This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

11institutetext: Nguyen Huy Chieu, Corresponding author 22institutetext: Department of Mathematics, Vinh University
Nghe An, Vietnam
[email protected]
33institutetext: Nguyen Thi Quynh Trang 44institutetext: Department of Mathematics, Vinh University
Nghe An, Vietnam
[email protected]
55institutetext: Ha Anh Tuan 66institutetext: Faculty of Basic Science, Ho Chi Minh city University of Transport
Ho Chi Minh city, Viet Nam
[email protected]

Quadratic Growth and Strong Metric Subregularity of the Subdifferential for a Class of Non-prox-regular Functions

Nguyen Huy Chieu    Nguyen Thi Quynh Trang    Ha Anh Tuan
(Received: date / Accepted: date)
Abstract

This paper mainly studies the quadratic growth and the strong metric subregularity of the subdifferential of a function that can be represented as the sum of a function twice differentiable in the extended sense and a subdifferentially continuous, prox-regular, twice epi-differentiable function. For such a function, which is not necessarily prox-regular, it is shown that the quadratic growth, the strong metric subregularity of the subdifferential at a local minimizer, and the positive definiteness of the subgradient graphical derivative at a stationary point are equivalent. In addition, other characterizations of the quadratic growth and the strong metric subregularity of the subdifferential are also given. Besides, properties of functions twice differentiable in the extended sense are examined.

Keywords:
Quadratic growth Strong metric subregularity Twice differentiability Twice epi-differentiability Prox-regularity
MSC:
49J5390C3190C46

1 Introduction

Quadratic growth is an important property of extended-real-valued functions, which plays a central role in optimization AG08 ; AG14 ; BLN18 ; BS00 ; CHNT21 ; DI15 ; DL18 ; DMN14 ; MMS20 ; MMS21 ; MS20 . It can be used for justifying the linear convergence of various optimization algorithms BLN18 ; DL18 ; OM21 as well as analyzing perturbations of optimization problems. Especially, for many favorable classes of functions, quadratic growth is closely related to critical point stability AG08 ; AG14 ; CHNT21 ; DI15 ; MMS20 ; MMS21 ; MS20 .

For a proper lower semicontinuous convex function, as shown by Aragón Artacho and Geoffroy AG08 , the quadratic growth and the strong metric subregularity of the subdifferential at a local minimizer are equivalent, and they can be characterized by the positive definiteness of the subgradient graphical derivative at a stationary point.

For an arbitrary proper lower semicontinuous function, Drusvyatskiy et al. DMN14 proved the validity of the quadratic growth under the strong metric subregularity of the subdifferential at a local minimizer. Drusvyatskiy and Ioffe DI15 established that the converse holds whenever the function under consideration is semi-algebraic, and it may fail if the function is not semi-algebraic. It is worth noting that the approach of DI15 is based on some facts from semi-algebraic geometry, which might not be available for functions that are not semi-algebraic.

Using tools of second-order variational analysis, Chieu et al. CHNT21 showed that for a proper lower semicontinuous function, the positive definiteness of the subgradient graphical derivative at a stationary point guarantees that the point is a local minimizer and the subdifferential is strongly metrically subregular, which implies by DMN14 that the quadratic growth holds. Furthermore, the quadratic growth, the strong metric subregularity of the subdifferential at a local minimizer, and the positive definiteness of the subgradient graphical derivative at a stationary point are equivalent whenever the function is either subdifferentially continuous, prox-regular, and twice epi-differentiable or variationally convex.

More recent developments in this direction can be found in MMS20 ; MMS21 ; MS20 ; OM21 , where the authors investigated composite models under certain assumptions on the component functions that make the composite function subdifferentially continuous, prox-regular, and twice epi-differentiable.

To the best of our knowledge, all known results on the equivalence relationship between the quadratic growth and the strong metric subregularity of the subdifferential, except for the one of Drusvyatskiy and Ioffe DI15 , are established only for subclasses of the class of subdifferentially continuous and prox-regular functions. This observation leads us to the question if such an equivalence relationship is valid for functions that are neither subdifferentially continuous and prox-regular nor semi-algebraic.

In the current work, we study the quadratic growth and the strong metric subregularity of the subdifferential of functions that can be represented as the sum of an extended twice differentiable function and a subdifferentially continuous, prox-regular, twice epi-differentiable function. This big class of functions encompasses subdifferentially continuous, prox-regular, twice epi-differentiable functions as well as twice differentiable functions.

For a function from the just mentioned class, which is not necessarily prox-regular, it is shown that the quadratic growth, the strong metric subregularity of the subdifferential at a local minimizer, and the positive definiteness of the subgradient graphical derivative at a stationary point are equivalent. In addition, other characterizations of quadratic growth as well as the strong metric subregularity of the subdifferential are also given. Besides, properties of functions that are twice differentiable in the extended sense are examined.

The rest of the paper is organized as follows. Section 2 collects notions from variational analysis that are needed in the sequel. Section 3 investigates functions that are twice differentiable in the extended sense. The focuses of this section are on sum rules and chain rules for second subderivative, parabolic subderivative, and subgradient graphical derivative, which are used for proving the main results reported in Section 4. Section 4 is devoted to the study of quadratic growth and strong metric subregularity of the subdifferential. Here we specially pay the attention to the relationship between these two properties. Besides, we are also interested in characterizations of quadratic growth and strong metric subregularity of the subdifferential via the second subderivative. Section 5 summarizes the main results of the paper and presents some remarks on this research direction.

2 Preliminaries

This section recalls some concepts and their properties from variational analysis M1 ; M18 ; RW98 , which are needed for our analysis. Unless otherwise stated, n\mathbb{R}^{n} is a Euclidean space with inner product ,\langle\cdot,\cdot\rangle and norm ,\|\cdot\|, and ¯:={}.\overline{\mathbb{R}}:=\mathbb{R}\cup\{\infty\}. The closed ball with center x¯\bar{x} and radius ε>0\varepsilon>0 is denoted by 𝔹ε(x¯):={xn|xx¯ε}.\mathbb{B}_{\varepsilon}(\bar{x}):=\{x\in\mathbb{R}^{n}\ |\ \|x-\bar{x}\|\leq\varepsilon\}.

Definition 1

(M1 ; M18 ; RW98 ). Let f:n¯f:\mathbb{R}^{n}\rightarrow\overline{\mathbb{R}} and let x¯domf:={xn|f(x)<}\bar{x}\in\mbox{\rm dom}\,f:=\big{\{}x\in\mathbb{R}^{n}|\;f(x)<\infty\big{\}}. The proximal subdifferential of ff at x¯domf\bar{x}\in\mbox{\rm dom}\,f is defined by

pf(x¯):={vn|lim infxx¯f(x)f(x¯)v,xx¯xx¯2>}.\partial_{p}f(\bar{x}):=\left\{v\in\mathbb{R}^{n}\ |\ \liminf\limits_{x\to\bar{x}}\frac{f(x)-f(\bar{x})-\langle v,x-\bar{x}\rangle}{\|x-\bar{x}\|^{2}}>-\infty\right\}.

The regular subdifferential (also called Fréchet subdifferential) of ff at x¯domf\bar{x}\in\mbox{\rm dom}\,f is given by

^f(x¯):={vn|lim infxx¯f(x)f(x¯)v,xx¯xx¯0}.\widehat{\partial}f(\bar{x}):=\left\{v\in\mathbb{R}^{n}\ |\ \liminf\limits_{x\to\bar{x}}\frac{f(x)-f(\bar{x})-\langle v,x-\bar{x}\rangle}{\|x-\bar{x}\|}\geq 0\right\}.

The limiting subdifferential (also called Mordukhovich subdifferential) of ff at x¯domf\bar{x}\in\mbox{\rm dom}\,f is defined by

f(x¯):={vn|xkfx¯,vkvwithvk^f(xk)}.\partial f(\bar{x}):=\left\{v\in\mathbb{R}^{n}\ |\ \exists x_{k}\stackrel{{\scriptstyle f}}{{\to}}\bar{x},v_{k}\to v\ \mbox{with}\ v_{k}\in\widehat{\partial}f(x_{k})\right\}.

If x¯domf,\bar{x}\not\in\mbox{\rm dom}\,f, one puts f(x¯)=^f(x¯)=pf(x¯):=.\partial f(\bar{x})=\widehat{\partial}f(\bar{x})=\partial_{p}f(\bar{x}):=\emptyset.

Definition 2

(RW98 ). A function f:n¯f:\mathbb{R}^{n}\to\overline{\mathbb{R}} is said to be prox-regular at x¯domf\bar{x}\in\mbox{\rm dom}\,f for v¯f(x¯)\bar{v}\in\partial f(\bar{x}) if there exist r,ε>0r,\varepsilon>0 such that for all x,u𝔹ε(x¯)x,u\in\mathbb{B}_{\varepsilon}(\bar{x}) with |f(u)f(x¯)|<ε|f(u)-f(\bar{x})|<\varepsilon we have

f(x)f(u)+v,xur2xu2for allvf(u)𝔹ε(v¯).f(x)\geq f(u)+\langle v,x-u\rangle-\frac{r}{2}\|x-u\|^{2}\quad\mbox{for all}\quad v\in\partial f(u)\cap\mathbb{B}_{\varepsilon}(\bar{v}). (1)

Moreover, ff is said to be subdifferentially continuous at x¯\bar{x} for v¯\bar{v} if whenever (xk,vk)(x¯,v¯)(x_{k},v_{k})\to(\bar{x},\bar{v}) with vkf(xk)v_{k}\in\partial f(x_{k}), one has f(xk)f(x¯)f(x_{k})\to f(\bar{x}).

From (1) it follows that f(u)𝔹ε(v¯)pf(x)\partial f(u)\cap\mathbb{B}_{\varepsilon}(\bar{v})\subset\partial_{p}f(x) whenever ux¯<ε\|u-\bar{x}\|<\varepsilon with |f(u)f(x¯)|<ε|f(u)-f(\bar{x})|<\varepsilon. Furthermore, if ff is subdifferentially continuous at x¯\bar{x} for v¯\bar{v}, then the inequality “|f(u)f(x¯)|<ε|f(u)-f(\bar{x})|<\varepsilon” in the definition of prox-regularity above can be removed.

The following result is a direct consequence of (1), which is very useful for us to verify the prox-regularity in the sequel.

Lemma 1

((RW98, , Theorem 13.36)). If f:n¯f:\mathbb{R}^{n}\to\overline{\mathbb{R}} is prox-regular and subdifferentially continuous at x¯\bar{x} for v¯\bar{v} then there exist r,ϵ>0r,\epsilon>0 such that

v2v1,x2x1rx2x12,\langle v_{2}-v_{1},x_{2}-x_{1}\rangle\geq-r\left\|x_{2}-x_{1}\right\|^{2}, (2)

for every x1,x2𝔹ϵ(x¯),v1f(x1)𝔹ϵ(v¯),v2f(x2)𝔹ϵ(v¯).x_{1},x_{2}\in\mathbb{B}_{\epsilon}(\bar{x}),\ v_{1}\in\partial f(x_{1})\cap\mathbb{B}_{\epsilon}(\bar{v}),\ v_{2}\in\partial f(x_{2})\cap\mathbb{B}_{\epsilon}(\bar{v}).

Definition 3

(RW98 ). Given a function f:n¯f:\mathbb{R}^{n}\to\overline{\mathbb{R}} with f(x¯),f(\bar{x})\in\mathbb{R}, the subderivative of ff at x¯\bar{x} is the function df(x¯):n[,]df(\bar{x}):\mathbb{R}^{n}\to[-\infty,\infty] defined by

df(x¯)(w)=lim infwt0wf(x¯+tw)f(x¯)tfor allwn.df(\bar{x})(w)=\liminf\limits_{w^{\prime}\stackrel{{\scriptstyle t\downarrow 0}}{{\rightarrow}}w}\frac{f(\bar{x}+tw^{\prime})-f(\bar{x})}{t}\quad\mbox{for all}\ w\in\mathbb{R}^{n}.

The second subderivative of ff at x¯\bar{x} for vnv\in\mathbb{R}^{n} and wnw\in\mathbb{R}^{n} is given by

d2f(x¯|v)(w)=lim inft0wwΔt2f(x¯,v)(w),d^{2}f(\bar{x}|v)(w)=\liminf\limits_{\begin{subarray}{\quad}\quad t\downarrow 0\\ w^{\prime}\longrightarrow w\end{subarray}}\Delta_{t}^{2}f(\bar{x},v)(w^{\prime}), (3)

where Δt2f(x¯,v)(w):=f(x¯+tw)f(x¯)tv,w12t2.\Delta_{t}^{2}f(\bar{x},v)(w^{\prime}):=\frac{f(\bar{x}+tw^{\prime})-f(\bar{x})-t\langle v,w^{\prime}\rangle}{\frac{1}{2}t^{2}}.

Function ff is said to be twice epi-differentiable at x¯n\bar{x}\in\mathbb{R}^{n} for vnv\in\mathbb{R}^{n} if for every wnw\in\mathbb{R}^{n} and choice of tk0t_{k}\downarrow 0 there exists wkww_{k}\to w such that

Δtk2f(x¯,v)(wk)d2f(x¯|v)(w).\Delta_{t_{k}}^{2}f(\bar{x},v)(w_{k})\to d^{2}f(\bar{x}|v)(w).

It is well-known that fully amenable functions RW98 , including the maximum of finitely many C2C^{2}-functions, are subdifferentially continuous prox-regular and twice epi-differentiable lower semicontinuous proper functions (RW98, , Corollary 13.15 and Proposition 13.32).

Definition 4

(RW98 ). Let Ω\Omega be a nonempty subset of n\mathbb{R}^{n} and x¯n.\bar{x}\in\mathbb{R}^{n}.

(i)(i) The (Bouligand-Severi) tangent cone to Ω\Omega at x¯Ω\bar{x}\in\Omega is given by

TΩ(x¯):={vn|tk0,vkv with x¯+tkvkΩk}.T_{\Omega}(\bar{x}):=\big{\{}v\in\mathbb{R}^{n}|\,\exists t_{k}\downarrow 0,\ v_{k}\rightarrow v\ \mbox{ with }\ \bar{x}+t_{k}v_{k}\in\Omega\ \forall k\in\mathbb{N}\big{\}}.

If x¯Ω\bar{x}\not\in\Omega then one puts TΩ(x¯):=.T_{\Omega}(\bar{x}):=\emptyset.

(ii)(ii) The second-order tangent set to Ω\Omega at x¯\bar{x} for wTΩ(x¯)w\in T_{\Omega}(\bar{x}) is defined by

TΩ2(x¯,w)={un|tk0,ukuwithx¯+tkw+12tk2ukΩk}.T^{2}_{\Omega}(\bar{x},w)=\left\{u\in\mathbb{R}^{n}\ |\ \exists t_{k}\downarrow 0,u_{k}\rightarrow u\ \mbox{with}\ \bar{x}+t_{k}w+\frac{1}{2}t_{k}^{2}u_{k}\in\Omega\ \forall k\in\mathbb{N}\right\}.

