This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Quality of Approximate Balanced Truncation

Lei-Hong Zhang School of Mathematical Sciences, Soochow University, Suzhou 215006, Jiangsu, China. This work was supported in part by the National Natural Science Foundation of China NSFC-12071332, NSFC-12371380, and Jiangsu Shuangchuang Project (JSSCTD202209). Email: [email protected].    Ren-Cang Li Department of Mathematics, University of Texas at Arlington, Arlington, TX 76019-0408, USA. Supported in part by NSF DMS-1719620 and DMS-2009689. Email: [email protected].
Abstract

Model reduction is a powerful tool in dealing with numerical simulation of large scale dynamic systems for studying complex physical systems. Two major types of model reduction methods for linear time-invariant dynamic systems are Krylov subspace-based methods and balanced truncation-based methods. The methods of the second type are much more theoretically sound than the first type in that there is a fairly tight global error bound on the approximation error between the original system and the reduced one. It is noted that the error bound is established based upon the availability of the exact controllability and observability Gramians. However, numerically, the Gramians are not available and have to be numerically calculated, and for a large scale system, a viable option is to compute low-rank approximations of the Gramians from which an approximate balanced truncation is then performed. Hence, rigorously speaking, the existing global error bound is not applicable to any reduced system obtained via approximate Gramians. The goal of this paper is to address this issue by establishing global error bounds for reduced systems via approximate balanced truncation.


Keywords: model reduction, balanced Truncation, transfer function, controllability Gramian, observability Gramian, Hankel singular value, low-rank approximation, error bound

Mathematics Subject Classification 78M34, 93A15, 93B40

1 Introduction

Model reduction is a powerful tool in dealing with numerical simulation of large scale dynamic systems for studying complex physical systems [2, 11, 17]. In this paper, we are interested in the following continuous linear time-invariant dynamic system

𝒙(t)\displaystyle\boldsymbol{x}^{\prime}(t) =A𝒙(t)+B𝒖(t),given 𝒙(0)=𝒙0,\displaystyle=A\,\boldsymbol{x}(t)+B\,\boldsymbol{u}(t),\quad\mbox{given $\boldsymbol{x}(0)=\boldsymbol{x}_{0}$}, (1.1a)
𝒚(t)\displaystyle\boldsymbol{y}(t) =CT𝒙(t),\displaystyle=C^{\operatorname{T}}\,\boldsymbol{x}(t), (1.1b)

where 𝒙:t[0,)n\boldsymbol{x}\,:\,t\in[0,\infty)\to\mathbb{R}^{n} is the state vector, and 𝒖:t[0,)m\boldsymbol{u}\,:\,t\in[0,\infty)\to\mathbb{R}^{m} is the input, 𝒚:t[0,)p\boldsymbol{y}\,:\,t\in[0,\infty)\to\mathbb{R}^{p} is the output, and An×n,Bn×m,Cn×pA\in\mathbb{R}^{n\times n},\,B\in\mathbb{R}^{n\times m},\,C\in\mathbb{R}^{n\times p} are constant matrices that define the dynamic system. In today’s applications of interests, such as very large scale integration (VLSI) circuit designs and structural dynamics, nn can be up to millions [3, 5, 11], but usually the dimensions of input and output vectors are much smaller, i.e., p,mnp,\,m\ll n. Large nn can be an obstacle in practice both computationally and in memory usage. Model reduction is then called for to overcome the obstacle.

In a nutshell, model reduction for dynamic system (1.1) seeks two matrices X,Yn×rX,\,Y\in\mathbb{R}^{n\times r} such that YTX=IrY^{\operatorname{T}}X=I_{r} to reduce the system (1.1) to

𝒙^r(t)\displaystyle\hat{\boldsymbol{x}}_{r}^{\prime}(t) =Ar𝒙^r(t)+Br𝒖(t),given 𝒙^r(0)=YT𝒙0,\displaystyle=A_{r}\,\hat{\boldsymbol{x}}_{r}(t)+B_{r}\,\boldsymbol{u}(t),\quad\mbox{given $\hat{\boldsymbol{x}}_{r}(0)=Y^{\operatorname{T}}\boldsymbol{x}_{0}$}, (1.2a)
𝒚(t)\displaystyle\boldsymbol{y}(t) =CrT𝒙^r(t),\displaystyle=C_{r}^{\operatorname{T}}\,\hat{\boldsymbol{x}}_{r}(t), (1.2b)

where Ar,Br,CrA_{r},\,B_{r},\,C_{r} are given by

Ar:=YTAXr×r,Br:=YTBr×m,Cr:=XTCr×p.A_{r}:=Y^{\operatorname{T}}AX\in\mathbb{R}^{r\times r},\quad B_{r}:=Y^{\operatorname{T}}B\in\mathbb{R}^{r\times m},\quad C_{r}:=X^{\operatorname{T}}C\in\mathbb{R}^{r\times p}. (1.3)

Intuitively, this reduced system (1.2) may be thought of obtaining from (1.1) by letting 𝒙=X𝒙^r\boldsymbol{x}=X\hat{\boldsymbol{x}}_{r} and performing Galerkin projection with YY. The new state vector 𝒙^r\hat{\boldsymbol{x}}_{r} is now in r\mathbb{R}^{r}, a much smaller space in dimension than n\mathbb{R}^{n}. In practice, for the reduced system to be of any use, the two systems must be “close” in some sense.

Different model reduction methods differ in their choosing XX and YY, the projection matrices. There are two major types: Krylov subspace-based methods [5, 11, 17] and balanced truncation-based methods [2, 12]. The methods of the first type are computationally more efficient for large scale systems and reduced models are accurate around points where Krylov subspaces are built, while those of the second type are theoretically sound in that fairly tight global error bounds are known but numerically much more expensive in that controllability and observability Gramians which are provably positive definite have to be computed at cost of O(n3)O(n^{3}) complexity.

Modern balanced truncation-based methods have improved, thanks to the discovery that the Gramians are usually numerically low-rank [4, 20, 21] and methods that compute their low-rank approximations in the factor form [15, 9]. The low-rank factors are then naturally used to compute an approximate balanced truncation. Moments ago, we pointed out the advantage of balanced truncation-based methods in their sound global approximations guaranteed by tight global error bounds, but these bounds are established based on exact Gramians and hence the exiting global error bounds, though suggestive, are no longer valid. To the best of our knowledge, there is no study as to the quality of reduced models by modern balanced truncation-based methods that use the low-rank approximate Gramians. Our aim in this paper is to address the void.

The rest of this paper is organized as follows. Section 2 reviews the basics of balanced truncation methods. Section 3 explains approximate balanced truncation, when some low-rank approximations of controllability and observability Gramians, not the exact Gramians themselves, are available. In Section 4, we establish our main results to quantify the accuracy of the reduced model by approximate balanced reduction. We draw our conclusions and makes some remarks. Some preliminary material on subspaces of n\mathbb{R}^{n} and perturbation for Lyapunov equation are discussed in appendixes.


Notation. m×n\mathbb{R}^{m\times n} is the set of m×nm\times n real matrices, n=n×1\mathbb{R}^{n}=\mathbb{R}^{n\times 1}, and =1\mathbb{R}=\mathbb{R}^{1}. Inn×nI_{n}\in\mathbb{R}^{n\times n} is the identity matrix or simply II if its size is clear from the context, and 𝒆j\boldsymbol{e}_{j} is the jjth column of II of apt size. BTB^{\operatorname{T}} stands for the transpose of a matrix/vector. (B){\cal R}(B) is the column subspace of BB, spanned by its columns. For Bm×nB\in\mathbb{R}^{m\times n}, its singular values are

σ1(B)σ2(B)σk(B)0,\sigma_{1}(B)\geq\sigma_{2}(B)\geq\cdots\geq\sigma_{k}(B)\geq 0,

where k=min{m,n}k=\min\{m,n\}, and σmax(B)=σ1(B)\sigma_{\max}(B)=\sigma_{1}(B) and σmin(B)=σk(B)\sigma_{\min}(B)=\sigma_{k}(B). B2\|B\|_{2}, BF\|B\|_{\operatorname{F}}, and Bui\|B\|_{\operatorname{ui}} are its spectral and Frobenius norms:

B2=σ1(B),BF=(i=1k[σi(B)]2)1/2,\|B\|_{2}=\sigma_{1}(B),\,\,\|B\|_{\operatorname{F}}=\Big{(}\sum_{i=1}^{k}[\sigma_{i}(B)]^{2}\Big{)}^{1/2},\,\,

respectively. Bui\|B\|_{\operatorname{ui}} is some unitarily invariant norm of BB [18, 23]. For a matrix An×nA\in\mathbb{R}^{n\times n} that is known to have real eigenvalues only, eig(A)={λi(A)}i=1n\operatorname{eig}(A)=\{\lambda_{i}(A)\}_{i=1}^{n} denotes the set of its eigenvalues (counted by multiplicities) arranged in the decreasing order, and λmax(A)=λ1(A)\lambda_{\max}(A)=\lambda_{1}(A) and λmin(A)=λn(A)\lambda_{\min}(A)=\lambda_{n}(A). A0(0)A\succ 0\,(\succeq 0) means that it is symmetric and positive definite (semi-definite), and accordingly A0(0)A\prec 0\,(\preceq 0) if A0(0)-A\succ 0\,(\succeq 0). MATLAB-like notation is used to access the entries of a matrix: X(i:j,k:)X_{(i:j,k:\ell)} to denote the submatrix of a matrix XX, consisting of the intersections of rows ii to jj and columns kk to \ell, and when i:ji:j is replaced by ::, it means all rows, similarly for columns.

2 Review of balanced truncation

In this section, we will review the balanced truncation, minimally to the point to serve our purpose in this paper. The reader is referred to [2] for a more detailed exposition.

Consider continuous linear time-invariant dynamic system (1.1) and suppose that it is stable, observable and controllable [1, 25].

2.1 Quality of a reduced order model

Suppose initially 𝒙0=0\boldsymbol{x}_{0}=0. Applying the Laplacian transformation to (1.1) yields

𝒀(s)=CT(sInA)1B:=H(s)𝑼(s),s,\boldsymbol{Y}(s)=\underbrace{C^{\operatorname{T}}(sI_{n}-A)^{-1}B}_{:=H(s)}\boldsymbol{U}(s),\quad s\in\mathbb{C},

where 𝑼(s)\boldsymbol{U}(s) and 𝒀(s)\boldsymbol{Y}(s) are the Laplacian transformations of 𝒖\boldsymbol{u} and 𝒚\boldsymbol{y}, respectively, and H(s)p×mH(s)\in\mathbb{C}^{p\times m} is the so-called transfer function of system (1.1). Conveniently, we will adopt the notation to denote the system (1.1) symbolically by

𝒮=(ABCT)\mathscr{S}=\left(\begin{array}[]{c|c}A&B\\ \hline\cr\vphantom{\vrule height=12.80365pt,width=0.9pt,depth=2.84544pt}C^{\operatorname{T}}&\end{array}\right)

with the round bracket to distinguish it from the square bracket for matrices. The infinity Hankel norm of the system 𝒮\mathscr{S}, also known as the infinity Hankel norm of H()H(\cdot), is defined as

𝒮=H():=supωH(ιω)2=supωσmax(H(ιω)),\|\mathscr{S}\|_{{\cal H}_{\infty}}=\|H(\cdot)\|_{{\cal H}_{\infty}}:=\sup_{\omega\in\mathbb{R}}\|H(\iota\omega)\|_{2}=\sup_{\omega\in\mathbb{R}}\sigma_{\max}(H(\iota\omega)), (2.1)

where 2\|\cdot\|_{2} is the spectral norm of a matrix, and ι=1\iota=\sqrt{-1} is the imaginary unit.

In Section 1, we introduced the framework of model reduction with two matrices X,Yn×rX,\,Y\in\mathbb{R}^{n\times r} such that YTX=IrY^{\operatorname{T}}X=I_{r}. For the ease of our presentation going forward, we shall rename them as X1,Y1n×rX_{1},\,Y_{1}\in\mathbb{R}^{n\times r} and Y1TX1=IrY_{1}^{\operatorname{T}}X_{1}=I_{r}. Next we look for X2,Y2n×(nr)X_{2},\,Y_{2}\in\mathbb{R}^{n\times(n-r)} such that

In=[Y1,Y2]T[X1,X2]=[Y1TY2T][X1,X2]=[Y1TX1Y1TX2Y2TX1Y2TX2].I_{n}=[Y_{1},Y_{2}]^{\operatorname{T}}[X_{1},X_{2}]=\begin{bmatrix}Y_{1}^{\operatorname{T}}\\ Y_{2}^{\operatorname{T}}\end{bmatrix}[X_{1},X_{2}]=\begin{bmatrix}Y_{1}^{\operatorname{T}}X_{1}&Y_{1}^{\operatorname{T}}X_{2}\\ Y_{2}^{\operatorname{T}}X_{1}&Y_{2}^{\operatorname{T}}X_{2}\end{bmatrix}. (2.2)

Such X2,Y2n×(nr)X_{2},\,Y_{2}\in\mathbb{R}^{n\times(n-r)} always exist by Lemmas A.1 and A.2 if sinΘ((X1),(Y1))2<1\|\sin\Theta({\cal R}(X_{1}),{\cal R}(Y_{1}))\|_{2}<1. In any practical model reduction method, only X1,Y1X_{1},\,Y_{1} need to be produced. That X2,Y2X_{2},\,Y_{2} are introduced here is only for our analysis later. Denote by

T=[Y1,Y2]T,T1=[X1,X2],T=[Y_{1},Y_{2}]^{\operatorname{T}},\quad T^{-1}=[X_{1},X_{2}], (2.3)

which are consistent because of (2.2). To the original system (1.1), perform transformation: 𝒙(t)=T𝒙^(t)\boldsymbol{x}(t)=T\hat{\boldsymbol{x}}(t), to get

𝒙^(t)\displaystyle\hat{\boldsymbol{x}}^{\prime}(t) =A^𝒙^(t)+B^𝒖(t),𝒙^(0)=T1𝒙0,\displaystyle=\widehat{A}\,\hat{\boldsymbol{x}}(t)+\widehat{B}\,\boldsymbol{u}(t),\quad\hat{\boldsymbol{x}}(0)=T^{-1}\boldsymbol{x}_{0}, (2.4a)
𝒚(t)\displaystyle\boldsymbol{y}(t) =C^T𝒙^(t),\displaystyle=\widehat{C}^{\operatorname{T}}\,\hat{\boldsymbol{x}}(t), (2.4b)
where
A^=TAT1,B^=TB,C^=TTC,\widehat{A}=TAT^{-1},\quad\widehat{B}=TB,\quad\widehat{C}=T^{-\operatorname{T}}C, (2.4c)

naturally partitioned as

A^= [\@arstrutrn-r\\r^A11^A12\\n-r^A21^A22] ,B^= [\@arstrut\\r^B1\\n-r^B2] ,C^= [\@arstrut\\r^C1\\n-r^C2] .\widehat{A}=\hbox{}\vbox{\kern 0.86108pt\hbox{$\kern 0.0pt\kern 2.5pt\kern-5.0pt\left[\kern 0.0pt\kern-2.5pt\kern-5.55557pt\vbox{\kern-0.86108pt\vbox{\vbox{ \halign{\kern\arraycolsep\hfil\@arstrut$\kbcolstyle#$\hfil\kern\arraycolsep& \kern\arraycolsep\hfil$\@kbrowstyle#$\ifkbalignright\relax\else\hfil\fi\kern\arraycolsep&& \kern\arraycolsep\hfil$\@kbrowstyle#$\ifkbalignright\relax\else\hfil\fi\kern\arraycolsep\cr 5.0pt\hfil\@arstrut$\scriptstyle$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle\scriptstyle r$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle\scriptstyle n-r\\\scriptstyle r$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle\widehat{A}_{11}$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle\widehat{A}_{12}\\\scriptstyle n-r$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle\widehat{A}_{21}$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle\widehat{A}_{22}$\hfil\kern 5.0pt\crcr}}}}\right]$}},\quad\widehat{B}=\hbox{}\vbox{\kern 0.86108pt\hbox{$\kern 0.0pt\kern 2.5pt\kern-5.0pt\left[\kern 0.0pt\kern-2.5pt\kern-5.55557pt\vbox{\kern-0.86108pt\vbox{\vbox{ \halign{\kern\arraycolsep\hfil\@arstrut$\kbcolstyle#$\hfil\kern\arraycolsep& \kern\arraycolsep\hfil$\@kbrowstyle#$\ifkbalignright\relax\else\hfil\fi\kern\arraycolsep&& \kern\arraycolsep\hfil$\@kbrowstyle#$\ifkbalignright\relax\else\hfil\fi\kern\arraycolsep\cr 5.0pt\hfil\@arstrut$\scriptstyle\scriptstyle\\\scriptstyle r$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle\widehat{B}_{1}\\\scriptstyle n-r$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle\widehat{B}_{2}$\hfil\kern 5.0pt\crcr}}}}\right]$}},\quad\widehat{C}=\hbox{}\vbox{\kern 0.86108pt\hbox{$\kern 0.0pt\kern 2.5pt\kern-5.0pt\left[\kern 0.0pt\kern-2.5pt\kern-5.55557pt\vbox{\kern-0.86108pt\vbox{\vbox{ \halign{\kern\arraycolsep\hfil\@arstrut$\kbcolstyle#$\hfil\kern\arraycolsep& \kern\arraycolsep\hfil$\@kbrowstyle#$\ifkbalignright\relax\else\hfil\fi\kern\arraycolsep&& \kern\arraycolsep\hfil$\@kbrowstyle#$\ifkbalignright\relax\else\hfil\fi\kern\arraycolsep\cr 5.0pt\hfil\@arstrut$\scriptstyle\scriptstyle\\\scriptstyle r$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle\widehat{C}_{1}\\\scriptstyle n-r$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle\widehat{C}_{2}$\hfil\kern 5.0pt\crcr}}}}\right]$}}.

In particular,

A^11:=Y1TAX1r×r,B^1:=Y1TBr×m,C^1:=X1TCr×p.\widehat{A}_{11}:=Y_{1}^{\operatorname{T}}AX_{1}\in\mathbb{R}^{r\times r},\quad\widehat{B}_{1}:=Y_{1}^{\operatorname{T}}B\in\mathbb{R}^{r\times m},\quad\widehat{C}_{1}:=X_{1}^{\operatorname{T}}C\in\mathbb{R}^{r\times p}. (2.5)

One can verify that the transfer functions of (1.1) and (2.4) are exactly the same.

In current notation, the reduced system (1.2) in Section 1 takes the form

𝒙^r(t)\displaystyle\hat{\boldsymbol{x}}_{r}^{\prime}(t) =A^11𝒙^r(t)+B^1𝒖(t),𝒙^r(0)=Y1T𝒙0,\displaystyle=\widehat{A}_{11}\,\hat{\boldsymbol{x}}_{r}(t)+\widehat{B}_{1}\,\boldsymbol{u}(t),\quad\hat{\boldsymbol{x}}_{r}(0)=Y_{1}^{\operatorname{T}}\boldsymbol{x}_{0}, (2.6a)
𝒚(t)\displaystyle\boldsymbol{y}(t) =C^1T𝒙^r(t),\displaystyle=\widehat{C}_{1}^{\operatorname{T}}\,\hat{\boldsymbol{x}}_{r}(t), (2.6b)

which will be denoted in short by 𝒮rd=(A^11B^1C^1T)\mathscr{S}_{\operatorname{rd}}=\left(\begin{array}[]{c|c}\widehat{A}_{11}&\widehat{B}_{1}\\ \hline\cr\vphantom{\vrule height=12.80365pt,width=0.9pt,depth=2.84544pt}\widehat{C}_{1}^{\operatorname{T}}&\end{array}\right). Its transfer function is given by

Hrd(s)=C^1T(sIA^11)1B^1,s.H_{\operatorname{rd}}(s)=\widehat{C}_{1}^{\operatorname{T}}(sI-\widehat{A}_{11})^{-1}\widehat{B}_{1},\quad s\in\mathbb{C}. (2.7)

Naturally, we would like that the full system (2.4) and its reduced one (2.6) are “close”. One way to measure the closeness is the {\cal H}_{\infty}-norm of the difference between the two transfer functions [2, 25]:

H()Hrd():=supωH(ιω)Hrd(ιω)2,\|H(\cdot)-H_{\operatorname{rd}}(\cdot)\|_{{\cal H}_{\infty}}:=\sup_{\omega\in\mathbb{R}}\|H(\iota\omega)-H_{\operatorname{rd}}(\iota\omega)\|_{2},

assuming both systems are stable, observable and controllable [25]. Another way is by 2{\cal H}_{2}-norm which we will get to later. It turns out that Herr(s)=H(s)Hrd(s)H_{\operatorname{err}}(s)=H(s)-H_{\operatorname{rd}}(s) is the transfer function of an expanded dynamic system:

[𝒙^(t)𝒙^r(t)]\displaystyle\begin{bmatrix}\hat{\boldsymbol{x}}^{\prime}(t)\\ \hat{\boldsymbol{x}}_{r}^{\prime}(t)\end{bmatrix} =[A^A^11][𝒙^(t)𝒙^r(t)]+[B^B^1]𝒖(t),[𝒙^(0)𝒙^r(0)]=[T1𝒙0Y1T𝒙0],\displaystyle=\begin{bmatrix}\widehat{A}&\\ &\widehat{A}_{11}\end{bmatrix}\begin{bmatrix}\hat{\boldsymbol{x}}(t)\\ \hat{\boldsymbol{x}}_{r}(t)\end{bmatrix}+\begin{bmatrix}\widehat{B}\\ \widehat{B}_{1}\end{bmatrix}\boldsymbol{u}(t),\quad\begin{bmatrix}\hat{\boldsymbol{x}}(0)\\ \hat{\boldsymbol{x}}_{r}(0)\end{bmatrix}=\begin{bmatrix}T^{-1}\boldsymbol{x}_{0}\\ Y_{1}^{\operatorname{T}}\boldsymbol{x}_{0}\end{bmatrix}, (2.8a)
𝒚^(t)\displaystyle\hat{\boldsymbol{y}}(t) =[C^C^1]T[𝒙^(t)𝒙^r(t)],\displaystyle=\begin{bmatrix}\widehat{C}\\ -\widehat{C}_{1}\end{bmatrix}^{\operatorname{T}}\begin{bmatrix}\hat{\boldsymbol{x}}(t)\\ \hat{\boldsymbol{x}}_{r}(t)\end{bmatrix}, (2.8b)

or in the short notation

𝒮err=(A^11B^A^11B^1C^TC^1T).\mathscr{S}_{\operatorname{err}}=\left(\begin{array}[]{cc|c}\widehat{A}_{11}&&\widehat{B}\\ &\widehat{A}_{11}&\widehat{B}_{1}\\ \hline\cr\vphantom{\vrule height=12.80365pt,width=0.9pt,depth=2.84544pt}\widehat{C}^{\operatorname{T}}&-\widehat{C}_{1}^{\operatorname{T}}&\end{array}\right).

The key that really determines the quality of a reduced system is the subspaces 𝒳1:=(X1){\cal X}_{1}:={\cal R}(X_{1}) and 𝒴1:=(Y1){\cal Y}_{1}:={\cal R}(Y_{1}) as far as the transfer function (2.7) is concerned, as guaranteed by the next theorem.

Theorem 2.1.

Given the subspaces 𝒳1{\cal X}_{1} and 𝒴1{\cal Y}_{1} of dimension rr such that sinΘ(𝒳1,𝒴1)2<1\|\sin\Theta({\cal X}_{1},{\cal Y}_{1})\|_{2}<1, any realizations of their basis matrices X1,Y1n×rX_{1},\,Y_{1}\in\mathbb{R}^{n\times r} satisfying Y1TX1=IrY_{1}^{\operatorname{T}}X_{1}=I_{r}, respectively, do not affect the transfer function (2.7) of reduced system (2.6).

Proof.

Fix a pair of basis matrices X1,Y1n×rX_{1},\,Y_{1}\in\mathbb{R}^{n\times r} of 𝒳1{\cal X}_{1} and 𝒴1{\cal Y}_{1}, respectively, such that Y1TX1=IrY_{1}^{\operatorname{T}}X_{1}=I_{r}. Consider any other two basis matrices Xˇ1,Yˇ1n×r\check{X}_{1},\,\check{Y}_{1}\in\mathbb{R}^{n\times r} of 𝒳1{\cal X}_{1} and 𝒴1{\cal Y}_{1}, respectively, such that Yˇ1TXˇ1=Ir\check{Y}_{1}^{\operatorname{T}}\check{X}_{1}=I_{r}. Then Xˇ1=X1Z\check{X}_{1}=X_{1}Z and Yˇ1=Y1W\check{Y}_{1}=Y_{1}W for some nonsingular Z,Wr×rZ,\,W\in\mathbb{R}^{r\times r}. We have

Ir=Yˇ1TXˇ1=(Y1W)T(X1Z)=WT(Y1TX1)Z=WTZ,I_{r}=\check{Y}_{1}^{\operatorname{T}}\check{X}_{1}=(Y_{1}W)^{\operatorname{T}}(X_{1}Z)=W^{\operatorname{T}}(Y_{1}^{\operatorname{T}}X_{1})Z=W^{\operatorname{T}}Z,

implying WT=Z1W^{\operatorname{T}}=Z^{-1}, and

Yˇ1TAXˇ1=Z1(Y1TAX1)Z,Yˇ1TB=Z1(Y1TB),Xˇ1TC=ZT(X1TC).\check{Y}_{1}^{\operatorname{T}}A\check{X}_{1}=Z^{-1}\big{(}Y_{1}^{\operatorname{T}}AX_{1}\big{)}Z,\,\,\check{Y}_{1}^{\operatorname{T}}B=Z^{-1}\big{(}Y_{1}^{\operatorname{T}}B\big{)},\,\,\check{X}_{1}^{\operatorname{T}}C=Z^{\operatorname{T}}\big{(}X_{1}^{\operatorname{T}}C\big{)}.

