This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

QQs¯s¯QQ\bar{s}\bar{s} tetraquarks in the chiral quark model

Gang Yang [email protected] Department of Physics, Zhejiang Normal University, Jinhua 321004, China    Jialun Ping [email protected] Department of Physics and Jiangsu Key Laboratory for Numerical Simulation of Large Scale Complex Systems, Nanjing Normal University, Nanjing 210023, P. R. China    Jorge Segovia [email protected] Departamento de Sistemas Físicos, Químicos y Naturales,
Universidad Pablo de Olavide, E-41013 Sevilla, Spain
Abstract

The low-lying SS-wave QQs¯s¯QQ\bar{s}\bar{s} (Q=c,bQ=c,b) tetraquark states with IJP=00+IJ^{P}=00^{+}, 01+01^{+} and 02+02^{+} are systematically investigated in the framework of complex scaling range of chiral quark model. Every structure including meson-meson, diquark-antidiquark and K-type configurations, and all possible color channels in four-body sector are considered by means of a commonly extended variational approach, Gaussian expansion method. Several narrow and wide resonance states are obtained for ccs¯s¯cc\bar{s}\bar{s} and bbs¯s¯bb\bar{s}\bar{s} tetraquarks with IJP=00+IJ^{P}=00^{+} and 02+02^{+}. Meanwhile, narrow resonances for cbs¯s¯cb\bar{s}\bar{s} tetraquarks are also found in IJP=00+IJ^{P}=00^{+}, 01+01^{+} and 02+02^{+} states. These results confirm the possibility of finding hadronic molecules with masses  0.6GeV\sim\,0.6\,\text{GeV} above the noninteracting hadron-hadron thresholds.

Quantum Chromodynamics and Quark models and Properties of Baryons and Exotic Baryons
pacs:
12.38.-t and 12.39.-x and 14.20.-c and 14.20.Pt

I Introduction

We are witnessing in the last two decades of a big experimental effort for understanding the heavy-flavor quark sectors of both meson and baryon systems. Many experiments have been settled worldwide such as B-factories (BaBar, Belle, and CLEO), τ\tau-charm facilities (CLEO-c and BES) and hadron-hadron colliders (CDF, D0, LHCb, ATLAS, and CMS) providing a sustained progress in the field with new measurements of conventional and exotic heavy-flavored hadrons.

Within the baryon sector, and attending mostly to the spectrum, five excited Ωc\Omega_{c} baryons were announced three years ago by the LHCb collaboration in the Ξc+K\Xi_{c}^{+}K^{-} mass spectrum Aaij et al. (2017) and, very recently, the same collaboration has reported additional four narrow excited states of the Ωb\Omega_{b} system in the Ξb0K\Xi_{b}^{0}K^{-} mass spectrum Aaij et al. (2020a). In 2019, two excited bottom baryons, Λb0(6146)\Lambda_{b}^{0}(6146) and Λb0(6152)\Lambda^{0}_{b}(6152), were discovered in the LHCb experiment Aaij et al. (2019a). Later on, the LHCb collaboration also announced one more Λb0\Lambda^{0}_{b} baryon around 6070 MeV in the Λb0π+π\Lambda^{0}_{b}\pi^{+}\pi^{-} invariant mass spectrum Aaij et al. (2020b), which is consistent with the reported one of the CMS collaboration Sirunyan et al. (2020). Additionally, three excited Ξc0\Xi_{c}^{0} states were announced by the LHCb collaboration in the Λc+K\Lambda^{+}_{c}K^{-} mass spectrum Aaij et al. (2020c).

All of these newly discovered baryons undoubtedly complement the scarce data on heavy flavor baryons in the Review of Particle Physics (RPP) of the Particle Data Group Tanabashi et al. (2018). Furthermore, these experimental findings trigger a large number of theoretical investigations. The three-quark structure of the new Ωc\Omega_{c} baryons has been claimed by QCD sum rules Chen et al. (2017a) and different potential models Karliner and Rosner (2017); K. L. Wang and Zhao (2017); Yang and Ping (2018). Also, the description of the Ωb\Omega_{b} signals as PP-wave conventional baryons is preferred by phenomenological quark model approach Karliner and Rosner (2020); Xiao et al. (2020), heavy quark effective theory Chen et al. (2020) and QCD sum rules Wang (2020a). Meanwhile, the baryon-meson molecular interpretation has been suggested for the excited Ωb\Omega_{b} baryons in Ref. Liang and Oset (2020). The Λb0(6072)\Lambda^{0}_{b}(6072), Λb0(6146)\Lambda^{0}_{b}(6146) and Λb0(6152)\Lambda^{0}_{b}(6152) have been identified as radial and angular excitations within QCD sum rules Azizi et al. (2020); Wang et al. (2019a); Chen et al. (2019); Yang et al. (2020a) and chiral quark models Wang et al. (2020); Lu¨\ddot{u} (2020). However, the D¯ΛD¯Σ\bar{D}\Lambda-\bar{D}\Sigma molecular configurations have been also suggested for these states in Ref. Zhu et al. (2020).

Apart from conventional heavy flavored baryons, there are limited results on open-bottom mesons and detailed studies of the open-charm ones were not undertaken until large datasets were obtained by CLEO at discrete energy points and by the B-factory experiments using radiative returns to obtain a continuous exposure of the mass region. The picture that has emerged is complex due to the many thresholds in the region. This resembles the experimental situation found in the heavy quarkonium spectrum with the observation of more than two dozens of unconventional charmonium- and bottomonium-like states, the so-called XYZ mesons. However, still successful observations of 6 new conventional heavy quarkonium states (4 cc¯c\bar{c} and 2 bb¯b\bar{b}) have been made.

Exotic states such as tetraquarks and pentaquarks have lastly received considerable attention within the hadron physics community. Related with the first structures, the best known is the X(3872)X(3872), which was observed in 2003 as an extremely narrow peak in the B+K+(π+πJ/ψ)B^{+}\to K^{+}(\pi^{+}\pi^{-}J/\psi) channel and at exactly the D¯0D0\bar{D}^{0}D^{\ast 0} threshold Choi et al. (2003); Aubert et al. (2005), and it is suspected to be a cnc¯n¯cn\bar{c}\bar{n} (n=un=u or dd quark) tetraquark state whose features resemble those of a molecule, but some experimental findings forbid to discard a more compact, diquark-antidiquark, component or even some cc¯c\bar{c} trace in its wave function. On the other hand, there are no doubts of the tetraquark character of the ZcZ_{c}’s Ablikim et al. (2013); Liu et al. (2013) and ZbZ_{b}’s Bondar et al. (2012); Adachi et al. (2012) states due to its non-zero charge. The most prominent examples of the second mentioned structures are the hidden-charm pentaquarks Pc+(4312)P^{+}_{c}(4312), Pc+(4380)P^{+}_{c}(4380), Pc+(4440)P^{+}_{c}(4440) and Pc+(4457)P^{+}_{c}(4457) reported in 2015 and 2019 by the LHCb collaboration in the Λb0\Lambda_{b}^{0} decay, Λb0J/ψKp\Lambda_{b}^{0}\to J/\psi K^{-}p Aaij et al. (2019b, 2015).

The discussion about the nature of these exotic signals are carried out by various theoretical approaches. In particular, the three newly announced hidden-charm pentaquarks, Pc+(4312)P^{+}_{c}(4312), Pc+(4440)P^{+}_{c}(4440) and Pc+(4457)P^{+}_{c}(4457) are favored to be molecular states of ΣcD¯\Sigma_{c}\bar{D}^{*} in, for instance, effective field theories Liu et al. (2019a); He (2019), QCD sum rules Wang (2020b), phenomenological potential models Guo and Oller (2019); Huang et al. (2019); Mutuk (2019); Zhu et al. (2019); Eides et al. (2019); Weng et al. (2019), heavy quark spin symmetry formalisms Shimizu et al. (2019); Xiao et al. (2019a) and heavy hadron chiral perturbation theory Meng et al. (2019). Moreover, their photo-production Cao and Dai (2019); Wang et al. (2019b) and decay properties Xiao et al. (2019b) have been also discussed. As for the other types of pentaquarks, bound states of the Q¯qqqq\bar{Q}qqqq system are not found within a constituent quark model Richard et al. (2019). Using the same approach, several narrow double-heavy pentaquark states are found to be possible in the systematical investigations of Refs. Zhou et al. (2018); Giannuzzi (2019); Yang et al. (2020b). Moreover, within the one-boson-exchange model, possible triple-charm molecular pentaquarks ΞccD()\Xi_{cc}D^{(*)} are suggested Wang et al. (2019c). In the tetraquark sector, double-heavy tetraquarks are studied using QCD sum rules Agaev et al. (2019), quark models Fontoura et al. (2019); Yang et al. (2020c) and even lattice-regularized QCD computations Leskovec et al. (2019). Besides, theoretical techniques such as diffusion Monte Carlo Bai et al. (2019), Bethe-Salpeter equation Heupel et al. (2012), QCD sum rules Wang (2017); Chen et al. (2017b) and effective phenomenological models Anwar et al. (2018); Esposito and Polosa (2018); Chen (2019); Liu et al. (2019b); Wang et al. (2019d) have recently contributed to the investigations of fully heavy tetraquarks QQQ¯Q¯QQ\bar{Q}\bar{Q}. Some reviews on both tetraquark and pentaquark systems can be found in Refs. Vijande et al. (2019); Liu et al. (2019c).

Our QCD-inspired chiral quark model explained successfully the nature of the Pc+P_{c}^{+} states in Ref. Yang and Ping (2017), even before the last updated data reported by the LHCb collaboration Aaij et al. (2019b). Based on such fact, the hidden-bottom Yang et al. (2019) and double-charm pentaquarks Yang et al. (2020b) were systematically investigated within the same theoretical framework, finding several either bound or resonance states. Reference Yang et al. (2020c) reported results on the double-heavy tetraquarks QQq¯q¯QQ\bar{q}\bar{q} (Q=c,b(Q=c,b and q=u,d)q=u,d), its natural extension should be the QQs¯s¯QQ\bar{s}\bar{s} tetraquark sector with the hope of finding either bound or resonance states. In order to do so, we have recently established a complex scaling range formalism of the chiral quark model which allows us to determine (if exist) simultaneously scattering, resonance and bound states. We shall study herein the QQs¯s¯QQ\bar{s}\bar{s} tetraquarks in the spin-parity channels JP=0+J^{P}=0^{+}, 1+1^{+} and 2+2^{+}, and in the isoscalar sector I=0I=0. Another relevant feature of our study is that all configurations: meson-meson, diquark-antidiquark and K-type for four-body systems are considered; moreover, every possible color channel is taken into account, too. Finally, the Rayleigh-Ritz variational method is employed in dealing with the spatial wave functions of tetraquark states, which are expanded by means of the well-known Gaussian expansion method (GEM) of Ref. Hiyama et al. (2003).

The present manuscript is arranged as follows. Section II is devoted to briefly describe our theoretical approach which includes the complex-range formulation of the chiral quark model and the discussion of the QQs¯s¯QQ\bar{s}\bar{s} wave-functions. Section III is devoted to the analysis and discussion of the obtained results. The summary and some prospects are presented in Sec. IV.

II Theoretical framework

The complex scaling method (CSM) applied to our chiral quark model has been already explained in Refs. Yang et al. (2020c, b). The general form of the four-body complex Hamiltonian is given by

H(θ)=i=14(mi+pi22mi)TCM+j>i=14V(rijeiθ),H(\theta)=\sum_{i=1}^{4}\left(m_{i}+\frac{\vec{p\,}^{2}_{i}}{2m_{i}}\right)-T_{\text{CM}}+\sum_{j>i=1}^{4}V(\vec{r}_{ij}e^{i\theta})\,, (1)

where the center-of-mass kinetic energy TCMT_{\text{CM}} is subtracted without loss of generality since we focus on the internal relative motions of quarks inside the multi-quark system. The interplay is of two-body potential which includes color-confining, VCONV_{\text{CON}}, one-gluon exchange, VOGEV_{\text{OGE}}, and Goldstone-boson exchange, VχV_{\chi}, respectively,

V(rijeiθ)=VCON(rijeiθ)+VOGE(rijeiθ)+Vχ(rijeiθ).V(\vec{r}_{ij}e^{i\theta})=V_{\text{CON}}(\vec{r}_{ij}e^{i\theta})+V_{\text{OGE}}(\vec{r}_{ij}e^{i\theta})+V_{\chi}(\vec{r}_{ij}e^{i\theta})\,. (2)

In this work, we focus on the low-lying positive parity QQs¯s¯QQ\bar{s}\bar{s} tetraquark states of SS-wave, and hence only the central and spin-spin terms of the potentials shall be considered.

By transforming the coordinates of relative motions between quarks as rijrijeiθ\vec{r}_{ij}\rightarrow\vec{r}_{ij}e^{i\theta}, the complex scaled Schrödinger equation

[H(θ)E(θ)]ΨJM(θ)=0,\left[H(\theta)-E(\theta)\right]\Psi_{JM}(\theta)=0\,, (3)

is solved, giving eigenenergies that can be classified into three kinds of poles: bound, resonance and scattering ones, in a complex energy plane according to the so-called ABC theorem Aguilar and Combes (1971); Balslev and Combes (1971). In particular, the resonance pole is independent of the rotated angle θ\theta, i.e. it is fixed above the continuum cut line with a resonance’s width Γ=2Im(E)\Gamma=-2\,\text{Im}(E). The scattering state is just aligned along the cut line with a 2θ2\theta rotated angle, whereas a bound state is always located on the real axis below its corresponding threshold.

The two-body potentials in Eq. (2) mimic the most important features of QCD at low and intermediate energies. Firstly, color confinement should be encoded in the non-Abelian character of QCD. It has been demonstrated by lattice-QCD that multi-gluon exchanges produce an attractive linearly rising potential proportional to the distance between infinite-heavy quarks Bali et al. (2005). However, the spontaneous creation of light-quark pairs from the QCD vacuum may give rise at the same scale to a breakup of the created color flux-tube Bali et al. (2005). Therefore, the following expression when θ=0\theta=0^{\circ} is used for the confinement potential:

VCON(rijeiθ)=[ac(1eμcrijeiθ)+Δ](λicλjc),V_{\text{CON}}(\vec{r}_{ij}e^{i\theta}\,)=\left[-a_{c}(1-e^{-\mu_{c}r_{ij}e^{i\theta}})+\Delta\right](\vec{\lambda}_{i}^{c}\cdot\vec{\lambda}_{j}^{c})\,, (4)

where aca_{c}, μc\mu_{c} and Δ\Delta are model parameters, and the SU(3) color Gell-Mann matrices are denoted as λc\lambda^{c}. One can see in Eq. (4) that the potential is linear at short inter-quark distances with an effective confinement strength σ=acμc(λicλjc)\sigma=-a_{c}\,\mu_{c}\,(\vec{\lambda}^{c}_{i}\cdot\vec{\lambda}^{c}_{j}), while VCONV_{\text{CON}} becomes constant (Δac)(λicλjc)(\Delta-a_{c})(\vec{\lambda}^{c}_{i}\cdot\vec{\lambda}^{c}_{j}) at large distances.

