This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

thanks: Corresponding Author

Properties of spin-1/2 heavy baryons at nonzero temperature

A. Türkan Özyeǧin University, Department of Natural and Mathematical Sciences, Çekmeköy, 34794 Istanbul, Turkey    G. Bozkır National Defense University, Army NCO Vocational HE School, Department of Basic Sciences, Altıeylül, 10185 Balıkesir ,Turkey    K. Azizi University of Tehran, Department of Physics, North Karegar Avenue, Tehran, 14395-547 Iran Doǧuş University, Department of Physics, Acıbadem-Kadıköy, 34722 Istanbul, Turkey
Abstract

The spectroscopic properties of single heavy spin-1/2 ΛQ\Lambda_{Q}, ΣQ\Sigma_{Q}, ΞQ()\Xi^{(\prime)}_{Q} and ΩQ\Omega_{Q} baryons are investigated at finite temperature in the framework of the thermal QCD sum rule. We discuss the behavior of the mass and residue of these baryons with respect to temperature taking into account contributions of non-perturbative operators up to dimension eight. We include additional operators coming from the Wilson expansion due to breaking the Lorentz invariance at nonzero temperature. The obtained results show that the mass of these baryons remain stable up to roughly T=108T=108 MeV while their residue is unchanged up to T=93T=93 MeV. After these points, the mass and residue start to diminish by increasing the temperature. The shifts in the mass and residue for both the bottom and charm channels are considerably large and we observe the melting of these baryons near to thepseudocritical temperature determined by recent lattice QCD calculations. We present our results for the mass of these baryons with both the positive and negative parity at the T0T\rightarrow 0 limit, which are consistent with the existing theoretical predictions as well as experimental data.

I Introduction

One of the most attractive subjects in particle physics is to investigate the spectroscopic properties of hadrons at finite temperatures. Such studies provide us with a better understanding of the perturbative and non-perturbative natures of QCD at hot mediums. They will also help us in analyses of data provided by future heavy ion collision experiments aiming to investigate the hadronic properties and possible phase transitions to quark gluon plasma (QGP) at finite temperatures and densities. In the last two decades, there have been significant experimental and theoretical studies on single heavy baryons in vacuum. Roughly, all single heavy baryons containing a heavy bb or cc quark have been successfully observed PDG . The investigation of these baryons at a medium with nonzero temperature is a very prominent research subject now and it will be in agenda of different experimental and theoretical studies.

Single heavy baryons (Qq1q2)(Qq_{1}q_{2}) are composite particles made of one heavy (Q=bQ=b or cc) and two light quarks (q1,2=u,dq_{1,2}=u,d or ss). These particles belong to either antitriplet of flavor antisymmetric state 3¯\overline{\textbf{3}} or sextet of flavor symmetric state 6. It is well known that total spin-parity of the ground state single heavy baryons in sextet state is either JP=12+J^{P}=\frac{1}{2}^{+} or JP=32+J^{P}=\frac{3}{2}^{+} while spin-parity of the single heavy baryons in antitriplet state is only JP=12+J^{P}=\frac{1}{2}^{+}. In this paper, we study the spectroscopic parameters of the spin-1/2 heavy bottom/charmed baryons both in antitriplet and sextet representations, whose members are shown in Table 1.

   Baryon    q1q_{1}    q2q_{2}    SU(3)
Λb(c)0(+)\Lambda_{b(c)}^{0(+)} uu dd 3¯\bar{3}
Ξb(c)0(+)\Xi_{b(c)}^{0(+)} uu ss 3¯\bar{3}
Ξb(c)(0)\Xi_{b(c)}^{-(0)} dd ss 3¯\bar{3}
Σb(c)+(++)\Sigma_{b(c)}^{+(++)} uu uu 66
Σb(c)0(+)\Sigma_{b(c)}^{0(+)} uu dd 66
Σb(c)(0)\Sigma_{b(c)}^{-(0)} dd dd 66
Ξb(c)0(+)\Xi_{b(c)}^{0(+)^{\prime}} uu ss 66
Ξb(c)(0)\Xi_{b(c)}^{-(0)^{\prime}} dd ss 66
Ωb(c)(0)\Omega_{b(c)}^{-(0)} ss ss 66
Table 1: Quark content of the spin-1/2 heavy baryons with different charges.

In the literature, a lot of theoretical studies on the investigation of the spin-1/2 heavy baryons in vacuum have been performed using different phenomenological approaches such as the quark model Roberts ; Karliner , quark potential model Capstick , heavy quark effective theory (HQET) Dai ; Liu ; Korner , chiral perturbation theory Savage , Feynman-Hellman theorem Roncaglia , hypercentral approach Ghalenovi1 ; Ghalenovi2 ; Patel1 ; Patel2 , lattice QCD simulation Brown ; Mathur ; Lewis ; Bahtiyar , relativistic (constituent) quark model Ebert1 ; Ebert2 ; Ebert3 ; Migura ; Gerasyuta1 ; Gerasyuta2 ; Gerasyuta3 ; Garcilazo , chiral quark-soliton model Kim , symmetry-preserving treatment of a vector×\timesvector contact interaction model Yin , QCD sum rules Shuryak ; Bagan ; Azizi ; Wang1 ; Wang2 ; Wang3 ; Zhang1 ; Zhang2 ; Agaev1 ; Agaev2 ; Agaev3 ; Agaev4 , etc. As we also previously mentioned, to better understand the hot and dense QCD matter created in relativistic heavy-ion collision experiments such as Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory’s (BNL) and the Large Hadron Collider (LHC) at the European Organization for Nuclear Research’s (CERN), the investigation of effects of temperature on spectroscopic properties of hadrons at nonzero temperature is needed. Such investigations can also help us to improve our understanding of phase transition, quark-gluon deconfinement and chiral symmetry restoration. By increasing in the temperature, a transition or chiral crossover Aoki ; MCheng from the hadronic phase to QGP phase may be occurred. Lattice QCD calculations show that thepseudocritical temperature is Tpc155MeVT_{pc}\approx 155MeV for chiral crossover Bhattacharya ; Bazavov2 to QGP.