The transfer function associated with Xˇ1,Yˇ1\check{X}_{1},\,\check{Y}_{1} is

(Xˇ1TC)T(sIrYˇ1TAXˇ1)1(Yˇ1TB)\displaystyle\big{(}\check{X}_{1}^{\operatorname{T}}C\big{)}^{\operatorname{T}}\big{(}sI_{r}-\check{Y}_{1}^{\operatorname{T}}A\check{X}_{1}\big{)}^{-1}\big{(}\check{Y}_{1}^{\operatorname{T}}B\big{)} =(X1TC)TZ[Z1(sIrY1TAX1)Z]1Z1(Y1TB)\displaystyle=\big{(}X_{1}^{\operatorname{T}}C\big{)}^{\operatorname{T}}Z\big{[}Z^{-1}\big{(}sI_{r}-Y_{1}^{\operatorname{T}}AX_{1}\big{)}Z\big{]}^{-1}Z^{-1}\big{(}Y_{1}^{\operatorname{T}}B\big{)}
=(X1TC)T(sIrY1TAX1)1(Y1TB),\displaystyle=\big{(}X_{1}^{\operatorname{T}}C\big{)}^{\operatorname{T}}\big{(}sI_{r}-Y_{1}^{\operatorname{T}}AX_{1}\big{)}^{-1}\big{(}Y_{1}^{\operatorname{T}}B\big{)},

having nothing to do with ZZ and WW, as was to be shown. ∎

2.2 Balanced truncation

Balanced truncation fits into the general framework of model reduction, and thus it suffices for us to define X1,Y1n×rX_{1},\,Y_{1}\in\mathbb{R}^{n\times r} and Y1TX1=IrY_{1}^{\operatorname{T}}X_{1}=I_{r} for balanced truncation accordingly.

The controllability and observability Gramians PP and QQ are defined as the solutions to the Lyapunov equations:

AP+PAT\displaystyle AP+PA^{\operatorname{T}} +BBT=0,\displaystyle+BB^{\operatorname{T}}=0, (2.9a)
ATQ+QA\displaystyle A^{\operatorname{T}}Q+QA +CCT=0,\displaystyle+CC^{\operatorname{T}}=0, (2.9b)

respectively. Under the assumption that dynamic system (1.1) is stable, observable and controllable, the Lyapunov equations have unique solutions that are positive definite, i.e., P0P\succ 0 and Q0Q\succ 0. The model order reduction based on balanced truncation [2, 10] starts with a balanced transformation to dynamic system (1.1) such that both Gramians are the same and diagonal with diagonal entries being the system’s invariants, known as the Hankel singular values of the system.

Balanced truncation is classically introduced in the literature through some full-rank decompositions of PP and QQ:

P=SSTandQ=RRT,P=SS^{\operatorname{T}}\quad\mbox{and}\quad Q=RR^{\operatorname{T}}, (2.10)

where S,Rn×nS,\,R\in\mathbb{R}^{n\times n} and are nonsingular because P0P\succ 0 and Q0Q\succ 0. But that is not necessary in theory, namely S,RS,\,R do not have to be square, in which case both will have no fewer than nn columns because the equalities in (2.10) ensure rank(S)=rank(P)\operatorname{rank}(S)=\operatorname{rank}(P) and rank(R)=rank(Q)\operatorname{rank}(R)=\operatorname{rank}(Q). Later in Theorem 2.3, we will show that balanced truncation is invariant with respect to how the decompositions in (2.10) are done, including non-square SS and RR. Such an invariance property is critical to our analysis.

Suppose that we have (2.10) with

Sn×m1andRn×m2.S\in\mathbb{R}^{n\times m_{1}}\quad\mbox{and}\quad R\in\mathbb{R}^{n\times m_{2}}. (2.11)

Without loss of generality, we may assume m1m2m_{1}\geq m_{2}. Let the SVD of STRm1×m2S^{\operatorname{T}}R\in\mathbb{R}^{m_{1}\times m_{2}} be

STR=UΣVT [\@arstrutrm1-r\\U1U2] × [\@arstrutrm2-r\\rΣ1\\m1-rΣ2] × [\@arstrut\\rV1T\\m2-rV2T] ,S^{\operatorname{T}}R=U\Sigma V^{\operatorname{T}}\equiv\hbox{}\vbox{\kern 0.86108pt\hbox{$\kern 0.0pt\kern 2.5pt\kern-5.0pt\left[\kern 0.0pt\kern-2.5pt\kern-5.55557pt\vbox{\kern-0.86108pt\vbox{\vbox{ \halign{\kern\arraycolsep\hfil\@arstrut$\kbcolstyle#$\hfil\kern\arraycolsep& \kern\arraycolsep\hfil$\@kbrowstyle#$\ifkbalignright\relax\else\hfil\fi\kern\arraycolsep&& \kern\arraycolsep\hfil$\@kbrowstyle#$\ifkbalignright\relax\else\hfil\fi\kern\arraycolsep\cr 5.0pt\hfil\@arstrut$\scriptstyle$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle\scriptstyle r$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle\scriptstyle m_{1}-r\\$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle U_{1}$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle U_{2}$\hfil\kern 5.0pt\crcr}}}}\right]$}}\times\hbox{}\vbox{\kern 0.86108pt\hbox{$\kern 0.0pt\kern 2.5pt\kern-5.0pt\left[\kern 0.0pt\kern-2.5pt\kern-5.55557pt\vbox{\kern-0.86108pt\vbox{\vbox{ \halign{\kern\arraycolsep\hfil\@arstrut$\kbcolstyle#$\hfil\kern\arraycolsep& \kern\arraycolsep\hfil$\@kbrowstyle#$\ifkbalignright\relax\else\hfil\fi\kern\arraycolsep&& \kern\arraycolsep\hfil$\@kbrowstyle#$\ifkbalignright\relax\else\hfil\fi\kern\arraycolsep\cr 5.0pt\hfil\@arstrut$\scriptstyle$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle\scriptstyle r$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle\scriptstyle m_{2}-r\\\scriptstyle r$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle\Sigma_{1}$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle\\\scriptstyle m_{1}-r$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle\Sigma_{2}$\hfil\kern 5.0pt\crcr}}}}\right]$}}\times\hbox{}\vbox{\kern 0.86108pt\hbox{$\kern 0.0pt\kern 2.5pt\kern-5.0pt\left[\kern 0.0pt\kern-2.5pt\kern-5.55557pt\vbox{\kern-0.86108pt\vbox{\vbox{ \halign{\kern\arraycolsep\hfil\@arstrut$\kbcolstyle#$\hfil\kern\arraycolsep& \kern\arraycolsep\hfil$\@kbrowstyle#$\ifkbalignright\relax\else\hfil\fi\kern\arraycolsep&& \kern\arraycolsep\hfil$\@kbrowstyle#$\ifkbalignright\relax\else\hfil\fi\kern\arraycolsep\cr 5.0pt\hfil\@arstrut$\scriptstyle$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle\\\scriptstyle r$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle V_{1}^{\operatorname{T}}\\\scriptstyle m_{2}-r$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle V_{2}^{\operatorname{T}}$\hfil\kern 5.0pt\crcr}}}}\right]$}}, (2.12a)
where
Σ1=diag(σ1,,σr),Σ2=[diag(σr+1,,σm2)0(m1m2)×(m2r)],\displaystyle\Sigma_{1}=\operatorname{diag}(\sigma_{1},\ldots,\sigma_{r}),\quad\Sigma_{2}=\begin{bmatrix}\operatorname{diag}(\sigma_{r+1},\ldots,\sigma_{m_{2}})\\ 0_{(m_{1}-m_{2})\times(m_{2}-r)}\end{bmatrix}, (2.12b)
σ1σ2σm20.\displaystyle\sigma_{1}\geq\sigma_{2}\geq\cdots\geq\sigma_{m_{2}}\geq 0. (2.12c)

Only σi\sigma_{i} for 1in1\leq i\leq n are positive and the rest are 0. Those σi\sigma_{i} for 1in1\leq i\leq n are the so-called Hankel singular values of the system, and they are invariant with respect to different ways of decomposing PP and QQ in (2.10) with (2.11), and, in fact, they are the square roots of the eigenvalues of PQPQ, which are real and positive. To see this, we note {σi2}\{\sigma_{i}^{2}\} are the eigenvalues of (STR)T(STR)=RTSSTR=RTPR(S^{\operatorname{T}}R)^{\operatorname{T}}(S^{\operatorname{T}}R)=R^{\operatorname{T}}SS^{\operatorname{T}}R=R^{\operatorname{T}}PR whose nonzero eigenvalues are the same as those of PRRT=PQPRR^{\operatorname{T}}=PQ.

Define

T=(Σ(1:n,1:n))1/2V(:,1:n)TRT.T=(\Sigma_{(1:n,1:n)})^{-1/2}V_{(:,1:n)}^{\operatorname{T}}R^{\operatorname{T}}. (2.13)

It can be verified that T1=SU(:,1:n)(Σ(1:n,1:n))1/2T^{-1}=SU_{(:,1:n)}(\Sigma_{(1:n,1:n)})^{-1/2} because

[(Σ(1:n,1:n))1/2V(:,1:n)TRT]\displaystyle\big{[}(\Sigma_{(1:n,1:n)})^{-1/2}V_{(:,1:n)}^{\operatorname{T}}R^{\operatorname{T}}\big{]} [SU(:,1:n)(Σ(1:n,1:n))1/2]\displaystyle\big{[}SU_{(:,1:n)}(\Sigma_{(1:n,1:n)})^{-1/2}\big{]}
=(Σ(1:n,1:n))1/2V(:,1:n)T(RTS)U(:,1:n)(Σ(1:n,1:n))1/2\displaystyle=(\Sigma_{(1:n,1:n)})^{-1/2}V_{(:,1:n)}^{\operatorname{T}}(R^{\operatorname{T}}S)U_{(:,1:n)}(\Sigma_{(1:n,1:n)})^{-1/2}
=(Σ(1:n,1:n))1/2V(:,1:n)T(VΣUT)U(:,1:n)(Σ(1:n,1:n))1/2\displaystyle=(\Sigma_{(1:n,1:n)})^{-1/2}V_{(:,1:n)}^{\operatorname{T}}(V\Sigma U^{\operatorname{T}})U_{(:,1:n)}(\Sigma_{(1:n,1:n)})^{-1/2}
=(Σ(1:n,1:n))1/2Σ(1:n,1:n)(Σ(1:n,1:n))1/2\displaystyle=(\Sigma_{(1:n,1:n)})^{-1/2}\Sigma_{(1:n,1:n)}(\Sigma_{(1:n,1:n)})^{-1/2}
=In.\displaystyle=I_{n}.

With TT and T1T^{-1}, we define A^\widehat{A}, B^\widehat{B}, and C^\widehat{C} according to (2.4c), and, as a result, the transformed system (2.4). In turn, we have A=T1A^TA=T^{-1}\widehat{A}T, B=T1B^B=T^{-1}\widehat{B}, and C=TTC^C=T^{\operatorname{T}}\widehat{C}. Plug these relations into (2.9) to get, after simple re-arrangements,

A^(TPTT)+(TPT1)A^T\displaystyle\widehat{A}(TPT^{\operatorname{T}})+(TPT^{-1})\widehat{A}^{\operatorname{T}} +B^B^T=0,\displaystyle+\widehat{B}\widehat{B}^{\operatorname{T}}=0, (2.14a)
A^T(TTQT1)+(TTQT1)A^\displaystyle\widehat{A}^{\operatorname{T}}(T^{-\operatorname{T}}QT^{-1})+(T^{-\operatorname{T}}QT^{-1})\widehat{A} +C^C^T=0,\displaystyle+\widehat{C}\widehat{C}^{\operatorname{T}}=0, (2.14b)

which are precisely the Lyapunov equations for the Gramians

P^=TPTT,Q^=TTQT1,\widehat{P}=TPT^{\operatorname{T}},\quad\widehat{Q}=T^{-\operatorname{T}}QT^{-1}, (2.15)

of the transformed system (2.4). With the help of (2.10), (2.12) and (2.13), it is not hard to verify that

P^=Q^=Σ(1:n,1:n),\widehat{P}=\widehat{Q}=\Sigma_{(1:n,1:n)},

balancing out the Gramians.

Given integer 1rn1\leq r\leq n (usually rnr\ll n), according to the partitions of UU, Σ\Sigma, and VV in (2.12), we write

T1\displaystyle T^{-1} =[SU1Σ11/2,SU2(Σ2)(1:nr,1:nr)1/2]=:[X1,X2],\displaystyle=\Big{[}SU_{1}\Sigma_{1}^{-1/2},SU_{2}(\Sigma_{2})_{(1:n-r,1:n-r)}^{-1/2}\Big{]}=:[X_{1},X_{2}], (2.16a)
T\displaystyle T =[Σ11/2V1TRT(Σ2)(1:nr,1:nr)1/2V2TRT]=:[Y1TY2T],\displaystyle=\begin{bmatrix}\Sigma_{1}^{-1/2}V_{1}^{\operatorname{T}}R^{\operatorname{T}}\\ (\Sigma_{2})_{(1:n-r,1:n-r)}^{-1/2}V_{2}^{\operatorname{T}}R^{\operatorname{T}}\end{bmatrix}=:\begin{bmatrix}Y_{1}^{\operatorname{T}}\\ Y_{2}^{\operatorname{T}}\end{bmatrix}, (2.16b)

leading to the reduced system (2.6) in form but with newly defined X1,Y1n×rX_{1},\,Y_{1}\in\mathbb{R}^{n\times r} by (2.16). In the rest of this section, we will adopt the notations in Section 2.1 but with X1,Y1X_{1},\,Y_{1} given by (2.16).

Balanced truncation as stated is a very expensive procedure that generates (2.6) computationally. The computations of PP and QQ fully costs O(n3)O(n^{3}) each, by, e.g., the Bartels-Stewart algorithm [7], decompositions P=SSTP=SS^{\operatorname{T}} and Q=RRTQ=RR^{\operatorname{T}} costs O(n3)O(n^{3}) each, and so does computing SVD of STRS^{\operatorname{T}}R, not to mention O(n2)O(n^{2}) storage requirements. However, it is a well-understood method in that the associated reduced system (1.2) inherits most important system properties of the original system: being stable, observable and controllable, and also there is a global error bound that guarantees the overall quality of the reduced system.

In terms of Gramians, the {\cal H}_{\infty}- and 2{\cal H}_{2}-norms of H()H(\cdot) previously defined in (2.1) are given by (e.g., [2, Section 5.4.2])

H()\displaystyle\|H(\cdot)\|_{{\cal H}_{\infty}} =λmax(PQ)=σ1,\displaystyle=\sqrt{\lambda_{\max}(PQ)}=\sigma_{1},
H()2\displaystyle\|H(\cdot)\|_{{\cal H}_{2}} =tr(BTQB)=tr(CTPC),\displaystyle=\sqrt{\operatorname{tr}(B^{\operatorname{T}}QB)}=\sqrt{\operatorname{tr}(C^{\operatorname{T}}PC)},

where σ1\sigma_{1} is the largest Hankel singular value in (2.12c). We remark that the transformations on PP and QQ as in (2.15) for any nonsingular TT, not necessarily the one in (2.13), preserve eigenvalues of PQPQ because

P^Q^=(TPTT)(TTQT1)=T(PQ)T1.\widehat{P}\widehat{Q}=(TPT^{\operatorname{T}})(T^{-\operatorname{T}}QT^{-1})=T(PQ)T^{-1}.

For the ease of future reference, we will denote by Hbt(s)H_{\operatorname{bt}}(s):

Hbt(s):=C^1T(sIrA^11)1B^1,H_{\operatorname{bt}}(s):=\widehat{C}_{1}^{\operatorname{T}}(sI_{r}-\widehat{A}_{11})^{-1}\widehat{B}_{1}, (2.17)

the transfer function of the reduced system (2.6) with X1,Y1n×rX_{1},\,Y_{1}\in\mathbb{R}^{n\times r} as in (2.16) by the balanced truncation.

The next theorem is well-known; see, e.g., [2, Theorem 7.9], [25, Theorem 8.16].

Theorem 2.2 ([2, 25]).

For X1X_{1} and Y1Y_{1} from the balanced truncation as in (2.16), we have

σr+1H()Hbt()2j=r+1nσj,\sigma_{r+1}\leq\|H(\cdot)-H_{\operatorname{bt}}(\cdot)\|_{{\cal H}_{\infty}}\leq 2\sum_{j=r+1}^{n}\sigma_{j}, (2.18)

where σ1σ2σn\sigma_{1}\geq\sigma_{2}\geq\cdots\geq\sigma_{n} are the Hankel singular values of the system, i.e., the first nn singular values of STRS^{\operatorname{T}}R.

Remark 2.1.

The left inequality in (2.18) actually holds for any reduced system of order rr, not necessarily from balanced truncation. In fact, it is known that (see e.g., [2, Proposition 8.3] and [25, Lemma 8.5])

σr+1H()Hrd(),\sigma_{r+1}\leq\|H(\cdot)-H_{\operatorname{rd}}(\cdot)\|_{{\cal H}_{\infty}},

where Hrd(s)H_{\operatorname{rd}}(s) is the transfer function (2.6) of reduced system (2.6) by any X1,Y1n×rX_{1},\,Y_{1}\in\mathbb{R}^{n\times r} such that Y1TX1=IrY_{1}^{\operatorname{T}}X_{1}=I_{r}.

One thing that is not clear yet and hasn’t been drawn much attention in the literature is whether the reduced system by the balanced truncation of order rr varies with the decompositions P=SSTP=SS^{\operatorname{T}} and Q=RRTQ=RR^{\operatorname{T}} which are not unique, including SS and RR that may not necessarily be square. This turns out to be an easy question to answer.

Theorem 2.3.

If σr>σr+1\sigma_{r}>\sigma_{r+1}, then the transfer function of the reduced system (2.6) by the balanced truncation of order rr is unique, regardless of any variations in the decompositions in (2.10).

Proof.

We will show that the projection matrices X1X_{1} and Y1Y_{1} defined in (2.16) are invariant with respect to any choices of decompositions for PP and QQ of the said kind. Suppose we have two different decompositions for each one of PP and QQ

P\displaystyle P =SST=SˇSˇTwithSn×n,Sˇn×nˇ1,\displaystyle=SS^{\operatorname{T}}=\check{S}\check{S}^{\operatorname{T}}\quad\mbox{with}\,\,S\in\mathbb{R}^{n\times n},\,\check{S}\in\mathbb{R}^{n\times\check{n}_{1}},
Q\displaystyle Q =RRT=RˇRˇTwithRn×n,Rˇn×nˇ2.\displaystyle=RR^{\operatorname{T}}=\check{R}\check{R}^{\operatorname{T}}\quad\mbox{with}\,\,R\in\mathbb{R}^{n\times n},\,\check{R}\in\mathbb{R}^{n\times\check{n}_{2}}.

The idea is to show that after fixing one pair of decompositions P=SSTP=SS^{\operatorname{T}} and Q=RRTQ=RR^{\operatorname{T}}, X1X_{1} and Y1Y_{1} constructed from any other decompositions P=SˇSˇTP=\check{S}\check{S}^{\operatorname{T}} and Q=RˇRˇTQ=\check{R}\check{R}^{\operatorname{T}}, including nonsquare Sˇ\check{S} and Rˇ\check{R}, remain the same. Evidentally nˇ1,nˇ2n\check{n}_{1},\,\check{n}_{2}\geq n.

Without loss of generality, we may assume nˇ1nˇ2\check{n}_{1}\geq\check{n}_{2}; otherwise we can append some columns of 0 to Sˇ\check{S} from the right.

Since (P)=(S)=(Sˇ){\cal R}(P)={\cal R}(S)={\cal R}(\check{S}) and (Q)=(R)=(Rˇ){\cal R}(Q)={\cal R}(R)={\cal R}(\check{R}), there exist Wnˇ1×nW\in\mathbb{R}^{\check{n}_{1}\times n} and Znˇ2×nZ\in\mathbb{R}^{\check{n}_{2}\times n} such that

Sˇ=SW,Rˇ=RZ.\check{S}=SW,\quad\check{R}=RZ.

It can be verified that WWT=InWW^{\operatorname{T}}=I_{n} and ZZT=InZZ^{\operatorname{T}}=I_{n}, i.e., both Wn×nˇ1W\in\mathbb{R}^{n\times\check{n}_{1}} and Zn×nˇ2Z\in\mathbb{R}^{n\times\check{n}_{2}} have orthonormal rows. Suppose we already have the SVD of STRS^{\operatorname{T}}R as in (2.12) with m1=m2=nm_{1}=m_{2}=n. Both WTUnˇ1×nW^{\operatorname{T}}U\in\mathbb{R}^{\check{n}_{1}\times n} and ZTVnˇ1×nZ^{\operatorname{T}}V\in\mathbb{R}^{\check{n}_{1}\times n} have orthonormal columns. There exist Uˇ3nˇ1×(nˇ1n)\check{U}_{3}\in\mathbb{R}^{\check{n}_{1}\times(\check{n}_{1}-n)} and Vˇ3nˇ2×(nˇ2n)\check{V}_{3}\in\mathbb{R}^{\check{n}_{2}\times(\check{n}_{2}-n)} such that

[WTU,Uˇ3]nˇ1×nˇ1and[ZTV,Vˇ3]nˇ1×nˇ1[W^{\operatorname{T}}U,\check{U}_{3}]\in\mathbb{R}^{\check{n}_{1}\times\check{n}_{1}}\quad\mbox{and}\quad[Z^{\operatorname{T}}V,\check{V}_{3}]\in\mathbb{R}^{\check{n}_{1}\times\check{n}_{1}}

are orthogonal matrices. We have

SˇTRˇ=WTSTRZ\displaystyle\check{S}^{\operatorname{T}}\check{R}=W^{\operatorname{T}}S^{\operatorname{T}}RZ =WT[U1,U2][Σ1Σ2][V1TV2T]Z\displaystyle=W^{\operatorname{T}}[U_{1},U_{2}]\begin{bmatrix}\Sigma_{1}&\\ &\Sigma_{2}\end{bmatrix}\begin{bmatrix}V_{1}^{\operatorname{T}}\\ V_{2}^{\operatorname{T}}\end{bmatrix}Z
=[WTU1,WTU2,Uˇ3][Σ1Σ20(nˇ1n)×(nˇ2n)][(ZTV1)T(ZTV2)TVˇ3T],\displaystyle=[W^{\operatorname{T}}U_{1},W^{\operatorname{T}}U_{2},\check{U}_{3}]\begin{bmatrix}\Sigma_{1}&&\\ &\Sigma_{2}&\\ &&0_{(\check{n}_{1}-n)\times(\check{n}_{2}-n)}\end{bmatrix}\begin{bmatrix}(Z^{\operatorname{T}}V_{1})^{\operatorname{T}}\\ (Z^{\operatorname{T}}V_{2})^{\operatorname{T}}\\ \check{V}_{3}^{\operatorname{T}}\end{bmatrix},

yielding an SVD of SˇTRˇ\check{S}^{\operatorname{T}}\check{R}, for which the corresponding projection matrices from P=SˇSˇTP=\check{S}\check{S}^{\operatorname{T}} and Q=RˇRˇTQ=\check{R}\check{R}^{\operatorname{T}} are given by

Sˇ(WTU1)Σ11/2=SW(WTU1)Σ11/2=SU1Σ11/2\check{S}(W^{\operatorname{T}}U_{1})\Sigma_{1}^{-1/2}=SW(W^{\operatorname{T}}U_{1})\Sigma_{1}^{-1/2}=SU_{1}\Sigma_{1}^{-1/2}

and, similarly, Rˇ(ZTV1)Σ11/2=RV1Σ11/2\check{R}(Z^{\operatorname{T}}V_{1})\Sigma_{1}^{-1/2}=RV_{1}\Sigma_{1}^{-1/2}, yielding the same projection matrices as X1X_{1} and Y1Y_{1} in (2.16) from P=SSTP=SS^{\operatorname{T}} and Q=RRTQ=RR^{\operatorname{T}}, which in turn leads to the same reduced system (2.6) and hence the same transfer function. Now let

SˇTRˇ=[Uˇ1,Uˇ2,Uˇ3][Σ1Σ20(nˇ1n)×(nˇ2n)][Vˇ1TVˇ2TVˇ3T]\check{S}^{\operatorname{T}}\check{R}=[\check{U}_{1},\check{U}_{2},\check{U}_{3}]\begin{bmatrix}\Sigma_{1}&&\\ &\Sigma_{2}&\\ &&0_{(\check{n}_{1}-n)\times(\check{n}_{2}-n)}\end{bmatrix}\begin{bmatrix}\check{V}_{1}^{\operatorname{T}}\\ \check{V}_{2}^{\operatorname{T}}\\ \check{V}_{3}^{\operatorname{T}}\end{bmatrix}

be another SVD of SˇTRˇ\check{S}^{\operatorname{T}}\check{R} subject to the inherent freedom in SVD, where Uˇ1nˇ1×r\check{U}_{1}\in\mathbb{R}^{\check{n}_{1}\times r} and Vˇ1nˇ2×r\check{V}_{1}\in\mathbb{R}^{\check{n}_{2}\times r}. Since σr>σr+1\sigma_{r}>\sigma_{r+1}, by the uniqueness of singular subspaces, we know (Uˇ1)=(WTU1){\cal R}(\check{U}_{1})={\cal R}(W^{\operatorname{T}}U_{1}) and (Vˇ1)=(ZTV1){\cal R}(\check{V}_{1})={\cal R}(Z^{\operatorname{T}}V_{1}). Therefore

(SˇUˇ1Σ11/2)=(SˇUˇ1)=(SˇWTU1)=(SˇWTU1Σ11/2)=(SU1Σ11/2),{\cal R}(\check{S}\check{U}_{1}\Sigma_{1}^{-1/2})={\cal R}(\check{S}\check{U}_{1})={\cal R}(\check{S}W^{\operatorname{T}}U_{1})={\cal R}(\check{S}W^{\operatorname{T}}U_{1}\Sigma_{1}^{-1/2})={\cal R}(SU_{1}\Sigma_{1}^{-1/2}),

and similarly, (RˇVˇ1Σ11/2)=(RV1Σ11/2){\cal R}(\check{R}\check{V}_{1}\Sigma_{1}^{-1/2})={\cal R}(RV_{1}\Sigma_{1}^{-1/2}), implying the same transfer function regardless of whether the reduced system is obtained by the projection matrix pair (X1,Y1)(X_{1},Y_{1}) or by the pair (SˇUˇ1Σ11/2,RˇVˇ1Σ11/2)(\check{S}\check{U}_{1}\Sigma_{1}^{-1/2},\check{R}\check{V}_{1}\Sigma_{1}^{-1/2}) by Theorem 2.1. ∎

2.3 A variant of balanced truncation

A distinguished feature of the transformation TT in (2.16) is that it makes the transformed system (2.4) balanced, i.e., both controllability and observability Gramians are the same and diagonal, and so the reduced system (2.6) is balanced, too. But as far as just the transfer function of the reduced system is concerned, there is no need to have X1X_{1} and Y1Y_{1} precisely the same as the ones in (2.16) because of Theorem 2.1. In fact, all that we need is to make sure (X1)=(SU1){\cal R}(X_{1})={\cal R}(SU_{1}) and (Y1)=(RV1){\cal R}(Y_{1})={\cal R}(RV_{1}), besides Y1TX1=IrY_{1}^{\operatorname{T}}X_{1}=I_{r}. Specifically, we have by Theorem 2.1

Corollary 2.1.

