This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Quadratic decomposition of bivariate orthogonal polynomials

Amílcar Branquinho CMUC, Department of Mathematics, University of Coimbra, Apartado 3008, EC Santa Cruz, 3001-501 Coimbra, Portugal. [email protected] Ana Foulquié Moreno Departamento de Matemática, Universidade de Aveiro, 3810-193 Aveiro, Portugal. [email protected]  and  Teresa E. Pérez Instituto de Matemáticas IMAG & Departamento de Matemática Aplicada, Facultad de Ciencias. Universidad de Granada (Spain). [email protected]
Abstract.

We describe bivariate polynomial sequences orthogonal to a symmetric weight function in terms of several bivariate polynomial sequences orthogonal with respect to Christoffel transformations of the initial weight under a quadratic transformation. We analyze the construction of a symmetric bivariate orthogonal polynomial sequence from a given one, orthogonal to a weight function defined on the positive plane. In this description plays an important role a sort of Bäcklund type matrix transformations for the involved three term matrix coefficients. We take as a case study relations between symmetric orthogonal polynomials defined on the ball and on the simplex.

Key words and phrases:
Bivariate orthogonal polynomials, quadratic decomposition process, Bäcklund-type relations
2010 Mathematics Subject Classification:
Primary 42C05, 33C50

1. Motivation

In [4, 5] the author found connections between even orthogonal polynomials on the ball and simplex polynomials in dd variables. Following [5, section 4], let

W𝐁(x1,x2,,xd)=W(x12,x22,,xd2)\displaystyle W^{\mathbf{B}}(x_{1},x_{2},\ldots,x_{d})=W(x_{1}^{2},x_{2}^{2},\ldots,x_{d}^{2})

be a weight function defined on the unit ball on d\mathbb{R}^{d}, and let

W𝐓(u1,u2,,ud)=1u1u2udW(u1,u2,,ud),\displaystyle W^{\mathbf{T}}(u_{1},u_{2},\ldots,u_{d})=\frac{1}{\sqrt{u_{1}\,u_{2}\,\cdots\,u_{d}}}\,W({u_{1}},{u_{2}},\ldots,{u_{d}}), (u1,u2,,ud)𝐓d,\displaystyle(u_{1},u_{2},\ldots,u_{d})\in\mathbf{T}^{d},

where 𝐓d\mathbf{T}^{d} is the unit simplex on d\mathbb{R}^{d}. For n0n\geqslant 0, and α0d\alpha\in\mathbb{N}^{d}_{0} a multi-index, let S2n,α(x1,x2,,xd)S_{2n,\alpha}(x_{1},x_{2},\ldots,x_{d}) be an orthogonal polynomial associated to the weight function W𝐁W^{\mathbf{B}} of even degree in each of its variables. Then Y. Xu proved that it can be written in terms of orthogonal polynomials on the simplex as

S2n,α(x1,x2,,xd)=Pn,α(x12,x22,,xd2),\displaystyle S_{2n,\alpha}(x_{1},x_{2},\ldots,x_{d})=P_{n,\alpha}(x^{2}_{1},x^{2}_{2},\ldots,x^{2}_{d}), |α|=n,\displaystyle|\alpha|=n,

where Pn,α(x12,x22,,xd2)P_{n,\alpha}(x^{2}_{1},x^{2}_{2},\ldots,x^{2}_{d}) is, for each n0n\geqslant 0, an orthogonal polynomial of total degree nn on the simplex associated to W𝐓W^{\mathbf{T}}. In this way, there exists an important partial connection between classical ball polynomials and simplex ones.

Inspired by these relations, we try to analyze the situation for the leftover polynomials in this procedure, i.e., we want to know the properties of the polynomials with odd powers that were left in the above identification. We succeed doing so in a general framework, showing that these polynomials are related to new families of bivariate orthogonal polynomials, resulting from a Christoffel modification that we explicitly identify. Hence we have a totally answer in the case d=2d=2, that generalizes the one given by T. Chihara in [2].

The paper is organized as follows. In Section 2 we state the basic tools and results that we will need along the paper. The Section 3 is devoted to describe symmetric monic orthogonal polynomial sequences, starting with the basic properties and regarding how the polynomials are. In Section 4 we analyze the quadratic decomposition process. This will be done in an equivalent procedure, i.e., given a symmetric monic orthogonal polynomial sequence, we separate it in four families of polynomials in a zip way, and we deduce the inherit properties of orthogonality for each of the four families, obtaining that they are Christoffel modifications of the quadratic transformation of the original weight function. As a converse result, we construct a symmetric monic orthogonal polynomial sequence from a given one.

In Section 5 we give relations between the matrix coefficients of the three term relations of the involved families. In addition, the matrix coefficients of the Christoffel transformations for the four families of orthogonal polynomials are given in terms of the matrix coefficients of the three term relations for the symmetric polynomials. These matrices enable us to reinterpret the block Jacobi matrix associated with the four orthogonal polynomials sequences in terms of a LUL\,U or ULUL representation.

Finally, in the last Section, we complete the study started in [4, 5] describing explicitly the four families of orthogonal polynomials on the simplex deduced from a symmetric polynomial system orthogonal on the ball.

2. Basic Facts

For each n0n\geqslant 0, let Πn\Pi_{n} denote the linear space of bivariate polynomials of total degree not greater than nn, and let Π=n0Πn\Pi=\bigcup_{n\geqslant 0}\Pi_{n}. A polynomial p(x,y)Πnp(x,y)\in\Pi_{n} is a linear combination of monomials, i.e.,

p(x,y)=m=0ni=0mami,ixmiyi,\displaystyle p(x,y)=\sum_{m=0}^{n}\sum_{i=0}^{m}a_{m-i,i}x^{m-i}y^{i}, ami,i,\displaystyle a_{m-i,i}\in\mathbb{R},

and it is of total degree nn if i=0n|ani,i|>0\sum_{i=0}^{n}|a_{n-i,i}|>0.

A polynomial p(x,y)p(x,y) of total degree nn is called centrally symmetric if p(x,y)=(1)np(x,y).p(-x,-y)=(-1)^{n}\,p(x,y). As a consequence, if the degree of the polynomial is even, then it only contains monomials of even degree, and if the degree of the polynomial is odd, then the polynomial only contains monomials of odd powers.

We will say that a polynomial of partial degree hh in xx is xx-symmetric if

p(x,y)=(1)hp(x,y),\displaystyle p(-x,y)=(-1)^{h}\,p(x,y), (x,y).\displaystyle\forall(x,y).

Therefore, if hh is even, p(x,y)p(x,y) only contains even powers in xx, and if hh is odd, it only contains odd powers in xx. Analogously, we define the yy-symmetric for a polynomial of degree kk in yy as

p(x,y)=(1)kp(x,y),\displaystyle p(x,-y)=(-1)^{k}\,p(x,y), (x,y).\displaystyle\forall(x,y).

A yy-symmetric polynomial of degree kk in yy only contains odd powers in yy when kk is an odd number, and it contains only even power in yy when kk is even.

Obviously, if a polynomial is xx-symmetric and yy-symmetric, then it is centrally symmetric. In this case, if the polynomial has total degree nn, with degree hh in xx and degree kk in yy, and n=h+kn=h+k, then if hh is an odd number (respectively if kk is an odd number), then the polynomial only contains odd powers in xx (respectively, odd powers in yy), and if hh is even (respectively, if kk is even), then it only contains even powers in xx (respectively, it contains only even powers in yy).

For each n0n\geqslant 0, let 𝕏n\mathbb{X}_{n} denote the (n+1)×1(n+1)\times 1 column vector

𝕏n=[xnxn1yxyn1yn],\mathbb{X}_{n}=\begin{bmatrix}x^{n}&x^{n-1}y&\cdots&xy^{n-1}&y^{n}\end{bmatrix}^{\top},

where, as usual, the superscript means the transpose. Then {𝕏n}n0\{\mathbb{X}_{n}\}_{n\geqslant 0} is called the canonical basis of Π\Pi. As in [3], for n0n\geqslant 0, we denote by

Ln,1=[1100],Ln,2=[0011],\operatorname{L}_{n,1}=\left[\begin{array}[]{@{}c|c@{}}\begin{matrix}1\\ &\ddots\\ &&1\end{matrix}&\begin{matrix}0\\ \vdots\\ 0\end{matrix}\end{array}\right],\qquad\operatorname{L}_{n,2}=\left[\begin{array}[]{@{}c|c@{}}\begin{matrix}0\\ \vdots\\ 0\end{matrix}&\begin{matrix}1\\ &\ddots\\ &&1\end{matrix}\end{array}\right],

such that  Ln,1𝕏n+1=x𝕏n\operatorname{L}_{n,1}\,\mathbb{X}_{n+1}=x\,\mathbb{X}_{n}  and  Ln,2𝕏n+1=y𝕏n\operatorname{L}_{n,2}\,\mathbb{X}_{n+1}=y\,\mathbb{X}_{n}.

For i,j=0,1i,j=0,1, and n0n\geqslant 0, we introduce the matrices: Jn(i,j)\operatorname{J}_{n}^{(i,j)} of dimension (n+1)×(2n+1+i+j)(n+1)\times(2n+1+i+j) in the following way

Jn(i,j)=[jh,k(n,i,j)]h,k=0n×(2n1+i+j),\displaystyle\operatorname{J}_{n}^{(i,j)}=\begin{bmatrix}j_{h,k}^{(n,i,j)}\end{bmatrix}_{h,k=0}^{n\times(2n-1+i+j)},

such that jh,2h+j(n,i,j)=1j_{h,2h+j}^{(n,i,j)}=1, for 0hn0\leqslant h\leqslant n, the rest of the elements are zero. In particular,

Jn(0,0)\displaystyle\operatorname{J}_{n}^{(0,0)} =[10000000000010000001],\displaystyle=\begin{bmatrix}1&0&0&\cdots&0&0\\ 0&0&0&\cdots&0&0\\ 0&0&1&\cdots&0&0\\ \vdots&\vdots&\vdots&\ddots&\vdots&\vdots\\ 0&0&0&\cdots&0&1\end{bmatrix}, Jn(1,0)\displaystyle\operatorname{J}_{n}^{(1,0)} =[10000000000010000010],\displaystyle=\begin{bmatrix}1&0&0&\cdots&0&0\\ 0&0&0&\cdots&0&0\\ 0&0&1&\cdots&0&0\\ \vdots&\vdots&\vdots&\ddots&\vdots&\vdots\\ 0&0&0&\cdots&1&0\end{bmatrix},
Jn(0,1)\displaystyle\operatorname{J}_{n}^{(0,1)} =[010000000000000100000001],\displaystyle=\begin{bmatrix}0&1&0&0&\cdots&0&0\\ 0&0&0&0&\cdots&0&0\\ 0&0&0&1&\cdots&0&0\\ \vdots&\vdots&\vdots&\vdots&\ddots&\vdots&\vdots\\ 0&0&0&0&\cdots&0&1\end{bmatrix}, Jn(1,1)\displaystyle\operatorname{J}_{n}^{(1,1)} =[010000000100000000000010].\displaystyle=\begin{bmatrix}0&1&0&0&\cdots&0&0\\ 0&0&0&1&\cdots&0&0\\ 0&0&0&0&\cdots&0&0\\ \vdots&\vdots&\vdots&\vdots&\ddots&\vdots&\vdots\\ 0&0&0&0&\cdots&1&0\end{bmatrix}.

Observe that the J\operatorname{J}-matrices are obtained from the identity matrices by introducing columns of zeros. The objective of these matrices is to extract the odd or the even elements in a vector of adequate size. The transpose of these matrices introduce zeroes into a vector in the odd or even positions.

A simple computation allows us to prove the next result.

Lemma 2.1.

For n0n\geqslant 0 and k=1,2k=1,2, the following relations hold:

Jn(0,0)L2n,k=Jn(2k,k1),\displaystyle\operatorname{J}_{n}^{(0,0)}\,\operatorname{L}_{2n,k}=\operatorname{J}_{n}^{(2-k,k-1)}, Jn(1,1)L2n+2,k=Ln,kJn+1(k1,2k),\displaystyle\operatorname{J}_{n}^{(1,1)}\,\operatorname{L}_{2n+2,k}=\operatorname{L}_{n,k}\,\operatorname{J}_{n+1}^{(k-1,2-k)},
Jn(k1,2k)L2n+1,k=Jn(1,1),\displaystyle\operatorname{J}_{n}^{(k-1,2-k)}\,\operatorname{L}_{2n+1,k}=\operatorname{J}_{n}^{(1,1)}, Jn(2k,k)L2n+1,k=Ln,kJn+1(0,0).\displaystyle\operatorname{J}_{n}^{(2-k,k)}\,\operatorname{L}_{2n+1,k}=\operatorname{L}_{n,k}\,\operatorname{J}_{n+1}^{(0,0)}.

