This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Also at ]Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), School of Physics and Astronomy, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 200240, China Also at ]Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), School of Physics and Astronomy, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 200240, China

Proposal for measuring Newtonian constant of gravitation at an exceptional point in an optomechanical system

Lei Chen [ [email protected]    Jian Liu [    Ka-di Zhu Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), School of Physics and Astronomy, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 200240, China
Abstract

We develop a quantum mechanical method of measuring the Newtonian constant of gravitation, GG. In this method, an optomechanical system consisting of two cavities and two membrane resonators is used. The added source mass would induce the shifts of the eigenfrequencies of the supermodes. Via detecting the shifts, we can perform our measurement of GG. Furthermore, our system can features exceptional point (EP) which are branch point singularities of the spectrum and eigenfunctions. In the paper, we demonstrate that operating the system at EP can enhance our measurement of GG. In addition, we derive the relationship between EP enlarged eigenfrequency shift and the Newtonian constant. This work provides a way to engineer EP-assisted optomechanical devices for applications in the field of precision measurement of GG

preprint: APS/123-QED

I Introduction

Newton’s law of gravitation is often written as

F=Gm1m2r2,F=G\frac{m_{1}m_{2}}{r^{2}}, (1)

where m1m_{1} and m2m_{2} are the masses of two particles, rr is the distance between them and GG is the gravitational constant. Though the absolute value of GG has been measured by many experiments [1, 2, 3], two big puzzles still exist nowadays. One is the value of G ramains the least preciously known of the fundamental constants [4]. The Committee on Data for Science and Technology (CODATA) recommended value of GG based on the 2014 adjustment is 6.67408(31)×1011m3kg1s26.67408(31)\times{10}^{-11}m^{3}{kg}^{-1}s^{-2}, and the relative measurement uncertainty is as high as 4.7×1054.7\times{10}^{-5} [5]. The other puzzle is the experimental values of GG are not consistent with each other[6]. To resolve these puzzles strongly motivates us to develop different measurement methods [7].

In this paper, we develop a new method for determining GG. In our method, a quantum system consisting of two cavities and two membranes is considered. Gravitational force gradient originating from the source mass causes shifts of the resonant frequencies of two membranes, resulting the shifts of the eigenfrequencies of the supermodes emerging in our system. Based on this, we establish our measurement principles. Exceptional points are branch point singularities of the spectrum and eigenfunctions [8] which occur generically in eigenvalue problems that depend on a parameter[9]. Because EPs in open quantum and wave systems can exhibit a strong spectral response to perturbations[10], their potential applications in precision measurement have been investigated both theoretically[11, 12] and experimentally[13, 14]. In this paper, EP effect is investigated numerically. The relating results indicate that this effect can enhance the detection of the eigenfrequency shift. Furthermore, the relationship between eigenfrequency shift and Newtonian constant is established provided that our system is operated at EP. In summary, we propose an EP-based quantum mechanical method for measuring GG. Finally we expect our work can enrich the experimental approaches of determining GG.

The remainder of the paper is organized as follows: In Sec. II we demonstrate the theoretical framework, in Sec. III we present the measurement principles, in Sec. IV we summarize the paper and provide an outlook.

Refer to caption
Figure 1: Schematic setup. Two Cavities, whose end-mirrors are two membrane resonators, are driven with two detuned lasers.

II Theoretical framework

We consider a system composed of two optomechanical cavities the two end-mirrors of which are two nanosized membrane resonators [15]. Cavity 1(2) is driven with a red (blue) detuned laser. By symmetrically driving the cavities we can engineer either mechanical gain or mechanical loss [16]. Note that at the gain and loss balance the system features EP. In the rotating frame of the driving fields, the Hamiltonian of the system could be written as (=1\hbar=1)

H=H1+H2+H3,H=H_{1}+H_{2}+H_{3}, (2)

where

H1\displaystyle H_{1} =j=1,2ωjbj+bjΔjaj+ajgaj+aj(bj++bj)\displaystyle=\sum_{j=1,2}\omega_{j}b_{j}^{+}b_{j}-\Delta_{j}a_{j}^{+}a_{j}-ga_{j}^{+}a_{j}(b_{j}^{+}+b_{j})
H2\displaystyle H_{2} =ε(b1b2++b1+b2)\displaystyle=-\varepsilon(b_{1}b_{2}^{+}+b_{1}^{+}b_{2})
H3\displaystyle H_{3} =j=1,2E(aj++aj).\displaystyle=\sum_{j=1,2}E(a_{j}^{+}+a_{j}). (3)

Here aja_{j} and bjb_{j} are the annihilation bosonic field operators describing the optical and mechanical resonators. ωj\omega_{j} is the mechanical frequency of the jthj^{th} resonator and Δj=ωPjωcj\Delta_{j}=\omega_{P}^{j}-\omega_{c}^{j} is the optical detuning between the optical (ωPj\omega_{P}^{j}) and the cavity (ωcj\omega_{c}^{j}) frequencies. ε\varepsilon is the coupling strength between the two mechanical resonators, gg is the vacuum optomechanical coupling strength. The amplitude of the driving pump is EE.