Ω\Omega is called parabolically derivable at x¯\bar{x} for wnw\in\mathbb{R}^{n} if TΩ2(x¯,w),T^{2}_{\Omega}(\bar{x},w)\not=\emptyset, and for each uTΩ2(x¯,w)u\in T^{2}_{\Omega}(\bar{x},w) there exist ε>0\varepsilon>0 and a mapping ξ:[0,ε]Ω\xi:[0,\varepsilon]\to\Omega such that ξ(0)=x¯,\xi(0)=\bar{x}, ξ+(0)=w\xi_{+}^{\prime}(0)=w and ξ+′′(0)=u,\xi_{+}^{\prime\prime}(0)=u, where

ξ+(0):=limt0ξ(t)ξ(0)tandξ+′′(0):=limt0ξ(t)ξ(0)tξ+(0)12t2.\xi_{+}^{\prime}(0):=\lim\limits_{t\downarrow 0}\frac{\xi(t)-\xi(0)}{t}\quad\mbox{and}\quad\xi_{+}^{\prime\prime}(0):=\lim\limits_{t\downarrow 0}\frac{\xi(t)-\xi(0)-t\xi_{+}^{\prime}(0)}{\frac{1}{2}t^{2}}.
Definition 5

(RW98 ). The subgradient graphical derivative of ff at x¯\bar{x} for v¯f(x¯)\bar{v}\in\partial f(\bar{x}) is the set-valued mapping D(f)(x¯|v¯):nnD(\partial f)(\bar{x}|\bar{v}):\mathbb{R}^{n}\rightrightarrows\mathbb{R}^{n} defined by

D(f)(x¯|v¯)(w):={z|(w,z)Tgphf(x¯,v¯)}for allwn.D(\partial f)(\bar{x}|\bar{v})(w):=\big{\{}z\,|\,(w,z)\in T_{{\rm gph}\,\partial f}(\bar{x},\bar{v})\big{\}}\quad\mbox{for all}\quad w\in\mathbb{R}^{n}.

If ff is twice epi-differentiable, prox-regular, subdifferentially continuous at x¯\bar{x} for v¯\bar{v}, then it is known from (RW98, , Theorem 13.40) that

D(f)(x¯|v¯)=hwithh=12d2f(x¯|v¯).D(\partial f)(\bar{x}|\bar{v})=\partial h\quad\mbox{with}\quad h=\frac{1}{2}d^{2}f(\bar{x}|\bar{v}). (4)
Definition 6

(MS20 ). A function f:n¯f:\mathbb{R}^{n}\to\overline{\mathbb{R}} is said to be parabolically regular at x¯\bar{x} for v¯n\bar{v}\in\mathbb{R}^{n} if f(x¯)f(\bar{x})\in\mathbb{R} and for all ww with d2f(x¯,v¯)(w)<d^{2}f(\bar{x},\bar{v})(w)<\infty there exist tk0t_{k}\downarrow 0 and wkww_{k}\to w such that

limkΔtk2f(x¯,v¯)(wk)=d2f(x¯,v¯)(w)andlim supkwkwtk<.\lim\limits_{k\to\infty}\Delta_{t_{k}}^{2}f(\bar{x},\bar{v})(w_{k})=d^{2}f(\bar{x},\bar{v})(w)\quad\mbox{and}\quad\limsup\limits_{k\to\infty}\frac{\|w_{k}-w\|}{t_{k}}<\infty. (5)

A nonempty set Ωn\Omega\subset\mathbb{R}^{n} is called parabolically regular at x¯\bar{x} for v¯\bar{v} if its indicator function δΩ\delta_{\Omega} is parabolically regular at x¯\bar{x} for v¯.\bar{v}.

Definition 7

(RW98 ). Let f:n¯,f:\mathbb{R}^{n}\to\overline{\mathbb{R}}, x¯domf,\bar{x}\in\mbox{\rm dom}\,f, and wnw\in\mathbb{R}^{n} with df(x¯)(w).df(\bar{x})(w)\in\mathbb{R}.

(i)(i) The parabolic subderivative of ff at x¯\bar{x} for ww with respect to zz is

d2f(x¯)(w|z):=lim infzt0zf(x¯+tw+12t2z)f(x¯)tdf(x¯)(w)12t2.d^{2}f(\bar{x})(w|z):=\liminf\limits_{z^{\prime}\stackrel{{\scriptstyle t\downarrow 0}}{{\rightarrow}}z}\frac{f(\bar{x}+tw+\frac{1}{2}t^{2}z^{\prime})-f(\bar{x})-tdf(\bar{x})(w)}{\frac{1}{2}t^{2}}.

(ii)(ii) ff is said to be parabolically epi-differentiable at x¯\bar{x} for ww if

domd2f(x¯)(w|)={zn|d2f(x¯)(w|z)<},\mbox{\rm dom}\,d^{2}f(\bar{x})(w|\cdot)=\{z\in\mathbb{R}^{n}\ |\ d^{2}f(\bar{x})(w|z)<\infty\}\not=\emptyset,

and for every znz\in\mathbb{R}^{n} and every tk0t_{k}\downarrow 0 there exists zkzz_{k}\to z such that

d2f(x¯)(w|z):=lim infkf(x¯+tkw+12tk2zk)f(x¯)tkdf(x¯)(w)12tk2.d^{2}f(\bar{x})(w|z):=\liminf\limits_{k\to\infty}\frac{f(\bar{x}+t_{k}w+\frac{1}{2}t_{k}^{2}z_{k})-f(\bar{x})-t_{k}df(\bar{x})(w)}{\frac{1}{2}t_{k}^{2}}. (6)

As shown by Mohammadi and Sarabi (MS20, , Proposition 3.6), a function f:n¯f:\mathbb{R}^{n}\to\overline{\mathbb{R}} with v¯pf(x¯)\bar{v}\in\partial_{p}f(\bar{x}) is parabolically regular at x¯\bar{x} for v¯\bar{v} if and only if

d2f(x¯,v¯)(w)=infzn{d2f(x¯)(w|z)z,v¯}for allwKf(x¯|v¯),d^{2}f(\bar{x},\bar{v})(w)=\inf\limits_{z\in\mathbb{R}^{n}}\left\{d^{2}f(\bar{x})(w|z)-\langle z,\bar{v}\rangle\right\}\quad\mbox{for all}\ w\in K_{f}(\bar{x}|\bar{v}), (7)

where Kf(x¯|v¯):={wn|df(x¯)(w)=v¯,w}K_{f}(\bar{x}|\bar{v}):=\{w\in\mathbb{R}^{n}\ |\ df(\bar{x})(w)=\langle\bar{v},w\rangle\} is called the critical cone of ff at (x¯,v¯).(\bar{x},\bar{v}). Furthermore, if ff is parabolically regular at x¯\bar{x} for v¯\bar{v} and wdomd2f(x¯,v¯)w\in\mbox{\rm dom}\,d^{2}f(\bar{x},\bar{v}) then there exists z¯domd2f(x¯)(w|)\bar{z}\in\mbox{\rm dom}\,d^{2}f(\bar{x})(w|\cdot) such that

d2f(x¯,v¯)(w)=d2f(x¯)(w|z¯)z¯,v¯.d^{2}f(\bar{x},\bar{v})(w)=d^{2}f(\bar{x})(w|\bar{z})-\langle\bar{z},\bar{v}\rangle. (8)

3 Twice differentiability in the extended sense

The concept of twice differentiability of functions in the extended sense was introduced by Rockafellar and Wets (RW98, , Definition 13.1), which came from the desire to develop second order differentiability at x¯\bar{x} without having to assume the existence of the first partial derivatives at every point in some neighborhood of x¯\bar{x}.

This section investigates properties of functions that are twice differentiable in the extended sense, with special attention paying to sum rules and chain rules of the equality form for second subderivative, parabolic subderivative, and subgradient graphical derivative.

Definition 8

(RW98 ). Let f:n¯f:\mathbb{R}^{n}\to\overline{\mathbb{R}} be finite at x¯.\bar{x}. We say that

(i)(i) ff is differentiable (resp., strictly differentiable) at x¯\bar{x} if there exists an (1×n)(1\times n)-matrix f(x¯),\nabla f(\bar{x}), called the Jacobian (matrix) of ff at x¯,\bar{x}, such that

limxx¯f(x)f(x¯)f(x¯)(xx¯)xx¯=0(resp,limx,ux¯f(x)f(u)f(x¯)(xu)xu=0);\lim\limits_{x\to\bar{x}}\frac{f(x)-f(\bar{x})-\nabla f(\bar{x})(x-\bar{x})}{\|x-\bar{x}\|}=0\quad(\mbox{resp,}\lim\limits_{x,u\to\bar{x}}\frac{f(x)-f(u)-\nabla f(\bar{x})(x-u)}{\|x-u\|}=0);

(ii)(ii) ff is twice differentiable at x¯\bar{x} (in the classical sense) if it is differentiable on a neighborhood UU of x¯\bar{x} and there exists a n×nn\times n matrix 2f(x¯),\nabla^{2}f(\bar{x}), called the Hessian (matrix) of ff at x¯\bar{x}, such that

limxUx¯f(x)f(x¯)H(xx¯)xx¯=0;\lim\limits_{x\stackrel{{\scriptstyle U}}{{\rightarrow}}\bar{x}}\frac{\nabla f(x)-\nabla f(\bar{x})-H(x-\bar{x})}{\|x-\bar{x}\|}=0;

(iii)(iii) ff is twice differentiable at x¯\bar{x} in the extended sense if it is differentiable at x¯,\bar{x}, and there exist a n×nn\times n matrix A,A, a neighborhood UU of x¯\bar{x} and a subset DD of UU with μ(U\D)=0\mu(U\backslash D)=0 such that ff is Lipschitz on U,U, differentiable at every point in D,D, and

limxDx¯f(x)f(x¯)A(xx¯)xx¯=0,\lim\limits_{x\stackrel{{\scriptstyle D}}{{\rightarrow}}\bar{x}}\frac{\nabla f(x)-\nabla f(\bar{x})-A(x-\bar{x})}{\|x-\bar{x}\|}=0,

where μ\mu denotes the Lebesgue measure on n.\mathbb{R}^{n}. This matrix AA, necessarily unique, is then called the Hesian (matrix) of ff at x¯\bar{x} in the extended sense and is likewise denoted by 2f(x¯).\nabla^{2}f(\bar{x}).

It is known (RW98, , Theorem 13.51) that a C2C^{2}-lower function (and thus a C1,1C^{1,1}-function) on an open set 𝒪n\mathcal{O}\subset\mathbb{R}^{n} is twice differentiable in the extended sense almost everywhere in 𝒪,\mathcal{O}, with extended Hessian being symmetric where they exist.

It is easy to see that if ff is twice differentiable at x¯\bar{x} then it is twice differentiable at x¯\bar{x} in the extended sense, and the Hessian and the extended Hessian coincide.

The following example shows that there exists a function that is twice differentiable in the extended sense, but neither twice differentiable nor prox-regular.

Example 1

(Extended twice differentiability does not imply either twice differentiability or prox-regularity). Consider the function g:g:\mathbb{R}\rightarrow\mathbb{R} given by

g(x)={x10/3cos1x+x4 if x1,x10/3cos1x+(2n+1)(2n2+2n+1)n3(n+1)3x+1(n+1)31n3 if x[1n+1,1n),n=1,2,0 if x=0,g(x) if x<0,g(x)=\begin{cases}x^{10/3}\cos\frac{1}{x}+x^{4}\quad\ &\mbox{ if }x\geq 1,\\ x^{10/3}\cos\frac{1}{x}+\frac{(2n+1)(2n^{2}+2n+1)}{n^{3}(n+1)^{3}}x+\frac{1}{(n+1)^{3}}-\frac{1}{n^{3}}\quad\ &\mbox{ if }x\in\big{[}\frac{1}{n+1},\frac{1}{n}\big{)},\ n=1,2,...\\ 0\quad\ &\mbox{ if }x=0,\\ g(-x)\quad\ &\mbox{ if }x<0,\end{cases}

Claim1:{\it Claim1:} gg is twice differentiable at x¯=0\bar{x}=0 in the extended sense, but it is not twice differentiable at x¯\bar{x} in the classical sense. Indeed, we see that gg is differentiable at x¯\bar{x}, and

g(x)={103x7/3cos1x+x4/3sin1x+4x3 if x>1,103x7/3cos1x+x4/3sin1x+(2n+1)(2n2+2n+1)n3(n+1)3 if x(1n+1,1n),n=1,2,0 if x=0,g(x) if x(,0){1n|n}.\nabla g(x)=\begin{cases}\frac{10}{3}x^{7/3}\cos\frac{1}{x}+x^{4/3}\sin\frac{1}{x}+4x^{3}&\mbox{ if }x>1,\\ \frac{10}{3}x^{7/3}\cos\frac{1}{x}+x^{4/3}\sin\frac{1}{x}+\frac{(2n+1)(2n^{2}+2n+1)}{n^{3}(n+1)^{3}}&\mbox{ if }x\in\big{(}\frac{1}{n+1},\frac{1}{n}\big{)},\ n=1,2,...\\ 0\quad\ &\mbox{ if }x=0,\\ -\nabla g(-x)\quad\ &\mbox{ if }\ x\in(-\infty,0)\setminus\big{\{}-\frac{1}{n}|\ n\in\mathbb{N}^{*}\big{\}}.\end{cases}

Put U=(1,1),U=(-1,1), D=(1,1){1n|n},D=(-1,1)\setminus\{\frac{1}{n}|\ n\in\mathbb{Z}^{*}\}, and A=0.A=0. Then μ(U\D)=0,\mu(U\backslash D)=0, gg is Lipschitz on UU with constant κ=1,\kappa=1, and differentiable at every point in D,D, where μ\mu is the Lebesgue measure on .\mathbb{R}. Furthermore, for each x(1n+1,1n)x\in\big{(}\frac{1}{n+1},\frac{1}{n}\big{)} with nn\in\mathbb{N}^{*} we have

|g(x)g(x¯)A(xx¯)|xx¯|||103x4/3cos1x+x1/3sin1x|+(2n+1)(2n2+2n+1)n3(n+1)3|x|103x4/3+x1/3+(2n+1)(2n2+2n+1)n3(n+1)20asn.\begin{array}[]{rl}\left|\frac{\nabla g(x)-\nabla g(\bar{x})-A(x-\bar{x})}{|x-\bar{x}|}\right|&\leq\left|\frac{10}{3}x^{4/3}\cos\frac{1}{x}+x^{1/3}\sin\frac{1}{x}\right|+\frac{(2n+1)(2n^{2}+2n+1)}{n^{3}(n+1)^{3}|x|}\\ &\leq\frac{10}{3}x^{4/3}+x^{1/3}+\frac{(2n+1)(2n^{2}+2n+1)}{n^{3}(n+1)^{2}}\to 0\quad\mbox{as}\ n\to\infty.\end{array}

Combing this with g(x)=g(x)\nabla g(x)=-\nabla g(-x) for all x(,0){1n|n},x\in(-\infty,0)\setminus\big{\{}-\frac{1}{n}|\ n\in\mathbb{N}^{*}\big{\}}, we get

limxDx¯g(x)g(x¯)A(xx¯)|xx¯|=0.\lim\limits_{x\stackrel{{\scriptstyle D}}{{\rightarrow}}\bar{x}}\frac{\nabla g(x)-\nabla g(\bar{x})-A(x-\bar{x})}{|x-\bar{x}|}=0.

Hence, gg is twice differentiable at x¯\bar{x} in the extended sense. On the other hand, since gg is not differentiable at each point 1n\frac{1}{n} with n,n\in\mathbb{Z}^{*}, gg is not twice differentiable at x¯\bar{x} in the classical sense. Therefore, the extended twice differentiability does not imply the classical twice differentiability.