2.1. Orthogonal polynomial systems (OPS)

Let {Pn,m(x,y):0mn,n0}\{\operatorname{P}_{n,m}(x,y):0\leqslant m\leqslant n,n\geqslant 0\} denote a basis of Π\Pi such that, for a fixed n0n\geqslant 0, degPn,m(x,y)=n\deg\operatorname{P}_{n,m}(x,y)=n, and the set {Pn,m(x,y):0mn}\{\operatorname{P}_{n,m}(x,y):0\leqslant m\leqslant n\} contains n+1n+1 linearly independent polynomials of total degree exactly nn. We can write the vector of polynomials

n=[Pn,0(x,y)Pn,1(x,y)Pn,n(x,y)].\displaystyle\mathbb{P}_{n}=\begin{bmatrix}\operatorname{P}_{n,0}(x,y)&\operatorname{P}_{n,1}(x,y)&\cdots&\operatorname{P}_{n,n}(x,y)\end{bmatrix}^{\top}.

The sequence of polynomial vectors of increasing size {n}n0\{\mathbb{P}_{n}\}_{n\geqslant 0} is called a polynomial system (PS), and it is a basis of Π\Pi. We say that is a monic polynomial sequence if every entry has the form

Pn,j(x,y)=xnjyj+m=0n1i=0mami,ixmiyi,\displaystyle P_{n,j}(x,y)=x^{n-j}\,y^{j}+\sum_{m=0}^{n-1}\sum_{i=0}^{m}a_{m-i,i}x^{m-i}y^{i}, 0jn.\displaystyle 0\leqslant j\leqslant n.

Let W(x,y)W(x,y) be a weight function defined on a domain Ω2\Omega\subset\mathbb{R}^{2}, and we suppose the existence of every moment,

μh,k=ΩxhykW(x,y)dxdy<+,\displaystyle\mu_{h,k}=\int_{\Omega}x^{h}\,y^{k}\,W(x,y)\,\mathrm{d}x\mathrm{d}y<+\infty, h,k0.\displaystyle h,k\geqslant 0.

As usual, we define the inner product

(2.1) (p,q)=Ωp(x,y)q(x,y)W(x,y)dxdy,\displaystyle(p,q)=\int_{\Omega}p(x,y)\,q(x,y)\,W(x,y)\,\mathrm{d}x\mathrm{d}y, p,qΠ,\displaystyle p,q\in\Pi,

and remember how the inner product acts over polynomial matrices. Let A=[ai,j(x,y)]i,j=1h,k\operatorname{A}=\begin{bmatrix}a_{i,j}(x,y)\end{bmatrix}_{i,j=1}^{h,k} and B=[bi,j(x,y)]i,j=1l,k\operatorname{B}=\begin{bmatrix}b_{i,j}(x,y)\end{bmatrix}_{i,j=1}^{l,k} be two polynomial matrices. The action of (2.1) over polynomial matrices is defined as the h×lh\times l matrix (cf. [3]),

(A,B)=ΩA(x,y)B(x,y)W(x,y)dxdy=[Ωci,j(x,y)W(x,y)dxdy]i,j=1h,l,\displaystyle(\operatorname{A},\operatorname{B})=\int_{\Omega}\operatorname{A}(x,y)\,\operatorname{B}(x,y)^{\top}\,W(x,y)\,\mathrm{d}x\mathrm{d}y=\begin{bmatrix}\displaystyle\int_{\Omega}c_{i,j}(x,y)W(x,y)\,\mathrm{d}x\mathrm{d}y\end{bmatrix}_{i,j=1}^{h,l},

where C=AB=[ci,j(x,y)]i,j=1h,l\operatorname{C}=\operatorname{A}\cdot\operatorname{B}^{\top}=\begin{bmatrix}c_{i,j}(x,y)\end{bmatrix}_{i,j=1}^{h,l}.

A PS {n}n0\{\mathbb{P}_{n}\}_{n\geqslant 0} is an orthogonal polynomial system (OPS) with respect to (,)(\cdot,\cdot) if

(n,m)={𝟶(n+1)×(m+1),nm,𝐏n,n=m,\displaystyle(\mathbb{P}_{n},\mathbb{P}_{m})=\begin{cases}\mathtt{0}_{(n+1)\times(m+1)},&n\neq m,\\ \mathbf{P}_{n},&n=m,\end{cases}

where 𝐏n\mathbf{P}_{n} is a positive-definite symmetric matrix of size n+1n+1, and 𝟶(n+1)×(m+1)\mathtt{0}_{(n+1)\times(m+1)}, or 𝟶\mathtt{0} for short, is the zero matrix of adequate size. It was proved [3] that there exists a unique monic orthogonal polynomial system associated to W(x,y)W(x,y), and we will call MOPS for short.

In this work we will use Christoffel modifications of a weight function given by a multiplication of a polynomial of degree 11. In the next Lemma we recall the relations between the involved monic OPS ([1]).

Lemma 2.2.

Let W(x,y)W(x,y) be a weight function defined on a domain Ω2\Omega\subset\mathbb{R}^{2}, and let λ(x,y)=ax+by\lambda(x,y)=a\,x+b\,y be a polynomial with |a|+|b|>0|a|+|b|>0, such that W(x,y)=λ(x,y)W(x,y)W^{\mathbf{*}}(x,y)=\lambda(x,y)\,W(x,y) is again a weight function on Ω\Omega. Let {n}n0\{\mathbb{P}_{n}\}_{n\geqslant 0} and {n}n0\{\mathbb{P}^{\mathbf{*}}_{n}\}_{n\geqslant 0} be the respective monic OPS. Then, for all n1n\geqslant 1,

n\displaystyle\mathbb{P}_{n} =n+Mnn1,\displaystyle=\mathbb{P}^{\mathbf{*}}_{n}+\operatorname{M}_{n}\,\mathbb{P}^{\mathbf{*}}_{n-1},
λ(x,y)n\displaystyle\lambda(x,y)\,\mathbb{P}^{\mathbf{*}}_{n} =(aLn,1+bLn,2)n+1+Nnn,\displaystyle=\big{(}a\operatorname{L}_{n,1}+b\operatorname{L}_{n,2}\big{)}\,\mathbb{P}_{n+1}+\operatorname{N}_{n}\,\mathbb{P}_{n},

where

Mn=𝐏n(aLn1,1+bLn1,2)(𝐏n1)1,\displaystyle\operatorname{M}_{n}=\mathbf{P}_{n}\,(a\,\operatorname{L}_{n-1,1}^{\top}+b\,\operatorname{L}_{n-1,2}^{\top})\,(\mathbf{P}_{n-1}^{\mathbf{*}})^{-1}, Nn=𝐏n𝐏n1,\displaystyle\operatorname{N}_{n}=\mathbf{P}_{n}^{\mathbf{*}}\,\mathbf{P}_{n}^{-1},

and

𝐏n=ΩnnW(x,y)dxdy,𝐏n=Ωn(n)W(x,y)dxdy,\displaystyle\mathbf{P}_{n}=\int_{\Omega}\mathbb{P}_{n}\,\mathbb{P}_{n}^{\top}\,W(x,y)\,\mathrm{d}x\mathrm{d}y,\qquad\mathbf{P}^{\mathbf{*}}_{n}=\int_{\Omega}\mathbb{P}^{\mathbf{*}}_{n}\,(\mathbb{P}^{\mathbf{*}}_{n})^{\top}\,W^{\mathbf{*}}(x,y)\,\mathrm{d}x\mathrm{d}y,

are non-singular matrices of size (n+1)(n+1).

3. Symmetric Monic Orthogonal Polynomial Sequences

A weight function W(x,y)W(x,y) defined on Ω2\Omega\subset\mathbb{R}^{2} is called centrally symmetric (cf. [3, p. 76]) if satisfies

(x,y)Ω(x,y)Ω\displaystyle(x,y)\in\Omega\Rightarrow(-x,-y)\in\Omega and W(x,y)=W(x,y),\displaystyle W(-x,-y)=W(x,y), (x,y)Ω.\displaystyle\forall(x,y)\in\Omega.

Therefore, by a natural change of variables, we get

μh,k=ΩxhykW(x,y)dxdy=Ω(x)h(y)kW(x,y)dxdy=(1)h+kμh,k,\displaystyle\mu_{h,k}=\int_{\Omega}x^{h}y^{k}W(x,y)\,\mathrm{d}x\mathrm{d}y=\int_{\Omega}(-x)^{h}(-y)^{k}W(-x,-y)\,\mathrm{d}x\mathrm{d}y=(-1)^{h+k}\mu_{h,k},

and then μh,k=0\mu_{h,k}=0, for h+kh+k an odd integer number.

We introduce an additional definition of symmetry.

Definition 3.1.

We say that a weight function W(x,y)W(x,y) is xx-symmetric if

(x,y)Ω(x,y)Ω,\displaystyle(x,y)\in\Omega\Rightarrow(-x,y)\in\Omega, and W(x,y)=W(x,y),\displaystyle W(-x,y)=W(x,y), (x,y)Ω.\displaystyle\forall(x,y)\in\Omega.

Analogously, the weight function is yy-symmetric if

(x,y)Ω(x,y)Ω,\displaystyle(x,y)\in\Omega\Rightarrow(x,-y)\in\Omega, and W(x,y)=W(x,y),\displaystyle W(x,-y)=W(x,y), (x,y)Ω.\displaystyle\forall(x,y)\in\Omega.

A  xx-symmetric and yy-symmetric weight function is called xyx\,y-symmetric.

Obviously, if W(x,y)W(x,y) is xyx\,y-symmetric then it is centrally symmetric. As a consequence, if W(x,y)W(x,y) is xyx\,y-symmetric, then μh,k=0\mu_{h,k}=0 when, at least one, nn or mm are odd numbers.

Let {𝕊n}n0\{\mathbb{S}_{n}\}_{n\geqslant 0} be the MOPS associated with a xyx\,y-symmetric weight function satisfying

(3.1) (𝕊n,𝕊m)=Ω𝕊n(x,y)𝕊m(x,y)W(x,y)dxdy={𝟶,nm,𝐒n,n=m,\displaystyle(\mathbb{S}_{n},\mathbb{S}_{m})=\int_{\Omega}\mathbb{S}_{n}(x,y)\,\mathbb{S}_{m}(x,y)^{\top}\,W(x,y)\,\mathrm{d}x\mathrm{d}y=\begin{cases}\mathtt{0},&n\neq m,\\ \mathbf{S}_{n},&n=m,\end{cases}

where 𝐒n\mathbf{S}_{n} is a (n+1)(n+1) positive-definite symmetric matrix.

Lemma 3.2.

If the explicit expression of every vector polynomial is given by

𝕊n(x,y)=[Sn,0(x,y)Sn,1(x,y)Sn,2(x,y)Sn,n(x,y)],\displaystyle\mathbb{S}_{n}(x,y)=\begin{bmatrix}S_{n,0}(x,y)&S_{n,1}(x,y)&S_{n,2}(x,y)&\cdots&S_{n,n}(x,y)\end{bmatrix}^{\top},

where

Sn,k(x,y)\displaystyle S_{n,k}(x,y) =i=0(nk)/2j=0k/2ai,jn,kxnk2iyk2j,\displaystyle=\sum_{i=0}^{\lfloor(n-k)/2\rfloor}\sum_{j=0}^{\lfloor k/2\rfloor}a_{i,j}^{n,k}\,x^{n-k-2i}\,y^{k-2j}, 0kn,\displaystyle 0\leqslant k\leqslant n,

with a0,0n,k=1a_{0,0}^{n,k}=1, then the polynomials are xyx\,y-symmetric, that is,

Sn,k(x,y)=(1)nSn,k(x,y)=(1)nkSn,k(x,y)=(1)kSn,k(x,y).\displaystyle S_{n,k}(x,y)=(-1)^{n}S_{n,k}(-x,-y)=(-1)^{n-k}S_{n,k}(-x,y)=(-1)^{k}S_{n,k}(x,-y).

When a bivariate polynomial Sn,k(x,y)S_{n,k}(x,y) is xyx\,y-symmetric then it has the same parity order in every variable, i.e., if the partial degree in the first variable xx is even (respectively, odd), then all powers in xx are even (respectively, odd), and analogously, if the partial degree in the second variable yy is even (respectively, odd), then all powers in yy are even (respectively, odd).

Therefore, the vector polynomial 𝕊n(x,y)\mathbb{S}_{n}(x,y) can be separated in a zip way, attending to the parity of the powers of xx and yy in its entries. In fact, for even, respectively odd degree, we get

(3.2) 𝕊2n=[S2n,00S2n,200S2n,2n]+[0S2n,10S2n,3S2n,2n10],𝕊2n+1=[S2n+1,00S2n+1,20S2n+1,2n0]+[0S2n+1,10S2n+1,30S2n+1,2n+1].\displaystyle\mathbb{S}_{2n}=\begin{bmatrix}S_{2n,0}\\ 0\\ S_{2n,2}\\ 0\\ \vdots\\ 0\\ S_{2n,2n}\end{bmatrix}+\begin{bmatrix}0\\ S_{2n,1}\\ 0\\ S_{2n,3}\\ \vdots\\ S_{2n,2n-1}\\ 0\end{bmatrix},\quad\mathbb{S}_{2n+1}=\begin{bmatrix}S_{2n+1,0}\\ 0\\ S_{2n+1,2}\\ 0\\ \vdots\\ S_{2n+1,2n}\\ 0\end{bmatrix}+\begin{bmatrix}0\\ S_{2n+1,1}\\ 0\\ S_{2n+1,3}\\ \vdots\\ 0\\ S_{2n+1,2n+1}\end{bmatrix}.
Lemma 3.3.