One of the most applicable and powerful phenomenological tools that can be used to analyze the spectroscopic properties of hadrons at nonzero temperature is the thermal QCD sum rule method (TQCDSR). This method is the thermal version Bochkarev of the QCD sum rule, firstly introduced by Shifman, Vainshtein and Zakharov for mesons at zero temperature Shifman and then applied to baryons in vacuum by Ioffe Ioffe . In thermal version, some additional operators appear in the operator product expansion (OPE/Wilson expansion) due to the breaking of the Lorentz invariance and vacuum expectation values are replaced by their thermal forms at finite temperature. The essential objective of this study is to extend our previous work on the thermal properties of the spin-3/2 heavy baryons at nonzero temperature AziziTurkan and investigate the shifts on the mass and residue of the spin-1/2 heavy ΛQ\Lambda_{Q}, ΞQ\Xi_{Q}, ΣQ\Sigma_{Q}, ΞQ\Xi_{Q}^{{}^{\prime}} and ΩQ\Omega_{Q} baryons with respect to temperature using TQCDSR. In our calculations, we take account the extra operators arising from the OPE at nonzero temperature and use the thermal quark, gluon and mixed condensates up to dimension eight as well as the temperature-dependent energy-momentum tensor.

This study is structured as follows: In Sec. II, we derive the TQCDSR for masses and residues of the spin-1/2 heavy baryons at nonzero temperature. In Sec. III, we present the numerical analysis of the obtained sum rules for the physical parameters and a comparison of our results at zero temperature with those existing in the literature. The last section is devoted to both the summary of the results and our concluding remarks.

II Thermal QCD Sum Rule Calculations

The aim of this section is to obtain TQCDSR for the masses and residues of the spin-1/2 heavy ΛQ\Lambda_{Q}, ΞQ\Xi_{Q}, ΣQ\Sigma_{Q}, ΞQ\Xi_{Q}^{{}^{\prime}} and ΩQ\Omega_{Q} baryons at nonzero temperature. For this purpose, we start our calculations by considering the following two-point thermal correlation function:

Π(q,T)=id4xeiqxΨ|𝒯{JBQ(x)J¯BQ(0)}|Ψ,\Pi(q,T)=i\int d^{4}x~{}e^{iq\cdot x}\langle\Psi|\mathcal{T}\{J_{B_{Q}}(x)\bar{J}_{B_{Q}}(0)\}|\Psi\rangle, (1)

where qq denotes the four-momentum of the considered spin-1/2 heavy baryon (BQ{B_{Q}}), Ψ\Psi indicates the ground state of the hot medium and 𝒯\mathcal{T} is the time-ordering operator. JBQ(x)J_{B_{Q}}(x) is the interpolating current of BQ{B_{Q}} baryon, which couples to both the positive and negative parities. It is represented by the following expressions for anti-triplet (3¯\overline{\textbf{3}}) and sextet (6) baryons Bagan :

J3¯\displaystyle J_{\overline{\textbf{3}}} =\displaystyle= 16ϵabcl=12{2(q1T,a(x)CΓ1lq2b(x))Γ2lQc(x)\displaystyle\dfrac{1}{\sqrt{6}}\epsilon_{abc}\sum_{l=1}^{2}\ \Big{\{}2\Big{(}q_{1}^{T,a}(x)C\Gamma_{1}^{l}q_{2}^{b}(x)\Big{)}\Gamma_{2}^{l}Q^{c}(x) (2)
+\displaystyle+ (q1T,a(x)CΓ1lQb(x))Γ2lq2c(x)\displaystyle\Big{(}q_{1}^{T,a}(x)C\Gamma_{1}^{l}Q^{b}(x)\Big{)}\Gamma_{2}^{l}q_{2}^{c}(x)
+\displaystyle+ (QT,a(x)CΓ1lq2b(x))Γ2lq1c(x)},\displaystyle\Big{(}Q^{T,a}(x)C\Gamma_{1}^{l}q_{2}^{b}(x)\Big{)}\Gamma_{2}^{l}q_{1}^{c}(x)\Big{\}},
J6\displaystyle J_{\textbf{6}} =\displaystyle= 12ϵabcl=12{(q1T,a(x)CΓ1lQb(x))Γ2lq2c(x)\displaystyle-\dfrac{1}{\sqrt{2}}\epsilon_{abc}\sum_{l=1}^{2}\ \Big{\{}\Big{(}q_{1}^{T,a}(x)C\Gamma_{1}^{l}Q^{b}(x)\Big{)}\Gamma_{2}^{l}q_{2}^{c}(x) (3)
\displaystyle- (QT,a(x)CΓ1lq2b(x))Γ2lq1c(x)},\displaystyle\Big{(}Q^{T,a}(x)C\Gamma_{1}^{l}q_{2}^{b}(x)\Big{)}\Gamma_{2}^{l}q_{1}^{c}(x)\Big{\}},

where ϵabc\epsilon_{abc} is the Levi-Civita tensor with color indices a,b,ca,b,c , CC is the charge conjugation operator, Γ11=1\Gamma_{1}^{1}=1Γ12=Γ21=γ5\Gamma_{1}^{2}=\Gamma_{2}^{1}=\gamma^{5}, and Γ22=t\Gamma_{2}^{2}=t in which tt denotes an arbitrary mixing parameter with t=1t=-1 corresponds to the famous Ioffe currents that we consider in the present study. As we previously noted, q1q_{1} and q2q_{2} stand for light quarks and QQ for heavy quark field and they are given in Table 1 for all considered BQ{B_{Q}} baryons. Thus, considering Eq. (2) and Eq. (3), the interpolating currents for each state can be written as