Let Xˇ1,Yˇ1n×r\check{X}_{1},\,\check{Y}_{1}\in\mathbb{R}^{n\times r} such that

(Xˇ1)=(SU1),(Yˇ1)=(RV1),Yˇ1TXˇ1=Ir.{\cal R}(\check{X}_{1})={\cal R}(SU_{1}),\,\,{\cal R}(\check{Y}_{1})={\cal R}(RV_{1}),\,\,\check{Y}_{1}^{\operatorname{T}}\check{X}_{1}=I_{r}. (2.19)

Then Hbt(s)(Xˇ1TC)T(sIrYˇ1TAXˇ1)1(Yˇ1TB)H_{\operatorname{bt}}(s)\equiv\big{(}\check{X}_{1}^{\operatorname{T}}C\big{)}^{\operatorname{T}}\big{(}sI_{r}-\check{Y}_{1}^{\operatorname{T}}A\check{X}_{1}\big{)}^{-1}\big{(}\check{Y}_{1}^{\operatorname{T}}B\big{)}, i.e., the reduced system (2.6) with (2.5) obtained by replacing X1,Y1X_{1},\,Y_{1} from (2.16) with Xˇ1,Yˇ1\check{X}_{1},\,\check{Y}_{1} satisfying Yˇ1TXˇ1=Ir\check{Y}_{1}^{\operatorname{T}}\check{X}_{1}=I_{r} has the same transfer function as the one from the true balanced truncation.

X1,Y1n×rX_{1},\,Y_{1}\in\mathbb{R}^{n\times r} defined by (2.16) for balanced truncation are difficult to work with in analyzing the quality of balanced truncation. Luckily, the use of transfer function for analysis allows us to focus on the subspaces (X1){\cal R}(X_{1}) and (Y1){\cal R}(Y_{1}). Later, instead of the concrete forms of X1X_{1} and Y1Y_{1} in (2.16), we will work with the reduced system (2.6) with

X1=SU1,Y1=RV1Σ11.X_{1}=SU_{1},\,\,Y_{1}=RV_{1}\Sigma_{1}^{-1}. (2.20)

It is not hard to verify that (X1)=(SU1){\cal R}(X_{1})={\cal R}(SU_{1}), (Y1)=(RV1){\cal R}(Y_{1})={\cal R}(RV_{1}), and Y1TX1=IrY_{1}^{\operatorname{T}}X_{1}=I_{r}. Effectively, in the notations of Section 2.2 up to SVD (2.12), this relates to transform the original system (1.1) to (2.4) with

T1=[SU1,SU2],T=[Σ11V1TRT(Σ2)(1:nr,1:nr)1V2TRT].T^{-1}=\Big{[}SU_{1},SU_{2}\Big{]},\quad T=\begin{bmatrix}\Sigma_{1}^{-1}V_{1}^{\operatorname{T}}R^{\operatorname{T}}\\ (\Sigma_{2})_{(1:n-r,1:n-r)}^{-1}V_{2}^{\operatorname{T}}R^{\operatorname{T}}\end{bmatrix}. (2.21)

Accordingly, the Gramians for the reduced system, by (2.15), are

P^=TPTT=In,Q^=TTQT1=Σ(1:n,1:n)2,\widehat{P}=TPT^{\operatorname{T}}=I_{n},\quad\widehat{Q}=T^{-\operatorname{T}}QT^{-1}=\Sigma_{(1:n,1:n)}^{2}, (2.22)

which are not balanced, but the reduced system has the same transfer function as by the balanced truncation with (2.16) nonetheless.

3 Approximate balanced truncation

When nn is large, balanced truncation as stated is a very expensive procedure both computationally and in storage usage. Fortunately, PP and QQ are usually numerically low-rank [8, 20, 6, 21, 4], which means, PP and QQ can be very well approximated by P~=S~S~T\widetilde{P}=\widetilde{S}\widetilde{S}^{\operatorname{T}} and Q~=R~R~T\widetilde{Q}=\widetilde{R}\widetilde{R}^{\operatorname{T}}, respectively, where S~n×r~1\widetilde{S}\in\mathbb{R}^{n\times\widetilde{r}_{1}} and R~n×r~2\widetilde{R}\in\mathbb{R}^{n\times\widetilde{r}_{2}} with r~1,r~2n\widetilde{r}_{1},\,\widetilde{r}_{2}\ll n. Naturally, we will use S~\widetilde{S} and R~\widetilde{R} to play the roles of SS and RR in Section 2.2. Specifically, a model order reduction by approximate balanced truncation goes as follows.

  1. 1.

    compute some low-rank approximations to PP and QQ in the product form

    PP~=S~S~T,QQ~=R~R~T,P\approx\widetilde{P}=\widetilde{S}\widetilde{S}^{\operatorname{T}},\quad Q\approx\widetilde{Q}=\widetilde{R}\widetilde{R}^{\operatorname{T}}, (3.1)

    where S~n×r~1\widetilde{S}\in\mathbb{R}^{n\times\widetilde{r}_{1}} and R~n×r~2\widetilde{R}\in\mathbb{R}^{n\times\widetilde{r}_{2}}. Without loss of generality, assume r~1r~2\widetilde{r}_{1}\geq\widetilde{r}_{2}, for our presentation.

  2. 2.

    compute SVD

    S~TR~= [ \@arstrutr~r1-r\\~U1~U2] × [ \@arstrutr~r2-r\\r~Σ1\\~r1-r~Σ2] × [\@arstrut\\r~V1T\\~r2-r~V2T] ,\widetilde{S}^{\operatorname{T}}\widetilde{R}=\hbox{}\vbox{\kern 0.86108pt\hbox{$\kern 0.0pt\kern 2.5pt\kern-5.0pt\left[\kern 0.0pt\kern-2.5pt\kern-5.55557pt\vbox{\kern-0.86108pt\vbox{\vbox{ \halign{\kern\arraycolsep\hfil\@arstrut$\kbcolstyle#$\hfil\kern\arraycolsep& \kern\arraycolsep\hfil$\@kbrowstyle#$\ifkbalignright\relax\else\hfil\fi\kern\arraycolsep&& \kern\arraycolsep\hfil$\@kbrowstyle#$\ifkbalignright\relax\else\hfil\fi\kern\arraycolsep\cr 5.0pt\hfil\@arstrut$\scriptstyle$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle\scriptstyle r$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle\scriptstyle\widetilde{r}_{1}-r\\$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle\widetilde{U}_{1}$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle\widetilde{U}_{2}$\hfil\kern 5.0pt\crcr}}}}\right]$}}\times\hbox{}\vbox{\kern 0.86108pt\hbox{$\kern 0.0pt\kern 2.5pt\kern-5.0pt\left[\kern 0.0pt\kern-2.5pt\kern-5.55557pt\vbox{\kern-0.86108pt\vbox{\vbox{ \halign{\kern\arraycolsep\hfil\@arstrut$\kbcolstyle#$\hfil\kern\arraycolsep& \kern\arraycolsep\hfil$\@kbrowstyle#$\ifkbalignright\relax\else\hfil\fi\kern\arraycolsep&& \kern\arraycolsep\hfil$\@kbrowstyle#$\ifkbalignright\relax\else\hfil\fi\kern\arraycolsep\cr 5.0pt\hfil\@arstrut$\scriptstyle$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle\scriptstyle r$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle\scriptstyle\widetilde{r}_{2}-r\\\scriptstyle r$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle\widetilde{\Sigma}_{1}$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle\\\scriptstyle\widetilde{r}_{1}-r$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle\widetilde{\Sigma}_{2}$\hfil\kern 5.0pt\crcr}}}}\right]$}}\times\hbox{}\vbox{\kern 0.86108pt\hbox{$\kern 0.0pt\kern 2.5pt\kern-5.0pt\left[\kern 0.0pt\kern-2.5pt\kern-5.55557pt\vbox{\kern-0.86108pt\vbox{\vbox{ \halign{\kern\arraycolsep\hfil\@arstrut$\kbcolstyle#$\hfil\kern\arraycolsep& \kern\arraycolsep\hfil$\@kbrowstyle#$\ifkbalignright\relax\else\hfil\fi\kern\arraycolsep&& \kern\arraycolsep\hfil$\@kbrowstyle#$\ifkbalignright\relax\else\hfil\fi\kern\arraycolsep\cr 5.0pt\hfil\@arstrut$\scriptstyle$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle\\\scriptstyle r$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle\widetilde{V}_{1}^{\operatorname{T}}\\\scriptstyle\widetilde{r}_{2}-r$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle\widetilde{V}_{2}^{\operatorname{T}}$\hfil\kern 5.0pt\crcr}}}}\right]$}},

    where Σ~1=diag(σ~1,σ~2,,σ~r)\widetilde{\Sigma}_{1}=\operatorname{diag}(\widetilde{\sigma}_{1},\widetilde{\sigma}_{2},\ldots,\widetilde{\sigma}_{r}), and Σ~2=[diag(σ~r+1,σ~2,,σ~r~2)0(r~1r~2)×(r~2r)]\widetilde{\Sigma}_{2}=\begin{bmatrix}\operatorname{diag}(\widetilde{\sigma}_{r+1},\widetilde{\sigma}_{2},\ldots,\widetilde{\sigma}_{\widetilde{r}_{2}})\\ 0_{(\widetilde{r}_{1}-\widetilde{r}_{2})\times(\widetilde{r}_{2}-r)}\\ \end{bmatrix} with these σ~i\widetilde{\sigma}_{i} arranged in the decreasing order, as in (2.12c) for σi\sigma_{i}.

  3. 3.

    finally, AA, BB, and CC are reduced to

    A~11:=Y~1TAX~1,B~1:=Y~1TB,C~1:=X~1TC,\widetilde{A}_{11}:=\widetilde{Y}_{1}^{\operatorname{T}}A\widetilde{X}_{1},\quad\widetilde{B}_{1}:=\widetilde{Y}_{1}^{\operatorname{T}}B,\quad\widetilde{C}_{1}:=\widetilde{X}_{1}^{\operatorname{T}}C, (3.2)

    where

    X~1=S~U~1Σ~11/2,Y~1=R~V~1Σ~11/2.\widetilde{X}_{1}=\widetilde{S}\widetilde{U}_{1}\widetilde{\Sigma}_{1}^{-1/2},\quad\widetilde{Y}_{1}=\widetilde{R}\widetilde{V}_{1}\widetilde{\Sigma}_{1}^{-1/2}. (3.3)

It can be verified that Y~TX~=Ir\widetilde{Y}^{\operatorname{T}}\widetilde{X}=I_{r}. Accordingly, we will have a reduced system

𝒙~r(t)\displaystyle\widetilde{\boldsymbol{x}}_{r}^{\prime}(t) =A~11𝒙~r(t)+B~1𝒖(t),given 𝒙~r(0)=Y~T𝒙0,\displaystyle=\widetilde{A}_{11}\,\widetilde{\boldsymbol{x}}_{r}(t)+\widetilde{B}_{1}\,\boldsymbol{u}(t),\quad\mbox{given $\widetilde{\boldsymbol{x}}_{r}(0)=\widetilde{Y}^{\operatorname{T}}\boldsymbol{x}_{0}$}, (3.4a)
𝒚~(t)\displaystyle\widetilde{\boldsymbol{y}}(t) =C~1T𝒙~r(t),\displaystyle=\widetilde{C}_{1}^{\operatorname{T}}\,\widetilde{\boldsymbol{x}}_{r}(t), (3.4b)

which will not be quite the same as (1.2) with X1X_{1} and Y1Y_{1} in (2.16) from the (exact) balanced truncation. The transfer function of (3.4) is

H~bt(s)=C~1T(sIA~11)1B~1,s.\widetilde{H}_{\operatorname{bt}}(s)=\widetilde{C}_{1}^{\operatorname{T}}(sI-\widetilde{A}_{11})^{-1}\widetilde{B}_{1},\quad s\in\mathbb{C}. (3.5)

One lingering question that has not been addressed in the literature is how good reduced system (3.4) is, compared to the true reduced system of balanced truncation. The seemingly convincing argument that if P~=S~S~T\widetilde{P}=\widetilde{S}\widetilde{S}^{\operatorname{T}} and Q~=R~R~T\widetilde{Q}=\widetilde{R}\widetilde{R}^{\operatorname{T}} are sufficiently accurate then S~TR~\widetilde{S}^{\operatorname{T}}\widetilde{R} should approximate STRS^{\operatorname{T}}R well could be doubtful because usually r~1,r~2n\widetilde{r}_{1},\,\widetilde{r}_{2}\ll n. A different argument may say otherwise. In order for P~=S~S~T\widetilde{P}=\widetilde{S}\widetilde{S}^{\operatorname{T}} and Q~=R~R~T\widetilde{Q}=\widetilde{R}\widetilde{R}^{\operatorname{T}} to approximate PP and QQ well, respectively, both S~\widetilde{S} and R~\widetilde{R} must approximate the dominant components of the factors SS and RR of PP and QQ well. The problem is r~1,r~2n\widetilde{r}_{1},\,\widetilde{r}_{2}\ll n here while it is possible that the dominant components of SS and RR could mismatch in forming STRS^{\operatorname{T}}R, i.e., in the unlucky scenario, the dominant components of SS match the least dominant components of RR in forming STRS^{\operatorname{T}}R and simply extracting out the dominant components of SS and RR is not enough. Hence it becomes critically important to provide theoretical analysis that shows the quality of approximate balanced truncation derived from P~=S~S~T\widetilde{P}=\widetilde{S}\widetilde{S}^{\operatorname{T}} and Q~=R~R~T\widetilde{Q}=\widetilde{R}\widetilde{R}^{\operatorname{T}}, assuming PP~\|P-\widetilde{P}\| and QQ~\|Q-\widetilde{Q}\| are tiny.

By the same reasoning as we argue in Subsection 2.2, the transfer function H~bt()\widetilde{H}_{\operatorname{bt}}(\cdot) stays the same for any X~1,Y~1n×r\widetilde{X}_{1},\,\widetilde{Y}_{1}\in\mathbb{R}^{n\times r} that satisfy

(X~1)=(S~U~1),(Y~1)=(R~V~1)such thatY~TX~=Ir,{\cal R}(\widetilde{X}_{1})={\cal R}(\widetilde{S}\widetilde{U}_{1}),\quad{\cal R}(\widetilde{Y}_{1})={\cal R}(\widetilde{R}\widetilde{V}_{1})\quad\mbox{such that}\quad\widetilde{Y}^{\operatorname{T}}\widetilde{X}=I_{r}, (3.6)

and the pair (X~1,Y~1)(\widetilde{X}_{1},\widetilde{Y}_{1}) in (3.3) is just one of many concrete pairs that satisfy (3.6). Again X~1\widetilde{X}_{1} and Y~1\widetilde{Y}_{1} in (3.3) for approximate balanced truncation are difficult to work with in our later analysis. Luckily, we can again focus on the subspaces (X~1){\cal R}(\widetilde{X}_{1}) and (Y~1){\cal R}(\widetilde{Y}_{1}) because of Theorem 2.1. Precisely what X~1,Y~1n×r\widetilde{X}_{1},\,\widetilde{Y}_{1}\in\mathbb{R}^{n\times r} to use will be specified later in Section 4 so that they will be close to X1X_{1} and Y1Y_{1} in (2.20), respectively.

We reiterate our notations for the reduced models going forward.

  • (A^11,B^1,C^1)(\widehat{A}_{11},\widehat{B}_{1},\widehat{C}_{1}) stands for the matrices for the reduced model (2.6) by balanced truncation with X1X_{1} and Y1Y_{1} in (2.20). It is different from the one in the literature we introduced earlier with X1X_{1} and Y1Y_{1} in (2.16), but both share the same transfer function denoted by Hbt()H_{\operatorname{bt}}(\cdot).

  • (A~11,B~1,C~1)(\widetilde{A}_{11},\widetilde{B}_{1},\widetilde{C}_{1}) stands for the matrices for the reduced model (3.4) by approximate balanced truncation with X~1\widetilde{X}_{1} and Y~1\widetilde{Y}_{1} specified later in (4.21). It is different from the one in the literature we introduced earlier with X~1\widetilde{X}_{1} and Y~1\widetilde{Y}_{1} in (3.3), but both share the same transfer function denoted by H~bt()\widetilde{H}_{\operatorname{bt}}(\cdot).

In the rest of this paper, assuming PP~2,QQ~2ϵ\big{\|}P-\widetilde{P}\big{\|}_{2},\,\big{\|}Q-\widetilde{Q}\big{\|}_{2}\leq\epsilon, we will

  1. (i)

    bound A^11A~11\widehat{A}_{11}-\widetilde{A}_{11}, B^1B~1\widehat{B}_{1}-\widetilde{B}_{1}, C^1C~1\widehat{C}_{1}-\widetilde{C}_{1} in terms of ϵ\epsilon, where A^11\widehat{A}_{11}, B^1\widehat{B}_{1}, and C^1\widehat{C}_{1} are from exact balanced truncation as in (2.5) with X1,Y1X_{1},\,Y_{1} given by (2.20), while A~11\widetilde{A}_{11}, B~1\widetilde{B}_{1}, and C~1\widetilde{C}_{1} are from the approximate balanced truncation as in (3.2) with X~1,Y~1n×r\widetilde{X}_{1},\,\widetilde{Y}_{1}\in\mathbb{R}^{n\times r} to be specified;

  2. (ii)

    bound Hbt()H~bt()\big{\|}H_{\operatorname{bt}}(\cdot)-\widetilde{H}_{\operatorname{bt}}(\cdot)\big{\|} and H()H~bt()\big{\|}H(\cdot)-\widetilde{H}_{\operatorname{bt}}(\cdot)\big{\|} in terms of ϵ\epsilon for both \|\cdot\|_{{\cal H}_{\infty}} and 2\|\cdot\|_{{\cal H}_{2}}.

4 Quality of the approximate balanced reduction

The true balanced truncation requires computing the controllability and observability Gramians PP and QQ to the working precision, performing their full-rank decompositions (such as the Cholesky decomposition) and an SVD, each of which costs O(n3)O(n^{3}) flops. It is infeasible for large scale dynamic systems. Luckily, the numbers of columns in BB and CC are usually of O(1)O(1) and PP and QQ numerically have extremely low ranks. In practice, due to the fast decay of the Hankel singular values σi\sigma_{i} [4, 6, 10, 8, 20], and the fact that solving the Lyapunov equations in (2.9) for the full Gramians is too expensive and storing the full Gramians takes too much space, we can only afford to compute low-rank approximations to PP and QQ in the product form as in (3.1) [14, 21, 22]. More than that, P~\widetilde{P} and Q~\widetilde{Q} approach PP and QQ from below, i.e.,

0P~=S~S~TP,0Q~=R~R~TQ,0\preceq\widetilde{P}=\widetilde{S}\widetilde{S}^{\operatorname{T}}\preceq P,~{}~{}0\preceq\widetilde{Q}=\widetilde{R}\widetilde{R}^{\operatorname{T}}\preceq Q, (4.1a)
where S~n×r~1\widetilde{S}\in\mathbb{R}^{n\times\widetilde{r}_{1}} and R~n×r~2\widetilde{R}\in\mathbb{R}^{n\times\widetilde{r}_{2}}. This is what we will assume about P~\widetilde{P} amd Q~\widetilde{Q} in the rest of this paper, besides
PP~2ϵ1,QQ~2ϵ2\|P-\widetilde{P}\|_{2}\leq\epsilon_{1},\quad\|Q-\widetilde{Q}\|_{2}\leq\epsilon_{2} (4.1b)

for some sufficiently tiny ϵ1\epsilon_{1} and ϵ2\epsilon_{2}. Except their existences, exactly what PP, QQ and their full-rank factors SS and RR are not needed in our analysis. Because of (4.1a), we may write

P\displaystyle P =P~+EET=[S~,E][S~,E]T=SST,\displaystyle=\widetilde{P}+EE^{\operatorname{T}}=[\widetilde{S},E][\widetilde{S},E]^{\operatorname{T}}=SS^{\operatorname{T}}, (4.2a)
Q\displaystyle Q =Q~+FFT=[R~,F][R~,F]T=RRT,\displaystyle=\widetilde{Q}+FF^{\operatorname{T}}=[\widetilde{R},F][\widetilde{R},F]^{\operatorname{T}}=RR^{\operatorname{T}}, (4.2b)
where En×p1E\in\mathbb{R}^{n\times p_{1}} and Fn×p2F\in\mathbb{R}^{n\times p_{2}} are unknown, and neither are
S=[S~,E]n×m1,R=[R~,F]n×m2,S=[\widetilde{S},E]\in\mathbb{R}^{n\times m_{1}},\quad R=[\widetilde{R},F]\in\mathbb{R}^{n\times m_{2}}, (4.2c)

m1=r~1+p1m_{1}=\widetilde{r}_{1}+p_{1} and m2=r~2+p2m_{2}=\widetilde{r}_{2}+p_{2}. Without loss of generality, we may assume

m1m2;m_{1}\geq m_{2};

otherwise, we simply append a few columns of 0 to EE. Let

G\displaystyle G :=STR=[S~,E]T[R~,F]= [\@arstrut~r2p2\\~r1~ST~R~STF\\p1ET~RETF] ,\\G~\displaystyle:=S^{\operatorname{T}}R=[\widetilde{S},E]^{\operatorname{T}}[\widetilde{R},F]=\hbox{}\vbox{\kern 0.86108pt\hbox{$\kern 0.0pt\kern 2.5pt\kern-5.0pt\left[\kern 0.0pt\kern-2.5pt\kern-5.55557pt\vbox{\kern-0.86108pt\vbox{\vbox{ \halign{\kern\arraycolsep\hfil\@arstrut$\kbcolstyle#$\hfil\kern\arraycolsep& \kern\arraycolsep\hfil$\@kbrowstyle#$\ifkbalignright\relax\else\hfil\fi\kern\arraycolsep&& \kern\arraycolsep\hfil$\@kbrowstyle#$\ifkbalignright\relax\else\hfil\fi\kern\arraycolsep\cr 5.0pt\hfil\@arstrut$\scriptstyle$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle\scriptstyle\widetilde{r}_{2}$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle\scriptstyle p_{2}\\\scriptstyle\widetilde{r}_{1}$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle\widetilde{S}^{\operatorname{T}}\widetilde{R}$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle\widetilde{S}^{\operatorname{T}}F\\\scriptstyle p_{1}$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle E^{\operatorname{T}}\widetilde{R}$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle E^{\operatorname{T}}F$\hfil\kern 5.0pt\crcr}}}}\right]$}},\\\widetilde{G} := [\@arstrut~r2p2\\~r1~ST~R0\\p100] =G [\@arstrut~r2p2\\~r10~STF\\p1ET~RETF] .\displaystyle:=\hbox{}\vbox{\kern 0.86108pt\hbox{$\kern 0.0pt\kern 2.5pt\kern-5.0pt\left[\kern 0.0pt\kern-2.5pt\kern-5.55557pt\vbox{\kern-0.86108pt\vbox{\vbox{ \halign{\kern\arraycolsep\hfil\@arstrut$\kbcolstyle#$\hfil\kern\arraycolsep& \kern\arraycolsep\hfil$\@kbrowstyle#$\ifkbalignright\relax\else\hfil\fi\kern\arraycolsep&& \kern\arraycolsep\hfil$\@kbrowstyle#$\ifkbalignright\relax\else\hfil\fi\kern\arraycolsep\cr 5.0pt\hfil\@arstrut$\scriptstyle$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle\scriptstyle\widetilde{r}_{2}$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle\scriptstyle p_{2}\\\scriptstyle\widetilde{r}_{1}$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle\widetilde{S}^{\operatorname{T}}\widetilde{R}$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle 0\\\scriptstyle p_{1}$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle 0$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle 0$\hfil\kern 5.0pt\crcr}}}}\right]$}}=G-\hbox{}\vbox{\kern 0.86108pt\hbox{$\kern 0.0pt\kern 2.5pt\kern-5.0pt\left[\kern 0.0pt\kern-2.5pt\kern-5.55557pt\vbox{\kern-0.86108pt\vbox{\vbox{ \halign{\kern\arraycolsep\hfil\@arstrut$\kbcolstyle#$\hfil\kern\arraycolsep& \kern\arraycolsep\hfil$\@kbrowstyle#$\ifkbalignright\relax\else\hfil\fi\kern\arraycolsep&& \kern\arraycolsep\hfil$\@kbrowstyle#$\ifkbalignright\relax\else\hfil\fi\kern\arraycolsep\cr 5.0pt\hfil\@arstrut$\scriptstyle$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle\scriptstyle\widetilde{r}_{2}$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle\scriptstyle p_{2}\\\scriptstyle\widetilde{r}_{1}$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle 0$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle\widetilde{S}^{\operatorname{T}}F\\\scriptstyle p_{1}$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle E^{\operatorname{T}}\widetilde{R}$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle E^{\operatorname{T}}F$\hfil\kern 5.0pt\crcr}}}}\right]$}}. (4.3d)

It is reasonable to require

r~irfor i=1,2,\widetilde{r}_{i}\geq r\quad\mbox{for $i=1,2$},

because we are looking for balanced truncation of order rr. Lemma 4.1 provides some basic inequalities we need in the rest of this paper.

Lemma 4.1.

Suppose that (4.1) holds. Then

S~2=P~2\displaystyle\|\widetilde{S}\|_{2}=\sqrt{\|\widetilde{P}\|_{2}} S2=P2,\displaystyle\leq\|S\|_{2}=\sqrt{\|P\|_{2}}, R~2=Q~2\displaystyle\quad\big{\|}\widetilde{R}\big{\|}_{2}=\sqrt{\|\widetilde{Q}\|_{2}} R2=Q2,\displaystyle\leq\|R\|_{2}=\sqrt{\|Q\|_{2}}, (4.4)
E2\displaystyle\|E\|_{2} ϵ1,\displaystyle\leq\sqrt{\epsilon_{1}}, F2\displaystyle\quad\|F\|_{2} ϵ2,\displaystyle\leq\sqrt{\epsilon_{2}}, (4.5)

and

G~G2\displaystyle\|\widetilde{G}-G\|_{2} =[0S~TFETR~ETF]2\displaystyle=\left\|\begin{bmatrix}0&\widetilde{S}^{\operatorname{T}}F\\ E^{\operatorname{T}}\widetilde{R}&E^{\operatorname{T}}F\end{bmatrix}\right\|_{2}
max{P2ϵ2,Q2ϵ1}+ϵ1ϵ2=:ε.\displaystyle\leq\max\left\{\sqrt{\|P\|_{2}\epsilon_{2}},\sqrt{\|Q\|_{2}\epsilon_{1}}\right\}+\sqrt{\epsilon_{1}\epsilon_{2}}=:\varepsilon. (4.6)
Proof.