The quantum Langevin equations (QLEs) for the operations of the optical and the mechanical modes are derived from Eq. (3) as

a˙j\displaystyle{\dot{a}}_{j} =[i(Δj+g(bj++bj))κ2]ajiκ(αin+ξaj)\displaystyle=[i(\Delta_{j}+g(b_{j}^{+}+b_{j}))-\frac{\kappa}{2}]a_{j}-i\sqrt{\kappa}(\alpha^{in}+\xi_{a_{j}})
b˙j\displaystyle{\dot{b}}_{j} =(iωj+γm2)bj+iεbk+igaj+aj+γmξbj,\displaystyle=-(i\omega_{j}+\frac{\gamma_{m}}{2})b_{j}+i\varepsilon b_{k}+iga_{j}^{+}a_{j}+\sqrt{\gamma_{m}}\xi_{b_{j}}, (4)

where optical (κ\kappa) and mechanical (γm\gamma_{m}) dissipations have been added, kk is defined as k=3jk=3-j, and the amplitude of the driving pump has been substituted as E=γmαinE=\sqrt{\gamma_{m}}\alpha^{in} in order to account for losses. The term ξaj\xi_{a_{j}} (ξbj\xi_{b_{j}}) denotes the optical (thermal) Langevin noise at room temperature. We seek to investigate in the classical limit, where photon and phonon numbers are assumed large in the system, and noise terms can be neglected in our analysis. Then we can derive the following set of nonlinear equations:

α˙j\displaystyle{\dot{\alpha}}_{j} =[i(Δj+g(βj+βj))κ2]αjiκαin\displaystyle=[i(\Delta_{j}+g(\beta_{j}^{*}+\beta_{j}))-\frac{\kappa}{2}]\alpha_{j}-i\sqrt{\kappa}\alpha^{in}
β˙j\displaystyle{\dot{\beta}}_{j} =(iωj+γm2)βj+iεβk+igαjαj.\displaystyle=-(i\omega_{j}+\frac{\gamma_{m}}{2})\beta_{j}+i\varepsilon\beta_{k}+ig\alpha_{j}^{*}\alpha_{j}. (5)

Here αj=aj\alpha_{j}=\langle a_{j}\rangle and βj=bj\beta_{j}=\langle b_{j}\rangle.

To identify the EP feature, we approach the limit cycle oscillations by the ansatz, βj(t)=β¯j+Ajexp(iωlockt)\beta_{j}(t)={\bar{\beta}}_{j}+A_{j}exp(-i\omega_{lock}t). β¯j{\bar{\beta}}_{j} is a constant shift in the origin of the movement, AjA_{j} is taken to be a slowly varying function of time, and ωlock\omega_{lock} is the mechanical locked frequency. According to [17], we can derive

iΨt=HeffΨ,\displaystyle i\frac{\partial\Psi}{\partial t}=H_{eff}\Psi, (6)

where Ψ=(β1,β2)T\Psi=(\beta_{1},\beta_{2})^{T} is the state vector and the effective Hamiltonian is

Heff=[ωeff1iγeff12εεωeff2iγeff22]H_{eff}=\begin{bmatrix}\omega^{1}_{eff}-i{\frac{\gamma^{1}_{eff}}{2}}&-\varepsilon\\ -\varepsilon&\omega^{2}_{eff}-i{\frac{\gamma^{2}_{eff}}{2}}\end{bmatrix}

. Here ωeffj=ωj+Δωj\omega^{j}_{eff}=\omega_{j}+\Delta\omega_{j} and γeffj=γm+γoptj\gamma^{j}_{eff}=\gamma_{m}+\gamma_{opt}^{j} define the effective frequencies and the effective damping respectively. The optical spring effect Δωj\Delta\omega_{j} and the optical damping γoptj\gamma_{opt}^{j} are given by