Secondly, the QCD’s asymptotic freedom is expressed phenomenologically by the Fermi-Breit reduction of the one-gluon exchange interaction which, in the case of hadron systems with 3\geq 3 quarks, consists on a Coulomb term supplemented by a chromomagnetic contact interaction given by

VOGE(rijeiθ)=14αs(λicλjc)[1rijeiθ\displaystyle V_{\text{OGE}}(\vec{r}_{ij}e^{i\theta})=\frac{1}{4}\alpha_{s}(\vec{\lambda}_{i}^{c}\cdot\vec{\lambda}_{j}^{c})\Bigg{[}\frac{1}{r_{ij}e^{i\theta}}
16mimj(σiσj)erijeiθ/r0(μ)rijeiθr02(μ)],\displaystyle\hskip 45.52458pt-\frac{1}{6m_{i}m_{j}}(\vec{\sigma}_{i}\cdot\vec{\sigma}_{j})\frac{e^{-r_{ij}e^{i\theta}/r_{0}(\mu)}}{r_{ij}e^{i\theta}r_{0}^{2}(\mu)}\Bigg{]}\,, (5)

where mim_{i} and σ\vec{\sigma} are the quark mass and the Pauli matrices, respectively. The contact term of the central potential in complex range has been regularized as

δ(rijeiθ)14πr02erijeiθ/r0rijeiθ,\delta(\vec{r}_{ij}e^{i\theta})\sim\frac{1}{4\pi r_{0}^{2}}\frac{e^{-r_{ij}e^{i\theta}/r_{0}}}{r_{ij}e^{i\theta}}\,, (6)

The QCD-inspired effective scale-dependent strong coupling constant, αs\alpha_{s}, offers a consistent description of mesons and baryons from light to heavy quark sectors in wide energy range, and we use the frozen coupling constant of, for instance, Ref. Segovia et al. (2013)

αs(μij)=α0ln(μij2+μ02Λ02),\alpha_{s}(\mu_{ij})=\frac{\alpha_{0}}{\ln\left(\frac{\mu_{ij}^{2}+\mu_{0}^{2}}{\Lambda_{0}^{2}}\right)}\,, (7)

in which α0\alpha_{0}, μ0\mu_{0} and Λ0\Lambda_{0} are parameters of the model.

Thirdly, the Goldstone-boson exchange interactions between light quarks, and constituent quark masses, appear because the breaking of chiral symmetry in a dynamical way. Therefore, the following two terms of the chiral potential must be taken into account between the (s¯s¯)(\bar{s}\bar{s})-pair for QQs¯s¯QQ\bar{s}\bar{s} tetraquarks:

Vσ(rijeiθ)=gch24πΛσ2Λσ2mσ2mσ[Y(mσrijeiθ)\displaystyle V_{\sigma}\left(\vec{r}_{ij}e^{i\theta}\right)=-\frac{g_{ch}^{2}}{4\pi}\frac{\Lambda_{\sigma}^{2}}{\Lambda_{\sigma}^{2}-m_{\sigma}^{2}}m_{\sigma}\Bigg{[}Y(m_{\sigma}r_{ij}e^{i\theta})
ΛσmσY(Λσrijeiθ)],\displaystyle\hskip 34.14322pt-\frac{\Lambda_{\sigma}}{m_{\sigma}}Y(\Lambda_{\sigma}r_{ij}e^{i\theta})\Bigg{]}\,, (8)
Vη(rijeiθ)=gch24πmη212mimjΛη2Λη2mη2mη[Y(mηrijeiθ)\displaystyle V_{\eta}\left(\vec{r}_{ij}e^{i\theta}\right)=\frac{g_{ch}^{2}}{4\pi}\frac{m_{\eta}^{2}}{12m_{i}m_{j}}\frac{\Lambda_{\eta}^{2}}{\Lambda_{\eta}^{2}-m_{\eta}^{2}}m_{\eta}\Bigg{[}Y(m_{\eta}r_{ij}e^{i\theta})
Λη3mη3Y(Ληrijeiθ)](σiσj)[cosθp(λi8λj8)\displaystyle\hskip 34.14322pt-\frac{\Lambda_{\eta}^{3}}{m_{\eta}^{3}}Y(\Lambda_{\eta}r_{ij}e^{i\theta})\Bigg{]}(\vec{\sigma}_{i}\cdot\vec{\sigma}_{j})\Big{[}\cos\theta_{p}\left(\lambda_{i}^{8}\cdot\lambda_{j}^{8}\right)
sinθp],\displaystyle\hskip 34.14322pt-\sin\theta_{p}\Big{]}\,, (9)

where Y(x)=ex/xY(x)=e^{-x}/x is the standard Yukawa function. The pion- and kaon-exchange interactions do not appear because no up- and down-quarks are considered herein. Furthermore, the physical η\eta meson is taken into account by introducing the angle θp\theta_{p}. The λa\lambda^{a} are the SU(3) flavor Gell-Mann matrices. Taken from their experimental values, mπm_{\pi}, mKm_{K} and mηm_{\eta} are the masses of the SU(3) Goldstone bosons. The value of mσm_{\sigma} is determined through the PCAC relation mσ2mπ2+4mu,d2m_{\sigma}^{2}\simeq m_{\pi}^{2}+4m_{u,d}^{2} Scadron (1982). Finally, the chiral coupling constant, gchg_{ch}, is determined from the πNN\pi NN coupling constant through

gch24π=925gπNN24πmu,d2mN2,\frac{g_{ch}^{2}}{4\pi}=\frac{9}{25}\frac{g_{\pi NN}^{2}}{4\pi}\frac{m_{u,d}^{2}}{m_{N}^{2}}\,, (10)

which assumes that flavor SU(3) is an exact symmetry only broken by the different mass of the strange quark.

The model parameters, which are listed in Table 1, have been fixed in advance reproducing hadron Valcarce et al. (1996); Vijande et al. (2005); Segovia et al. (2008a, b, 2009, 2011, 2015); Ortega et al. (2016a); Yang et al. (2018, 2020d), hadron-hadron Fernandez et al. (1993); Valcarce et al. (1994); Ortega et al. (2016b, 2017, 2018) and multiquark Vijande et al. (2006); Yang and Ping (2017, 2018); Yang et al. (2019) phenomenology. Additionally, in order to help on our analysis of the QQs¯s¯QQ\bar{s}\bar{s} tetraquarks in the following section, Table 2 lists the theoretical and experimental masses of the ground state and its first radial excitation (if available) for the Ds()+D^{(*)+}_{s} and B¯s()\bar{B}^{(*)}_{s} mesons. Besides, their mean-square radii are collected in Table 2.

Table 1: Model parameters.
Quark masses msm_{s} (MeV) 555
mcm_{c} (MeV) 1752
mbm_{b} (MeV) 5100
Goldstone bosons Λσ\Lambda_{\sigma} (fm-1) 4.20
Λη\Lambda_{\eta} (fm-1) 5.20
gch2/(4π)g^{2}_{ch}/(4\pi) 0.54
θP()\theta_{P}(^{\circ}) -15
Confinement aca_{c} (MeV) 430
μc\mu_{c} (fm)1{}^{-1}) 0.70
Δ\Delta (MeV) 181.10
α0\alpha_{0} 2.118
Λ0\Lambda_{0}~{} (fm-1) 0.113
OGE μ0\mu_{0}~{} (MeV) 36.976
r^0\hat{r}_{0}~{} (MeV fm) 28.170
Table 2: Theoretical and experimental masses of Ds()+D^{(*)+}_{s} and Bs()B^{(*)}_{s} mesons; their mean-square radii are also shown.
Meson nLnL r2The.\surd{\langle r^{2}\rangle}_{\text{The.}} (fm) MThe.M_{\text{The.}} (MeV) MExp.M_{\text{Exp.}} (MeV)
Ds+D^{+}_{s} 1S1S 0.47 1989 1969
2S2S 1.06 2703 -
Ds+D^{*+}_{s} 1S1S 0.55 2116 2112
2S2S 1.14 2767 -
B¯s0\bar{B}^{0}_{s} 1S1S 0.47 5355 5367
2S2S 1.01 6017 -
B¯s\bar{B}^{*}_{s} 1S1S 0.50 5400 5415
2S2S 1.04 6042 -
Figure 1: Six types of configurations in QQs¯s¯QQ\bar{s}\bar{s} (Q=c,b)(Q=c,b) tetraquarks. Panel (a) is the meson-meson configuration, panel (b) is diquark-antidiquark one and the K-type structures are from panel (c) to (f)(f).

Figure 1 shows six kinds of configurations for double-heavy tetraquarks QQs¯s¯QQ\bar{s}\bar{s} (Q=c,b)(Q=c,b). In particular, Fig. 1(a) is the meson-meson (MM) structure, Fig. 1(b) is the diquark-antidiquark (DA) one, and the other K-type configurations are from panels (c) to (f). All of them, and their couplings, are considered in our investigation. However, for the purpose of solving a manageable 4-body problem, the K-type configurations are restricted to the case in which the two heavy quarks of QQs¯s¯QQ\bar{s}\bar{s} tetraquarks are identical. It is important to note herein that just one configuration would be enough for the calculation, if all radial and orbital excited states were taken into account; however, this is obviously much less efficient and thus an economic way is to combine the different configurations in the ground state to perform the calculation.

Four fundamental degrees of freedom at the quark level: color, spin, flavor and space are generally accepted by QCD theory and the multiquark system’s wave function is an internal product of color, spin, flavor and space terms. Firstly, concerning the color degree-of-freedom, plenty of color structures in multiquark system will be available with respect those of conventional hadrons (qq¯q\bar{q} mesons and qqqqqq baryons). The colorless wave function of a 4-quark system in di-meson configuration, i.e. as illustrated in Fig. 1(a), can be obtained by either a color-singlet or a hidden-color channel or both. However, this is not the unique way for the authors of Refs. Harvey (1981); Vijande et al. (2009), who assert that it is enough to consider the color singlet channel when all possible excited states of a system are included.111After a comparison, a more economical way of computing through considering all the possible color structures and their coupling is preferred. The SU(3)colorSU(3)_{\text{color}} wave functions of a color-singlet (two coupled color-singlet clusters, 𝟏c𝟏c{\bf 1}_{c}\otimes{\bf 1}_{c}) and hidden-color (two coupled color-octet clusters, 𝟖c𝟖c{\bf 8}_{c}\otimes{\bf 8}_{c}) channels are given by, respectively,

χ1c\displaystyle\chi^{c}_{1} =13(r¯r+g¯g+b¯b)×(r¯r+g¯g+b¯b),\displaystyle=\frac{1}{3}(\bar{r}r+\bar{g}g+\bar{b}b)\times(\bar{r}r+\bar{g}g+\bar{b}b)\,, (11)
χ2c\displaystyle\chi^{c}_{2} =212(3b¯rr¯b+3g¯rr¯g+3b¯gg¯b+3g¯bb¯g+3r¯gg¯r\displaystyle=\frac{\sqrt{2}}{12}(3\bar{b}r\bar{r}b+3\bar{g}r\bar{r}g+3\bar{b}g\bar{g}b+3\bar{g}b\bar{b}g+3\bar{r}g\bar{g}r
+3r¯bb¯r+2r¯rr¯r+2g¯gg¯g+2b¯bb¯br¯rg¯g\displaystyle+3\bar{r}b\bar{b}r+2\bar{r}r\bar{r}r+2\bar{g}g\bar{g}g+2\bar{b}b\bar{b}b-\bar{r}r\bar{g}g
g¯gr¯rb¯bg¯gb¯br¯rg¯gb¯br¯rb¯b).\displaystyle-\bar{g}g\bar{r}r-\bar{b}b\bar{g}g-\bar{b}b\bar{r}r-\bar{g}g\bar{b}b-\bar{r}r\bar{b}b)\,. (12)

In addition, the color wave functions of the diquark-antidiquark structure shown in Fig. 1(b) are χ3c\chi^{c}_{3} (color triplet-antitriplet clusters, 𝟑c𝟑¯c{\bf 3}_{c}\otimes{\bf\bar{3}}_{c}) and χ4c\chi^{c}_{4} (color sextet-antisextet clusters, 𝟔c𝟔¯c{\bf 6}_{c}\otimes{\bf\bar{6}}_{c}), respectively:

χ3c\displaystyle\chi^{c}_{3} =36(r¯rg¯gg¯rr¯g+g¯gr¯rr¯gg¯r+r¯rb¯b\displaystyle=\frac{\sqrt{3}}{6}(\bar{r}r\bar{g}g-\bar{g}r\bar{r}g+\bar{g}g\bar{r}r-\bar{r}g\bar{g}r+\bar{r}r\bar{b}b
b¯rr¯b+b¯br¯rr¯bb¯r+g¯gb¯bb¯gg¯b\displaystyle-\bar{b}r\bar{r}b+\bar{b}b\bar{r}r-\bar{r}b\bar{b}r+\bar{g}g\bar{b}b-\bar{b}g\bar{g}b
+b¯bg¯gg¯bb¯g),\displaystyle+\bar{b}b\bar{g}g-\bar{g}b\bar{b}g)\,, (13)
χ4c\displaystyle\chi^{c}_{4} =612(2r¯rr¯r+2g¯gg¯g+2b¯bb¯b+r¯rg¯g+g¯rr¯g\displaystyle=\frac{\sqrt{6}}{12}(2\bar{r}r\bar{r}r+2\bar{g}g\bar{g}g+2\bar{b}b\bar{b}b+\bar{r}r\bar{g}g+\bar{g}r\bar{r}g
+g¯gr¯r+r¯gg¯r+r¯rb¯b+b¯rr¯b+b¯br¯r\displaystyle+\bar{g}g\bar{r}r+\bar{r}g\bar{g}r+\bar{r}r\bar{b}b+\bar{b}r\bar{r}b+\bar{b}b\bar{r}r
+r¯bb¯r+g¯gb¯b+b¯gg¯b+b¯bg¯g+g¯bb¯g).\displaystyle+\bar{r}b\bar{b}r+\bar{g}g\bar{b}b+\bar{b}g\bar{g}b+\bar{b}b\bar{g}g+\bar{g}b\bar{b}g)\,. (14)

Meanwhile, the colorless wave functions of the K-type structures shown in Fig. 1(c) to 1(f) are obtained by following standard coupling algebra within the SU(3)SU(3) color group:222The group chain of K-type is obtained in sequence of quark number. Moreover, each quark and antiquark is represented, respectively, with [1] and [11] in the group theory.

