This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Punctual Hilbert schemes of points of ๐”ธ3{\mathbb{A}}^{3} in the Grothendieck group of varieties

Sailun Zhan Department of Mathematical Sciences, Binghamton University, Binghamton, NY, 13902, U.S.A. [email protected]
Abstract.

We give an explicit stratification of the punctual Hilbert schemes of nn points of ๐”ธm+1{\mathbb{A}}^{m+1} with respect to mm-dimensional partitions in the Grothendieck group of varieties. As an application, we calculate the classes of the punctual Hilbert schemes of nn points of ๐”ธ3{\mathbb{A}}^{3} and the classes of the Hilbert schemes of nn points of ๐”ธ3{\mathbb{A}}^{3} in the Grothendieck of varieties for nโ‰ค5n\leq 5.

Key words and phrases:
Hilbert schemes of points, Grothendieck group of varieties, Hodge-Deligne polynomials
2010 Mathematics Subject Classification:
14F25, 14J30, 14Q15

1. Introduction

Let kk be a field, and let nn be a positive integer. Denote by Hilb0nโ€‹(๐”ธm+1){\rm Hilb}_{0}^{n}({\mathbb{A}}^{m+1}) the punctual Hilbert scheme of nn points of ๐”ธm+1{\mathbb{A}}^{m+1}, which parametrizes closed subschemes of length nn of ๐”ธm+1{\mathbb{A}}^{m+1} which support on the origin. In other words, it parametrizes the codimension nn ideals of kโ€‹[[x0,x1,โ€ฆ,xm]]k[[x_{0},x_{1},...,x_{m}]]. Let m=1m=1. When k=โ„‚k=\mathbb{C}, Hilb0nโ€‹(๐”ธ2){\rm Hilb}_{0}^{n}({\mathbb{A}}^{2}) has a cellular decomposition parametrized by the partitions of nn by the Biaล‚ynicki-Birula theorem [ES87].

Definition 1.1.

Let kk be any field. The Grothendieck group of kk-varieties K0โ€‹(Vark)K_{0}({\rm Var}_{k}) is the free abelian group generated by isomorphism classes of kk-varieties modulo the relations [X]=[Y]+[X/Y][X]=[Y]+[X/Y] for all pairs (X,Y)(X,Y) consisting of a variety XX and a closed subvariety YY. By variety we mean a reduced separated scheme of finite type over kk. It has a commutative ring structure by [X]โ€‹[Y]=[Xร—Y][X][Y]=[X\times Y].

When kk is any field, the decomposition of Hilb0nโ€‹(๐”ธ2){\rm Hilb}_{0}^{n}({\mathbb{A}}^{2}) into affine spaces is also true and an explicit โ€œcell decompositionโ€ and explicit parametrizations of the cells are given:

Theorem 1.2.

[LL20, Proposition A.2] Let kk be any field, and let nn be any positive integer. Then in the Grothendieck group of varieties K0โ€‹(Vark)K_{0}({\rm Var}_{k}),

[Hilb0nโ€‹(๐”ธ2)]=โˆ‘ฮฒโˆˆPโ€‹(n)[๐”ธnโˆ’|ฮฒ|],[{\rm Hilb}_{0}^{n}({\mathbb{A}}^{2})]=\sum_{\beta\in P(n)}[{\mathbb{A}}^{n-|\beta|}],

where Pโ€‹(n)P(n) denotes the set of partitions ฮฒ\beta of nn, and |ฮฒ||\beta| is the number of parts of ฮฒ\beta.

Let IโŠ‚kโ€‹[[x,y]]I\subset k[[x,y]] be a codimension nn ideal. Define Ik:=(I:xk)I_{k}:=(I:x^{k}). Then (Ik+(x))/(x)=(yฮปk)โІkโ€‹[y](I_{k}+(x))/(x)=(y^{\lambda_{k}})\subseteq k[y] for some ฮปk\lambda_{k}, and ฮป0โ‰ฅฮป1โ‰ฅโ€ฆโ‰ฅฮปr>ฮปr+1=0\lambda_{0}\geq\lambda_{1}\geq...\geq\lambda_{r}>\lambda_{r+1}=0 gives a partition ฮป\lambda of nn. We say the ideal II is of type ฮป\lambda. Let ฮฒ0โ‰ฅฮฒ1โ‰ฅโ€ฆโ‰ฅฮฒs>ฮฒs+1=0\beta_{0}\geq\beta_{1}\geq...\geq\beta_{s}>\beta_{s+1}=0 be the dual partition ฮฒ\beta. Then there is a one-to-one correspondence between the codimension nn ideals of type ฮป\lambda in kโ€‹[[x,y]]k[[x,y]] and the kk-valued points in ๐”ธnโˆ’|ฮฒ|{\mathbb{A}}^{n-|\beta|}. We generalize this idea in [LL20] to higher dimensions.

Given two nn-tuples (a1,โ€ฆ,an),(b1,โ€ฆ,bn)โˆˆโ„•n(a_{1},...,a_{n}),(b_{1},...,b_{n})\in\mathbb{N}^{n}, we write (a1,โ€ฆ,an)โ‰ค(b1,โ€ฆ,bn)(a_{1},...,a_{n})\leq(b_{1},...,b_{n}) if aiโ‰คbia_{i}\leq b_{i} for all 1โ‰คiโ‰คn1\leq i\leq n.

Definition 1.3.

Let dโ‰ฅ1d\geq 1 and nโ‰ฅ0n\geq 0. A d-dimensional partition ฮป\lambda of nn is an array

ฮป=(ฮปr1,โ€ฆ,rd)r1,โ€ฆ,rd\lambda=(\lambda_{r_{1},...,r_{d}})_{r_{1},...,r_{d}}

of nonnegative integers ฮปr1,โ€ฆ,rd\lambda_{r_{1},...,r_{d}} indexed by the tuples (r1,โ€ฆ,rd)โˆˆโ„•d(r_{1},...,r_{d})\in\mathbb{N}^{d} such that

โˆ‘r1,โ€ฆ,rdฮปr1,โ€ฆ,rd=n,\sum_{r_{1},...,r_{d}}\lambda_{r_{1},...,r_{d}}=n,

and ฮปr1,โ€ฆ,rdโ‰ฅฮปs1,โ€ฆ,sd\lambda_{r_{1},...,r_{d}}\geq\lambda_{s_{1},...,s_{d}} if (r1,โ€ฆ,rd)โ‰ค(s1,โ€ฆ,sd)(r_{1},...,r_{d})\leq(s_{1},...,s_{d}). Denote by Pdโ€‹(n)P_{d}(n) the number of dd-dimensional partitions of nn.

Theorem 1.4.

Given positive integers nn and mm, we have the following decomposition for the punctual Hilbert scheme of nn points on ๐”ธm+1{\mathbb{A}}^{m+1} in the Grothendieck group of varieties over a field kk:

Hโ€‹iโ€‹lโ€‹b0nโ€‹(๐”ธm+1)=โˆ‘ฮปVฮป,Hilb_{0}^{n}({\mathbb{A}}^{m+1})=\sum_{\lambda}V_{\lambda},

where ฮป\lambda goes through all the mm-dimensional partition of nn, and VฮปV_{\lambda} is an affine variety with explicit affine coordinates and relations.

Notice that when m=1m=1, this prove Theorem 1.2 with another explicit parametrizations of the cells. In general, for example when m=2m=2, VฮปV_{\lambda} is not an affine space (see Example 2.13). However, it seems that they may be polynomials in LL in the Grothendieck group of varieties, where L:=[๐”ธ1]L:=[{\mathbb{A}}^{1}]. So we make the following conjecture:

Conjecture 1.5.

All the strata VฮปV_{\lambda} in the puntual Hilbert schemes of points in ๐”ธ3{\mathbb{A}}^{3} are polynomials in LL in the Grothendieck group of varieties.

Combining theoretical arguments and computer programme, we calculate the classes of the (punctual) Hilbert schemes of nn points of ๐”ธ3{\mathbb{A}}^{3} when nโ‰ค5n\leq 5. In principle, one can calculate the class for larger nn.

Theorem 1.6.