Claim2:{\it Claim2:} gg is not prox-regular at x¯\bar{x} for v¯=0.\bar{v}=0. Fix r>0r>0 and put uk=12kπ,xk=1π2+2kπu_{k}=\frac{1}{2k\pi},\ x_{k}=\frac{1}{\frac{\pi}{2}+{2k\pi}} for every k.k\in\mathbb{N}^{*}. Then for each kk\in\mathbb{N}^{*} there exist mk,nkm_{k},n_{k}\in\mathbb{N}^{*} such that uk(1mk+1,1mk)u_{k}\in\big{(}\frac{1}{m_{k}+1},\frac{1}{m_{k}}\big{)} and xk(1nk+1,1nk).x_{k}\in\big{(}\frac{1}{n_{k}+1},\frac{1}{n_{k}}\big{)}. This implies that 2kπ<mk+12k\pi<m_{k}+1 for all k.k. So we have

g(uk)g(xk),ukxk+r|ukxk|2=(1031(2kπ)7/3+(2mk+1)(2mk2+2mk+1)mk3(mk+1)31(π2+2kπ)4/3(2nk+1)(2nk2+2nk+1)nk3(nk+1)3)(12kπ1π2+2kπ)+r(12kπ1π2+2kπ)2π4kπ(π2+2kπ)(1031(2kπ)7/3+5(mk+1)31(π2+2kπ)4/3+rπ4kπ(π2+2kπ))π4kπ(π2+2kπ)(1031(2kπ)7/3+5(2kπ)31(π2+2kπ)4/3+rπ4kπ(π2+2kπ))<0,\begin{array}[]{rl}&\langle\nabla g(u_{k})-\nabla g(x_{k}),u_{k}-x_{k}\rangle+r\left|u_{k}-x_{k}\right|^{2}\\ &=\Big{(}\frac{10}{3}\frac{1}{(2k\pi)^{7/3}}+\frac{(2m_{k}+1)(2m_{k}^{2}+2m_{k}+1)}{m^{3}_{k}(m_{k}+1)^{3}}-\frac{1}{\big{(}\frac{\pi}{2}+2k\pi\big{)}^{4/3}}-\frac{(2n_{k}+1)(2n_{k}^{2}+2n_{k}+1)}{n_{k}^{3}(n_{k}+1)^{3}}\Big{)}\big{(}\frac{1}{2k\pi}-\frac{1}{\frac{\pi}{2}+{2k\pi}}\big{)}\\ &\ \ \ \ +r\big{(}\frac{1}{2k\pi}-\frac{1}{\frac{\pi}{2}+{2k\pi}}\big{)}^{2}\\ &\leq\frac{\pi}{4k\pi\big{(}\frac{\pi}{2}+2k\pi\big{)}}\Big{(}\frac{10}{3}\frac{1}{(2k\pi)^{7/3}}+\frac{5}{(m_{k}+1)^{3}}-\frac{1}{\big{(}\frac{\pi}{2}+2k\pi\big{)}^{4/3}}+r\frac{\pi}{4k\pi\big{(}\frac{\pi}{2}+2k\pi\big{)}}\Big{)}\\ &\leq\frac{\pi}{4k\pi\big{(}\frac{\pi}{2}+2k\pi\big{)}}\Big{(}\frac{10}{3}\frac{1}{(2k\pi)^{7/3}}+\frac{5}{(2k\pi)^{3}}-\frac{1}{\big{(}\frac{\pi}{2}+2k\pi\big{)}^{4/3}}+r\frac{\pi}{4k\pi\big{(}\frac{\pi}{2}+2k\pi\big{)}}\Big{)}<0,\\ \end{array}

for all kk large enough. Note that limk(uk,g(uk))=limk(xk,g(xk))=(0,0).\lim\limits_{k\to\infty}\big{(}u_{k},\nabla g(u_{k})\big{)}=\lim\limits_{k\to\infty}\big{(}x_{k},\nabla g(x_{k})\big{)}=(0,0). Therefore, by Lemma 1, ff is not prox-regular at x¯=0\bar{x}=0 for v¯=0.\bar{v}=0.

Example 2

(Twice differentiability does not imply prox-regularity). Consider the function f:f:\mathbb{R}\to\mathbb{R} defined by

f(x):=0xg(t)𝑑twhereg(x)={x2sin1x2 if x0,0 if x=0.f(x):=\int_{0}^{x}g(t)dt\quad\mbox{where}\quad g(x)=\begin{cases}x^{2}\mbox{sin}\frac{1}{x^{2}}\quad\ &\mbox{ if }x\not=0,\\ 0\quad\ &\mbox{ if }x=0.\end{cases}

We see that f(x)=g(x)\nabla f(x)=g(x) for all x,x\in\mathbb{R}, and ff is twice differentiable at every point in \mathbb{R} with

2f(x)=g(x)={2xsin1x22xcos1x2 if x0,0 if x=0.\nabla^{2}f(x)=\nabla g(x)=\begin{cases}2x\sin\frac{1}{x^{2}}-\frac{2}{x}\cos\frac{1}{x^{2}}\quad\ &\mbox{ if }x\not=0,\\ 0\quad\ &\mbox{ if }x=0.\end{cases}

We next prove that ff is not prox-regular at x¯:=0\bar{x}:=0 for f(x¯)=0.\nabla f(\bar{x})=0. Arguing by contradiction, suppose that ff is prox-regular at 0 for 0.0. Then, by Lemma 1, there exist r,ϵ>0r,\epsilon>0 such that

g(u)g(x),ux=f(u)f(x),uxr|ux|2,\langle g(u)-g(x),u-x\rangle=\langle\nabla f(u)-\nabla f(x),u-x\rangle\geq-r|u-x|^{2}, (9)

for every u,x𝔹ϵ(x¯).u,x\in\mathbb{B}_{\epsilon}(\bar{x}). Thus, for each kk\in\mathbb{N}^{*} sufficiently large, choosing uk=12kπu_{k}=\frac{1}{\sqrt{2k\pi}} and xk=1π2+2kπ,x_{k}=\frac{1}{\sqrt{\frac{\pi}{2}+{2k\pi}}}, we have

g(uk)g(xk),ukxk+r|ukxk|2=1π2+2kπ(12kπ1π2+2kπ)+r(12kπ1π2+2kπ)2=(12kπ1π2+2kπ)(1π2+2kπ+r(12kπ1π2+2kπ))=(12kπ1π2+2kπ)(1π2+2kπ+rπ2+2kπ2kπ2kππ2+2kπ)=(12kπ1π2+2kπ)(1π2+2kπ+πr22kππ2+2kπ(π2+2kπ+2kπ))<0.\begin{array}[]{rl}&\langle g(u_{k})-g(x_{k}),u_{k}-x_{k}\rangle+r\left|u_{k}-x_{k}\right|^{2}\\ &=-\frac{1}{\frac{\pi}{2}+{2k\pi}}\Big{(}\frac{1}{\sqrt{2k\pi}}-\frac{1}{\sqrt{\frac{\pi}{2}+{2k\pi}}}\Big{)}+r\Big{(}\frac{1}{\sqrt{2k\pi}}-\frac{1}{\sqrt{\frac{\pi}{2}+{2k\pi}}}\Big{)}^{2}\\ &=\Big{(}\frac{1}{\sqrt{2k\pi}}-\frac{1}{\sqrt{\frac{\pi}{2}+{2k\pi}}}\Big{)}\Bigg{(}-\frac{1}{\frac{\pi}{2}+{2k\pi}}+r\Big{(}\frac{1}{\sqrt{2k\pi}}-\frac{1}{\sqrt{\frac{\pi}{2}+{2k\pi}}}\Big{)}\Bigg{)}\\ &=\Big{(}\frac{1}{\sqrt{2k\pi}}-\frac{1}{\sqrt{\frac{\pi}{2}+{2k\pi}}}\Big{)}\Bigg{(}-\frac{1}{\frac{\pi}{2}+{2k\pi}}+r\frac{\sqrt{\frac{\pi}{2}+{2k\pi}}-\sqrt{2k\pi}}{\sqrt{2k\pi}\sqrt{\frac{\pi}{2}+{2k\pi}}}\Bigg{)}\\ &=\Big{(}\frac{1}{\sqrt{2k\pi}}-\frac{1}{\sqrt{\frac{\pi}{2}+{2k\pi}}}\Big{)}\Bigg{(}-\frac{1}{\frac{\pi}{2}+{2k\pi}}+\frac{\pi r}{2\sqrt{2k\pi}\sqrt{\frac{\pi}{2}+{2k\pi}}\Big{(}\sqrt{\frac{\pi}{2}+{2k\pi}}+\sqrt{2k\pi}\Big{)}}\Bigg{)}<0.\end{array}

This contradicts (9) since limkuk=limkuk=0=x¯\lim\limits_{k\to\infty}u_{k}=\lim\limits_{k\to\infty}u_{k}=0=\bar{x}. Therefore, ff is not prox-regular at x¯=0\bar{x}=0 for v¯=0.\bar{v}=0.

The following lemma collects some properties of extended twice differentiable functions that will be used in the sequel.

Lemma 2

((RW98, , Theorem 13.2)). Let f:n¯f:\mathbb{R}^{n}\to\overline{\mathbb{R}} be twice differentiable at a point x¯\bar{x} in the extended sense. Then f(x¯)={f(x¯)}\partial f(\bar{x})=\{\nabla f(\bar{x})\} and there exists a neigborhood UU of x¯\bar{x} such that

f(x)f(x¯)+2f(xx¯)+o(xx¯)𝔹,\emptyset\not=\partial f(x)\subset\nabla f(\bar{x})+\nabla^{2}f(x-\bar{x})+o(\|x-\bar{x}\|)\mathbb{B}, (10)

for every xU.x\in U. Furthermore, ff is strictly differentiable at x¯,\bar{x}, and

f(x)=f(x¯)+f(x¯),xx¯+12xx¯,2f(x¯)(xx¯)+o(xx¯2).f(x)=f(\bar{x})+\langle\nabla f(\bar{x}),x-\bar{x}\rangle+\frac{1}{2}\langle x-\bar{x},\nabla^{2}f(\bar{x})(x-\bar{x})\rangle+o(\|x-\bar{x}\|^{2}). (11)

Here o(t)o(t) stands for some function of tt with limt0o(t)t=0.\lim\limits_{t\to 0}\frac{o(t)}{t}=0.

Naturally, we say a mapping F:nm,F:\mathbb{R}^{n}\to\mathbb{R}^{m}, x(F1(x),F2(x),,Fm(x))x\mapsto\big{(}F_{1}(x),F_{2}(x),...,F_{m}(x)\big{)} is twice differentiable at x¯\bar{x} in the extended sense if FkF_{k} is twice differentiable at x¯\bar{x} in the extended sense for every k=1,2,,m.k=1,2,...,m. In the sequel, for such a mapping F,F, the symbol 2F(x¯)(w,v)\nabla^{2}F(\bar{x})(w,v) stands for (2F1(x¯)w,v,2F2(x¯)w,v,,2Fm(x¯)w,v)\big{(}\langle\nabla^{2}F_{1}(\bar{x})w,v\rangle,\langle\nabla^{2}F_{2}(\bar{x})w,v\rangle,...,\langle\nabla^{2}F_{m}(\bar{x})w,v\rangle\big{)} for all v,wn.v,w\in\mathbb{R}^{n}.

The following theorem provides sum rules of equality form for gradient graphical derivative, second subderivative and parabolic subderivative.

Theorem 3.1

Suppose that φ:n¯\varphi:\mathbb{R}^{n}\to\overline{\mathbb{R}} is twice differentiable at x¯\bar{x} in the extended sense, ψ:n¯\psi:\mathbb{R}^{n}\to\overline{\mathbb{R}} is proper lower semicontinuous around x¯\bar{x}, and v¯(φ+ψ)(x¯)\bar{v}\in\partial(\varphi+\psi)(\bar{x}). Then one has

D(φ+ψ)(x¯|v¯)(w)=2φ(x¯)(w)+Dψ(x¯|v¯φ(x¯))(w),D\partial(\varphi+\psi)(\bar{x}|\bar{v})(w)=\nabla^{2}\varphi(\bar{x})(w)+D\partial\psi\big{(}\bar{x}|\bar{v}-\nabla\varphi(\bar{x})\big{)}(w), (12)
d2(φ+ψ)(x¯|v¯)(w)=w,2φ(x¯)w+d2ψ(x¯|v¯φ(x¯))(w),d^{2}(\varphi+\psi)\big{(}\bar{x}|\bar{v}\big{)}(w)=\big{\langle}w,\nabla^{2}\varphi(\bar{x})w\big{\rangle}+d^{2}\psi\big{(}\bar{x}|\bar{v}-\nabla\varphi(\bar{x})\big{)}(w), (13)

and

d2(φ+ψ)(x¯)(w|z)=w,2φ(x¯)w+φ(x¯)z+d2ψ(x¯)(w|z),d^{2}(\varphi+\psi)(\bar{x})(w|z)=\big{\langle}w,\nabla^{2}\varphi(\bar{x})w\big{\rangle}+\nabla\varphi(\bar{x})z+d^{2}\psi(\bar{x})(w|z), (14)

for every wnw\in\mathbb{R}^{n} and zn.z\in\mathbb{R}^{n}.

Proof. We first prove (12). To this end, take any wnw\in\mathbb{R}^{n} and zD(φ+ψ)(x¯|v¯)(w).z\in D\partial(\varphi+\psi)(\bar{x}|\bar{v})(w). Then there exist sequences tk0t_{k}\downarrow 0 and (wk,zk)(w,z)(w_{k},z_{k})\to(w,z) such that

v¯+tkzk(φ+ψ)(x¯+tkwk)for allk.\bar{v}+t_{k}z_{k}\in\partial(\varphi+\psi)(\bar{x}+t_{k}w_{k})\quad\mbox{for all}\ k\in\mathbb{N}^{*}.

Since φ\varphi is twice differentiable at x¯\bar{x} in the extended sense, it is Lipschitz continuous around x¯,\bar{x}, and by the sum rule of subdifferential (M18, , Theorem 2.19) and (10), we get

(φ+ψ)(x¯+tkwk)φ(x¯+tkwk)+ψ(x¯+tkwk)φ(x¯)+tk2φ(x¯)(wk)+o(tkwk)𝔹+ψ(x¯+tkwk),\begin{array}[]{rl}\partial(\varphi+\psi)(\bar{x}+t_{k}w_{k})&\subset\partial\varphi(\bar{x}+t_{k}w_{k})+\partial\psi(\bar{x}+t_{k}w_{k})\\ &\subset\nabla\varphi(\bar{x})+t_{k}\nabla^{2}\varphi(\bar{x})(w_{k})+o(\left\|t_{k}w_{k}\right\|)\mathbb{B}+\partial\psi(\bar{x}+t_{k}w_{k}),\end{array}

for all kk\in\mathbb{N}^{*} sufficiently large. Thus, for such numbers kk, it holds that

(v¯φ(x¯))+tk(zk2φ(x¯)(wk)+o(tkwk)tk)ψ(x¯+tkwk),\big{(}\bar{v}-\nabla\varphi(\bar{x})\big{)}+t_{k}\Big{(}z_{k}-\nabla^{2}\varphi(\bar{x})(w_{k})+\frac{o(\left\|t_{k}w_{k}\right\|)}{t_{k}}\Big{)}\in\partial\psi(\bar{x}+t_{k}w_{k}),

or equivalently,

(x¯,v¯φ(x¯))+tk(wk,zk2φ(x¯)(wk)+o(tkwk)tk)gphψ.\big{(}\bar{x},\bar{v}-\nabla\varphi(\bar{x})\big{)}+t_{k}\Big{(}w_{k},z_{k}-\nabla^{2}\varphi(\bar{x})(w_{k})+\frac{o(\left\|t_{k}w_{k}\right\|)}{t_{k}}\Big{)}\in\mbox{gph}\partial\psi.

On the other hand,

(wk,zk2φ(x¯)(wk)+o(tkwk)tk)(w,z2φ(x¯)(w))ask.\Big{(}w_{k},z_{k}-\nabla^{2}\varphi(\bar{x})(w_{k})+\frac{o(\left\|t_{k}w_{k}\right\|)}{t_{k}}\Big{)}\to\big{(}w,z-\nabla^{2}\varphi(\bar{x})(w)\big{)}\quad\mbox{as}\ k\to\infty.

