(uk,i0)<12kd_{\mathbb{\mathcal{C}}^{0}}(u_{k},i_{0})<\frac{1}{2^{k}}. Let finally consider an isotropic embedding ikli_{k}^{l} of DD into β„‚3\mathbb{C}^{3} with dπ’ž0​(ikl,uk)<12ld_{\mathbb{\mathcal{C}}^{0}}(i_{k}^{l},u_{k})<\frac{1}{2^{l}}. Although less explicit than the previous embedding in dimension 66, it certainly exists because one can approximate the standard symplectic embedding u0u_{0} by isotropic ones of the form z↦(z,fl​(z)Β―,0)z\mapsto(z,\overline{f_{l}(z)},0). We also define

Wk​(Ξ΄):={zβˆˆβ„‚3|d​(z,Im​uk)<Ξ΄}and ​W0​(Ξ΅):={zβˆˆβ„‚3|d​(z,Im​i0)<Ξ΅}.\begin{array}[]{r}W_{k}(\delta):=\{z\in\mathbb{C}^{3}\;|\;d(z,\textnormal{Im}\,u_{k})<\delta\}\\ \text{and }W^{0}(\varepsilon):=\{z\in\mathbb{C}^{3}\;|\;d(z,\textnormal{Im}\,i_{0})<\varepsilon\}.\end{array}

It is enough to construct a sequence Ο†0,Ο†1,…\varphi_{0},\varphi_{1},\ldots of compactly supported in β„‚3\mathbb{C}^{3} symplectic diffeomorphisms, such that for an increasing sequence of indices k0=0<k1<k2<…k_{0}=0<k_{1}<k_{2}<\ldots we have Ο†i∘uki=uki+1\varphi_{i}\circ u_{k_{i}}=u_{k_{i+1}}, and such that moreover, the sequence Ξ¦i=Ο†iβˆ˜Ο†iβˆ’1βˆ˜β‹―βˆ˜Ο†0\Phi_{i}=\varphi_{i}\circ\varphi_{i-1}\circ\cdots\circ\varphi_{0} uniformly converges to a homeomorphism Ξ¦\Phi of β„‚3\mathbb{C}^{3}. We construct such a sequence Ο†i\varphi_{i} by induction. Let β„‚3=U0βŠƒU1βŠƒU2βŠƒβ‹―βŠƒu0​(D)\mathbb{C}^{3}=U_{0}\supset U_{1}\supset U_{2}\supset\dots\supset u_{0}(D) be a decreasing sequence of open sets such that ∩Ui=u0​(D)\cap U_{i}=u_{0}(D). In the step 0 of the induction, we let k1=1k_{1}=1, and choose Ο†0\varphi_{0} to be any symplectic diffeomorphism with compact support in β„‚3\mathbb{C}^{3} such that Ο†0∘u0=uk1\varphi_{0}\circ u_{0}=u_{k_{1}}.