JΞQ(0)\displaystyle J_{\Xi_{Q}^{-(0)}} =\displaystyle= 16ϵabcl=12{2(dT,a(x)CΓ1lsb(x))Γ2lQc(x)\displaystyle-\dfrac{1}{\sqrt{6}}\epsilon_{abc}\sum_{l=1}^{2}\ \Big{\{}2\Big{(}d^{T,a}(x)C\Gamma_{1}^{l}s^{b}(x)\Big{)}\Gamma_{2}^{l}Q^{c}(x)
+\displaystyle+ (dT,a(x)CΓ1lQb(x))Γ2lsc(x)\displaystyle\Big{(}d^{T,a}(x)C\Gamma_{1}^{l}Q^{b}(x)\Big{)}\Gamma_{2}^{l}s^{c}(x)
+\displaystyle+ (QT,a(x)CΓ1lsb(x))Γ2ldc(x)},\displaystyle\Big{(}Q^{T,a}(x)C\Gamma_{1}^{l}s^{b}(x)\Big{)}\Gamma_{2}^{l}d^{c}(x)\Big{\}},
JΞQ0(+)\displaystyle J_{\Xi_{Q}^{0(+)}} =\displaystyle= JΞQ(0)(du),\displaystyle J_{\Xi_{Q}^{-(0)}}(d\rightarrow u),
JΛQ0(+)\displaystyle J_{\Lambda_{Q}^{0(+)}} =\displaystyle= JΞQ(0)(du,sd),\displaystyle J_{\Xi_{Q}^{-(0)}}(d\rightarrow u,s\rightarrow d),
JΣQ0(+)\displaystyle J_{\Sigma_{Q}^{0(+)}} =\displaystyle= 12ϵabcl=12{(uT,a(x)CΓ1lQb(x))Γ2ldc(x)\displaystyle-\dfrac{1}{\sqrt{2}}\epsilon_{abc}\sum_{l=1}^{2}\ \Big{\{}\Big{(}u^{T,a}(x)C\Gamma_{1}^{l}Q^{b}(x)\Big{)}\Gamma_{2}^{l}d^{c}(x)
\displaystyle- (QT,a(x)CΓ1ldb(x))Γ2luc(x)},\displaystyle\Big{(}Q^{T,a}(x)C\Gamma_{1}^{l}d^{b}(x)\Big{)}\Gamma_{2}^{l}u^{c}(x)\Big{\}},
JΞQ(0)\displaystyle J_{\Xi_{Q}^{-(0)^{\prime}}} =\displaystyle= JΣQ0(+)(ud,ds),\displaystyle J_{\Sigma_{Q}^{0(+)}}(u\rightarrow d,d\rightarrow s),
JΞQ0(+)\displaystyle J_{\Xi_{Q}^{0(+)^{\prime}}} =\displaystyle= JΞQ(0)(du),\displaystyle J_{\Xi_{Q}^{-(0)^{\prime}}}(d\rightarrow u),
JΣQ(0)\displaystyle J_{\Sigma_{Q}^{-(0)}} =\displaystyle= JΞQ(0)(sd),\displaystyle J_{\Xi_{Q}^{-(0)^{\prime}}}(s\rightarrow d),
JΣQ+(++)\displaystyle J_{\Sigma_{Q}^{+(++)}} =\displaystyle= JΣQ(0)(du),\displaystyle J_{\Sigma_{Q}^{-(0)}}(d\rightarrow u),
JΩQ(0)\displaystyle J_{\Omega_{Q}^{-(0)}} =\displaystyle= JΣQ+(++)(us).\displaystyle J_{\Sigma_{Q}^{+(++)}}(u\rightarrow s). (4)

According to the standard philosophy of the QCD sum rule method, the aforementioned thermal correlation function is evaluated in two basic ways: i) On the hadronic side, it is calculated in terms of hadronic parameters such as the temperature-dependent mass and residue of hadron. ii) On the QCD side, it is calculated in terms of temperature-dependent QCD degrees of freedom in the deep Euclidean region with the help of OPE. Then, matching the coefficients of the selected structures from both sides in momentum space, via the dispersion relation, the QCD sum rules for the spectroscopic parameters of the BQ{B_{Q}} at nonzero temperature are obtained. In the final step, to suppress the contributions of the higher states and continuum in obtained sum rules, Borel transformation and continuum subtraction are applied to both sides of these equalities. One may first apply the Borel transformation and continuum subtraction, then match the coefficients of the selected structures from both sides.