  • K1K_{1}-type of Fig. 1(c): [C[1],[11][21]C[21],[11][221]C[221],[1][222]C^{[21]}_{[1],[11]}C^{[221]}_{[21],[11]}C^{[222]}_{[221],[1]}]5;

    [C[1],[11][111]C[111],[11][221]C[221],[1][222]C^{[111]}_{[1],[11]}C^{[221]}_{[111],[11]}C^{[222]}_{[221],[1]}]6;

  • K2K_{2}-type of Fig. 1(d): [C[1],[11][111]C[111],[1][211]C[211],[11][222]C^{[111]}_{[1],[11]}C^{[211]}_{[111],[1]}C^{[222]}_{[211],[11]}]7;

    [C[1],[11][21]C[21],[1][211]C[211],[11][222]C^{[21]}_{[1],[11]}C^{[211]}_{[21],[1]}C^{[222]}_{[211],[11]}]8;

  • K3K_{3}-type of Fig. 1(e): [C[1],[1][2]C[2],[11][211]C[211],[11][222]C^{[2]}_{[1],[1]}C^{[211]}_{[2],[11]}C^{[222]}_{[211],[11]}]9;

    [C[1],[1][11]C[11],[11][211]C[211],[11][222]C^{[11]}_{[1],[1]}C^{[211]}_{[11],[11]}C^{[222]}_{[211],[11]}]10;

  • K4K_{4}-type of Fig. 1(f): [C[11],[11][22]C[22],[1][221]C[221],[1][222]C^{[22]}_{[11],[11]}C^{[221]}_{[22],[1]}C^{[222]}_{[221],[1]}]11;

    [C[11],[11][211]C[211],[1][221]C[221],[1][222]C^{[211]}_{[11],[11]}C^{[221]}_{[211],[1]}C^{[222]}_{[221],[1]}]12.

These group chains will generate the following K-type color wave functions whose subscripts correspond to those numbers above:

χ5c\displaystyle\chi^{c}_{5} =162(r¯rr¯r+g¯gg¯g2b¯bb¯b)\displaystyle=\frac{1}{6\sqrt{2}}(\bar{r}r\bar{r}r+\bar{g}g\bar{g}g-2\bar{b}b\bar{b}b)
+122(r¯bb¯r+r¯gg¯r+g¯bb¯g+g¯rr¯g+b¯gg¯b+b¯rr¯b)\displaystyle+\frac{1}{2\sqrt{2}}(\bar{r}b\bar{b}r+\bar{r}g\bar{g}r+\bar{g}b\bar{b}g+\bar{g}r\bar{r}g+\bar{b}g\bar{g}b+\bar{b}r\bar{r}b)
132(g¯gr¯r+r¯rg¯g)+162(b¯br¯r+b¯bg¯g+r¯rb¯b+g¯gb¯b),\displaystyle-\frac{1}{3\sqrt{2}}(\bar{g}g\bar{r}r+\bar{r}r\bar{g}g)+\frac{1}{6\sqrt{2}}(\bar{b}b\bar{r}r+\bar{b}b\bar{g}g+\bar{r}r\bar{b}b+\bar{g}g\bar{b}b)\,, (15)
χ6c\displaystyle\chi^{c}_{6} =χ1c,\displaystyle=\chi^{c}_{1}\,, (16)
χ7c\displaystyle\chi^{c}_{7} =χ1c,\displaystyle=\chi^{c}_{1}\,, (17)
χ8c\displaystyle\chi^{c}_{8} =14(116)r¯rg¯g14(1+16)g¯gg¯g143r¯gg¯r\displaystyle=\frac{1}{4}(1-\frac{1}{\sqrt{6}})\bar{r}r\bar{g}g-\frac{1}{4}(1+\frac{1}{\sqrt{6}})\bar{g}g\bar{g}g-\frac{1}{4\sqrt{3}}\bar{r}g\bar{g}r
+122(r¯bb¯r+g¯bb¯g+b¯gg¯b+g¯rr¯g+b¯rr¯b)\displaystyle+\frac{1}{2\sqrt{2}}(\bar{r}b\bar{b}r+\bar{g}b\bar{b}g+\bar{b}g\bar{g}b+\bar{g}r\bar{r}g+\bar{b}r\bar{r}b)
+126(r¯rb¯bg¯gb¯b+b¯bg¯g+g¯gr¯rb¯br¯r),\displaystyle+\frac{1}{2\sqrt{6}}(\bar{r}r\bar{b}b-\bar{g}g\bar{b}b+\bar{b}b\bar{g}g+\bar{g}g\bar{r}r-\bar{b}b\bar{r}r)\,, (18)
χ9c\displaystyle\chi^{c}_{9} =126(r¯bb¯r+r¯rb¯b+g¯bb¯g+g¯gb¯b+r¯gg¯r+r¯rg¯g\displaystyle=\frac{1}{2\sqrt{6}}(\bar{r}b\bar{b}r+\bar{r}r\bar{b}b+\bar{g}b\bar{b}g+\bar{g}g\bar{b}b+\bar{r}g\bar{g}r+\bar{r}r\bar{g}g
+b¯bg¯g+b¯gg¯b+g¯gr¯r+g¯rr¯g+b¯br¯r+b¯rr¯b)\displaystyle+\bar{b}b\bar{g}g+\bar{b}g\bar{g}b+\bar{g}g\bar{r}r+\bar{g}r\bar{r}g+\bar{b}b\bar{r}r+\bar{b}r\bar{r}b)
+16(r¯rr¯r+g¯gg¯g+b¯bb¯b),\displaystyle+\frac{1}{\sqrt{6}}(\bar{r}r\bar{r}r+\bar{g}g\bar{g}g+\bar{b}b\bar{b}b)\,, (19)
χ10c\displaystyle\chi^{c}_{10} =123(r¯bb¯rr¯rb¯b+g¯bb¯gg¯gb¯b+r¯gg¯rr¯rg¯g\displaystyle=\frac{1}{2\sqrt{3}}(\bar{r}b\bar{b}r-\bar{r}r\bar{b}b+\bar{g}b\bar{b}g-\bar{g}g\bar{b}b+\bar{r}g\bar{g}r-\bar{r}r\bar{g}g
b¯bg¯g+b¯gg¯bg¯gr¯r+g¯rr¯gb¯br¯r+b¯rr¯b),\displaystyle-\bar{b}b\bar{g}g+\bar{b}g\bar{g}b-\bar{g}g\bar{r}r+\bar{g}r\bar{r}g-\bar{b}b\bar{r}r+\bar{b}r\bar{r}b)\,, (20)
χ11c\displaystyle\chi^{c}_{11} =χ9c,\displaystyle=\chi^{c}_{9}\,, (21)
χ12c\displaystyle\chi^{c}_{12} =χ10c,\displaystyle=-\chi^{c}_{10}\,, (22)

As for the flavor degree-of-freedom, since the quark content of the tetraquark systems considered herein are two heavy quarks, (Q=c,b)(Q=c,b), and two strange antiquarks, s¯\bar{s}, only the isoscalar sector, I=0I=0, will be discussed. The flavor wave functions denoted as χI,MIfi\chi^{fi}_{I,M_{I}}, with the superscript i=1,2i=1,~{}2 and 33 referring to ccs¯s¯cc\bar{s}\bar{s}, bbs¯s¯bb\bar{s}\bar{s} and cbs¯s¯cb\bar{s}\bar{s} systems, can be written as

χ0,0f1=s¯cs¯c,\displaystyle\chi_{0,0}^{f1}=\bar{s}c\bar{s}c\,, (23)
χ0,0f2=s¯bs¯b,\displaystyle\chi_{0,0}^{f2}=\bar{s}b\bar{s}b\,, (24)
χ0,0f3=s¯cs¯b,\displaystyle\chi_{0,0}^{f3}=\bar{s}c\bar{s}b\,, (25)

where, in this case, the third component of the isospin MIM_{I} is equal to the value of total one II.

The total spin SS of tetraquark states ranges from 0 to 22. All of them shall be considered and, since there is not any spin-orbit potential, the third component (MS)(M_{S}) can be set to be equal to the total one without loss of generality. Therefore, our spin wave functions χS,MSσi\chi^{\sigma_{i}}_{S,M_{S}} are given by

χ0,0σl1(4)\displaystyle\chi_{0,0}^{\sigma_{l1}}(4) =χ00σχ00σ,\displaystyle=\chi^{\sigma}_{00}\chi^{\sigma}_{00}\,, (26)
χ0,0σl2(4)\displaystyle\chi_{0,0}^{\sigma_{l2}}(4) =13(χ11σχ1,1σχ10σχ10σ+χ1,1σχ11σ),\displaystyle=\frac{1}{\sqrt{3}}(\chi^{\sigma}_{11}\chi^{\sigma}_{1,-1}-\chi^{\sigma}_{10}\chi^{\sigma}_{10}+\chi^{\sigma}_{1,-1}\chi^{\sigma}_{11})\,, (27)
χ0,0σl3(4)\displaystyle\chi_{0,0}^{\sigma_{l3}}(4) =12((23χ11σχ12,12σ13χ10σχ12,12σ)χ12,12σ\displaystyle=\frac{1}{\sqrt{2}}\Bigg{(}\Big{(}\sqrt{\frac{2}{3}}\chi^{\sigma}_{11}\chi^{\sigma}_{\frac{1}{2},-\frac{1}{2}}-\sqrt{\frac{1}{3}}\chi^{\sigma}_{10}\chi^{\sigma}_{\frac{1}{2},\frac{1}{2}}\Big{)}\chi^{\sigma}_{\frac{1}{2},-\frac{1}{2}}
(13χ10σχ12,12σ23χ1,1σχ12,12σ)χ12,12σ),\displaystyle-\Big{(}\sqrt{\frac{1}{3}}\chi^{\sigma}_{10}\chi^{\sigma}_{\frac{1}{2},-\frac{1}{2}}-\sqrt{\frac{2}{3}}\chi^{\sigma}_{1,-1}\chi^{\sigma}_{\frac{1}{2},\frac{1}{2}}\Big{)}\chi^{\sigma}_{\frac{1}{2},\frac{1}{2}}\Bigg{)}\,, (28)
χ0,0σl4(4)\displaystyle\chi_{0,0}^{\sigma_{l4}}(4) =12(χ00σχ12,12σχ12,12σχ00σχ12,12σχ12,12σ),\displaystyle=\frac{1}{\sqrt{2}}\Big{(}\chi^{\sigma}_{00}\chi^{\sigma}_{\frac{1}{2},\frac{1}{2}}\chi^{\sigma}_{\frac{1}{2},-\frac{1}{2}}-\chi^{\sigma}_{00}\chi^{\sigma}_{\frac{1}{2},-\frac{1}{2}}\chi^{\sigma}_{\frac{1}{2},\frac{1}{2}}\Big{)}\,, (29)
χ1,1σm1(4)\displaystyle\chi_{1,1}^{\sigma_{m1}}(4) =χ00σχ11σ,\displaystyle=\chi^{\sigma}_{00}\chi^{\sigma}_{11}\,, (30)
χ1,1σm2(4)\displaystyle\chi_{1,1}^{\sigma_{m2}}(4) =χ11σχ00σ,\displaystyle=\chi^{\sigma}_{11}\chi^{\sigma}_{00}\,, (31)
χ1,1σm3(4)\displaystyle\chi_{1,1}^{\sigma_{m3}}(4) =12(χ11σχ10σχ10σχ11σ),\displaystyle=\frac{1}{\sqrt{2}}(\chi^{\sigma}_{11}\chi^{\sigma}_{10}-\chi^{\sigma}_{10}\chi^{\sigma}_{11})\,, (32)
χ1,1σm4(4)\displaystyle\chi_{1,1}^{\sigma_{m4}}(4) =34χ11σχ12,12σχ12,12σ112χ11σχ12,12σχ12,12σ\displaystyle=\sqrt{\frac{3}{4}}\chi^{\sigma}_{11}\chi^{\sigma}_{\frac{1}{2},\frac{1}{2}}\chi^{\sigma}_{\frac{1}{2},-\frac{1}{2}}-\sqrt{\frac{1}{12}}\chi^{\sigma}_{11}\chi^{\sigma}_{\frac{1}{2},-\frac{1}{2}}\chi^{\sigma}_{\frac{1}{2},\frac{1}{2}}
16χ10σχ12,12σχ12,12σ,\displaystyle-\sqrt{\frac{1}{6}}\chi^{\sigma}_{10}\chi^{\sigma}_{\frac{1}{2},\frac{1}{2}}\chi^{\sigma}_{\frac{1}{2},\frac{1}{2}}\,, (33)
χ1,1σm5(4)\displaystyle\chi_{1,1}^{\sigma_{m5}}(4) =(23χ11σχ12,12σ13χ10σχ12,12σ)χ12,12σ,\displaystyle=\Bigg{(}\sqrt{\frac{2}{3}}\chi^{\sigma}_{11}\chi^{\sigma}_{\frac{1}{2},-\frac{1}{2}}-\sqrt{\frac{1}{3}}\chi^{\sigma}_{10}\chi^{\sigma}_{\frac{1}{2},\frac{1}{2}}\Bigg{)}\chi^{\sigma}_{\frac{1}{2},\frac{1}{2}}\,, (34)
χ1,1σm6(4)\displaystyle\chi_{1,1}^{\sigma_{m6}}(4) =χ00σχ12,12σχ12,12σ,\displaystyle=\chi^{\sigma}_{00}\chi^{\sigma}_{\frac{1}{2},\frac{1}{2}}\chi^{\sigma}_{\frac{1}{2},\frac{1}{2}}\,, (35)
χ2,2σ1(4)\displaystyle\chi_{2,2}^{\sigma_{1}}(4) =χ11σχ11σ.\displaystyle=\chi^{\sigma}_{11}\chi^{\sigma}_{11}\,. (36)

The superscripts l1,,l4l_{1},\,\ldots\,,l_{4} and m1,,m6m_{1},\ldots,m_{6} are numbering the spin wave function for each configuration of tetraquark states, their specific values are shown in Table 3. Furthermore, these expressions are obtained by considering the coupling of two sub-cluster spin wave functions with SU(2) algebra, and the necessary bases read as