We can express the monic orthogonal polynomial vectors as

(3.3) 𝕊2n(x,y)\displaystyle\mathbb{S}_{2n}(x,y) =n(0,0)(x2,y2)+xyn1(1,1)(x2,y2),\displaystyle=\mathbb{P}_{n}^{(0,0)}(x^{2},y^{2})+x\,y\,\mathbb{P}_{n-1}^{(1,1)}(x^{2},y^{2}),
(3.4) 𝕊2n+1(x,y)\displaystyle\mathbb{S}_{2n+1}(x,y) =xn(1,0)(x2,y2)+yn(0,1)(x2,y2),\displaystyle=x\,\mathbb{P}_{n}^{(1,0)}(x^{2},y^{2})+y\,\mathbb{P}_{n}^{(0,1)}(x^{2},y^{2}),

where, for n0n\geqslant 0,

n(0,0)(x2,y2)\mathbb{P}_{n}^{(0,0)}(x^{2},y^{2}) is a vector of size (2n+1)×1(2n+1)\times 1 whose odd entries are independent monic polynomials of exact degree nn on (x2,y2)(x^{2},\,y^{2}), and its even entries are zeroes,

n(1,1)(x2,y2)\mathbb{P}_{n}^{(1,1)}(x^{2},y^{2}) is a vector of size (2n+3)×1(2n+3)\times 1 whose even entries are independent monic polynomials of exact degree nn on (x2,y2)(x^{2},\,y^{2}), and its odd entries are zeroes,

n(1,0)(x2,y2)\mathbb{P}_{n}^{(1,0)}(x^{2},y^{2}) is a vector of size (2n+2)×1(2n+2)\times 1 whose odd entries are independent monic polynomials of exact degree nn on (x2,y2)(x^{2},\,y^{2}), and its even entries are zeroes,

n(0,1)(x2,y2)\mathbb{P}_{n}^{(0,1)}(x^{2},y^{2}) is a vector of size (2n+2)×1(2n+2)\times 1 whose even entries are independent monic polynomials of exact degree nn on (x2,y2)(x^{2},\,y^{2}), and its odd entries are zeroes.

These families will be called big vector polynomials associated with {𝕊n}n0\{\mathbb{S}_{n}\}_{n\geqslant 0}. We must observe that the big families are formed by vectors of polynomials in the variables (x2,y2)(x^{2},y^{2}), that contains polynomials of independent degree intercalated with zeros.

Our objective is to extract the odd entries in the vectors n(i,0)(x,y)\mathbb{P}^{(i,0)}_{n}(x,y), and the even entries in n(i,1)(x,y)\mathbb{P}^{(i,1)}_{n}(x,y), for i=0,1i=0,1.

Lemma 3.4.

For n0n\geqslant 0, and i,j=0,1i,j=0,1, we define the (n+1)×1(n+1)\times 1 vector of polynomials

^n(i,j)(x,y)=Jn(i,j)n(i,j)(x,y),\displaystyle\widehat{\mathbb{P}}_{n}^{(i,j)}(x,y)=\operatorname{J}_{n}^{(i,j)}\mathbb{P}_{n}^{(i,j)}(x,y), n0.\displaystyle n\geqslant 0.

Then, its entries are independent polynomials of exact degree nn, and therefore, the sequences of vectors of polynomials {^n(i,j)}n0\{\widehat{\mathbb{P}}_{n}^{(i,j)}\}_{n\geqslant 0} are polynomial systems.

4. Quadratic decomposition process

Taking into account Lemma 3.2, we start studying the inherit properties of orthogonality of the polynomial systems {^n(i,j)}n0\{\widehat{\mathbb{P}}_{n}^{(i,j)}\}_{n\geqslant 0}, for i,j=0,1i,j=0,1.

Theorem 4.1.

Let {𝕊n}n0\{\mathbb{S}_{n}\}_{n\geqslant 0} be a xyx\,y-symmetric monic orthogonal polynomial system associated with a weight function W(x,y)W(x,y) defined on a domain Ω2\Omega\subset\mathbb{R}^{2}. Then, the four families of polynomials {^n(i,j)}n0\{\widehat{\mathbb{P}}_{n}^{(i,j)}\}_{n\geqslant 0}, for i,j=0,1i,j=0,1, defined in terms of the big ones by (3.3), (3.4) and ^n(i,j)=Jn(i,j)n(i,j)\widehat{\mathbb{P}}_{n}^{(i,j)}=\operatorname{J}_{n}^{(i,j)}\,\mathbb{P}_{n}^{(i,j)}, are monic orthogonal polynomial systems (MOPS) associated respectively, with the weight functions

W(0,0)(x,y)=\displaystyle W^{(0,0)}(x,y)= 141xyW(x,y),\displaystyle\dfrac{1}{4}\,\dfrac{1}{\sqrt{x\,y}}\,W(\sqrt{x},\sqrt{y}),
W(1,0)(x,y)=\displaystyle W^{(1,0)}(x,y)= 14xyW(x,y)=xW(0,0)(x,y),\displaystyle\dfrac{1}{4}\,\sqrt{\dfrac{x}{y}}\,W(\sqrt{x},\sqrt{y})=x\,W^{(0,0)}(x,y),
W(0,1)(x,y)=\displaystyle W^{(0,1)}(x,y)= 14yxW(x,y)=yW(0,0)(x,y),\displaystyle\dfrac{1}{4}\,\sqrt{\dfrac{y}{x}}\,W(\sqrt{x},\sqrt{y})=y\,W^{(0,0)}(x,y),
W(1,1)(x,y)=\displaystyle W^{(1,1)}(x,y)= 14xyW(x,y)=xyW(0,0)(x,y),\displaystyle\dfrac{1}{4}\,\sqrt{x\,y}\,W(\sqrt{x},\sqrt{y})=x\,y\,W^{(0,0)}(x,y),

for all (x,y)Ω={(x,y)2:x,y0,(x,y)Ω}.(x,y)\in\Omega^{\mathbf{*}}=\{(x,y)\in\mathbb{R}^{2}:x,y\geqslant 0,(\sqrt{x},\sqrt{y})\in\Omega\}.

Refer to caption
Figure 1. Relation between the four weight functions and the corresponding polynomial systems.
Proof.

From expression (3.3) and the xyx\,y-symmetry of the inner product (3.1), we get

(𝕊2n(x,y),𝕊2m(x,y))=\displaystyle(\mathbb{S}_{2n}(x,y),\mathbb{S}_{2m}(x,y))= (n(0,0)(x2,y2),m(0,0)(x2,y2))\displaystyle(\mathbb{P}_{n}^{(0,0)}(x^{2},y^{2}),\mathbb{P}_{m}^{(0,0)}(x^{2},y^{2}))
+(xyn1(1,1)(x2,y2),xym1(1,1)(x2,y2)),\displaystyle+(x\,y\,\mathbb{P}_{n-1}^{(1,1)}(x^{2},y^{2}),x\,y\,\mathbb{P}_{m-1}^{(1,1)}(x^{2},y^{2})),

On the one hand, if nmn\neq m, then (𝕊2n(x,y),𝕊2m(x,y))=𝟶(\mathbb{S}_{2n}(x,y),\mathbb{S}_{2m}(x,y))=\mathtt{0} if and only if

(n(0,0)(x2,y2),m(0,0)(x2,y2))=𝟶,\displaystyle(\mathbb{P}_{n}^{(0,0)}(x^{2},y^{2}),\mathbb{P}_{m}^{(0,0)}(x^{2},y^{2}))=\mathtt{0}, (xyn1(1,1)(x2,y2),xym1(1,1)(x2,y2))=𝟶,\displaystyle(x\,y\,\mathbb{P}_{n-1}^{(1,1)}(x^{2},y^{2}),x\,y\,\mathbb{P}_{m-1}^{(1,1)}(x^{2},y^{2}))=\mathtt{0},

because the positivity of the inner product.

On the other hand, if n=mn=m, then (𝕊2n(x,y),𝕊2n(x,y))=𝐒2n(\mathbb{S}_{2n}(x,y),\mathbb{S}_{2n}(x,y))=\mathbf{S}_{2n}, a symmetric positive-definite matrix, and defining the matrices

𝐏n(0,0)=\displaystyle\mathbf{P}^{(0,0)}_{n}= (n(0,0)(x2,y2),n(0,0)(x2,y2))=Ωn(0,0)(x2,y2)n(0,0)(x2,y2)W(x,y)dxdy\displaystyle(\mathbb{P}_{n}^{(0,0)}(x^{2},y^{2}),\mathbb{P}_{n}^{(0,0)}(x^{2},y^{2}))=\int_{\Omega}\mathbb{P}^{(0,0)}_{n}(x^{2},y^{2})\mathbb{P}^{(0,0)}_{n}(x^{2},y^{2})^{\top}W(x,y)\mathrm{d}x\mathrm{d}y
𝐏n1(1,1)=\displaystyle\mathbf{P}^{(1,1)}_{n-1}= (xyn1(1,1)(x2,y2),xyn1(1,1)(x2,y2))\displaystyle(x\,y\,\mathbb{P}_{n-1}^{(1,1)}(x^{2},y^{2}),x\,y\,\mathbb{P}_{n-1}^{(1,1)}(x^{2},y^{2}))
=\displaystyle= Ωn1(1,1)(x2,y2)n1(1,1)(x2,y2)x2y2W(x,y)dxdy,\displaystyle\int_{\Omega}\mathbb{P}^{(1,1)}_{n-1}(x^{2},y^{2})\mathbb{P}^{(1,1)}_{n-1}(x^{2},y^{2})^{\top}x^{2}y^{2}W(x,y)\mathrm{d}x\mathrm{d}y,

they are symmetric of size (2n+1)×(2n+1)(2n+1)\times(2n+1), since W(x,y)W(x,y) is a weight function on Ω\Omega, and x2y2W(x,y)x^{2}\,y^{2}\,W(x,y) is a positive definite Christoffel perturbation. Therefore,

𝐒2n=𝐏n(0,0)+𝐏n1(1,1).\displaystyle\mathbf{S}_{2n}=\mathbf{P}^{(0,0)}_{n}+\mathbf{P}^{(1,1)}_{n-1}.

In order to recover a MOPS, we need to do a change of variable, and multiply times a suitable J\operatorname{J}-matrix to shrink the vectors to an adequate size. Hence, we define the change of variable u=x2u=x^{2}, v=y2v=y^{2}, and the integration domain will be defined by Ω={(u,v)2:u,v0,(u,v)Ω}.\Omega^{\mathbf{*}}=\{(u,v)\in\mathbb{R}^{2}:u,v\geqslant 0,(\sqrt{u},\sqrt{v})\in\Omega\}.

Then, the PS {^n(0,0)}n0={Jn(0,0)n(0,0)(u,v)}n0\{\widehat{\mathbb{P}}_{n}^{(0,0)}\}_{n\geqslant 0}=\{\operatorname{J}_{n}^{(0,0)}\,\mathbb{P}_{n}^{(0,0)}(u,v)\}_{n\geqslant 0} is orthogonal in the form

(^n(0,0),\displaystyle(\widehat{\mathbb{P}}_{n}^{(0,0)}, ^n(0,0))(0,0)=14Ω^n(0,0)(u,v)^n(0,0)(u,v)W(0,0)(u,v)dudv\displaystyle\widehat{\mathbb{P}}_{n}^{(0,0)})^{(0,0)}=\dfrac{1}{4}\int_{\Omega^{\mathbf{*}}}\widehat{\mathbb{P}}_{n}^{(0,0)}(u,v)\widehat{\mathbb{P}}_{n}^{(0,0)}(u,v)^{\top}W^{(0,0)}(u,v)\mathrm{d}u\mathrm{d}v
=\displaystyle= 14Jn(0,0)Ωn(0,0)(u,v)n(0,0)(u,v)1uvW(u,v)dudv(Jn(0,0))\displaystyle\dfrac{1}{4}\operatorname{J}_{n}^{(0,0)}\int_{\Omega^{\mathbf{*}}}\mathbb{P}_{n}^{(0,0)}(u,v)\mathbb{P}_{n}^{(0,0)}(u,v)^{\top}\dfrac{1}{\sqrt{u\,v}}\,W(\sqrt{u},\sqrt{v})\mathrm{d}u\mathrm{d}v(\operatorname{J}_{n}^{(0,0)})^{\top}
=\displaystyle= Jn(0,0)Ωn(0,0)(x2,y2)n(0,0)(x2,y2)W(x,y)dxdy(Jn(0,0))\displaystyle\operatorname{J}_{n}^{(0,0)}\int_{\Omega}\mathbb{P}_{n}^{(0,0)}(x^{2},y^{2})\mathbb{P}_{n}^{(0,0)}(x^{2},y^{2})^{\top}\,W(x,y)\,\mathrm{d}x\mathrm{d}y(\operatorname{J}_{n}^{(0,0)})^{\top}
=\displaystyle= Jn(0,0)𝐏n(0,0)(Jn(0,0))=𝐏^n(0,0),\displaystyle\operatorname{J}_{n}^{(0,0)}\,\mathbf{P}_{n}^{(0,0)}\,(\operatorname{J}_{n}^{(0,0)})^{\top}=\widehat{\mathbf{P}}_{n}^{(0,0)},
(^n(0,0),\displaystyle(\widehat{\mathbb{P}}_{n}^{(0,0)}, ^m(0,0))(0,0)=𝟶.\displaystyle\widehat{\mathbb{P}}_{m}^{(0,0)})^{(0,0)}=\mathtt{0}.