The thermal correlation function in the hadronic side is obtained by inserting the full set of hadronic states having the same quantum numbers as the related interpolating current into Eq. (1). After performing the integration over four-xx, the thermal correlation function for the hadronic side can be written as

ΠHad.(q,T)\displaystyle\Pi^{Had.}(q,T)
=\displaystyle= Ψ|JBQ(0)|BQ+(q,s)BQ+(q,s)|JBQ(0)|Ψq2mBQ+2(T)\displaystyle-\frac{{\langle}\Psi|J_{B_{Q}}(0)|B_{Q}^{+}(q,s){\rangle}{\langle}B_{Q}^{+}(q,s)|J^{{\dagger}}_{B_{Q}}(0)|\Psi{\rangle}}{q^{2}-m_{B_{Q}^{+}}^{2}(T)}
\displaystyle- Ψ|JBQ(0)|BQ(q,s)BQ(q,s)|JBQ(0)|Ψq2mBQ2(T)\displaystyle\frac{{\langle}\Psi|J_{B_{Q}}(0)|B_{Q}^{-}(q,s){\rangle}{\langle}B_{Q}^{-}(q,s)|J^{{\dagger}}_{B_{Q}}(0)|\Psi{\rangle}}{q^{2}-m_{B_{Q}^{-}}^{2}(T)}
+\displaystyle+ ,\displaystyle\mbox{...},

where |BQ+(q,s)|B_{Q}^{+}(q,s)\rangle and |BQ(q,s)|B_{Q}^{-}(q,s)\rangle are spin-1/2 single heavy baryon states with the positive and negative parity, respectively, dots stand for the contributions of the higher states and continuum and mBQ±(T)m_{B_{Q}^{\pm}}(T) is the temperature-dependent mass of BQ±B_{Q}^{\pm}. The matrix elements Ψ|JBQ(0)|BQ±(q,s){\langle}\Psi|J_{B_{Q}}(0)|B_{Q}^{\pm}(q,s){\rangle} for BQ±B_{Q}^{\pm} are defined as

Ψ|JBQ(0)|BQ+(q,s)\displaystyle{\langle}\Psi|J_{B_{Q}}(0)|B_{Q}^{+}(q,s){\rangle} =\displaystyle= λBQ+(T)uBQ+(q,s),\displaystyle\lambda_{B_{Q}^{+}}(T)u_{B_{Q}^{+}}(q,s),
Ψ|JBQ(0)|BQ(q,s)\displaystyle{\langle}\Psi|J_{B_{Q}}(0)|B_{Q}^{-}(q,s){\rangle} =\displaystyle= λBQ(T)γ5uBQ(q,s),\displaystyle\lambda_{B_{Q}^{-}}(T)\gamma_{5}u_{B_{Q}^{-}}(q,s), (6)

where λBQ±(T)\lambda_{B_{Q}^{\pm}}(T) is the temperature-dependent residue of BQ±B_{Q}^{\pm} and uBQ±(q,s)u_{B_{Q}^{\pm}}(q,s) is Dirac spinor of spin ss and the four-momentum qq. To proceed, we insert Eq. (II) into Eq. (II) and perform summation over spins of BQ±B_{Q}^{\pm}. The hadronic side of thermal correlation function in its final form is decomposed in terms of different structures as

ΠHad.(q,T)\displaystyle\Pi^{Had.}(q,T) =\displaystyle= λBQ+2(T)(q+mBQ+(T))q2mBQ+2(T)\displaystyle-\frac{\lambda^{2}_{B_{Q}^{+}}(T)(\!\not\!{q}+m_{B_{Q}^{+}}(T))}{q^{2}-m^{2}_{B_{Q}^{+}}(T)} (7)
\displaystyle- λBQ2(T)(q+mBQ(T))q2mBQ2(T)+.\displaystyle\frac{\lambda^{2}_{B_{Q}^{-}}(T)(-\!\not\!{q}+m_{B_{Q}^{-}}(T))}{q^{2}-m^{2}_{B_{Q}^{-}}(T)}+\cdots.

This correlation function can be written in terms of the structures q\!\not\!{q} and II as

ΠHad.(q,T)\displaystyle\Pi^{Had.}(q,T) =\displaystyle= Π1Had.(T)q+Π2Had.(T)I+,\displaystyle\Pi_{1}^{Had.}(T)\!\not\!{q}+\Pi_{2}^{Had.}(T)I+\cdots,

where Π1(2)Had.(T)\Pi^{Had.}_{1(2)}(T), as the coefficients of the selected Lorentz structures, in Borel scheme are obtained as

B^Π1Had.(T)\displaystyle\hat{B}\Pi_{1}^{Had.}(T) =\displaystyle= λBQ+2(T)emBQ+2(T)/M2\displaystyle\lambda^{2}_{B_{Q}^{+}}(T)e^{-m_{B_{Q}^{+}}^{2}(T)/M^{2}} (9)
\displaystyle- λBQ2(T)emBQ2(T)/M2,\displaystyle\lambda^{2}_{B_{Q}^{-}}(T)e^{-m_{B_{Q}^{-}}^{2}(T)/M^{2}},

and

B^Π2Had.(T)\displaystyle\hat{B}\Pi_{2}^{Had.}(T) =\displaystyle= λBQ+2(T)mBQ+(T)emBQ+2(T)/M2\displaystyle\lambda^{2}_{B_{Q}^{+}}(T)m_{B_{Q}^{+}}(T)e^{-m_{B_{Q}^{+}}^{2}(T)/M^{2}} (10)
+\displaystyle+ λBQ2(T)mBQ(T)emBQ2(T)/M2,\displaystyle\lambda^{2}_{B_{Q}^{-}}(T)m_{B_{Q}^{-}}(T)e^{-m_{B_{Q}^{-}}^{2}(T)/M^{2}},

where M2M^{2} is the Borel parameter to be determined in next section.