χ11σ\displaystyle\chi^{\sigma}_{11} =χ12,12σχ12,12σ,\displaystyle=\chi^{\sigma}_{\frac{1}{2},\frac{1}{2}}\chi^{\sigma}_{\frac{1}{2},\frac{1}{2}}\,, (37)
χ1,1σ\displaystyle\chi^{\sigma}_{1,-1} =χ12,12σχ12,12σ,\displaystyle=\chi^{\sigma}_{\frac{1}{2},-\frac{1}{2}}\chi^{\sigma}_{\frac{1}{2},-\frac{1}{2}}\,, (38)
χ10σ\displaystyle\chi^{\sigma}_{10} =12(χ12,12σχ12,12σ+χ12,12σχ12,12σ),\displaystyle=\frac{1}{\sqrt{2}}(\chi^{\sigma}_{\frac{1}{2},\frac{1}{2}}\chi^{\sigma}_{\frac{1}{2},-\frac{1}{2}}+\chi^{\sigma}_{\frac{1}{2},-\frac{1}{2}}\chi^{\sigma}_{\frac{1}{2},\frac{1}{2}})\,, (39)
χ00σ\displaystyle\chi^{\sigma}_{00} =12(χ12,12σχ12,12σχ12,12σχ12,12σ).\displaystyle=\frac{1}{\sqrt{2}}\Big{(}\chi^{\sigma}_{\frac{1}{2},\frac{1}{2}}\chi^{\sigma}_{\frac{1}{2},-\frac{1}{2}}-\chi^{\sigma}_{\frac{1}{2},-\frac{1}{2}}\chi^{\sigma}_{\frac{1}{2},\frac{1}{2}}\Big{)}\,. (40)
Table 3: Index of spin wave function from Eq. (26) to (36), their numbers are listed in the column of each configuration, respectively.
Dimeson Diquark-antidiquark K1K_{1} K2K_{2} K3K_{3} K4K_{4}
l1l_{1} 1 3
l2l_{2} 2 4
l3l_{3} 5 7 9 11
l4l_{4} 6 8 10 12
m1m_{1} 1 4
m2m_{2} 2 5
m3m_{3} 3 6
m4m_{4} 7 10 13 16
m5m_{5} 8 11 14 17
m6m_{6} 9 12 15 18

Among the different methods to solve the Schrödinger-like 4-body bound state equation, we use the Rayleigh-Ritz variational principle which is one of the most extended tools to solve eigenvalue problems because its simplicity and flexibility. Meanwhile, the choice of basis to expand the wave function solution is of great importance. Within hte CRM, the spatial wave function can be written as follows

ψLML(θ)=[[ϕn1l1(ρeiθ)ϕn2l2(λeiθ)]lϕn3l3(Reiθ)]LML,\psi_{LM_{L}}(\theta)=\left[\left[\phi_{n_{1}l_{1}}(\vec{\rho}e^{i\theta}\,)\phi_{n_{2}l_{2}}(\vec{\lambda}e^{i\theta}\,)\right]_{l}\phi_{n_{3}l_{3}}(\vec{R}e^{i\theta}\,)\right]_{LM_{L}}\,, (41)

where the internal Jacobi coordinates for the meson-meson configuration (Fig. 1(a)) are defined as

ρ\displaystyle\vec{\rho} =x1x2,\displaystyle=\vec{x}_{1}-\vec{x}_{2}\,, (42)
λ\displaystyle\vec{\lambda} =x3x4,\displaystyle=\vec{x}_{3}-\vec{x}_{4}\,, (43)
R\displaystyle\vec{R} =m1x1+m2x2m1+m2m3x3+m4x4m3+m4,\displaystyle=\frac{m_{1}\vec{x}_{1}+m_{2}\vec{x}_{2}}{m_{1}+m_{2}}-\frac{m_{3}\vec{x}_{3}+m_{4}\vec{x}_{4}}{m_{3}+m_{4}}\,, (44)

and for the diquark-antdiquark one (Fig. 1(b)) are

ρ\displaystyle\vec{\rho} =x1x3,\displaystyle=\vec{x}_{1}-\vec{x}_{3}\,, (45)
λ\displaystyle\vec{\lambda} =x2x4,\displaystyle=\vec{x}_{2}-\vec{x}_{4}\,, (46)
R\displaystyle\vec{R} =m1x1+m3x3m1+m3m2x2+m4x4m2+m4.\displaystyle=\frac{m_{1}\vec{x}_{1}+m_{3}\vec{x}_{3}}{m_{1}+m_{3}}-\frac{m_{2}\vec{x}_{2}+m_{4}\vec{x}_{4}}{m_{2}+m_{4}}\,. (47)

The Jacobi coordinates for the remaining K-type configurations shown in Fig. 1, panels (c) to (f), are (i,j,k,li,j,k,l are according to the definitions of each configuration in Fig. 1):

ρ\displaystyle\vec{\rho} =xixj,\displaystyle=\vec{x}_{i}-\vec{x}_{j}\,, (48)
λ\displaystyle\vec{\lambda} =xkmixi+mjxjmi+mj,\displaystyle=\vec{x}_{k}-\frac{m_{i}\vec{x}_{i}+m_{j}\vec{x}_{j}}{m_{i}+m_{j}}\,, (49)
R\displaystyle\vec{R} =xlmixi+mjxj+mkxkmi+mj+mk.\displaystyle=\vec{x}_{l}-\frac{m_{i}\vec{x}_{i}+m_{j}\vec{x}_{j}+m_{k}\vec{x}_{k}}{m_{i}+m_{j}+m_{k}}\,. (50)

Obviously, the center-of-mass kinetic term TCMT_{\text{CM}} can be completely eliminated for a non-relativistic system when using these sets of coordinates.

A very efficient method to solve the bound-state problem of a few-body system is the Gaussian expansion method (GEM) Hiyama et al. (2003), which has been successfully applied by us in other multiquark systems Yang and Ping (2017); Yang et al. (2019, 2020b, 2020c). The Gaussian basis in each relative coordinate is taken with geometric progression in the size parameter.333The details on Gaussian parameters and how they are fixed can be found in Ref. Yang and Ping (2017). Therefore, the form of the orbital wave functions, ϕ\phi’s, in Eq. (41) is

ϕnlm(reiθ)=Nnl(reiθ)leνn(reiθ)2Ylm(r^).\displaystyle\phi_{nlm}(\vec{r}e^{i\theta}\,)=N_{nl}(re^{i\theta})^{l}e^{-\nu_{n}(re^{i\theta})^{2}}Y_{lm}(\hat{r})\,. (51)

As one can see, the Jacobi coordinates are all transformed with a common scaling angle θ\theta in the complex scaling method. In this way, both bound states and resonances can be described simultaneously within one scheme. Moreover, only SS-wave state of double-heavy tetraquarks are investigated in this work and thus no laborious Racah algebra is needed during matrix elements calculation.

Finally, in order to fulfill the Pauli principle, the complete wave-function is written as

ΨJMJ,I,i,j,k(θ)=𝒜[[ψL(θ)χSσi(4)]JMJχIfjχkc],\Psi_{JM_{J},I,i,j,k}(\theta)={\cal A}\left[\left[\psi_{L}(\theta)\chi^{\sigma_{i}}_{S}(4)\right]_{JM_{J}}\chi^{f_{j}}_{I}\chi^{c}_{k}\right]\,, (52)

where 𝒜\cal{A} is the antisymmetry operator of QQs¯s¯QQ\bar{s}\bar{s} tetraquarks when considering interchange between identical particles (s¯s¯,cc\bar{s}\bar{s},~{}cc and bbbb). This is necessary because the complete wave function of the 4-quark system is constructed from two sub-clusters: meson-meson, diquark-antidiquark and K-type structures. In particular, when the two heavy quarks are of the same flavor (QQ=ccQQ=cc or bbbb), the operator 𝒜\cal{A} with the quark arrangements s¯Qs¯Q\bar{s}Q\bar{s}Q is defined as

𝒜=1(13)(24)+(13)(24).{\cal{A}}=1-(13)-(24)+(13)(24)\,. (53)

However, due to the fact that cc- and bb-quarks are distinguishable particles, the operator 𝒜\cal{A} consists only on two terms for the s¯cs¯b\bar{s}c\bar{s}b system, and read as