Δωj=2κ(gαin)2ωlockζjRe(nJn+1(ζj)Jn(ζj)hn+1jhnj)\displaystyle\Delta\omega_{j}=-\frac{2\kappa(g\alpha^{in})^{2}}{\omega_{lock}\zeta_{j}}Re(\sum_{n}\frac{J_{n+1}(-\zeta_{j})J_{n}(-\zeta_{j})}{h_{n+1}^{j*}{h_{n}^{j}}}) (7)

and

γoptj=2(κgαin)2ζjnJn+1(ζj)Jn(ζj)|hn+1jhnj|2.\displaystyle\gamma_{opt}^{j}=\frac{2(\kappa g\alpha^{in})^{2}}{\zeta_{j}}\sum_{n}\frac{J_{n+1}(-\zeta_{j})J_{n}(-\zeta_{j})}{{|h_{n+1}^{j*}{h_{n}^{j}}|}^{2}}. (8)

ζj=2gRe(Aj)ωlock\zeta_{j}=\frac{2gRe(A_{j})}{\omega_{lock}},Δ~j=Δj+2gRe(β¯j){\tilde{\Delta}}_{j}=\Delta_{j}+2gRe({\bar{\beta}}_{j}), hnj=i(nωlockΔ~j)+κ2h_{n}^{j}=i(n\omega_{lock}-{\tilde{\Delta}}_{j})+\frac{\kappa}{2}, and JnJ_{n} is the Bessel function of the first kind of order nn. The eigenvalues of the effective Hamiltonian can be described as

τ±=ωeff1+ωeff22iγeff1+γeff24±Δ2,\displaystyle\tau_{\pm}=\frac{\omega^{1}_{eff}+\omega^{2}_{eff}}{2}-i\frac{\gamma^{1}_{eff}+\gamma^{2}_{eff}}{4}\pm\frac{\sqrt{\varDelta}}{2}, (9)

with

Δ=[(ωeff1ωeff2)+i2(γeff2γeff1)]2+4ε2.\displaystyle\varDelta=[(\omega^{1}_{eff}-\omega^{2}_{eff})+\frac{i}{2}(\gamma^{2}_{eff}-\gamma^{1}_{eff})]^{2}+4\varepsilon^{2}. (10)

The EP of our system appears if Δ=0\Delta=0. The eigenfrequencies and the dissipations of the supermodes are defined as the real and imaginary parts of the eigenvalues, i.e.,ν±=Re(τ±)\nu_{\pm}=Re(\tau_{\pm}), and Υ±=Im(τ±)\Upsilon_{\pm}=Im(\tau_{\pm}). At the EP, both pairs of eigenfrequencies and dissipations coalesce, i.e., ν+=ν\nu_{+}=\nu_{-} and Υ+=Υ\Upsilon_{+}=\Upsilon_{-}.

For simplicity, we assume the two resonators are degenerated, causing ω1=ω2=ωr\omega_{1}=\omega_{2}=\omega_{r}. We adopt a weak driving regime, resulting Δωjωr\Delta\omega_{j}\ll\omega_{r}. We further assume γoptj=(αin)2ηj\gamma_{opt}^{j}=(\alpha^{in})^{2}\eta_{j} with η1η2\eta_{1}\neq\eta_{2}. Then the eigenvalues of the Hamiltonian can be written as

τ±\displaystyle\tau_{\pm}\approx ωri2γm+(η1+η2)(αin)24\displaystyle\omega_{r}-i\frac{2\gamma_{m}+(\eta_{1}+\eta_{2})(\alpha^{in})^{2}}{4}
±ε2(αin)4(η2η1)216.\displaystyle\pm\sqrt{\varepsilon^{2}-\frac{(\alpha^{in})^{4}(\eta_{2}-\eta_{1})^{2}}{16}}. (11)

As a result, the EP condition is tranformed into ε2(αin)4(η2η1)216=0\varepsilon^{2}-\frac{(\alpha^{in})^{4}(\eta_{2}-\eta_{1})^{2}}{16}=0, from which we derive that αin=αEPin=4ε|η2η1|\alpha^{in}=\alpha_{EP}^{in}=\sqrt{\frac{4\varepsilon}{|\eta_{2}-\eta_{1}|}}. Now we use an example to illustrate the EP feature (see Fig. 2). In this example, the parameters used are η1=106,η1=2×106,ε=102ωr,γm=104ωr.\eta_{1}={10}^{-6},\eta_{1}=2\times{10}^{-6},\varepsilon={10}^{-2}\omega_{r},\gamma_{m}={10}^{-4}\omega_{r}. The corresponding EP is αEPin=200ωr1/2\alpha_{EP}^{in}=200\omega_{r}^{1/2}. From the figure, it is seen that two eigenfrequencies coalesce at the EP as well as two dissipations. Based on the above analysis about our system, we present the principles of measurement in the next section.