Now, we have to evaluate the QCD side of the thermal correlation function in terms of the quark-gluon degrees of freedom in the deep Euclidean region. For this aim, we insert the related interpolating current of BQ{B_{Q}} given in Eq. (II) into Eq. (1) and contract all light and heavy quark fields using the Wick theorem. Thus, the most general form of the thermal correlation function on the QCD side in terms of thermal light (heavy) quark propagators Sq(Q)ij(x)S_{q(Q)}^{ij}(x) for 3¯\overline{\textbf{3}} and 6 baryons are obtained as

Π3¯QCD(q,T)\displaystyle\Pi_{\overline{\textbf{3}}}^{QCD}(q,T) =\displaystyle= i6ϵabcϵabcd4xeiqx\displaystyle\frac{i}{6}\epsilon_{abc}\epsilon_{a^{\prime}b^{\prime}c^{\prime}}\int d^{4}xe^{iq\cdot x} (11)
×\displaystyle\times l=12k=12{Γ2l(2SQca(x)A1kS~q1ab(x)Γ1lSq2bc(x)Γ2k\displaystyle\sum_{l=1}^{2}\sum_{k=1}^{2}\ \left\{\Gamma^{l}_{2}\Big{(}2S^{ca^{\prime}}_{Q}(x)A^{k}_{1}\widetilde{S}^{ab^{\prime}}_{q_{1}}(x)\Gamma^{l}_{1}S^{bc^{\prime}}_{q_{2}}(x)\Gamma^{k}_{2}\right.
+\displaystyle+ 2SQcb(x)Γ1kS~q2ba(x)Γ1lSq1ac(x)Γ2k\displaystyle 2S^{cb^{\prime}}_{Q}(x)\Gamma^{k}_{1}\widetilde{S}^{ba^{\prime}}_{q_{2}}(x)\Gamma^{l}_{1}S^{ac^{\prime}}_{q_{1}}(x)\Gamma^{k}_{2}
\displaystyle- Sq2ca(x)Γ2kS~Qbb(x)Γ1lSq1ac(x)Γ1k\displaystyle S^{ca^{\prime}}_{q_{2}}(x)\Gamma^{k}_{2}\widetilde{S}^{bb^{\prime}}_{Q}(x)\Gamma^{l}_{1}S^{ac^{\prime}}_{q_{1}}(x)\Gamma^{k}_{1}
\displaystyle- 2Sq2ca(x)Γ2kS~q1ab(x)Γ1lSQbc(x)Γ1k\displaystyle 2S^{ca^{\prime}}_{q_{2}}(x)\Gamma^{k}_{2}\widetilde{S}^{ab^{\prime}}_{q_{1}}(x)\Gamma^{l}_{1}S^{bc^{\prime}}_{Q}(x)\Gamma^{k}_{1}
\displaystyle- Sq1cb(x)Γ2kS~Qaa(x)Γ1lSq2bc(x)Γ1k\displaystyle S^{cb^{\prime}}_{q_{1}}(x)\Gamma^{k}_{2}\widetilde{S}^{aa^{\prime}}_{Q}(x)\Gamma^{l}_{1}S^{bc^{\prime}}_{q_{2}}(x)\Gamma^{k}_{1}
\displaystyle- 2Sq1cb(x)Γ2kS~q2ba(x)Γ1lSQac(x)Γ1k)\displaystyle 2S^{cb^{\prime}}_{q_{1}}(x)\Gamma^{k}_{2}\widetilde{S}^{ba^{\prime}}_{q_{2}}(x)\Gamma^{l}_{1}S^{ac^{\prime}}_{Q}(x)\Gamma^{k}_{1}\Big{)}
\displaystyle- Γ2k(Sq1cc(x)Γ2lTr[Γ1kSQab(x)Γ1lS~q2ba(x)]\displaystyle\Gamma^{k}_{2}\Big{(}S^{cc^{\prime}}_{q_{1}}(x)\Gamma^{l}_{2}Tr[\Gamma^{k}_{1}S^{ab^{\prime}}_{Q}(x)\Gamma^{l}_{1}\widetilde{S}^{ba^{\prime}}_{q_{2}}(x)]
+\displaystyle+ Sq2cc(x)Γ2lTr[Γ1kSq1ab(x)Γ1lS~Qba(x)]\displaystyle S^{cc^{\prime}}_{q_{2}}(x)\Gamma^{l}_{2}Tr[\Gamma^{k}_{1}S^{ab^{\prime}}_{q_{1}}(x)\Gamma^{l}_{1}\widetilde{S}^{ba^{\prime}}_{Q}(x)]
+\displaystyle+ 4SQcc(x)Γ2lTr[Γ1kSq1ab(x)Γ1lS~q2ba(x)])},\displaystyle 4S^{cc^{\prime}}_{Q}(x)\Gamma^{l}_{2}Tr[\Gamma^{k}_{1}S^{ab^{\prime}}_{q_{1}}(x)\Gamma^{l}_{1}\widetilde{S}^{ba^{\prime}}_{q_{2}}(x)]\Big{)}\left.\right\},
Π6QCD(q,T)\displaystyle\Pi_{\textbf{6}}^{QCD}(q,T) =\displaystyle= i2ϵabcϵabcd4xeiqx\displaystyle-\frac{i}{2}\epsilon_{abc}\epsilon_{a^{\prime}b^{\prime}c^{\prime}}\int d^{4}xe^{iq\cdot x} (12)
×\displaystyle\times l=12k=12{Γ2l(Sq1ca(x)A1kS~Qab(x)Γ1lSq2bc(x)\displaystyle\sum_{l=1}^{2}\sum_{k=1}^{2}\ \left\{\Gamma^{l}_{2}\Big{(}S^{ca^{\prime}}_{q_{1}}(x)A^{k}_{1}\widetilde{S}^{ab^{\prime}}_{Q}(x)\Gamma^{l}_{1}S^{bc^{\prime}}_{q_{2}}(x)\right.
+\displaystyle+ Sq2cb(x)Γ1kS~Qba(x)Γ1lSq1ac(x))Γk2\displaystyle S^{cb^{\prime}}_{q_{2}}(x)\Gamma^{k}_{1}\widetilde{S}^{ba^{\prime}}_{Q}(x)\Gamma^{l}_{1}S^{ac^{\prime}}_{q_{1}}(x)\Big{)}\Gamma^{k}_{2}
+\displaystyle+ Γ2k(Sq1cc(x)Γ2lTr[Γ1lS~Qaa(x)Γ1kSq2bb(x)]\displaystyle\Gamma^{k}_{2}\Big{(}S^{cc^{\prime}}_{q_{1}}(x)\Gamma^{l}_{2}Tr[\Gamma^{l}_{1}\widetilde{S}^{aa^{\prime}}_{Q}(x)\Gamma^{k}_{1}S^{bb^{\prime}}_{q_{2}}(x)]
+\displaystyle+ Sq2cc(x)Γ2lTr[Γ1lS~q1aa(x)Γ1kSQbb(x)])},\displaystyle S^{cc^{\prime}}_{q_{2}}(x)\Gamma^{l}_{2}Tr[\Gamma^{l}_{1}\widetilde{S}^{aa^{\prime}}_{q_{1}}(x)\Gamma^{k}_{1}S^{bb^{\prime}}_{Q}(x)]\Big{)}\left.\right\},