𝒜=1(13).{\cal{A}}=1-(13)\,. (54)
Table 4: All possible channels for IJP=00+IJ^{P}=00^{+} ccs¯s¯cc\bar{s}\bar{s} and bbs¯s¯bb\bar{s}\bar{s} tetraquark systems. The second column shows the necessary basis combination in spin (χJσi\chi_{J}^{\sigma_{i}}), flavor (χIfj\chi_{I}^{f_{j}}) and color (χkc\chi_{k}^{c}) degrees of freedom. Particularly, the flavor indices (jj) 1 and 2 are of ccs¯s¯cc\bar{s}\bar{s} and bbs¯s¯bb\bar{s}\bar{s}, respectively. The superscript 1 and 8 stands for the color-singlet and hidden-color configurations of physical channels.
  Index χJσi\chi_{J}^{\sigma_{i}}χIfj\chi_{I}^{f_{j}}χkc\chi_{k}^{c} Channel
[i;j;k][i;~{}j;~{}k]
1 [1;1(2);1][1;~{}1\,(2);~{}1] (Ds+Ds+)1(D^{+}_{s}D^{+}_{s})^{1}; (B¯s0B¯s0)1(\bar{B}^{0}_{s}\bar{B}^{0}_{s})^{1}
2 [2;1(2);1][2;~{}1\,(2);~{}1] (Ds+Ds+)1(D^{*+}_{s}D^{*+}_{s})^{1}; (B¯sB¯s)1(\bar{B}^{*}_{s}\bar{B}^{*}_{s})^{1}
3 [1;1(2);2][1;~{}1\,(2);~{}2] (Ds+Ds+)8(D^{+}_{s}D^{+}_{s})^{8}; (B¯s0B¯s0)8(\bar{B}^{0}_{s}\bar{B}^{0}_{s})^{8}
4 [2;1(2);2][2;~{}1\,(2);~{}2] (Ds+Ds+)8(D^{*+}_{s}D^{*+}_{s})^{8}; (B¯sB¯s)8(\bar{B}^{*}_{s}\bar{B}^{*}_{s})^{8}
5 [3;1(2);4][3;~{}1\,(2);~{}4] (cc)(s¯s¯)(cc)(\bar{s}\bar{s}); (bb)(s¯s¯)(bb)(\bar{s}\bar{s})
6 [4;1(2);3][4;~{}1\,(2);~{}3] (cc)(s¯s¯)(cc)^{*}(\bar{s}\bar{s})^{*}; (bb)(s¯s¯)(bb)^{*}(\bar{s}\bar{s})^{*}
7 [5;1(2);5][5;~{}1\,(2);~{}5] K1K_{1}
8 [5;1(2);6][5;~{}1\,(2);~{}6] K1K_{1}
9 [6;1(2);5][6;~{}1\,(2);~{}5] K1K_{1}
10 [6;1(2);6][6;~{}1\,(2);~{}6] K1K_{1}
11 [7;1(2);7][7;~{}1\,(2);~{}7] K2K_{2}
12 [7;1(2);8][7;~{}1\,(2);~{}8] K2K_{2}
13 [8;1(2);7][8;~{}1\,(2);~{}7] K2K_{2}
14 [8;1(2);8][8;~{}1\,(2);~{}8] K2K_{2}
15 [9;1(2);10][9;~{}1\,(2);~{}10] K3K_{3}
16 [10;1(2);9][10;~{}1\,(2);~{}9] K3K_{3}
17 [11;1(2);12][11;~{}1\,(2);~{}12] K4K_{4}
18 [12;1(2);11][12;~{}1\,(2);~{}11] K4K_{4}
Table 5: All possible channels for IJP=01+IJ^{P}=01^{+} ccs¯s¯cc\bar{s}\bar{s} and bbs¯s¯bb\bar{s}\bar{s} tetraquark systems. The second column shows the necessary basis combination in spin (χJσi\chi_{J}^{\sigma_{i}}), flavor (χIfj\chi_{I}^{f_{j}}) and color (χkc\chi_{k}^{c}) degrees of freedom. Particularly, the flavor indices (jj) 1 and 2 are of ccs¯s¯cc\bar{s}\bar{s} and bbs¯s¯bb\bar{s}\bar{s}, respectively. The superscript 1 and 8 stands for the color-singlet and hidden-color configurations of physical channels.
  Index χJσi\chi_{J}^{\sigma_{i}}χIfj\chi_{I}^{f_{j}}χkc\chi_{k}^{c} Channel
[i;j;k][i;~{}j;~{}k]
1 [1;1(2);1][1;~{}1\,(2);~{}1] (Ds+Ds+)1(D^{+}_{s}D^{*+}_{s})^{1}; (B¯s0B¯s)1(\bar{B}^{0}_{s}\bar{B}^{*}_{s})^{1}
2 [3;1(2);1][3;~{}1\,(2);~{}1] (Ds+Ds+)1(D^{*+}_{s}D^{*+}_{s})^{1}; (B¯sB¯s)1(\bar{B}^{*}_{s}\bar{B}^{*}_{s})^{1}
3 [1;1(2);2][1;~{}1\,(2);~{}2] (Ds+Ds+)8(D^{+}_{s}D^{*+}_{s})^{8}; (B¯s0B¯s)8(\bar{B}^{0}_{s}\bar{B}^{*}_{s})^{8}
4 [3;1(2);2][3;~{}1\,(2);~{}2] (Ds+Ds+)8(D^{*+}_{s}D^{*+}_{s})^{8}; (B¯sB¯s)8(\bar{B}^{*}_{s}\bar{B}^{*}_{s})^{8}
5 [6;1(2);3][6;~{}1\,(2);~{}3] (cc)(s¯s¯)(cc)^{*}(\bar{s}\bar{s})^{*}; (bb)(s¯s¯)(bb)^{*}(\bar{s}\bar{s})^{*}
6 [7;1(2);5][7;~{}1\,(2);~{}5] K1K_{1}
7 [8;1(2);5][8;~{}1\,(2);~{}5] K1K_{1}
8 [9;1(2);5][9;~{}1\,(2);~{}5] K1K_{1}
9 [7;1(2);6][7;~{}1\,(2);~{}6] K1K_{1}
10 [8;1(2);6][8;~{}1\,(2);~{}6] K1K_{1}
11 [9;1(2);6][9;~{}1\,(2);~{}6] K1K_{1}
12 [10;1(2);7][10;~{}1\,(2);~{}7] K2K_{2}
13 [11;1(2);7][11;~{}1\,(2);~{}7] K2K_{2}
14 [12;1(2);7][12;~{}1\,(2);~{}7] K2K_{2}
15 [10;1(2);8][10;~{}1\,(2);~{}8] K2K_{2}
16 [11;1(2);8][11;~{}1\,(2);~{}8] K2K_{2}
17 [12;1(2);8][12;~{}1\,(2);~{}8] K2K_{2}
18 [13;1(2);10][13;~{}1\,(2);~{}10] K3K_{3}
19 [14;1(2);10][14;~{}1\,(2);~{}10] K3K_{3}
20 [15;1(2);9][15;~{}1\,(2);~{}9] K3K_{3}
21 [16;1(2);12][16;~{}1\,(2);~{}12] K4K_{4}
22 [17;1(2);12][17;~{}1\,(2);~{}12] K4K_{4}
23 [18;1(2);11][18;~{}1\,(2);~{}11] K4K_{4}
Table 6: All possible channels for IJP=02+IJ^{P}=02^{+} ccs¯s¯cc\bar{s}\bar{s} and bbs¯s¯bb\bar{s}\bar{s} tetraquark systems. The second column shows the necessary basis combination in spin (χJσi\chi_{J}^{\sigma_{i}}), flavor (χIfj\chi_{I}^{f_{j}}) and color (χkc\chi_{k}^{c}) degrees of freedom. Particularly, the flavor indices (jj) 1 and 2 are of ccs¯s¯cc\bar{s}\bar{s} and bbs¯s¯bb\bar{s}\bar{s}, respectively. The superscript 1 and 8 stands for the color-singlet and hidden-color configurations of physical channels.
  Index χJσi\chi_{J}^{\sigma_{i}}χIfj\chi_{I}^{f_{j}}χkc\chi_{k}^{c} Channel
[i;j;k][i;~{}j;~{}k]
1 [1;1(2);1][1;~{}1\,(2);~{}1] (Ds+Ds+)1(D^{*+}_{s}D^{*+}_{s})^{1}; (B¯sB¯s)1(\bar{B}^{*}_{s}\bar{B}^{*}_{s})^{1}
2 [1;1(2);2][1;~{}1\,(2);~{}2] (Ds+Ds+)8(D^{*+}_{s}D^{*+}_{s})^{8}; (B¯sB¯s)8(\bar{B}^{*}_{s}\bar{B}^{*}_{s})^{8}
3 [1;1(2);3][1;~{}1\,(2);~{}3] (cc)(s¯s¯)(cc)^{*}(\bar{s}\bar{s})^{*}; (bb)(s¯s¯)(bb)^{*}(\bar{s}\bar{s})^{*}
4 [1;1(2);5][1;~{}1\,(2);~{}5] K1K_{1}
5 [1;1(2);6][1;~{}1\,(2);~{}6] K1K_{1}
6 [1;1(2);7][1;~{}1\,(2);~{}7] K2K_{2}
7 [1;1(2);8][1;~{}1\,(2);~{}8] K2K_{2}
8 [1;1(2);10][1;~{}1\,(2);~{}10] K3K_{3}
9 [1;1(2);12][1;~{}1\,(2);~{}12] K4K_{4}
Table 7: All possible channels for IJP=00+IJ^{P}=00^{+} cbs¯s¯cb\bar{s}\bar{s} tetraquark systems. The second column shows the necessary basis combination in spin (χJσi\chi_{J}^{\sigma_{i}}), flavor (χIfj\chi_{I}^{f_{j}}) and color (χkc\chi_{k}^{c}) degrees of freedom. The superscript 1 and 8 stands for the color-singlet and hidden-color configurations of physical channels.
  Index χJσi\chi_{J}^{\sigma_{i}}χIfj\chi_{I}^{f_{j}}χkc\chi_{k}^{c} Channel
[i;j;k][i;~{}j;~{}k]
1 [1;3;1][1;~{}3;~{}1] (Ds+B¯s0)1(D^{+}_{s}\bar{B}^{0}_{s})^{1}
2 [2;3;1][2;~{}3;~{}1] (Ds+B¯s)1(D^{*+}_{s}\bar{B}^{*}_{s})^{1}
3 [1;3;2][1;~{}3;~{}2] (Ds+B¯s0)8(D^{+}_{s}\bar{B}^{0}_{s})^{8}
4 [2;3;2][2;~{}3;~{}2] (Ds+B¯s)8(D^{*+}_{s}\bar{B}^{*}_{s})^{8}
5 [3;3;4][3;~{}3;~{}4] (cb)(s¯s¯)(cb)(\bar{s}\bar{s})
6 [4;3;3][4;~{}3;~{}3] (cb)(s¯s¯)(cb)^{*}(\bar{s}\bar{s})^{*}
7 [5;3;5][5;~{}3;~{}5] K1K_{1}
8 [5;3;6][5;~{}3;~{}6] K1K_{1}
9 [6;3;5][6;~{}3;~{}5] K1K_{1}
10 [6;3;6][6;~{}3;~{}6] K1K_{1}
11 [7;3;7][7;~{}3;~{}7] K2K_{2}
12 [7;3;8][7;~{}3;~{}8] K2K_{2}
13 [8;3;7][8;~{}3;~{}7] K2K_{2}
14 [8;3;8][8;~{}3;~{}8] K2K_{2}
15 [9;3;9][9;~{}3;~{}9] K3K_{3}
16 [9;3;10][9;~{}3;~{}10] K3K_{3}
17 [10;3;9][10;~{}3;~{}9] K3K_{3}
18 [10;3;10][10;~{}3;~{}10] K3K_{3}
19 [11;3;12][11;~{}3;~{}12] K4K_{4}
20 [12;3;11][12;~{}3;~{}11] K4K_{4}
Table 8: All possible channels for IJP=01+IJ^{P}=01^{+} cbs¯s¯cb\bar{s}\bar{s} tetraquark systems. The second column shows the necessary basis combination in spin (χJσi\chi_{J}^{\sigma_{i}}), flavor (χIfj\chi_{I}^{f_{j}}) and color (χkc\chi_{k}^{c}) degrees of freedom. The superscript 1 and 8 stands for the color-singlet and hidden-color configurations of physical channels.
  Index χJσi\chi_{J}^{\sigma_{i}}χIfj\chi_{I}^{f_{j}}χkc\chi_{k}^{c} Channel
[i;j;k][i;~{}j;~{}k]
1 [1;3;1][1;~{}3;~{}1] (Ds+B¯s)1(D^{+}_{s}\bar{B}^{*}_{s})^{1}
2 [2;3;1][2;~{}3;~{}1] (Ds+B¯s0)1(D^{*+}_{s}\bar{B}^{0}_{s})^{1}
3 [3;3;1][3;~{}3;~{}1] (Ds+B¯s)1(D^{*+}_{s}\bar{B}^{*}_{s})^{1}
4 [1;3;2][1;~{}3;~{}2] (Ds+B¯s)8(D^{+}_{s}\bar{B}^{*}_{s})^{8}
5 [2;3;2][2;~{}3;~{}2] (Ds+B¯s0)8(D^{*+}_{s}\bar{B}^{0}_{s})^{8}
6 [3;3;2][3;~{}3;~{}2] (Ds+B¯s)8(D^{*+}_{s}\bar{B}^{*}_{s})^{8}
7 [6;3;3][6;~{}3;~{}3] (cb)(s¯s¯)(cb)(\bar{s}\bar{s})^{*}
8 [5;3;3][5;~{}3;~{}3] (cb)(s¯s¯)(cb)^{*}(\bar{s}\bar{s})
9 [4;3;4][4;~{}3;~{}4] (cb)(s¯s¯)(cb)^{*}(\bar{s}\bar{s})^{*}
10 [7;3;5][7;~{}3;~{}5] K1K_{1}
11 [8;3;5][8;~{}3;~{}5] K1K_{1}
12 [9;3;5][9;~{}3;~{}5] K1K_{1}
13 [7;3;6][7;~{}3;~{}6] K1K_{1}
14 [8;3;6][8;~{}3;~{}6] K1K_{1}
15 [9;3;6][9;~{}3;~{}6] K1K_{1}
16 [10;3;7][10;~{}3;~{}7] K2K_{2}
17 [11;3;7][11;~{}3;~{}7] K2K_{2}
18 [12;3;7][12;~{}3;~{}7] K2K_{2}
19 [10;3;8][10;~{}3;~{}8] K2K_{2}
20 [11;3;8][11;~{}3;~{}8] K2K_{2}
21 [12;3;8][12;~{}3;~{}8] K2K_{2}
22 [13;3;10][13;~{}3;~{}10] K3K_{3}
23 [14;3;10][14;~{}3;~{}10] K3K_{3}
24 [15;3;10][15;~{}3;~{}10] K3K_{3}
25 [13;3;9][13;~{}3;~{}9] K3K_{3}
26 [14;3;9][14;~{}3;~{}9] K3K_{3}
27 [15;3;9][15;~{}3;~{}9] K3K_{3}
28 [16;3;12][16;~{}3;~{}12] K4K_{4}
29 [17;3;12][17;~{}3;~{}12] K4K_{4}
30 [18;3;11][18;~{}3;~{}11] K4K_{4}
Table 9: All possible channels for IJP=02+IJ^{P}=02^{+} cbs¯s¯cb\bar{s}\bar{s} tetraquark systems. The second column shows the necessary basis combination in spin (χJσi\chi_{J}^{\sigma_{i}}), flavor (χIfj\chi_{I}^{f_{j}}) and color (χkc\chi_{k}^{c}) degrees of freedom. The superscript 1 and 8 stands for the color-singlet and hidden-color configurations of physical channels.
  Index χJσi\chi_{J}^{\sigma_{i}}χIfj\chi_{I}^{f_{j}}χkc\chi_{k}^{c} Channel
[i;j;k][i;~{}j;~{}k]
1 [1;3;1][1;~{}3;~{}1] (Ds+B¯s)1(D^{*+}_{s}\bar{B}^{*}_{s})^{1}
2 [1;3;2][1;~{}3;~{}2] (Ds+B¯s)8(D^{*+}_{s}\bar{B}^{*}_{s})^{8}
3 [1;3;3][1;~{}3;~{}3] (cb)(s¯s¯)(cb)^{*}(\bar{s}\bar{s})^{*}
4 [1;3;5][1;~{}3;~{}5] K1K_{1}
5 [1;3;6][1;~{}3;~{}6] K1K_{1}
6 [1;3;7][1;~{}3;~{}7] K2K_{2}
7 [1;3;8][1;~{}3;~{}8] K2K_{2}
8 [1;3;9][1;~{}3;~{}9] K3K_{3}
9 [1;3;10][1;~{}3;~{}10] K3K_{3}
10 [1;3;12][1;~{}3;~{}12] K4K_{4}

III Results

The low-lying SS-wave states of QQs¯s¯QQ\bar{s}\bar{s} (Q=c,b)(Q=c,b) tetraquarks are systematically investigated herein. The parity for different QQs¯s¯QQ\bar{s}\bar{s} tetraquarks is positive under our assumption that the angular momenta l1l_{1}, l2l_{2}, l3l_{3}, which appear in Eq. (41), are all 0. Accordingly, the total angular momentum, JJ, coincides with the total spin, SS, and can take values 0, 11 and 22. Note, too, the value of isospin can only be 0 for the QQs¯s¯QQ\bar{s}\bar{s} system. For ccs¯s¯cc\bar{s}\bar{s}, bbs¯s¯bb\bar{s}\bar{s} and cbs¯s¯cb\bar{s}\bar{s} systems, all possible meson-meson, diquark-antidiquark and K-type channels for each IJPIJ^{P} quantum numbers are listed in Table 4, 5, 6, 7, 8 and 9, respectively. The second column shows the necessary basis combination in spin (χJσi)(\chi^{\sigma_{i}}_{J}), flavor (χIfj)(\chi^{f_{j}}_{I}), and color (χkc)(\chi^{c}_{k}) degrees-of-freedom. The physical channels with color-singlet (labeled with the superindex 11), hidden-color (labeled with the superindex 88), diquark-antidiquark (labeled with (QQ)(s¯s¯)(QQ)(\bar{s}\bar{s})) and K-type (labeled from K1K_{1} to K4K_{4}) configurations are listed in the third column.

Tables ranging from 10 to 19 summarize our calculated results (mass and width) of the lowest-lying QQs¯s¯QQ\bar{s}\bar{s} tetraquark states and possible resonances. In particular, results of ccs¯s¯cc\bar{s}\bar{s} tetraquarks with I(JP)=0(0+)I(J^{P})=0(0^{+}), 0(1+)0(1^{+}) and 0(2+)0(2^{+}) are listed in Tables 10, 11 and 12; those of bbs¯s¯bb\bar{s}\bar{s} tetraquarks are shown in Tables 13, 14 and 15; and Tables 16, 17 and 18 collect the cbs¯s¯cb\bar{s}\bar{s} cases. In these tables, the first column lists the physical channel of meson-meson, diquark-antidiquark and K-type (if it fulfills Pauli principle), and the experimental value of the noninteracting meson-meson threshold is also indicated in parenthesis; the second column signals the discussed channel, e.g. color-singlet (S), hidden-color (H), etc.; the third column shows the theoretical mass (M)(M) of each single channel; and the fourth column shows a coupled calculation result for one certain configuration. Moreover, the complete coupled channels results for each quantum state are shown at the bottom of each table. Besides, Table 19 summarizes the obtained resonance states of QQs¯s¯QQ\bar{s}\bar{s} tetraquarks in the complete coupled-channels calculation.

Figures 2 to 10 depict the distribution of complex energies of the QQs¯s¯QQ\bar{s}\bar{s} tetraquarks in the complete coupled-channels calculation. The xx-axis is the real part of the complex energy EE, which stands for the mass of tetraquark states, and the yy-axis is the imaginary part of EE, which is related to the width through Γ=2Im(E)\Gamma=-2\,\text{Im}(E). In the figures, some orange circles appear surrounding resonance candidates. They are usually \sim 0.6 GeV above their respective non-interacting meson-meson thresholds and \sim 0.2 GeV around their first radial excitation states; moreover, looking at the details, we shall conclude that most of these observed resonances can be identified with a hadronic molecular nature.

Now let us proceed to describe in detail our theoretical findings for each sector of QQs¯s¯QQ\bar{s}\bar{s} tetraquarks.