Moreover, 𝐏^n(0,0)\widehat{\mathbf{P}}_{n}^{(0,0)} is a symmetric (n+1)(n+1) full rank matrix since {^n(0,0)}n0\{\widehat{\mathbb{P}}_{n}^{(0,0)}\}_{n\geqslant 0} is a PS.

Acting in the same way on {^n(1,1)}n0={Jn(1,1)n(1,1)(u,v)}n0\{\widehat{\mathbb{P}}_{n}^{(1,1)}\}_{n\geqslant 0}=\{\operatorname{J}_{n}^{(1,1)}\,\mathbb{P}_{n}^{(1,1)}(u,v)\}_{n\geqslant 0}, we can prove the orthogonality relations

(^n(1,1),\displaystyle(\widehat{\mathbb{P}}_{n}^{(1,1)}, ^n(1,1))(1,1)=14Ω^n(1,1)(u,v)^n(1,1)(u,v)W(1,1)(u,v)dudv\displaystyle\widehat{\mathbb{P}}_{n}^{(1,1)})^{(1,1)}=\dfrac{1}{4}\int_{\Omega^{\mathbf{*}}}\widehat{\mathbb{P}}_{n}^{(1,1)}(u,v)\widehat{\mathbb{P}}_{n}^{(1,1)}(u,v)^{\top}\,W^{(1,1)}(u,v)\mathrm{d}u\mathrm{d}v
=\displaystyle= 14Jn(1,1)Ωn(1,1)(u,v)n(1,1)(u,v)uvW(u,v)dudv(Jn(1,1))\displaystyle\dfrac{1}{4}\operatorname{J}_{n}^{(1,1)}\int_{\Omega^{\mathbf{*}}}\mathbb{P}_{n}^{(1,1)}(u,v)\mathbb{P}_{n}^{(1,1)}(u,v)^{\top}\,\sqrt{u\,v}\,W(\sqrt{u},\sqrt{v})\mathrm{d}u\mathrm{d}v(\operatorname{J}_{n}^{(1,1)})^{\top}
=\displaystyle= Jn(1,1)Ωn(1,1)(x2,y2)n(1,1)(x2,y2)x2y2W(x,y)dxdy(Jn(1,1))\displaystyle\operatorname{J}_{n}^{(1,1)}\,\int_{\Omega}\mathbb{P}_{n}^{(1,1)}(x^{2},y^{2})\,\mathbb{P}_{n}^{(1,1)}(x^{2},y^{2})^{\top}\,x^{2}\,y^{2}\,W(x,y)\mathrm{d}x\mathrm{d}y\,(\operatorname{J}_{n}^{(1,1)})^{\top}
=\displaystyle= Jn(1,1)𝐏n(1,1)(Jn(1,1))=𝐏^n(1,1),\displaystyle\operatorname{J}_{n}^{(1,1)}\,\mathbf{P}_{n}^{(1,1)}\,(\operatorname{J}_{n}^{(1,1)})^{\top}=\widehat{\mathbf{P}}_{n}^{(1,1)},
(^n(1,1),\displaystyle(\widehat{\mathbb{P}}_{n}^{(1,1)}, ^m(1,1))(1,1)=𝟶.\displaystyle\widehat{\mathbb{P}}_{m}^{(1,1)})^{(1,1)}=\mathtt{0}.

Now, we multiply two odd symmetric polynomials, use (3.4) and the xyx\,y-symmetry, obtaining

(𝕊2n+1(x,y),𝕊2m+1(x,y))=\displaystyle(\mathbb{S}_{2n+1}(x,y),\mathbb{S}_{2m+1}(x,y))= (xn(1,0)(x2,y2),xm(1,0)(x2,y2))\displaystyle(x\,\mathbb{P}_{n}^{(1,0)}(x^{2},y^{2}),x\,\mathbb{P}_{m}^{(1,0)}(x^{2},y^{2}))
+(yn(0,1)(x2,y2),ym(0,1)(x2,y2)).\displaystyle+(y\,\mathbb{P}_{n}^{(0,1)}(x^{2},y^{2}),y\,\mathbb{P}_{m}^{(0,1)}(x^{2},y^{2})).

Using the same reasoning as in the even case, and defining the PS {^n(1j,j)}n0\{\widehat{\mathbb{P}}_{n}^{(1-j,j)}\}_{n\geqslant 0} ={Jn(1j,j)n(1j,j)(u,v)}n0=\{\operatorname{J}_{n}^{(1-j,j)}\,\mathbb{P}_{n}^{(1-j,j)}(u,v)\}_{n\geqslant 0}, for j=0,1j=0,1, we prove that they are orthogonal, as

(^n(1j,j),^n(1j,j))(1j,j)=\displaystyle(\widehat{\mathbb{P}}_{n}^{(1-j,j)},\widehat{\mathbb{P}}_{n}^{(1-j,j)})^{(1-j,j)}= 14Ω^n(1j,j)(u,v)^n(1j,j)(u,v)W(1j,j)(u,v)dudv\displaystyle\dfrac{1}{4}\int_{\Omega^{\mathbf{*}}}\widehat{\mathbb{P}}_{n}^{(1-j,j)}(u,v)\widehat{\mathbb{P}}_{n}^{(1-j,j)}(u,v)^{\top}W^{(1-j,j)}(u,v)\mathrm{d}u\mathrm{d}v
=\displaystyle= Jn(1j,j)𝐏n(1j,j)(Jn(1j,j))=𝐏^n(1j,j),\displaystyle\operatorname{J}_{n}^{(1-j,j)}\,\mathbf{P}_{n}^{(1-j,j)}\,(\operatorname{J}_{n}^{(1-j,j)})^{\top}=\widehat{\mathbf{P}}_{n}^{(1-j,j)},
(^n(1j,j),^m(1j,j))(1j,j)=\displaystyle(\widehat{\mathbb{P}}_{n}^{(1-j,j)},\widehat{\mathbb{P}}_{m}^{(1-j,j)})^{(1-j,j)}= 𝟶,\displaystyle\mathtt{0},

which ends the proof. ∎

In a similar way we can prove the converse result.

Theorem 4.2.

Let W^(x,y)\widehat{W}(x,y) be a weight function defined on Ω+2={(x,y)2:x,y0}\Omega^{\mathbf{*}}\subset\mathbb{R}^{2}_{+}=\{(x,y)\in\mathbb{R}^{2}:x,y\geqslant 0\}, and let {^n(0,0)}n0\{\widehat{\mathbb{P}}^{(0,0)}_{n}\}_{n\geqslant 0} be the corresponding monic OPS. Let {^n(1,0)}n0\{\widehat{\mathbb{P}}^{(1,0)}_{n}\}_{n\geqslant 0}, {^n(0,1)}n0\{\widehat{\mathbb{P}}^{(0,1)}_{n}\}_{n\geqslant 0}, and {^n(1,1)}n0\{\widehat{\mathbb{P}}^{(1,1)}_{n}\}_{n\geqslant 0} be the respective MOPS associated with the modifications of the weight function

W(1,0)(x,y)=xW^(x,y),\displaystyle W^{(1,0)}(x,y)=x\,\widehat{W}(x,y), W(0,1)(x,y)=yW^(x,y),\displaystyle W^{(0,1)}(x,y)=y\,\widehat{W}(x,y), W(1,1)(x,y)=xyW^(x,y).\displaystyle W^{(1,1)}(x,y)=x\,y\,\widehat{W}(x,y).

Define the family of vector polynomials {𝕊n}n0\{\mathbb{S}_{n}\}_{n\geqslant 0} by means of (3.3) and (3.4), where {n(i,j)=(Jn(i,j))^n(i,j)}n0\{\mathbb{P}_{n}^{(i,j)}=(\operatorname{J}_{n}^{(i,j)})^{\top}\,\widehat{\mathbb{P}}^{(i,j)}_{n}\}_{n\geqslant 0}, for i,j=0,1i,j=0,1. Then, {𝕊n}n0\{\mathbb{S}_{n}\}_{n\geqslant 0} is a xyx\,y-symmetric monic orthogonal polynomial system associated with the weight function

W(x,y)=4|x||y|W^(x2,y2),\displaystyle W(x,y)=4\,|x|\,|y|\,\widehat{W}(x^{2},y^{2}), (x,y)Ω={(x,y)2:(x2,y2)Ω}.\displaystyle(x,y)\in\Omega=\{(x,y)\in\mathbb{R}^{2}:(x^{2},y^{2})\in\Omega^{\mathbf{*}}\}.

As a consequence of Theorem 4.2, and since W(1,0)(x,y)W^{(1,0)}(x,y), W(0,1)(x,y)W^{(0,1)}(x,y), and W(1,1)(x,y)W^{(1,1)}(x,y) are Christoffel modifications of the original weight function, following [1] and Lemma 2.2 there exist matrices of adequate size such that there exist short relations between that families of orthogonal polynomials. In the next section we will describe explicitly those relations.

5. Bäcklund-type relations

Orthogonal polynomials in two variables satisfy a three term relation in each variable (cf. [3]) written in a vector form and matrix coefficients. In this section we want to relate the matrix coefficients of the three term relations for the monic orthogonal polynomial sequences involved in Theorems 4.1 and 4.2.

If {𝕊n}n0\{\mathbb{S}_{n}\}_{n\geqslant 0} is a MOPS associated with a centrally symmetric weight function, the three term relation takes a simple form. In fact, [3, Theorem 3.3.10] states that a measure is symmetric if, and only if, it satisfies the three term relations

(5.1) {x𝕊n(x,y)=Ln,1𝕊n+1(x,y)+Γn,1𝕊n1(x,y),y𝕊n(x,y)=Ln,2𝕊n+1(x,y)+Γn,2𝕊n1(x,y),\displaystyle\begin{cases}x\,\mathbb{S}_{n}(x,y)=\operatorname{L}_{n,1}\,\mathbb{S}_{n+1}(x,y)+\Gamma_{n,1}\,\mathbb{S}_{n-1}(x,y),\\ y\,\mathbb{S}_{n}(x,y)=\operatorname{L}_{n,2}\,\mathbb{S}_{n+1}(x,y)+\Gamma_{n,2}\,\mathbb{S}_{n-1}(x,y),\end{cases}

for n0n\geqslant 0, where 𝕊1(x,y)=0\mathbb{S}_{-1}(x,y)=0, Γ1,k=0\Gamma_{-1,k}=0, and

Γn,k=𝐒nLn1,k𝐒n11,\displaystyle\Gamma_{n,k}=\mathbf{S}_{n}\,\operatorname{L}_{n-1,k}^{\top}\,\mathbf{S}_{n-1}^{-1}, n1,\displaystyle n\geqslant 1, k=1,2,\displaystyle k=1,2,

are matrices of size (n+1)×n(n+1)\times n with rankΓn,k=n\mathrm{rank}\,\Gamma_{n,k}=n, for k=1,2k=1,2.