where S~q(Q)ij=CSq(Q)ijTC\widetilde{S}^{ij}_{q(Q)}=CS^{ijT}_{q(Q)}C. To proceed, thermal light (heavy) quark propagators Sq(Q)ij(x)S_{q(Q)}^{ij}(x) in coordinate space are needed, which are used as (see also Azizi1 ; Azizi2 ; Prop_C )

Sqij(x)\displaystyle S_{q}^{ij}(x) =\displaystyle= ix2π2x4δijmq4π2x2δijq¯qT12δij\displaystyle i\frac{\!\not\!{x}}{2\pi^{2}x^{4}}\delta_{ij}-\frac{m_{q}}{4\pi^{2}x^{2}}\delta_{ij}-\frac{\langle\bar{q}q\rangle_{T}}{12}\delta_{ij}
\displaystyle- x2192m02q¯qT[1imq6x]δij\displaystyle\frac{x^{2}}{192}m_{0}^{2}\langle\bar{q}q\rangle_{T}\Big{[}1-i\frac{m_{q}}{6}\!\not\!{x}\Big{]}\delta_{ij}
+\displaystyle+ i3[x(mq16q¯qT112uμΘμνfuν)\displaystyle\frac{i}{3}\Big{[}\!\not\!{x}\Big{(}\frac{m_{q}}{16}\langle\bar{q}q\rangle_{T}-\frac{1}{12}\langle u^{\mu}\Theta_{\mu\nu}^{f}u^{\nu}\rangle\Big{)}
+\displaystyle+ 13(uxuuμΘμνfuν)]δij\displaystyle\frac{1}{3}\Big{(}u\cdot x\!\not\!{u}\langle u^{\mu}\Theta_{\mu\nu}^{f}u^{\nu}\rangle\Big{)}\Big{]}\delta_{ij}
\displaystyle- igsλAij32π2x2GμνA(xσμν+σμνx)\displaystyle\frac{ig_{s}\lambda_{A}^{ij}}{32\pi^{2}x^{2}}G_{\mu\nu}^{A}\Big{(}\!\not\!{x}\sigma^{\mu\nu}+\sigma^{\mu\nu}\!\not\!{x}\Big{)}
\displaystyle- ix2xgs2q¯qT27776δijx4q¯qTgs2G2T27648+,\displaystyle i\frac{x^{2}\!\not\!{x}g_{s}^{2}\langle\bar{q}q\rangle_{T}^{2}}{7776}\delta_{ij}-\frac{x^{4}\langle\bar{q}q\rangle_{T}\langle g_{s}^{2}G^{2}\rangle_{T}}{27648}+...~{},
SQij(x)\displaystyle S_{Q}^{ij}(x) =\displaystyle= id4keikx(2π)4(k+mQk2mQ2δij\displaystyle i\int\frac{d^{4}ke^{-ik\cdot x}}{(2\pi)^{4}}\left(\frac{\!\not\!{k}+m_{Q}}{k^{2}-m_{Q}^{2}}\delta_{ij}\right. (14)
\displaystyle- gsGijαβ4σαβ(k+mQ)+(k+mQ)σαβ(k2mQ2)2\displaystyle\frac{g_{s}G^{\alpha\beta}_{ij}}{4}\frac{\sigma^{\alpha\beta}(\!\not\!{k}+m_{Q})+(\!\not\!{k}+m_{Q})\sigma^{\alpha\beta}}{(k^{2}-m_{Q}^{2})^{2}}
+\displaystyle+ mQ12k2+mQk(k2mQ2)4gs2G2Tδij+).\displaystyle\frac{m_{Q}}{12}\frac{k^{2}+m_{Q}\!\not\!{k}}{(k^{2}-m_{Q}^{2})^{4}}\langle g_{s}^{2}G^{2}\rangle_{T}\delta_{ij}+\cdots\Bigg{)}.