Table 10: The lowest-lying eigen-energies of ccs¯s¯cc\bar{s}\bar{s} tetraquarks with IJP=00+IJ^{P}=00^{+} in the real range calculation. The first column shows the allowed channels and, in the parenthesis, the noninteracting meson-meson threshold value of experiment. Color-singlet (S), hidden-color (H) along with other configurations are indexed in the second column respectively, the third and fourth columns refer to the theoretical mass of each channels and their couplings. (unit: MeV)
Channel Index MM Mixed
(Ds+Ds+)1(3938)(D^{+}_{s}D^{+}_{s})^{1}(3938) 1(S) 39783978
(Ds+Ds+)1(4224)(D^{*+}_{s}D^{*+}_{s})^{1}(4224) 2(S) 42324232 39783978
(Ds+Ds+)8(D^{+}_{s}D^{+}_{s})^{8} 3(H) 46194619
(Ds+Ds+)8(D^{*+}_{s}D^{*+}_{s})^{8} 4(H) 46364636 43774377
(cc)(s¯s¯)(cc)(\bar{s}\bar{s}) 5 44334433
(cc)(s¯s¯)(cc)^{*}(\bar{s}\bar{s})^{*} 6 44134413 43794379
K1K_{1} 7 48024802
K1K_{1} 8 43694369
K1K_{1} 9 46984698
K1K_{1} 10 42114211 42014201
K2K_{2} 11 43434343
K2K_{2} 12 47534753
K2K_{2} 13 41664166
K2K_{2} 14 48384838 41584158
K3K_{3} 15 44144414
K3K_{3} 16 44274427 43734373
K4K_{4} 17 44134413
K4K_{4} 18 44394439 43794379
All of the above channels: 39783978
Table 11: The lowest-lying eigen-energies of ccs¯s¯cc\bar{s}\bar{s} tetraquarks with IJP=01+IJ^{P}=01^{+} in the real range calculation. The first column shows the allowed channels and, in the parenthesis, the noninteracting meson-meson threshold value of experiment. Color-singlet (S), hidden-color (H) along with other configurations are indexed in the second column respectively, the third and fourth columns refer to the theoretical mass of each channels and their couplings. (unit: MeV)
Channel Index MM Mixed
(Ds+Ds+)1(4081)(D^{+}_{s}D^{*+}_{s})^{1}(4081) 1(S) 41054105
(Ds+Ds+)1(4224)(D^{*+}_{s}D^{*+}_{s})^{1}(4224) 2(S) 42324232 41054105
(Ds+Ds+)8(D^{+}_{s}D^{*+}_{s})^{8} 3(H) 44014401
(Ds+Ds+)8(D^{*+}_{s}D^{*+}_{s})^{8} 4(H) 46074607 44004400
(cc)(s¯s¯)(cc)^{*}(\bar{s}\bar{s})^{*} 5 44244424 44244424
K1K_{1} 6 45374537
K1K_{1} 7 45364536
K1K_{1} 8 45284528
K1K_{1} 9 44404440
K1K_{1} 10 44454445
K1K_{1} 11 43714371 43054305
K2K_{2} 12 44174417
K2K_{2} 13 44194419
K2K_{2} 14 43264326
K2K_{2} 15 46994699
K2K_{2} 16 47874787
K2K_{2} 17 48024802 42664266
K3K_{3} 18 44424442
K3K_{3} 19 44434443
K3K_{3} 20 50135013 44244424
K4K_{4} 21 44274427
K4K_{4} 22 44264426
K4K_{4} 23 49534953 44234423
All of the above channels: 41054105
Table 12: The lowest-lying eigen-energies of ccs¯s¯cc\bar{s}\bar{s} tetraquarks with IJP=02+IJ^{P}=02^{+} in the real range calculation. The first column shows the allowed channels and, in the parenthesis, the noninteracting meson-meson threshold value of experiment. Color-singlet (S), hidden-color (H) along with other configurations are indexed in the second column respectively, the third and fourth columns refer to the theoretical mass of each channels and their couplings. (unit: MeV)
Channel Index MM Mixed
(Ds+Ds+)1(4224)(D^{*+}_{s}D^{*+}_{s})^{1}(4224) 1(S) 42324232 42324232
(Ds+Ds+)8(D^{*+}_{s}D^{*+}_{s})^{8} 2(H) 44324432 44324432
(cc)(s¯s¯)(cc)^{*}(\bar{s}\bar{s})^{*} 3 44464446 44464446
K1K_{1} 4 45224522
K1K_{1} 5 43854385 43814381
K2K_{2} 6 43554355
K2K_{2} 7 46664666 43544354
K3K_{3} 8 44484448 44484448
K4K_{4} 9 44464446 44464446
All of the above channels: 42324232

III.1 The ccs¯s¯cc\bar{s}\bar{s} tetraquarks

We find only resonances in this sector with quantum numbers I(JP)=0(0+)I(J^{P})=0(0^{+}) and 0(2+)0(2^{+}). This result is opposite to the one found in our previous study of ccq¯q¯cc\bar{q}\bar{q} tetraquarks Yang et al. (2020c) and it is related with the ratio between light and heavy quarks that compose the tetraquark system. We shall proceed to discuss below the J=0J=0, 11 and 22 channels individually.

The I(JP)=𝟎(𝟎+)\bm{I(J^{P})=0(0^{+})} state: Two possible meson-meson channels, Ds+Ds+D^{+}_{s}D^{+}_{s} and Ds+Ds+D^{*+}_{s}D^{*+}_{s}, two diquark-antidiquark channels, (cc)(s¯s¯)(cc)(\bar{s}\bar{s}) and (cc)(s¯s¯)(cc)^{*}(\bar{s}\bar{s})^{*}, along with K-type configurations, are studied first in real-range calculation and our results are shown in Table 10. The lowest energy level, (Ds+Ds+)1(D^{+}_{s}D^{+}_{s})^{1}, is unbounded and its theoretical mass just equals to the threshold value of two non-interacting Ds+D^{+}_{s} mesons. This fact is also found in the (Ds+Ds+)1(D^{*+}_{s}D^{*+}_{s})^{1} channel whose theoretical mass is 4232 MeV. As for the other exotic configurations, the obtained masses are all higher than the two di-meson channels. In particular, masses of the hidden-color channels are about 4.6 GeV, diquark-antidiquark channels are lower \sim4.4 GeV, and the other four K-type configurations are located in the mass interval of 4.2 to 4.8 GeV. Note, too, there is a degeneration between (cc)()(s¯s¯)()(cc)^{(*)}(\bar{s}\bar{s})^{(*)}, K3K_{3} and K4K_{4} channels around 4.4 GeV.

In a further step, we have performed a coupled-channels calculation on certain configurations, and still no bound states are found. The coupling is quite weak for the color-singlet channels Ds+Ds+D^{+}_{s}D^{+}_{s} and Ds+Ds+D^{*+}_{s}D^{*+}_{s}. Hidden-color, diquark-antidiquark and K-type structures do not shed any different with respect the color-singlet channel, coupled energies range from 4.2 to 4.4 GeV. These results confirm the nature of scattering states for Ds+Ds+D^{+}_{s}D^{+}_{s} and Ds+Ds+D^{*+}_{s}D^{*+}_{s}. Moreover, in a complete coupled-channels study, the lowest energy of 3978 MeV for Ds+Ds+D^{+}_{s}D^{+}_{s} state is remained. The real-scaling results are consistent with those of ccq¯q¯cc\bar{q}\bar{q} tetraquarks; however, it is invalid for resonances.

Figure 2 shows the distributions of ccs¯s¯cc\bar{s}\bar{s} tetraquarks’ complex energies in the complete coupled-channels calculation. In the energy gap from 3.9 GeV to 5.0 GeV, most of poles are aligned along the threshold lines. Namely, with the rotated angle θ\theta varied from 00^{\circ} to 66^{\circ}, the Ds()+Ds()+D^{(*)+}_{s}D^{(*)+}_{s} energy poles always move along with the same color cut lines. However, in the high energy region which is about 0.2 GeV above the (1S)Ds+(2S)Ds+(1S)D^{+}_{s}(2S)D^{+}_{s} threshold, one resonance pole is found. In the yellow circle of Fig. 2, the three calculated dots with black, red and blue are almost overlapped. This resonance pole has mass and width 4902 MeV and 3.54 MeV, respectively, and it could be identified as a resonance of the Ds+Ds+D^{+}_{s}D^{+}_{s} molecular system.

Figure 2: Complex energies of ccs¯s¯cc\bar{s}\bar{s} tetraquarks with IJP=00+IJ^{P}=00^{+} in the complete coupled channels calculation, θ\theta varying from 00^{\circ} to 66^{\circ} .

The I(JP)=𝟎(𝟏+)\bm{I(J^{P})=0(1^{+})} state: There are two meson-meson channels, Ds+Ds+D^{+}_{s}D^{*+}_{s} and Ds+Ds+D^{*+}_{s}D^{*+}_{s}, one diquark-antidiquark channel, (cc)(s¯s¯)(cc)^{*}(\bar{s}\bar{s})^{*}, but more K-type channels (18 channels) are allowed due to a much richer combination of color, spin and flavor wave functions which fulfills the Pauli Principle. Table 11 lists the calculated masses of these channels and also their couplings.

Firstly, the situation is similar to the IJP=00+IJ^{P}=00^{+} case, i.e no bound state is found in the real-range calculation. Secondly, the couplings are extremely weak for both color-singlet and hidden-color channels. In contrast, one finds binding energies for the K-type structures which go from several to hundreds of MeV. The coupled-channels results of these K-type configurations, along with hidden-color and diquark-antidiquark ones, are around 4.4 GeV. Then, after mixing all of the channels listed in Table 11, the nature of the lowest energy level Ds+Ds+D^{+}_{s}D^{*+}_{s} is still unchanged, it is a scattering one. Additionally, comparing the results in Table V for ccq¯q¯cc\bar{q}\bar{q} tetraquarks of our previous work Yang et al. (2020c), one notices that the deeply bound state with \sim200 MeV binding energy for D+D0D^{+}D^{*0} is invalid in the Ds+Ds+D^{+}_{s}D^{*+}_{s} sector.

Our results using the complex scaling method applied to the fully coupled-channels calculation are shown in Fig. 3. The complex energies of (1S)Ds+(1S)Ds+(1S)D^{+}_{s}(1S)D^{*+}_{s}, (1S)Ds+(1S)Ds+(1S)D^{*+}_{s}(1S)D^{*+}_{s} along with their first radial excitation states (1S)Ds+(2S)Ds+(1S)D^{+}_{s}(2S)D^{*+}_{s}, (2S)Ds+(1S)Ds+(2S)D^{+}_{s}(1S)D^{*+}_{s} and (1S)Ds+(2S)Ds+(1S)D^{*+}_{s}(2S)D^{*+}_{s} are generally aligned along the cut lines when the rotated angle θ\theta goes from 00^{\circ} to 66^{\circ}. Although there are three regions which change slightly in the mass gap 4.55 to 4.70 GeV, the calculated poles still come down gradually when the value of complex angle increases. Hence, neither bound states nor resonances are found within the IJP=01+IJ^{P}=01^{+} channel of ccs¯s¯cc\bar{s}\bar{s} tetraquarks.

Figure 3: Complex energies of ccs¯s¯cc\bar{s}\bar{s} tetraquarks with IJP=01+IJ^{P}=01^{+} in the coupled channels calculation, θ\theta varying from 00^{\circ} to 66^{\circ} .

The I(JP)=𝟎(𝟐+)\bm{I(J^{P})=0(2^{+})} state: Only one Ds+Ds+D^{*+}_{s}D^{*+}_{s} meson-meson configuration, one (cc)(s¯s¯)(cc)^{*}(\bar{s}\bar{s})^{*} diquark-antidiquark structure and six K-type channels contribute to the highest spin channel (see Table 12). In analogy with the two previous cases, no bound state is obtained neither in each single channel calculation nor in the coupled-channels cases. The mixed results of K1K_{1} and K2K_{2} types are both around 4.35 GeV, which is lower than those of the other exotic configurations (4.45GeV\sim 4.45\,\text{GeV}); however, these do not help in realizing a bound state of Ds+Ds+D^{*+}_{s}D^{*+}_{s}.

Nevertheless, thrilling results are found in the complete coupled-channels study by CSM. Figure 4 shows that there are three almost fixed resonance poles between the (1S)Ds+(1S)Ds+(1S)D^{*+}_{s}(1S)D^{*+}_{s} and (1S)Ds+(2S)Ds+(1S)D^{*+}_{s}(2S)D^{*+}_{s} threshold lines. Two of them are wide resonances whereas the remaining one is narrow. The Ds+Ds+D^{*+}_{s}D^{*+}_{s} resonances have mass and width (4821MeV, 5.58MeV)(4821\,\text{MeV},\,5.58\,\text{MeV}), (4846MeV, 10.68MeV)(4846\,\text{MeV},\,10.68\,\text{MeV}) and (4775MeV, 23.26MeV)(4775\,\text{MeV},\,23.26\,\text{MeV}), respectively. In the excited energy region which is located about 0.5 GeV higher than the Ds+Ds+D^{*+}_{s}D^{*+}_{s} threshold but 0.1 GeV below its first radial excitation, it is reasonable to find resonances whose nature is of hadronic molecules, and this conclusion has been confirmed by us in study the other multiquark systems Yang et al. (2020c); Yang and Ping (2017); Yang et al. (2020b).