We have S~22=S~S~T2=P~2P2=SST2=S22\|\widetilde{S}\|_{2}^{2}=\|\widetilde{S}\widetilde{S}^{\operatorname{T}}\|_{2}=\|\widetilde{P}\|_{2}\leq\|P\|_{2}=\|SS^{\operatorname{T}}\|_{2}=\|S\|_{2}^{2}, proving the first relation in (4.4). It follows from PP~=EETP-\widetilde{P}=EE^{\operatorname{T}} that PP~2=E22\|P-\widetilde{P}\|_{2}=\|E\|_{2}^{2}, yielding the first inequality in (4.5) upon using (4.1). Similarly, we will have the second relation in (4.4) and the second inequality in (4.5).

For (4.6), we have

[0S~TFETR~ETF]2\displaystyle\left\|\begin{bmatrix}0&\widetilde{S}^{\operatorname{T}}F\\ E^{\operatorname{T}}\widetilde{R}&E^{\operatorname{T}}F\end{bmatrix}\right\|_{2} [0S~TFETR~0]2+[000ETF]2\displaystyle\leq\left\|\begin{bmatrix}0&\widetilde{S}^{\operatorname{T}}F\\ E^{\operatorname{T}}\widetilde{R}&0\end{bmatrix}\right\|_{2}+\left\|\begin{bmatrix}0&0\\ 0&E^{\operatorname{T}}F\end{bmatrix}\right\|_{2}
=max{S~TF2,ETR~2}+ETF2\displaystyle=\max\left\{\|\widetilde{S}^{\operatorname{T}}F\|_{2},\|E^{\operatorname{T}}\widetilde{R}\|_{2}\right\}+\|E^{\operatorname{T}}F\|_{2}
max{P2ϵ2,Q2ϵ1}+ϵ1ϵ2,\displaystyle\leq\max\left\{\sqrt{\|P\|_{2}\epsilon_{2}},\sqrt{\|Q\|_{2}\epsilon_{1}}\right\}+\sqrt{\epsilon_{1}\epsilon_{2}},

as was to be shown. ∎

Remark 4.1.

Besides the spectral norm 2\|\cdot\|_{2}, the Frobenius norm is another commonly used matrix norm, too. Naturally, we are wondering if we could have Frobenius-norm versions of (4.1b) and Lemma 4.1. Theoretically, it can be done, but there is one potential problem which is that matrix dimension nn will show up. Here is why:

EF2rank(E)EETF=rank(E)PP~F,\|E\|_{\operatorname{F}}^{2}\leq{\sqrt{\operatorname{rank}(E)}}\,\|EE^{\operatorname{T}}\|_{\operatorname{F}}=\sqrt{\operatorname{rank}(E)}\,\|P-\widetilde{P}\|_{\operatorname{F}},

and this inequality becomes an equality if all singular values of EE are the same. Although rank(E)n\operatorname{rank}(E)\leq n always, potentially rank(E)=n\operatorname{rank}(E)=n, bringing nn into the estimates here and forward. That can be an unfavorable thing to have for huge nn.

4.1 Associated SVDs

Let the SVD of GG in (4.3d) be

G=UΣVT [\@arstrutrm1-r\\U1U2] × [\@arstrutrm2-r\\rΣ1\\m1-rΣ2] × [\@arstrut\\rV1T\\m2-rV2T] ,G=U\Sigma V^{\operatorname{T}}\equiv\hbox{}\vbox{\kern 0.86108pt\hbox{$\kern 0.0pt\kern 2.5pt\kern-5.0pt\left[\kern 0.0pt\kern-2.5pt\kern-5.55557pt\vbox{\kern-0.86108pt\vbox{\vbox{ \halign{\kern\arraycolsep\hfil\@arstrut$\kbcolstyle#$\hfil\kern\arraycolsep& \kern\arraycolsep\hfil$\@kbrowstyle#$\ifkbalignright\relax\else\hfil\fi\kern\arraycolsep&& \kern\arraycolsep\hfil$\@kbrowstyle#$\ifkbalignright\relax\else\hfil\fi\kern\arraycolsep\cr 5.0pt\hfil\@arstrut$\scriptstyle$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle\scriptstyle r$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle\scriptstyle m_{1}-r\\$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle U_{1}$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle U_{2}$\hfil\kern 5.0pt\crcr}}}}\right]$}}\times\hbox{}\vbox{\kern 0.86108pt\hbox{$\kern 0.0pt\kern 2.5pt\kern-5.0pt\left[\kern 0.0pt\kern-2.5pt\kern-5.55557pt\vbox{\kern-0.86108pt\vbox{\vbox{ \halign{\kern\arraycolsep\hfil\@arstrut$\kbcolstyle#$\hfil\kern\arraycolsep& \kern\arraycolsep\hfil$\@kbrowstyle#$\ifkbalignright\relax\else\hfil\fi\kern\arraycolsep&& \kern\arraycolsep\hfil$\@kbrowstyle#$\ifkbalignright\relax\else\hfil\fi\kern\arraycolsep\cr 5.0pt\hfil\@arstrut$\scriptstyle$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle\scriptstyle r$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle\scriptstyle m_{2}-r\\\scriptstyle r$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle\Sigma_{1}$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle\\\scriptstyle m_{1}-r$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle\Sigma_{2}$\hfil\kern 5.0pt\crcr}}}}\right]$}}\times\hbox{}\vbox{\kern 0.86108pt\hbox{$\kern 0.0pt\kern 2.5pt\kern-5.0pt\left[\kern 0.0pt\kern-2.5pt\kern-5.55557pt\vbox{\kern-0.86108pt\vbox{\vbox{ \halign{\kern\arraycolsep\hfil\@arstrut$\kbcolstyle#$\hfil\kern\arraycolsep& \kern\arraycolsep\hfil$\@kbrowstyle#$\ifkbalignright\relax\else\hfil\fi\kern\arraycolsep&& \kern\arraycolsep\hfil$\@kbrowstyle#$\ifkbalignright\relax\else\hfil\fi\kern\arraycolsep\cr 5.0pt\hfil\@arstrut$\scriptstyle$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle\\\scriptstyle r$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle V_{1}^{\operatorname{T}}\\\scriptstyle m_{2}-r$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle V_{2}^{\operatorname{T}}$\hfil\kern 5.0pt\crcr}}}}\right]$}}, (4.7a)
where
Σ1=diag(σ1,,σr),Σ2=[diag(σr+1,,σm2)0(m1m2)×(m2r)],\displaystyle\Sigma_{1}=\operatorname{diag}(\sigma_{1},\ldots,\sigma_{r}),\quad\Sigma_{2}=\begin{bmatrix}\operatorname{diag}(\sigma_{r+1},\ldots,\sigma_{m_{2}})\\ 0_{(m_{1}-m_{2})\times(m_{2}-r)}\end{bmatrix}, (4.7b)
σ1σ2σm2.\displaystyle\sigma_{1}\geq\sigma_{2}\geq\cdots\geq\sigma_{m_{2}}. (4.7c)

Despite of its large size, GG still has only nn nonzero singular values, namely {σi}i=1n\{\sigma_{i}\}_{i=1}^{n}, which are the Hankel singular values of the system, and the rest of its singular values σi=0\sigma_{i}=0 for i=n+1,,m2i=n+1,\ldots,m_{2}.

Lemma 4.2.

Suppose that (4.1a) holds, and let the singular values of G~\widetilde{G} be

σ~1σ~2σ~m2.\widetilde{\sigma}_{1}\geq\widetilde{\sigma}_{2}\geq\cdots\geq\widetilde{\sigma}_{m_{2}}.

Then σ~iσi\widetilde{\sigma}_{i}\leq\sigma_{i} for i=1,2,,m2i=1,2,\ldots,m_{2}. As a corollary, G~2=σ~1σ1\|\widetilde{G}\|_{2}=\widetilde{\sigma}_{1}\leq\sigma_{1}.

Proof.

The nonzero singular values of G~\widetilde{G} are given by those of S~TR~\widetilde{S}^{\operatorname{T}}\widetilde{R}. It suffices to show σ~i2σi2\widetilde{\sigma}_{i}^{2}\leq\sigma_{i}^{2} for i=1,2,,min{r~1,r~2}i=1,2,\ldots,\min\{\widetilde{r}_{1},\widetilde{r}_{2}\}. Note σ~i2\widetilde{\sigma}_{i}^{2} for i=1,2,,m1i=1,2,\ldots,m_{1} are the eigenvalues of

G~G~T=S~TR~R~TS~=S~TQ~S~S~TQS~,\widetilde{G}\widetilde{G}^{\operatorname{T}}=\widetilde{S}^{\operatorname{T}}\widetilde{R}\widetilde{R}^{\operatorname{T}}\widetilde{S}=\widetilde{S}^{\operatorname{T}}\widetilde{Q}\widetilde{S}\preceq\widetilde{S}^{\operatorname{T}}Q\widetilde{S},

whose nonzero eigenvalues are the same as those of

QS~S~T=QP~=RRTP~,Q\widetilde{S}\widetilde{S}^{\operatorname{T}}=Q\widetilde{P}=RR^{\operatorname{T}}\widetilde{P},

whose nonzero eigenvalues are the same as those of

RTP~RRTPR,R^{\operatorname{T}}\widetilde{P}R\preceq R^{\operatorname{T}}PR,

whose nonzero eigenvalues are σi2\sigma_{i}^{2} for i=1,2,,ni=1,2,\ldots,n. ∎

Partition

UT(G~G)V=UT[0S~TFETR~ETF]V= [\@arstrutrm2-r\\rE11E12\\m1-rE21E22] .U^{\operatorname{T}}(\widetilde{G}-G)V=-U^{\operatorname{T}}\begin{bmatrix}0&\widetilde{S}^{\operatorname{T}}F\\ E^{\operatorname{T}}\widetilde{R}&E^{\operatorname{T}}F\end{bmatrix}V=\hbox{}\vbox{\kern 0.86108pt\hbox{$\kern 0.0pt\kern 2.5pt\kern-5.0pt\left[\kern 0.0pt\kern-2.5pt\kern-5.55557pt\vbox{\kern-0.86108pt\vbox{\vbox{ \halign{\kern\arraycolsep\hfil\@arstrut$\kbcolstyle#$\hfil\kern\arraycolsep& \kern\arraycolsep\hfil$\@kbrowstyle#$\ifkbalignright\relax\else\hfil\fi\kern\arraycolsep&& \kern\arraycolsep\hfil$\@kbrowstyle#$\ifkbalignright\relax\else\hfil\fi\kern\arraycolsep\cr 5.0pt\hfil\@arstrut$\scriptstyle$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle\scriptstyle r$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle\scriptstyle m_{2}-r\\\scriptstyle r$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle E_{11}$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle E_{12}\\\scriptstyle m_{1}-r$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle E_{21}$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle E_{22}$\hfil\kern 5.0pt\crcr}}}}\right]$}}.

By Lemma 4.1, we find

Eij2G~G2εfor i,j{1,2},\|E_{ij}\|_{2}\leq\|\widetilde{G}-G\|_{2}\leq\varepsilon\,\,\mbox{for $i,j\in\{1,2\}$}, (4.8)

where ε\varepsilon is defined in (4.6). Now we will apply [19, Theorem 3.1] to G,G~G,\,\widetilde{G} to yield an almost SVD decomposition of G~\widetilde{G}:

G~= [\@arstrutrm1-r\\ˇU1ˇU2] × [\@arstrutrm2-r\\rˇΣ10\\m1-r0ˇΣ2] × [\@arstrut\\rˇV1T\\m2-rˇV2T] ,\widetilde{G}=\hbox{}\vbox{\kern 0.86108pt\hbox{$\kern 0.0pt\kern 2.5pt\kern-5.0pt\left[\kern 0.0pt\kern-2.5pt\kern-5.55557pt\vbox{\kern-0.86108pt\vbox{\vbox{ \halign{\kern\arraycolsep\hfil\@arstrut$\kbcolstyle#$\hfil\kern\arraycolsep& \kern\arraycolsep\hfil$\@kbrowstyle#$\ifkbalignright\relax\else\hfil\fi\kern\arraycolsep&& \kern\arraycolsep\hfil$\@kbrowstyle#$\ifkbalignright\relax\else\hfil\fi\kern\arraycolsep\cr 5.0pt\hfil\@arstrut$\scriptstyle$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle\scriptstyle r$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle\scriptstyle m_{1}-r\\$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle\check{U}_{1}$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle\check{U}_{2}$\hfil\kern 5.0pt\crcr}}}}\right]$}}\times\hbox{}\vbox{\kern 0.86108pt\hbox{$\kern 0.0pt\kern 2.5pt\kern-5.0pt\left[\kern 0.0pt\kern-2.5pt\kern-5.55557pt\vbox{\kern-0.86108pt\vbox{\vbox{ \halign{\kern\arraycolsep\hfil\@arstrut$\kbcolstyle#$\hfil\kern\arraycolsep& \kern\arraycolsep\hfil$\@kbrowstyle#$\ifkbalignright\relax\else\hfil\fi\kern\arraycolsep&& \kern\arraycolsep\hfil$\@kbrowstyle#$\ifkbalignright\relax\else\hfil\fi\kern\arraycolsep\cr 5.0pt\hfil\@arstrut$\scriptstyle$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle\scriptstyle r$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle\scriptstyle m_{2}-r\\\scriptstyle r$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle\check{\Sigma}_{1}$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle 0\\\scriptstyle m_{1}-r$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle 0$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle\check{\Sigma}_{2}$\hfil\kern 5.0pt\crcr}}}}\right]$}}\times\hbox{}\vbox{\kern 0.86108pt\hbox{$\kern 0.0pt\kern 2.5pt\kern-5.0pt\left[\kern 0.0pt\kern-2.5pt\kern-5.55557pt\vbox{\kern-0.86108pt\vbox{\vbox{ \halign{\kern\arraycolsep\hfil\@arstrut$\kbcolstyle#$\hfil\kern\arraycolsep& \kern\arraycolsep\hfil$\@kbrowstyle#$\ifkbalignright\relax\else\hfil\fi\kern\arraycolsep&& \kern\arraycolsep\hfil$\@kbrowstyle#$\ifkbalignright\relax\else\hfil\fi\kern\arraycolsep\cr 5.0pt\hfil\@arstrut$\scriptstyle$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle\\\scriptstyle r$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle\check{V}_{1}^{\operatorname{T}}\\\scriptstyle m_{2}-r$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle\check{V}_{2}^{\operatorname{T}}$\hfil\kern 5.0pt\crcr}}}}\right]$}}, (4.9)

where

Uˇ\displaystyle\check{U} [\@arstrutrm1-r\\ˇU1ˇU2] =[U1,U2][IrΓTΓIm1r][(I+ΓTΓ)1/200(I+ΓΓT)1/2],\\Vˇ\displaystyle\equiv\hbox{}\vbox{\kern 0.86108pt\hbox{$\kern 0.0pt\kern 2.5pt\kern-5.0pt\left[\kern 0.0pt\kern-2.5pt\kern-5.55557pt\vbox{\kern-0.86108pt\vbox{\vbox{ \halign{\kern\arraycolsep\hfil\@arstrut$\kbcolstyle#$\hfil\kern\arraycolsep& \kern\arraycolsep\hfil$\@kbrowstyle#$\ifkbalignright\relax\else\hfil\fi\kern\arraycolsep&& \kern\arraycolsep\hfil$\@kbrowstyle#$\ifkbalignright\relax\else\hfil\fi\kern\arraycolsep\cr 5.0pt\hfil\@arstrut$\scriptstyle$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle\scriptstyle r$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle\scriptstyle m_{1}-r\\$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle\check{U}_{1}$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle\check{U}_{2}$\hfil\kern 5.0pt\crcr}}}}\right]$}}=[U_{1},U_{2}]\begin{bmatrix}I_{r}&\Gamma^{\operatorname{T}}\\ -\Gamma&I_{m_{1}-r}\end{bmatrix}\begin{bmatrix}(I+\Gamma^{\operatorname{T}}\Gamma)^{-1/2}&0\\ 0&(I+\Gamma\Gamma^{\operatorname{T}})^{-1/2}\end{bmatrix},\\\check{V} [\@arstrutrm2-r\\ˇV1ˇV2] =[V1,V2][IrΩTΩIm2r][(I+ΩTΩ)1/200(I+ΩΩT)1/2]\displaystyle\equiv\hbox{}\vbox{\kern 0.86108pt\hbox{$\kern 0.0pt\kern 2.5pt\kern-5.0pt\left[\kern 0.0pt\kern-2.5pt\kern-5.55557pt\vbox{\kern-0.86108pt\vbox{\vbox{ \halign{\kern\arraycolsep\hfil\@arstrut$\kbcolstyle#$\hfil\kern\arraycolsep& \kern\arraycolsep\hfil$\@kbrowstyle#$\ifkbalignright\relax\else\hfil\fi\kern\arraycolsep&& \kern\arraycolsep\hfil$\@kbrowstyle#$\ifkbalignright\relax\else\hfil\fi\kern\arraycolsep\cr 5.0pt\hfil\@arstrut$\scriptstyle$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle\scriptstyle r$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle\scriptstyle m_{2}-r\\$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle\check{V}_{1}$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle\check{V}_{2}$\hfil\kern 5.0pt\crcr}}}}\right]$}}=[V_{1},V_{2}]\begin{bmatrix}I_{r}&-\Omega^{\operatorname{T}}\\ \Omega&I_{m_{2}-r}\end{bmatrix}\begin{bmatrix}(I+\Omega^{\operatorname{T}}\Omega)^{-1/2}&0\\ 0&(I+\Omega\Omega^{\operatorname{T}})^{-1/2}\end{bmatrix} (4.10c)

are two orthogonal matrices, Ω(m2r)×r\Omega\in\mathbb{R}^{(m_{2}-r)\times r} and Γ(m1r)×r\Gamma\in\mathbb{R}^{(m_{1}-r)\times r}.

Theorem 4.1.

Let ε\varepsilon be as in (4.6), and let

δ=σrσr+1,δ¯=δ2ε,σ¯r=σrε.\delta=\sigma_{r}-\sigma_{r+1},\,\,\underaccent{\bar}{\delta}=\delta-2\varepsilon,\,\,\underaccent{\bar{}}{\sigma}_{r}=\sigma_{r}-\varepsilon.

If

δ¯=δ2ε>0andε2δ¯2<14,\underaccent{\bar}{\delta}=\delta-2\varepsilon>0\quad\mbox{and}\quad\frac{\varepsilon^{2}}{\underaccent{\bar}{\delta}^{2}}<\frac{1}{4},

then the following statements hold:

  1. (a)

    there exist Ω(m2r)×r\Omega\in\mathbb{R}^{(m_{2}-r)\times r} and Γ(m1r)×r\Gamma\in\mathbb{R}^{(m_{1}-r)\times r} satisfying

    max{Ω2,Γ2}2εδ¯\max\{\|\Omega\|_{2},\|\Gamma\|_{2}\}\leq\frac{2\varepsilon}{\underaccent{\bar}{\delta}} (4.11)

    such that G~\widetilde{G} admits decomposition (4.9) with (4.10);

  2. (b)

    the singular values of G~\widetilde{G} is the multiset union of

    Σˇ1\displaystyle\check{\Sigma}_{1} =Uˇ1TG~Vˇ1\displaystyle=\check{U}_{1}^{\operatorname{T}}\widetilde{G}\check{V}_{1}
    =(I+ΓTΓ)1/2(Σ1+E11+E12Ω)(I+ΩTΩ)1/2\displaystyle=(I+\Gamma^{\operatorname{T}}\Gamma)^{1/2}(\Sigma_{1}+E_{11}+E_{12}\Omega)(I+\Omega^{\operatorname{T}}\Omega)^{-1/2} (4.12a)
    =(I+ΓTΓ)1/2(Σ1+E11+ΓTE21)(I+ΩTΩ)1/2,\displaystyle=(I+\Gamma^{\operatorname{T}}\Gamma)^{-1/2}(\Sigma_{1}+E_{11}+\Gamma^{\operatorname{T}}E_{21})(I+\Omega^{\operatorname{T}}\Omega)^{1/2}, (4.12b)

    and

    Σˇ2\displaystyle\check{\Sigma}_{2} =Uˇ2TG~Vˇ2\displaystyle=\check{U}_{2}^{\operatorname{T}}\widetilde{G}\check{V}_{2}
    =(I+ΓΓT)1/2(Σ2+E22E21ΩT)(I+ΩΩT)1/2\displaystyle=(I+\Gamma\Gamma^{\operatorname{T}})^{1/2}(\Sigma_{2}+E_{22}-E_{21}\Omega^{\operatorname{T}})(I+\Omega\Omega^{\operatorname{T}})^{-1/2} (4.13a)
    =(I+ΓΓT)1/2(Σ2+E22ΓE12)(I+ΩΩT)1/2;\displaystyle=(I+\Gamma\Gamma^{\operatorname{T}})^{-1/2}(\Sigma_{2}+E_{22}-\Gamma E_{12})(I+\Omega\Omega^{\operatorname{T}})^{1/2}; (4.13b)
  3. (c)

    we have

    σmin(Σˇ1)σrε2ε2δ¯,σmax(Σˇ2)σr+1+ε+2ε2δ¯,\sigma_{\min}(\check{\Sigma}_{1})\geq\sigma_{r}-\varepsilon-\frac{2\varepsilon^{2}}{\underaccent{\bar}{\delta}},\quad\sigma_{\max}(\check{\Sigma}_{2})\leq\sigma_{r+1}+\varepsilon+\frac{2\varepsilon^{2}}{\underaccent{\bar}{\delta}}, (4.14)

    where σmin(Σˇ1)\sigma_{\min}(\check{\Sigma}_{1}) and σmax(Σˇ2)\sigma_{\max}(\check{\Sigma}_{2}) are the smallest singular value of Σˇ1\check{\Sigma}_{1} and the largest singular value of Σˇ2\check{\Sigma}_{2}, respectively;

  4. (d)

    if also ε/δ¯<1/2\varepsilon/\underaccent{\bar}{\delta}<1/2, then the top rr singular values of G~\widetilde{G} are exactly the rr singular values of Σˇ1\check{\Sigma}_{1},

    σmin(Σˇ1)σrε=σ¯r,\sigma_{\min}(\check{\Sigma}_{1})\geq\sigma_{r}-\varepsilon=\underaccent{\bar}{\sigma}_{r}, (4.15)

    and the dominant left and right singular subspaces are spanned by the columns of

    Uˇ1\displaystyle\check{U}_{1} =(U1U2Γ)(I+ΓTΓ)1/2,\displaystyle=(U_{1}-U_{2}\Gamma)(I+\Gamma^{\operatorname{T}}\Gamma)^{-1/2}, (4.16a)
    Vˇ1\displaystyle\check{V}_{1} =(V1+V2Ω)(I+ΩTΩ)1/2,\displaystyle=(V_{1}+V_{2}\Omega)(I+\Omega^{\operatorname{T}}\Omega)^{-1/2}, (4.16b)

    respectively. In particular,

    Uˇ1U12\displaystyle\|\check{U}_{1}-U_{1}\|_{2} =2Γ2[1+Γ22(1+Γ22+1)]1/2Γ22εδ¯,\displaystyle=\frac{\sqrt{2}\,\|\Gamma\|_{2}}{\big{[}\sqrt{1+\|\Gamma\|_{2}^{2}}(\sqrt{1+\|\Gamma\|_{2}^{2}}+1)\big{]}^{1/2}}\leq\|\Gamma\|_{2}\leq\frac{2\varepsilon}{\underaccent{\bar}{\delta}}, (4.17a)
    Vˇ1V12\displaystyle\|\check{V}_{1}-V_{1}\|_{2} =2Ω2[1+Ω22(1+Ω22+1)]1/2Ω22εδ¯,\displaystyle=\frac{\sqrt{2}\,\|\Omega\|_{2}}{\big{[}\sqrt{1+\|\Omega\|_{2}^{2}}(\sqrt{1+\|\Omega\|_{2}^{2}}+1)\big{]}^{1/2}}\leq\|\Omega\|_{2}\leq\frac{2\varepsilon}{\underaccent{\bar}{\delta}}, (4.17b)

    and111 It is tempting to wonder if Σˇ1Σ12ε\|\check{\Sigma}_{1}-\Sigma_{1}\|_{2}\leq\varepsilon, considering the standard perturbation result of singular values [23, p.204], [16, p.21-7]. Unfortunately, Σˇ1\check{\Sigma}_{1} is unlikely diagonal. Another set of two inequalities for the same purpose as (4.18) can be obtained as outlined in Remark 4.2.

    Σˇ1Σ12\displaystyle\|\check{\Sigma}_{1}-\Sigma_{1}\|_{2} (1+4σ1δ¯)ε,\displaystyle\leq\left(1+\frac{4\sigma_{1}}{\underaccent{\bar}{\delta}}\right)\varepsilon, (4.18a)
    Σˇ11Σ112\displaystyle\|\check{\Sigma}_{1}^{-1}-\Sigma_{1}^{-1}\|_{2} 1σrσ¯r(1+4σ1δ¯)ε.\displaystyle\leq\frac{1}{\sigma_{r}\underaccent{\bar}{\sigma}_{r}}\left(1+\frac{4\sigma_{1}}{\underaccent{\bar}{\delta}}\right){\varepsilon}. (4.18b)
Proof.

Recall (4.8). Apply [19, Theorem 3.1] to G,G~G,\,\widetilde{G} with εij=ε\varepsilon_{ij}=\varepsilon, δ\delta and δ¯\underaccent{\bar}{\delta} here to yield all conclusions of the theorem, except (4.17) and (4.18), which we will now prove.

To prove (4.17a), we have

Uˇ1U1\displaystyle\check{U}_{1}-U_{1} =U1[(I+ΓTΓ)1/2I]U2Γ(I+ΓTΓ)1/2\displaystyle=U_{1}\big{[}(I+\Gamma^{\operatorname{T}}\Gamma)^{-1/2}-I\big{]}-U_{2}\Gamma(I+\Gamma^{\operatorname{T}}\Gamma)^{-1/2}
=[U1,U2][I(I+ΓTΓ)1/2Γ(I+ΓTΓ)1/2].\displaystyle=-[U_{1},U_{2}]\begin{bmatrix}I-(I+\Gamma^{\operatorname{T}}\Gamma)^{-1/2}\\ \Gamma(I+\Gamma^{\operatorname{T}}\Gamma)^{-1/2}\end{bmatrix}.