Refer to caption
Figure 2: Illustration of EP feature. Eigenfrequencies ν±\nu_{\pm} and dissipations Υ±\Upsilon_{\pm} versus the driving strength αin\alpha^{in}. the parameters used are η1=106,η1=2×106,ε=102ωr,γm=104ωr.\eta_{1}={10}^{-6},\eta_{1}=2\times{10}^{-6},\varepsilon={10}^{-2}\omega_{r},\gamma_{m}={10}^{-4}\omega_{r}.

III Principles of measurement

Refer to caption
Figure 3: (a)The locations of two membranes and the sphere . (b) A cross section of the diagram in (a).

In our proposed method, a sphere with uniformly distributed mass mm, radius RR and density ρ\rho is utilized. This sphere and two membranes of our system are placed as shown in Fig. 3(a) Note that the sizes of two membrane resonators are much smaller than RR. The distances between two membranes and the center of the sphere are a1a_{1} and a2a_{2} respectively, which is shown in Fig. 3(b). We assume that exotic forces such as non-Newtonian gravitylike forces applied to the two membranes can be neglected. Because of the gravitational forces generated by the source mass, the resonant frequencies of two resonators are modified by δω1\delta\omega_{1} and δω2\delta\omega_{2} respectively. Here δω1\delta\omega_{1} and δω2\delta\omega_{2} are defined as δωj=ωjωj\delta\omega_{j}=\omega_{j}^{\prime}-\omega_{j}, where ωj\omega_{j}^{\prime} is the perturbed resonant frequency. From [18] we obtain

δωjωj12mjωj2F(aj)aj,\frac{\delta\omega_{j}}{\omega_{j}}\approx\frac{1}{2m_{j}\omega_{j}^{2}}\frac{\partial F(a_{j})}{\partial a_{j}}, (12)

where mjm_{j} is the mass of jjth membrane, and the gravitational force acting on jjth membrane is

F(aj)=GMmjaj2.F(a_{j})=\frac{GMm_{j}}{a_{j}^{2}}. (13)

From the above two equations, we derive

δωjGMωjaj3.\delta\omega_{j}\approx-\frac{GM}{\omega_{j}a_{j}^{3}}. (14)

From section 2 we know ω1=ω2=ωr\omega_{1}=\omega_{2}=\omega_{r}. Then we assume that a1a2a_{1}\gg a_{2}, resulting |δω1||δω2||\delta\omega_{1}|\ll|\delta\omega_{2}|.

Refer to caption
Figure 4: Eigenfrequencies ν±\nu_{\pm} and eigenfrequencies shifts Δν±\Delta\nu_{\pm} versus the driving field αin\alpha_{in} around EP. The black curves are for ν+\nu_{+} and Δν+\Delta\nu_{+}, while red ones for ν\nu_{-} and Δν\Delta\nu_{-}. (a)-(b)The parameters used are η1X=106,η2X=2×106,εX=102ωr,γmX=104ωr.\eta_{1X}={10}^{-6},\eta_{2X}=2\times{10}^{-6},\varepsilon_{X}={10}^{-2}\omega_{r},\gamma_{mX}={10}^{-4}\omega_{r}. (c)-(d)The parameters used are η1Y=3×107,η2Y=7×107,εY=103ωr,γmY=103ωr\eta_{1Y}=3\times{10}^{-7},\eta_{2Y}=7\times{10}^{-7},\varepsilon_{Y}={10}^{-3}\omega_{r},\gamma_{mY}={10}^{-3}\omega_{r}. (e)-(f) The parameters used are η1Z=105,η2Z=4×105,εZ=3×103ωr,γmZ=2×103ωr.\eta_{1Z}={10}^{-5},\eta_{2Z}=4\times{10}^{-5},\varepsilon_{Z}=3\times{10}^{-3}\omega_{r},\gamma_{mZ}=2\times{10}^{-3}\omega_{r}.

As a result of resonant frequency modification of two membranes, the eigenvalues of the Hamiltonian can be rewritten as

τ±\displaystyle\tau_{\pm}^{\prime}\approx ωr+δω22i2γm+(αin)2(η1+η2)4\displaystyle\omega_{r}+\frac{\delta\omega_{2}}{2}-i\frac{2\gamma_{m}+(\alpha^{in})^{2}(\eta_{1}+\eta_{2})}{4}
±[δω2+i2(αin)2(η2η1)]2+4ε22\displaystyle\pm\frac{\sqrt{[-\delta\omega_{2}+\frac{i}{2}(\alpha^{in})^{2}(\eta_{2}-\eta_{1})]^{2}+4\varepsilon^{2}}}{2} (15)

For convenience, we substitute δω\delta\omega for δω2\delta\omega_{2} in the remaining section. The shifts of the eigenfrequencies of the supermodes caused by the source mass can be described as

Δν±=Re(τ±)Re(τ±).\Delta\nu_{\pm}=Re(\tau_{\pm}^{\prime})-Re(\tau_{\pm}). (16)