Figure 4: Complex energies of ccs¯s¯cc\bar{s}\bar{s} tetraquarks with IJP=02+IJ^{P}=02^{+} in the coupled channels calculation, θ\theta varying from 00^{\circ} to 66^{\circ} .
Table 13: The lowest-lying eigen-energies of bbs¯s¯bb\bar{s}\bar{s} tetraquarks with IJP=00+IJ^{P}=00^{+} in the real range calculation. The first column shows the allowed channels and, in the parenthesis, the noninteracting meson-meson threshold value of experiment. Color-singlet (S), hidden-color (H) along with other configurations are indexed in the second column respectively, the third and fourth columns refer to the theoretical mass of each channels and their couplings. (unit: MeV)
Channel Index MM Mixed
(B¯s0B¯s0)1(10734)(\bar{B}^{0}_{s}\bar{B}^{0}_{s})^{1}(10734) 1(S) 1071010710
(B¯sB¯s)1(10830)(\bar{B}^{*}_{s}\bar{B}^{*}_{s})^{1}(10830) 2(S) 1080010800 1071010710
(B¯s0B¯s0)8(\bar{B}^{0}_{s}\bar{B}^{0}_{s})^{8} 3(H) 1118411184
(B¯sB¯s)8(\bar{B}^{*}_{s}\bar{B}^{*}_{s})^{8} 4(H) 1120511205 1094310943
(bb)(s¯s¯)(bb)(\bar{s}\bar{s}) 5 1096710967
(bb)(s¯s¯)(bb)^{*}(\bar{s}\bar{s})^{*} 6 1090110901 1089610896
K1K_{1} 7 1144511445
K1K_{1} 8 1092810928
K1K_{1} 9 1125911259
K1K_{1} 10 1086310863 1084310843
K2K_{2} 11 1087710877
K2K_{2} 12 1144511445
K2K_{2} 13 1081510815
K2K_{2} 14 1144111441 1080210802
K3K_{3} 15 1090210902
K3K_{3} 16 1096010960 1089510895
K4K_{4} 17 1090110901
K4K_{4} 18 1098010980 1089710897
All of the above channels: 1071010710
Table 14: The lowest-lying eigen-energies of bbs¯s¯bb\bar{s}\bar{s} tetraquarks with IJP=01+IJ^{P}=01^{+} in the real range calculation. The first column shows the allowed channels and, in the parenthesis, the noninteracting meson-meson threshold value of experiment. Color-singlet (S), hidden-color (H) along with other configurations are indexed in the second column respectively, the third and fourth columns refer to the theoretical mass of each channels and their couplings. (unit: MeV)
Channel Index MM Mixed
(B¯s0B¯s)1(10782)(\bar{B}^{0}_{s}\bar{B}^{*}_{s})^{1}(10782) 1(S) 1075510755
(B¯sB¯s)1(10830)(\bar{B}^{*}_{s}\bar{B}^{*}_{s})^{1}(10830) 2(S) 1080010800 1075510755
(B¯s0B¯s)8(\bar{B}^{0}_{s}\bar{B}^{*}_{s})^{8} 3(H) 1094910949
(B¯sB¯s)8(\bar{B}^{*}_{s}\bar{B}^{*}_{s})^{8} 4(H) 1118511185 1094910949
(bb)(s¯s¯)(bb)^{*}(\bar{s}\bar{s})^{*} 5 1090610906 1090610906
K1K_{1} 6 1104111041
K1K_{1} 7 1104811048
K1K_{1} 8 1103811038
K1K_{1} 9 1093610936
K1K_{1} 10 1094910949
K1K_{1} 11 1091710917 1087010870
K2K_{2} 12 1091110911
K2K_{2} 13 1091410914
K2K_{2} 14 1087910879
K2K_{2} 15 1121611216
K2K_{2} 16 1148311483
K2K_{2} 17 1137311373 1084010840
K3K_{3} 18 1092810928
K3K_{3} 19 1092910929
K3K_{3} 20 1155711557 1090710907
K4K_{4} 21 1091110911
K4K_{4} 22 1090810908
K4K_{4} 23 1145811458 1090610906
All of the above channels: 1075510755
Table 15: The lowest-lying eigen-energies of bbs¯s¯bb\bar{s}\bar{s} tetraquarks with IJP=02+IJ^{P}=02^{+} in the real range calculation. The first column shows the allowed channels and, in the parenthesis, the noninteracting meson-meson threshold value of experiment. Color-singlet (S), hidden-color (H) along with other configurations are indexed in the second column respectively, the third and fourth columns refer to the theoretical mass of each channels and their couplings. (unit: MeV)
Channel Index MM Mixed
(B¯sB¯s)1(10830)(\bar{B}^{*}_{s}\bar{B}^{*}_{s})^{1}(10830) 1(S) 1080010800 1080010800
(B¯sB¯s)8(\bar{B}^{*}_{s}\bar{B}^{*}_{s})^{8} 2(H) 1095910959 1095910959
(bb)(s¯s¯)(bb)^{*}(\bar{s}\bar{s})^{*} 3 1091510915 1091510915
K1K_{1} 4 1102311023
K1K_{1} 5 1089410894 1087910879
K2K_{2} 6 1087010870
K2K_{2} 7 1118611186 1086910869
K3K_{3} 8 1091810918 1091810918
K4K_{4} 9 1091610916 1091610916
All of the above channels: 1080010800
Figure 5: Complex energies of bbs¯s¯bb\bar{s}\bar{s} tetraquarks with IJP=00+IJ^{P}=00^{+} in the coupled channels calculation, θ\theta varying from 00^{\circ} to 66^{\circ} .
Figure 6: Complex energies of bbs¯s¯bb\bar{s}\bar{s} tetraquarks with IJP=01+IJ^{P}=01^{+} in the coupled channels calculation, θ\theta varying from 00^{\circ} to 66^{\circ} .
Figure 7: Complex energies of bbs¯s¯bb\bar{s}\bar{s} tetraquarks with IJP=02+IJ^{P}=02^{+} in the coupled channels calculation, θ\theta varying from 00^{\circ} to 66^{\circ} .

III.2 The bbs¯s¯bb\bar{s}\bar{s} tetraquarks

We proceed here to analyze the bbs¯s¯bb\bar{s}\bar{s} tetraquark system with quantum numbers I(JP)=0(0+)I(J^{P})=0(0^{+}), 0(1+)0(1^{+}) and 0(2+)0(2^{+}). The situation is similar to the ccs¯s¯cc\bar{s}\bar{s} case, with only narrow resonances found in the I(JP)=0(0+)I(J^{P})=0(0^{+}) and 0(2+)0(2^{+}) channels; meanwhile, this result is also in contrast with the one obtained for bbq¯q¯bb\bar{q}\bar{q} tetraquarks Yang et al. (2020c). The details are as following.

The I(JP)=𝟎(𝟎+)\bm{I(J^{P})=0(0^{+})} state: Table 13 summarizes all possible channels for the I(JP)=0(0+)I(J^{P})=0(0^{+}) bbs¯s¯bb\bar{s}\bar{s} tetraquark. In particular, there are two meson-meson channels B¯s0B¯s0\bar{B}^{0}_{s}\bar{B}^{0}_{s} and B¯sB¯s\bar{B}^{*}_{s}\bar{B}^{*}_{s}, both color-singlet and hidden-color channels are considered. Moreover, there are two diquark-antidiquark structures, (bb)(s¯s¯)(bb)(\bar{s}\bar{s}) and (bb)(s¯s¯)(bb)^{*}(\bar{s}\bar{s})^{*}, and 12 K-type channels. The calculated mass of each single channel ranges 10.7 to 11.5 GeV, and no bound state is observed. Additionally, after coupling between the same kind of configurations, one can conclude that the coupling is weak in di-meson case and it is quite comparable among diquark-antidiquark and K-type structures.

The nature of scattering for lowest state B¯s0B¯s0\bar{B}^{0}_{s}\bar{B}^{0}_{s} remains in the complete coupled-channels calculation with rotated angle θ=0\theta=0^{\circ}. However, three narrow resonance states are obtained in the complex-scaling analysis. In the mass region from 10.7 to 11.5 GeV, Fig. 5 established the complex energy distributions of B¯s0B¯s0\bar{B}^{0}_{s}\bar{B}^{0}_{s}, B¯sB¯s\bar{B}^{*}_{s}\bar{B}^{*}_{s} and their first radial excitation states. There are two orange circles which surround the resonance poles whose masses and widths are (11.31 GeV, 1.86 MeV), (11.33 GeV, 1.84 MeV) and (11.41 GeV, 1.54 MeV), respectively. The first two resonances can be identified as B¯sB¯s\bar{B}^{*}_{s}\bar{B}^{*}_{s} molecular states because they are 0.5GeV\sim 0.5\,GeV higher than its threshold value and the third one should be interpreted as a B¯s0B¯s0\bar{B}^{0}_{s}\bar{B}^{0}_{s} because its location is just between (1S)B¯s0(2S)B¯s0(1S)\bar{B}^{0}_{s}(2S)\bar{B}^{0}_{s} and (1S)B¯s(2S)B¯s(1S)\bar{B}^{*}_{s}(2S)\bar{B}^{*}_{s} states. Finally, after comparing our results of ccs¯s¯cc\bar{s}\bar{s} and bbs¯s¯bb\bar{s}\bar{s} tetraquarks, we conclude that, with much heavier constituent quark components included, more narrow molecular resonances will be found around 0.2 GeV interval near the first radial excitation states.

The I(JP)=𝟎(𝟏+)\bm{I(J^{P})=0(1^{+})} state: The results listed in Table 14 highlight that tightly bound and narrow resonance states obtained in bbq¯q¯bb\bar{q}\bar{q} tetraquarks Yang et al. (2020c) are not found in this case. Firstly, the lowest channel B¯s0B¯s\bar{B}^{0}_{s}\bar{B}^{*}_{s} is of scattering nature both in single channel calculation and coupled-channels one. Secondly, the mass of diquark-antidiquark configuration is higher than meson-meson channels and its value of 10.91 GeV is very close to the hidden-color channels, 10.95 GeV. Furthermore, the other K-type configurations produce masses slightly lower (10.90GeV\sim 10.90\,GeV) than the former case.

Figure 6 shows that the scattering nature of B¯s0B¯s\bar{B}^{0}_{s}\bar{B}^{*}_{s} and B¯sB¯s\bar{B}^{*}_{s}\bar{B}^{*}_{s} states is even clearer when the CSM is employed. More specifically, in the mass interval from 10.7 to 11.3 GeV, the calculated complex energies always move along with the varied angle θ\theta. There is no fixed pole in the energy region which is around 0.6 GeV above the B¯s0B¯s\bar{B}^{0}_{s}\bar{B}^{*}_{s} threshold. This fact is consistent with the ccs¯s¯cc\bar{s}\bar{s} results discussed above.

The I(JP)=𝟎(𝟐+)\bm{I(J^{P})=0(2^{+})} state: For the highest spin channel of bbs¯s¯bb\bar{s}\bar{s} tetraquarks, Table 15 summarizes our theoretical findings in real-range method. Among our results, the following are of particular interest: (i) only one di-meson channel B¯sB¯s\bar{B}^{*}_{s}\bar{B}^{*}_{s} exists and it is unbounded if we consider either the single channel or multi-channels coupling calculation, and (ii) the other exotic configurations which include hidden-color, diquark-antidiquark and K-type are all excited states with masses on 10.9 GeV.

In a further step, in which the complex analysis is adopted, three resonances are obtained. It is quite obvious in Fig. 7 that three fixed poles, marked with orange circles, are located at around 11.35 GeV and near the real-axis. The exact masses and widths of these B¯sB¯s\bar{B}^{*}_{s}\bar{B}^{*}_{s} resonances are (11.33 GeV, 1.48 MeV), (11.36 GeV, 4.18 MeV) and (11.41 GeV, 2.52 MeV), respectively. These found narrow resonances are 0.6 GeV above B¯sB¯s\bar{B}^{*}_{s}\bar{B}^{*}_{s} threshold, meanwhile they approach its first radial excitation state.

Table 16: The lowest-lying eigen-energies of cbs¯s¯cb\bar{s}\bar{s} tetraquarks with IJP=00+IJ^{P}=00^{+} in the real range calculation. The first column shows the allowed channels and, in the parenthesis, the noninteracting meson-meson threshold value of experiment. Color-singlet (S), hidden-color (H) along with other configurations are indexed in the second column respectively, the third and fourth columns refer to the theoretical mass of each channels and their couplings. (unit: MeV)
Channel Index MM Mixed
(Ds+B¯s0)1(7336)(D^{+}_{s}\bar{B}^{0}_{s})^{1}(7336) 1(S) 73447344
(Ds+B¯s)1(7527)(D^{*+}_{s}\bar{B}^{*}_{s})^{1}(7527) 2(S) 75167516 73447344
(Ds+B¯s0)8(D^{+}_{s}\bar{B}^{0}_{s})^{8} 3(H) 79107910
(Ds+B¯s)8(D^{*+}_{s}\bar{B}^{*}_{s})^{8} 4(H) 79277927 76787678
(cb)(s¯s¯)(cb)(\bar{s}\bar{s}) 5 77267726
(cb)(s¯s¯)(cb)^{*}(\bar{s}\bar{s})^{*} 6 76757675 76627662
K1K_{1} 7 81718171
K1K_{1} 8 82748274
K1K_{1} 9 83698369
K1K_{1} 10 81458145 76137613
K2K_{2} 11 78967896
K2K_{2} 12 82668266
K2K_{2} 13 77587758
K2K_{2} 14 82828282 76297629
K3K_{3} 15 86478647
K3K_{3} 16 81818181
K3K_{3} 17 83218321
K3K_{3} 18 86758675 80108010
K4K_{4} 19 81998199
K4K_{4} 20 83598359 80638063
All of the above channels: 73447344
Figure 8: Complex energies of cbs¯s¯cb\bar{s}\bar{s} tetraquarks with IJP=00+IJ^{P}=00^{+} in the coupled channels calculation, θ\theta varying from 00^{\circ} to 66^{\circ} .

III.3 The cbs¯s¯cb\bar{s}\bar{s} tetraquarks

Several narrow resonances are found in this sector with quantum numbers I(JP)=0(0+)I(J^{P})=0(0^{+}), 0(1+)0(1^{+}) and 0(2+)0(2^{+}). However, no bound states are found as in the case of cbq¯q¯cb\bar{q}\bar{q} tetraquarks Yang et al. (2020c).

The I(JP)=𝟎(𝟎+)\bm{I(J^{P})=0(0^{+})} channel: There are two meson-meson channels, Ds+B¯s0D^{+}_{s}\bar{B}^{0}_{s} and Ds+B¯sD^{*+}_{s}\bar{B}^{*}_{s}, two diquark-antidiquark structures, (cb)(s¯s¯)(cb)(\bar{s}\bar{s}) and (cb)(s¯s¯)(cb)^{*}(\bar{s}\bar{s})^{*}, and 14 K-type channels (see Table16). The single channel calculation produces masses which ranges from 7.34 to 8.67 GeV, and all states are scattering ones. The coupled-channels study for each kind of structure reveals weak couplings in di-meson configuration of color-singlet channels and stronger ones for the other structures, with masses above 7.6 GeV.

If we now rotate the angle θ\theta from 00^{\circ} to 66^{\circ} in a fully coupled-channels calculation, Fig. 8 shows the distribution of complex energy points of Ds+B¯s0D^{+}_{s}\bar{B}^{0}_{s} and Ds+B¯sD^{*+}_{s}\bar{B}^{*}_{s}. It is obvious to notice that there are two stable poles in the mass region from 7.3 to 8.0 GeV. Actually, their calculated masses and widths are (7.92 GeV, 1.02 MeV) and (7.99 GeV, 3.22 MeV), respectively. Because they are much more close to the Ds+B¯sD^{*+}_{s}\bar{B}^{*}_{s} threshold lines, the two narrow resonances can be identified as Ds+B¯sD^{*+}_{s}\bar{B}^{*}_{s} molecules.