Now we describe a step iβ©Ύ1i\geqslant 1. From the previous steps we get k1<β‹―<kik_{1}<\cdots<k_{i}, and symplectic diffeomorphisms Ο†0,…,Ο†iβˆ’1\varphi_{0},\ldots,\varphi_{i-1}. Denote Ξ¦iβˆ’1=Ο†iβˆ’1βˆ˜β‹―βˆ˜Ο†0\Phi_{i-1}=\varphi_{i-1}\circ\cdots\circ\varphi_{0}. By the step iβˆ’1i-1, we have uki=Ξ¦iβˆ’1∘u0u_{k_{i}}=\Phi_{i-1}\circ u_{0} and Ξ¦iβˆ’1​(Uiβˆ’1)βŠƒW0​(Ξ΅i)\Phi_{i-1}(U_{i-1})\supset W^{0}(\varepsilon_{i}), where Ξ΅i=12ki\varepsilon_{i}=\frac{1}{2^{k_{i}}} (the inclusion Ξ¦iβˆ’1​(Uiβˆ’1)βŠƒW0​(Ξ΅i)\Phi_{i-1}(U_{i-1})\supset W^{0}(\varepsilon_{i}) clearly holds when i=1i=1 because U0=β„‚3U_{0}=\mathbb{C}^{3}, and for i>1i>1 it follows from (3.1.1) below which was obtained in the previous step iβˆ’1i-1). The choice for Ξ΅i\varepsilon_{i} implies that W0​(Ξ΅i)βŠƒuki​(D)W^{0}(\varepsilon_{i})\supset u_{k_{i}}(D), and moreover by uki=Ξ¦iβˆ’1∘u0u_{k_{i}}=\Phi_{i-1}\circ u_{0} we get Ξ¦iβˆ’1​(Ui)βŠƒuki​(D)\Phi_{i-1}(U_{i})\supset u_{k_{i}}(D), so we conclude Ξ¦iβˆ’1​(Ui)∩W0​(Ξ΅i)βŠƒuki​(D)\Phi_{i-1}(U_{i})\cap W^{0}(\varepsilon_{i})\supset u_{k_{i}}(D). Hence we can choose a sufficiently large liβ©Ύkil_{i}\geqslant k_{i} such that Ξ¦iβˆ’1​(Ui)∩W0​(Ξ΅i)βŠƒWki​(Ξ΄i)βŠƒikili​(D)\Phi_{i-1}(U_{i})\cap W^{0}(\varepsilon_{i})\supset W_{k_{i}}(\delta_{i})\supset i_{k_{i}}^{l_{i}}(D), where Ξ΄i=12liβ©½Ξ΅i\delta_{i}=\frac{1}{2^{l_{i}}}\leqslant\varepsilon_{i}. Note that

dπ’ž0​(ikili,i0)β©½dπ’ž0​(ikili,uki)+dπ’ž0​(uki,i0)<12li+12kiβ©½2​Ρi,d_{\mathbb{\mathcal{C}}^{0}}(i_{k_{i}}^{l_{i}},i_{0})\leqslant d_{\mathbb{\mathcal{C}}^{0}}(i_{k_{i}}^{l_{i}},u_{k_{i}})+d_{\mathbb{\mathcal{C}}^{0}}(u_{k_{i}},i_{0})<\frac{1}{2^{l_{i}}}+\frac{1}{2^{k_{i}}}\leqslant 2\varepsilon_{i},

and moreover i0​(D),ikili​(D)βŠ‚W0​(Ξ΅i)i_{0}(D),i_{k_{i}}^{l_{i}}(D)\subset W^{0}(\varepsilon_{i}). Hence by the convexity of W0​(Ξ΅i)W^{0}(\varepsilon_{i}) and by theorem 1, there exists a Hamiltonian diffeomorphism Ο†iβ€²\varphi_{i}^{\prime} supported in W0​(Ξ΅i)W^{0}(\varepsilon_{i}) such that i0=Ο†iβ€²βˆ˜ikilii_{0}=\varphi_{i}^{\prime}\circ i_{k_{i}}^{l_{i}} and dπ’ž0​(Ο†iβ€²,Id)<4​Ρid_{\mathbb{\mathcal{C}}^{0}}(\varphi_{i}^{\prime},\textnormal{Id}\,)<4\varepsilon_{i}. Note that in particular, Ο†i′​(Wki​(Ξ΄i))βŠƒi0​(D)\varphi_{i}^{\prime}(W_{k_{i}}(\delta_{i}))\supset i_{0}(D).