The classes of the punctual Hilbert schemes of nn points of ๐”ธ3{\mathbb{A}}^{3} in K0โ€‹(Vark)K_{0}({\rm Var}_{k}) for nโ‰ค5n\leq 5 are

nn [Hilb0nโ€‹(๐”ธ3)][{\rm Hilb}_{0}^{n}({\mathbb{A}}^{3})]
11 11
22 L2+L+1L^{2}+L+1
33 L4+L3+2โ€‹L2+L+1L^{4}+L^{3}+2L^{2}+L+1
44 L6+2โ€‹L5+3โ€‹L4+3โ€‹L3+2โ€‹L2+L+1L^{6}+2L^{5}+3L^{4}+3L^{3}+2L^{2}+L+1
55 L8+2โ€‹L7+4โ€‹L6+5โ€‹L5+5โ€‹L4+3โ€‹L3+2โ€‹L2+L+1L^{8}+2L^{7}+4L^{6}+5L^{5}+5L^{4}+3L^{3}+2L^{2}+L+1
Theorem 1.7.

The classes of the Hilbert schemes of nn points of ๐”ธ3{\mathbb{A}}^{3} in K0โ€‹(Vark)K_{0}({\rm Var}_{k}) for nโ‰ค9n\leq 9 are

nn [Hilbnโ€‹(๐”ธ3)][{\rm Hilb}^{n}({\mathbb{A}}^{3})]
11 L3L^{3}
22 L6+L5+L4L^{6}+L^{5}+L^{4}
33 L9+L8+2โ€‹L7+L6+L5L^{9}+L^{8}+2L^{7}+L^{6}+L^{5}
44 L12+L11+3โ€‹L10+3โ€‹L9+4โ€‹L8+L7+L6โˆ’L5L^{12}+L^{11}+3L^{10}+3L^{9}+4L^{8}+L^{7}+L^{6}-L^{5}
55 L15+L14+3โ€‹L13+4โ€‹L12+7โ€‹L11+5โ€‹L10+4โ€‹L9โˆ’L6L^{15}+L^{14}+3L^{13}+4L^{12}+7L^{11}+5L^{10}+4L^{9}-L^{6}
Remark 1.8.

Notice that in the case of [Hilb0nโ€‹(๐”ธ3)][{\rm Hilb}_{0}^{n}({\mathbb{A}}^{3})], it seems that the coefficient of LkL^{k} for a fixed kk becomes stable when nn is sufficiently large. This is the case for [Hilb0nโ€‹(๐”ธ2)][{\rm Hilb}_{0}^{n}({\mathbb{A}}^{2})], and the same phenomenon may hold for [Hilb0nโ€‹(๐”ธ3)][{\rm Hilb}_{0}^{n}({\mathbb{A}}^{3})] as well.

Acknowledgements

I thank Michael Larsen for several helpful conversations. I thank Andrea Ricolfi, Joachim Jelisiejew, and Erik Nikolov for pointing out a mistake in an earlier draft.

2. Punctual Hilbert schemes of points

Let IโŠ‚kโ€‹[[x0,x1,โ€ฆ,xm]]I\subset k[[x_{0},x_{1},...,x_{m}]] be a codimension nn ideal. Notice that this is the same as giving a (x0,โ€ฆ,xm)(x_{0},...,x_{m})-primary ideal IโŠ‚kโ€‹[x0,โ€ฆ,xm]I\subset k[x_{0},...,x_{m}] of codimension nn. Let 0<t<m0<t<m be an integer. Define for r1,โ€ฆ,rtโ‰ฅ0r_{1},...,r_{t}\geq 0 inductively

Ir1:=(I:x1r1)/(x1)โŠ‚k[x0,x2,โ€ฆ,xm],I_{r_{1}}:=(I:x_{1}^{r_{1}})/(x_{1})\subset k[x_{0},x_{2},...,x_{m}],
Ir1,r2,โ€ฆ,rt+1:=(Ir1,r2,โ€ฆ,rt:xt+1rt+1)/(xt+1)โŠ‚k[x0,xt+2,โ€ฆ,xm],I_{r_{1},r_{2},...,r_{t+1}}:=(I_{r_{1},r_{2},...,r_{t}}:x_{t+1}^{r_{t+1}})/(x_{t+1})\subset k[x_{0},x_{t+2},...,x_{m}],

Then Ir1,โ€ฆ,rm=(x0ฮปr1,โ€ฆ,rm)โІkโ€‹[x0]I_{r_{1},...,r_{m}}=(x_{0}^{\lambda_{r_{1},...,r_{m}}})\subseteq k[x_{0}] for some ฮปr1,โ€ฆ,rmโ‰ฅ0\lambda_{r_{1},...,r_{m}}\geq 0.

Proposition 2.1.

The nonnegative integers ฮปr1,โ€ฆ,rm\lambda_{r_{1},...,r_{m}} give an mm-dimensional partition ฮป\lambda of nn.

Proof.

Consider the short exact sequences for 0โ‰คt<m0\leq t<m

0โ†’kโ€‹[x0,xt+1,โ€ฆ,xm](Ir1,โ€ฆ,rt:xt+1rt+1+1)โ†’xt+1kโ€‹[x0,xt+1,โ€ฆ,xm](Ir1,โ€ฆ,rt:xt+1rt+1)โ†’kโ€‹[x0,xt+2,โ€ฆ,xm]Ir1,โ€ฆ,rt+1โ†’0,0\to\frac{k[x_{0},x_{t+1},...,x_{m}]}{(I_{r_{1},...,r_{t}}:x_{t+1}^{r_{t+1}+1})}\xrightarrow{x_{t+1}}\frac{k[x_{0},x_{t+1},...,x_{m}]}{(I_{r_{1},...,r_{t}}:x_{t+1}^{r_{t+1}})}\to\frac{k[x_{0},x_{t+2},...,x_{m}]}{I_{r_{1},...,r_{t+1}}}\to 0,

where the second arrow is the multiplication by xt+1x_{t+1} and the third arrow is the quotient map. Using the above short exact sequences and Ir1,โ€ฆ,rm=(x0ฮปr1,โ€ฆ,rm)I_{r_{1},...,r_{m}}=(x_{0}^{\lambda_{r_{1},...,r_{m}}}), we deduce that

n=dimkโ€‹[x0,โ€ฆ,xm]/I\displaystyle n=\dim k[x_{0},...,x_{m}]/I =โˆ‘r1=0โˆždimkโ€‹[x0,x2,โ€ฆ,xm]/Ir1\displaystyle=\sum_{r_{1}=0}^{\infty}\dim k[x_{0},x_{2},...,x_{m}]/I_{r_{1}}
=โˆ‘r1=0โˆžโˆ‘r2=0โˆždimkโ€‹[x0,x3,โ€ฆ,xm]/Ir1,r2\displaystyle=\sum_{r_{1}=0}^{\infty}\sum_{r_{2}=0}^{\infty}\dim k[x_{0},x_{3},...,x_{m}]/I_{r_{1},r_{2}}
=โ‹ฏ\displaystyle=\cdots
=โˆ‘r1,โ€ฆ,rm=0โˆždimkโ€‹[x0]/Ir1,โ€ฆ,rm\displaystyle=\sum_{r_{1},...,r_{m}=0}^{\infty}\dim k[x_{0}]/I_{r_{1},...,r_{m}}
=โˆ‘r1,โ€ฆ,rm=0โˆžฮปr1,โ€ฆ,rm.\displaystyle=\sum_{r_{1},...,r_{m}=0}^{\infty}\lambda_{r_{1},...,r_{m}}.

We notice that ฮปr1,โ€ฆ,rm=0\lambda_{r_{1},...,r_{m}}=0 if one of r1,โ€ฆ,rmr_{1},...,r_{m} is โ‰ฅn\geq n.

Now suppose (r1,โ€ฆ,rm)โ‰ค(s1,โ€ฆ,sm)(r_{1},...,r_{m})\leq(s_{1},...,s_{m}), we know that Ir1,โ€ฆ,rmโІIs1,โ€ฆ,smI_{r_{1},...,r_{m}}\subseteq I_{s_{1},...,s_{m}} by the definition. Hence ฮปr1,โ€ฆ,rmโ‰ฅฮปs1,โ€ฆ,sm\lambda_{r_{1},...,r_{m}}\geq\lambda_{s_{1},...,s_{m}}. โˆŽ

Lemma 2.2.