Then from Eqs. (11), (15)-(16) we derive that

Δν±=Re(δω2\displaystyle\Delta\nu_{\pm}=Re(\frac{\delta\omega}{2}
±ε2(αin)4(η2η1)216+(δω)2iδω(αin)2(η2η1)4\displaystyle\pm\sqrt{\varepsilon^{2}-\frac{(\alpha^{in})^{4}(\eta_{2}-\eta_{1})^{2}}{16}+\frac{(\delta\omega)^{2}-i\delta\omega(\alpha^{in})^{2}(\eta_{2}-\eta_{1})}{4}}
ε2(αin)4(η2η1)216\displaystyle\mp\sqrt{\varepsilon^{2}-\frac{(\alpha^{in})^{4}(\eta_{2}-\eta_{1})^{2}}{16}} (17)

In the following, we consider three cases denoted by X, Y, and Z where we operate our system near the EP.

In the case of X, the parameters used are η1X=106,η2X=2×106,εX=102ωr,γmX=104ωr,\eta_{1X}={10}^{-6},\eta_{2X}=2\times{10}^{-6},\varepsilon_{X}={10}^{-2}\omega_{r},\gamma_{mX}={10}^{-4}\omega_{r}, and the corresponding EP is αEPXin=200ωr1/2\alpha_{EPX}^{in}=200\omega_{r}^{1/2}. In Y, η1Y=3×107,η2Y=7×107,εY=103ωr,γmY=103ωr,αEPYin=100ωr1/2.\eta_{1Y}=3\times{10}^{-7},\eta_{2Y}=7\times{10}^{-7},\varepsilon_{Y}={10}^{-3}\omega_{r},\gamma_{mY}={10}^{-3}\omega_{r},\alpha_{EPY}^{in}=100\omega_{r}^{1/2}. In Z, η1Z=105,η2Z=4×105,εZ=3×103ωr,γmZ=2×103ωr,αEPZin=20ωr1/2.\eta_{1Z}={10}^{-5},\eta_{2Z}=4\times{10}^{-5},\varepsilon_{Z}=3\times{10}^{-3}\omega_{r},\gamma_{mZ}=2\times{10}^{-3}\omega_{r},\alpha_{EPZ}^{in}=20\omega_{r}^{1/2}. Figure 4 illustrates how eigenfrequencies (ν±\nu_{\pm}) and eigenfrequencies shifts (Δν±\Delta\nu_{\pm}) undergo the EP corresponding to different perturbation. (a)-(b), (c)-(d) and (e)-(f) are for X, Y, Z respectively. The black curves are for ν+\nu_{+} and Δν+\Delta\nu_{+}, while red ones for ν\nu_{-} and Δν\Delta\nu_{-}. From this figure, we find that in all nine situations (different perturbation and different three cases) we would obtain a relative bigger positive frequency shift (|Δν+||\Delta\nu_{+}|) and a maximum negative eigenfrequency shift (|Δν||\Delta\nu_{-}|) at EPs.

Refer to caption
Figure 5: Nine ratios (Γ\Gamma)correspond to three cases(X, Y, and Z) and different perturbation (|δω||\delta\omega|).

To further demonstrate the EP effect, we define ratio Γ\Gamma as Γ=|Δν|EP|Δν|min\Gamma=\frac{|\Delta\nu_{-}|_{EP}}{|\Delta\nu_{-}|_{min}}, where |Δν|EP|\Delta\nu_{-}|_{EP} is the value of |Δν||\Delta\nu_{-}| related to αEPin\alpha_{EP}^{in} and |Δν|min|\Delta\nu_{-}|_{min} is the minimum value of |Δν||\Delta\nu_{-}|. Nine values of Γ\Gamma correspond to three cases(X, Y, and Z) and different perturbation (|δω||\delta\omega|) are shown in Fig. 5. where square, circles and triangle correspond to X, Y and Z respectively. We can find that in any of three cases a smaller |δω||\delta\omega| corresponds to a bigger Γ\Gamma. Since δω\delta\omega in practical experiments would be very tiny, we conclude that operating the system at EP may make a large contribution to our measurement.