We claim that there exists a homotopy of a small size between the (symplectic) disc Ο†iβ€²βˆ˜uki\varphi_{i}^{\prime}\circ u_{k_{i}} and the (isotropic) disc i0i_{0}, inside Ο†i′​(Wki​(Ξ΄i))\varphi_{i}^{\prime}(W_{k_{i}}(\delta_{i})). Indeed, the open set Wki​(Ξ΄i)W_{k_{i}}(\delta_{i}) contains the discs uki​(D),ikili​(D)u_{k_{i}}(D),i_{k_{i}}^{l_{i}}(D). Also we have dπ’ž0​(uki,ikili)<Ξ΄id_{\mathbb{\mathcal{C}}^{0}}(u_{k_{i}},i_{k_{i}}^{l_{i}})<\delta_{i}. Hence the linear homotopy ρi​(z,t):=(1βˆ’t)​uki​(z)+t​ikili​(z)\rho_{i}(z,t):=(1-t)u_{k_{i}}(z)+ti_{k_{i}}^{l_{i}}(z), (z∈Dz\in D, t∈[0,1]t\in[0,1]), satisfies dπ’ž0​(uki​(z),ρi​(z,t))<Ξ΄id_{\mathbb{\mathcal{C}}^{0}}(u_{k_{i}}(z),\rho_{i}(z,t))<\delta_{i} for all z∈Dz\in D, t∈[0,1]t\in[0,1], and so by definition of the neighbouhood Wki​(Ξ΄i)W_{k_{i}}(\delta_{i}), this homotopy ρi\rho_{i} lies inside Wki​(Ξ΄i)W_{k_{i}}(\delta_{i}). We moreover conclude that the size of ρi\rho_{i} is less than Ξ΄i\delta_{i}, and therefore the homotopy Ο†iβ€²βˆ˜Οi\varphi_{i}^{\prime}\circ\rho_{i} between Ο†iβ€²βˆ˜uki\varphi_{i}^{\prime}\circ u_{k_{i}} and Ο†iβ€²βˆ˜ikili=i0\varphi_{i}^{\prime}\circ i_{k_{i}}^{l_{i}}=i_{0}, lies inside Ο†i′​(Wki​(Ξ΄i))\varphi_{i}^{\prime}(W_{k_{i}}(\delta_{i})), and has size less than Ξ΄i+8​Ρiβ©½9​Ρi\delta_{i}+8\varepsilon_{i}\leqslant 9\varepsilon_{i} (recall that dπ’ž0​(Ο†iβ€²,Id)<4​Ρid_{\mathbb{\mathcal{C}}^{0}}(\varphi_{i}^{\prime},\textnormal{Id}\,)<4\varepsilon_{i}).

We therefore have Ο†i′​(Wki​(Ξ΄i))βŠƒi0​(D)\varphi_{i}^{\prime}(W_{k_{i}}(\delta_{i}))\supset i_{0}(D), and moreover the homotopy Ο†iβ€²βˆ˜Οi\varphi_{i}^{\prime}\circ\rho_{i} between Ο†iβ€²βˆ˜uki\varphi_{i}^{\prime}\circ u_{k_{i}} and i0i_{0}, lies inside Ο†i′​(Wki​(Ξ΄i))\varphi_{i}^{\prime}(W_{k_{i}}(\delta_{i})), and is of size less than 9​Ρi9\varepsilon_{i}. Hence by choosing a sufficiently large ki+1>kik_{i+1}>k_{i} and denoting Ξ΅i+1=12ki+1\varepsilon_{i+1}=\frac{1}{2^{k_{i+1}}}, we get

Ο†i′​(Wki​(Ξ΄i))βŠƒW0​(Ξ΅i+1)βŠƒuki+1​(D),\varphi_{i}^{\prime}(W_{k_{i}}(\delta_{i}))\supset W^{0}(\varepsilon_{i+1})\supset u_{k_{i+1}}(D),

and moreover the homotopy between Ο†iβ€²βˆ˜uki\varphi_{i}^{\prime}\circ u_{k_{i}} and uki+1u_{k_{i+1}}, given by the concatenation of Ο†iβ€²βˆ˜Οi\varphi_{i}^{\prime}\circ\rho_{i} and of the linear homotopy between i0i_{0} and uki+1u_{k_{i+1}}, lies in Ο†i′​(Wki​(Ξ΄i))\varphi_{i}^{\prime}(W_{k_{i}}(\delta_{i})) and still has size less than 9​Ρi9\varepsilon_{i}. Applying the quantitative hh-principle for symplectic discs [BO16, Theorem 2], we get a Hamiltonian diffeomorphism Ο†iβ€²β€²\varphi_{i}^{\prime\prime} supported in Ο†i′​(Wki​(Ξ΄i))\varphi_{i}^{\prime}(W_{k_{i}}(\delta_{i})), such that Ο†iβ€²β€²βˆ˜Ο†iβ€²βˆ˜uki=uki+1\varphi_{i}^{\prime\prime}\circ\varphi_{i}^{\prime}\circ u_{k_{i}}=u_{k_{i+1}} and dπ’ž0​(Ο†iβ€²β€²,Id)<18​Ρid_{\mathbb{\mathcal{C}}^{0}}(\varphi_{i}^{\prime\prime},\textnormal{Id}\,)<18\varepsilon_{i}.