Given a (x0,โ€ฆ,xm)(x_{0},...,x_{m})-primary ideal IโŠ‚kโ€‹[x0,โ€ฆ,xm]I\subset k[x_{0},...,x_{m}] of codimension nn with m-dimensional partition ฮป\lambda:

(1) Fix (r1,โ€ฆ,rm)(r_{1},...,r_{m}). Then

x0ฮปr1,โ€ฆ,rmโ€‹โˆi=1mxiri+โˆ‘i=1mxiโ€‹Piโ€‹โˆj=1ixjrjx_{0}^{\lambda_{r_{1},...,r_{m}}}\prod_{i=1}^{m}x_{i}^{r_{i}}+\sum_{i=1}^{m}x_{i}P_{i}\prod_{j=1}^{i}x_{j}^{r_{j}}

belongs to II for some polynomials Piโˆˆkโ€‹[x0,xi,xi+1,โ€ฆ,xm]P_{i}\in k[x_{0},x_{i},x_{i+1},...,x_{m}].

(2) If ฮปr1,0,โ€ฆ,0=0\lambda_{r_{1},0,...,0}=0, then x1r1โˆˆIx_{1}^{r_{1}}\in I.

(3) If ฮปr1,r2,โ€ฆ,rm=0\lambda_{r_{1},r_{2},...,r_{m}}=0, then

โˆi=1mxiri+โˆ‘i=1mโˆ’1xiโ€‹Piโ€‹โˆj=1ixjrj\prod_{i=1}^{m}x_{i}^{r_{i}}+\sum_{i=1}^{m-1}x_{i}P_{i}\prod_{j=1}^{i}x_{j}^{r_{j}}

belongs to II for some polynomials Piโˆˆkโ€‹[x0,xi,xi+1,โ€ฆ,xm]P_{i}\in k[x_{0},x_{i},x_{i+1},...,x_{m}].

Proof.

(1) This follows from the definition of ฮปr1,โ€ฆ,rm\lambda_{r_{1},...,r_{m}}.

(2) Since (I:x1r1)(x1,โ€ฆ,xm)=x0ฮปr1,0,โ€ฆ,0=(1)โŠ‚kโ€‹[x0]\frac{(I:x_{1}^{r_{1}})}{(x_{1},...,x_{m})}=x_{0}^{\lambda_{r_{1},0,...,0}}=(1)\subset k[x_{0}] and xinโˆˆIx_{i}^{n}\in I for 0โ‰คiโ‰คm0\leq i\leq m, we deduce that (I:x1r1)=(1)(I:x_{1}^{r_{1}})=(1) by the Hilbertโ€™s Nullstellensatz. Hence x1r1โˆˆIx_{1}^{r_{1}}\in I

(3) Since Ir1,r2,โ€ฆ,rm:=(Ir1,r2,โ€ฆ,rmโˆ’1:xmrm)/(xm)=(x0ฮปr1,โ€ฆ,rm)=(1)I_{r_{1},r_{2},...,r_{m}}:=(I_{r_{1},r_{2},...,r_{m-1}}:x_{m}^{r_{m}})/(x_{m})=(x_{0}^{\lambda_{r_{1},...,r_{m}}})=(1) and xmnโˆˆIx_{m}^{n}\in I, we deduce that (Ir1,r2,โ€ฆ,rmโˆ’1:xmrm)=(1)(I_{r_{1},r_{2},...,r_{m-1}}:x_{m}^{r_{m}})=(1) by the Hilbertโ€™s Nullstellensatz. Then the statement follows from the definition of Ir1,r2,โ€ฆ,rmโˆ’1I_{r_{1},r_{2},...,r_{m-1}}. โˆŽ

Definition 2.3.

Given an mm-dimensional partition ฮป\lambda of nn, an mm-tuple (r1,โ€ฆ,rm)โˆˆโ„•m(r_{1},...,r_{m})\in\mathbb{N}^{m} is called a corner index if for each 1โ‰คiโ‰คm1\leq i\leq m, either ri=0r_{i}=0 or ฮปr1,โ€ฆ,riโˆ’1,โ€ฆ,rm>ฮปr1,โ€ฆ,rm\lambda_{r_{1},...,r_{i}-1,...,r_{m}}>\lambda_{r_{1},...,r_{m}}. We denote the lexicographic order on (r1,โ€ฆ,rm)(r_{1},...,r_{m}) by โŠฒ\lhd, i.e. (s1,โ€ฆ,sm)โŠฒ(r1,โ€ฆ,rm)(s_{1},...,s_{m})\lhd(r_{1},...,r_{m}) if there is 1โ‰คiโ‰คm1\leq i\leq m such that sk=rks_{k}=r_{k} for 1โ‰คk<i1\leq k<i and si<ris_{i}<r_{i}.

Proposition 2.4.

Given a (x0,โ€ฆ,xm)(x_{0},...,x_{m})-primary ideal IโŠ‚kโ€‹[x0,โ€ฆ,xm]I\subset k[x_{0},...,x_{m}] of codimension nn, if its associated mm-dimensional paritition of nn is ฮป\lambda, then II is generated by the set of following polynomials:

Fr1,โ€ฆ,rm:=x0ฮปr1,โ€ฆ,rmโ€‹x1r1โ€‹โ€ฆโ€‹xmrm+โˆ‘(s1,โ€ฆ,sm)โˆˆJโˆ‘t=0ฮปs1,โ€ฆ,smโˆ’1at,s1,โ€ฆ,smr1,โ€ฆ,rmโ€‹x0tโ€‹x1s1โ€‹โ€ฆโ€‹xmsmF_{r_{1},...,r_{m}}:=x_{0}^{\lambda_{r_{1},...,r_{m}}}x_{1}^{r_{1}}...x_{m}^{r_{m}}+\sum_{(s_{1},...,s_{m})\in J}\sum_{t=0}^{\lambda_{s_{1},...,s_{m}}-1}a_{t,s_{1},...,s_{m}}^{r_{1},...,r_{m}}x_{0}^{t}x_{1}^{s_{1}}...x_{m}^{s_{m}}

for some at,s1,โ€ฆ,smr1,โ€ฆ,rmโˆˆka_{t,s_{1},...,s_{m}}^{r_{1},...,r_{m}}\in k, where (r1,โ€ฆ,rm)(r_{1},...,r_{m}) is a corner index and

J={(s1,โ€ฆ,sm)โˆˆโ„•m|(s1,โ€ฆ,sm)โŠณ(r1,โ€ฆ,rm)}.J=\{(s_{1},...,s_{m})\in\mathbb{N}^{m}|(s_{1},...,s_{m})\rhd(r_{1},...,r_{m})\}.
Proof.

Such kinds of polynomials are contained in II because of Lemma 2.2 by inductions from the larger tuples to the smaller tuples. Notice that Fr1,โ€ฆ,rmF_{r_{1},...,r_{m}} can be defined for a general (r1,โ€ฆ,rm)(r_{1},...,r_{m}). There is no x0s0โ€‹x1s1โ€‹โ€ฆโ€‹xmsmx_{0}^{s_{0}}x_{1}^{s_{1}}...x_{m}^{s_{m}} term such that s0โ‰ฅฮปs1,โ€ฆ,sms_{0}\geq\lambda_{s_{1},...,s_{m}} since those terms can be canceled out by Fr1,โ€ฆ,rmF_{r_{1},...,r_{m}} with larger tuples. The polynomials Fr1,โ€ฆ,rmF_{r_{1},...,r_{m}} can be generated by Fr1,โ€ฆ,rmF_{r_{1},...,r_{m}} with corner indexes.

Let Iโ€ฒI^{\prime} be the ideal in kโ€‹[x0,โ€ฆ,xm]k[x_{0},...,x_{m}] generated by the polynomials Fr1,โ€ฆ,rmF_{r_{1},...,r_{m}} with corner indexes. Then dimkโ€‹[x0,โ€ฆ,xm]/Iโ€ฒโ‰ฅdimkโ€‹[x0,โ€ฆ,xm]/I=n\dim k[x_{0},...,x_{m}]/I^{\prime}\geq\dim k[x_{0},...,x_{m}]/I=n since Iโ€ฒโІII^{\prime}\subseteq I. But kโ€‹[x0,โ€ฆ,xm]/Iโ€ฒk[x_{0},...,x_{m}]/I^{\prime} is generated as a kk-linear space by the monomials

x0tr1,โ€ฆ,rmโ€‹x1r1โ€‹โ€ฆโ€‹xmrm, 0โ‰คtr1,โ€ฆ,rm<ฮปr1,โ€ฆ,rm,ฮปr1,โ€ฆ,rmโ‰ 0.x_{0}^{t_{r_{1},...,r_{m}}}x_{1}^{r_{1}}...x_{m}^{r_{m}},\ 0\leq t_{r_{1},...,r_{m}}<\lambda_{r_{1},...,r_{m}},\lambda_{r_{1},...,r_{m}}\neq 0.