Here, mq(Q)m_{q(Q)} is the light (heavy) quark mass, q¯qT\langle\bar{q}q\rangle_{T} is the thermal quark condensate, gs2G2T\langle g_{s}^{2}G^{2}\rangle_{T} is thermal gluon condensate, m02q¯qT=q¯gsσGqTm_{0}^{2}\langle\bar{q}q\rangle_{T}=\langle\bar{q}g_{s}\sigma Gq\rangle_{T} is the thermal mixed condensate. The new operators, emerging in OPE, appear to restore the Lorentz invariance broken out by the choice of the thermal rest frame at nonzero temperature. They are expressed in terms of fermionic and gluonic parts of the energy momentum tensor Θμνf,g\Theta^{f,g}_{\mu\nu} (uμΘμνf,guν=uΘf,gu=Θ00f,g=Θf,g)(\langle u^{\mu}\Theta^{f,g}_{\mu\nu}u^{\nu}\rangle=\langle u\Theta^{f,g}u\rangle=\langle\Theta^{f,g}_{00}\rangle=\langle\Theta^{f,g}\rangle) and the four-vector velocity of the medium, uμu^{\mu}. To this end, uμ=(1,0,0,0)u^{\mu}=(1,0,0,0) is chosen which leads to u2=1u^{2}=1. In the rest frame of the heat bath, qu=q0q\cdot u=q_{0}, with q0q_{0} being the energy of quasi particle, q0=Eq=(|q|2+m2)1/2q_{0}=E_{\vec{q}}=(|\vec{q}|^{2}+m^{2})^{1/2}, in the mass-shell condition. At q=0\vec{q}=0 limit it is the mass of the particle. In the light quark propagator, the fermionic part of the energy momentum tensor, uμΘμνfuν\langle u^{\mu}\Theta_{\mu\nu}^{f}u^{\nu}\rangle, is seen explicitly whereas the gluonic part, uλΘλσguσ\langle u^{\lambda}{\Theta}^{g}_{\lambda\sigma}u^{\sigma}\rangle, appears in the trace of two-gluon field strength tensor in the heat bath Mallik , i.e.

TrcGαβGμν\displaystyle\langle Tr^{c}G_{\alpha\beta}G_{\mu\nu}\rangle =\displaystyle= 124(gαμgβνgανgβμ)G2T\displaystyle\frac{1}{24}(g_{\alpha\mu}g_{\beta\nu}-g_{\alpha\nu}g_{\beta\mu})\langle G^{2}\rangle_{T} (15)
+\displaystyle+ 16[gαμgβνgανgβμ2(uαuμgβν\displaystyle\frac{1}{6}\Big{[}g_{\alpha\mu}g_{\beta\nu}-g_{\alpha\nu}g_{\beta\mu}-2(u_{\alpha}u_{\mu}g_{\beta\nu}
\displaystyle- uαuνgβμuβuμgαν+uβuνgαμ)]\displaystyle u_{\alpha}u_{\nu}g_{\beta\mu}-u_{\beta}u_{\mu}g_{\alpha\nu}+u_{\beta}u_{\nu}g_{\alpha\mu})\Big{]}
×\displaystyle\times uλΘλσguσ.\displaystyle\langle u^{\lambda}{\Theta}^{g}_{\lambda\sigma}u^{\sigma}\rangle.

The QCD side of the correlation function can be written similar to hadronic side in terms of different Lorentz structures as

ΠQCD(q,T)\displaystyle\Pi^{QCD}(q,T) =\displaystyle= Π1QCD(T)q+Π2QCD(T)I,\displaystyle\Pi_{1}^{QCD}(T)\!\not\!{q}+\Pi_{2}^{QCD}(T)I,

where Π1(2)QCD(T)\Pi^{QCD}_{1(2)}(T) are the coefficients of the selected Lorentz structures and they contain both the perturbative and non-perturbative contributions. The perturbative and some non-perturbative parts are written in terms of the dispersion integrals in the present study. Thus,

Π1(2)QCD(T)=smin𝑑sρ1(2)QCD(s,T)sq2+Γ1(2)QCD(T),\Pi^{QCD}_{1(2)}(T)=\int_{s_{min}}^{\infty}ds\dfrac{\rho^{{QCD}}_{1(2)}(s,T)}{s-q^{2}}+\Gamma_{1(2)}^{QCD}(T), (17)

where smin=(mq1+mq2+mQ)2s_{min}=(m_{q_{1}}+m_{q_{2}}+m_{Q})^{2}, ρ1(2)QCD(s,T)\rho^{QCD}_{1(2)}(s,T) are the spectral densities and Γ1(2)QCD(T)\Gamma_{1(2)}^{QCD}(T) stand for the remaining non-perturbative contributions that are calculated directly by applying the Borel transformation. The related spectral densities are defined as

ρ1(2)QCD(s,T)=1πIm[Π1(2)QCD(T)].\rho^{QCD}_{1(2)}(s,T)=\frac{1}{\pi}\mathrm{Im}[\Pi^{QCD}_{1(2)}(T)]. (18)

After Borel transformation and continuum subtraction we get

B^Π1(2)QCD(T)=smins0(T)𝑑sρ1(2)QCD(s,T)es/M2+B^Γ1(2)QCD(T),\displaystyle\hat{B}\Pi_{1(2)}^{QCD}(T)=\int_{s_{min}}^{s_{0}(T)}ds\rho_{1(2)}^{{QCD}}(s,T)e^{-s/M^{2}}+\hat{B}\Gamma_{1(2)}^{QCD}(T),

where s0(T)s_{0}(T) is the temperature-dependent continuum threshold. The main task in this part is to find the expressions for ρ1(2)QCD(s,T)\rho^{QCD}_{1(2)}(s,T) and B^Γ1(2)QCD(T)\hat{B}\Gamma_{1(2)}^{QCD}(T). They are obtained after inserting the explicit forms of the heavy and light quark propagators into the QCD side of the thermal correlation function given in Eqs. (11) and (12) for 3¯\overline{\textbf{3}} and 6 baryons with spin-1/2, performing the Fourier integral to go to the momentum space and applying the steps above to get the perturbative and non-perturbative parts. As a result, the explicit forms of the functions ρ1(2)QCD(s,T)\rho^{QCD}_{1(2)}(s,T) and B^Γ1(2)QCD(T)\hat{B}\Gamma_{1(2)}^{QCD}(T) are obtained. Because of obtained expressions are quite lengthy, we present the expressions of ρ1QCD(s,T)\rho^{QCD}_{1}(s,T) and B^Γ1QCD(T)\hat{B}\Gamma_{1}^{QCD}(T) for only Σb0\Sigma_{b}^{0} baryon as an example in the Appendix.