As a result, the composition Ο†i:=Ο†iβ€²β€²βˆ˜Ο†iβ€²\varphi_{i}:=\varphi_{i}^{\prime\prime}\circ\varphi_{i}^{\prime} is supported in W0​(Ξ΅i)βŠ‚Ξ¦iβˆ’1​(Uiβˆ’1)W^{0}(\varepsilon_{i})\subset\Phi_{i-1}(U_{i-1}), we have Ο†i∘uki=uki+1\varphi_{i}\circ u_{k_{i}}=u_{k_{i+1}},

Ο†i∘Φiβˆ’1​(Ui)=Ο†iβ€²β€²βˆ˜Ο†iβ€²βˆ˜Ξ¦iβˆ’1​(Ui)βŠƒΟ†iβ€²β€²βˆ˜Ο†i′​(Wki​(Ξ΄i))=Ο†i′​(Wki​(Ξ΄i))βŠƒW0​(Ξ΅i+1)\varphi_{i}\circ\Phi_{i-1}(U_{i})=\varphi_{i}^{\prime\prime}\circ\varphi_{i}^{\prime}\circ\Phi_{i-1}(U_{i})\supset\varphi_{i}^{\prime\prime}\circ\varphi_{i}^{\prime}(W_{k_{i}}(\delta_{i}))=\varphi_{i}^{\prime}(W_{k_{i}}(\delta_{i}))\supset W^{0}(\varepsilon_{i+1}) (3.1.1 )

and

dπ’ž0​(Id,Ο†i)β©½dπ’ž0​(Id,Ο†iβ€²)+dπ’ž0​(Id,Ο†iβ€²β€²)<22​Ρi.d_{\mathbb{\mathcal{C}}^{0}}(\textnormal{Id}\,,\varphi_{i})\leqslant d_{\mathbb{\mathcal{C}}^{0}}(\textnormal{Id}\,,\varphi_{i}^{\prime})+d_{\mathbb{\mathcal{C}}^{0}}(\textnormal{Id}\,,\varphi_{i}^{\prime\prime})<22\varepsilon_{i}.

This finishes the step ii of the inductive construction.

To summarize, we have inductively constructed a sequence of Hamiltonian diffeomorphisms Ο†0,Ο†1,…\varphi_{0},\varphi_{1},\ldots with uniformly bounded compact supports in β„‚3\mathbb{C}^{3}, such that:

  • (i)

    Ο†i\varphi_{i} has support in W0​(Ξ΅i)βŠ‚Ξ¦iβˆ’1​(Uiβˆ’1)W^{0}(\varepsilon_{i})\subset\Phi_{i-1}(U_{i-1}) where Ξ¦iβˆ’1=Ο†iβˆ’1βˆ˜β‹―βˆ˜Ο†0\Phi_{i-1}=\varphi_{i-1}\circ\dots\circ\varphi_{0},

  • (ii)

    dπ’ž0​(Id,Ο†i)<22​Ρi=222kid_{\mathbb{\mathcal{C}}^{0}}(\textnormal{Id}\,,\varphi_{i})<22\varepsilon_{i}=\frac{22}{2^{k_{i}}},

  • (iii)

    uki+1=Ο†i∘ukiu_{k_{i+1}}=\varphi_{i}\circ u_{k_{i}}.