Hence dimkโ€‹[x0,โ€ฆ,xm]/Iโ€ฒโ‰คโˆ‘ฮปr1,โ€ฆ,rm=n\dim k[x_{0},...,x_{m}]/I^{\prime}\leq\sum\lambda_{r_{1},...,r_{m}}=n by Proposition 2.1, which implies that Iโ€ฒ=II^{\prime}=I. โˆŽ

Remark 2.5.

We notice that the coefficients at,s1,โ€ฆ,smr1,โ€ฆ,rma_{t,s_{1},...,s_{m}}^{r_{1},...,r_{m}} cannot be arbitrarily chosen. Otherwise, it is possible that dimkโ€‹[x0,โ€ฆ,xm]/Iโ€ฒ<n\dim k[x_{0},...,x_{m}]/I^{\prime}<n. On the other hand, if we are given two (x0,โ€ฆ,xm)(x_{0},...,x_{m})-primary ideals I1,I2โŠ‚kโ€‹[x0,โ€ฆ,xm]I_{1},I_{2}\subset k[x_{0},...,x_{m}] of codimension nn with the same partition ฮป\lambda, then I1=I2I_{1}=I_{2} if and only if the corresponding coefficients at,s1,โ€ฆ,smr1,โ€ฆ,rma_{t,s_{1},...,s_{m}}^{r_{1},...,r_{m}} are the same for the two ideals.

Although the set of generators in Proposition 2.4 is minimal in some sense, it is hard to write out the relations among those at,s1,โ€ฆ,smr1,โ€ฆ,rma_{t,s_{1},...,s_{m}}^{r_{1},...,r_{m}}. Hence we will include those non-corner Fr1,โ€ฆ,rmF_{r_{1},...,r_{m}} and form another set of generators for II, which contains more elements but is easier to figure out the relations among coefficients.

There is a one-to-one correspondence between mm-dimensional partitions of nn and certain sets of monomials in x0,โ€ฆ,xmx_{0},...,x_{m} if we regard the partition as a (m+1)(m+1)-dimensional object. Namely, the partition ฮป={ฮปi1,โ€ฆ,im}\lambda=\{\lambda_{i_{1},...,i_{m}}\} corresponds to the set

๐’ชฮป={x0jโ€‹x1i1โ€‹โ€ฆโ€‹xmim|i1โ‰ฅ0,โ€ฆ,imโ‰ฅ0,ฮปi1,โ€ฆ,imโ‰ 0, 0โ‰คjโ‰คฮปi1,โ€ฆ,imโˆ’1}.\mathcal{O}_{\lambda}=\{x_{0}^{j}x_{1}^{i_{1}}...x_{m}^{i_{m}}|\ i_{1}\geq 0,...,i_{m}\geq 0,\ \lambda_{i_{1},...,i_{m}}\neq 0,\ 0\leq j\leq\lambda_{i_{1},...,i_{m}}-1\ \}.

We define the border โˆ‚๐’ชฮป\partial\mathcal{O}_{\lambda} of ๐’ชฮป\mathcal{O}_{\lambda} by

โˆ‚๐’ชฮป=โ‹ƒi=0mxiโ€‹๐’ชฮป\๐’ชฮป.\partial\mathcal{O}_{\lambda}=\bigcup_{i=0}^{m}x_{i}\mathcal{O}_{\lambda}\backslash\mathcal{O}_{\lambda}.

We want to form a new set of generators for a (x0,โ€ฆ,xm)(x_{0},...,x_{m})-primary ideal IโŠ‚kโ€‹[x0,โ€ฆ,xm]I\subset k[x_{0},...,x_{m}] such that each polynomial is โ€œleadedโ€ by the monomials in โˆ‚๐’ชฮป\partial\mathcal{O}_{\lambda}. Let MM be an (m+1)(m+1)-tuple (r0,โ€ฆ,rm)(r_{0},...,r_{m}). We denote the monomial x0r0โ€‹โ€ฆโ€‹xmrmx_{0}^{r_{0}}...x_{m}^{r_{m}} by xMx^{M}.

Proposition 2.6.

Given a (x0,โ€ฆ,xm)(x_{0},...,x_{m})-primary ideal IโŠ‚kโ€‹[x0,โ€ฆ,xm]I\subset k[x_{0},...,x_{m}] of codimension nn, if its associated mm-dimensional paritition of nn is ฮป\lambda, then II is generated by the set of following polynomials:

FM:=xMโˆ’โˆ‘(s1,โ€ฆ,sm)โˆˆJโˆ‘t=0ฮปs1,โ€ฆ,smโˆ’1at,s1,โ€ฆ,smMโ€‹x0tโ€‹x1s1โ€‹โ€ฆโ€‹xmsmF_{M}:=x^{M}-\sum_{(s_{1},...,s_{m})\in J}\sum_{t=0}^{\lambda_{s_{1},...,s_{m}}-1}a_{t,s_{1},...,s_{m}}^{M}x_{0}^{t}x_{1}^{s_{1}}...x_{m}^{s_{m}}

for some at,s1,โ€ฆ,smMโˆˆka_{t,s_{1},...,s_{m}}^{M}\in k, where MM is an (m+1)(m+1)-tuple (r0,โ€ฆ,rm)(r_{0},...,r_{m}) such that xMโˆˆโˆ‚๐’ชฮปx^{M}\in\partial\mathcal{O}_{\lambda}, M~\tilde{M} is the mm-tuple (r1,โ€ฆ,rm)(r_{1},...,r_{m}) which omits the first coordinate of MM, and

J={(s1,โ€ฆ,sm)โˆˆโ„•m|(s1,โ€ฆ,sm)โŠณ(r1,โ€ฆ,rm)}.J=\{(s_{1},...,s_{m})\in\mathbb{N}^{m}|(s_{1},...,s_{m})\rhd(r_{1},...,r_{m})\}.
Proof.

Since this set of generators contains the set of generators in Proposition 2.4, it generates II. The coefficients of the extra polynomials here are determined by the coefficients of the polynomials in Proposition 2.4. We also notice that these generators have the same uniqueness property as in Remark 2.5. โˆŽ

Now we want to apply some techniques in the theory of border bases to determine the relations among those coefficients.

Definition 2.7.

Let ฮป\lambda be an mm-dimensional partition of nn. Given rโˆˆ{0,โ€ฆ,m}r\in\{0,...,m\}. Let ๐’ชฮป={t1,โ€ฆ,tn}\mathcal{O}_{\lambda}=\{t_{1},...,t_{n}\} be the corresponding set of monomials. Suppose โˆ‚๐’ชฮป={b1,โ€ฆ,bฮฝ}\partial\mathcal{O}_{\lambda}=\{b_{1},...,b_{\nu}\}. Suppose the generators in 2.6 are Fj=bjโˆ’โˆ‘i=1nฮฑijโ€‹tiF_{j}=b_{j}-\sum_{i=1}^{n}\alpha_{i}^{j}t_{i}. We define the nn by nn rr-th formal multiplication matrix Tr=(ฮพkโ€‹lr)T_{r}=(\xi_{kl}^{r}) of ๐’ชฮป\mathcal{O}_{\lambda} by

ฮพkโ€‹lr={ฮดkโ€‹i,ifย โ€‹xrโ€‹tl=tiฮฑkj,ifย โ€‹xrโ€‹tl=bj,\xi_{kl}^{r}=\begin{cases}\delta_{ki},\ \text{if }x_{r}t_{l}=t_{i}\\ \alpha_{k}^{j},\ \text{if }x_{r}t_{l}=b_{j}\end{cases},

where ฮดkโ€‹i=1\delta_{ki}=1 if k=ik=i and ฮดkโ€‹i=0\delta_{ki}=0 otherwise.