Let Γ=ZΞWT\Gamma=Z\Xi W^{\operatorname{T}} be the SVD of Γ\Gamma. We find

[I(I+ΓTΓ)1/2Γ(I+ΓTΓ)1/2]=[WZ][I(I+ΞTΞ)1/2Ξ(I+ΞTΞ)1/2]WT,\begin{bmatrix}I-(I+\Gamma^{\operatorname{T}}\Gamma)^{-1/2}\\ \Gamma(I+\Gamma^{\operatorname{T}}\Gamma)^{-1/2}\end{bmatrix}=\begin{bmatrix}W&\\ &Z\end{bmatrix}\begin{bmatrix}I-(I+\Xi^{\operatorname{T}}\Xi)^{-1/2}\\ \Xi(I+\Xi^{\operatorname{T}}\Xi)^{-1/2}\end{bmatrix}W^{\operatorname{T}},

where for the middle matrix on the right, I(I+ΞTΞ)1/2I-(I+\Xi^{\operatorname{T}}\Xi)^{-1/2} is diagonal and Ξ(I+ΞTΞ)1/2\Xi(I+\Xi^{\operatorname{T}}\Xi)^{-1/2} is leading diagonal. Hence the singular values of the middle matrix are given by: for each singular value γ\gamma of Γ\Gamma,

(111+γ2)2+(γ1+γ2)2\displaystyle\sqrt{\left(1-\frac{1}{\sqrt{1+\gamma^{2}}}\right)^{2}+\left(\frac{\gamma}{\sqrt{1+\gamma^{2}}}\right)^{2}} =2(111+γ2)\displaystyle=\sqrt{2\left(1-\frac{1}{\sqrt{1+\gamma^{2}}}\right)}
=2γ[1+γ2(1+γ2+1)]1/2\displaystyle=\frac{\sqrt{2}\,\gamma}{\big{[}\sqrt{1+\gamma^{2}}(\sqrt{1+\gamma^{2}}+1)\big{]}^{1/2}}
γΓ2.\displaystyle\leq\gamma\leq\|\Gamma\|_{2}.

Therefore, we get

Uˇ1U12=[I(I+ΞTΞ)1/2Ξ(I+ΞTΞ)1/2]2=2Γ2[1+Γ22(1+Γ22+1)]1/2Γ2,\|\check{U}_{1}-U_{1}\|_{2}=\left\|\begin{bmatrix}I-(I+\Xi^{\operatorname{T}}\Xi)^{-1/2}\\ \Xi(I+\Xi^{\operatorname{T}}\Xi)^{-1/2}\end{bmatrix}\right\|_{2}=\frac{\sqrt{2}\,\|\Gamma\|_{2}}{\big{[}\sqrt{1+\|\Gamma\|_{2}^{2}}(\sqrt{1+\|\Gamma\|_{2}^{2}}+1)\big{]}^{1/2}}\leq\|\Gamma\|_{2},

yielding (4.17a) in light of (4.11). Similarly, we have (4.17b).

Finally, we prove (4.18). We have

Σˇ1Σ1\displaystyle\check{\Sigma}_{1}-\Sigma_{1} =Uˇ1TG~Vˇ1U1TG~Vˇ1+U1TG~Vˇ1U1TGVˇ1+U1TGVˇ1U1TGV1\displaystyle=\check{U}_{1}^{\operatorname{T}}\widetilde{G}\check{V}_{1}-U_{1}^{\operatorname{T}}\widetilde{G}\check{V}_{1}+U_{1}^{\operatorname{T}}\widetilde{G}\check{V}_{1}-U_{1}^{\operatorname{T}}G\check{V}_{1}+U_{1}^{\operatorname{T}}G\check{V}_{1}-U_{1}^{\operatorname{T}}GV_{1}
=(Uˇ1U1)TG~Vˇ1+U1T(G~G)Vˇ1+U1TG(Vˇ1V1).\displaystyle=(\check{U}_{1}-U_{1})^{\operatorname{T}}\widetilde{G}\check{V}_{1}+U_{1}^{\operatorname{T}}(\widetilde{G}-G)\check{V}_{1}+U_{1}^{\operatorname{T}}G(\check{V}_{1}-V_{1}). (4.19)

In light of (4.6) and (4.17), we get

Σˇ1Σ12\displaystyle\|\check{\Sigma}_{1}-\Sigma_{1}\|_{2} Uˇ1U12G~2+G~G2+G2Vˇ1V1\displaystyle\leq\|\check{U}_{1}-U_{1}\|_{2}\|\widetilde{G}\|_{2}+\|\widetilde{G}-G\|_{2}+\|G\|_{2}\|\check{V}_{1}-V_{1}\|
(1+4σ1δ¯)ε,\displaystyle\leq\left(1+\frac{4\sigma_{1}}{\underaccent{\bar}{\delta}}\right)\varepsilon,
and
Σˇ11Σ112\displaystyle\|\check{\Sigma}_{1}^{-1}-\Sigma_{1}^{-1}\|_{2} =Σˇ11(Σ1Σˇ1)Σ112\displaystyle=\|\check{\Sigma}_{1}^{-1}(\Sigma_{1}-\check{\Sigma}_{1})\Sigma_{1}^{-1}\|_{2}
Σˇ112Σ1Σˇ12Σ112\displaystyle\leq\|\check{\Sigma}_{1}^{-1}\|_{2}\|\Sigma_{1}-\check{\Sigma}_{1}\|_{2}\|\Sigma_{1}^{-1}\|_{2}
1σrσ¯r(1+4σ1δ¯)ε,\displaystyle\leq\frac{1}{\sigma_{r}\underaccent{\bar}{\sigma}_{r}}\left(1+\frac{4\sigma_{1}}{\underaccent{\bar}{\delta}}\right)\varepsilon,

completing the proof of (4.18). ∎

Remark 4.2.

Another upper bound on Σˇ1Σ12\|\check{\Sigma}_{1}-\Sigma_{1}\|_{2} can be obtained as follows. Alternatively to (4.19), we have

Σˇ1Σ1\displaystyle\check{\Sigma}_{1}-\Sigma_{1} =(I+ΓTΓ)1/2(Σ1+E11+E12Ω)(I+ΩTΩ)1/2Σ1\displaystyle=(I+\Gamma^{\operatorname{T}}\Gamma)^{1/2}(\Sigma_{1}+E_{11}+E_{12}\Omega)(I+\Omega^{\operatorname{T}}\Omega)^{-1/2}-\Sigma_{1}
=(I+ΓTΓ)1/2Σ1(I+ΩTΩ)1/2Σ1\displaystyle=(I+\Gamma^{\operatorname{T}}\Gamma)^{1/2}\Sigma_{1}(I+\Omega^{\operatorname{T}}\Omega)^{-1/2}-\Sigma_{1}
+(I+ΓTΓ)1/2(E11+E12Ω)(I+ΩTΩ)1/2\displaystyle\quad+(I+\Gamma^{\operatorname{T}}\Gamma)^{1/2}(E_{11}+E_{12}\Omega)(I+\Omega^{\operatorname{T}}\Omega)^{-1/2}
=(I+ΓTΓ)1/2Σ1(I+ΩTΩ)1/2Σ1(I+ΩTΩ)1/2+Σ1(I+ΩTΩ)1/2Σ1\displaystyle=(I+\Gamma^{\operatorname{T}}\Gamma)^{1/2}\Sigma_{1}(I+\Omega^{\operatorname{T}}\Omega)^{-1/2}-\Sigma_{1}(I+\Omega^{\operatorname{T}}\Omega)^{-1/2}+\Sigma_{1}(I+\Omega^{\operatorname{T}}\Omega)^{-1/2}-\Sigma_{1}
+(I+ΓTΓ)1/2(E11+E12Ω)(I+ΩTΩ)1/2\displaystyle\quad+(I+\Gamma^{\operatorname{T}}\Gamma)^{1/2}(E_{11}+E_{12}\Omega)(I+\Omega^{\operatorname{T}}\Omega)^{-1/2}
=[(I+ΓTΓ)1/2I]Σ1(I+ΩTΩ)1/2+Σ1[(I+ΩTΩ)1/2I]\displaystyle=\Big{[}(I+\Gamma^{\operatorname{T}}\Gamma)^{1/2}-I\big{]}\Sigma_{1}(I+\Omega^{\operatorname{T}}\Omega)^{-1/2}+\Sigma_{1}\big{[}(I+\Omega^{\operatorname{T}}\Omega)^{-1/2}-I\big{]}
+(I+ΓTΓ)1/2(E11+E12Ω)(I+ΩTΩ)1/2,\displaystyle\quad+(I+\Gamma^{\operatorname{T}}\Gamma)^{1/2}(E_{11}+E_{12}\Omega)(I+\Omega^{\operatorname{T}}\Omega)^{-1/2},

and therefore

Σˇ1Σ12\displaystyle\|\check{\Sigma}_{1}-\Sigma_{1}\|_{2} (I+ΓTΓ)1/2I2σ1+σ1(I+ΩTΩ)1/2I2\displaystyle\leq\Big{\|}(I+\Gamma^{\operatorname{T}}\Gamma)^{1/2}-I\|_{2}\sigma_{1}+\sigma_{1}\big{\|}(I+\Omega^{\operatorname{T}}\Omega)^{-1/2}-I\big{\|}_{2}
+(I+ΓTΓ)1/22(1+Ω2)ε\displaystyle\quad+\|(I+\Gamma^{\operatorname{T}}\Gamma)^{1/2}\|_{2}(1+\|\Omega\|_{2})\varepsilon
Γ221+Γ22+1σ1+σ1Ω221+Ω22(1+Ω22+1)\displaystyle\leq\frac{\|\Gamma\|_{2}^{2}}{\sqrt{1+\|\Gamma\|_{2}^{2}}+1}\sigma_{1}+\sigma_{1}\frac{\|\Omega\|_{2}^{2}}{\sqrt{1+\|\Omega\|_{2}^{2}}(\sqrt{1+\|\Omega\|_{2}^{2}}+1)}
+1+Γ22(1+Ω2)ε\displaystyle\quad+\sqrt{1+\|\Gamma\|_{2}^{2}}(1+\|\Omega\|_{2})\varepsilon
(2ε/δ¯)21+(2ε/δ¯)2+1(1+11+(2ε/δ¯)2)σ1+1+(2εδ¯)2(1+2εδ¯)ε\displaystyle\leq\frac{(2\varepsilon/\underaccent{\bar}{\delta})^{2}}{\sqrt{1+(2\varepsilon/\underaccent{\bar}{\delta})^{2}}+1}\left(1+\frac{1}{\sqrt{1+(2\varepsilon/\underaccent{\bar}{\delta})^{2}}}\right)\sigma_{1}+\sqrt{1+\left(\frac{2\varepsilon}{\underaccent{\bar}{\delta}}\right)^{2}}\left(1+\frac{2\varepsilon}{\underaccent{\bar}{\delta}}\right)\varepsilon
12(1+12)σ1(2εδ¯)2+22ε.\displaystyle\leq\frac{1}{2}\left(1+\frac{1}{\sqrt{2}}\right)\sigma_{1}\left(\frac{2\varepsilon}{\underaccent{\bar}{\delta}}\right)^{2}+2\sqrt{2}\,\varepsilon. (4.20)

Comparing (4.18a) with (4.20), we find that both contain a term that depends only on ε\varepsilon: ε\varepsilon in the former whereas 22ε2\sqrt{2}\,\varepsilon in the latter, and clearly the edge goes to (4.18a) for the term, and that both contain a term proportional to σ1\sigma_{1}, and the edge goes to (4.20) because it is O(σ1ε)O(\sigma_{1}\varepsilon) v.s. O(σ1ε2)O(\sigma_{1}\varepsilon^{2}). In the same way as how (4.18b) is created, we can create an upper bound on Σˇ11Σ112\|\check{\Sigma}_{1}^{-1}-\Sigma_{1}^{-1}\|_{2}, using (4.20), instead. Detail is omitted.

As we commented on [19, Theorem 3.1], (4.15) improves the first inequality in (4.14), but it relies on the latter to first establish the fact that the top rr singular values of G~\widetilde{G} are exactly the rr singular values of Σˇ1\check{\Sigma}_{1}.

The decomposition (4.9) we built for G~\widetilde{G} has an SVD look, but it is not an SVD because Σˇi\check{\Sigma}_{i} for i=1,2i=1,2 are not diagonal. One idea is to perform an SVD on Σˇ1\check{\Sigma}_{1} and update Uˇ1\check{U}_{1}, Vˇ1\check{V}_{1} accordingly to get U~1\widetilde{U}_{1} and V~1\widetilde{V}_{1} for the dominant left and right singular vector matrices, but it is hard, if not impossible, to relate the resulting U~1\widetilde{U}_{1} and V~1\widetilde{V}_{1} to U1U_{1} and V1V_{1}, and in return, difficult to relate X~1\widetilde{X}_{1} and Y~1\widetilde{Y}_{1} defined in in (3.3) to X1,Y1X_{1},\,Y_{1} defined in (2.16). This is precisely the reason behind our previous comment at the end of Sections 2 and 3 that X1,Y1X_{1},\,Y_{1} defined in (2.16) and X~1\widetilde{X}_{1} and Y~1\widetilde{Y}_{1} in (3.3) are difficult to use. Fortunately these concrete forms for X1,Y1X_{1},\,Y_{1} and X~1\widetilde{X}_{1} and Y~1\widetilde{Y}_{1} are not essential as far the transfer functions are concerned because of Theorem 2.1. On the other hand, it is rather easy to relate Uˇ1\check{U}_{1}, Vˇ1\check{V}_{1}, and Σˇ1\check{\Sigma}_{1} there to U1U_{1}, V1V_{1}, and Σ1\Sigma_{1}, respectively, from the SVD of G=STRG=S^{\operatorname{T}}R.

In the rest of this paper, we will assume the following setup without explicit mentioning it:

Setup. Approximate Gramians P~\widetilde{P} and Q~\widetilde{Q} satisfy (4.1) such that the conditions of Theorem 4.1, including ε/ω<1/2\varepsilon/\omega<1/2, hold. True balanced truncation is carried with X1,Y1X_{1},\,Y_{1} in (2.20), while X~1=[S~,0n×(m1r~1)]Uˇ1,Y~1=[R~,0n×(m2r~2)]Vˇ1Σˇ11\widetilde{X}_{1}=[\widetilde{S},0_{n\times(m_{1}-\widetilde{r}_{1})}]\check{U}_{1},\,\,\widetilde{Y}_{1}=[\widetilde{R},0_{n\times(m_{2}-\widetilde{r}_{2})}]\check{V}_{1}\check{\Sigma}_{1}^{-1} are used for approximate balanced truncation. Accordingly, A^11\widehat{A}_{11}, B^1\widehat{B}_{1}, and C^1\widehat{C}_{1} in the reduced system (2.6) from the true balanced truncation are defined by (2.5), and A~11\widetilde{A}_{11}, B~1\widetilde{B}_{1}, and C~1\widetilde{C}_{1} in the reduced system (3.4) from approximate balanced truncation by (3.2). (4.21)

X1,Y1X_{1},\,Y_{1} in (2.20) and X~1,Y~1\widetilde{X}_{1},\,\widetilde{Y}_{1} just intriduced, produce different reduced models from the usual reduced models by balanced truncation in the literature, but keep the associated transfer functions intact, nonetheless. In particular, X~1\widetilde{X}_{1} and Y~1\widetilde{Y}_{1} are introduced for our analysis only. In practice, they cannot be computed because given S~\widetilde{S} and R~\widetilde{R}, knowledge on what m1m_{1} and m2m_{2} are is not available, a priori.

4.2 Bounds on differences between reduced systems

In this subsection we will bound the differences of the coefficient matrices and transfer functions between the reduced system (2.6) from the true balanced truncation and (3.4) from an approximate balanced truncation.

First we will establish bounds on X1X~12\|X_{1}-\widetilde{X}_{1}\|_{2} and Y1Y~12\|Y_{1}-\widetilde{Y}_{1}\|_{2}.

Lemma 4.3.

We have

X~1X12\displaystyle\|\widetilde{X}_{1}-X_{1}\|_{2} ϵ1+P22εδ¯=:ϵx,\displaystyle\leq\sqrt{\epsilon_{1}}+\sqrt{\|P\|_{2}}\,\frac{2\varepsilon}{\underaccent{\bar}{\delta}}=:\epsilon_{x}, (4.22a)
Y~1Y12\displaystyle\|\widetilde{Y}_{1}-Y_{1}\|_{2} ϵ2σr+Q2σr(1+δ¯2σ¯r+2σ1σ¯r)2εδ¯=:ϵy.\displaystyle\leq\frac{\sqrt{\epsilon_{2}}}{\sigma_{r}}+\frac{\sqrt{\|Q\|_{2}}}{\sigma_{r}}\,\left(1+\frac{\underaccent{\bar}{\delta}}{2\underaccent{\bar}{\sigma}_{r}}+\frac{2\sigma_{1}}{\underaccent{\bar}{\sigma}_{r}}\right)\,\frac{2\varepsilon}{\underaccent{\bar}{\delta}}=:\epsilon_{y}. (4.22b)
Proof.

Recall (4.2c). We have

X~1X1\displaystyle\widetilde{X}_{1}-X_{1} =[S~,0n×(m1r~1)]Uˇ1SUˇ1+SUˇ1SU1\displaystyle=[\widetilde{S},0_{n\times(m_{1}-\widetilde{r}_{1})}]\check{U}_{1}-S\check{U}_{1}+S\check{U}_{1}-SU_{1}
=[0n×r~1,E]Uˇ1+S(Uˇ1U1),\displaystyle=[0_{n\times\widetilde{r}_{1}},-E]\check{U}_{1}+S(\check{U}_{1}-U_{1}),

and hence, upon using (4.5) and (4.17a), and noticing S2=P2\|S\|_{2}=\sqrt{\|P\|_{2}}, we arrive at (4.22a). For (4.22b), we have

Y~1Y1\displaystyle\widetilde{Y}_{1}-Y_{1} =[R~,0n×(m2r~2)]Vˇ1Σˇ11[R~,0n×(m2r~2)]Vˇ1Σ11\displaystyle=[\widetilde{R},0_{n\times(m_{2}-\widetilde{r}_{2})}]\check{V}_{1}\check{\Sigma}_{1}^{-1}-[\widetilde{R},0_{n\times(m_{2}-\widetilde{r}_{2})}]\check{V}_{1}\Sigma_{1}^{-1}
+[R~,0n×(m2r~2)]Vˇ1Σ11[R~,0n×(m2r~2)]V1Σ11\displaystyle\quad+[\widetilde{R},0_{n\times(m_{2}-\widetilde{r}_{2})}]\check{V}_{1}\Sigma_{1}^{-1}-[\widetilde{R},0_{n\times(m_{2}-\widetilde{r}_{2})}]V_{1}\Sigma_{1}^{-1}
+[R~,0n×(m2r~2)]V1Σ11RV1Σ11\displaystyle\quad+[\widetilde{R},0_{n\times(m_{2}-\widetilde{r}_{2})}]V_{1}\Sigma_{1}^{-1}-RV_{1}\Sigma_{1}^{-1}
=[R~,0n×(m2r~2)]Vˇ1(Σˇ11Σ11)\displaystyle=[\widetilde{R},0_{n\times(m_{2}-\widetilde{r}_{2})}]\check{V}_{1}\left(\check{\Sigma}_{1}^{-1}-\Sigma_{1}^{-1}\right)
+[R~,0n×(m2r~2)](Vˇ1V1)Σ11+[0,F]V1Σ11,\displaystyle\quad+[\widetilde{R},0_{n\times(m_{2}-\widetilde{r}_{2})}]\left(\check{V}_{1}-V_{1}\right)\Sigma_{1}^{-1}+[0,-F]V_{1}\Sigma_{1}^{-1},

and, therefore, by Lemma 4.1, and (4.17) and (4.18), we get

Y~1Y12\displaystyle\big{\|}\widetilde{Y}_{1}-Y_{1}\big{\|}_{2} R~2Σˇ11Σ112+R~2Vˇ1V12Σ112+F2Σ112\displaystyle\leq\big{\|}\widetilde{R}\big{\|}_{2}\big{\|}\check{\Sigma}_{1}^{-1}-\Sigma_{1}^{-1}\big{\|}_{2}+\big{\|}\widetilde{R}\big{\|}_{2}\big{\|}\check{V}_{1}-V_{1}\big{\|}_{2}\big{\|}\Sigma_{1}^{-1}\big{\|}_{2}+\|F\|_{2}\big{\|}\Sigma_{1}^{-1}\big{\|}_{2}
Q21σrσ¯r(1+4σ1δ¯)ε+Q22εδ¯1σr+ϵ2σr,\displaystyle\leq\sqrt{\|Q\|_{2}}\,\frac{1}{\sigma_{r}\underaccent{\bar}{\sigma}_{r}}\left(1+\frac{4\sigma_{1}}{\underaccent{\bar}{\delta}}\right)\varepsilon+\sqrt{\|Q\|_{2}}\,\frac{2\varepsilon}{\underaccent{\bar}{\delta}}\frac{1}{\sigma_{r}}+\frac{\sqrt{\epsilon_{2}}}{\sigma_{r}},

yielding (4.22b). ∎

The differences between the coefficient matrices of the two reduced systems are bounded in Theorem 4.2 below, where the use of any unitarily invariant norm does not require additional care for proofs, and yet may be of independent interest.

Theorem 4.2.

For any unitarily invariant norm ui\|\cdot\|_{\operatorname{ui}}, we have

A~11A^11uiAui\displaystyle\frac{\big{\|}\widetilde{A}_{11}-\widehat{A}_{11}\big{\|}_{\operatorname{ui}}}{\|A\|_{\operatorname{ui}}} P2ϵy+Q2σrϵx=:ϵa,\displaystyle\leq\sqrt{\|P\|_{2}}\epsilon_{y}+\frac{\sqrt{\|Q\|_{2}}}{\sigma_{r}}\,\epsilon_{x}=:\epsilon_{a}, (4.23a)
B~1B^1uiBui\displaystyle\frac{\big{\|}\widetilde{B}_{1}-\widehat{B}_{1}\big{\|}_{\operatorname{ui}}}{\|B\|_{\operatorname{ui}}} ϵy=:ϵb,\displaystyle\leq\epsilon_{y}=:\epsilon_{b}, (4.23b)
C~1C^1uiCui\displaystyle\frac{\big{\|}\widetilde{C}_{1}-\widehat{C}_{1}\big{\|}_{\operatorname{ui}}}{\|C\|_{\operatorname{ui}}} ϵx=:ϵc,\displaystyle\leq\epsilon_{x}=:\epsilon_{c}, (4.23c)

and

B~1B~1TB^1B^1TuiBBTui\displaystyle\frac{\big{\|}\widetilde{B}_{1}\widetilde{B}_{1}^{\operatorname{T}}-\widehat{B}_{1}\widehat{B}_{1}^{\operatorname{T}}\big{\|}_{\operatorname{ui}}}{\|BB^{\operatorname{T}}\|_{\operatorname{ui}}} Q2(1σ¯r+1σr)ϵy=:ϵb2,\displaystyle\leq\sqrt{\|Q\|_{2}}\left(\frac{1}{\underaccent{\bar}{\sigma}_{r}}+\frac{1}{\sigma_{r}}\right)\,\epsilon_{y}=:\epsilon_{b2}, (4.24a)
C~1C~1TC^1C^1TuiCCTui\displaystyle\frac{\big{\|}\widetilde{C}_{1}\widetilde{C}_{1}^{\operatorname{T}}-\widehat{C}_{1}\widehat{C}_{1}^{\operatorname{T}}\big{\|}_{\operatorname{ui}}}{\|CC^{\operatorname{T}}\|_{\operatorname{ui}}} 2P2ϵx=:ϵc2,\displaystyle\leq 2\sqrt{\|P\|_{2}}\,\epsilon_{x}=:\epsilon_{c2}, (4.24b)
Proof.

In light of (4.4), it is not difficult to show that

X12P2,X~12P2,Y12Q2σr,Y~12Q2σ¯r,\|X_{1}\|_{2}\leq\sqrt{\|P\|_{2}},\quad\big{\|}\widetilde{X}_{1}\big{\|}_{2}\leq\sqrt{\|P\|_{2}},\quad\|Y_{1}\|_{2}\leq\frac{\sqrt{\|Q\|_{2}}}{\sigma_{r}},\quad\big{\|}\widetilde{Y}_{1}\big{\|}_{2}\leq\frac{\sqrt{\|Q\|_{2}}}{\underaccent{\bar}{\sigma}_{r}}, (4.25)

except for the last one, for which we have

Y~12R~2Σˇ112\\Q21σ¯r,\big{\|}\widetilde{Y}_{1}\big{\|}_{2}\leq\big{\|}\widetilde{R}\big{\|}_{2}\big{\|}\check{\Sigma}_{1}^{-1}\big{\|}_{2}\\\leq\sqrt{\|Q\|_{2}}\,\frac{1}{\underaccent{\bar}{\sigma}_{r}},

which gives the last inequality in (4.25). Next we have

A~11A^11\displaystyle\widetilde{A}_{11}-\widehat{A}_{11} =Y~1TAX~1Y1TAX~1+Y1TAX~1Y1TAX1\displaystyle=\widetilde{Y}_{1}^{\operatorname{T}}A\widetilde{X}_{1}-Y_{1}^{\operatorname{T}}A\widetilde{X}_{1}+Y_{1}^{\operatorname{T}}A\widetilde{X}_{1}-Y_{1}^{\operatorname{T}}AX_{1}
=(Y~1Y1)TAX~1+Y1TA(X~1X1),\displaystyle=(\widetilde{Y}_{1}-Y_{1})^{\operatorname{T}}A\widetilde{X}_{1}+Y_{1}^{\operatorname{T}}A(\widetilde{X}_{1}-X_{1}), (4.26)
B~1B~1\displaystyle\widetilde{B}_{1}-\widetilde{B}_{1} =Y~1TBY1TB=(Y~1Y1)TB,\displaystyle=\widetilde{Y}_{1}^{\operatorname{T}}B-Y_{1}^{\operatorname{T}}B=(\widetilde{Y}_{1}-Y_{1})^{\operatorname{T}}B,
C~1C^1\displaystyle\widetilde{C}_{1}-\widehat{C}_{1} =X~1TCX1TC=(X~1X1)TC,\displaystyle=\widetilde{X}_{1}^{\operatorname{T}}C-X_{1}^{\operatorname{T}}C=(\widetilde{X}_{1}-X_{1})^{\operatorname{T}}C,

and

B~1B~1TB^1B^1T\displaystyle\widetilde{B}_{1}\widetilde{B}_{1}^{\operatorname{T}}-\widehat{B}_{1}\widehat{B}_{1}^{\operatorname{T}} =Y~1TBBTY~1Y1TBBTY1\displaystyle=\widetilde{Y}_{1}^{\operatorname{T}}BB^{\operatorname{T}}\widetilde{Y}_{1}-Y_{1}^{\operatorname{T}}BB^{\operatorname{T}}Y_{1}
=Y~1TBBTY~1Y~1TBBTY1+Y~1TBBTY1Y1TBBTY1\displaystyle=\widetilde{Y}_{1}^{\operatorname{T}}BB^{\operatorname{T}}\widetilde{Y}_{1}-\widetilde{Y}_{1}^{\operatorname{T}}BB^{\operatorname{T}}Y_{1}+\widetilde{Y}_{1}^{\operatorname{T}}BB^{\operatorname{T}}Y_{1}-Y_{1}^{\operatorname{T}}BB^{\operatorname{T}}Y_{1}
=Y~1TBBT(Y~1Y1)+(Y~1Y1)TBBTY1,\displaystyle=\widetilde{Y}_{1}^{\operatorname{T}}BB^{\operatorname{T}}(\widetilde{Y}_{1}-Y_{1})+(\widetilde{Y}_{1}-Y_{1})^{\operatorname{T}}BB^{\operatorname{T}}Y_{1},
C~1C~1TC^1C^1T\displaystyle\widetilde{C}_{1}\widetilde{C}_{1}^{\operatorname{T}}-\widehat{C}_{1}\widehat{C}_{1}^{\operatorname{T}} =X~1TCCTX~1X1TCCTX1\displaystyle=\widetilde{X}_{1}^{\operatorname{T}}CC^{\operatorname{T}}\widetilde{X}_{1}-X_{1}^{\operatorname{T}}CC^{\operatorname{T}}X_{1}
=X~1TCCTX~1X~1TCCTX1+X~1TCCTX1X1TCCTX1\displaystyle=\widetilde{X}_{1}^{\operatorname{T}}CC^{\operatorname{T}}\widetilde{X}_{1}-\widetilde{X}_{1}^{\operatorname{T}}CC^{\operatorname{T}}X_{1}+\widetilde{X}_{1}^{\operatorname{T}}CC^{\operatorname{T}}X_{1}-X_{1}^{\operatorname{T}}CC^{\operatorname{T}}X_{1}
=X~1TCCT(X~1X1)+(X~1X1)TCCTX1.\displaystyle=\widetilde{X}_{1}^{\operatorname{T}}CC^{\operatorname{T}}(\widetilde{X}_{1}-X_{1})+(\widetilde{X}_{1}-X_{1})^{\operatorname{T}}CC^{\operatorname{T}}X_{1}.