It follows by (ii) that Ξ¦i\Phi_{i} is a Cauchy sequence in the π’ž0\mathbb{\mathcal{C}}^{0} topology, hence uniformly converges to some continuous map Ξ¦:β„‚3β†’β„‚3\Phi:\mathbb{C}^{3}\rightarrow\mathbb{C}^{3}. Next, since uki+1=Ο†i∘ukiu_{k_{i+1}}=\varphi_{i}\circ u_{k_{i}} for every iβ©Ύ0i\geqslant 0, we have i0=Φ∘u0i_{0}=\Phi\circ u_{0}. Finally, we claim that Ξ¦\Phi is an injective map, hence a homeomorphism. To see this, consider two points xβ‰ y∈U0=β„‚3x\neq y\in U_{0}=\mathbb{C}^{3}. If x,y∈u0​(D)x,y\in u_{0}(D), then by (iii), Φ​(x)=i0∘u0βˆ’1​(x)β‰ i0∘u0βˆ’1​(y)=Φ​(y)\Phi(x)=i_{0}\circ u_{0}^{-1}(x)\neq i_{0}\circ u_{0}^{-1}(y)=\Phi(y). If x,yβˆ‰u0​(D)x,y\notin u_{0}(D), then x,y∈Uicx,y\in{}^{c}U_{i} for ii large enough, so by (i), Ξ¦i​(x)=Ξ¦i+1​(x)=Ξ¦i+2​(x)=…=Φ​(x)\Phi_{i}(x)=\Phi_{i+1}(x)=\Phi_{i+2}(x)=...=\Phi(x), and similarly Ξ¦i​(y)=Φ​(y)\Phi_{i}(y)=\Phi(y) (because for each j>ij>i, the support of Ο†j\varphi_{j} lies in Ξ¦jβˆ’1​(Ujβˆ’1)βŠ‚Ξ¦jβˆ’1​(Ui)\Phi_{j-1}(U_{j-1})\subset\Phi_{j-1}(U_{i})), so Φ​(x)=Ξ¦i​(x)β‰ Ξ¦i​(y)=Φ​(y)\Phi(x)=\Phi_{i}(x)\neq\Phi_{i}(y)=\Phi(y). Finally, if x∈u0​(D)x\in u_{0}(D) and yβˆ‰u0​(D)y\notin u_{0}(D), then y∈Uicy\in{}^{c}U_{i} for ii large enough, and so Φ​(y)=Ξ¦i​(y)∈Φi​(Uic)βŠ‚W0c​(Ξ΅i+1)\Phi(y)=\Phi_{i}(y)\in\Phi_{i}({}^{c}U_{i})\subset{}^{c}W^{0}(\varepsilon_{i+1}) by (i). Since Φ​(x)∈Im​i0βŠ‚W0​(Ξ΅i+1)\Phi(x)\in\textnormal{Im}\,i_{0}\subset W^{0}(\varepsilon_{i+1}), we conclude that also in this case we have Φ​(x)≠Φ​(y)\Phi(x)\neq\Phi(y). β–‘\square

3.2 Relative Eliashberg-Gromov π’ž0\mathbb{\mathcal{C}}^{0}-rigidity

Here we address the following question which appeared in our earlier work [BO16]:

Question 1.

Assume that a symplectic homeomorphism hh sends a smooth submanifold NN to a submanifold Nβ€²N^{\prime}, and that h|Nh_{|N} is smooth. Under which conditions hβˆ—β€‹Ο‰|Nβ€²=Ο‰|Nh^{*}\omega_{|N^{\prime}}=\omega_{|N} ?

Of course, that question is non-trivial only when dimN\dim N is at least 22, which we assume henceforth. The question is particularly interesting in the setting of pre-symplectic submanifolds. Recall that a submanifold NβŠ‚(M,Ο‰)N\subset(M,\omega) is called pre-symplectic if Ο‰\omega has constant rank on MM. The symplectic dimension dimΟ‰N\dim^{\omega}N of a pre-symplectic submanifold NN is the minimal dimension of a symplectic submanifold that contains NN. One checks immediately that dimΟ‰N=dimN+Corank​ω|N\dim^{\omega}N=\dim N+\textnormal{Corank}\,\omega_{|N}.

In [BO16], we answered question 1 in various cases of the pre-symplectic setting. Theorem 2 allows to address almost all the remaining cases. Our next result incorporates these remaining cases, together with those verified in [BO16]:

Theorem 3.

Let NβŠ‚(M2​n,Ο‰)N\subset(M^{2n},\omega) be a pre-symplectic disc. Then the answer to question 1 is

  • β€’

    Negative if dimΟ‰Nβ©½2​nβˆ’4\dim^{\omega}N\leqslant 2n-4, or if dimΟ‰N=2​nβˆ’2\dim^{\omega}N=2n-2 and Corank​ω|Nβ©Ύ2\textnormal{Corank}\,\omega_{|N}\geqslant 2.