Table 17: The lowest-lying eigen-energies of cbs¯s¯cb\bar{s}\bar{s} tetraquarks with IJP=01+IJ^{P}=01^{+} in the real range calculation. The first column shows the allowed channels and, in the parenthesis, the noninteracting meson-meson threshold value of experiment. Color-singlet (S), hidden-color (H) along with other configurations are indexed in the second column respectively, the third and fourth columns refer to the theoretical mass of each channels and their couplings. (unit: MeV)
Channel Index MM Mixed
(Ds+B¯s)1(7384)(D^{+}_{s}\bar{B}^{*}_{s})^{1}(7384) 1(S) 73897389
(Ds+B¯s0)1(7479)(D^{*+}_{s}\bar{B}^{0}_{s})^{1}(7479) 2(S) 74717471
(Ds+B¯s)1(7527)(D^{*+}_{s}\bar{B}^{*}_{s})^{1}(7527) 3(S) 75167516 73897389
(Ds+B¯s)8(D^{+}_{s}\bar{B}^{*}_{s})^{8} 4(H) 79007900
(Ds+B¯s0)8(D^{*+}_{s}\bar{B}^{0}_{s})^{8} 5(H) 78917891
(Ds+B¯s)8(D^{*+}_{s}\bar{B}^{*}_{s})^{8} 6(H) 79207920 76847684
(cb)(s¯s¯)(cb)(\bar{s}\bar{s})^{*} 7 76837683
(cb)(s¯s¯)(cb)^{*}(\bar{s}\bar{s}) 8 76807680
(cb)(s¯s¯)(cb)^{*}(\bar{s}\bar{s})^{*} 9 77257725 76717671
K1K_{1} 10 77967796
K1K_{1} 11 81728172
K1K_{1} 12 80098009
K1K_{1} 13 76957695
K1K_{1} 14 77607760
K1K_{1} 15 76347634 76207620
K2K_{2} 16 76077607
K2K_{2} 17 76217621
K2K_{2} 18 75107510
K2K_{2} 19 81378137
K2K_{2} 20 82118211
K2K_{2} 21 82098209 75057505
K3K_{3} 22 77057705
K3K_{3} 23 77067706
K3K_{3} 24 76827682
K3K_{3} 25 77347734
K3K_{3} 26 77337733
K3K_{3} 27 82988298 76667666
K4K_{4} 28 76877687
K4K_{4} 29 76777677
K4K_{4} 30 77717771 76707670
All of the above channels: 73897389
Figure 9: Complex energies of cbs¯s¯cb\bar{s}\bar{s} tetraquarks with IJP=01+IJ^{P}=01^{+} in the coupled channels calculation, θ\theta varying from 00^{\circ} to 66^{\circ} .

The I(JP)=𝟎(𝟏+)\bm{I(J^{P})=0(1^{+})} channel: There are 30 possible channels in this case and they are listed in Table 17; in particular, one has three meson-meson channels: Ds+B¯sD^{+}_{s}\bar{B}^{*}_{s}, Ds+B¯s0D^{*+}_{s}\bar{B}^{0}_{s} and Ds+B¯sD^{*+}_{s}\bar{B}^{*}_{s}, the diquark-antidiquark channels (cb)(s¯s¯)(cb)(\bar{s}\bar{s})^{*}, (cb)(s¯s¯)(cb)^{*}(\bar{s}\bar{s}) and (cb)(s¯s¯)(cb)^{*}(\bar{s}\bar{s})^{*}, and the remaining 21 channels are of K-type configurations. In our first kind of calculation, the single channel masses are located in the energy interval 7.39 to 8.23 GeV. Particularly, the color-singlet channels of di-meson configurations present masses which are below 7.52 GeV, and the other exotic structures’ are above this level. Then, in the coupled-channels computation, the lowest energy of color-singlet channels is still the Ds+B¯sD^{+}_{s}\bar{B}^{*}_{s} threshold value, 7.39 GeV. Masses of the other configurations are about 7.67 GeV, except for 7.51 GeV of K2K_{2}-type channels.

Figure 9 depicts mostly distributions of scattering states of Ds+B¯sD^{+}_{s}\bar{B}^{*}_{s}, Ds+B¯s0D^{*+}_{s}\bar{B}^{0}_{s} and Ds+B¯sD^{*+}_{s}\bar{B}^{*}_{s}, i.e the calculated complex energies are basically aligned along their respective threshold lines. However, two stable poles are located in the top right corner of this figure. Inside the two orange circles, one can find that the black, red and blue dots (which are the results of 22^{\circ}, 44^{\circ} and 66^{\circ} rotated angle, respectively) almost overlap. Together with the fact that near Ds+B¯sD^{*+}_{s}\bar{B}^{*}_{s} threshold lines appear, they can be identified as Ds+D^{*+}_{s} and B¯s\bar{B}^{*}_{s} resonances whose masses and widths are (7.92 GeV, 1.20 MeV) and (7.99 GeV, 4.96 MeV), respectively.

Table 18: The lowest-lying eigen-energies of cbs¯s¯cb\bar{s}\bar{s} tetraquarks with IJP=02+IJ^{P}=02^{+} in the real range calculation. The first column shows the allowed channels and, in the parenthesis, the noninteracting meson-meson threshold value of experiment. Color-singlet (S), hidden-color (H) along with other configurations are indexed in the second column respectively, the third and fourth columns refer to the theoretical mass of each channels and their couplings. (unit: MeV)
Channel Index MM Mixed
(Ds+B¯s)1(7527)(D^{*+}_{s}\bar{B}^{*}_{s})^{1}(7527) 1(S) 75167516 75167516
(Ds+B¯s)8(D^{*+}_{s}\bar{B}^{*}_{s})^{8} 2(H) 77127712 77127712
(cb)(s¯s¯)(cb)^{*}(\bar{s}\bar{s})^{*} 3 76987698 76987698
K1K_{1} 4 78047804
K1K_{1} 5 77057705 77047704
K2K_{2} 6 76247624
K2K_{2} 7 82058205 76227622
K3K_{3} 8 83118311
K3K_{3} 9 77017701 76967696
K4K_{4} 10 76977697 76977697
All of the above channels: 75167516
Figure 10: Complex energies of cbs¯s¯cb\bar{s}\bar{s} tetraquarks with IJP=02+IJ^{P}=02^{+} in the coupled channels calculation, θ\theta varying from 00^{\circ} to 66^{\circ} .

The I(JP)=𝟎(𝟐+)\bm{I(J^{P})=0(2^{+})} channel: Only one meson-meson channel, Ds+B¯sD^{*+}_{s}\bar{B}^{*}_{s}, one diquark-antidiquark channel, (cb)(s¯s¯)(cb)^{*}(\bar{s}\bar{s})^{*}, and 7 K-type configurations must be considered in this case. Their calculated masses are listed in Table 18. As all other cases discussed above, no bound states are found neither in the single channel computation nor in the coupled-channels case. The lowest scattering state of Ds+B¯sD^{*+}_{s}\bar{B}^{*}_{s} is located at 7.52 GeV and all other excited states, in coupled-channels calculation, are below 7.72 GeV.

In contrast to the cbq¯q¯cb\bar{q}\bar{q} tetraquarks Yang et al. (2020c), two cbs¯s¯cb\bar{s}\bar{s} resonances are found in the complete coupled-channels calculation when complex range method is used. Figure 10 shows an orange circle, which is near the threshold lines (1S)Ds+(2S)B¯s(1S)D^{*+}_{s}(2S)\bar{B}^{*}_{s} and (2S)Ds+(1S)B¯s(2S)D^{*+}_{s}(1S)\bar{B}^{*}_{s}, surrounding two fixed resonance poles. The calculated masses and widths are (8.05 GeV, 1.42 MeV) and (8.10 GeV, 2.90 MeV), respectively. Apparently, these two narrow Ds+B¯sD^{*+}_{s}\bar{B}^{*}_{s} resonances are 0.6GeV\sim 0.6\,\text{GeV} higher than their threshold and this is just similar to our previous results.

Table 19: Possible resonance states of QQs¯s¯QQ\bar{s}\bar{s} (Q=c,b)(Q=c,b) tetraquarks. (unit: MeV)
     IJPIJ^{P} Resonance Mass Width
00+00^{+} Ds+Ds+D^{+}_{s}D^{+}_{s} 4902 3.54
B¯sB¯s\bar{B}^{*}_{s}\bar{B}^{*}_{s} 11306 1.86
B¯sB¯s\bar{B}^{*}_{s}\bar{B}^{*}_{s} 11333 1.84
B¯s0B¯s0\bar{B}^{0}_{s}\bar{B}^{0}_{s} 11412 1.54
Ds+B¯sD^{*+}_{s}\bar{B}^{*}_{s} 7919 1.02
Ds+B¯sD^{*+}_{s}\bar{B}^{*}_{s} 7993 3.22
01+01^{+} Ds+B¯sD^{*+}_{s}\bar{B}^{*}_{s} 7920 1.20
Ds+B¯sD^{*+}_{s}\bar{B}^{*}_{s} 7995 4.96
02+02^{+} Ds+Ds+D^{*+}_{s}D^{*+}_{s} 4821 5.58
Ds+Ds+D^{*+}_{s}D^{*+}_{s} 4846 10.68
Ds+Ds+D^{*+}_{s}D^{*+}_{s} 4775 23.26
B¯sB¯s\bar{B}^{*}_{s}\bar{B}^{*}_{s} 11329 1.48
B¯sB¯s\bar{B}^{*}_{s}\bar{B}^{*}_{s} 11356 4.18
B¯sB¯s\bar{B}^{*}_{s}\bar{B}^{*}_{s} 11410 2.52
Ds+B¯sD^{*+}_{s}\bar{B}^{*}_{s} 8046 1.42
Ds+B¯sD^{*+}_{s}\bar{B}^{*}_{s} 8096 2.90

IV Epilogue

The QQs¯s¯QQ\bar{s}\bar{s} tetraquarks with spin-parity JP=0+J^{P}=0^{+}, 1+1^{+} and 2+2^{+}, and in the isoscalar sector I=0I=0 have been systemically investigated. This is a natural extension of our previous work on double-heavy tetraquarks QQq¯q¯QQ\bar{q}\bar{q} (q=u,d)(q=u,d); however, not only the meson-meson and diquark-antidiquark configurations, with their allowed color structures: color-singlet, hidden-color, color triplet-antitriplet and color sextet-antisextet, are considered but also four K-type configurations are included herein.

The chiral quark model contains the perturbative one-gluon exchange interaction and the nonperturbative linear-screened confinement and Goldstone-boson exchange interactions between anti-strange quarks. This model has been successfully applied to the description of hadron, hadron-hadron and multiquark phenomenology. In order to distinguish among bound states, resonances and scattering poles the complex scaling method is used. Following Ref. Hiyama et al. (2003), we employ Gaussian trial functions with ranges in geometric progression. This enables the optimization of ranges employing a small number of free parameters.

For the three types of tetraquarks: ccs¯s¯cc\bar{s}\bar{s}, bbs¯s¯bb\bar{s}\bar{s} and cbs¯s¯cb\bar{s}\bar{s}, no bound state is found in any quantum-number channel studied herein, and this is in contrast with the QQq¯q¯QQ\bar{q}\bar{q} sector. However, several resonances are available with different quantum numbers and nature. Table 19 collects our results showing the mass and width of each found resonance. Some details of such resonances are summarized below.

All found resonances are about 0.6 GeV higher than their corresponding threshold and near the first radial excitation states, around 0.2 GeV energy region. For the ccs¯s¯cc\bar{s}\bar{s} tetraquark, one narrow Ds+Ds+D^{+}_{s}D^{+}_{s} resonance is obtained in IJP=00+IJ^{P}=00^{+} channel with mass and width 4.9 GeV and 3.54 MeV, respectively. Besides, another narrow resonance of 5.58 MeV width and two wide ones with widths of 10.68 MeV and 23.26 MeV are found for Ds+Ds+D^{*+}_{s}D^{*+}_{s} in the IJP=02+IJ^{P}=02^{+} channel; their masses are 4.82 GeV, 4.85 GeV and 4.78 GeV, respectively.

Similarly to ccs¯s¯cc\bar{s}\bar{s} tetraquarks, narrow resonances are only found in 00+00^{+} and 02+02^{+} states for bbs¯s¯bb\bar{s}\bar{s} sector. However, with much heavier flavor quarks included, more resonances are available. Specifically, there are two B¯sB¯s\bar{B}^{*}_{s}\bar{B}^{*}_{s} and one B¯s0B¯s0\bar{B}^{0}_{s}\bar{B}^{0}_{s} resonances in IJP=00+IJ^{P}=00^{+} channel. Their masses and widths are (11.31 GeV, 1.86 MeV), (11.33 GeV, 1.84 GeV) and (11.41 GeV, 1.54 MeV), respectively. Meanwhile, in the IJP=02+IJ^{P}=02^{+} channel, three B¯sB¯s\bar{B}^{*}_{s}\bar{B}^{*}_{s} resonances are obtained with masses and widths (11.33 GeV, 1.48 MeV), (11.36 GeV, 4.18 GeV) and (11.41 GeV, 2.52 MeV), respectively.

Furthermore, two Ds+B¯sD^{*+}_{s}\bar{B}^{*}_{s} narrow resonances have been found in each IJP=00+IJ^{P}=00^{+}, 01+01^{+} and 02+02^{+} channel. Their masses and widths can be summarized as follows: Ds+B¯sD^{*+}_{s}\bar{B}^{*}_{s}(7.92 GeV, 1.02 MeV) and Ds+B¯sD^{*+}_{s}\bar{B}^{*}_{s}(7.99 GeV, 3.22 MeV) within the IJP=00+IJ^{P}=00^{+} channel; Ds+B¯sD^{*+}_{s}\bar{B}^{*}_{s}(7.92 GeV, 1.20 MeV) and Ds+B¯sD^{*+}_{s}\bar{B}^{*}_{s}(7.99 GeV, 4.96 MeV) within the IJP=01+IJ^{P}=01^{+} channel; and Ds+B¯sD^{*+}_{s}\bar{B}^{*}_{s}(8.05 GeV, 1.42 MeV) and Ds+B¯sD^{*+}_{s}\bar{B}^{*}_{s}(8.09 GeV, 2.90 MeV) in the case of IJP=02+IJ^{P}=02^{+}.

Acknowledgements.
Work partially financed by: the National Natural Science Foundation of China under Grant No. 11535005 and No. 11775118; the Ministerio Español de Ciencia e Innovación under grant No. PID2019-107844GB-C22; and the Junta de Andalucía under contract No. Operativo FEDER Andalucía 2014-2020 UHU-1264517.

References