Take any unitarily invariant norm, e.g., on (4.26), to get

A~11A^11ui(Y~1Y1)T2AuiX~12+Y1T2AuiX~1X12,\big{\|}\widetilde{A}_{11}-\widehat{A}_{11}\big{\|}_{\operatorname{ui}}\leq\big{\|}(\widetilde{Y}_{1}-Y_{1})^{\operatorname{T}}\big{\|}_{2}\|A\|_{\operatorname{ui}}\big{\|}\widetilde{X}_{1}\big{\|}_{2}+\big{\|}Y_{1}^{\operatorname{T}}\big{\|}_{2}\|A\|_{\operatorname{ui}}\big{\|}\widetilde{X}_{1}-X_{1}\big{\|}_{2},

and use (4.22) and (4.25) to conclude (4.23). ∎

Remark 4.3.

With the last inequality in (4.25), alternatively to (4.26), we may use

A~11A^11\displaystyle\widetilde{A}_{11}-\widehat{A}_{11} =Y~1TAX~1Y~1TAX1+Y~1TAX1Y1TAX1\displaystyle=\widetilde{Y}_{1}^{\operatorname{T}}A\widetilde{X}_{1}-\widetilde{Y}_{1}^{\operatorname{T}}AX_{1}+\widetilde{Y}_{1}^{\operatorname{T}}AX_{1}-Y_{1}^{\operatorname{T}}AX_{1}
=Y~1TA(X~1X1)+(Y~1Y1)TAX1,\displaystyle=\widetilde{Y}_{1}^{\operatorname{T}}A(\widetilde{X}_{1}-X_{1})+(\widetilde{Y}_{1}-Y_{1})^{\operatorname{T}}AX_{1},

and get

A~11A^11uiAuiQ2σ¯rϵx+P2ϵy,\frac{\big{\|}\widetilde{A}_{11}-\widehat{A}_{11}\big{\|}_{\operatorname{ui}}}{\|A\|_{\operatorname{ui}}}\leq\frac{\sqrt{\|Q\|_{2}}}{\underaccent{\bar}{\sigma}_{r}}\,\epsilon_{x}+\sqrt{\|P\|_{2}}\,\epsilon_{y},

which is slightly worse than (4.23a) because 0<δ¯<σ¯r=σrεσr0<\underaccent{\bar}{\delta}<\underaccent{\bar}{\sigma}_{r}=\sigma_{r}-\varepsilon\leq\sigma_{r}.

Previously, we have introduced Hbt()H_{\operatorname{bt}}(\cdot) in (2.17) and H~bt()\widetilde{H}_{\operatorname{bt}}(\cdot) in (3.5) for the transfer functions for the reduced systems by the true and approximate balanced truncation, respectively. Let

Hd(s)=Hbt(s)H~bt(s),H_{\operatorname{d}}(s)=H_{\operatorname{bt}}(s)-\widetilde{H}_{\operatorname{bt}}(s),

the difference between the transfer functions, where subscript ‘d’ is used here and in what follows to stand for ‘difference’ between the related things from the true balanced truncation and its approximation.

We are interested in established bounds for Hd()\left\|H_{\operatorname{d}}(\cdot)\right\|_{{\cal H}_{\infty}} and Hd()2\left\|H_{\operatorname{d}}(\cdot)\right\|_{{\cal H}_{2}}. To this end, we introduce

K1=0eA^11teA^11Tt𝑑t,K2=0eA^11TteA^11t𝑑t,K_{1}=\int_{0}^{\infty}e^{\widehat{A}_{11}t}e^{\widehat{A}_{11}^{\operatorname{T}}t}dt,\quad K_{2}=\int_{0}^{\infty}e^{\widehat{A}_{11}^{\operatorname{T}}t}e^{\widehat{A}_{11}t}dt, (4.27)

the solutions to A^11K1+K1A^11T+Ir=0\widehat{A}_{11}K_{1}+K_{1}\widehat{A}_{11}^{\operatorname{T}}+I_{r}=0 and A^11TK2+K2A^11+Ir=0\widehat{A}_{11}^{\operatorname{T}}K_{2}+K_{2}\widehat{A}_{11}+I_{r}=0, respectively, and let

η1=A112K12ϵa,η2=A112K22ϵa.\eta_{1}=\|A_{11}\|_{2}\|K_{1}\|_{2}\epsilon_{a},\quad\eta_{2}=\|A_{11}\|_{2}\|K_{2}\|_{2}\epsilon_{a}. (4.28)

Both K1K_{1} and K2K_{2} are well-defined because A^11\widehat{A}_{11} is from the exact balanced truncation and hence inherits its stability from the original state matrix AA.

Hd(s)H_{\operatorname{d}}(s) is the transfer function of the system

{𝒙^r(t)=A^11𝒙^r(t)+B^1𝒖(t),given 𝒙^r(0)=𝒙~r(0),𝒙~r(t)=A~11𝒙~r(t)+B~1𝒖(t),𝒛(t)=C^1T𝒙^r(t)C~1T𝒙~r(t),\left\{\begin{array}[]{lll}{\hat{\boldsymbol{x}}}^{\prime}_{r}(t)&=\widehat{A}_{11}\hat{\boldsymbol{x}}_{r}(t)+\widehat{B}_{1}\boldsymbol{u}(t),\quad\mbox{given $\hat{\boldsymbol{x}}_{r}(0)=\widetilde{\boldsymbol{x}}_{r}(0)$},\\ {\widetilde{\boldsymbol{x}}}^{\prime}_{r}(t)&=\widetilde{A}_{11}\widetilde{\boldsymbol{x}}_{r}(t)+\widetilde{B}_{1}\boldsymbol{u}(t),\\ {\boldsymbol{z}(t)}&=\widehat{C}_{1}^{\operatorname{T}}\hat{\boldsymbol{x}}_{r}(t)-\widetilde{C}_{1}^{\operatorname{T}}\widetilde{\boldsymbol{x}}_{r}(t),\end{array}\right. (4.29)

or in short,

𝒮d=(A^11B^1A~11B~1C^1TC~1T)=:(AdBdCdT),\mathscr{S}_{\operatorname{d}}=\left(\begin{array}[]{cc|c}\widehat{A}_{11}&&\widehat{B}_{1}\\ &\widetilde{A}_{11}&\widetilde{B}_{1}\\ \hline\cr\vphantom{\vrule height=12.80365pt,width=0.9pt,depth=2.84544pt}\widehat{C}_{1}^{\operatorname{T}}&-\widetilde{C}_{1}^{\operatorname{T}}&\end{array}\right)=:\left(\begin{array}[]{c|c}A_{\operatorname{d}}&B_{\operatorname{d}}\\ \hline\cr\vphantom{\vrule height=12.80365pt,width=0.9pt,depth=2.84544pt}C_{\operatorname{d}}^{\operatorname{T}}&\end{array}\right),

Denoted by Pd,Qd2r×rP_{\operatorname{d}},\,Q_{\operatorname{d}}\in\mathbb{R}^{2r\times r}, the controllability and observability Gramians of (4.29), respectively. They are the solutions to

AdPd+PdAdT+BdBdT\displaystyle A_{\operatorname{d}}P_{\operatorname{d}}+P_{\operatorname{d}}A_{\operatorname{d}}^{\operatorname{T}}+B_{\operatorname{d}}B_{\operatorname{d}}^{\operatorname{T}} =0,\displaystyle=0, (4.30a)
AdTQd+QdAd+CdCdT\displaystyle A_{\operatorname{d}}^{\operatorname{T}}Q_{\operatorname{d}}+Q_{\operatorname{d}}A_{\operatorname{d}}+C_{\operatorname{d}}C_{\operatorname{d}}^{\operatorname{T}} =0,\displaystyle=0, (4.30b)

respectively. It is well-known that

Hd()=λmax(PdQd),Hd()2=tr(BdTQdBd)=tr(CdTPdCd).\left\|H_{\operatorname{d}}(\cdot)\right\|_{{\cal H}_{\infty}}=\sqrt{\lambda_{\max}(P_{\operatorname{d}}Q_{\operatorname{d}})},\quad\left\|H_{\operatorname{d}}(\cdot)\right\|_{{\cal H}_{2}}=\sqrt{\operatorname{tr}(B_{\operatorname{d}}^{\operatorname{T}}Q_{\operatorname{d}}B_{\operatorname{d}})}=\sqrt{\operatorname{tr}(C_{\operatorname{d}}^{\operatorname{T}}P_{\operatorname{d}}C_{\operatorname{d}})}. (4.31)

The 2{\cal H}_{2}-norm of continuous system (1.1) is the energy of the associated impulse response in the time domain [2]. Our goals are then turned into estimating the largest eigenvalues of PdQdP_{\operatorname{d}}Q_{\operatorname{d}} and the traces.

Lemma 4.4.

If ηi<1/2\eta_{i}<1/2 for i=1,2i=1,2, then

Pd=[IrIrIrIr]=:P0+[0ΔP12(ΔP12)TΔP22]=:ΔP0,Qd=[Σ12Σ12Σ12Σ12]=:Q0+[0ΔQ12(ΔQ12)TΔQ22]=:ΔQ0,P_{\operatorname{d}}=\underbrace{\begin{bmatrix}I_{r}&I_{r}\\ I_{r}&I_{r}\end{bmatrix}}_{=:P_{0}}+\underbrace{\begin{bmatrix}0&\Delta P_{12}\\ (\Delta P_{12})^{\operatorname{T}}&\Delta P_{22}\end{bmatrix}}_{=:\Delta P_{0}},\quad Q_{\operatorname{d}}=\underbrace{\begin{bmatrix}\Sigma_{1}^{2}&-\Sigma_{1}^{2}\\ -\Sigma_{1}^{2}&\Sigma_{1}^{2}\end{bmatrix}}_{=:Q_{0}}+\underbrace{\begin{bmatrix}0&\Delta Q_{12}\\ (\Delta Q_{12})^{\operatorname{T}}&\Delta Q_{22}\end{bmatrix}}_{=:\Delta Q_{0}}, (4.32)

where ΔPij,ΔQijr×r\Delta P_{ij},\,\Delta Q_{ij}\in\mathbb{R}^{r\times r} and satisfy

ΔP122\displaystyle\|\Delta P_{12}\|_{2} K121η1(B^12B2ϵb+A2ϵa)=:ξ1,\displaystyle\leq\frac{\|K_{1}\|_{2}}{1-\eta_{1}}\left(\big{\|}\widehat{B}_{1}\big{\|}_{2}\|B\|_{2}\epsilon_{b}+\|A\|_{2}\epsilon_{a}\right)=:\xi_{1}, (4.33a)
ΔP222\displaystyle\|\Delta P_{22}\|_{2} K1212η1(BBT2ϵb2+2A2ϵa)=:ξ2,\displaystyle\leq\frac{\|K_{1}\|_{2}}{1-2\eta_{1}}\left(\|BB^{\operatorname{T}}\|_{2}\epsilon_{b2}+2\|A\|_{2}\epsilon_{a}\right)=:\xi_{2}, (4.33b)

and

ΔQ122\displaystyle\|\Delta Q_{12}\|_{2} K221η2(C^12C2ϵc+A2ϵa)=:ζ1,\displaystyle\leq\frac{\|K_{2}\|_{2}}{1-\eta_{2}}\left(\big{\|}\widehat{C}_{1}\big{\|}_{2}\|C\|_{2}\epsilon_{c}+\|A\|_{2}\epsilon_{a}\right)=:\zeta_{1}, (4.34a)
ΔQ222\displaystyle\|\Delta Q_{22}\|_{2} K2212η2(CCT2ϵc2+2A2ϵa)=:ζ2.\displaystyle\leq\frac{\|K_{2}\|_{2}}{1-2\eta_{2}}\left(\|CC^{\operatorname{T}}\|_{2}\epsilon_{c2}+2\|A\|_{2}\epsilon_{a}\right)=:\zeta_{2}. (4.34b)
Proof.

Partition both Pd,QdP_{\operatorname{d}},\,Q_{\operatorname{d}} as

Pd= [\@arstrutrr\\rP11P12\\rP12TP22] ,Qd= [\@arstrutrr\\rQ11Q12\\rQ12TQ22] .P_{\operatorname{d}}=\hbox{}\vbox{\kern 0.86108pt\hbox{$\kern 0.0pt\kern 2.5pt\kern-5.0pt\left[\kern 0.0pt\kern-2.5pt\kern-5.55557pt\vbox{\kern-0.86108pt\vbox{\vbox{ \halign{\kern\arraycolsep\hfil\@arstrut$\kbcolstyle#$\hfil\kern\arraycolsep& \kern\arraycolsep\hfil$\@kbrowstyle#$\ifkbalignright\relax\else\hfil\fi\kern\arraycolsep&& \kern\arraycolsep\hfil$\@kbrowstyle#$\ifkbalignright\relax\else\hfil\fi\kern\arraycolsep\cr 5.0pt\hfil\@arstrut$\scriptstyle$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle\scriptstyle r$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle\scriptstyle r\\\scriptstyle r$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle P_{11}$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle P_{12}\\\scriptstyle r$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle P_{12}^{\operatorname{T}}$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle P_{22}$\hfil\kern 5.0pt\crcr}}}}\right]$}},\quad Q_{\operatorname{d}}=\hbox{}\vbox{\kern 0.86108pt\hbox{$\kern 0.0pt\kern 2.5pt\kern-5.0pt\left[\kern 0.0pt\kern-2.5pt\kern-5.55557pt\vbox{\kern-0.86108pt\vbox{\vbox{ \halign{\kern\arraycolsep\hfil\@arstrut$\kbcolstyle#$\hfil\kern\arraycolsep& \kern\arraycolsep\hfil$\@kbrowstyle#$\ifkbalignright\relax\else\hfil\fi\kern\arraycolsep&& \kern\arraycolsep\hfil$\@kbrowstyle#$\ifkbalignright\relax\else\hfil\fi\kern\arraycolsep\cr 5.0pt\hfil\@arstrut$\scriptstyle$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle\scriptstyle r$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle\scriptstyle r\\\scriptstyle r$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle Q_{11}$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle Q_{12}\\\scriptstyle r$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle Q_{12}^{\operatorname{T}}$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle Q_{22}$\hfil\kern 5.0pt\crcr}}}}\right]$}}.

We start by investigating PdP_{\operatorname{d}} first. Blockwise, (4.30a) is equivaent to the following three equations:

A^11P11+P11A^11T+B^1B^1T\displaystyle\widehat{A}_{11}P_{11}+P_{11}\widehat{A}_{11}^{\operatorname{T}}+\widehat{B}_{1}\widehat{B}_{1}^{\operatorname{T}} =0,\displaystyle=0, (4.35a)
A^11P12+P12A~11T+B^1B~1T\displaystyle\widehat{A}_{11}P_{12}+P_{12}\widetilde{A}_{11}^{\operatorname{T}}+\widehat{B}_{1}\widetilde{B}_{1}^{\operatorname{T}} =0,\displaystyle=0, (4.35b)
A~11P22+P22A~11T+B~1B~1T\displaystyle\widetilde{A}_{11}P_{22}+P_{22}\widetilde{A}_{11}^{\operatorname{T}}+\widetilde{B}_{1}\widetilde{B}_{1}^{\operatorname{T}} =0.\displaystyle=0. (4.35c)

It follows from Section 2.3 that P11=IrP_{11}=I_{r}, and from Lemma B.1 that both P12P_{12} and P22P_{22} are near IrI_{r}, and therefore the form of PdP_{\operatorname{d}} as in (4.32). Specifically, by (4.23) and Lemma B.1, we have

P12=Ir+ΔP12,P22=Ir+ΔP22P_{12}=I_{r}+\Delta P_{12},\quad P_{22}=I_{r}+\Delta P_{22}

with

ΔP122\displaystyle\|\Delta P_{12}\|_{2} K121η1(B^12B~1B^12+A~11A^112),\displaystyle\leq\frac{\|K_{1}\|_{2}}{1-\eta_{1}}\left({\big{\|}\widehat{B}_{1}\big{\|}_{2}\|\widetilde{B}_{1}-\widehat{B}_{1}\|_{2}}+\|\widetilde{A}_{11}-\widehat{A}_{11}\|_{2}\right),
ΔP222\displaystyle\|\Delta P_{22}\|_{2} K1212η1(B~1B~1TB^1B^12+2A~11A^112).\displaystyle\leq\frac{\|K_{1}\|_{2}}{1-2\eta_{1}}\left(\|\widetilde{B}_{1}\widetilde{B}_{1}^{\operatorname{T}}-\widehat{B}_{1}\widehat{B}_{1}\|_{2}+2\|\widetilde{A}_{11}-\widehat{A}_{11}\|_{2}\right).

They, together with Theorem 4.2, yield (4.33).

We now turn our attention to QdQ_{\operatorname{d}}. Blockwise, (4.30b) is equivalent to the following three equations:

A^11TQ11+Q11A^11+C^1C^1T\displaystyle\widehat{A}_{11}^{\operatorname{T}}Q_{11}+Q_{11}\widehat{A}_{11}+\widehat{C}_{1}\widehat{C}_{1}^{\operatorname{T}} =0,\displaystyle=0, (4.36a)
A^11TQ12+Q12A~11C^1C~1T\displaystyle\widehat{A}_{11}^{\operatorname{T}}Q_{12}+Q_{12}\widetilde{A}_{11}-\widehat{C}_{1}\widetilde{C}_{1}^{\operatorname{T}} =0,\displaystyle=0, (4.36b)
A~11TQ22+Q22A~11+C~1C~1T\displaystyle\widetilde{A}_{11}^{\operatorname{T}}Q_{22}+Q_{22}\widetilde{A}_{11}+\widetilde{C}_{1}\widetilde{C}_{1}^{\operatorname{T}} =0.\displaystyle=0. (4.36c)

It follows from Section 2.3 that Q11=Σ12Q_{11}=\Sigma_{1}^{2}, and from Lemma B.1 that both Q12-Q_{12} and Q22Q_{22} are near Σ12\Sigma_{1}^{2}, and therefore the form of QdQ_{\operatorname{d}} as in (4.32). Specifically, by (4.23) and Lemma B.1, we have

Q12=Σ12+ΔQ12,Q22=Σ12+ΔQ22Q_{12}=-\Sigma_{1}^{2}+\Delta Q_{12},\quad Q_{22}=\Sigma_{1}^{2}+\Delta Q_{22}

with

ΔQ122\displaystyle\|\Delta Q_{12}\|_{2} K221η2(C^12C~1C^12+A~11A^112),\displaystyle\leq\frac{\|K_{2}\|_{2}}{1-\eta_{2}}\left({\big{\|}\widehat{C}_{1}\big{\|}_{2}\|\widetilde{C}_{1}-\widehat{C}_{1}\|_{2}}+\|\widetilde{A}_{11}-\widehat{A}_{11}\|_{2}\right),
ΔQ222\displaystyle\|\Delta Q_{22}\|_{2} K2212η2(C~1C~1TC^1C^12+2A~11A^112).\displaystyle\leq\frac{\|K_{2}\|_{2}}{1-2\eta_{2}}\left(\|\widetilde{C}_{1}\widetilde{C}_{1}^{\operatorname{T}}-\widehat{C}_{1}\widehat{C}_{1}\|_{2}+2\|\widetilde{A}_{11}-\widehat{A}_{11}\|_{2}\right).

They, together with Theorem 4.2, yield (4.34). ∎

Remark 4.4.

Bounds on ΔPijF\|\Delta P_{ij}\|_{\operatorname{F}} and ΔQijF\|\Delta Q_{ij}\|_{\operatorname{F}} can also be established, only a little more complicated than (4.33) and (4.34), upon using Lemma B.1 with the Frobenius norm and noticing

IrF=r,Σ12F=(i=1rσi4)1/2rσ12.\|I_{r}\|_{\operatorname{F}}=\sqrt{r},\quad\|\Sigma_{1}^{2}\|_{\operatorname{F}}=\left(\sum_{i=1}^{r}\sigma_{i}^{4}\right)^{1/2}\leq\sqrt{r}\,\sigma_{1}^{2}.

In fact, we will have

ΔP12F\displaystyle\|\Delta P_{12}\|_{\operatorname{F}} K121η1(B^12B~1B^1F+rA~11A^112)\displaystyle\leq\frac{\|K_{1}\|_{2}}{1-\eta_{1}}\left({\big{\|}\widehat{B}_{1}\big{\|}_{2}\|\widetilde{B}_{1}-\widehat{B}_{1}\|_{\operatorname{F}}}+\sqrt{r}\,\|\widetilde{A}_{11}-\widehat{A}_{11}\|_{2}\right)
K121η1(B^12BFϵb+rA2ϵa),\displaystyle\leq\frac{\|K_{1}\|_{2}}{1-\eta_{1}}\left(\big{\|}\widehat{B}_{1}\big{\|}_{2}\|B\|_{\operatorname{F}}\epsilon_{b}+\sqrt{r}\,\|A\|_{2}\epsilon_{a}\right),
ΔP22F\displaystyle\|\Delta P_{22}\|_{\operatorname{F}} K1212η1(B~1B~1TB^1B^1F+2rA~11A^112)\displaystyle\leq\frac{\|K_{1}\|_{2}}{1-2\eta_{1}}\left(\|\widetilde{B}_{1}\widetilde{B}_{1}^{\operatorname{T}}-\widehat{B}_{1}\widehat{B}_{1}\|_{\operatorname{F}}+2\sqrt{r}\,\|\widetilde{A}_{11}-\widehat{A}_{11}\|_{2}\right)
K1212η1(BBTFϵb2+2rA2ϵa),\displaystyle\leq\frac{\|K_{1}\|_{2}}{1-2\eta_{1}}\left(\|BB^{\operatorname{T}}\|_{\operatorname{F}}\epsilon_{b2}+2\sqrt{r}\,\|A\|_{2}\epsilon_{a}\right),
ΔQ12F\displaystyle\|\Delta Q_{12}\|_{\operatorname{F}} K221η2(C^12C~1C^1F+Σ12FA~11A^112)\displaystyle\leq\frac{\|K_{2}\|_{2}}{1-\eta_{2}}\left({\big{\|}\widehat{C}_{1}\big{\|}_{2}\|\widetilde{C}_{1}-\widehat{C}_{1}\|_{\operatorname{F}}}+\|\Sigma_{1}^{2}\|_{\operatorname{F}}\|\widetilde{A}_{11}-\widehat{A}_{11}\|_{2}\right)
K221η2(C^12CFϵc+rσ12A2ϵa),\displaystyle\leq\frac{\|K_{2}\|_{2}}{1-\eta_{2}}\left(\big{\|}\widehat{C}_{1}\big{\|}_{2}\|C\|_{\operatorname{F}}\epsilon_{c}+\sqrt{r}\,\sigma_{1}^{2}\|A\|_{2}\epsilon_{a}\right),
ΔQ22F\displaystyle\|\Delta Q_{22}\|_{\operatorname{F}} K2212η2(C~1C~1TC^1C^1F+2Σ12FA~11A^112)\displaystyle\leq\frac{\|K_{2}\|_{2}}{1-2\eta_{2}}\left(\|\widetilde{C}_{1}\widetilde{C}_{1}^{\operatorname{T}}-\widehat{C}_{1}\widehat{C}_{1}\|_{\operatorname{F}}+2\|\Sigma_{1}^{2}\|_{\operatorname{F}}\|\widetilde{A}_{11}-\widehat{A}_{11}\|_{2}\right)
K2212η2(CCTFϵc2+2rσ12A2ϵa).\displaystyle\leq\frac{\|K_{2}\|_{2}}{1-2\eta_{2}}\left(\|CC^{\operatorname{T}}\|_{\operatorname{F}}\epsilon_{c2}+2\sqrt{r}\,\sigma_{1}^{2}\|A\|_{2}\epsilon_{a}\right).

But these bounds are not materially better than these straightforwardly obtained from (4.33) and (4.34), together with MFrM2\|M\|_{\operatorname{F}}\leq\sqrt{r}\|M\|_{2} for any Mr×rM\in\mathbb{R}^{r\times r}.

Theorem 4.3.

If ηi<1/2\eta_{i}<1/2 for i=1,2i=1,2, then

Hd()\displaystyle\left\|H_{\operatorname{d}}(\cdot)\right\|_{{\cal H}_{\infty}} 2σ12(ξ1+ξ2)+2(ζ1+ζ2)+(ξ1+ξ2)ζ1+ζ2)=:ϵd,,\displaystyle\leq\sqrt{2\sigma_{1}^{2}(\xi_{1}+\xi_{2})+2(\zeta_{1}+\zeta_{2})+(\xi_{1}+\xi_{2})\zeta_{1}+\zeta_{2})}=:\epsilon_{{\operatorname{d}},\infty}, (4.37)
Hd()2\displaystyle\left\|H_{\operatorname{d}}(\cdot)\right\|_{{\cal H}_{2}} min{r,m}[σ12(B^12+B~12)B2ϵb\displaystyle\leq\sqrt{\min\{r,m\}}\left[\sigma_{1}^{2}\big{(}\big{\|}\widehat{B}_{1}\big{\|}_{2}+\big{\|}\widetilde{B}_{1}\big{\|}_{2}\big{)}\|B\|_{2}\epsilon_{b}\right.
+(2B^1T2B~12ζ1+B~1T22ζ2)]1/2=:ϵd,2,\displaystyle\hskip 56.9055pt\left.+\left(2\|\widehat{B}_{1}^{\operatorname{T}}\|_{2}\big{\|}\widetilde{B}_{1}\big{\|}_{2}\,\zeta_{1}+\|\widetilde{B}_{1}^{\operatorname{T}}\|_{2}^{2}\,\zeta_{2}\right)\right]^{1/2}=:\epsilon_{{\operatorname{d}},2}, (4.38)

where ξi\xi_{i} and ζi\zeta_{i} for i=1,2i=1,2 are defined in Lemma 4.4, and mm and pp is the numbers of columns of BB and CC, respectively.