  • β€’

    Positive if dimΟ‰N=2​n\dim^{\omega}N=2n, or if dimΟ‰N=2​nβˆ’2\dim^{\omega}N=2n-2 and Corank​ω|N=0\textnormal{Corank}\,\omega_{|N}=0.

The only case that remains open is when dimΟ‰N=2​nβˆ’2\dim^{\omega}N=2n-2 and Corank​ω|N=1\textnormal{Corank}\,\omega_{|N}=1 (i.e. dimN=2​nβˆ’3\dim N=2n-3, Corank​ω|N=1\textnormal{Corank}\,\omega_{|N}=1).

Proof of theorem 3: When dimΟ‰Nβ©½2​nβˆ’4\dim^{\omega}N\leqslant 2n-4 and NN is not isotropic, the answer is negative because we can find a symplectic homeomorphism that fixes NN and contracts the symplectic form (by [BO16]). When dimΟ‰Nβ©½2​nβˆ’2\dim^{\omega}N\leqslant 2n-2 and r:=corank​ω|Nβ©Ύ2r:=\text{corank}\,\omega_{|N}\geqslant 2, there is a local symplectomorphism that takes NN to [0,1]rΓ—DkΓ—{0}βŠ‚β„‚(z)rΓ—β„‚(zβ€²)kΓ—β„‚(w)m[0,1]^{r}\times D^{k}\times\{0\}\subset\mathbb{C}^{r}_{(z)}\times\mathbb{C}^{k}_{(z^{\prime})}\times\mathbb{C}^{m}_{(w)}, where mβ‰₯1m\geq 1 and rβ‰₯2r\geq 2. By theorem 2, we can find a symplectic homeomorphism f​(z1,z2,w1)f(z_{1},z_{2},w_{1}) of β„‚2Γ—β„‚\mathbb{C}^{2}\times\mathbb{C} which takes [0,1]2Γ—{0}[0,1]^{2}\times\{0\} to a symplectic disc. The induced map

f~:β„‚(z1,z2)2Γ—β„‚(w1)Γ—β„‚rβˆ’2Γ—β„‚kΓ—β„‚mβˆ’1βŸΆβ„‚n(z1,z2,w1,z3,…,zr,z1β€²,…,zkβ€²,w2,…,wm)⟼f​(z1,z2,w1)Γ—Id\begin{array}[]{rcccl}\tilde{f}&:&\mathbb{C}^{2}_{(z_{1},z_{2})}\times\mathbb{C}_{(w_{1})}\times\mathbb{C}^{r-2}\times\mathbb{C}^{k}\times\mathbb{C}^{m-1}&\longrightarrow&\mathbb{C}^{n}\\ &&(z_{1},z_{2},w_{1},z_{3},\dots,z_{r},z_{1}^{\prime},\dots,z_{k}^{\prime},w_{2},\dots,w_{m})&\longmapsto&f(z_{1},z_{2},w_{1})\times\textnormal{Id}\end{array}

is obviously a symplectic homeomorphism which takes NN to a submanifold on which the co-rank of the symplectic form is reduced by 22. Note that this argument also works when dimΟ‰Nβ©½2​nβˆ’4\dim^{\omega}N\leqslant 2n-4 and NN is isotropic. The second item of the theorem was proved in [BO16]. β–‘\square

References

  • [BHS18] Lev Buhovsky, Vincent HumiliΓ¨re, and Sobhan Seyfaddini. A C0C^{0} counterexample to the Arnold conjecture. Invent. Math., 213(2):759–809, 2018.
  • [BO16] Lev Buhovsky and Emmanuel Opshtein. Some quantitative results in π’ž0\mathcal{C}^{0} symplectic geometry. Invent. Math., 205(1):1–56, 2016.
  • [EM02] Y.Β Eliashberg and N.Β Mishachev. Introduction to the hh-principle, volumeΒ 48 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, 2002.
  • [Gro86] Mikhael Gromov. Partial differential relations, volumeΒ 9 of Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)]. Springer-Verlag, Berlin, 1986.

Lev Buhovski
School of Mathematical Sciences, Tel Aviv University
e-mail: [email protected]


Emmanuel Opshtein
Institut de Recherche MathΓ©matique AvancΓ©e
UMR 7501, UniversitΓ© de Strasbourg et CNRS
e-mail: [email protected]