Therefore,

(w,z2φ(x¯)(w))Tgphψ(x¯,v¯φ(x¯)).\big{(}w,z-\nabla^{2}\varphi(\bar{x})(w)\big{)}\in T_{\mbox{gph}\partial\psi}\big{(}\bar{x},\bar{v}-\nabla\varphi(\bar{x})\big{)}.

In other words,

z2φ(x¯)(w)Dψ(x¯|v¯φ(x¯)(w).z-\nabla^{2}\varphi(\bar{x})(w)\in D\partial\psi(\bar{x}|\bar{v}-\nabla\varphi(\bar{x})(w).

This shows that

D(φ+ψ)(x¯|v¯)(w)2φ(x¯)(w)+Dψ(x¯|v¯φ(x¯))(w).D\partial(\varphi+\psi)(\bar{x}|\bar{v})(w)\subset\nabla^{2}\varphi(\bar{x})(w)+D\partial\psi\big{(}\bar{x}|\bar{v}-\nabla\varphi(\bar{x})\big{)}(w). (15)

Conversely, by using (15) and noting that φ-\varphi is also twice differentiable at x¯\bar{x} in the extended sense with 2(φ)(x¯)=2φ(x¯),\nabla^{2}(-\varphi)(\bar{x})=-\nabla^{2}\varphi(\bar{x}), we have

Dψ(x¯|v¯φ(x¯))(w)=D(φ+ψ+(φ))(x¯|v¯φ(x¯))(w)D(φ+ψ)(x¯|v¯)(w)+2(φ)(x¯)(w)=D(φ+ψ)(x¯|v¯)(w)2φ(x¯)(w).\begin{array}[]{rl}D\partial\psi(\bar{x}|\bar{v}-\nabla\varphi(\bar{x}))(w)&=D\partial\big{(}\varphi+\psi+(-\varphi)\big{)}(\bar{x}|\bar{v}-\nabla\varphi(\bar{x}))(w)\\ &\subset D\partial\big{(}\varphi+\psi\big{)}(\bar{x}|\bar{v})(w)+\nabla^{2}(-\varphi)(\bar{x})(w)\\ &=D\partial\big{(}\varphi+\psi\big{)}(\bar{x}|\bar{v})(w)-\nabla^{2}\varphi(\bar{x})(w).\end{array}

This infers that

2φ(x¯)(w)+Dψ(x¯|v¯φ(x¯))(w)D(φ+ψ)(x¯|v¯)(w).\nabla^{2}\varphi(\bar{x})(w)+D\partial\psi(\bar{x}|\bar{v}-\nabla\varphi(\bar{x}))(w)\subset D\partial(\varphi+\psi)(\bar{x}|\bar{v})(w). (16)

From (15) and (16) it follows that

D(φ+ψ)(x¯|v¯)(w)=2φ(x¯)(w)+Dψ(x¯|v¯φ(x¯))(w)for everywn.D\partial(\varphi+\psi)(\bar{x}|\bar{v})(w)=\nabla^{2}\varphi(\bar{x})(w)+D\partial\psi(\bar{x}|\bar{v}-\nabla\varphi(\bar{x}))(w)\ \mbox{for every}\ w\in\mathbb{R}^{n}.

We next justify the validity of (13). Take any wn.w\in\mathbb{R}^{n}. Since φ\varphi is twice differentiable at x¯\bar{x} in the extended sense, by (11), we see that

w,2φ(x¯)w=limwt0wΔt2φ(x¯|φ(x¯))(w).\big{\langle}w,\nabla^{2}\varphi(\bar{x})w\big{\rangle}=\lim\limits_{w^{\prime}\stackrel{{\scriptstyle t\downarrow 0}}{{\rightarrow}}w}\Delta^{2}_{t}\varphi\big{(}\bar{x}|\nabla\varphi(\bar{x})\big{)}(w^{\prime}).

Therefore,

d2(φ+ψ)(x¯|v¯)(w)=lim infwt0wΔt2(φ+ψ)(x¯|v¯)(w)=lim infwt0w[Δt2(x¯|φ(x¯))(w)+Δt2ψ(x¯|v¯φ(x¯))(w)]=w,2φ(x¯)w+lim infwt0wΔt2ψ(x¯|v¯φ(x¯))(w)=w,2φ(x¯)w+d2ψ(x¯|v¯φ(x¯))(w).\begin{array}[]{rl}d^{2}(\varphi+\psi)(\bar{x}|\bar{v})(w)&=\liminf\limits_{w^{\prime}\stackrel{{\scriptstyle t\downarrow 0}}{{\rightarrow}}w}\Delta^{2}_{t}(\varphi+\psi)(\bar{x}|\bar{v})(w^{\prime})\\ &=\liminf\limits_{w^{\prime}\stackrel{{\scriptstyle t\downarrow 0}}{{\rightarrow}}w}\Big{[}\Delta^{2}_{t}\big{(}\bar{x}|\nabla\varphi(\bar{x})\big{)}(w^{\prime})+\Delta^{2}_{t}\psi\big{(}\bar{x}|\bar{v}-\nabla\varphi(\bar{x})\big{)}(w^{\prime})\Big{]}\\ &=\big{\langle}w,\nabla^{2}\varphi(\bar{x})w\big{\rangle}+\liminf\limits_{w^{\prime}\stackrel{{\scriptstyle t\downarrow 0}}{{\rightarrow}}w}\Delta^{2}_{t}\psi\big{(}\bar{x}|\bar{v}-\nabla\varphi(\bar{x})\big{)}(w^{\prime})\\ &=\big{\langle}w,\nabla^{2}\varphi(\bar{x})w\rangle+d^{2}\psi\big{(}\bar{x}|\bar{v}-\nabla\varphi(\bar{x})\big{)}(w).\end{array}

Finally, we show that (14) holds. The differentiability of φ\varphi at x¯\bar{x} gives us that

d(φ+ψ)(x¯)(w)=lim infwt0w(φ+ψ)(x¯+tw)(φ+ψ)(x¯)t=lim infwt0w[φ(x¯+tw)φ(x¯)t+ψ(x¯+tw)ψ(x¯)t]=φ(x¯)w+lim infwt0wψ(x¯+tw)ψ(x¯)t=φ(x¯)w+dψ(x¯)(w)wn.\begin{array}[]{rl}d(\varphi+\psi)(\bar{x})(w)&=\liminf\limits_{w^{\prime}\stackrel{{\scriptstyle t\downarrow 0}}{{\rightarrow}}w}\frac{(\varphi+\psi)(\bar{x}+tw^{\prime})-(\varphi+\psi)(\bar{x})}{t}\\ &=\liminf\limits_{w^{\prime}\stackrel{{\scriptstyle t\downarrow 0}}{{\rightarrow}}w}\left[\frac{\varphi(\bar{x}+tw^{\prime})-\varphi(\bar{x})}{t}+\frac{\psi(\bar{x}+tw^{\prime})-\psi(\bar{x})}{t}\right]\\ &=\nabla\varphi(\bar{x})w+\liminf\limits_{w^{\prime}\stackrel{{\scriptstyle t\downarrow 0}}{{\rightarrow}}w}\frac{\psi(\bar{x}+tw^{\prime})-\psi(\bar{x})}{t}\\ &=\nabla\varphi(\bar{x})w+d\psi(\bar{x})(w)\quad\forall w\in\mathbb{R}^{n}.\end{array}

Since φ\varphi is twice differentiable at x¯\bar{x} in the extended sense, by (11), we get

limzt0zφ(x¯+tw+12t2z)φ(x¯)tφ(x¯)w12t2=w,2φ(x¯)w+φ(x¯)zwn,zn.\lim\limits_{z^{\prime}\stackrel{{\scriptstyle t\downarrow 0}}{{\rightarrow}}z}\frac{\varphi(\bar{x}+tw+\frac{1}{2}t^{2}z^{\prime})-\varphi(\bar{x})-t\nabla\varphi(\bar{x})w}{\frac{1}{2}t^{2}}=\big{\langle}w,\nabla^{2}\varphi(\bar{x})w\big{\rangle}+\nabla\varphi(\bar{x})z\quad\forall w\in\mathbb{R}^{n},z\in\mathbb{R}^{n}.

Therefore,

d2(φ+ψ)(x¯)(w|z)=lim infzt0z(φ+ψ)(x¯+tw+12t2z)(φ+ψ)(x¯)td(φ+ψ)(x¯)(w)12t2=lim infzt0z[φ(x¯+tw+12t2z)φ(x¯)tφ(x¯)w12t2+ψ(x¯+tw+12t2z)ψ(x¯)tdψ(x¯)(w)12t2]=w,2φ(x¯)w+φ(x¯)z+lim infzt0zψ(x¯+tw+12t2z)ψ(x¯)tdψ(x¯)(w)12t2=w,2φ(x¯)w+φ(x¯)z+d2ψ(x¯)(w|z)wn,zn.\begin{array}[]{rl}&d^{2}(\varphi+\psi)\big{(}\bar{x}\big{)}(w|z)=\liminf\limits_{z^{\prime}\stackrel{{\scriptstyle t\downarrow 0}}{{\rightarrow}}z}\frac{(\varphi+\psi)(\bar{x}+tw+\frac{1}{2}t^{2}z^{\prime})-(\varphi+\psi)(\bar{x})-td(\varphi+\psi)(\bar{x})(w)}{\frac{1}{2}t^{2}}\\ &=\liminf\limits_{z^{\prime}\stackrel{{\scriptstyle t\downarrow 0}}{{\rightarrow}}z}\Big{[}\frac{\varphi(\bar{x}+tw+\frac{1}{2}t^{2}z^{\prime})-\varphi(\bar{x})-t\nabla\varphi(\bar{x})w}{\frac{1}{2}t^{2}}+\frac{\psi(\bar{x}+tw+\frac{1}{2}t^{2}z^{\prime})-\psi(\bar{x})-td\psi(\bar{x})(w)}{\frac{1}{2}t^{2}}\Big{]}\\ &=\big{\langle}w,\nabla^{2}\varphi(\bar{x})w\big{\rangle}+\nabla\varphi(\bar{x})z+\liminf\limits_{z^{\prime}\stackrel{{\scriptstyle t\downarrow 0}}{{\rightarrow}}z}\frac{\psi(\bar{x}+tw+\frac{1}{2}t^{2}z^{\prime})-\psi(\bar{x})-td\psi(\bar{x})(w)}{\frac{1}{2}t^{2}}\\ &=\big{\langle}w,\nabla^{2}\varphi(\bar{x})w\big{\rangle}+\nabla\varphi(\bar{x})z+d^{2}\psi(\bar{x})(w|z)\quad\forall w\in\mathbb{R}^{n},z\in\mathbb{R}^{n}.\end{array}

This finishes the proof. \hfill\Box

Let ψ:n¯\psi:\mathbb{R}^{n}\to\overline{\mathbb{R}} be finite at x¯n.\bar{x}\in\mathbb{R}^{n}. Assume that there exists a neighborhood 𝒪\mathcal{O} of x¯\bar{x} on which ψ\psi can be represented as

ψ(x)=gF(x)for allx𝒪,\psi(x)=g\circ F(x)\quad\mbox{for all}\ x\in\mathcal{O}, (17)

where F:nmF:\mathbb{R}^{n}\to\mathbb{R}^{m} is twice differentiable at x¯\bar{x} in the extended sense, and g:m¯g:\mathbb{R}^{m}\to\overline{\mathbb{R}} is proper lower semicontinuous, convex, and Lipschitz continuous around F(x¯)F(\bar{x}) relative to its domain with constant +,\ell\in\mathbb{R}_{+}, that is, there exists a neighborhood 𝒱\mathcal{V} of F(x¯)F(\bar{x}) such that |g(y1)g(y2)|y1y2|g(y_{1})-g(y_{2})|\leq\ell\|y_{1}-y_{2}\| for all y1,y2domg𝒱.y_{1},y_{2}\in\mbox{\rm dom}\,g\cap\mathcal{V}.

We see that

(domψ)𝒪={x𝒪|F(x)domg}.(\mbox{\rm dom}\,\psi)\cap\mathcal{O}=\{x\in\mathcal{O}\ |\ F(x)\in\mbox{\rm dom}\,g\}. (18)

Following (MMS20, , Definition 3.2), the composition ψ=gF\psi=g\circ F is said to satisfy the metric subregularity qualification condition (MSQC) at x¯domψ\bar{x}\in\mbox{\rm dom}\,\psi if there exist a constant κ+\kappa\in\mathbb{R}_{+} and a neighborhood UU of x¯\bar{x} such that

d(x,domψ)κd(F(x),domg)for allxU.d(x,\mbox{\rm dom}\,\psi)\leq\kappa d\big{(}F(x),\mbox{\rm dom}\,g\big{)}\quad\mbox{for all}\ x\in U. (19)
Proposition 1

Let ψ:n¯\psi:\mathbb{R}^{n}\to\overline{\mathbb{R}} be a function that is represented as (18) with the composition gFg\circ F satisfying MSQC at x¯.\bar{x}. Then we have

dψ(x¯)(w)=dg(F(x¯))(F(x¯)w)for allwn,pψ(x¯)=ψ(x¯)=F(x¯)g(F(x¯)),d\psi(\bar{x})(w)=dg\big{(}F(\bar{x})\big{)}\big{(}\nabla F(\bar{x})w\big{)}\ \mbox{for all}\ w\in\mathbb{R}^{n},\ \partial_{p}\psi(\bar{x})=\partial\psi(\bar{x})=\nabla F(\bar{x})^{*}\partial g\big{(}F(\bar{x})\big{)},

and Tdomψ(x¯)={wn|F(x¯)wTdomg(F(x¯))}.T_{\mbox{\rm dom}\,\psi}(\bar{x})=\big{\{}w\in\mathbb{R}^{n}\ |\ \nabla F(\bar{x})w\in T_{\mbox{\rm dom}\,g}\big{(}F(\bar{x})\big{)}\big{\}}.

If assume further that wTdomψ(x¯)w\in T_{\mbox{\rm dom}\,\psi}(\bar{x}) and gg is parabolically epi-differentiable at F(x¯)F(\bar{x}) for F(x¯)w\nabla F(\bar{x})w, then the following assertions hold:

(i)(i) zTdomψ2(x¯,w)F(x¯)z+2F(x¯)(w,w)Tdomg2(F(x¯),F(x¯)w),z\in T^{2}_{\mbox{\rm dom}\,\psi}(\bar{x},w)\Leftrightarrow\nabla F(\bar{x})z+\nabla^{2}F(\bar{x})(w,w)\in T^{2}_{\mbox{\rm dom}\,g}\big{(}F(\bar{x}),\nabla F(\bar{x})w\big{)}, and domψ\mbox{\rm dom}\,\psi is parabolically derivable at x¯\bar{x} for w;w;

(ii)(ii) d2ψ(x¯)(w|z)=d2g(F(x¯))(F(x¯)w|F(x¯)z+2F(x¯)(w,w)d^{2}\psi(\bar{x})(w|z)=d^{2}g\big{(}F(\bar{x})\big{)}\big{(}\nabla F(\bar{x})w|\nabla F(\bar{x})z+\nabla^{2}F(\bar{x})(w,w) for all znz\in\mathbb{R}^{n};

(iii)(iii) domd2ψ(x¯)(w|)=Tdomψ2(x¯,w)\mbox{\rm dom}\,d^{2}\psi(\bar{x})(w|\cdot)=T^{2}_{\mbox{\rm dom}\,\psi}(\bar{x},w);

(iv)(iv) ψ\psi is parabolically epi-differentiable at x¯\bar{x} for w.w.