These matrices describe the multplication operations on the linear space VV, the basis of which consists of elements in ๐’ชฮป\mathcal{O}_{\lambda}. For example, the formal multiplication matrix T0T_{0} is the matrix for multiplicaton by x0x_{0}. Let tlt_{l} be a monomial in ๐’ชฮป\mathcal{O}_{\lambda}. If x0โ€‹tlโˆˆ๐’ชฮปx_{0}t_{l}\in\mathcal{O}_{\lambda}, then T0โ€‹(tl)=x0โ€‹tlT_{0}(t_{l})=x_{0}t_{l}. If x0โ€‹tl=bjx_{0}t_{l}=b_{j}, then T0โ€‹(tl)=โˆ‘i=1nฮฑijโ€‹tiT_{0}(t_{l})=\sum_{i=1}^{n}\alpha_{i}^{j}t_{i}.

The following theorems are proved in [KR05] with slightly different presentations.

Theorem 2.8.

[KR05, Theorem 6.4.30.] Let ฮป\lambda be an mm-dimensional partition of nn. Let ๐’ชฮป={t1,โ€ฆ,tn}\mathcal{O}_{\lambda}=\{t_{1},...,t_{n}\} be the corresponding set of monomials. Suppose โˆ‚๐’ชฮป={b1,โ€ฆ,bฮฝ}\partial\mathcal{O}_{\lambda}=\{b_{1},...,b_{\nu}\}. Define the polynomials Fj=bjโˆ’โˆ‘i=1nฮฑijโ€‹tiF_{j}=b_{j}-\sum_{i=1}^{n}\alpha_{i}^{j}t_{i} for j=1,โ€ฆ,ฮฝj=1,...,\nu. Let II be the ideal in โ„‚โ€‹[x0,โ€ฆ,xm]\mathbb{C}[x_{0},...,x_{m}] generated by the polynomials FjF_{j}. Then the following conditions are equivalent:

a) The dimension of โ„‚โ€‹[x0,โ€ฆ,xm]/I\mathbb{C}[x_{0},...,x_{m}]/I is nn.

b) The formal multiplication matrices of ๐’ชฮป\mathcal{O}_{\lambda} are pairwise commuting.

In that case the formal multiplication matrices represent the multiplication endormorphism of โ„‚โ€‹[x0,โ€ฆ,xm]/I\mathbb{C}[x_{0},...,x_{m}]/I with respect to the basis t1ยฏ,โ€ฆ,tnยฏ\overline{t_{1}},...,\overline{t_{n}}.

Since the matrices are explicit, we can write down all the relations of the coefficients of FjF_{j} such that the formal multiplication matrices are pairwise commuting.

Theorem 2.9.

[KR05, Proposition 6.4.32.]111We correct some typos and add a missing set of equations. Using the same notations in theorem 2.8, we define a map for rโˆˆ{0,โ€ฆ,m}r\in\{0,...,m\} and iโˆˆ{1,โ€ฆ,n}i\in\{1,...,n\}

ฯrโ€‹(i)={j,ifย โ€‹xrโ€‹ti=tjโˆˆ๐’ชฮปk,ifย โ€‹xrโ€‹ti=bkโˆˆโˆ‚๐’ชฮป.\rho_{r}(i)=\begin{cases}j,\ \text{if }x_{r}t_{i}=t_{j}\in\mathcal{O}_{\lambda}\\ k,\ \text{if }x_{r}t_{i}=b_{k}\in\partial\mathcal{O}_{\lambda}\end{cases}.

Then the formal multiplication matrices are pairwise commuting if and only if the following equations are satisfied for i,pโˆˆ{1,โ€ฆ,n}i,p\in\{1,...,n\} and 0โ‰คr<sโ‰คm0\leq r<s\leq m:

(1)โ€‹โˆ‘{d|xrโ€‹tdโˆˆ๐’ชฮป}ฮดpโ€‹ฯrโ€‹(d)โ€‹ฮฑdk+โˆ‘{d|xrโ€‹tdโˆˆโˆ‚๐’ชฮป}ฮฑpฯrโ€‹(d)โ€‹ฮฑdk=ฮฑplโ€‹ย ifย โ€‹xrโ€‹ti=tj,xsโ€‹ti=bk,xrโ€‹bk=bl(1)\sum_{\{d|x_{r}t_{d}\in\mathcal{O}_{\lambda}\}}\delta_{p\rho_{r}(d)}\alpha_{d}^{k}+\sum_{\{d|x_{r}t_{d}\in\partial\mathcal{O}_{\lambda}\}}\alpha_{p}^{\rho_{r}(d)}\alpha_{d}^{k}=\alpha_{p}^{l}\text{ if }x_{r}t_{i}=t_{j},\ x_{s}t_{i}=b_{k},\ x_{r}b_{k}=b_{l}
(2)โ€‹โˆ‘{d|xsโ€‹tdโˆˆ๐’ชฮป}ฮดpโ€‹ฯsโ€‹(d)โ€‹ฮฑdk+โˆ‘{d|xsโ€‹tdโˆˆโˆ‚๐’ชฮป}ฮฑpฯsโ€‹(d)โ€‹ฮฑdk=ฮฑplโ€‹ย ifย โ€‹xsโ€‹ti=tj,xrโ€‹ti=bk,xsโ€‹bk=bl(2)\sum_{\{d|x_{s}t_{d}\in\mathcal{O}_{\lambda}\}}\delta_{p\rho_{s}(d)}\alpha_{d}^{k}+\sum_{\{d|x_{s}t_{d}\in\partial\mathcal{O}_{\lambda}\}}\alpha_{p}^{\rho_{s}(d)}\alpha_{d}^{k}=\alpha_{p}^{l}\text{ if }x_{s}t_{i}=t_{j},\ x_{r}t_{i}=b_{k},\ x_{s}b_{k}=b_{l}
(3)โ€‹โˆ‘{d|xrโ€‹tdโˆˆ๐’ชฮป}ฮดpโ€‹ฯrโ€‹(d)โ€‹ฮฑdk+โˆ‘{d|xrโ€‹tdโˆˆโˆ‚๐’ชฮป}ฮฑpฯrโ€‹(d)โ€‹ฮฑdk=โˆ‘{d|xsโ€‹tdโˆˆ๐’ชฮป}ฮดpโ€‹ฯsโ€‹(d)โ€‹ฮฑdj+โˆ‘{d|xsโ€‹tdโˆˆโˆ‚๐’ชฮป}ฮฑpฯsโ€‹(d)โ€‹ฮฑdj\displaystyle(3)\sum_{\{d|x_{r}t_{d}\in\mathcal{O}_{\lambda}\}}\delta_{p\rho_{r}(d)}\alpha_{d}^{k}+\sum_{\{d|x_{r}t_{d}\in\partial\mathcal{O}_{\lambda}\}}\alpha_{p}^{\rho_{r}(d)}\alpha_{d}^{k}=\sum_{\{d|x_{s}t_{d}\in\mathcal{O}_{\lambda}\}}\delta_{p\rho_{s}(d)}\alpha_{d}^{j}+\sum_{\{d|x_{s}t_{d}\in\partial\mathcal{O}_{\lambda}\}}\alpha_{p}^{\rho_{s}(d)}\alpha_{d}^{j}
ifย โ€‹xrโ€‹ti=bj,xsโ€‹ti=bk\displaystyle\text{if }x_{r}t_{i}=b_{j},\ x_{s}t_{i}=b_{k}
Proof of Theorem 1.4.

By Proposition 2.6, Theorem 2.8 and Theorem 2.9, the affine variety VฮปV_{\lambda} is defined by the variables/coefficients ฮฑโˆ—โˆ—\alpha_{*}^{*} quotient by the relations (1),(2),(3)(1),(2),(3). The decomposition in the Grothendieck of varieties follows from [LL20, Lemma A.4]. โˆŽ

We give some examples using the notation in Proposition 2.6.

Example 2.10.
33 22 11 11 11
m=1,ฮป0=3,ฮป1=2,ฮป2=1,ฮป3=1,ฮป4=1.m=1,\ \lambda_{0}=3,\ \lambda_{1}=2,\ \lambda_{2}=1,\ \lambda_{3}=1,\ \lambda_{4}=1.