We assume our system is operated at EP and investigate the relationship between EP enlarged eigenfrequency shift and the Newtonian constant. Accordingly there is αin=αEPin=4ε|η2η1|\alpha^{in}=\alpha^{in}_{EP}=\sqrt{\frac{4\varepsilon}{|\eta_{2}-\eta_{1}|}}. With the assumption η2>η1\eta_{2}>\eta_{1}, according to Eq. (17) we derive that

Δν±=Re(δω2±(δω)2iδω4ε4).\Delta\nu_{\pm}=Re(\frac{\delta\omega}{2}\pm\sqrt{\frac{(\delta\omega)^{2}-i\delta\omega 4\varepsilon}{4}}). (18)

Then, from Eq. (18) we derive

Δν±=δω2(11+1+16ε2(δω)22).\Delta\nu_{\pm}=\frac{\delta\omega}{2}(1\mp\sqrt{\frac{1+\sqrt{1+\frac{16\varepsilon^{2}}{(\delta\omega)^{2}}}}{2}}). (19)

Next we focus on Δν\Delta\nu_{-}. From the above, we obtain

δωGMωra23.\delta\omega\approx-\frac{GM}{\omega_{r}a_{2}^{3}}. (20)

From Eqs. (19)-(20), we derive

Δν=GM2ωra23GM2ωra231+1+16ε2ωr2a26G2M22.\displaystyle\Delta\nu_{-}=-\frac{GM}{2\omega_{r}a_{2}^{3}}-\frac{GM}{2\omega_{r}a_{2}^{3}}\sqrt{\frac{1+\sqrt{1+\frac{16\varepsilon^{2}\omega_{r}^{2}a_{2}^{6}}{G^{2}M^{2}}}}{2}}. (21)

We assume a2RRa_{2}-R\ll R. Consequently there is a2Ra_{2}\approx R. Since M=43πR3ρM=\frac{4}{3}\pi R^{3}\rho, equation (21) can be rewritten as

Δν2πGρ3ωr2πGρ3ωr1+1+9ε2ωr2G2π2ρ22.\Delta\nu_{-}\approx-\frac{2\pi G\rho}{3\omega_{r}}-\frac{2\pi G\rho}{3\omega_{r}}\sqrt{\frac{1+\sqrt{1+\frac{9\varepsilon^{2}\omega_{r}^{2}}{G^{2}\pi^{2}\rho^{2}}}}{2}}. (22)

Then we obtain

|Δν|=2πGρ3ωr+2πGρ3ωr1+1+9ε2ωr2G2π2ρ22.|\Delta\nu_{-}|=\frac{2\pi G\rho}{3\omega_{r}}+\frac{2\pi G\rho}{3\omega_{r}}\sqrt{\frac{1+\sqrt{1+\frac{9\varepsilon^{2}\omega_{r}^{2}}{G^{2}\pi^{2}\rho^{2}}}}{2}}. (23)

Till now, we have derived the relationship between eigenfrequency shift and the Newtonian constant. Then we can determine the value of GG and the relative uncertainty via the detection of |Δν||\Delta\nu_{-}|.

Refer to caption
Figure 6: (a) The adopted values of G in CODATA-2014 adjustment. (b)-(c) |Δν||\Delta\nu_{-}| as a function of GG. The parameters used are ε=102ωr,ωr=2×109Hz\varepsilon={10}^{-2}\omega_{r},\omega_{r}=2\times{10}^{9}Hz. (b) deals with three spheres with different densities, which are made of stainless steel, lead, and tungsten respectively. On the contrary, (c) only deal with a Tungsten sphere. Note that in (c), GG takes values of 6.67408(31)×1011m3kg1s26.67408(31)\times{10}^{-11}m^{3}\bullet{kg}^{-1}\bullet s^{-2}.

In Fig.6(a), the adopted values of GG in CODATA-2014 adjustment [5, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33] are illustrated according to [2]. To visualize our result (Eq.(23)), we plot |Δν||\Delta\nu_{-}| as a function of GG in Fig.6(b)-(c), where the parameters used are ε=102ωr\varepsilon={10}^{-2}\omega_{r}, and ωr=2×109Hz\omega_{r}=2\times{10}^{9}Hz. In (b), we utilize a Stainless steel sphere with ρ=9.8×103Kg/m3\rho=9.8\times{10}^{3}Kg/m^{3}, a Lead one with ρ=11.3×103Kg/m3\rho=11.3\times{10}^{3}Kg/m^{3} and a Tungsten one with ρ=19.35×103Kg/m3\rho=19.35\times{10}^{3}Kg/m^{3}. On the contrary, only a Tungsten sphere is considered in (c), where GG takes values of 6.67408(31)×1011m3kg1s26.67408(31)\times{10}^{-11}m^{3}\bullet{kg}^{-1}\bullet s^{-2} which is the 2014 CODATA recommended value of GG.