The four systems of monic orthogonal polynomials {^n(i,j)}n0\{\widehat{\mathbb{P}}^{(i,j)}_{n}\}_{n\geqslant 0}, with i,j=0,1i,j=0,1, involved in Theorems 4.1 and 4.2, satisfy the three term relations

{x^n(i,j)(x,y)=Ln,1^n+1(i,j)(x,y)+D^n,1(i,j)^n(i,j)(x,y)+C^n,1(i,j)^n1(i,j)(x,y),y^n(i,j)(x,y)=Ln,2^n+1(i,j)(x,y)+D^n,2(i,j)^n(i,j)(x,y)+C^n,2(i,j)^n1(i,j)(x,y),\displaystyle\begin{cases}x\,\widehat{\mathbb{P}}^{(i,j)}_{n}(x,y)=\operatorname{L}_{n,1}\,\widehat{\mathbb{P}}^{(i,j)}_{n+1}(x,y)+\widehat{\operatorname{D}}_{n,1}^{(i,j)}\,\widehat{\mathbb{P}}^{(i,j)}_{n}(x,y)+\widehat{\operatorname{C}}_{n,1}^{(i,j)}\,\widehat{\mathbb{P}}_{n-1}^{(i,j)}(x,y),\\ y\,\widehat{\mathbb{P}}^{(i,j)}_{n}(x,y)=\operatorname{L}_{n,2}\,\widehat{\mathbb{P}}^{(i,j)}_{n+1}(x,y)+\widehat{\operatorname{D}}_{n,2}^{(i,j)}\,\widehat{\mathbb{P}}^{(i,j)}_{n}(x,y)+\widehat{\operatorname{C}}_{n,2}^{(i,j)}\,\widehat{\mathbb{P}}_{n-1}^{(i,j)}(x,y),\end{cases}

where ^1(i,j)=0\widehat{\mathbb{P}}^{(i,j)}_{-1}=0, C^1,k(i,j)=0\widehat{\operatorname{C}}_{-1,k}^{(i,j)}=0, D^n,k(i,j)\widehat{\operatorname{D}}_{n,k}^{(i,j)} and C^n,k(i,j)\widehat{\operatorname{C}}_{n,k}^{(i,j)} are matrices of respective sizes (n+1)×(n+1)(n+1)\times(n+1) and (n+1)×n(n+1)\times n, such that

D^n,1(i,j)𝐏^n(i,j)\displaystyle\widehat{\operatorname{D}}_{n,1}^{(i,j)}\,\widehat{\mathbf{P}}_{n}^{(i,j)} =(x^n(i,j),^n(i,j))(i,j),\displaystyle=(x\,\widehat{\mathbb{P}}^{(i,j)}_{n},\,\widehat{\mathbb{P}}^{(i,j)}_{n})^{(i,j)}, D^n,2(i,j)𝐏^n(i,j)=(y^n(i,j),^n(i,j))(i,j),\displaystyle\widehat{\operatorname{D}}_{n,2}^{(i,j)}\,\widehat{\mathbf{P}}_{n}^{(i,j)}=(y\,\widehat{\mathbb{P}}^{(i,j)}_{n},\,\widehat{\mathbb{P}}^{(i,j)}_{n})^{(i,j)},
C^n,1(i,j)𝐏^n1(i,j)\displaystyle\widehat{\operatorname{C}}_{n,1}^{(i,j)}\,\widehat{\mathbf{P}}_{n-1}^{(i,j)} =𝐏^n(i,j)Ln1,1,\displaystyle=\widehat{\mathbf{P}}_{n}^{(i,j)}\,\operatorname{L}_{n-1,1}^{\top}, C^n,2(i,j)𝐏^n1(i,j)=𝐏^n(i,j)Ln1,2,\displaystyle\widehat{\operatorname{C}}_{n,2}^{(i,j)}\,\widehat{\mathbf{P}}_{n-1}^{(i,j)}=\widehat{\mathbf{P}}_{n}^{(i,j)}\,\operatorname{L}_{n-1,2}^{\top},

where 𝐏^n(i,j)=(^n(i,j),^n(i,j))(i,j)\widehat{\mathbf{P}}_{n}^{(i,j)}=(\widehat{\mathbb{P}}^{(i,j)}_{n},\,\widehat{\mathbb{P}}^{(i,j)}_{n})^{(i,j)}. In addition, the (n+1)×n(n+1)\times n matrices C^n,k(i,j)\widehat{\operatorname{C}}_{n,k}^{(i,j)} have full rank nn, for i,j=0,1i,j=0,1 and k=1,2k=1,2.

Suppose that the xyx\,y-symmetric monic polynomial system {𝕊n}n0\{\mathbb{S}_{n}\}_{n\geqslant 0} and the four families of MOPS are related by (3.3) and (3.4), where {n(i,j)=(Jn(i,j))^n(i,j)}n0\{\mathbb{P}_{n}^{(i,j)}=(\operatorname{J}_{n}^{(i,j)})^{\top}\,\widehat{\mathbb{P}}^{(i,j)}_{n}\}_{n\geqslant 0}, for i,j=0,1i,j=0,1, are the respective families of big polynomials.

Theorem 5.1 (Bäcklund-type relations).

In the above conditions, the following relations hold, for all n0n\geqslant 0 and k=1,2k=1,2,

D^n,k(0,0)\displaystyle\widehat{\operatorname{D}}_{n,k}^{(0,0)} =Jn(0,0)[L2n,kΓ2n+1,k+Γ2n,kL2n1,k](Jn(0,0)),\displaystyle=\operatorname{J}_{n}^{(0,0)}\,[\operatorname{L}_{2n,k}\,\Gamma_{2n+1,k}+\Gamma_{2n,k}\,\operatorname{L}_{2n-1,k}]\,(\operatorname{J}_{n}^{(0,0)})^{\top},
C^n,k(0,0)\displaystyle\widehat{\operatorname{C}}_{n,k}^{(0,0)} =Jn(0,0)Γ2n,kΓ2n1,k(Jn1(0,0)),\displaystyle=\operatorname{J}_{n}^{(0,0)}\,\Gamma_{2n,k}\,\Gamma_{2n-1,k}\,(\operatorname{J}_{n-1}^{(0,0)})^{\top},
D^n,k(1,1)\displaystyle\widehat{\operatorname{D}}_{n,k}^{(1,1)} =Jn(1,1)[L2n+2,kΓ2n+3,k+Γ2n+2,kL2n+1,k](Jn(1,1)),\displaystyle=\operatorname{J}_{n}^{(1,1)}\,[\operatorname{L}_{2n+2,k}\,\Gamma_{2n+3,k}+\Gamma_{2n+2,k}\,\operatorname{L}_{2n+1,k}]\,(\operatorname{J}_{n}^{(1,1)})^{\top},
C^n,k(1,1)\displaystyle\widehat{\operatorname{C}}_{n,k}^{(1,1)} =Jn(1,1)Γ2n+2,kΓ2n+1,k(Jn1(1,1)),\displaystyle=\operatorname{J}_{n}^{(1,1)}\,\Gamma_{2n+2,k}\,\Gamma_{2n+1,k}\,(\operatorname{J}_{n-1}^{(1,1)})^{\top},
D^n,k(1,0)\displaystyle\widehat{\operatorname{D}}_{n,k}^{(1,0)} =Jn(1,0)[L2n+1,kΓ2n+2,k+Γ2n+1,kL2n,k](Jn(1,0)),\displaystyle=\operatorname{J}_{n}^{(1,0)}\,[\operatorname{L}_{2n+1,k}\,\Gamma_{2n+2,k}+\Gamma_{2n+1,k}\,\operatorname{L}_{2n,k}]\,(\operatorname{J}_{n}^{(1,0)})^{\top},
C^n,k(1,0)\displaystyle\widehat{\operatorname{C}}_{n,k}^{(1,0)} =Jn(1,0)Γ2n+1,kΓ2n,k(Jn1(1,0)),\displaystyle=\operatorname{J}_{n}^{(1,0)}\,\Gamma_{2n+1,k}\,\Gamma_{2n,k}\,(\operatorname{J}_{n-1}^{(1,0)})^{\top},
D^n,k(0,1)\displaystyle\widehat{\operatorname{D}}_{n,k}^{(0,1)} =Jn(0,1)[L2n+1,kΓ2n+2,k+Γ2n+1,kL2n,k](Jn(0,1)),\displaystyle=\operatorname{J}_{n}^{(0,1)}\,[\operatorname{L}_{2n+1,k}\,\Gamma_{2n+2,k}+\Gamma_{2n+1,k}\,\operatorname{L}_{2n,k}]\,(\operatorname{J}_{n}^{(0,1)})^{\top},
C^n,k(0,1)\displaystyle\widehat{\operatorname{C}}_{n,k}^{(0,1)} =Jn(0,1)Γ2n+1,kΓ2n,k(Jn1(0,1)).\displaystyle=\operatorname{J}_{n}^{(0,1)}\,\Gamma_{2n+1,k}\,\Gamma_{2n,k}\,(\operatorname{J}_{n-1}^{(0,1)})^{\top}.

with the convention that the matrix with negative indices is taken as a zero matrix.

Remark 5.2.

For i=0,1i=0,1, we must observe that left multiplication by Jn(i,0)\operatorname{J}_{n}^{(i,0)} eliminates the even rows of the matrices, and the left multiplication by Jn(i,1)\operatorname{J}_{n}^{(i,1)} eliminates the odd rows of the matrices. The right multiplication by (Jn(i,0))(\operatorname{J}_{n}^{(i,0)})^{\top} eliminates the even columns, and the multiplication by (Jn(i,1))(\operatorname{J}_{n}^{(i,1)})^{\top} eliminates the odd columns of the matrices.

We divide the proof in several lemmas starting from a useful one for symmetric polynomials.

Lemma 5.3.

Let pi,j(x,y),qi,j(x,y)p_{i,j}(x,y),q_{i,j}(x,y), i=0,1i=0,1, be polynomials of the same parity order. If

[p0,0(x,y)p0,1(x,y)p1,0(x,y)p1,1(x,y)][1x]=[q0,0(x,y)q0,1(x,y)q1,0(x,y)q1,1(x,y)][1x],\displaystyle\begin{bmatrix}p_{0,0}(x,y)&p_{0,1}(x,y)\\ p_{1,0}(x,y)&p_{1,1}(x,y)\end{bmatrix}\begin{bmatrix}1\\ x\end{bmatrix}=\begin{bmatrix}q_{0,0}(x,y)&q_{0,1}(x,y)\\ q_{1,0}(x,y)&q_{1,1}(x,y)\end{bmatrix}\begin{bmatrix}1\\ x\end{bmatrix},

then

[p0,0(x,y)p0,1(x,y)p1,0(x,y)p1,1(x,y)]=[q0,0(x,y)q0,1(x,y)q1,0(x,y)q1,1(x,y)].\displaystyle\begin{bmatrix}p_{0,0}(x,y)&p_{0,1}(x,y)\\ p_{1,0}(x,y)&p_{1,1}(x,y)\end{bmatrix}=\begin{bmatrix}q_{0,0}(x,y)&q_{0,1}(x,y)\\ q_{1,0}(x,y)&q_{1,1}(x,y)\end{bmatrix}.

Secondly, we deduce the relations between the big families of polynomials.

Lemma 5.4.

The four big families of polynomials {n(i,j)}n0\{\mathbb{P}^{(i,j)}_{n}\}_{n\geqslant 0}, for i,j=0,1i,j=0,1, defined by (3.3) and (3.4), are related by the expressions:

(5.2) n(0,0)(x,y)\displaystyle\mathbb{P}^{(0,0)}_{n}(x,y) =L2n,kn(2k,k1)(x,y)+Γ2n,kn1(2k,k1)(x,y),\displaystyle=\operatorname{L}_{2n,k}\,\mathbb{P}^{(2-k,k-1)}_{n}(x,y)+\Gamma_{2n,k}\,\mathbb{P}^{(2-k,k-1)}_{n-1}(x,y),
(5.3) xkn1(1,1)(x,y)\displaystyle x_{k}\,\mathbb{P}^{(1,1)}_{n-1}(x,y) =L2n,kn(k1,2k)(x,y)+Γ2n,kn1(k1,2k)(x,y),\displaystyle=\operatorname{L}_{2n,k}\,\mathbb{P}^{(k-1,2-k)}_{n}(x,y)+\Gamma_{2n,k}\,\mathbb{P}^{(k-1,2-k)}_{n-1}(x,y),
(5.4) n(k1,2k)(x,y)\displaystyle\mathbb{P}^{(k-1,2-k)}_{n}(x,y) =L2n+1,kn(1,1)(x,y)+Γ2n+1,kn1(1,1)(x,y),\displaystyle=\operatorname{L}_{2n+1,k}\,\mathbb{P}^{(1,1)}_{n}(x,y)+\Gamma_{2n+1,k}\,\mathbb{P}^{(1,1)}_{n-1}(x,y),
(5.5) xkn(2k,k1)(x,y)\displaystyle x_{k}\,\mathbb{P}^{(2-k,k-1)}_{n}(x,y) =L2n+1,kn+1(0,0)(x,y)+Γ2n+1,kn(0,0)(x,y),\displaystyle=\operatorname{L}_{2n+1,k}\,\mathbb{P}^{(0,0)}_{n+1}(x,y)+\Gamma_{2n+1,k}\,\mathbb{P}^{(0,0)}_{n}(x,y),

for k=1,2k=1,2 and denoting x1=x,x2=yx_{1}=x,x_{2}=y for brevity.

Proof.