Ideals IโŠ‚kโ€‹[z,x]I\subset k[z,x] associated with this partition have the form

I=(z3โˆ’a0130xโˆ’a1130xzโˆ’a0230x2โˆ’a0330x3โˆ’a0440x4,z2xโˆ’a0221x2โˆ’a0321x3โˆ’a0421x4,I=(z^{3}-a^{30}_{01}x-a^{30}_{11}xz-a^{30}_{02}x^{2}-a^{30}_{03}x^{3}-a^{40}_{04}x^{4},\ z^{2}x-a^{21}_{02}x^{2}-a^{21}_{03}x^{3}-a^{21}_{04}x^{4},
zx2โˆ’a0312x3โˆ’a0412x4,zx3โˆ’a0413x4,x5)zx^{2}-a^{12}_{03}x^{3}-a^{12}_{04}x^{4},\ zx^{3}-a^{13}_{04}x^{4},\ x^{5})

The relations between the coefficients are

a0330+a1130โ€‹a0412=a0221โ€‹a0412+a0321โ€‹a0413,a0230+a1130โ€‹a0312=a0221โ€‹a0312,a^{30}_{03}+a^{30}_{11}a^{12}_{04}=a^{21}_{02}a^{12}_{04}+a^{21}_{03}a^{13}_{04},\ a^{30}_{02}+a^{30}_{11}a^{12}_{03}=a^{21}_{02}a^{12}_{03},
a0130=0,a0321=a0312โ€‹a0413,a0221=0,a0312=a0413.a^{30}_{01}=0,\ a^{21}_{03}=a^{12}_{03}a^{13}_{04},\ a^{21}_{02}=0,\ a^{12}_{03}=a^{13}_{04}.

Hence VฮปV_{\lambda} is an affine space ๐”ธ5{\mathbb{A}}^{5} with free variables a0430,a1130,a0421,a0412,a0413a^{30}_{04},a^{30}_{11},a^{21}_{04},a^{12}_{04},a^{13}_{04}.

Remark 2.11.

When m=1m=1, one can define a total order on the variables aโˆ—โˆ—a^{*}_{*}. Then one observes that all the variables are expressed by larger variables. Hence the stratum VฮปV_{\lambda} is always an affine space with the expected dimension.

Example 2.12.
11
11 11 11
m=2,ฮป0,0=1,ฮป1,0=1,ฮป2,0=1,ฮป0,1=1.m=2,\lambda_{0,0}=1,\ \lambda_{1,0}=1,\ \lambda_{2,0}=1,\ \lambda_{0,1}=1.

Ideals IโŠ‚kโ€‹[z,x,y],I\subset k[z,x,y], associated with this partition have the form

I=(zโˆ’a010100โ€‹xโˆ’a020100โ€‹x2โˆ’a001100โ€‹y,zโ€‹xโˆ’a020110โ€‹x2,zโ€‹yโˆ’a010101โ€‹xโˆ’a020101โ€‹x2,y2โˆ’a010002โ€‹xโˆ’a020002โ€‹x2,xโ€‹yโˆ’a020011โ€‹x2,zโ€‹x2,x3)I=(z-a^{100}_{010}x-a^{100}_{020}x^{2}-a^{100}_{001}y,\ zx-a^{110}_{020}x^{2},\,zy-a^{101}_{010}x-a^{101}_{020}x^{2},\,y^{2}-a^{002}_{010}x-a^{002}_{020}x^{2},\ xy-a^{011}_{020}x^{2},\ zx^{2},\ x^{3})

The relations between the coefficients are

a010101=0,a010100+a001100โ€‹a020011=a020110,a010101โ€‹a020011=a020110โ€‹a010002a^{101}_{010}=0,\ a^{100}_{010}+a^{100}_{001}a^{011}_{020}=a^{110}_{020},\ a^{101}_{010}a^{011}_{020}=a^{110}_{020}a^{002}_{010}
a001100โ€‹a020002+a010100โ€‹a020011=a020101,a001100โ€‹a010002=a010101,a010002=0a^{100}_{001}a^{002}_{020}+a^{100}_{010}a^{011}_{020}=a^{101}_{020},\ a^{100}_{001}a^{002}_{010}=a^{101}_{010},\ a^{002}_{010}=0

Hence VฮปV_{\lambda} is an affine space ๐”ธ5{\mathbb{A}}^{5} with free varibles a010100,a020100,a001100,a020002,a020011a^{100}_{010},a^{100}_{020},a^{100}_{001},a^{002}_{020},a^{011}_{020}.

However, VฮปV_{\lambda} is not an affine space in general. The reason for not being affine is that only quadratic terms are left in some relations or some variabes are expressed in different ways. One can carry out the following calculations by hand or by programme.

Example 2.13.
11
22 11

Only one quadratic term is left in the relation from Tyโ€‹Tzโ€‹(t100)=Tzโ€‹Tyโ€‹(t100)T_{y}T_{z}(t_{100})=T_{z}T_{y}(t_{100}):

a010002โ€‹a001200=0a^{002}_{010}a^{200}_{001}=0

All the other variables are free variables. Hence it is not an affine space. We deduce that [Vฮป]=2โ€‹L3โˆ’L2[V_{\lambda}]=2L^{3}-L^{2} in the Grothendieck group of varieties by calculations.

Example 2.14.
11
11
22 11

Excluding free variables and the variables determined by other variables, we have the relation

a010003โ€‹((a002101)2โˆ’a002200)=0.a_{010}^{003}((a_{002}^{101})^{2}-a_{002}^{200})=0.

We deduce that [Vฮป]=2โ€‹L4โˆ’L3[V_{\lambda}]=2L^{4}-L^{3} in the Grothendieck group of varieties by calculations.

Example 2.15.
11
22 11 11

Excluding free variables and the variables determined by other variables, we have the relation

a001200โ€‹((a020011)2โˆ’a020002)=0.a_{001}^{200}((a_{020}^{011})^{2}-a_{020}^{002})=0.

We deduce that [Vฮป]=2โ€‹L5โˆ’L4[V_{\lambda}]=2L^{5}-L^{4} in the Grothendieck group of varieties by calculations.

Example 2.16.
11
33 11

Excluding free variables and the variables determined by other variables, we have the relations

a010002โ€‹a001300=0a_{010}^{002}a_{001}^{300}=0

We deduce that [Vฮป]=2โ€‹L3โˆ’L2[V_{\lambda}]=2L^{3}-L^{2} in the Grothendieck group of varieties by calculations.

Proof of Theorem 1.6.

We use computer programme to generate all the 2-dimensional partitions of nn and calculate the dimension of VฮปV_{\lambda} for nโ‰ค5n\leq 5. This is done by the observation that all the strata are affine for nโ‰ค5n\leq 5 except for the above examples. Then we counting the number of points over ๐”ฝ2\mathbb{F}_{2} for those affine strata. See Appendix. โˆŽ

Via the power structure over the Grothendieck group of varieties [ZLH06], the relation between the Hilbert schemes of points and the punctual Hilbert schemes of points can be expressed as follows.

Theorem 2.17.

[ZLH06, Theorem 1] For a smooth quasi-projective variety XX of dimension dd, the following identity holds in K0โ€‹(Varโ„‚)โ€‹[[T]]K_{0}({\rm Var}_{\mathbb{C}})[[T]]:

โ„Xโ€‹(T)=(โ„๐”ธd,0โ€‹(T))[X],\mathbb{H}_{X}(T)=(\mathbb{H}_{{\mathbb{A}}^{d},0}(T))^{[X]},

where

โ„Xโ€‹(T):=1+โˆ‘n=1โˆž[Hilbnโ€‹(X)]โ€‹Tn,โ„๐”ธd,0โ€‹(T):=1+โˆ‘n=1โˆž[Hilb0nโ€‹(๐”ธd)]โ€‹Tn\mathbb{H}_{X}(T):=1+\sum_{n=1}^{\infty}[{\rm Hilb}^{n}(X)]T^{n},\ \ \mathbb{H}_{{\mathbb{A}}^{d},0}(T):=1+\sum_{n=1}^{\infty}[{\rm Hilb}^{n}_{0}({\mathbb{A}}^{d})]T^{n}
Proof of Theorem 1.7.