Proof.

Recall (4.32). Noticing that

P02=2,Q02=2σ12,P0Q0=0,\displaystyle\|P_{0}\|_{2}=2,\quad\|Q_{0}\|_{2}=2\sigma_{1}^{2},\quad P_{0}Q_{0}=0,
ΔP02ΔP122+ΔP222,ΔQ02ΔQ122+ΔQ222,\displaystyle\|\Delta P_{0}\|_{2}\leq\|\Delta P_{12}\|_{2}+\|\Delta P_{22}\|_{2},\quad\|\Delta Q_{0}\|_{2}\leq\|\Delta Q_{12}\|_{2}+\|\Delta Q_{22}\|_{2},

we get

λmax(PdQd)\displaystyle\lambda_{\max}(P_{\operatorname{d}}Q_{\operatorname{d}}) PdQd2\displaystyle\leq\|P_{\operatorname{d}}Q_{\operatorname{d}}\|_{2}
P0Q0+P0ΔQ0+(ΔP0)Q0+(ΔP0)(ΔQ0)2\displaystyle\leq\|P_{0}Q_{0}+P_{0}\Delta Q_{0}+(\Delta P_{0})Q_{0}+(\Delta P_{0})(\Delta Q_{0})\|_{2}
2(ΔQ122+ΔQ222)+2σ12(ΔP122+ΔP222)\displaystyle\leq 2\left(\|\Delta Q_{12}\|_{2}+\|\Delta Q_{22}\|_{2}\right)+2\sigma_{1}^{2}\left(\|\Delta P_{12}\|_{2}+\|\Delta P_{22}\|_{2}\right)
+(ΔQ122+ΔQ222)(ΔP122+ΔP222),\displaystyle\quad+\left(\|\Delta Q_{12}\|_{2}+\|\Delta Q_{22}\|_{2}\right)\left(\|\Delta P_{12}\|_{2}+\|\Delta P_{22}\|_{2}\right),

which together with (4.33) and (4.34) lead to (4.37), upon noticing (4.31).

Next we prove (4.38). We claim that

tr(BdTQ0Bd)\displaystyle\operatorname{tr}\big{(}B_{\operatorname{d}}^{\operatorname{T}}Q_{0}B_{\operatorname{d}}\big{)} min{r,m}σ12(B^12+B~12)B2ϵb,\displaystyle\leq\min\{r,m\}\,\sigma_{1}^{2}\big{(}\big{\|}\widehat{B}_{1}\big{\|}_{2}+\big{\|}\widetilde{B}_{1}\big{\|}_{2}\big{)}\|B\|_{2}\epsilon_{b}, (4.39)
|tr(BdT[ΔQ0]Bd)|\displaystyle|\operatorname{tr}(B_{\operatorname{d}}^{\operatorname{T}}[\Delta Q_{0}]B_{\operatorname{d}})| min{r,m}(2B^1T2B~12ζ1+B~1T22ζ2).\displaystyle\leq\min\{r,m\}\left(2\|\widehat{B}_{1}^{\operatorname{T}}\|_{2}\big{\|}\widetilde{B}_{1}\big{\|}_{2}\,\zeta_{1}+\|\widetilde{B}_{1}^{\operatorname{T}}\|_{2}^{2}\,\zeta_{2}\right). (4.40)

Note that, for any square matrix MM,

tr(M)rank(M)M2.\operatorname{tr}(M)\leq\operatorname{rank}(M)\,\|M\|_{2}.

Using Theorem 4.2, we have

tr(BdTQ0Bd)\displaystyle\operatorname{tr}\big{(}B_{\operatorname{d}}^{\operatorname{T}}Q_{0}B_{\operatorname{d}}\big{)} =tr(B^1TΣ12B^12B^1TΣ12B~1+B~1TΣ12B~1)\displaystyle=\operatorname{tr}\big{(}\widehat{B}_{1}^{\operatorname{T}}\Sigma_{1}^{2}\widehat{B}_{1}-2\widehat{B}_{1}^{\operatorname{T}}\Sigma_{1}^{2}\widetilde{B}_{1}+\widetilde{B}_{1}^{\operatorname{T}}\Sigma_{1}^{2}\widetilde{B}_{1}\big{)}
=tr(B^1TΣ12[B^1B~1])+tr([B~1B^1]TΣ12B~1)\displaystyle=\operatorname{tr}\big{(}\widehat{B}_{1}^{\operatorname{T}}\Sigma_{1}^{2}[\widehat{B}_{1}-\widetilde{B}_{1}]\big{)}+\operatorname{tr}([\widetilde{B}_{1}-\widehat{B}_{1}]^{\operatorname{T}}\Sigma_{1}^{2}\widetilde{B}_{1}\big{)}
min{r,m}B^1TΣ12[B^1B~1]2+[B~1B^1]TΣ12B~12\displaystyle\leq\min\{r,m\}\big{\|}\widehat{B}_{1}^{\operatorname{T}}\Sigma_{1}^{2}[\widehat{B}_{1}-\widetilde{B}_{1}]\big{\|}_{2}+\big{\|}[\widetilde{B}_{1}-\widehat{B}_{1}]^{\operatorname{T}}\Sigma_{1}^{2}\widetilde{B}_{1}\big{\|}_{2}
min{r,m}Σ122(B^12+B~12)B^1B~12\displaystyle\leq\min\{r,m\}\big{\|}\Sigma_{1}^{2}\big{\|}_{2}\big{(}\big{\|}\widehat{B}_{1}\big{\|}_{2}+\big{\|}\widetilde{B}_{1}\big{\|}_{2}\big{)}\|\widehat{B}_{1}-\widetilde{B}_{1}\|_{2}
min{r,m}σ12(B^12+B~12)B2ϵb,\displaystyle\leq\min\{r,m\}\,\sigma_{1}^{2}\big{(}\big{\|}\widehat{B}_{1}\big{\|}_{2}+\big{\|}\widetilde{B}_{1}\big{\|}_{2}\big{)}\|B\|_{2}\epsilon_{b},

proving (4.39), and

|tr(BdT[ΔQ0]Bd)|\displaystyle|\operatorname{tr}\big{(}B_{\operatorname{d}}^{\operatorname{T}}[\Delta Q_{0}]B_{\operatorname{d}}\big{)}| =|tr(2B^1T[ΔQ12]B~1)+B~1T[ΔQ22]B~1)|\displaystyle=|\operatorname{tr}\big{(}2\widehat{B}_{1}^{\operatorname{T}}[\Delta Q_{12}]\widetilde{B}_{1}\big{)}+\widetilde{B}_{1}^{\operatorname{T}}[\Delta Q_{22}]\widetilde{B}_{1}\big{)}|
min{r,m}(2B^1T[ΔQ12]B~12+B~1T[ΔQ22]B~12)\displaystyle\leq\min\{r,m\}\left(2\big{\|}\widehat{B}_{1}^{\operatorname{T}}[\Delta Q_{12}]\widetilde{B}_{1}\big{\|}_{2}+\big{\|}\widetilde{B}_{1}^{\operatorname{T}}[\Delta Q_{22}]\widetilde{B}_{1}\big{\|}_{2}\right)
min{r,m}(2B^1T2B~12ΔQ122+B~1T22ΔQ222),\displaystyle\leq\min\{r,m\}\left(2\big{\|}\widehat{B}_{1}^{\operatorname{T}}\big{\|}_{2}\big{\|}\widetilde{B}_{1}\big{\|}_{2}\|\Delta Q_{12}\|_{2}+\big{\|}\widetilde{B}_{1}^{\operatorname{T}}\big{\|}_{2}^{2}\|\Delta Q_{22}\|_{2}\right),

yielding (4.40). With (4.39) and (4.40), we are ready to show (4.38). We have

Hd()22\displaystyle\|H_{\operatorname{d}}(\cdot)\|_{{\cal H}_{2}}^{2} =tr(BdTQdBd)=tr(BdTQ0Bd)+tr(BdT[ΔQ0]Bd)\displaystyle=\operatorname{tr}\big{(}B_{\operatorname{d}}^{\operatorname{T}}Q_{\operatorname{d}}B_{\operatorname{d}}\big{)}=\operatorname{tr}\big{(}B_{\operatorname{d}}^{\operatorname{T}}Q_{0}B_{\operatorname{d}}\big{)}+\operatorname{tr}\big{(}B_{\operatorname{d}}^{\operatorname{T}}[\Delta Q_{0}]B_{\operatorname{d}}\big{)}
min{r,m}σ12(B^12+B~12)B2ϵb\displaystyle\leq\min\{r,m\}\,\sigma_{1}^{2}\big{(}\big{\|}\widehat{B}_{1}\big{\|}_{2}+\big{\|}\widetilde{B}_{1}\big{\|}_{2}\big{)}\|B\|_{2}\epsilon_{b}
+min{r,m}(2B^1T2B~12ζ1+B~1T22ζ2),\displaystyle\quad+\min\{r,m\}\left(2\big{\|}\widehat{B}_{1}^{\operatorname{T}}\big{\|}_{2}\big{\|}\widetilde{B}_{1}\big{\|}_{2}\,\zeta_{1}+\big{\|}\widetilde{B}_{1}^{\operatorname{T}}\big{\|}_{2}^{2}\,\zeta_{2}\right),

as expected. ∎

Remark 4.5.

Alternatively, basing on the second expression in (4.31) for Hd()2\|H_{\operatorname{d}}(\cdot)\|_{{\cal H}_{2}}, we can derive a different bound. Similarly to (4.39) and (4.40), we claim that

tr(CdTP0Cd)\displaystyle\operatorname{tr}\big{(}C_{\operatorname{d}}^{\operatorname{T}}P_{0}C_{\operatorname{d}}\big{)} min{r,p}(C^12+C~12)C2ϵc,\displaystyle\leq\min\{r,p\}\big{(}\big{\|}\widehat{C}_{1}\big{\|}_{2}+\big{\|}\widetilde{C}_{1}\big{\|}_{2}\big{)}\|C\|_{2}\epsilon_{c}, (4.41)
|tr(CdT[ΔP0]Cd)|\displaystyle|\operatorname{tr}\big{(}C_{\operatorname{d}}^{\operatorname{T}}[\Delta P_{0}]C_{\operatorname{d}}\big{)}| min{r,p}(2C^1T2C~12ξ1+C~1T22ξ2).\displaystyle\leq\min\{r,p\}\left(2\big{\|}\widehat{C}_{1}^{\operatorname{T}}\big{\|}_{2}\big{\|}\widetilde{C}_{1}\big{\|}_{2}\,\xi_{1}+\big{\|}\widetilde{C}_{1}^{\operatorname{T}}\big{\|}_{2}^{2}\,\xi_{2}\right). (4.42)

They can be proven, analogously along the line we proved (4.39) and (4.40), as follows:

tr(CdTP0Cd)\displaystyle\operatorname{tr}\big{(}C_{\operatorname{d}}^{\operatorname{T}}P_{0}C_{\operatorname{d}}\big{)} min{r,p}(C^12+C~12)C^1C~12\displaystyle\leq\min\{r,p\}\big{(}\big{\|}\widehat{C}_{1}\big{\|}_{2}+\big{\|}\widetilde{C}_{1}\big{\|}_{2}\big{)}\|\widehat{C}_{1}-\widetilde{C}_{1}\|_{2}
min{r,p}(C^12+C~12)C2ϵc,\displaystyle\leq\min\{r,p\}\big{(}\big{\|}\widehat{C}_{1}\big{\|}_{2}+\big{\|}\widetilde{C}_{1}\big{\|}_{2}\big{)}\|C\|_{2}\epsilon_{c},
|tr(CdT[ΔP0]Cd)|\displaystyle|\operatorname{tr}\big{(}C_{\operatorname{d}}^{\operatorname{T}}[\Delta P_{0}]C_{\operatorname{d}}\big{)}| =|tr(2C^1T[ΔP12]C~1)+C~1T[ΔP22]C~1)|\displaystyle=|\operatorname{tr}\big{(}2\widehat{C}_{1}^{\operatorname{T}}[\Delta P_{12}]\widetilde{C}_{1}\big{)}+\widetilde{C}_{1}^{\operatorname{T}}[\Delta P_{22}]\widetilde{C}_{1}\big{)}|
min{r,m}(2C^1T[ΔP12]C~12+C~1T[ΔP22]C~12)\displaystyle\leq\min\{r,m\}\left(2\big{\|}\widehat{C}_{1}^{\operatorname{T}}[\Delta P_{12}]\widetilde{C}_{1}\big{\|}_{2}+\big{\|}\widetilde{C}_{1}^{\operatorname{T}}[\Delta P_{22}]\widetilde{C}_{1}\big{\|}_{2}\right)
min{r,m}(2C^1T2C~12ΔP122+C~1T22ΔP222).\displaystyle\leq\min\{r,m\}\left(2\big{\|}\widehat{C}_{1}^{\operatorname{T}}\big{\|}_{2}\big{\|}\widetilde{C}_{1}\big{\|}_{2}\|\Delta P_{12}\|_{2}+\big{\|}\widetilde{C}_{1}^{\operatorname{T}}\big{\|}_{2}^{2}\|\Delta P_{22}\|_{2}\right).

Finally,

Hd()22\displaystyle\|H_{\operatorname{d}}(\cdot)\|_{{\cal H}_{2}}^{2} =tr(CdTPdCd)=tr(CdTP0Cd)+tr(CdT[ΔP0]Cd)\displaystyle=\operatorname{tr}\big{(}C_{\operatorname{d}}^{\operatorname{T}}P_{\operatorname{d}}C_{\operatorname{d}}\big{)}=\operatorname{tr}\big{(}C_{\operatorname{d}}^{\operatorname{T}}P_{0}C_{\operatorname{d}}\big{)}+\operatorname{tr}\big{(}C_{\operatorname{d}}^{\operatorname{T}}[\Delta P_{0}]C_{\operatorname{d}}\big{)}
min{r,p}(C^12+C~12)C2ϵc\displaystyle\leq\min\{r,p\}\big{(}\big{\|}\widehat{C}_{1}\big{\|}_{2}+\big{\|}\widetilde{C}_{1}\big{\|}_{2}\big{)}\|C\|_{2}\epsilon_{c}
+min{r,p}(2C^1T2C~12ξ1+C~1T22ξ2),\displaystyle\quad+\min\{r,p\}\left(2\big{\|}\widehat{C}_{1}^{\operatorname{T}}\big{\|}_{2}\big{\|}\widetilde{C}_{1}\big{\|}_{2}\,\xi_{1}+\big{\|}\widetilde{C}_{1}^{\operatorname{T}}\big{\|}_{2}^{2}\,\xi_{2}\right),

yielding a different ϵd,2\epsilon_{{\operatorname{d}},2} from the one in (4.38). It is not clear which one is smaller.

Norms of the coefficient matrices for the reduced systems appear in the bounds in Theorem 4.3. They can be replaced by the norms of the corresponding coefficient matrices for the original system with the help of the next lemma.

Lemma 4.5.

For any unitarily invariant norm ui\|\cdot\|_{\operatorname{ui}}, we have

A^11uiAui\displaystyle\frac{\|\widehat{A}_{11}\|_{\operatorname{ui}}}{\|A\|_{\operatorname{ui}}} P2Q2σr,\displaystyle\leq\frac{\sqrt{\|P\|_{2}\|Q\|_{2}}}{\sigma_{r}},\quad A~11uiAui\displaystyle\frac{\|\widetilde{A}_{11}\|_{\operatorname{ui}}}{\|A\|_{\operatorname{ui}}} P2Q2σr+ϵa,\displaystyle\leq\frac{\sqrt{\|P\|_{2}\|Q\|_{2}}}{\sigma_{r}}+\epsilon_{a}, (4.43a)
B^1uiBui\displaystyle\frac{\big{\|}\widehat{B}_{1}\big{\|}_{\operatorname{ui}}}{\|B\|_{\operatorname{ui}}} Q2σr,\displaystyle\leq\frac{\sqrt{\|Q\|_{2}}}{\sigma_{r}},\quad B~1uiBui\displaystyle\frac{\big{\|}\widetilde{B}_{1}\big{\|}_{\operatorname{ui}}}{\|B\|_{\operatorname{ui}}} Q2σr+ϵb,\displaystyle\leq\frac{\sqrt{\|Q\|_{2}}}{\sigma_{r}}+\epsilon_{b}, (4.43b)
C^1uiCui\displaystyle\frac{\big{\|}\widehat{C}_{1}\big{\|}_{\operatorname{ui}}}{\|C\|_{\operatorname{ui}}} P2,\displaystyle\leq\sqrt{\|P\|_{2}},\quad C^1uiCui\displaystyle\frac{\big{\|}\widehat{C}_{1}\big{\|}_{\operatorname{ui}}}{\|C\|_{\operatorname{ui}}} P2+ϵc,\displaystyle\leq\sqrt{\|P\|_{2}}+\epsilon_{c}, (4.43c)

where ϵa\epsilon_{a}, ϵb\epsilon_{b}, and ϵc\epsilon_{c} are as in (4.23).

Proof.

We have by (2.20)

A^11ui=Y1TAX1ui\displaystyle\big{\|}\widehat{A}_{11}\big{\|}_{\operatorname{ui}}=\big{\|}Y_{1}^{\operatorname{T}}AX_{1}\big{\|}_{\operatorname{ui}} Y1T2AuiX12\displaystyle\leq\big{\|}Y_{1}^{\operatorname{T}}\big{\|}_{2}\|A\|_{\operatorname{ui}}\|X_{1}\|_{2}
R2Σ112AuiS2\displaystyle\leq\|R\|_{2}\big{\|}\Sigma_{1}^{-1}\big{\|}_{2}\|A\|_{\operatorname{ui}}\|S\|_{2}
=P2Q2σrAui,\displaystyle=\frac{\sqrt{\|P\|_{2}\|Q\|_{2}}}{\sigma_{r}}\,\|A\|_{\operatorname{ui}},
B^1ui=Y1TBui\displaystyle\big{\|}\widehat{B}_{1}\big{\|}_{\operatorname{ui}}=\|Y_{1}^{\operatorname{T}}B\|_{\operatorname{ui}} Q2σrBui,\displaystyle\leq\frac{\sqrt{\|Q\|_{2}}}{\sigma_{r}}\,\|B\|_{\operatorname{ui}},
C^1ui=Y1TCui\displaystyle\big{\|}\widehat{C}_{1}\big{\|}_{\operatorname{ui}}=\|Y_{1}^{\operatorname{T}}C\|_{\operatorname{ui}} P2Cui,\displaystyle\leq\sqrt{\|P\|_{2}}\,\|C\|_{\operatorname{ui}},

Therefore

A~11uiA^11ui+A~11A^11ui(P2Q2σr+ϵa)Aui,\big{\|}\widetilde{A}_{11}\big{\|}_{\operatorname{ui}}\leq\big{\|}\widehat{A}_{11}\big{\|}_{\operatorname{ui}}+\big{\|}\widetilde{A}_{11}-\widehat{A}_{11}\big{\|}_{\operatorname{ui}}\leq\left(\frac{\sqrt{\|P\|_{2}\|Q\|_{2}}}{\sigma_{r}}+\epsilon_{a}\right)\|A\|_{\operatorname{ui}},

and similarly for B~1ui\big{\|}\widetilde{B}_{1}\big{\|}_{\operatorname{ui}} and C~1ui\big{\|}\widetilde{C}_{1}\big{\|}_{\operatorname{ui}}. The proofs of the other two inequalities are similar. ∎

4.3 Transfer function for approximate balanced truncation

In this subsection, we establish bounds to measure the quality of the reduced system (3.4) from approximate balanced truncation as an approximation to the original system (1.1). Even though the projection matrices X~1,Y~1\widetilde{X}_{1},\,\widetilde{Y}_{1} we used for approximate balanced truncation are different from the ones in practice, the transfer function as a result remains the same, nonetheless. Therefore our bounds are applicable in real applications. These bounds are the immediate consequences of Theorem 4.3 upon using

H()H~bt()H()Hbt()+Hbt()H~bt()\big{\|}H(\cdot)-\widetilde{H}_{\operatorname{bt}}(\cdot)\big{\|}\leq\big{\|}H(\cdot)-H_{\operatorname{bt}}(\cdot)\big{\|}+\big{\|}H_{\operatorname{bt}}(\cdot)-\widetilde{H}_{\operatorname{bt}}(\cdot)\big{\|}

for =\|\cdot\|=\|\cdot\|_{{\cal H}_{\infty}} and 2\|\cdot\|_{{\cal H}_{2}}.

Theorem 4.4.

Under the conditions of Theorem 4.3, we have

H()H~bt()\displaystyle\big{\|}H(\cdot)-\widetilde{H}_{\operatorname{bt}}(\cdot)\big{\|}_{{\cal H}_{\infty}} 2k=r+1nσk+ϵd,,\displaystyle\leq 2\sum_{k=r+1}^{n}\sigma_{k}+\epsilon_{{\operatorname{d}},\infty}, (4.44)
H()H~bt()2\displaystyle\big{\|}H(\cdot)-\widetilde{H}_{\operatorname{bt}}(\cdot)\big{\|}_{{\cal H}_{2}} H()Hbt()2+ϵd,2,\displaystyle\leq\big{\|}H(\cdot)-H_{\operatorname{bt}}(\cdot)\big{\|}_{{\cal H}_{2}}+\epsilon_{{\operatorname{d}},2}, (4.45)

where ϵd,\epsilon_{{\operatorname{d}},\infty} and ϵd,2\epsilon_{{\operatorname{d}},2} are as in Theorem 4.3.

An immediate explanation to both inequalities (4.44) and (4.45) is that the reduced system (3.4) from the approximate balanced reduction as an approximation to the original system (1.1) is worse than the one from the true balanced reduction by no more than ϵd,\epsilon_{{\operatorname{d}},\infty} and ϵd,2\epsilon_{{\operatorname{d}},2} in terms of the {\cal H}_{\infty}- and 2{\cal H}_{2}-norm, respectively. Both ϵd,\epsilon_{{\operatorname{d}},\infty} and ϵd,2\epsilon_{{\operatorname{d}},2} can be traced back to the initial approximation errors ϵ1\epsilon_{1} and ϵ2\epsilon_{2} in the computed Gramians as specified in (4.1) albeit complicatedly. To better understand what ϵd,\epsilon_{{\operatorname{d}},\infty} and ϵd,2\epsilon_{{\operatorname{d}},2} are in terms of ϵ1\epsilon_{1} and ϵ2\epsilon_{2}, we summarize all quantities that lead to them, up to the first order in

ϵ:=max{ϵ1,ϵ2}.\epsilon_{\operatorname{}}:=\max\{\epsilon_{1},\epsilon_{2}\}.

Then ερϵ+ϵ\varepsilon\leq\rho\sqrt{\epsilon_{\operatorname{}}}+\epsilon_{\operatorname{}} in (4.6). Let ρ=max{P2,Q2}\rho=\max\big{\{}\sqrt{\|P\|_{2}},\sqrt{\|Q\|_{2}}\big{\}}. We have

ϵx\displaystyle\epsilon_{x} (1+2ρ2δ)ϵ+O(ϵ),\displaystyle\leq\left(1+\frac{2\rho^{2}}{\delta}\right)\sqrt{\epsilon_{\operatorname{}}}+O(\epsilon_{\operatorname{}}), (see (4.22))\displaystyle\quad(\mbox{see \eqref{eq:diff(X1Y1):BTaBT}})
ϵy\displaystyle\epsilon_{y} 1σr[1+(1+δ2σr+2σ1σr)2ρ2δ]ϵ+O(ϵ),\displaystyle\leq\frac{1}{\sigma_{r}}\left[1+\left(1+\frac{\delta}{2\sigma_{r}}+\frac{2\sigma_{1}}{\sigma_{r}}\right)\,\frac{2\rho^{2}}{\delta}\right]\sqrt{\epsilon_{\operatorname{}}}+O(\epsilon_{\operatorname{}}), (see (4.22))\displaystyle\quad(\mbox{see \eqref{eq:diff(X1Y1):BTaBT}})
ϵa\displaystyle\epsilon_{a} ρσrϵx+ρϵy,\displaystyle\leq\frac{\rho}{\sigma_{r}}\epsilon_{x}+\rho\epsilon_{y}, (see (4.23))\displaystyle\quad(\mbox{see \eqref{eq:diff(ABC):BTaBT}})
ϵb\displaystyle\epsilon_{b} =ϵy,\displaystyle=\epsilon_{y}, (see (4.23))\displaystyle\quad(\mbox{see \eqref{eq:diff(ABC):BTaBT}})
ϵc\displaystyle\epsilon_{c} =ϵx,\displaystyle=\epsilon_{x}, (see (4.23))\displaystyle\quad(\mbox{see \eqref{eq:diff(ABC):BTaBT}})
ϵb2\displaystyle\epsilon_{b2} =2ρσrϵy+O(ϵ),\displaystyle=\frac{2\rho}{\sigma_{r}}\,\epsilon_{y}+O(\epsilon_{\operatorname{}}), (see (4.24))\displaystyle\quad(\mbox{see \eqref{eq:diff(BBCC):BTaBT}})
ϵc2\displaystyle\epsilon_{c2} =2ρϵx,\displaystyle=2\rho\epsilon_{x}, (see (4.24))\displaystyle\quad(\mbox{see \eqref{eq:diff(BBCC):BTaBT}})
ξ1\displaystyle\xi_{1} K12(A2ϵa+ρσrB22ϵb)+O(ϵ),\displaystyle\leq\|K_{1}\|_{2}\left(\|A\|_{2}\epsilon_{a}+\frac{\rho}{\sigma_{r}}\|B\|_{2}^{2}\epsilon_{b}\right)+O(\epsilon_{\operatorname{}}), (see (4.33))\displaystyle\quad(\mbox{see \eqref{eq:bd4Pd}})
ξ2\displaystyle\xi_{2} K12(2A2ϵa+B22ϵb2)+O(ϵ),\displaystyle\leq\|K_{1}\|_{2}\left(2\|A\|_{2}\epsilon_{a}+\|B\|_{2}^{2}\epsilon_{b2}\right)+O(\epsilon_{\operatorname{}}), (see (4.33))\displaystyle\quad(\mbox{see \eqref{eq:bd4Pd}})
ζ1\displaystyle\zeta_{1} K22(A2ϵa+ρC22ϵc)+O(ϵ),\displaystyle\leq\|K_{2}\|_{2}\left(\|A\|_{2}\epsilon_{a}+{\rho}\|C\|_{2}^{2}\epsilon_{c}\right)+O(\epsilon_{\operatorname{}}), (see (4.34))\displaystyle\quad(\mbox{see \eqref{eq:bd4Qd}})
ζ2\displaystyle\zeta_{2} K22(2A2ϵa+C22ϵc2)+O(ϵ),\displaystyle\leq\|K_{2}\|_{2}\left(2\|A\|_{2}\epsilon_{a}+\|C\|_{2}^{2}\epsilon_{c2}\right)+O(\epsilon_{\operatorname{}}), (see (4.34))\displaystyle\quad(\mbox{see \eqref{eq:bd4Qd}})
ϵd,\displaystyle\epsilon_{{\operatorname{d}},\infty} =2σ12(ξ1+ξ2)+2(ζ1+ζ2)+O(ϵ),\displaystyle=\sqrt{2\sigma_{1}^{2}(\xi_{1}+\xi_{2})+2(\zeta_{1}+\zeta_{2})}+O(\sqrt{\epsilon_{\operatorname{}}}), (see (4.37))\displaystyle\quad(\mbox{see \eqref{eq:bd4Hd}})
ϵd,2\displaystyle\epsilon_{{\operatorname{d}},2} min{r,m}B2[2σ12ρσrϵb+(ρσr)2(2ζ1+ζ2)]1/2+O(ϵ).\displaystyle\leq\sqrt{\min\{r,m\}}\|B\|_{2}\left[2\sigma_{1}^{2}\frac{\rho}{\sigma_{r}}\epsilon_{b}+\left(\frac{\rho}{\sigma_{r}}\right)^{2}\big{(}2\zeta_{1}+\zeta_{2}\big{)}\right]^{1/2}+O(\sqrt{\epsilon_{\operatorname{}}}). (see (4.38))\displaystyle\quad(\mbox{see \eqref{eq:bd4Hd:nrmH2}})

Alternatively, for ϵd,2\epsilon_{{\operatorname{d}},2}, also by Remark 4.5

ϵd,2min{r,p}C2[2ρϵb+ρ2(2ξ1+ξ2)]1/2+O(ϵ).\epsilon_{{\operatorname{d}},2}\leq\sqrt{\min\{r,p\}}\|C\|_{2}\left[2\rho\epsilon_{b}+\rho^{2}\big{(}2\xi_{1}+\xi_{2}\big{)}\right]^{1/2}+O(\sqrt{\epsilon_{\operatorname{}}}).