The expressions (3.3) and (3.4) can be matrically rewritten in the following form

(5.6) [𝕊2n(x,y)𝕊2n+1(x,y)]\displaystyle\begin{bmatrix}\mathbb{S}_{2n}(x,y)\\ \mathbb{S}_{2n+1}(x,y)\end{bmatrix} =[n(0,0)(x2,y2)yn1(1,1)(x2,y2)yn(0,1)(x2,y2)n(1,0)(x2,y2)][1x]\displaystyle=\begin{bmatrix}\mathbb{P}^{(0,0)}_{n}(x^{2},y^{2})&y\,\mathbb{P}^{(1,1)}_{n-1}(x^{2},y^{2})\\ y\,\mathbb{P}^{(0,1)}_{n}(x^{2},y^{2})&\mathbb{P}^{(1,0)}_{n}(x^{2},y^{2})\end{bmatrix}\!\begin{bmatrix}1\\ x\end{bmatrix}
(5.7) =[n(0,0)(x2,y2)xn1(1,1)(x2,y2)xn(1,0)(x2,y2)n(0,1)(x2,y2)][1y].\displaystyle=\begin{bmatrix}\mathbb{P}^{(0,0)}_{n}(x^{2},y^{2})&x\,\mathbb{P}^{(1,1)}_{n-1}(x^{2},y^{2})\\ x\,\mathbb{P}^{(1,0)}_{n}(x^{2},y^{2})&\mathbb{P}^{(0,1)}_{n}(x^{2},y^{2})\end{bmatrix}\!\begin{bmatrix}1\\ y\end{bmatrix}.

We can write the first three term relations (5.1) in the form

x[𝕊2n𝕊2n+1]=[𝟶𝟶L2n+1,1𝟶][𝕊2n+2𝕊2n+3]+[𝟶L2n,1Γ2n+1,1𝟶][𝕊2n𝕊2n+1]+[𝟶Γ2n,1𝟶𝟶][𝕊2n2𝕊2n1]x\!\begin{bmatrix}\mathbb{S}_{2n}\\ \mathbb{S}_{2n+1}\end{bmatrix}=\begin{bmatrix}\mathtt{0}&\mathtt{0}\\ \operatorname{L}_{2n+1,1}&\mathtt{0}\end{bmatrix}\!\begin{bmatrix}\mathbb{S}_{2n+2}\\ \mathbb{S}_{2n+3}\end{bmatrix}+\begin{bmatrix}\mathtt{0}&\operatorname{L}_{2n,1}\\ \Gamma_{2n+1,1}&\mathtt{0}\end{bmatrix}\!\begin{bmatrix}\mathbb{S}_{2n}\\ \mathbb{S}_{2n+1}\end{bmatrix}+\begin{bmatrix}\mathtt{0}&\Gamma_{2n,1}\\ \mathtt{0}&\mathtt{0}\end{bmatrix}\!\begin{bmatrix}\mathbb{S}_{2n-2}\\ \mathbb{S}_{2n-1}\end{bmatrix}

where we have omitted the arguments (x,y)(x,y) for simplicity. Substituting (5.6), we get

x[n(0,0)yn1(1,1)yn(0,1)n(1,0)][1x]={[𝟶𝟶L2n+1,1𝟶][n+1(0,0)yn(1,1)yn+1(0,1)n+1(1,0)]+[𝟶L2n,1Γ2n+1,1𝟶][n(0,0)yn1(1,1)yn(0,1)n(1,0)]+[𝟶Γ2n,1𝟶𝟶][n1(0,0)yn2(1,1)yn1(0,1)n1(1,0)]}[1x].x\!\begin{bmatrix}\mathbb{P}^{(0,0)}_{n}&y\,\mathbb{P}^{(1,1)}_{n-1}\\ y\,\mathbb{P}^{(0,1)}_{n}&\mathbb{P}^{(1,0)}_{n}\end{bmatrix}\!\begin{bmatrix}1\\ x\end{bmatrix}=\left\{\begin{bmatrix}\mathtt{0}^{\phantom{(0)}}&\mathtt{0}\\ \operatorname{L}_{2n+1,1}^{\phantom{(0)}}&\mathtt{0}\end{bmatrix}\!\begin{bmatrix}\mathbb{P}^{(0,0)}_{n+1}&y\,\mathbb{P}^{(1,1)}_{n}\\ y\,\mathbb{P}^{(0,1)}_{n+1}&\mathbb{P}^{(1,0)}_{n+1}\end{bmatrix}\right.\\ \left.+\begin{bmatrix}\mathtt{0}&\operatorname{L}_{2n,1}^{\phantom{(0)}}\\ \Gamma_{2n+1,1}^{\phantom{(0)}}&\mathtt{0}\end{bmatrix}\!\begin{bmatrix}\mathbb{P}^{(0,0)}_{n}&y\,\mathbb{P}^{(1,1)}_{n-1}\\ y\,\mathbb{P}^{(0,1)}_{n}&\mathbb{P}^{(1,0)}_{n}\end{bmatrix}+\begin{bmatrix}\mathtt{0}&\Gamma_{2n,1}^{\phantom{(0)}}\\ \mathtt{0}&\mathtt{0}^{\phantom{(0)}}\end{bmatrix}\!\begin{bmatrix}\mathbb{P}^{(0,0)}_{n-1}&y\,\mathbb{P}^{(1,1)}_{n-2}\\ y\,\mathbb{P}^{(0,1)}_{n-1}&\mathbb{P}^{(1,0)}_{n-1}\end{bmatrix}\right\}\!\begin{bmatrix}1\\ x\end{bmatrix}.

where we have omitted the arguments (x2,y2)(x^{2},y^{2}) of the big polynomials for brevity. Now, since

x[1x]=[01x20][1x],\displaystyle x\!\begin{bmatrix}1\\ x\end{bmatrix}=\begin{bmatrix}0&1\\ x^{2}&0\end{bmatrix}\!\begin{bmatrix}1\\ x\end{bmatrix},

and applying Lemma 5.3, we deduce

[n(0,0)yn1(1,1)yn(0,1)n(1,0)][01x20]=[𝟶𝟶L2n+1,1𝟶][n+1(0,0)yn(1,1)yn+1(0,1)n+1(1,0)]+[𝟶L2n,1Γ2n+1,1𝟶][n(0,0)yn1(1,1)yn(0,1)n(1,0)]+[𝟶Γ2n,1𝟶𝟶][n1(0,0)yn2(1,1)yn1(0,1)n1(1,0)].\begin{bmatrix}\mathbb{P}^{(0,0)}_{n}&y\,\mathbb{P}^{(1,1)}_{n-1}\\ y\,\mathbb{P}^{(0,1)}_{n}&\mathbb{P}^{(1,0)}_{n}\end{bmatrix}\!\begin{bmatrix}0&1\\ x^{2}&0\end{bmatrix}=\begin{bmatrix}\mathtt{0}^{\phantom{(0)}}&\mathtt{0}\\ \operatorname{L}_{2n+1,1}^{\phantom{(0)}}&\mathtt{0}\end{bmatrix}\!\begin{bmatrix}\mathbb{P}^{(0,0)}_{n+1}&y\,\mathbb{P}^{(1,1)}_{n}\\ y\,\mathbb{P}^{(0,1)}_{n+1}&\mathbb{P}^{(1,0)}_{n+1}\end{bmatrix}\\ +\begin{bmatrix}\mathtt{0}&\operatorname{L}_{2n,1}^{\phantom{(0)}}\\ \Gamma_{2n+1,1}^{\phantom{(0)}}&\mathtt{0}\end{bmatrix}\!\begin{bmatrix}\mathbb{P}^{(0,0)}_{n}&y\,\mathbb{P}^{(1,1)}_{n-1}\\ y\,\mathbb{P}^{(0,1)}_{n}&\mathbb{P}^{(1,0)}_{n}\end{bmatrix}+\begin{bmatrix}\mathtt{0}&\Gamma_{2n,1}^{\phantom{(0)}}\\ \mathtt{0}&\mathtt{0}^{\phantom{(0)}}\end{bmatrix}\!\begin{bmatrix}\mathbb{P}^{(0,0)}_{n-1}&y\,\mathbb{P}^{(1,1)}_{n-2}\\ y\,\mathbb{P}^{(0,1)}_{n-1}&\mathbb{P}^{(1,0)}_{n-1}\end{bmatrix}.

We finally arrive to,

[x2yn1(1,1)n(0,0)x2n(1,0)yn(0,1)]=[𝟶𝟶L2n+1,1n+1(0,0)L2n+1,1yn(1,1)]+[L2n,1yn(0,1)L2n,1n(1,0)Γ2n+1,1n(0,0)Γ2n+1,1yn1(1,1)]+[Γ2n,1yn1(0,1)Γ2n,1n1(1,0)𝟶𝟶].\begin{bmatrix}x^{2}\,y\,\mathbb{P}^{(1,1)}_{n-1}&\mathbb{P}^{(0,0)}_{n}\\ x^{2}\,\mathbb{P}^{(1,0)}_{n}&y\,\mathbb{P}^{(0,1)}_{n}\end{bmatrix}=\begin{bmatrix}\mathtt{0}&\mathtt{0}\\ \operatorname{L}_{2n+1,1}\,\mathbb{P}^{(0,0)}_{n+1}&\operatorname{L}_{2n+1,1}\,y\,\mathbb{P}^{(1,1)}_{n}\end{bmatrix}\\ +\begin{bmatrix}\operatorname{L}_{2n,1}\,y\,\mathbb{P}^{(0,1)}_{n}&\operatorname{L}_{2n,1}\,\mathbb{P}^{(1,0)}_{n}\\ \Gamma_{2n+1,1}\,\mathbb{P}^{(0,0)}_{n}&\Gamma_{2n+1,1}\,y\,\mathbb{P}^{(1,1)}_{n-1}\end{bmatrix}\ +\begin{bmatrix}\Gamma_{2n,1}\,y\,\mathbb{P}^{(0,1)}_{n-1}&\Gamma_{2n,1}\,\mathbb{P}^{(1,0)}_{n-1}\\ \mathtt{0}&\mathtt{0}\end{bmatrix}.

Then, after a convenient simplification and by introducing the variable (x,y)(x,y), we deduce the expressions (5.2), (5.4), (5.3), and (5.5) for k=1k=1. The same discussion can be done for the second variable using (5.7), taking k=2k=2. ∎

The identities in Lemma 5.4 can be used to deduce three terms relations for the big polynomial families. Apparently, (5.8)-(5.11) are three term relations for the bivariate polynomials {n(i,j)}n0\{\mathbb{P}_{n}^{(i,j)}\}_{n\geqslant 0}, i,j=0,1i,j=0,1, but the these big families are not polynomial systems.

Lemma 5.5.

The families of big bivariate polynomials {n(i,j)}n0\{\mathbb{P}_{n}^{(i,j)}\}_{n\geqslant 0}, for i,j=0,1i,j=0,1, satisfy the relations

(5.8) xkn(0,0)=\displaystyle x_{k}\,\mathbb{P}^{(0,0)}_{n}= L2n,kL2n+1,kn+1(0,0)+[L2n,kΓ2n+1,k+Γ2n,kL2n1,k]n(0,0)\displaystyle\operatorname{L}_{2n,k}\operatorname{L}_{2n+1,k}\mathbb{P}^{(0,0)}_{n+1}+[\operatorname{L}_{2n,k}\Gamma_{2n+1,k}+\Gamma_{2n,k}\operatorname{L}_{2n-1,k}]\mathbb{P}^{(0,0)}_{n}
+Γ2n,kΓ2n1,kn1(0,0),\displaystyle+\Gamma_{2n,k}\Gamma_{2n-1,k}\mathbb{P}^{(0,0)}_{n-1},
(5.9) xkn1(1,1)=\displaystyle x_{k}\,\mathbb{P}^{(1,1)}_{n-1}= L2n,kL2n+1,kn(1,1)+[L2n,kΓ2n+1,k+Γ2n,kL2n1,k]n1(1,1)\displaystyle\operatorname{L}_{2n,k}\operatorname{L}_{2n+1,k}\mathbb{P}^{(1,1)}_{n}+[\operatorname{L}_{2n,k}\Gamma_{2n+1,k}+\Gamma_{2n,k}\operatorname{L}_{2n-1,k}]\mathbb{P}^{(1,1)}_{n-1}
+Γ2n,kΓ2n1,kn2(1,1),\displaystyle+\Gamma_{2n,k}\Gamma_{2n-1,k}\mathbb{P}^{(1,1)}_{n-2},
(5.10) xkn(1,0)=\displaystyle x_{k}\,\mathbb{P}^{(1,0)}_{n}= L2n+1,kL2n+2,kn+1(1,0)+[L2n+1,kΓ2n+2,k+Γ2n+1,kL2n,k]n(1,0)\displaystyle\operatorname{L}_{2n+1,k}\operatorname{L}_{2n+2,k}\mathbb{P}^{(1,0)}_{n+1}+[\operatorname{L}_{2n+1,k}\Gamma_{2n+2,k}+\Gamma_{2n+1,k}\operatorname{L}_{2n,k}]\mathbb{P}^{(1,0)}_{n}
+Γ2n+1,kΓ2n,kn1(1,0),\displaystyle+\Gamma_{2n+1,k}\Gamma_{2n,k}\mathbb{P}^{(1,0)}_{n-1},
(5.11) xkn(0,1)=\displaystyle x_{k}\,\mathbb{P}^{(0,1)}_{n}= L2n+1,kL2n+2,kn+1(0,1)+[L2n+1,kΓ2n+2,k+Γ2n+1,kL2n,k]n(0,1)\displaystyle\operatorname{L}_{2n+1,k}\operatorname{L}_{2n+2,k}\mathbb{P}^{(0,1)}_{n+1}+[\operatorname{L}_{2n+1,k}\Gamma_{2n+2,k}+\Gamma_{2n+1,k}\operatorname{L}_{2n,k}]\mathbb{P}^{(0,1)}_{n}
+Γ2n+1,kΓ2n,kn1(0,1),\displaystyle+\Gamma_{2n+1,k}\Gamma_{2n,k}\mathbb{P}^{(0,1)}_{n-1},

for k=1,2k=1,2 and x1=x,x2=yx_{1}=x,x_{2}=y.