IV Summary and outlook

In sum, this paper presents a novel method which can be considered in the field of precision measurement of GG. In this method, two cavities and two membrane resonators constitute an optomechanical system. Gravitational force gradient perturbs the resonant frequencies of two membranes, resulting the shifts of the eigenfrequencies of the supermodes. Based on EP enhanced shifts, we can perform the measurement of GG. Compared to traditional measurements methods [34, 35] such as torsion balance, atom interferometry, etc., our method possesses two distinct characters. They are: a. The proposed setup is a minute-sized optomechanical system. b. EP effect plays an important role in the measurement of GG.

Based on this work where a second-order EP feature emerges in the proposed system, we can attempt to construct a new system which can be operated at higher-order EP, and a higher sensitivity may be achieved [36, 13, 37]. So far, EP effect in optomechanical systems have been observed [38, 39], indicating that our method can be put into consideration. Moreover, [40] can be referred to for the detection of the shift of the supermode eigenfrequency. Finally, we expect our proposal can promote the application of EP-based sensors to the measurement of GG.

Acknowledgements.
This work was supported by Natural Science Foundation of Shanghai (No. 20ZR1429900).

References

  • Xue et al. [2020] C. Xue, J. P. Liu, Q. Li, J. F. Wu, S. Q. Yang, Q. Liu, C. G. Shao, L. C. Tu, Z. K. Hu, and J. Luo, Precision measurement of the newtonian gravitational constant, National Science Review  (2020).
  • Liu et al. [2018] J.-P. Liu, J.-F. Wu, Q. Li, C. Xue, D.-K. Mao, S.-Q. Yang, C.-G. Shao, L.-C. Tu, Z.-K. Hu, and J. Luo, Experimental progresses on precision measurement of gravitational constant g, Acta Physica Sinica 67, 160603 (2018).
  • Gillies [1987] G. T. Gillies, The newtonian gravitational constant: an index of measurements, Metrologia 24, 1 (1987).
  • Li et al. [2018] Q. Li, C. Xue, J.-P. Liu, J.-F. Wu, S.-Q. Yang, C.-G. Shao, L.-D. Quan, W.-H. Tan, L.-C. Tu, Q. Liu, et al., Measurements of the gravitational constant using two independent methods, Nature 560, 582 (2018).
  • Mohr et al. [2016] P. J. Mohr, D. B. Newell, and B. N. Taylor, Codata recommended values of the fundamental physical constants: 2014, Rev. Mod. Phys. 88, 035009 (2016).
  • Křen [2019] P. Křen, On the inconsistency in experimental results of the gravitational constant, Measurement 136, 622 (2019).
  • Quinn [2014] T. Quinn, Don’t stop the quest to measure big g, Nature 505, 455 (2014).
  • Heiss [2004] W. D. Heiss, Exceptional points of non-hermitian operators, Journal of Physics A: Mathematical and General 37, 2455 (2004).
  • Heiss [2012] W. D. Heiss, The physics of exceptional points, JPhA 45 (2012).
  • Wiersig [2020] J. Wiersig, Review of exceptional point-based sensors, Photon. Res. 8, 1457 (2020).
  • Wiersig [2016] J. Wiersig, Sensors operating at exceptional points: General theory, Phys. Rev. A 93, 033809 (2016).
  • Wiersig [2014] J. Wiersig, Enhancing the sensitivity of frequency and energy splitting detection by using exceptional points: Application to microcavity sensors for single-particle detection, Phys. Rev. Lett. 112, 203901 (2014).
  • Hodaei et al. [2017] H. Hodaei, A. U. Hassan, S. Wittek, H. Garcia-Gracia, R. El-Ganainy, D. N. Christodoulides, and M. Khajavikhan, Enhanced sensitivity at higher-order exceptional points, Nature 548, 187 (2017).
  • Chen et al. [2017] W. Chen, S. K. Ozdemir, G. Zhao, J. Wiersig, and L. Yang, Exceptional points enhance sensing in an optical microcavity, Nature 548, 192 (2017).
  • Aspelmeyer et al. [2014] M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, Cavity optomechanics, Reviews of Modern Physics 86, 1391 (2014).
  • Djorwe et al. [2019] P. Djorwe, Y. Pennec, and B. Djafari-Rouhani, Exceptional point enhances sensitivity of optomechanical mass sensors, Physical Review Applied 12, 024002 (2019).
  • Djorwe et al. [2018] P. Djorwe, Y. Pennec, and B. Djafari-Rouhani, Frequency locking and controllable chaos through exceptional points in optomechanics, Physical Review E 98, 032201 (2018).