Proof. Since F:nmF:\mathbb{R}^{n}\to\mathbb{R}^{m} is twice differentiable at x¯\bar{x} in the extended sense, by Lemma 2, we get

F(x)=F(x¯)+F(x¯),xx¯+122F(x¯)(xx¯,xx¯)+o(xx¯2),F(x)=F(\bar{x})+\langle\nabla F(\bar{x}),x-\bar{x}\rangle+\frac{1}{2}\nabla^{2}F(\bar{x})(x-\bar{x},x-\bar{x})+o(\|x-\bar{x}\|^{2}), (20)

and ff is strictly differentiable at x¯.\bar{x}. The latter along with the composition gFg\circ F satisfying MSQC at x¯\bar{x} implies by (MMS20, , Theorem 3.4) that

dψ(x¯)(w)=dg(F(x¯))(F(x¯)w)for allwn,d\psi(\bar{x})(w)=dg\big{(}F(\bar{x})\big{)}\big{(}\nabla F(\bar{x})w\big{)}\ \mbox{for all}\ w\in\mathbb{R}^{n}, (21)

and by (MMS20, , Theorem 3.6) that

pψ(x¯)ψ(x¯)=F(x¯)g(F(x¯)).\partial_{p}\psi(\bar{x})\subset\partial\psi(\bar{x})=\nabla F(\bar{x})^{*}\partial g\big{(}F(\bar{x})\big{)}. (22)

We next prove that F(x¯)g(F(x¯))pψ(x¯).\nabla F(\bar{x})^{*}\partial g\big{(}F(\bar{x})\big{)}\subset\partial_{p}\psi(\bar{x}). To this end, take any yg(F(x¯)).y\in\partial g\big{(}F(\bar{x})\big{)}. Since gg is convex, we have ypg(F(x¯)).y\in\partial_{p}g\big{(}F(\bar{x})\big{)}. Hence,

lim infxx¯ψ(x)ψ(x¯)F(x¯)y,xx¯xx¯2=lim infxx¯g(F(x¯)+F(x¯)(xx¯)+122F(x¯)(xx¯,xx¯)+o(xx¯2))g(F(x¯))y,F(x¯)(xx¯)xx¯2=lim infxx¯g(F(x¯)+Δ(x))g(F(x¯))y,Δ(x)+y,122F(x¯)(xx¯,xx¯)+o(xx¯2)xx¯2lim infxx¯g(F(x¯)+Δ(x))g(F(x¯))y,Δ(x)xx¯212y2F(x¯)>,\begin{array}[]{rl}&\liminf\limits_{x\to\bar{x}}\frac{\psi(x)-\psi(\bar{x})-\big{\langle}\nabla F(\bar{x})^{*}y,x-\bar{x}\big{\rangle}}{\|x-\bar{x}\|^{2}}\\ &=\liminf\limits_{x\to\bar{x}}\frac{g\big{(}F(\bar{x})+\nabla F(\bar{x})(x-\bar{x})+\frac{1}{2}\nabla^{2}F(\bar{x})(x-\bar{x},x-\bar{x})+o(\|x-\bar{x}\|^{2})\big{)}-g\big{(}F(\bar{x})\big{)}-\big{\langle}y,\nabla F(\bar{x})(x-\bar{x})\big{\rangle}}{\|x-\bar{x}\|^{2}}\\ &=\liminf\limits_{x\to\bar{x}}\frac{g\big{(}F(\bar{x})+\Delta(x)\big{)}-g\big{(}F(\bar{x})\big{)}-\big{\langle}y,\Delta(x)\big{\rangle}+\big{\langle}y,\frac{1}{2}\nabla^{2}F(\bar{x})(x-\bar{x},x-\bar{x})+o(\|x-\bar{x}\|^{2})\big{\rangle}}{\|x-\bar{x}\|^{2}}\\ &\geq\liminf\limits_{x\to\bar{x}}\frac{g\big{(}F(\bar{x})+\Delta(x)\big{)}-g\big{(}F(\bar{x})\big{)}-\big{\langle}y,\Delta(x)\big{\rangle}}{\|x-\bar{x}\|^{2}}-\frac{1}{2}\|y\|\cdot\|\nabla^{2}F(\bar{x})\|>-\infty,\end{array}

where Δ(x):=F(x¯)(xx¯)+122F(x¯)(xx¯,xx¯)+o(xx¯2)0\Delta(x):=\nabla F(\bar{x})(x-\bar{x})+\frac{1}{2}\nabla^{2}F(\bar{x})(x-\bar{x},x-\bar{x})+o(\|x-\bar{x}\|^{2})\rightarrow 0 as xx¯.x\to\bar{x}. This shows that F(x¯)ypψ(x¯)\nabla F(\bar{x})^{*}y\in\partial_{p}\psi(\bar{x}), and thus

F(x¯)g(F(x¯))pψ(x¯).\nabla F(\bar{x})^{*}\partial g\big{(}F(\bar{x})\big{)}\subset\partial_{p}\psi(\bar{x}). (23)

From (22) and (23) it follows that

pψ(x¯)=ψ(x¯)=F(x¯)g(F(x¯)).\partial_{p}\psi(\bar{x})=\partial\psi(\bar{x})=\nabla F(\bar{x})^{*}\partial g\big{(}F(\bar{x})\big{)}. (24)

Furthermore, by (21) and (MS20, , Proposition 2.2), we get

Tdomψ(x¯)=domdψ(x¯)={wn|F(x¯)wdomdg(F(x¯))}={wn|F(x¯)wTdomg(F(x¯))}.\begin{array}[]{rl}T_{\mbox{\rm dom}\,\psi}(\bar{x})&=\mbox{\rm dom}\,d\psi(\bar{x})\\ &=\big{\{}w\in\mathbb{R}^{n}\ |\ \nabla F(\bar{x})w\in\mbox{\rm dom}\,dg\big{(}F(\bar{x})\big{)}\big{\}}\\ &=\big{\{}w\in\mathbb{R}^{n}\ |\ \nabla F(\bar{x})w\in T_{\mbox{\rm dom}\,g}\big{(}F(\bar{x})\big{)}\big{\}}.\end{array}

Let us now suppose further that wTdomψ(x¯)w\in T_{\mbox{\rm dom}\,\psi}(\bar{x}) and gg is parabolically epi-differentiable at F(x¯)F(\bar{x}) for F(x¯)w.\nabla F(\bar{x})w. Since gg is Lipschitz continuous around F(x¯)F(\bar{x}) relative to its domain, and F(x¯)wTdomg(F(x¯)),\nabla F(\bar{x})w\in T_{\mbox{\rm dom}\,g}\big{(}F(\bar{x})\big{)}, by (MS20, , Proposition 4.1), domg\mbox{\rm dom}\,g is parabolically derivable at F(x¯)F(\bar{x}) for F(x¯)w\nabla F(\bar{x})w. Hence, the proofs of (i)(i) and (ii)(iv)(ii)-(iv) can be, respectively, done as the ones of (MMS21, , Theorem 4.5) and (MS20, , Theorem 4.4), where FF was assumed to be twice differentiable at x¯,\bar{x}, but they actually needed the quadratic expansion of (20) and the strict differentiability of FF at x¯,\bar{x}, which are valid under the twice differentiability in the extended sense. \hfill\Box

In order to prove the next proposition we need the following lemma whose proof is the one of (MS20, , Proposition 4.6). For the sake of completeness we provide the proof with more details.

Lemma 3

Suppose f:n¯f:\mathbb{R}^{n}\to\overline{\mathbb{R}} is a proper lower semicontinuous convex function with f(x¯)f(\bar{x})\in\mathbb{R}, v¯f(x¯),\bar{v}\in\partial f(\bar{x}), wKf(x¯,v¯),w\in K_{f}(\bar{x},\bar{v}), and ff is parabolically epi-differentiable at x¯\bar{x} for w.w. Then d2f(x¯)(w|)d^{2}f(\bar{x})(w|\cdot) is proper lower semicontinuous and convex. Furthermore, d2f(x¯)(w|)(v)=d^{2}f(\bar{x})(w|\cdot)^{*}(v)=\infty whenever vn\𝒜(x¯,w),v\in\mathbb{R}^{n}\backslash\mathcal{A}(\bar{x},w), and d2f(x¯)(w|)(v)=d2f(x¯,v)(w)d^{2}f(\bar{x})(w|\cdot)^{*}(v)=-d^{2}f(\bar{x},v)(w) if v𝒜(x¯,w)v\in\mathcal{A}(\bar{x},w) and ff is parabolically regular at x¯\bar{x} for v,v, where 𝒜(x¯,w):={vf(x¯)|df(x¯)(w)=v,w}\mathcal{A}(\bar{x},w):=\{v\in\partial f(\bar{x})\ |\ df(\bar{x})(w)=\langle v,w\rangle\} and d2f(x¯)(w|)d^{2}f(\bar{x})(w|\cdot)^{*} is the Fenchel conjugate of d2f(x¯)(w|).d^{2}f(\bar{x})(w|\cdot).

Proof. Since ff is a lower semicontinuous function, f(x¯)f(\bar{x})\in\mathbb{R} and df(x¯)(w)=v¯,w,df(\bar{x})(w)=\langle\bar{v},w\rangle\in\mathbb{R}, by (RW98, , Proposition 13.64), d2f(x¯)(w|)d^{2}f(\bar{x})(w|\cdot) is lower semicontinuous and

d2f(x¯)(w|z)v¯,zd2f(x¯,v¯)(w)zn.d^{2}f(\bar{x})(w|z)-\langle\bar{v},z\rangle\geq d^{2}f(\bar{x},\bar{v})(w)\quad\forall z\in\mathbb{R}^{n}. (25)

Noting that ff is convex and v¯f(x¯)\bar{v}\in\partial f(\bar{x}), we have

d2f(x¯,v¯)(w)=lim infwwf(x¯+tw)f(x¯)tv¯,w12t20.d^{2}f(\bar{x},\bar{v})(w)=\liminf\limits_{w^{\prime}\to w}\frac{f(\bar{x}+tw^{\prime})-f(\bar{x})-t\langle\bar{v},w^{\prime}\rangle}{\frac{1}{2}t^{2}}\geq 0. (26)

Thus d2f(x¯)(w|z)>d^{2}f(\bar{x})(w|z)>-\infty for all zn.z\in\mathbb{R}^{n}. Combining this with domd2f(x¯)(w|)\mbox{\rm dom}\,d^{2}f(\bar{x})(w|\cdot)\not=\emptyset (due to the parabolic epi-differentiability of ff at x¯\bar{x} for ww), we see that d2f(x¯)(w|)d^{2}f(\bar{x})(w|\cdot) is a proper function. By (RW98, , Example 13.62),

epid2f(x¯)(w|)=Tepif2((x¯,f(x¯)),(w,df(x¯)(w))),\mbox{\rm epi}\,d^{2}f(\bar{x})(w|\cdot)=T^{2}_{\mbox{\rm epi}\,f}\Big{(}\big{(}\bar{x},f(\bar{x})\big{)},\big{(}w,df(\bar{x})(w)\big{)}\Big{)},

and since ff is parabolically epi-differentiable at x¯\bar{x} for w,w, epif{\mbox{\rm epi}\,f} is parabolically derivable at (x¯,f(x¯))\big{(}\bar{x},f(\bar{x})\big{)} for (w,df(x¯)(w)).\big{(}w,df(\bar{x})(w)\big{)}. This implies that d2f(x¯)(w|)d^{2}f(\bar{x})(w|\cdot) is convex since ff is convex.

Take any vn.v\in\mathbb{R}^{n}. Let us consider the following two cases.

Case 1. v𝒜(x¯,w).v\in\mathcal{A}(\bar{x},w). Then wKf(x¯,v)w\in K_{f}(\bar{x},v) and by (MS20, , Proposition 3.6), we have

d2f(x¯,v)(w)=infzn{d2f(x¯)(w|z)v,z}=d2f(x¯)(w|)(v),-d^{2}f(\bar{x},v)(w)=-\inf\limits_{z\in\mathbb{R}^{n}}\{d^{2}f(\bar{x})(w|z)-\langle v,z\rangle\}=d^{2}f(\bar{x})(w|\cdot)^{*}(v),

due to the parabolic regularity of ff at x¯\bar{x} for v.v.

Case 2. vn\𝒜(x¯,w).v\in\mathbb{R}^{n}\backslash\mathcal{A}(\bar{x},w). Then either vf(x¯)v\not\in\partial f(\bar{x}) or df(x¯)(w)v,w.df(\bar{x})(w)\not=\langle v,w\rangle. Put

υt(z):=f(x¯+tw+12t2z)f(x¯)tdf(x¯)(w)12t2zn,t>0.\upsilon_{t}(z):=\frac{f(\bar{x}+tw+\frac{1}{2}t^{2}z)-f(\bar{x})-tdf(\bar{x})(w)}{\frac{1}{2}t^{2}}\quad\forall z\in\mathbb{R}^{n},t>0.

We have

υt(v)=f(x¯)+f(v)v,x¯12t2+df(x¯)(w)v,w12tvn,t>0.\upsilon_{t}^{*}(v)=\frac{f(\bar{x})+f^{*}(v)-\langle v,\bar{x}\rangle}{\frac{1}{2}t^{2}}+\frac{df(\bar{x})(w)-\langle v,w\rangle}{\frac{1}{2}t}\quad\forall v\in\mathbb{R}^{n},t>0.

Since ff is parabolically epi-differentiable at x¯\bar{x} for w,w, by (RW98, , Example 13.59), epiυt\mbox{\rm epi}\,\upsilon_{t} converges to epid2f(x¯)(w|)\mbox{\rm epi}\,d^{2}f(\bar{x})(w|\cdot) as t0.t\downarrow 0. Noting that υt()\upsilon_{t}(\cdot) and d2f(x¯)(w|)d^{2}f(\bar{x})(w|\cdot) are proper lower semicontinuous and convex functions, by (RW98, , Theorem 11.34), the latter implies that epiυt\mbox{\rm epi}\,\upsilon_{t}^{*} converges to epid2f(x¯)(w|)\mbox{\rm epi}\,d^{2}f(\bar{x})(w|\cdot)^{*} as t0.t\downarrow 0. So, for any sequence tk0,t_{k}\downarrow 0, by (RW98, , Proposition 7.2), there exists a sequence vkvv_{k}\to v such that

d2f(x¯)(w|)(v)=limkυtk(vk).d^{2}f(\bar{x})(w|\cdot)^{*}(v)=\lim\limits_{k\to\infty}\upsilon_{t_{k}}^{*}(v_{k}).

If vf(x¯)v\not\in\partial f(\bar{x}) then f(x¯)+f(v)v,x¯>0.f(\bar{x})+f^{*}(v)-\langle v,\bar{x}\rangle>0. Thus, by lower semicontinuity of ff^{*}, we see that

d2f(x¯)(w|)(v)=limkυtk(vk)=limk2tk(f(x¯)+f(vk)vk,x¯tk+df(x¯)(w)vk,w)=.\begin{array}[]{rl}d^{2}f(\bar{x})(w|\cdot)^{*}(v)&=\lim\limits_{k\to\infty}\upsilon_{t_{k}}^{*}(v_{k})\\ &=\lim\limits_{k\to\infty}\frac{2}{t_{k}}\left(\frac{f(\bar{x})+f^{*}(v_{k})-\langle v_{k},\bar{x}\rangle}{t_{k}}+df(\bar{x})(w)-\langle v_{k},w\rangle\right)\\ &=\infty.\end{array}

If df(x¯)(w)v,wdf(\bar{x})(w)\not=\langle v,w\rangle then, by (26) and (RW98, , Proposition 13.5), v,w<df(x¯)(w).\langle v,w\rangle<df(\bar{x})(w). On the other hand, we have

f(x¯)+f(vk)vk,x¯=f(x¯)+supxn[vk,xf(x)]vk,x¯0k.f(\bar{x})+f^{*}(v_{k})-\langle v_{k},\bar{x}\rangle=f(\bar{x})+\sup\limits_{x\in\mathbb{R}^{n}}[\langle v_{k},x\rangle-f(x)]-\langle v_{k},\bar{x}\rangle\geq 0\quad\forall k.