Denote K0โ€‹(Varโ„‚)K_{0}({\rm Var}_{\mathbb{C}}) by RR. Any series Aโ€‹(T)โˆˆ1+Tโ‹…Rโ€‹[[T]]A(T)\in 1+T\cdot R[[T]] can be uniquely written as a product of the form โˆi=1โˆž(1โˆ’Ti)โˆ’ai\prod_{i=1}^{\infty}(1-T^{i})^{-a_{i}} with aiโˆˆRa_{i}\in R, and

(Aโ€‹(T))m=โˆi=1โˆž(1โˆ’Ti)โˆ’aiโ€‹m(A(T))^{m}=\prod_{i=1}^{\infty}(1-T^{i})^{-a_{i}m}

for mโˆˆRm\in R. When Aโ€‹(T)=โ„๐”ธ3,0โ€‹(T)A(T)=\mathbb{H}_{{\mathbb{A}}^{3},0}(T), aia_{i} is a polynomial in LL for iโ‰ค5i\leq 5 by Theorem 1.6, and

โ„๐”ธ3โ€‹(T)=(โ„๐”ธ3,0โ€‹(T))[๐”ธ3].\mathbb{H}_{{\mathbb{A}}^{3}}(T)=(\mathbb{H}_{{\mathbb{A}}^{3},0}(T))^{[{\mathbb{A}}^{3}]}.

Hence if we can calculate (1โˆ’Ti)kโ€‹L(1-T^{i})^{kL} for kโˆˆโ„คk\in{\mathbb{Z}}, we can calculate the coefficients of TnT^{n} in the left hand side for nโ‰ค5n\leq 5. But (1โˆ’T)โˆ’[M]=โˆ‘n=0โˆž[Snโ€‹M]โ€‹Tn(1-T)^{-[M]}=\sum_{n=0}^{\infty}[S^{n}M]T^{n} (see [ZLH06]), where Snโ€‹M=Mn/SnS^{n}M=M^{n}/S_{n} is the nnth symmetric power of MM, and [Snโ€‹(๐”ธm)]=[๐”ธnโ€‹m][S^{n}({\mathbb{A}}^{m})]=[{\mathbb{A}}^{nm}] in K0โ€‹(Varโ„‚)K_{0}({\rm Var}_{\mathbb{C}}). So we can carry out the calculation by programme. โˆŽ

3. Appendix

Lemma 3.1.

All the strata as 11 11 โ‹ฏ\cdots 11 are affine spaces.

Proof.

All the relations from Txโ€‹Ty=Tyโ€‹TxT_{x}T_{y}=T_{y}T_{x} and Txโ€‹Tz=Tzโ€‹TxT_{x}T_{z}=T_{z}T_{x} are given by one variable being equal to another variable. We claim that they imply Tyโ€‹Tz=Tzโ€‹TyT_{y}T_{z}=T_{z}T_{y}. This is done inductively by checking Tyโ€‹Tzโ€‹(t0โ€‹xโ€‹0)=Tzโ€‹Tyโ€‹(t0โ€‹xโ€‹0)T_{y}T_{z}(t_{0x0})=T_{z}T_{y}(t_{0x0}) from larger xx to smaller xx. When x=nโˆ’1,nโˆ’2x=n-1,n-2, Tyโ€‹Tzโ€‹(t0โ€‹xโ€‹0)=Tzโ€‹Tyโ€‹(t0โ€‹xโ€‹0)=0T_{y}T_{z}(t_{0x0})=T_{z}T_{y}(t_{0x0})=0. Suppose Tyโ€‹Tzโ€‹(t0โ€‹xโ€‹0)=Tzโ€‹Tyโ€‹(t0โ€‹xโ€‹0)T_{y}T_{z}(t_{0x0})=T_{z}T_{y}(t_{0x0}) for nโˆ’2โ‰ฅx>kn-2\geq x>k. Then

Tyโ€‹Tzโ€‹(t0โ€‹kโ€‹0)=Tyโ€‹Tzโ€‹Dxโ€‹(t0,k+1,0)=Tyโ€‹Dxโ€‹Tzโ€‹(t0,k+1,0)T_{y}T_{z}(t_{0k0})=T_{y}T_{z}D_{x}(t_{0,k+1,0})=T_{y}D_{x}T_{z}(t_{0,k+1,0})
=Tzโ€‹Dxโ€‹Tyโ€‹(t0,k+1,0)=Tzโ€‹Tyโ€‹Dxโ€‹(t0,k+1,0)=Tzโ€‹Tyโ€‹(t0โ€‹kโ€‹0),=T_{z}D_{x}T_{y}(t_{0,k+1,0})=T_{z}T_{y}D_{x}(t_{0,k+1,0})=T_{z}T_{y}(t_{0k0}),

where DxD_{x} is the endormorphism sending t0โ€‹xโ€‹0t_{0x0} to t0,xโˆ’1,0t_{0,x-1,0} (not the inverse of TxT_{x} since TxT_{x} is not invertible) and we used Txโ€‹Ty=Tyโ€‹TxT_{x}T_{y}=T_{y}T_{x} implicitly. โˆŽ

Lemma 3.2.

All the strata as aa 11 โ‹ฏ\cdots 11 are affine spaces, a>1a>1.

Proof.

We first notice that Txโ€‹Tz=Tzโ€‹Tx,Tyโ€‹Tz=Tzโ€‹TyT_{x}T_{z}=T_{z}T_{x},T_{y}T_{z}=T_{z}T_{y} and Txโ€‹Ty=Tyโ€‹TxT_{x}T_{y}=T_{y}T_{x} is equivalent to Txโ€‹Tz=Tzโ€‹Tx,Tyโ€‹Tz=Tzโ€‹TyT_{x}T_{z}=T_{z}T_{x},T_{y}T_{z}=T_{z}T_{y} and Txโ€‹Tyโ€‹(t0โ€‹iโ€‹j)=Tyโ€‹Txโ€‹(t0โ€‹iโ€‹j)T_{x}T_{y}(t_{0ij})=T_{y}T_{x}(t_{0ij}) for all i,ji,j. Then as in Remark 2.11 and Lemma 3.1, it suffices to check Tzโ€‹Tyโ€‹(taโˆ’1,0,0)=Tyโ€‹Tzโ€‹(taโˆ’1,0,0)T_{z}T_{y}(t_{a-1,0,0})=T_{y}T_{z}(t_{a-1,0,0}) is implied by other relations. Notice that TyT_{y} send the last term of Tzโ€‹(taโˆ’1,0,0)T_{z}(t_{a-1,0,0}) to 0. Hence DxD_{x} is well-defined during the calculation below:

Tyโ€‹Tzโ€‹(taโˆ’1,0,0)=Tyโ€‹Dxโ€‹Txโ€‹Tzโ€‹(taโˆ’1,0,0)=Tyโ€‹Dxโ€‹Tzโ€‹Txโ€‹(taโˆ’1,0,0)=Tzโ€‹Dxโ€‹Tyโ€‹Txโ€‹(taโˆ’1,0,0)T_{y}T_{z}(t_{a-1,0,0})=T_{y}D_{x}T_{x}T_{z}(t_{a-1,0,0})=T_{y}D_{x}T_{z}T_{x}(t_{a-1,0,0})=T_{z}D_{x}T_{y}T_{x}(t_{a-1,0,0})
=Tzโ€‹Dxโ€‹Tyโ€‹Tzaโˆ’1โ€‹Txโ€‹(t000)=Tzโ€‹Dxโ€‹Tyโ€‹Tzaโˆ’1โ€‹(t010)=Tzโ€‹Dxโ€‹Tzaโˆ’1โ€‹(t011)=Tzaโ€‹(t001)=Tzโ€‹Tyโ€‹(taโˆ’1,0,0)=T_{z}D_{x}T_{y}T_{z}^{a-1}T_{x}(t_{000})=T_{z}D_{x}T_{y}T_{z}^{a-1}(t_{010})=T_{z}D_{x}T_{z}^{a-1}(t_{011})=T_{z}^{a}(t_{001})=T_{z}T_{y}(t_{a-1,0,0})

โˆŽ

Lemma 3.3.

All the strata as 11 11 11 โ‹ฏ\cdots 11 are affine spaces.

Proof.