Proof.

For k=1,2k=1,2, relations are obtained multiplying (5.2) by xkx_{k} and using (5.5); substituting (5.2) in (5.5); replacing (5.4) in (5.3); and multiplying (5.4) by xkx_{k} and substituting (5.3). ∎

From the three terms relations of the big polynomials obtained in Lemma 5.5, we can deduce the three term relations for the small ones by a multiplications of an adequate J\operatorname{J}-matrix. In fact, multiplying, respectively, (5.8) by Jn(0,0)\operatorname{J}_{n}^{(0,0)}, (5.9) by Jn(1,1)\operatorname{J}_{n}^{(1,1)}, (5.10) by Jn(1,0)\operatorname{J}_{n}^{(1,0)}, and (5.11) by Jn(0,1)\operatorname{J}_{n}^{(0,1)}, and making use of Lemma 2.1 we arrive to the following result.

Lemma 5.6.

The families of small bivariate polynomials {^n(i,j)}n0\{\widehat{\mathbb{P}}_{n}^{(i,j)}\}_{n\geqslant 0}, for i,j=0,1i,j=0,1, satisfy the three term relations

xk^n(0,0)=\displaystyle x_{k}\,\widehat{\mathbb{P}}^{(0,0)}_{n}= Ln,k^n+1(0,0)+Jn(0,0)[L2n,kΓ2n+1,k+Γ2n,kL2n1,k](Jn(0,0))^n(0,0)\displaystyle\operatorname{L}_{n,k}\widehat{\mathbb{P}}^{(0,0)}_{n+1}+\operatorname{J}_{n}^{(0,0)}[\operatorname{L}_{2n,k}\Gamma_{2n+1,k}+\Gamma_{2n,k}\operatorname{L}_{2n-1,k}](\operatorname{J}_{n}^{(0,0)})^{\top}\widehat{\mathbb{P}}^{(0,0)}_{n}
(5.12) +Jn(0,0)Γ2n,1Γ2n1,1(Jn(0,0))^n1(0,0),\displaystyle+\operatorname{J}_{n}^{(0,0)}\Gamma_{2n,1}\Gamma_{2n-1,1}(\operatorname{J}_{n}^{(0,0)})^{\top}\widehat{\mathbb{P}}^{(0,0)}_{n-1},
xk^n1(1,1)=\displaystyle x_{k}\,\widehat{\mathbb{P}}^{(1,1)}_{n-1}= Ln1,k^n(1,1)+Jn1(1,1)[L2n,kΓ2n+1,k+Γ2n,kL2n1,k](Jn1(1,1))^n1(1,1)\displaystyle\operatorname{L}_{n-1,k}\widehat{\mathbb{P}}^{(1,1)}_{n}+\operatorname{J}_{n-1}^{(1,1)}[\operatorname{L}_{2n,k}\Gamma_{2n+1,k}+\Gamma_{2n,k}\operatorname{L}_{2n-1,k}](\operatorname{J}_{n-1}^{(1,1)})^{\top}\widehat{\mathbb{P}}^{(1,1)}_{n-1}
(5.13) +Jn1(1,1)Γ2n,1Γ2n1,1(Jn2(1,1))^n2(1,1),\displaystyle+\operatorname{J}_{n-1}^{(1,1)}\Gamma_{2n,1}\Gamma_{2n-1,1}(\operatorname{J}_{n-2}^{(1,1)})^{\top}\widehat{\mathbb{P}}^{(1,1)}_{n-2},
xk^n(1,0)=\displaystyle x_{k}\,\widehat{\mathbb{P}}^{(1,0)}_{n}= Ln,k^n+1(1,0)+Jn(1,0)[L2n+1,kΓ2n+2,k+Γ2n+1,kL2n,k](Jn(1,0))^n(1,0)\displaystyle\operatorname{L}_{n,k}\widehat{\mathbb{P}}^{(1,0)}_{n+1}+\operatorname{J}_{n}^{(1,0)}[\operatorname{L}_{2n+1,k}\Gamma_{2n+2,k}+\Gamma_{2n+1,k}\operatorname{L}_{2n,k}](\operatorname{J}_{n}^{(1,0)})^{\top}\widehat{\mathbb{P}}^{(1,0)}_{n}
(5.14) +Jn(1,0)Γ2n+1,kΓ2n,k(Jn1(1,0))^n1(1,0),\displaystyle+\operatorname{J}_{n}^{(1,0)}\Gamma_{2n+1,k}\Gamma_{2n,k}(\operatorname{J}_{n-1}^{(1,0)})^{\top}\widehat{\mathbb{P}}^{(1,0)}_{n-1},
xk^n(0,1)=\displaystyle x_{k}\,\widehat{\mathbb{P}}^{(0,1)}_{n}= Ln,k^n+1(0,1)+Jn(0,1)[L2n+1,kΓ2n+2,k+Γ2n+1,kL2n,k](Jn(0,1))^n(0,1)\displaystyle\operatorname{L}_{n,k}\widehat{\mathbb{P}}^{(0,1)}_{n+1}+\operatorname{J}_{n}^{(0,1)}[\operatorname{L}_{2n+1,k}\Gamma_{2n+2,k}+\Gamma_{2n+1,k}\operatorname{L}_{2n,k}](\operatorname{J}_{n}^{(0,1)})^{\top}\widehat{\mathbb{P}}^{(0,1)}_{n}
(5.15) +Jn(0,1)Γ2n+1,1Γ2n,1(Jn1(0,1))^n1(0,1),\displaystyle+\operatorname{J}_{n}^{(0,1)}\Gamma_{2n+1,1}\Gamma_{2n,1}(\operatorname{J}_{n-1}^{(0,1)})^{\top}\widehat{\mathbb{P}}^{(0,1)}_{n-1},

for k=1,2k=1,2 and x1=x,x2=yx_{1}=x,x_{2}=y.

Now, the Bäcklund-type relations contained in Theorem 5.1 are proven identifying coefficients.

As we have shown in Theorems 4.1 and 4.2, the small polynomial systems {^n(i,j)}n0\{\widehat{\mathbb{P}}_{n}^{(i,j)}\}_{n\geqslant 0}, for i+j1i+j\geqslant 1 are Christoffel modifications of the first family {^n(0,0)}n0\{\widehat{\mathbb{P}}_{n}^{(0,0)}\}_{n\geqslant 0}. Then, by Lemma 2.2, there exist short relations between that families. Lemma 5.4 also allows us to deduce short relations for the small polynomial systems, multiplying by the adequate J\operatorname{J}-matrix, and using Lemma 2.1. Next result gives the coefficients in terms of the matrix coefficients of the three term relations of {𝕊n}n0\{\mathbb{S}_{n}\}_{n\geqslant 0}.

Corollary 5.7.

The families of small MOPS are related by

^n(0,0)(x,y)=\displaystyle\widehat{\mathbb{P}}^{(0,0)}_{n}(x,y)= ^n(2k,k1)(x,y)+Γ^n,k(0,0)^n1(2k,k1)(x,y),\displaystyle\widehat{\mathbb{P}}^{(2-k,k-1)}_{n}(x,y)+\widehat{\Gamma}_{n,k}^{(0,0)}\,\widehat{\mathbb{P}}^{(2-k,k-1)}_{n-1}(x,y),
xk^n1(1,1)(x,y)=\displaystyle x_{k}\,\widehat{\mathbb{P}}^{(1,1)}_{n-1}(x,y)= Ln1,k^n(k1,2k)(x,y)+Γ^n,2(0,1)^n1(k1,2k)(x,y),\displaystyle\operatorname{L}_{n-1,k}\,\widehat{\mathbb{P}}^{(k-1,2-k)}_{n}(x,y)+\widehat{\Gamma}_{n,2}^{(0,1)}\,\widehat{\mathbb{P}}^{(k-1,2-k)}_{n-1}(x,y),
^n(k1,2k)(x,y)=\displaystyle\widehat{\mathbb{P}}^{(k-1,2-k)}_{n}(x,y)= ^n(1,1)(x,y)+Γ^n,k(1,1)^n1(1,1)(x,y),\displaystyle\widehat{\mathbb{P}}^{(1,1)}_{n}(x,y)+\widehat{\Gamma}_{n,k}^{(1,1)}\,\widehat{\mathbb{P}}^{(1,1)}_{n-1}(x,y),
xk^n(2k,k1)(x,y)=\displaystyle x_{k}\,\widehat{\mathbb{P}}^{(2-k,k-1)}_{n}(x,y)= Ln,k^n+1(0,0)(x,y)+Γ^n,k(1,0)^n(0,0)(x,y),\displaystyle\operatorname{L}_{n,k}\,\widehat{\mathbb{P}}^{(0,0)}_{n+1}(x,y)+\widehat{\Gamma}_{n,k}^{(1,0)}\,\widehat{\mathbb{P}}^{(0,0)}_{n}(x,y),

where

Γ^n,k(0,0)=Jn(0,0)Γ2n,k(Jn1(1,0)),\displaystyle\widehat{\Gamma}_{n,k}^{(0,0)}=\operatorname{J}_{n}^{(0,0)}\,\Gamma_{2n,k}\,(\operatorname{J}_{n-1}^{(1,0)})^{\top}, Γ^n,k(0,1)=Jn1(1,1)Γ2n,k(Jn1(0,1)),\displaystyle\widehat{\Gamma}_{n,k}^{(0,1)}=\operatorname{J}_{n-1}^{(1,1)}\,\Gamma_{2n,k}\,(\operatorname{J}_{n-1}^{(0,1)})^{\top},
Γ^n,k(1,1)=Jn(0,1)Γ2n+1,k(Jn1(1,1)),\displaystyle\widehat{\Gamma}_{n,k}^{(1,1)}=\operatorname{J}_{n}^{(0,1)}\,\Gamma_{2n+1,k}\,(\operatorname{J}_{n-1}^{(1,1)})^{\top}, Γ^n,k(1,0)=Jn(1,0)Γ2n+1,k(Jn(0,0)).\displaystyle\widehat{\Gamma}_{n,k}^{(1,0)}=\operatorname{J}_{n}^{(1,0)}\,\Gamma_{2n+1,k}\,(\operatorname{J}_{n}^{(0,0)})^{\top}.