Therefore,

d2f(x¯)(w|)(v)=limkυtk(vk)=limk(f(x¯)+f(vk)vk,x¯12tk2+df(x¯)(w)vk,w12tk)limkdf(x¯)(w)vk,w12tk=.\begin{array}[]{rl}d^{2}f(\bar{x})(w|\cdot)^{*}(v)&=\lim\limits_{k\to\infty}\upsilon_{t_{k}}^{*}(v_{k})\\ &=\lim\limits_{k\to\infty}\left(\frac{f(\bar{x})+f^{*}(v_{k})-\langle v_{k},\bar{x}\rangle}{\frac{1}{2}t_{k}^{2}}+\frac{df(\bar{x})(w)-\langle v_{k},w\rangle}{\frac{1}{2}t_{k}}\right)\\ &\geq\lim\limits_{k\to\infty}\frac{df(\bar{x})(w)-\langle v_{k},w\rangle}{\frac{1}{2}t_{k}}=\infty.\end{array}

So, we arrive at the desired conclusion. \hfill\Box

Following Mohammadi and Sarabi MS20 , we say that function ψ(x):=gF\psi(x):=g\circ F with (x¯,v¯)gphψ(\bar{x},\bar{v})\in\mbox{\rm gph}\,\partial\psi satisfies the basic assumptions at (x¯,v¯)(\bar{x},\bar{v}) if the following conditions hold:

  •  (H1)

    the metric subregularity qualification condition (19) is valid at x¯\bar{x};

  •  (H2)

    for each yΛ(x¯,v¯),y\in\Lambda(\bar{x},\bar{v}), gg is parabolically epi-differentiable at F(x¯)F(\bar{x}) for every uKg(F(x¯),y);u\in K_{g}\big{(}F(\bar{x}),y\big{)};

  •  (H3)

    gg is parabolically regular at F(x¯)F(\bar{x}) for every yΛ(x¯,v¯).y\in\Lambda(\bar{x},\bar{v}).

Here

Λ(x¯,v¯):={yg(F(x¯))|F(x¯)y=v¯},\Lambda(\bar{x},\bar{v}):=\big{\{}y\in\partial g\big{(}F(\bar{x})\big{)}\ |\ \nabla F(\bar{x})^{*}y=\bar{v}\big{\}},

and

Kg(F(x¯),y):={wm|dg(F(x¯))(w)=v¯,w}K_{g}\big{(}F(\bar{x}),y\big{)}:=\big{\{}w\in\mathbb{R}^{m}\ |\ dg\big{(}F(\bar{x})\big{)}(w)=\langle\bar{v},w\rangle\big{\}}

are the set of Lagrangian multipliers associated with (x¯,v¯),(\bar{x},\bar{v}), and the critical cone of gg at (F(x¯),y),(F(\bar{x}),y\big{)}, respectively.

Let us consider the following optimization problem:

minxnz,v¯+d2g(F(x¯))(F(x¯)w|F(x¯)z+2F(x¯)(w,w)).\min\limits_{x\in\mathbb{R}^{n}}-\langle z,\bar{v}\rangle+d^{2}g\big{(}F(\bar{x})\big{)}\big{(}\nabla F(\bar{x})w|\nabla F(\bar{x})z+\nabla^{2}F(\bar{x})(w,w)\big{)}. (27)
Proposition 2

Let ψ:n¯\psi:\mathbb{R}^{n}\to\overline{\mathbb{R}} be a function that is represented as (17) with the composition ψ=gF\psi=g\circ F satisfying the basic assumptions (H1)(H1)-(H3)(H3) at (x¯,v¯).(\bar{x},\bar{v}). Then the following assertions hold:

(i)(i) For each wKψ(x¯,v¯),w\in K_{\psi}(\bar{x},\bar{v}), the dual problem of (27) is

maxyΛ(x¯,v¯)y,2F(x¯)(w,w)+d2g(F(x¯),y)(F(x¯));\max\limits_{y\in\Lambda(\bar{x},\bar{v})}\left\langle y,\nabla^{2}F(\bar{x})(w,w)\right\rangle+d^{2}g\big{(}F(\bar{x}),y\big{)}\big{(}\nabla F(\bar{x})\big{)}; (28)

the optimal values of the primal and dual optimization problems (27) and (28) are equal and finite. Furthermore, Λ(x¯,v¯,w)τ𝔹,\Lambda(\bar{x},\bar{v},w)\cap\tau\mathbb{B}\not=\emptyset, where Λ(x¯,v¯,w)\Lambda(\bar{x},\bar{v},w) is the optimal solution set of (28) and

τ:=κF(x¯)+κv¯+\tau:=\kappa\ell\|\nabla F(\bar{x})\|+\kappa\|\bar{v}\|+\ell (29)

with \ell and κ\kappa given in (17) and (19), respectively.

(ii)(ii) ψ\psi is parabolically regular at x¯\bar{x} for v¯,\bar{v}, and

d2ψ(x¯,v¯)(w)=maxyΛ(x¯,v¯){y,2F(x¯)(w,w)+d2g(F(x¯),y)(F(x¯)w)}=maxyΛ(x¯,v¯)(τ𝔹){y,2F(x¯)(w,w)+d2g(F(x¯),y)(F(x¯)w)},\begin{array}[]{rl}d^{2}\psi(\bar{x},\bar{v})(w)&=\max\limits_{y\in\Lambda(\bar{x},\bar{v})}\left\{\big{\langle}y,\nabla^{2}F(\bar{x})(w,w)\big{\rangle}+d^{2}g\big{(}F(\bar{x}),y\big{)}\big{(}\nabla F(\bar{x})w\big{)}\right\}\\ &=\max\limits_{y\in\Lambda(\bar{x},\bar{v})\cap(\tau\mathbb{B})}\left\{\big{\langle}y,\nabla^{2}F(\bar{x})(w,w)\big{\rangle}+d^{2}g\big{(}F(\bar{x}),y\big{)}\big{(}\nabla F(\bar{x})w\big{)}\right\},\end{array} (30)

for every wn,w\in\mathbb{R}^{n}, where τ\tau is given by (29).

(iii)(iii) ψ\psi is twice epi-differentiable at x¯\bar{x} for v¯.\bar{v}.

Proof. Take any wKψ(x¯,v¯)w\in K_{\psi}(\bar{x},\bar{v}) and yΛ(x¯,v¯).y\in\Lambda(\bar{x},\bar{v}). Then dψ(x¯)(w)=v¯,w,d\psi(\bar{x})(w)=\langle\bar{v},w\rangle, yg(F(x¯))y\in\partial g\big{(}F(\bar{x})\big{)} and F(x¯)y=v¯.\nabla F(\bar{x})^{*}y=\bar{v}. So, by Proposition 1,

dg(F(x¯))(F(x¯)w)=v¯,w=F(x¯)y,w=y,F(x¯)w.dg\big{(}F(\bar{x})\big{)}\big{(}\nabla F(\bar{x})w\big{)}=\langle\bar{v},w\rangle=\langle\nabla F(\bar{x})^{*}y,w\rangle=\langle y,\nabla F(\bar{x})w\rangle.

This means F(x¯)wKg(F(x¯),y).\nabla F(\bar{x})w\in K_{g}\big{(}F(\bar{x}),y\big{)}. By (H2),(H2), gg is parabolically epi-differentiable at F(x¯)F(\bar{x}) for F(x¯)w.\nabla F(\bar{x})w. Thus, by Lemma 3, the function d2g(F(x¯))(F(x¯)w|)d^{2}g\big{(}F(\bar{x})\big{)}(\nabla F(\bar{x})w|\cdot) is a proper lower semicontinuous convex function. Hence, from (RW98, , Example 11.41) it follows that the Fenchel dual problem of (27) is

maxF(x¯)y=v¯y,2F(x¯)(w,w)d2g(F(x¯))(F(x¯)w|)(y).\max\limits_{\nabla F(\bar{x})^{*}y=\bar{v}}\left\langle y,\nabla^{2}F(\bar{x})(w,w)\right\rangle-d^{2}g\big{(}F(\bar{x})\big{)}\big{(}\nabla F(\bar{x})w|\cdot)^{*}(y). (31)

Pick any ymy\in\mathbb{R}^{m} with F(x¯)y=v¯.\nabla F(\bar{x})^{*}y=\bar{v}. If yg(F(x¯))y\not\in\partial g\big{(}F(\bar{x})\big{)} then, by Lemma 3,

d2g(F(x¯))(F(x¯)w|)(y)=.d^{2}g\big{(}F(\bar{x})\big{)}\big{(}\nabla F(\bar{x})w|\cdot)^{*}(y)=\infty. (32)

Otherwise, we get yΛ(x¯,v¯).y\in\Lambda(\bar{x},\bar{v}). Then, by (H3),(H3), gg is parabolically regular at F(x¯)F(\bar{x}) for y.y. Note that yg(F(x¯))y\in\partial g\big{(}F(\bar{x})\big{)} and dg(F(x¯))(F(x¯)w)=y,F(x¯)w.dg\big{(}F(\bar{x})\big{)}\big{(}\nabla F(\bar{x})w\big{)}=\langle y,\nabla F(\bar{x})w\rangle. So, by Lemma 3, we see that

d2g(F(x¯))(F(x¯)w|)(y)=d2g(F(x¯),y)(w).d^{2}g\big{(}F(\bar{x})\big{)}\big{(}\nabla F(\bar{x})w|\cdot)^{*}(y)=-d^{2}g\big{(}F(\bar{x}),y)(w). (33)

From (32) and (33) it follows that problem (31) can be written as problem (28). The rest of the proof (i)(i) runs as the one of (MS20, , Theorem 5.2), and the proof of (ii)(ii) is similar to the proof of (MS20, , Theorem 5.4). So, they are omitted. Finally, we see that, by (ii),(ii), ψ\psi is parabolically regular at x¯\bar{x} for v¯ψ(x¯)=pψ(x¯),\bar{v}\in\partial\psi(\bar{x})=\partial_{p}\psi(\bar{x}), and, by (MS20, , Theorem 4.4), ψ\psi is parabolically epi-differentiable at x¯\bar{x} for every wKψ(x¯,v¯).w\in K_{\psi}(\bar{x},\bar{v}). Therefore, by (MS20, , Theorem 3.8), ψ\psi is twice epi-differentiable at x¯\bar{x} for v¯.\bar{v}. \hfill\Box

Remark 1

Under the assumption of Proposition 2, gg is parabolically regular at F(x¯)F(\bar{x}) only for all yg(F(x¯))y\in\partial g\big{(}F(\bar{x})\big{)} with F(x¯)y=v¯.\nabla F(\bar{x})^{*}y=\bar{v}. Thus, we cannot apply (MS20, , Proposition 4.6) to transforming (31) into (28), since (MS20, , Proposition 4.6) requires the parabolic regularity of gg at F(x¯)F(\bar{x}) for every yg(F(x¯)).y\in\partial g\big{(}F(\bar{x})\big{)}. That is why Lemma 3 is utilized. We note that the results in Propositions 1&2 were established in MS20 for the case where FF is twice differentiable in the classical sense.

4 Quadratic growth and strong metric subregularity of the subdifferential

Let f:nR¯f\colon\mathbb{R}^{n}\to\overline{R} and x¯domf.\bar{x}\in\mbox{\rm dom}\,f. We say that x¯\bar{x} is a strong local minimizer of ff with modulus κ>0\kappa>0 if there is a number γ>0\gamma>0 such that the following quadratic growth condition (QGC) is satisfied:

f(x)f(x¯)κ2xx¯2for allx𝔹γ(x¯).f(x)-f(\bar{x})\geq\frac{\kappa}{2}\|x-\bar{x}\|^{2}\quad\mbox{for all}\quad x\in\mathbb{B}_{\gamma}(\bar{x}). (34)

The exact modulus for QGC of ff at x¯\bar{x} is given by

QG(f;x¯):=sup{κ>0|x¯ is a strong local minimizer of f with modulus κ}.{\rm QG}\,(f;\bar{x}):=\sup\big{\{}\kappa>0\;|\;\bar{x}\mbox{ is a strong local minimizer of $f$ with modulus $\kappa$}\big{\}}.
Lemma 4

((DMN14, , Corollary 3.3)). Let f:n¯f\colon\mathbb{R}^{n}\to\bar{\mathbb{R}} be a proper lower semicontinuous function and let x¯domf\bar{x}\in\mbox{\rm dom}\,f with 0f(x¯)0\in\partial f(\bar{x}). Suppose that the subgradient mapping f\partial f is strongly metrically subregular at x¯\bar{x} for 0 with modulus κ>0\kappa>0 and there are real numbers r(0,κ1)r\in(0,\kappa^{-1}) and δ>0\delta>0 such that

f(x)f(x¯)r2xx¯2for allx𝔹δ(x¯).\displaystyle f(x)\geq f(\bar{x})-\frac{r}{2}\|x-\bar{x}\|^{2}\quad\mbox{for all}\quad x\in\mathbb{B}_{\delta}(\bar{x}). (35)

Then for any α(0,κ1)\alpha\in(0,\kappa^{-1}), there exists a real number η>0\eta>0 such that

f(x)f(x¯)+α2xx¯2for allx𝔹η(x¯).\displaystyle f(x)\geq f(\bar{x})+\frac{\alpha}{2}\|x-\bar{x}\|^{2}\quad\mbox{for all}\quad x\in\mathbb{B}_{\eta}(\bar{x}). (36)
Lemma 5

((CHNT21, , Lemma 3.6)). Let h:n¯h:\mathbb{R}^{n}\to\bar{\mathbb{R}} be a proper function. Suppose that hh is positively homogenenous of degree 22 in the sense that h(λw)=λ2h(w)h(\lambda w)=\lambda^{2}h(w) for all λ>0\lambda>0 and wdomhw\in\mbox{\rm dom}\,h. Then for any wdomhw\in\mbox{\rm dom}\,h and zh(w)z\in\partial h(w), we have z,w=2h(w)\langle z,w\rangle=2h(w).

The following result provides some characterizations of the quadratic growth and the strong metric subregularity of the subdifferential.

Theorem 4.1

Let f:n¯f:\mathbb{R}^{n}\to\bar{\mathbb{R}} be the function defined by f(x)=φ(x)+ψ(x)f(x)=\varphi(x)+\psi(x) for every xn,x\in\mathbb{R}^{n}, where φ:n¯\varphi:\mathbb{R}^{n}\to\overline{\mathbb{R}} is twice differentiable at x¯\bar{x} in the extended sense, 0φ(x¯)+ψ(x¯),0\in\nabla\varphi(\bar{x})+\partial\psi(\bar{x}), and ψ:n¯\psi:\mathbb{R}^{n}\to\overline{\mathbb{R}} is subdifferentially continuous, prox-regular, and twice epi-differentiable at x¯\bar{x} for φ(x¯)-\nabla\varphi(\bar{x}). Then the following assertions are equivalent:

(i)(i) The quadratic growth condition (34) is satisfied.