It can be seen that both ϵd,\epsilon_{{\operatorname{d}},\infty} and ϵd,2\epsilon_{{\operatorname{d}},2} are of O(ϵ1/4)O(\epsilon_{\operatorname{}}^{1/4}), pretty disappointing.

5 Concluding Remarks

For a continuous linear time-invariant dynamic system, the existing global error bound that bounds the error between a reduced model via balanced truncation and the original dynamic system assumes that the reduced model is constructed from two exact controllability and observability Gramians. But in practice, the Gramians are usually approximated by some computed low-rank approximations, especially when the original dynamic system is large scale. Thus, rigorously speaking, the existing global error bound, although indicative about the accuracy in the reduced system, is not really applicable. In this paper, we perform an error analysis, assuming the reduced model is constructed from two low-rank approximations of the Gramians, making up the deficiency in the current theory for measuring the quality of the reduced model obtained by approximate balanced truncation. Error bounds have been obtained for the purpose.

So far, we have been focused on continuous linear time-invariant dynamic systems, but our techniques should be extendable to discrete time-invariant dynamic systems without much difficulty.

Throughout this paper, our presentation is restricted to the real number field \mathbb{R}. This restriction is more for simplicity and clarity than the capability of our techniques. In fact, our approach can be straightforwardly modified to cover the complex number case: replace all transposes ()T(\cdot)^{\operatorname{T}} of vectors/matrices with complex conjugate transposes ()H(\cdot)^{\operatorname{H}}.

Appendix

Appendix A Some results on subspaces

Consider two subspaces 𝒰{\cal U} and 𝒰~\widetilde{\cal U} with dimension rr of n{\mathbb{R}}^{n} and let Un×rU\in{\mathbb{R}}^{n\times r} and U~n×r\widetilde{U}\in{\mathbb{R}}^{n\times r} be orthonormal basis matrices of 𝒰{\cal U} and 𝒰{\cal U}, respectively, i.e.,

UTU=Ir,𝒰=(U),andU~TU~=Ir,𝒰~=(U~),U^{\operatorname{T}}U=I_{r},\,{\cal U}={\cal R}(U),\quad\mbox{and}\quad\widetilde{U}^{\operatorname{T}}\widetilde{U}=I_{r},\,\widetilde{\cal U}={\cal R}(\widetilde{U}),

and denote by τj\tau_{j} for 1jr1\leq j\leq r in the descending order, i.e., τ1τr\tau_{1}\geq\cdots\geq\tau_{r}, the singular values of U~TU\widetilde{U}^{\operatorname{T}}U. The rr canonical angles θj(𝒰,𝒰~)\theta_{j}({\cal U},{\cal\widetilde{U}}) between 𝒰{\cal U} to 𝒰~{\cal\widetilde{U}} are defined by

0θj(𝒰,𝒰~):=arccosτjπ2for 1jr.0\leq\theta_{j}({\cal U},{\cal\widetilde{U}}):=\arccos\tau_{j}\leq\frac{\pi}{2}\quad\mbox{for $1\leq j\leq r$}.

They are in the ascending order, i.e., θ1(𝒰,𝒰~)θr(𝒰,𝒰~)\theta_{1}({\cal U},{\cal\widetilde{U}})\leq\cdots\leq\theta_{r}({\cal U},{\cal\widetilde{U}}). Set

Θ(𝒰,𝒰~)=diag(θ1(𝒰,𝒰~),,θr(𝒰,𝒰~)).\Theta({\cal U},{\cal\widetilde{U}})=\operatorname{diag}(\theta_{1}({\cal U},{\cal\widetilde{U}}),\ldots,\theta_{r}({\cal U},{\cal\widetilde{U}})).

It can be seen that these angles are independent of the orthonormal basis matrices UU and U~\widetilde{U} which are not unique.

We sometimes place a matrix in one of or both arguments of θj(,)\theta_{j}(\,\cdot\,,\,\cdot\,) and Θ(,)\Theta(\,\cdot\,,\,\cdot\,) with an understanding that it is about the subspace spanned by the columns of the matrix argument.

It is known that sinΘ(𝒰,𝒰~)2\|\sin\Theta({\cal U},{\cal\widetilde{U}})\|_{2} defines a distance metric between 𝒰{\cal U} and 𝒰~{\cal\widetilde{U}} [24, p.95].

The next two lemmas and their proofs are about how to pick up two bi-orthogonal basis matrices of two subspaces with acute canonical angles. The results provide a foundation to some of our argument in the paper.

Lemma A.1.

Let 𝒳1{\cal X}_{1} and 𝒴1{\cal Y}_{1} be two subspaces with dimension rr of n{\mathbb{R}}^{n}. Then

sinΘ(𝒳1,𝒴1)2<1\|\sin\Theta({\cal X}_{1},{\cal Y}_{1})\|_{2}<1

if and only if Y1TX1Y_{1}^{\operatorname{T}}X_{1} is nonsingular for any two basis matrices X1,Y1n×rX_{1},\,Y_{1}\in\mathbb{R}^{n\times r} of 𝒳1{\cal X}_{1} and 𝒴1{\cal Y}_{1}, respectively.

Proof.

Suppose that sinΘ(𝒳1,𝒴1)2<1\|\sin\Theta({\cal X}_{1},{\cal Y}_{1})\|_{2}<1, and let X1,Y1n×rX_{1},\,Y_{1}\in\mathbb{R}^{n\times r} be basis matrices of 𝒳1{\cal X}_{1} and 𝒴1{\cal Y}_{1}, respectively. Then

U=X1(X1TX1)1/2,U~=Y1(Y1TY1)1/2U=X_{1}(X_{1}^{\operatorname{T}}X_{1})^{-1/2},\quad\widetilde{U}=Y_{1}(Y_{1}^{\operatorname{T}}Y_{1})^{-1/2} (A.1)

are two orthonormal basis matrices of 𝒳1{\cal X}_{1} and 𝒴1{\cal Y}_{1}, respectively. The singular values of U~TU\widetilde{U}^{\operatorname{T}}U are cosθj(𝒳1,𝒴1)\cos\theta_{j}({\cal X}_{1},{\cal Y}_{1}) for 1jr1\leq j\leq r which are positive because sinΘ(𝒳1,𝒴1)2<1\|\sin\Theta({\cal X}_{1},{\cal Y}_{1})\|_{2}<1, and hence U~TU\widetilde{U}^{\operatorname{T}}U is nonsingular, and since

U~TU=(Y1TY1)1/2Y1TX1(X1TX1)1/2,\widetilde{U}^{\operatorname{T}}U=(Y_{1}^{\operatorname{T}}Y_{1})^{-1/2}Y_{1}^{\operatorname{T}}X_{1}(X_{1}^{\operatorname{T}}X_{1})^{-1/2}, (A.2)

Y1TX1Y_{1}^{\operatorname{T}}X_{1} is nonsingular.

Conversely, let X1,Y1n×rX_{1},\,Y_{1}\in\mathbb{R}^{n\times r} be basis matrices of 𝒳1{\cal X}_{1} and 𝒴1{\cal Y}_{1}, respectively, and suppose that Y1TX1Y_{1}^{\operatorname{T}}X_{1} is nonsingular. Set UU and U~\widetilde{U} as in (A.1). Then U~TU\widetilde{U}^{\operatorname{T}}U is nonsingular by (A.2), which means cosθj(𝒳1,𝒴1)>0\cos\theta_{j}({\cal X}_{1},{\cal Y}_{1})>0 for 1jr1\leq j\leq r, implying

sinΘ(𝒳1,𝒴1)2=maxj1cos2θj(𝒳1,𝒴1)<1,\|\sin\Theta({\cal X}_{1},{\cal Y}_{1})\|_{2}=\max_{j}\sqrt{1-\cos^{2}\theta_{j}({\cal X}_{1},{\cal Y}_{1})}<1,

as was to be shown. ∎

Lemma A.2.

Let 𝒳1{\cal X}_{1} and 𝒴1{\cal Y}_{1} be two subspaces with dimension rr of n{\mathbb{R}}^{n} and suppose that sinΘ(𝒳1,𝒴1)2<1\|\sin\Theta({\cal X}_{1},{\cal Y}_{1})\|_{2}<1, i.e., the canonical angles between the two subspaces are acute.

  1. (a)

    There exist basis matrices X1,Y1n×rX_{1},\,Y_{1}\in\mathbb{R}^{n\times r} of 𝒳1{\cal X}_{1} and 𝒴1{\cal Y}_{1}, respectively, such that Y1TX1=IrY_{1}^{\operatorname{T}}X_{1}=I_{r};

  2. (b)

    Given a basis matrix X1n×rX_{1}\in\mathbb{R}^{n\times r} of 𝒳1{\cal X}_{1}, there exists a basis matrix Y1n×rY_{1}\in\mathbb{R}^{n\times r} of 𝒴1{\cal Y}_{1} such that Y1TX1=IrY_{1}^{\operatorname{T}}X_{1}=I_{r};

  3. (c)

    Given basis matrices X1,Y1n×rX_{1},\,Y_{1}\in\mathbb{R}^{n\times r} of 𝒳1{\cal X}_{1} and 𝒴1{\cal Y}_{1}, respectively, such that Y1TX1=IrY_{1}^{\operatorname{T}}X_{1}=I_{r}, there exist matrices X2,Y2n×(nr)X_{2},\,Y_{2}\in\mathbb{R}^{n\times(n-r)} such that

    [Y1,Y2]T[X1,X2]=[Y1TX1Y1TX2Y2TX1Y2TX2]=In.[Y_{1},Y_{2}]^{\operatorname{T}}[X_{1},X_{2}]=\begin{bmatrix}Y_{1}^{\operatorname{T}}X_{1}&Y_{1}^{\operatorname{T}}X_{2}\\ Y_{2}^{\operatorname{T}}X_{1}&Y_{2}^{\operatorname{T}}X_{2}\end{bmatrix}=I_{n}.
Proof.

For item (a), first we pick two orthonormal basis matrices U,U~n×rU,\,\widetilde{U}\in\mathbb{R}^{n\times r} of 𝒳1{\cal X}_{1} and 𝒴1{\cal Y}_{1}, respectively. The assumption sinΘ(𝒳1,𝒴1)2<1\|\sin\Theta({\cal X}_{1},{\cal Y}_{1})\|_{2}<1 implies that the singular values of U~TU\widetilde{U}^{\operatorname{T}}U are cosθj(𝒳1,𝒴2)\cos\theta_{j}({\cal X}_{1},{\cal Y}_{2}) for 1jr1\leq j\leq r are positive, and hence U~TU\widetilde{U}^{\operatorname{T}}U is nonsingular. Now take X1=U(U~TU)1X_{1}=U(\widetilde{U}^{\operatorname{T}}U)^{-1} and Y1=U~Y_{1}=\widetilde{U}.

For item (b), we note U=X1(X1TX1)1/2U=X_{1}(X_{1}^{\operatorname{T}}X_{1})^{-1/2} is an orthonormal basis matrix of 𝒳1{\cal X}_{1}. Let U~\widetilde{U} be an orthonormal basis matrix of 𝒴1{\cal Y}_{1}. As we just argued,

U~TU=(U~TX1)(X1TX1)1/2\widetilde{U}^{\operatorname{T}}U=(\widetilde{U}^{\operatorname{T}}X_{1})(X_{1}^{\operatorname{T}}X_{1})^{-1/2}

is nonsingular, implying U~TX1\widetilde{U}^{\operatorname{T}}X_{1} is nonsingular. Now take Y1=U~(U~TX1)TY_{1}=\widetilde{U}(\widetilde{U}^{\operatorname{T}}X_{1})^{-\operatorname{T}}.

Finally for item (c), let V~,Vn×(nr)\widetilde{V},\,V\in\mathbb{R}^{n\times(n-r)} be any orthonormal basis matrices of 𝒳1{\cal X}_{1}^{\bot} and 𝒴1{\cal Y}_{1}^{\bot}, the orthogonal complements of 𝒳1{\cal X}_{1} and 𝒴1{\cal Y}_{1}, respectively, i.e.,

V~TV~=VTV=Inr,V~TX1=VTY1=0.\widetilde{V}^{\operatorname{T}}\widetilde{V}=V^{\operatorname{T}}V=I_{n-r},\quad\widetilde{V}^{\operatorname{T}}X_{1}=V^{\operatorname{T}}Y_{1}=0.

We claim that X:=[X1,V]n×nX:=[X_{1},V]\in\mathbb{R}^{n\times n} is nonsingular; otherwise there exists

0𝒙=[𝒛𝒚],𝒛r,𝒚nr0\neq\boldsymbol{x}=\begin{bmatrix}\boldsymbol{z}\\ \boldsymbol{y}\end{bmatrix},\quad\boldsymbol{z}\in\mathbb{R}^{r},\,\,\boldsymbol{y}\in\mathbb{R}^{n-r}

such that X𝒙=0X\boldsymbol{x}=0, i.e., X1𝒛+V𝒚=0X_{1}\boldsymbol{z}+V\boldsymbol{y}=0, pre-multiplying which by Y1TY_{1}^{\operatorname{T}} leads to 𝒛=0\boldsymbol{z}=0, which implies V𝒚=0V\boldsymbol{y}=0, which implies 𝒚=0\boldsymbol{y}=0 because VV is an orthonormal basis matrix of 𝒴1{\cal Y}_{1}^{\bot}, which says 𝒙=0\boldsymbol{x}=0, a contradiction. Similarly, we know Y:=[Y1,V~]n×nY:=[Y_{1},\widetilde{V}]\in\mathbb{R}^{n\times n} is nonsingular, and so is

YTX=[Y1,V~]T[X1,V]=[Y1TX1Y1TVV~TX1V~TV]=[Ir00V~TV],Y^{\operatorname{T}}X=[Y_{1},\widetilde{V}]^{\operatorname{T}}[X_{1},V]=\begin{bmatrix}Y_{1}^{\operatorname{T}}X_{1}&Y_{1}^{\operatorname{T}}V\\ \widetilde{V}^{\operatorname{T}}X_{1}&\widetilde{V}^{\operatorname{T}}V\end{bmatrix}=\begin{bmatrix}I_{r}&0\\ 0&\widetilde{V}^{\operatorname{T}}V\end{bmatrix},

implying V~TV\widetilde{V}^{\operatorname{T}}V is nonsingular. Now take X2=V(V~TV)1X_{2}=V(\widetilde{V}^{\operatorname{T}}V)^{-1} and Y2=V~Y_{2}=\widetilde{V}. ∎

Appendix B Perturbation for Lyapunov equation

In this section, we will establish a lemma on the change of the solution to

AHX+XA+W=0A^{\operatorname{H}}X+XA+W=0 (B.1)

subject to perturbations to AA and WW, along the technical line of [13], where WW may not necessarily be Hermitian. It is known as the Lyapunov equation if WW is Hermitian, but here it may not be. The result in the lemma below is used during our intermediate estimates of transfer function. In conforming to [13], we will state the result for complex matrices: n×n\mathbb{C}^{n\times n} is the set of all nn-by-nn complex matrices and AHA^{\operatorname{H}} denotes the complex conjugate of AA.

Lemma B.1.

Suppose that An×nA\in\mathbb{C}^{n\times n} is stable, i.e., all of its eigenvalues are located in the left half of the complex plane, and let

K=0eAHteAt𝑑t,K=\int_{0}^{\infty}e^{A^{\operatorname{H}}t}e^{At}dt,

which is the unique solution to the Lyapunov equation AHX+XA+In=0A^{\operatorname{H}}X+XA+I_{n}=0. Let Wn×nW\in\mathbb{C}^{n\times n} (not necessarily Hermitian) and Xn×nX\in\mathbb{C}^{n\times n} is the solution to the matrix equation (B.1). Perturb AA and WW to A+ΔAiA+\Delta A_{i} (i=1,2i=1,2) and W+ΔWW+\Delta W, respectively, and suppose that the perturbed equation

(A+ΔA1)H(X+ΔX)+(X+ΔX)(A+ΔA2)+(W+ΔW)=0,(A+\Delta A_{1})^{\operatorname{H}}(X+\Delta X)+(X+\Delta X)(A+\Delta A_{2})+(W+\Delta W)=0, (B.2)

has a solution X+ΔXX+\Delta X, where the trivial case either A=0A=0 or W=0W=0 is excluded. If

η:=K2i=12ΔAi2<1,\eta:=\|K\|_{2}\sum_{i=1}^{2}{\|\Delta A_{i}\|_{2}}<1, (B.3)

then for any unitarily invariant norm ui\|\cdot\|_{\operatorname{ui}}

ΔXuiK21η(ΔWui+Xuii=12ΔAi2).\|\Delta X\|_{\operatorname{ui}}\leq\frac{\|K\|_{2}}{1-\eta}\left(\|\Delta W\|_{\operatorname{ui}}+\|X\|_{\operatorname{ui}}\sum_{i=1}^{2}\|\Delta A_{i}\|_{2}\right). (B.4)

Equation (B.1) is not necessarily a Lyapunov equation because WW is allowed non-Hermitian, not to mention (B.2) for which two different perturbations are allowed to AA at its two occurrences. Equation (B.1) has a unique solution XX because AA is assumed stable, but a solution to the perturbed equation (B.2) is assumed to exist. It is not clear if the assumption (B.3) ensures both A+ΔAiA+\Delta A_{i} for i=1,2i=1,2 are stable and thereby guarantees that (B.2) has a unique solution, too, something worthy further investigation.

Proof of Lemma B.1.

Modifying the proof of [13, Theorem 2.1], instead of [13, Ineq. (2.11)] there, we have

ΔXui(ΔWui+i=12ΔAi2[Xui+ΔXui])K2,\|\Delta X\|_{\operatorname{ui}}\leq\left(\|\Delta W\|_{\operatorname{ui}}+\sum_{i=1}^{2}\|\Delta A_{i}\|_{2}\big{[}\|X\|_{\operatorname{ui}}+\|\Delta X\|_{\operatorname{ui}}\big{]}\right)\|K\|_{2},

yielding (B.4). ∎

In [13] for the case ΔAi\Delta A_{i} for i=1,2i=1,2 are the same and denoted by ΔA\Delta A, under the condition of Lemma B.1 but without assuming (B.3), it is proved that

ΔX2X+ΔX22A+ΔA2K2(ΔA2A+ΔA2+ΔW2W+ΔW2),\frac{\|\Delta X\|_{2}}{\|X+\Delta X\|_{2}}\leq 2\|A+\Delta A\|_{2}\|K\|_{2}\left(\frac{\|\Delta A\|_{2}}{\|A+\Delta A\|_{2}}+\frac{\|\Delta W\|_{2}}{\|W+\Delta W\|_{2}}\right), (B.5)

elegantly formulated in such a way that all changes are measured relatively. We can achieve the same thing, too. In fact, under the condition of Lemma B.1 but without assuming (B.3), it can be shown that

ΔXuiX+ΔXuii=12A+ΔAi2K2(ΔAi2A+ΔAi2+ΔWuiW+ΔWui).\frac{\|\Delta X\|_{\operatorname{ui}}}{\|X+\Delta X\|_{\operatorname{ui}}}\leq\sum_{i=1}^{2}\|A+\Delta A_{i}\|_{2}\|K\|_{2}\left(\frac{\|\Delta A_{i}\|_{2}}{\|A+\Delta A_{i}\|_{2}}+\frac{\|\Delta W\|_{\operatorname{ui}}}{\|W+\Delta W\|_{\operatorname{ui}}}\right). (B.6)

But, as we argued at the beginning, (B.4) is more convenient for us to use in our intermediate estimations.

References

  • [1] B. D. O. Anderson and J. B. Moore. Linear Optimal Control. Prentice-Hall, Englewood Cliffs, 1971.
  • [2] A. C. Antoulas. Approximation of Large-Scale Dynamical Systems. Advances in Design and Control. SIAM, Philadelphia, PA, 2005.
  • [3] A. C. Antoulas, D. C. Sorensen, and S. Gugercin. A survey of model reduction methods for large-scale systems. In Vadim Olshevsky, editor, Structured Matrices in Mathematics, Computer Science, and Engineering I: Proceedings of an AMS-IMS-SIAM joint summer research conference, University of Colorado, Boulder, June 27-July 1, 1999, volume 280 of Contemporary Mathematics, pages 193–219. American Mathematical Society, Providence, Rhode Island, 2001.
  • [4] A. C. Antoulas, D. C. Sorensen, and Y. Zhou. On the decay rate of Hankel singular values and related issues. Sys. Contr. Lett., 46(5):323–342, August 2002.
  • [5] Zhaojun Bai. Krylov subspace techniques for reduced-order modeling of large-scale dynamical systems. Appl. Numer. Math., 43:9–44, 2002.
  • [6] Jonathan Baker, Mark Embree, and John Sabino. Fast singular value decay for Lyapunov solutions with nonnormal coefficients. SIAM J. Matrix Anal. Appl., 36(2):656–668, 2015.
  • [7] R. H. Bartels and G. W. Stewart. Algorithm 432: The solution of the matrix equation AXBX=CAX-BX=C. Commun. ACM, 8:820–826, 1972.
  • [8] Bernhard Beckermann and Alex Townsend. Bounds on the singular values of matrices with displacement structure. SIAM Rev., 61(2):319–344, 2019.
  • [9] Peter Benner, R.-C. Li, and Ninoslav Truhar. On ADI method for Sylvester equations. J. Comput. Appl. Math., 233(4):1035–1045, 2009.
  • [10] Peter Benner, Mario Ohlberger, Albert Cohen, and Karen Willcox, editors. Model Reduction and Approximation: Theory and Algorithms. Computational Science & Engineering. SIAM, Philadelphia, 2017.
  • [11] Roland W. Freund. Model reduction methods based on Krylov subspaces. Acta Numer., 12:267–319, 2003.
  • [12] Serkan Gugercin and Athanasios C. Antoulas. A survey of model reduction by balanced truncation and some new results. Int. J. Control, 77(8):748–766, 2004.
  • [13] C. Hewer and C. Kenney. The sensitivity of the stable Lyapunov equation. SIAM J. Control Optim., 26:321–344, 1988.
  • [14] Jing-Rebecca Li and Jacob White. Low-rank solution of Lyapunov equations. SIAM J. Matrix Anal. Appl., 24(1):260–280, 2002.
  • [15] Jing-Rebecca Li and Jacob White. Low-rank solution of Lyapunov equations. SIAM Rev., 46(4):693–713, 2004.
  • [16] R.-C. Li. Matrix perturbation theory. In L. Hogben, R. Brualdi, and G. W. Stewart, editors, Handbook of Linear Algebra, page Chapter 21. CRC Press, Boca Raton, FL, 2nd edition, 2014.
  • [17] R.-C. Li and Z. Bai. Structure-preserving model reduction using a Krylov subspace projection formulation. Comm. Math. Sci., 3(2):179–199, 2005.
  • [18] R.-C. Li and L.-H. Zhang. Convergence of block Lanczos method for eigenvalue clusters. Numer. Math., 131:83–113, 2015.
  • [19] Ren-Cang Li, Ninoslav Truhar, and Lei-Hong Zhang. On Stewart’s perturbation theorem for svd. Ann. Math. Sci. Appl., 2024. to appear.
  • [20] Thilo Penzl. Eigenvalue decay bounds for solutions of Lyapunov equations: the symmetric case. Sys. Contr. Lett., 40(2):139–144, June 2000.
  • [21] J. Sabino. Solution of Large-Scale Lyapunov Equations via the Block Modified Smith Method. PhD thesis, Rice University, Houston, Texas, 2006.
  • [22] D.C. Sorensen and A.C. Antoulas. The Sylvester equation and approximate balanced reduction. Linear Algebra Appl., 351-352:671–700, 2002.
  • [23] G. W. Stewart and J.-G. Sun. Matrix Perturbation Theory. Academic Press, Boston, 1990.
  • [24] Ji-Guang Sun. Matrix Perturbation Analysis. Academic Press, Beijing, 1987. In Chinese.
  • [25] Kemin Zhou, John C. Doyle, and Keith Glover. Robust and Optimal Control. Prentice Hall, Upper Saddle River, New Jersey, 1995.