These matrices Γ^\widehat{\Gamma}’s enable us to reinterpret the block Jacobi matrix associated with the polynomials sequences ^\widehat{\mathbb{P}}’s in terms of a 𝗟𝗨\boldsymbol{\mathsf{L}}\boldsymbol{\mathsf{U}} or 𝗨𝗟\boldsymbol{\mathsf{U}}\boldsymbol{\mathsf{L}} representation. In fact, for k=1,2k=1,2, we define the block matrices

𝗟k0=[IΓ^1,k(0,0)IΓ^2,k(0,0)I],\displaystyle\boldsymbol{\mathsf{L}}^{0}_{k}=\begin{bmatrix}\operatorname{I}\\ \widehat{\Gamma}_{1,k}^{(0,0)}&\operatorname{I}\\ &\widehat{\Gamma}_{2,k}^{(0,0)}&\operatorname{I}\\ &&\ddots&\ddots\end{bmatrix}, 𝗟k1=[IΓ^1,k(1,1)IΓ^2,k(1,1)I],\displaystyle\boldsymbol{\mathsf{L}}^{1}_{k}=\begin{bmatrix}\operatorname{I}\\ \widehat{\Gamma}_{1,k}^{(1,1)}&\operatorname{I}\\ &\widehat{\Gamma}_{2,k}^{(1,1)}&\operatorname{I}\\ &&\ddots&\ddots\end{bmatrix},
𝗨k0=[Γ^1,k(0,1)L0,kΓ^2,k(0,1)L1,k],\displaystyle\boldsymbol{\mathsf{U}}^{0}_{k}=\begin{bmatrix}\widehat{\Gamma}_{1,k}^{(0,1)}&\operatorname{L}_{0,k}\\ &\widehat{\Gamma}_{2,k}^{(0,1)}&\operatorname{L}_{1,k}\\ &&\ddots&\ddots\end{bmatrix}, 𝗨k1=[Γ^1,k(1,0)L0,kΓ^2,k(1,0)L1,k],\displaystyle\boldsymbol{\mathsf{U}}^{1}_{k}=\begin{bmatrix}\widehat{\Gamma}_{1,k}^{(1,0)}&\operatorname{L}_{0,k}\\ &\widehat{\Gamma}_{2,k}^{(1,0)}&\operatorname{L}_{1,k}\\ &&\ddots&\ddots\end{bmatrix},

we recover the recurrence relations (5.12), (5.13), (5.14), (5.15), respectively

xk𝓟(0,0)\displaystyle x_{k}\,\boldsymbol{\mathcal{P}}^{(0,0)} =xk𝗟k0𝓟(2k,k1)=𝗟k0𝗨k1𝓟(0,0),\displaystyle=x_{k}\,\boldsymbol{\mathsf{L}}^{0}_{k}\,\boldsymbol{\mathcal{P}}^{(2-k,k-1)}=\boldsymbol{\mathsf{L}}^{0}_{k}\,\boldsymbol{\mathsf{U}}^{1}_{k}\,\boldsymbol{\mathcal{P}}^{(0,0)},
xk𝓟(1,1)\displaystyle x_{k}\,\boldsymbol{\mathcal{P}}^{(1,1)} =𝗨k0𝓟(k1,2k)=𝗨k0𝗟k1𝓟(1,1),\displaystyle=\boldsymbol{\mathsf{U}}^{0}_{k}\,\boldsymbol{\mathcal{P}}^{(k-1,2-k)}=\boldsymbol{\mathsf{U}}^{0}_{k}\,\boldsymbol{\mathsf{L}}^{1}_{k}\,\boldsymbol{\mathcal{P}}^{(1,1)},
xk𝓟(2k,k1)\displaystyle x_{k}\,\boldsymbol{\mathcal{P}}^{(2-k,k-1)} =𝗨k1𝓟(0,0)=𝗨k1𝗟k0𝓟(2k,k1),\displaystyle=\boldsymbol{\mathsf{U}}^{1}_{k}\,\boldsymbol{\mathcal{P}}^{(0,0)}=\boldsymbol{\mathsf{U}}^{1}_{k}\,\boldsymbol{\mathsf{L}}^{0}_{k}\,\boldsymbol{\mathcal{P}}^{(2-k,k-1)},
xk𝓟(k1,2k)\displaystyle x_{k}\,\boldsymbol{\mathcal{P}}^{(k-1,2-k)} =xk𝗟k1𝓟(1,1)=𝗟k1𝗨k0𝓟(k1,2k),\displaystyle=x_{k}\,\boldsymbol{\mathsf{L}}^{1}_{k}\,\boldsymbol{\mathcal{P}}^{(1,1)}=\boldsymbol{\mathsf{L}}^{1}_{k}\,\boldsymbol{\mathsf{U}}^{0}_{k}\,\boldsymbol{\mathcal{P}}^{(k-1,2-k)},

denoting x1=xx_{1}=x, x2=yx_{2}=y, and, for i,j=0,1i,j=0,1, the column vector 𝓟(i,j)\boldsymbol{\mathcal{P}}^{(i,j)} is defined as

𝓟(i,j)=[(^0(i,j))(^1(i,j))].\displaystyle\boldsymbol{\mathcal{P}}^{(i,j)}=\begin{bmatrix}(\widehat{\mathbb{P}}^{(i,j)}_{0})^{\top}&(\widehat{\mathbb{P}}^{(i,j)}_{1})^{\top}&\cdots\end{bmatrix}^{\top}.

6. A case study

Moreover, if a weight function can be represented as W(x,y)=W~(x2,y2)W(x,y)=\widetilde{W}(x^{2},y^{2}), then it is xyx\,y-symmetric.

Finally, we totally describe the connection between bivariate polynomials orthogonal with respect to a xyx\,y-symmetric weight function defined on the unit ball of 2\mathbb{R}^{2}, defined by

𝐁2={(x,y)2:x2+y21},\displaystyle\mathbf{B}^{2}=\{(x,y)\in\mathbb{R}^{2}:x^{2}+y^{2}\leqslant 1\},

and bivariate orthogonal polynomials defined on the simplex

𝐓2={(x,y)2:x,y0,x+y1},\displaystyle\mathbf{T}^{2}=\{(x,y)\in\mathbb{R}^{2}:x,y\geqslant 0,x+y\leqslant 1\},

completing the discussion started by Y. Xu in [4, 5] for the even ball polynomials in each of its variables.

Following [5, section 4], let W𝐁(x,y)=W(x2,y2)W^{\mathbf{B}}(x,y)=W(x^{2},y^{2}) be a weight function defined on the unit ball on 2\mathbb{R}^{2}, and let

(6.1) W𝐓(u,v)=1uvW(u,v),\displaystyle W^{\mathbf{T}}(u,v)=\frac{1}{\sqrt{u\,v}}\,W(u,v), (u,v)𝐓2.\displaystyle(u,v)\in\mathbf{T}^{2}.

Observe that W𝐁(x,y)W^{\mathbf{B}}(x,y) is a xyx\,y-symmetric weight function defined on 𝐁2\mathbf{B}^{2}.

For n0n\geqslant 0, and 0kn0\leqslant k\leqslant n, let S2n,2k(x,y)S_{2n,2k}(x,y) be an orthogonal polynomial associated to the weight function W𝐁W^{\mathbf{B}} of even degree in each of variables. Then Y. Xu proved that it can be written in terms of orthogonal polynomials on the simplex as

S2n,2k(x,y)=Pn,k(x2,y2),\displaystyle S_{2n,2k}(x,y)=P_{n,k}(x^{2},y^{2}),

where Pn,k(x,y)P_{n,k}(x,y) is an orthogonal polynomial of total degree nn associated to W𝐓W^{\mathbf{T}}.

We can answer the question that what is about the leftover polynomials, i.e., we can give explicitly the shape of the polynomials orthogonal with respect to W𝐁(x,y)W^{\mathbf{B}}(x,y). Following our results, these polynomials are related to new families of bivariate orthogonal polynomials, resulting from a Christoffel modification that we will explicitly identify.

Let {𝕊n}n0\{\mathbb{S}_{n}\}_{n\geqslant 0} be the monic orthogonal polynomial system associated with the xyx\,y-symmetric weight function W𝐁(x,y)W^{\mathbf{B}}(x,y), satisfying (3.1).

If the explicit expression of every monic vector polynomial is given by

𝕊n(x,y)=[Sn,0(x,y)Sn,1(x,y)Sn,2(x,y)Sn,n(x,y)],\displaystyle\mathbb{S}_{n}(x,y)=\begin{bmatrix}S_{n,0}(x,y)&S_{n,1}(x,y)&S_{n,2}(x,y)&\cdots&S_{n,n}(x,y)\end{bmatrix}^{\top},

then every polynomial Sn,k(x,y)S_{n,k}(x,y), for 0kn0\leqslant k\leqslant n, is xyx\,y-symmetric by Lemma 3.2. As we have proved, the vector of polynomials 𝕊n(x,y)\mathbb{S}_{n}(x,y) can be separated in a zip way, cf. (3.2), attending to the parity of the powers of xx and yy, in its entries.

We deduce four families: {S2n,2k(x,y):0kn}n0\{S_{2n,2k}(x,y):0\leqslant k\leqslant n\}_{n\geqslant 0}, {S2n,2k+1(x,y):0kn1}n0\{S_{2n,2k+1}(x,y):0\leqslant k\leqslant n-1\}_{n\geqslant 0}, {S2n+1,2k(x,y):0kn}n0\{S_{2n+1,2k}(x,y):0\leqslant k\leqslant n\}_{n\geqslant 0}, and {S2n+1,2k+1(x,y):0kn}n0\{S_{2n+1,2k+1}(x,y):0\leqslant k\leqslant n\}_{n\geqslant 0}. Only the first family was identified in [4, 5] under the transformation (x2,y2)(x,y)(x^{2},y^{2})\mapsto(x,y) as a family of polynomials orthogonal on 𝐓2\mathbf{T}^{2} with respect to the weight function (6.1). We observe that the second family has the common factor xyx\,y, the third family has xx as common factor, and the fourth family has common factor the second variable yy.

Working as in Section 4, we separate the symmetric monic orthogonal polynomial vectors as it was shown in Lemma 3.3

𝕊2n(x,y)\displaystyle\mathbb{S}_{2n}(x,y) =n(0,0)(x2,y2)+xyn1(1,1)(x2,y2),\displaystyle=\mathbb{P}_{n}^{(0,0)}(x^{2},y^{2})+x\,y\,\mathbb{P}_{n-1}^{(1,1)}(x^{2},y^{2}),
𝕊2n+1(x,y)\displaystyle\mathbb{S}_{2n+1}(x,y) =xn(1,0)(x2,y2)+yn(0,1)(x2,y2).\displaystyle=x\,\mathbb{P}_{n}^{(1,0)}(x^{2},y^{2})+y\,\mathbb{P}_{n}^{(0,1)}(x^{2},y^{2}).

After deleting all zeros in above vectors of polynomials and substituting the variables (x2,y2)(x^{2},\,y^{2}) by (x,y)(x,\,y), we proved, in Theorem 4.1 that

{^n(0,0)}n0={Jn(0,0)n(0,0)}n0\{\widehat{\mathbb{P}}_{n}^{(0,0)}\}_{n\geqslant 0}=\{\operatorname{J}_{n}^{(0,0)}\,\mathbb{P}_{n}^{(0,0)}\}_{n\geqslant 0} is a MOPS associated with the weight function

W(0,0)(x,y)=1xyW𝐁(x,y),\displaystyle W^{(0,0)}(x,y)=\dfrac{1}{\sqrt{x\,y}}\,W^{\mathbf{B}}(\sqrt{x},\sqrt{y}),

{^n(2k,k1)}n0={Jn(2k,k1)n(2k,k1)}n0\{\widehat{\mathbb{P}}_{n}^{(2-k,k-1)}\}_{n\geqslant 0}=\{\operatorname{J}_{n}^{(2-k,k-1)}\,\mathbb{P}_{n}^{(2-k,k-1)}\}_{n\geqslant 0}, for k=1,2k=1,2, are MOPS associated with the Christoffel modification

W(2k,k1)(x,y)=xkW(0,0)(x,y),\displaystyle W^{(2-k,k-1)}(x,y)=x_{k}\,W^{(0,0)}(x,y),

{^n(1,1)}n0={Jn(1,1)n(1,1)}n0\{\widehat{\mathbb{P}}_{n}^{(1,1)}\}_{n\geqslant 0}=\{\operatorname{J}_{n}^{(1,1)}\,\mathbb{P}_{n}^{(1,1)}\}_{n\geqslant 0} is a MOPS associated with the Christoffel modification

W(1,1)(x,y)=xyW(0,0)(x,y),\displaystyle W^{(1,1)}(x,y)=x\,y\,W^{(0,0)}(x,y),

for all (x,y)𝐓2(x,y)\in\mathbf{T}^{2}.

Therefore, we have described the complete relation between orthogonal polynomials on the ball with orthogonal polynomials on the simplex.

Acknowledgements

AB acknowledges Centro de Matemática da Universidade de Coimbra (CMUC) – UID/MAT/ 00324/2020, funded by the Portuguese Government through FCT/MEC and co-funded by the European Regional Development Fund through the Partnership Agreement PT2020.

AFM acknowledges CIDMA Center for Research and Development in Mathematics and Applications (University of Aveiro) and the Portuguese Foundation for Science and Technology (FCT) within project UID/MAT/04106/2020.

TEP thanks FEDER/Junta de Andalucía under the research project A-FQM-246-UGR20; MCIN/AEI 10.13039/501100011033 and FEDER funds by PGC2018-094932-B-I00; and IMAG-María de Maeztu grant CEX2020-001105-M.

References

  • [1] M. Alfaro, A. Peña, T. E. Pérez, M. L. Rezola, On linearly related orthogonal polynomials in several variables, Numer. Algorithms 66 (2014), 525-553.
  • [2] T. S. Chihara, An Introduction to Orthogonal Polynomials, Mathematics and its Applications, vol. 13, Gordon and Breach, New York, 1978.
  • [3] C. F. Dunkl, Y. Xu, Orthogonal Polynomials of Several Variables, 2nd edition, Encyclopedia of Mathematics and its Applications, vol. 155, Cambridge Univ. Press, Cambridge, 2014.
  • [4] Y. Xu, Orthogonal polynomials and cubature formulae on spheres and on simplices, Methods Appl. Anal. 5 (1998), no. 2, 169-184.
  • [5] Y. Xu, Orthogonal polynomials on the ball and the simplex for weight functions with reflection symmetries, Constr. Approx. 17, 383-412.