We need to check that Tzโ€‹Tyโ€‹(t001)=Tyโ€‹Tzโ€‹(t001)T_{z}T_{y}(t_{001})=T_{y}T_{z}(t_{001}) and Tzโ€‹Tyโ€‹(t000)=Tyโ€‹Tzโ€‹(t000)T_{z}T_{y}(t_{000})=T_{y}T_{z}(t_{000}) are implied by other relations or given by affine spaces. Notice that TyT_{y} send the last term of Tzโ€‹(t001)T_{z}(t_{001}) to 0. Hence DxD_{x} is well-defined during the calculation below:

Tyโ€‹Tzโ€‹(t001)=Tyโ€‹Dxโ€‹Txโ€‹Tzโ€‹(t001)=Tyโ€‹Dxโ€‹Tzโ€‹Txโ€‹(t001)=Tzโ€‹Dxโ€‹Tyโ€‹Txโ€‹(t001)=Tzโ€‹Tyโ€‹(t001)T_{y}T_{z}(t_{001})=T_{y}D_{x}T_{x}T_{z}(t_{001})=T_{y}D_{x}T_{z}T_{x}(t_{001})=T_{z}D_{x}T_{y}T_{x}(t_{001})=T_{z}T_{y}(t_{001})

Notice that a0โ€‹xโ€‹0101a_{0x0}^{101} is expressed in two quadrics in Tzโ€‹Tyโ€‹(t000)=Tyโ€‹Tzโ€‹(t000)T_{z}T_{y}(t_{000})=T_{y}T_{z}(t_{000}) and Tzโ€‹Txโ€‹(t001)=Txโ€‹Tzโ€‹(t001)T_{z}T_{x}(t_{001})=T_{x}T_{z}(t_{001}) except when x=nโˆ’2x=n-2. Hence we only need to show that the two expressions are the same. Let VV be the vector space generated by the basis vectors t001,t0โ€‹xโ€‹0,0โ‰คxโ‰คnโˆ’2t_{001},t_{0x0},0\leq x\leq n-2. Let WW be the subspace generated by those vectors excluding t0,nโˆ’2,0t_{0,n-2,0}. In other words, we show that Tzโ€‹Tyโ€‹(t000)|W=Tyโ€‹Tzโ€‹(t000)|WT_{z}T_{y}(t_{000})|_{W}=T_{y}T_{z}(t_{000})|_{W} is implied by Tzโ€‹Txโ€‹(t001)=Txโ€‹Tzโ€‹(t001)T_{z}T_{x}(t_{001})=T_{x}T_{z}(t_{001}) and other relations:

Tzโ€‹Tyโ€‹(t000)|W=Tzโ€‹Dxโ€‹Txโ€‹(t001)|W=Tzโ€‹Dxโ€‹Tyโ€‹(t010)|W=Tyโ€‹Dxโ€‹Tzโ€‹(t010)|WT_{z}T_{y}(t_{000})|_{W}=T_{z}D_{x}T_{x}(t_{001})|_{W}=T_{z}D_{x}T_{y}(t_{010})|_{W}=T_{y}D_{x}T_{z}(t_{010})|_{W}
=Tyโ€‹Dxโ€‹Txโ€‹Tzโ€‹(t000)|W=Tyโ€‹Tzโ€‹(t000)|W=T_{y}D_{x}T_{x}T_{z}(t_{000})|_{W}=T_{y}T_{z}(t_{000})|_{W}

โˆŽ

Lemma 3.4.

All the strata as 11 โ‹ฎ\vdots 11 11 โ‹ฏ\cdots 11 are affine spaces.

Proof.

Similar as above. โˆŽ

Lemma 3.5.

The strata 11 11 11 11 ย ย ย ย ย  11 11 11 11 11 are affine spaces.

Proof.

We prove the first case. The second case is similar. The variable a010101a^{101}_{010} is expressed in two quadrics in Tzโ€‹Tyโ€‹(t000)=Tyโ€‹Tzโ€‹(t000)T_{z}T_{y}(t_{000})=T_{y}T_{z}(t_{000}) and Tzโ€‹Tyโ€‹(t001)=Tyโ€‹Tzโ€‹(t001)T_{z}T_{y}(t_{001})=T_{y}T_{z}(t_{001}), and we will show the second is implied by the first and some other relations:

Tyโ€‹Tzโ€‹(t001)=Tyโ€‹Tzโ€‹Tyโ€‹(t000)=Tyโ€‹Tyโ€‹Tzโ€‹(t000)=Tyโ€‹Tyโ€‹Dxโ€‹Txโ€‹Tzโ€‹(t000)=Tyโ€‹Tyโ€‹Dxโ€‹Tzโ€‹Txโ€‹(t000)T_{y}T_{z}(t_{001})=T_{y}T_{z}T_{y}(t_{000})=T_{y}T_{y}T_{z}(t_{000})=T_{y}T_{y}D_{x}T_{x}T_{z}(t_{000})=T_{y}T_{y}D_{x}T_{z}T_{x}(t_{000})
=Tyโ€‹Tyโ€‹Dxโ€‹Tzโ€‹(t010)=a011110โ€‹a010002โ€‹t011=Tzโ€‹Tyโ€‹(t001)=T_{y}T_{y}D_{x}T_{z}(t_{010})=a^{110}_{011}a^{002}_{010}t_{011}=T_{z}T_{y}(t_{001})

โˆŽ

Lemma 3.6.

The strata 11 11 22 11 ย ย ย ย ย  11 22 22 are affine spaces.

Proof.

We prove the first case. The second case is similar. The only problem we may have is a001200โ€‹a010002=0a^{200}_{001}a^{002}_{010}=0 from Tyโ€‹Tzโ€‹(t100)=Tzโ€‹Tyโ€‹(t100)T_{y}T_{z}(t_{100})=T_{z}T_{y}(t_{100}). But a001200=0a^{200}_{001}=0 from Tzโ€‹Txโ€‹(t100)=Txโ€‹Tzโ€‹(t100)T_{z}T_{x}(t_{100})=T_{x}T_{z}(t_{100}), so the stratus is affine. โˆŽ

Lemma 3.7.

The stratum 22 22 11 is affine.

Proof.

We only need to check that Tzโ€‹Tyโ€‹(t100)=Tyโ€‹Tzโ€‹(t100)T_{z}T_{y}(t_{100})=T_{y}T_{z}(t_{100}) is implied by other relations:

Tyโ€‹Tzโ€‹(t100)=Tyโ€‹Dxโ€‹Tzโ€‹(t110)=a020210โ€‹a020011โ€‹t020=a020210โ€‹a110101โ€‹t020=Tzโ€‹Tyโ€‹(t100),T_{y}T_{z}(t_{100})=T_{y}D_{x}T_{z}(t_{110})=a^{210}_{020}a^{011}_{020}t_{020}=a^{210}_{020}a^{101}_{110}t_{020}=T_{z}T_{y}(t_{100}),

where we implicitly use a020111=0a^{111}_{020}=0 from Tzโ€‹Tyโ€‹(t010)=Tyโ€‹Tzโ€‹(t010)T_{z}T_{y}(t_{010})=T_{y}T_{z}(t_{010}). โˆŽ

Remark 3.8.

The above lemmas and the examples in Sectoin 2 cover all the cases that need to be checked for nโ‰ค5n\leq 5. For the cases not being covered, either all the relations are linear or there is no variable being expressed twice involving quadrics. Hence those strata are affine spaces. We believe there should be a more uniform and geometric way to describe this phenomenon.

References

  • [ES87] Ellingsrud, G.; Strรธmme, S.A.: On the homology of the Hilbert scheme of points in the plane. Invent.ย math. 87 (1987), 343โ€“352.
  • [LL20] Larsen, Michael J.; Lunts, Valery A.: Irrationality of motivic zeta functions. Duke Math. J. 169(1) (2020), 1-30.
  • [KR05] Kreuzer, Martin; Robbiano, Lorenzo: Computational commutative algebra. 2. Springer-Verlag, Berlin, 2005. x+586 pp.
  • [ZLH06] Gusein-Zade, S. M.; Luengo, I.; Melle-Hernandez, A.: Power structure over the Grothendieck ring of varieties and generating series of Hilbert schemes of points. Michigan Math. J. 54 (2006), 353โ€“359