  • Harber et al. [2005] D. M. Harber, J. M. Obrecht, J. M. McGuirk, and E. A. Cornell, Measurement of the casimir-polder force through center-of-mass oscillations of a bose-einstein condensate, Phys. Rev. A 72, 033610 (2005).
  • Luther and Towler [1982] G. G. Luther and W. R. Towler, Redetermination of the newtonian gravitational constant g, Physical Review Letters 48, 121 (1982).
  • Karagioz and Izmailov [1996] O. Karagioz and V. Izmailov, Measurement of the gravitational constant with a torsion balance, Measurement Techniques 39, 979 (1996).
  • Bagley and Luther [1997] C. H. Bagley and G. G. Luther, Preliminary results of a determination of the newtonian constant of gravitation: a test of the kuroda hypothesis, Physical Review Letters 78, 3047 (1997).
  • Gundlach and Merkowitz [2000] J. H. Gundlach and S. M. Merkowitz, Measurement of newton’s constant using a torsion balance with angular acceleration feedback, Physical Review Letters 85, 2869 (2000).
  • Quinn et al. [2001] T. Quinn, C. Speake, S. Richman, R. Davis, and A. Picard, A new determination of g using two methods, Physical Review Letters 87, 111101 (2001).
  • Kleinevoß [2002] U. Kleinevoß, Bestimmung der Newtonschen gravitationskonstanten G, Ph.D. thesis, Universität Wuppertal, Fakultät für Mathematik und Naturwissenschaften … (2002).
  • Armstrong and Fitzgerald [2003] T. Armstrong and M. Fitzgerald, New measurements of g using the measurement standards laboratory torsion balance, Physical review letters 91, 201101 (2003).
  • Hu et al. [2005] Z.-K. Hu, J.-Q. Guo, and J. Luo, Correction of source mass effects in the hust-99 measurement of g, Physical Review D 71, 127505 (2005).
  • Holzschuh et al. [2006] E. Holzschuh, W. Kündig, F. Nolting, R. Pixley, J. Schurr, U. Straumann, et al., Measurement of newton’s gravitational constant, Physical Review D 74, 082001 (2006).
  • Luo et al. [2009] J. Luo, Q. Liu, L.-C. Tu, C.-G. Shao, L.-X. Liu, S.-Q. Yang, Q. Li, and Y.-T. Zhang, Determination of the newtonian gravitational constant g with time-of-swing method, Physical Review Letters 102, 240801 (2009).
  • Tu et al. [2010] L.-C. Tu, Q. Li, Q.-L. Wang, C.-G. Shao, S.-Q. Yang, L.-X. Liu, Q. Liu, and J. Luo, New determination of the gravitational constant g with time-of-swing method, Physical Review D 82, 022001 (2010).
  • Parks and Faller [2010] H. V. Parks and J. E. Faller, Simple pendulum determination of the gravitational constant, Physical Review Letters 105, 110801 (2010).
  • Quinn et al. [2013] T. Quinn, H. Parks, C. Speake, and R. Davis, Improved determination of g using two methods, Physical Review Letters 111, 101102 (2013).
  • Rosi et al. [2014] G. Rosi, F. Sorrentino, L. Cacciapuoti, M. Prevedelli, and G. Tino, Precision measurement of the newtonian gravitational constant using cold atoms, Nature 510, 518 (2014).
  • Newman et al. [2014] R. Newman, M. Bantel, E. Berg, and W. Cross, A measurement of g with a cryogenic torsion pendulum, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 372, 20140025 (2014).
  • Rothleitner and Schlamminger [2017] C. Rothleitner and S. Schlamminger, Invited review article: Measurements of the newtonian constant of gravitation, g, Review of Scientific Instruments 88, 111101 (2017).
  • Rosi [2016] G. Rosi, Challenging the ‘big g’measurement with atoms and light, Journal of Physics B: Atomic, Molecular and Optical Physics 49, 202002 (2016).
  • Jing et al. [2017] H. Jing, Ş. Özdemir, H. Lü, and F. Nori, High-order exceptional points in optomechanics, Scientific reports 7, 1 (2017).
  • Miri and Alù [2019] M.-A. Miri and A. Alù, Exceptional points in optics and photonics, Science 363, eaar7709 (2019).
  • Zhang et al. [2018] J. Zhang, B. Peng, s. K. özdemir, K. Pichler, D. O. Krimer, G. Zhao, F. Nori, Y.-x. Liu, S. Rotter, and L. Yang, A phonon laser operating at an exceptional point, Nature Photonics 12, 479 (2018).
  • Xu et al. [2016] H. Xu, D. Mason, L. Jiang, and J. Harris, Topological energy transfer in an optomechanical system with exceptional points, Nature 537, 80 (2016).
  • Peng et al. [2014] B. Peng, A. K. Zdemir, F. Lei, F. Monifi, M. Gianfreda, G. L. Long, S. Fan, F. Nori, C. M. Bender, and L. Yang, Parity-time-symmetric whispering-gallery microcavities, Nature Physics 10, 394 (2014).