(ii)(ii) The subgradient mapping f\partial f is strongly metrically subregular at (x¯,0),(\bar{x},0), and

2φ(x¯)w,w+d2ψ(x¯|φ(x¯))(w)0for allwn.\langle\nabla^{2}\varphi(\bar{x})w,w\rangle+d^{2}\psi\big{(}\bar{x}|-\nabla\varphi(\bar{x})\big{)}(w)\geq 0\ \mbox{for all}\ w\in\mathbb{R}^{n}. (37)

(iii)(iii) The subgradient mapping f\partial f is strongly metrically subregular at (x¯,0),(\bar{x},0), and x¯\bar{x} is a local minimizer for f.f.

(iv(iv For all wdomDψ(x¯|φ(x¯))\{0}w\in{\rm dom}D\partial\psi\big{(}\bar{x}|-\nabla\varphi(\bar{x})\big{)}\backslash\{0\} and zDψ(x¯|φ(x¯))(w),z\in D\partial\psi\big{(}\bar{x}|-\nabla\varphi(\bar{x})\big{)}(w), we have

2φ(x¯)w,w+z,w>0.\langle\nabla^{2}\varphi(\bar{x})w,w\rangle+\langle z,w\rangle>0. (38)

(v)(v) There exists a real number c>0c>0 such that

2φ(x¯)w,w+z,wcw2,\langle\nabla^{2}\varphi(\bar{x})w,w\rangle+\langle z,w\rangle\geq c\|w\|^{2}, (39)

for all wdomDψ(x¯|φ(x¯))w\in{\rm dom}D\partial\psi\big{(}\bar{x}|-\nabla\varphi(\bar{x})\big{)} and zDψ(x¯|φ(x¯))(w).z\in D\partial\psi\big{(}\bar{x}|-\nabla\varphi(\bar{x})\big{)}(w).

(vi)(vi) For every wn\{0},w\in\mathbb{R}^{n}\backslash\{0\}, we have

2φ(x¯)w,w+d2ψ(x¯|φ(x¯))(w)>0.\langle\nabla^{2}\varphi(\bar{x})w,w\rangle+d^{2}\psi\big{(}\bar{x}|-\nabla\varphi(\bar{x})\big{)}(w)>0. (40)

If one of the above assertions holds then

QG(f;x¯)=inf{2φ(x¯)w,w+z,ww2|wdomDψ(x¯|φ(x¯)),zDψ(x¯|φ(x¯))(w)},{\rm QG}(f;\bar{x})=\inf\left\{\frac{\langle\nabla^{2}\varphi(\bar{x})w,w\rangle+\langle z,w\rangle}{\|w\|^{2}}\,\Big{|}\begin{array}[]{rl}&w\in{\rm dom}D\partial\psi\big{(}\bar{x}|-\nabla\varphi(\bar{x})\big{)},\\ &z\in D\partial\psi\big{(}\bar{x}|-\nabla\varphi(\bar{x})\big{)}(w)\end{array}\right\}, (41)

with the convention that 0/0=0/0=\infty.

Proof. Under our assumption, by Theorem 3.1, we have

D(φ+ψ)(x¯|0)(w)=2φ(x¯)(w)+Dψ(x¯|φ(x¯))(w),D\partial(\varphi+\psi)(\bar{x}|0)(w)=\nabla^{2}\varphi(\bar{x})(w)+D\partial\psi\big{(}\bar{x}|-\nabla\varphi(\bar{x})\big{)}(w), (42)

and

d2(φ+ψ)(x¯|0)(w)=w,2φ(x¯)w+d2ψ(x¯|φ(x¯))(w),d^{2}(\varphi+\psi)\big{(}\bar{x}|0\big{)}(w)=\big{\langle}w,\nabla^{2}\varphi(\bar{x})w\big{\rangle}+d^{2}\psi\big{(}\bar{x}|-\nabla\varphi(\bar{x})\big{)}(w), (43)

for every wnw\in\mathbb{R}^{n}. By (43) and (RW98, , Theorem 13.24), we see that (i)(vi)(i)\Leftrightarrow(vi) and (iii)(ii).(iii)\Rightarrow(ii).

We next prove that 0pf(x¯).0\in\partial_{p}f(\bar{x}). Since ψ\psi is subdifferentially continuous and prox-regular at x¯\bar{x} for φ(x¯)-\nabla\varphi(\bar{x}), we get

lim infxx¯ψ(x)ψ(x¯)+φ(x¯),xx¯xx¯2>.\liminf\limits_{x\to\bar{x}}\frac{\psi(x)-\psi(\bar{x})+\langle\nabla\varphi(\bar{x}),x-\bar{x}\rangle}{\|x-\bar{x}\|^{2}}>-\infty.

On the other hand, from the extended twice differentiability of φ\varphi at x¯\bar{x}, by (11), it follows that

φ(x)=φ(x¯)+φ(x¯),xx¯+12xx¯,2φ(x¯)(xx¯)+o(xx¯2),\varphi(x)=\varphi(\bar{x})+\langle\nabla\varphi(\bar{x}),x-\bar{x}\rangle+\frac{1}{2}\langle x-\bar{x},\nabla^{2}\varphi(\bar{x})(x-\bar{x})\rangle+o(\|x-\bar{x}\|^{2}),

which gives us the following estimations

lim infxx¯φ(x)φ(x¯)φ(x¯),xx¯xx¯2=lim infxx¯12xx¯,2φ(x¯)(xx¯)+o(xx¯2)xx¯2122φ(x¯)>.\begin{array}[]{rl}\liminf\limits_{x\to\bar{x}}\frac{\varphi(x)-\varphi(\bar{x})-\langle\nabla\varphi(\bar{x}),x-\bar{x}\rangle}{\|x-\bar{x}\|^{2}}&=\liminf\limits_{x\to\bar{x}}\frac{\frac{1}{2}\langle x-\bar{x},\nabla^{2}\varphi(\bar{x})(x-\bar{x})\rangle+o(\|x-\bar{x}\|^{2})}{\|x-\bar{x}\|^{2}}\\ &\geq-\frac{1}{2}\|\nabla^{2}\varphi(\bar{x})\|>-\infty.\end{array}

Therefore,

lim infxx¯f(x)f(x¯)xx¯2=lim infxx¯[φ(x)φ(x¯)φ(x¯),xx¯xx¯2+ψ(x)ψ(x¯)+φ(x¯),xx¯xx¯2]=lim infxx¯φ(x)φ(x¯)φ(x¯),xx¯xx¯2+lim infxx¯ψ(x)ψ(x¯)+φ(x¯),xx¯xx¯2>.\begin{array}[]{rl}\liminf\limits_{x\to\bar{x}}\frac{f(x)-f(\bar{x})}{\|x-\bar{x}\|^{2}}&=\liminf\limits_{x\to\bar{x}}\left[\frac{\varphi(x)-\varphi(\bar{x})-\langle\nabla\varphi(\bar{x}),x-\bar{x}\rangle}{\|x-\bar{x}\|^{2}}+\frac{\psi(x)-\psi(\bar{x})+\langle\nabla\varphi(\bar{x}),x-\bar{x}\rangle}{\|x-\bar{x}\|^{2}}\right]\\ &=\liminf\limits_{x\to\bar{x}}\frac{\varphi(x)-\varphi(\bar{x})-\langle\nabla\varphi(\bar{x}),x-\bar{x}\rangle}{\|x-\bar{x}\|^{2}}+\liminf\limits_{x\to\bar{x}}\frac{\psi(x)-\psi(\bar{x})+\langle\nabla\varphi(\bar{x}),x-\bar{x}\rangle}{\|x-\bar{x}\|^{2}}\\ &>-\infty.\end{array}

This shows that 0pf(x¯).0\in\partial_{p}f(\bar{x}).

Hence, by (42) and (CHNT21, , Theorem 3.2), implication (v)(iv)(iii)(v)\Rightarrow(iv)\Rightarrow(iii) holds, and

QG(f;x¯)inf{2φ(x¯)w,w+z,ww2|wdomDψ(x¯|φ(x¯)),zDψ(x¯|φ(x¯))(w)}.{\rm QG}(f;\bar{x})\geq\inf\left\{\frac{\langle\nabla^{2}\varphi(\bar{x})w,w\rangle+\langle z,w\rangle}{\|w\|^{2}}\,\Big{|}\begin{array}[]{rl}&w\in{\rm dom}D\partial\psi\big{(}\bar{x}|-\nabla\varphi(\bar{x})\big{)},\\ &z\in D\partial\psi\big{(}\bar{x}|-\nabla\varphi(\bar{x})\big{)}(w)\end{array}\right\}. (44)

We now prove (ii)(i).(ii)\Rightarrow(i). Suppose f\partial f is strongly metrically subregular at x¯\bar{x} for 0 with modulus κ>0,\kappa>0, and (37) holds. By (43), we get

d2f(x¯|0)(w)0for allwn.d^{2}f\big{(}\bar{x}|0\big{)}(w)\geq 0\,\ \mbox{for all}\ w\in\mathbb{R}^{n}. (45)

Fix an arbitrary r(0,κ1).r\in(0,\kappa^{-1}). Then there exists a real number δ>0\delta>0 such that

f(x)f(x¯)r2xx¯2for allx𝔹δ(x¯).\displaystyle f(x)\geq f(\bar{x})-\frac{r}{2}\|x-\bar{x}\|^{2}\quad\mbox{for all}\quad x\in\mathbb{B}_{\delta}(\bar{x}). (46)

Indeed, suppose by contrary that this claim does not hold. Then, for each k,k\in\mathbb{N}, there exists xk𝔹1/k(x¯)x_{k}\in\mathbb{B}_{1/k}(\bar{x}) with

f(xk)<f(x¯)r2xkx¯2.f(x_{k})<f(\bar{x})-\frac{r}{2}\|x_{k}-\bar{x}\|^{2}.

Put tk:=xkx¯t_{k}:=\|x_{k}-\bar{x}\| and wk:=tk1(xkx¯)w_{k}:=t^{-1}_{k}(x_{k}-\bar{x}) for k.k\in\mathbb{N}. We see that _k0\_k\downarrow 0 as k.k\to\infty. Furthermore, passing to a subsequence if necessary, we may assume that {wk}\{w_{k}\} converges to some w¯n\bar{w}\in\mathbb{R}^{n} as k.k\to\infty. So we have

d2f(x¯|0)(w¯)=lim inft0ww¯f(x¯+tw)f(x¯)τ0,w12t2lim infkf(x¯+tkwk)f(x¯)12tk2=lim infkf(xk)f(x¯)12xkx¯2r2<0.\begin{array}[]{rl}d^{2}f\big{(}\bar{x}|0\big{)}(\bar{w})&=\liminf\limits_{\begin{subarray}{\quad}\,\ t\downarrow 0\\ w\longrightarrow\bar{w}\end{subarray}}\frac{f(\bar{x}+tw)-f(\bar{x})-\tau\langle 0,w\rangle}{\frac{1}{2}t^{2}}\\ &\leq\liminf\limits_{k\to\infty}\frac{f(\bar{x}+t_{k}w_{k})-f(\bar{x})}{\frac{1}{2}t_{k}^{2}}\\ &=\liminf\limits_{k\to\infty}\frac{f(x_{k})-f(\bar{x})}{\frac{1}{2}\|x_{k}-\bar{x}\|^{2}}\leq-\frac{r}{2}<0.\end{array}

This contradicts (45). Therefore, there exists a real number δ>0\delta>0 such that (46) holds. By Lemma 4, the quadratic growth condition (34) holds, and we have (ii)(i).(ii)\Rightarrow(i).

Finally, we prove (i)(v)(i)\Rightarrow(v) and

QG(f;x¯)inf{2φ(x¯)w,w+z,ww2|wdomDψ(x¯|φ(x¯)),zDψ(x¯|φ(x¯))(w)}.{\rm QG}(f;\bar{x})\leq\inf\left\{\frac{\langle\nabla^{2}\varphi(\bar{x})w,w\rangle+\langle z,w\rangle}{\|w\|^{2}}\,\Big{|}\begin{array}[]{rl}&w\in{\rm dom}D\partial\psi\big{(}\bar{x}|-\nabla\varphi(\bar{x})\big{)},\\ &z\in D\partial\psi\big{(}\bar{x}|-\nabla\varphi(\bar{x})\big{)}(w)\end{array}\right\}. (47)

Suppose that x¯\bar{x} is a strong local minimizer with modulus κ\kappa as in (34). We derive from (34) and (3) that

d2f(x¯|0)(w)κw2for allwn.d^{2}f(\bar{x}|0)(w)\geq\kappa\|w\|^{2}\quad\mbox{for all}\ w\in\mathbb{R}^{n}. (48)

Since ψ\psi is subdifferentially continuous, prox-regular, and twice epi-differentiable at x¯\bar{x} for φ(x¯)ψ(x¯),-\nabla\varphi(\bar{x})\in\partial\psi(\bar{x}), it follows from (4) that

D(ψ)(x¯|φ(x¯))=hwithh():=12d2ψ(x¯|φ(x¯))()D(\partial\psi)\big{(}\bar{x}|-\nabla\varphi(\bar{x})\big{)}=\partial h\quad\mbox{with}\quad h(\cdot):=\dfrac{1}{2}d^{2}\psi\big{(}\bar{x}|-\nabla\varphi(\bar{x})\big{)}(\cdot) (49)

Note from (3) and (48) that hh is proper and positively homogenenous of degree 22. By Lemma 5, for any zD(ψ)(x¯|φ(x¯))(w)=h(w),z\in D(\partial\psi)\big{(}\bar{x}|-\nabla\varphi(\bar{x})\big{)}(w)=\partial h(w), we obtain from (48) and (49) that

z,w=2h(w)=d2ψ(x¯|φ(x¯))(w).\langle z,w\rangle=2h(w)=d^{2}\psi\big{(}\bar{x}|-\nabla\varphi(\bar{x})\big{)}(w). (50)

Therefore, for every wdomDψ(x¯|φ(x¯))w\in{\rm dom}D\partial\psi\big{(}\bar{x}|-\nabla\varphi(\bar{x})\big{)} and zDψ(x¯|φ(x¯))(w),z\in D\partial\psi\big{(}\bar{x}|-\nabla\varphi(\bar{x})\big{)}(w), by (42), (43), (48), and (50), we get

2φ(x¯)w,w+z,w=2φ(x¯)w,w+d2ψ(x¯|φ(x¯))(w)=d2f(x¯|0)(w)κw2,\langle\nabla^{2}\varphi(\bar{x})w,w\rangle+\langle z,w\rangle=\langle\nabla^{2}\varphi(\bar{x})w,w\rangle+d^{2}\psi\big{(}\bar{x}|-\nabla\varphi(\bar{x})\big{)}(w)=d^{2}f(\bar{x}|0)(w)\geq\kappa\|w\|^{2},

which clearly verifies (v)(v) and

κinf{2φ(x¯)w,w+z,ww2|wdomDψ(x¯|φ(x¯)),zDψ(x¯|φ(x¯))(w)}.\kappa\leq\inf\left\{\frac{\langle\nabla^{2}\varphi(\bar{x})w,w\rangle+\langle z,w\rangle}{\|w\|^{2}}\,\Big{|}\begin{array}[]{rl}&w\in{\rm dom}D\partial\psi\big{(}\bar{x}|-\nabla\varphi(\bar{x})\big{)},\\ &z\in D\partial\psi\big{(}\bar{x}|-\nabla\varphi(\bar{x})\big{)}(w)\end{array}\right\}.

Since κ\kappa is an arbitrary modulus of the strong local minimizer x¯,\bar{x}, the latter implies that (47) holds. So by (44) and (47) we get (41). \hfill\Box

Remark 2

By choosing φ:=0\varphi:=0, we can get (CHNT21, , Theorem 3.7) from Theorem 4.1. In the case where φ\varphi is twice continuously differentiable and ψ\psi is twice epi-differentiable and convex, other characterizations of the quadratic growth as well as the strong metric subregularity of the subdifferential can be found in (OM21, , Theorem 7.8).

We next consider the composite optimization problem

minxnf(x):=φ(x)+g(F(x)),\min\limits_{x\in\mathbb{R}^{n}}f(x):=\varphi(x)+g\big{(}F(x)\big{)}, (51)

where φ:n¯\varphi:\mathbb{R}^{n}\to\overline{\mathbb{R}} is twice differentiable at x¯\bar{x} in the extended sense, F:nmF:\mathbb{R}^{n}\to\mathbb{R}^{m} is twice differentiable, and g:m¯:=(,+]g:\mathbb{R}^{m}\to\overline{\mathbb{R}}:=(-\infty,+\infty] is a proper lower semicontinuous convex function Lipschitz continuous around F(x¯)F(\bar{x}) relative to its domain with constaint +.\ell\in\mathbb{R}_{+}.

The Lagrangian associated with (51) is defined by

L(x,y)=φ(x)+F(x),yg(y),L(x,y)=\varphi(x)+\langle F(x),y\rangle-g^{*}(y),

where g(y):=supvm[y,vg(v)]g^{*}(y):=\sup\limits_{v\in\mathbb{R}^{m}}[\langle y,v\rangle-g(v)] is the Fenchel conjugate of gg (see MS20 ).

Corollary 1

Let 0φ(x¯)+ψ(x¯),0\in\nabla\varphi(\bar{x})+\partial\psi(\bar{x}), where φ:n¯\varphi:\mathbb{R}^{n}\to\overline{\mathbb{R}} is twice differentiable at x¯\bar{x} in the extended sense, and ψ:=gF\psi:=g\circ F with F:nmF:\mathbb{R}^{n}\to\mathbb{R}^{m} being twice differentiable at x¯\bar{x} in the extended sense and g:m¯g:\mathbb{R}^{m}\to\overline{\mathbb{R}} being a proper lower semicontinuous convex function Lipschitz continuous around F(x¯)F(\bar{x}) relative to its domain. Assume that the basic assumptions (H1)(H1)-(H3)(H3) hold for ψ\psi at (x¯,v¯)(\bar{x},\bar{v}) with v¯:=φ(x¯),\bar{v}:=-\nabla\varphi(\bar{x}), and ψ\psi is prox-regular at x¯\bar{x} for v¯.\bar{v}. Then, the following assertions are equivalent:

(i)(i) The quadratic growth condition (34) is satisfied.

(ii)(ii) f\partial f is strongly metrically subregular at (x¯,0),(\bar{x},0), and

maxyΛ(x¯,v¯){xx2L(x¯,y¯)w,w+d2g(F(x¯),y)(F(x¯)w)}0\max\limits_{y\in\Lambda(\bar{x},\bar{v})}\left\{\big{\langle}\nabla^{2}_{xx}L(\bar{x},\bar{y})w,w\big{\rangle}+d^{2}g\big{(}F(\bar{x}),y\big{)}\big{(}\nabla F(\bar{x})w\big{)}\right\}\geq 0

for all wKψ(x¯,v¯);w\in K_{\psi}(\bar{x},\bar{v});

(iii)(iii) f\partial f is strongly metrically subregular at (x¯,0),(\bar{x},0), and x¯\bar{x} is a local minimizer of f.f.

(iv(iv For all wdomDψ(x¯|φ(x¯))\{0}w\in{\rm dom}D\partial\psi\big{(}\bar{x}|-\nabla\varphi(\bar{x})\big{)}\backslash\{0\} and zDψ(x¯|φ(x¯))(w),z\in D\partial\psi\big{(}\bar{x}|-\nabla\varphi(\bar{x})\big{)}(w), we have

2φ(x¯)w,w+z,w>0.\langle\nabla^{2}\varphi(\bar{x})w,w\rangle+\langle z,w\rangle>0.

(v)(v) There exists a real number c>0c>0 such that

2φ(x¯)w,w+z,wcw2,\langle\nabla^{2}\varphi(\bar{x})w,w\rangle+\langle z,w\rangle\geq c\|w\|^{2}, (52)

for all wdomDψ(x¯|φ(x¯))w\in{\rm dom}D\partial\psi\big{(}\bar{x}|-\nabla\varphi(\bar{x})\big{)} and zDψ(x¯|φ(x¯))(w).z\in D\partial\psi\big{(}\bar{x}|-\nabla\varphi(\bar{x})\big{)}(w).

(vi)(vi) For every wKψ(x¯,v¯)\{0},w\in K_{\psi}(\bar{x},\bar{v})\backslash\{0\}, we have

maxyΛ(x¯,v¯){xx2L(x¯,y)w,w+d2g(F(x¯),y)(F(x¯)w)}>0.\max\limits_{y\in\Lambda(\bar{x},\bar{v})}\left\{\big{\langle}\nabla^{2}_{xx}L(\bar{x},y)w,w\big{\rangle}+d^{2}g\big{(}F(\bar{x}),y\big{)}\big{(}\nabla F(\bar{x})w\big{)}\right\}>0.

If one of the above assertions holds then

QG(f;x¯)=inf{2φ(x¯)w,w+z,ww2|wdomDψ(x¯|φ(x¯)),zDψ(x¯|φ(x¯))(w)},{\rm QG}(f;\bar{x})=\inf\left\{\frac{\langle\nabla^{2}\varphi(\bar{x})w,w\rangle+\langle z,w\rangle}{\|w\|^{2}}\,\Big{|}\begin{array}[]{rl}&w\in{\rm dom}D\partial\psi\big{(}\bar{x}|-\nabla\varphi(\bar{x})\big{)},\\ &z\in D\partial\psi\big{(}\bar{x}|-\nabla\varphi(\bar{x})\big{)}(w)\end{array}\right\},

with the convention that 0/0=0/0=\infty.

Proof. Under the given assumption, ψ\psi is prox-regular and subdifferentially continuous at x¯\bar{x} for v¯,\bar{v}, and by Proposition 2, ψ\psi is twice epi-differentiable at x¯\bar{x} for v¯.\bar{v}. Furthermore, since gg is Lipschitz continuous relative to its domain and FF is Lipschitz continuous around x¯,\bar{x}, the composition ψ=gF\psi=g\circ F is subdifferentially continuous at x¯\bar{x} for v¯.\bar{v}. On the other hand, by Proposition 2, we have

d2ψ(x¯,v¯)(w)=maxyΛ(x¯,v¯){2F(x¯)(w,w)+d2g(F(x¯),y)(F(x¯)w)}wn,d^{2}\psi(\bar{x},\bar{v})(w)=\max\limits_{y\in\Lambda(\bar{x},\bar{v})}\left\{\big{\langle}\nabla^{2}F(\bar{x})(w,w)\big{\rangle}+d^{2}g\big{(}F(\bar{x}),y\big{)}\big{(}\nabla F(\bar{x})w\big{)}\right\}\quad\forall w\in\mathbb{R}^{n},

which gives us that

2φ(x¯)w,w+d2ψ(x¯|v¯)(w)=maxyΛ(x¯,v¯){xx2L(x¯,y)w,w+d2g(F(x¯),y)(F(x¯)w)},\langle\nabla^{2}\varphi(\bar{x})w,w\rangle+d^{2}\psi\big{(}\bar{x}|\bar{v}\big{)}(w)=\max\limits_{y\in\Lambda(\bar{x},\bar{v})}\left\{\big{\langle}\nabla^{2}_{xx}L(\bar{x},y)w,w\big{\rangle}+d^{2}g\big{(}F(\bar{x}),y\big{)}\big{(}\nabla F(\bar{x})w\big{)}\right\},

for every wn.w\in\mathbb{R}^{n}. Therefore, noting that d2ψ(x¯,v¯)d^{2}\psi(\bar{x},\bar{v}) is a proper lower semicontinuous function with domd2ψ(x¯,v¯)=Kψ(x¯,v¯),\mbox{\rm dom}\,d^{2}\psi(\bar{x},\bar{v})=K_{\psi}(\bar{x},\bar{v}), we get the desired conclusion by applying Theorem 4.1 to the function f:=φ+ψf:=\varphi+\psi with ψ:=gF.\psi:=g\circ F. \hfill\Box

Remark 3

Under (H1)(H1)-(H3)(H3), Mohammadi and Sarabi (MS20, , Theorem 6.3) showed that (iii)(vi)(iii)\Leftrightarrow(vi) when φ\varphi and FF are twice continuously differentiable around x¯\bar{x}. Since the latter implies the prox-regularity of ψ,\psi, Corollary 1 is an extension of (MS20, , Theorem 6.3).

Example 3

Consider the following optimization problem:

minxφ(x)+ψ(x),\min\limits_{x\in\mathbb{R}}\varphi(x)+\psi(x), (53)

where φ(x)=2x+g(x)\varphi(x)=2x+g(x) with g(x)g(x) being taken from Example 1, and ψ(x):=δ2F(x)\psi(x):=\delta_{\mathbb{R}^{2}_{-}}\circ F(x) with F(x)=(F1(x),F2(x))F(x)=\big{(}F_{1}(x),F_{2}(x)\big{)}, F1(x)=xF_{1}(x)=-x and F2(x)=x3.F_{2}(x)=-x^{3}. By Example 1, φ\varphi is twice differentiable at x¯=0\bar{x}=0 in the extended sense and not prox-regular at x¯=0\bar{x}=0 for v¯=0.\bar{v}=0. Put

Γ={x|Fi(x)0,i=1,2}=+andg(y):=δ2(y).\Gamma=\{x\in\mathbb{R}\,|\,F_{i}(x)\leq 0,\ i=1,2\}=\mathbb{R}_{+}\quad\mbox{and}\quad g(y):=\delta_{\mathbb{R}^{2}_{-}}(y).

Then gg satisfies (H2)(H2) and (H3).(H3). Furthermore, we see that

d(x,domψ)=d(x,Γ)={0ifx0,|x|ifx<0,d(x,\mbox{\rm dom}\,\psi)=d(x,\Gamma)=\begin{cases}0\ &\mbox{if}\ x\geq 0,\\ \left|x\right|\ &\mbox{if}\ x<0,\end{cases}

and

d(F(x),domg)=d(F(x),2)={0ifx0,x2+x6ifx<0,d\big{(}F(x),\mbox{\rm dom}\,g\big{)}=d\big{(}F(x),\mathbb{R}^{2}_{-}\big{)}=\begin{cases}0\ &\mbox{if}\ x\geq 0,\\ \sqrt{x^{2}+x^{6}}\ &\mbox{if}\ x<0,\end{cases}

which infers that d(x,domψ)d(F(x),domg).d(x,\mbox{\rm dom}\,\psi)\leq d\big{(}F(x),\mbox{\rm dom}\,g\big{)}. This shows that (H1)(H1) holds at x¯.\bar{x}.
We next prove that x¯\bar{x} is a strong local minimizer. Indeed, for all xΓ[1,1]x\in\Gamma\cap[-1,1] and n,n\in\mathbb{N}^{*}, we have

x+x10/3cos1x0and(2n+1)(2n2+2n+1)n3(n+1)3x+1(n+1)31n3x40.x+x^{10/3}\cos\frac{1}{x}\geq 0\ \mbox{and}\ \frac{(2n+1)(2n^{2}+2n+1)}{n^{3}(n+1)^{3}}x+\frac{1}{(n+1)^{3}}-\frac{1}{n^{3}}\geq x^{4}\geq 0.

Therefore, we get

φ(x)φ(x¯)xx2for allxΓ[1,1].\varphi(x)-\varphi(\bar{x})\geq x\geq x^{2}\ \mbox{for all}\ x\in\Gamma\cap[-1,1].

Thus, x¯\bar{x} is a strong local minimizer. By Corollary 1, the assertions (ii)(ii)-(vi)(vi) hold.

5 Conclusion

We have proved some characterizations of the quadratic growth and the strong metric subregularity of the subdifferential of a function that can be represented as the sum of a function twice differentiable in the extended sense and a subdifferentially continuous, prox-regular, twice epi-differentiable function. Especially, for such a function, we have shown that the quadratic growth, the strong metric subregularity of the subdifferential at a local minimizer, and the positive definiteness of the subgradient graphical derivative at a stationary point are equivalent. Our results are new even for the case where the twice differentiability in the extended sense is replaced by the twice differentiability in the classical sense. In this research direction, it seems to us that finding out to which extent the established results can be applied to the analysis of convergence of numerical algorithms is a very interesting issue BLN18 ; HMS21 ; OM21 , which requires further investigation. Moreover, in order to widen the range of applications of the obtained results, more researches on the class of functions that are twice differentiable in the extended sense are needed.

References

  • (1) Aragón Artacho, F. J., Geoffroy, M. H.: Characterization of metric regularity of subdifferentials. J. Convex Anal. 15, 365–380 (2008)
  • (2) Aragón Artacho, F. J., Geoffroy, M. H.: Metric subregularity of the convex subdifferential in Banach spaces. J. Nonlinear Convex Anal. 15, 35–47 (2014)
  • (3) Bello-Cruz, J., Li, G., Nghia, T.T.A.: On the Q-linear convergence of forward-backward splitting method. Part I: Convergence analysis. J. Optim. Theory Appl. 188, 378–401 (2021)
  • (4) Bonnans, J.F., Shapiro, A.: Perturbation Analysis of Optimization Problems, Springer, New York (2000)
  • (5) Hang, N. T. V., Mordukhovich, B. S., Sarabi, M. E.: Augmented Lagrangian method for second-order cone programs under second-order sufficiency. J. Glob. Optim., https://doi.org/10.1007/s10898-021-01068-1 (2021)
  • (6) Chieu, N. H., Hien, L. V., Nghia, T. T.A., Tuan, H. A.: Quadratic growth and strong metric subregularity of the subdifferential via subgradient graphical derivative. SIAM J. Optim. 31, 545–568 (2021)
  • (7) Drusvyatskiy D., Ioffe, A. D.: Quadratic growth and critical point stability of semi-algebraic functions. Math. Program. 153, 635–653 (2015)
  • (8) Drusvyatskiy, D., Lewis, A. S. Error bounds, quadratic growth, and linear convergence of proximal methods. Math. Oper. Res. 43, 919–948 (2018)
  • (9) Drusvyatskiy, D., Mordukhovich, B. S., Nghia, T. T. A.: Second-order growth, tilt stability, and metric regularity of the subdifferential. J. Convex Anal. 21, 1165–1192 (2014)
  • (10) Mohammadi, A., Mordukhovich, B.S., Sarabi, M. E.: Variational analysis of composite models with applications to continuous optimization. Math. Oper. Res. https://doi.org/10.1287/moor.2020.1074 (2021)
  • (11) Mohammadi, A., Mordukhovich, B.S., Sarabi, M. E.: Parabolic regularity in geometric variational analysis. Trans. Amer. Math. Soc. 374, 1711–1763 (2021)
  • (12) Mohammadi, A., Sarabi, M. E.: Twice epi-differentiability of extended-real-valued functions with applications in composite optimization. SIAM J. Optim. 30, 2379–2409, (2020)
  • (13) Mordukhovich, B. S.: Variational Analysis and Generalized Differentiation I: Basic Theory, Springer, Berlin (2006)
  • (14) Mordukhovich, B. S.: Variational Analysis and Applications, Springer, Cham, Switzerland (2018).
  • (15) Ouyang, W., Milzarek, A.: A trust region-type normal map-based semismooth Newton method for nonsmooth nonconvex composite optimization, https://arxiv.org/abs/2106.09340 (2021)
  • (16) Rockafellar, R. T., Wets, R. J.-B.: Variational Analysis, Springer, Berlin (1998)