Finally, we match the coefficients of the selected structures from the hadronic and QCD sides of the correlation function and find the sum rules:

B^Π1QCD(T)\displaystyle\hat{B}\Pi_{1}^{QCD}(T) =\displaystyle= λBQ+2(T)emBQ+2(T)/M2\displaystyle\lambda^{2}_{B_{Q}^{+}}(T)e^{-m_{B_{Q}^{+}}^{2}(T)/M^{2}} (20)
\displaystyle- λBQ2(T)emBQ2(T)/M2,\displaystyle\lambda^{2}_{B_{Q}^{-}}(T)e^{-m_{B_{Q}^{-}}^{2}(T)/M^{2}},

and

B^Π2QCD(T)\displaystyle\hat{B}\Pi_{2}^{QCD}(T) =\displaystyle= λBQ+2(T)mBQ+(T)emBQ+2(T)/M2\displaystyle\lambda^{2}_{B_{Q}^{+}}(T)m_{B_{Q}^{+}}(T)e^{-m_{B_{Q}^{+}}^{2}(T)/M^{2}} (21)
+\displaystyle+ λBQ2(T)mBQ(T)emBQ2(T)/M2.\displaystyle\lambda^{2}_{B_{Q}^{-}}(T)m_{B_{Q}^{-}}(T)e^{-m_{B_{Q}^{-}}^{2}(T)/M^{2}}.

In order to obtain the four unknowns, mBQ+m_{B_{Q}^{+}}, mBQm_{B_{Q}^{-}}, λBQ+\lambda_{B_{Q}^{+}} and λBQ\lambda_{B_{Q}^{-}}, two more equations which can be achieved by applying derivatives with respect to dd(1M2)\frac{d}{d(-\frac{1}{M^{2}})} to both sides of Eqs. (20) and (21) are needed. Therefore, we get

dΠ1QCD(T)d(1/M2)\displaystyle\frac{d\Pi_{1}^{QCD}(T)}{d(-1/M^{2})} =\displaystyle= λBQ+2(T)mBQ+2(T)emBQ+2(T)/M2\displaystyle\lambda^{2}_{B_{Q}^{+}}(T)m_{B_{Q}^{+}}^{2}(T)e^{-m_{B_{Q}^{+}}^{2}(T)/M^{2}} (22)
\displaystyle- λBQ2(T)mBQ2(T)emBQ2(T)/M2,\displaystyle\lambda^{2}_{B_{Q}^{-}}(T)m_{B_{Q}^{-}}^{2}(T)e^{-m_{B_{Q}^{-}}^{2}(T)/M^{2}},
dΠ2QCD(T)d(1/M2)\displaystyle\frac{d\Pi_{2}^{QCD}(T)}{d(-1/M^{2})} =\displaystyle= λBQ+2(T)mBQ+3(T)emBQ+2(T)/M2\displaystyle\lambda^{2}_{B_{Q}^{+}}(T)m_{B_{Q}^{+}}^{3}(T)e^{-m_{B_{Q}^{+}}^{2}(T)/M^{2}} (23)
+\displaystyle+ λBQ2(T)mBQ3(T)emBQ2(T)/M2,\displaystyle\lambda^{2}_{B_{Q}^{-}}(T)m_{B_{Q}^{-}}^{3}(T)e^{-m_{B_{Q}^{-}}^{2}(T)/M^{2}},

By simultaneously solving the above four equations, the temperature-dependent masses and residues for the positive and negative parity spin-1/2 heavy baryons are obtained in terms of s0(T)s_{0}(T), M2M^{2}, QCD degrees of freedom and other inputs. For the masses, as examples, we get

mBQ+=(α4α1α3α2+4α33α1+α42α126α3α4α1α23α32α22+4α4α23)2α3α12α22,\displaystyle m_{B_{Q}^{+}}=\dfrac{(\alpha_{4}\alpha_{1}-\alpha_{3}\alpha_{2}+\sqrt{4\alpha_{3}^{3}\alpha_{1}+\alpha_{4}^{2}\alpha_{1}^{2}-6\alpha_{3}\alpha_{4}\alpha_{1}\alpha_{2}-3\alpha_{3}^{2}\alpha_{2}^{2}+4\alpha_{4}\alpha_{2}^{3}})}{2\alpha_{3}\alpha_{1}-2\alpha_{2}^{2}}, (24)
mBQ=(α4α1+α3α2+4α33α1+α42α126α3α4α1α23α32α22+4α4α23)2α3α12α22,\displaystyle m_{B_{Q}^{-}}=\dfrac{(-\alpha_{4}\alpha_{1}+\alpha_{3}\alpha_{2}+\sqrt{4\alpha_{3}^{3}\alpha_{1}+\alpha_{4}^{2}\alpha_{1}^{2}-6\alpha_{3}\alpha_{4}\alpha_{1}\alpha_{2}-3\alpha_{3}^{2}\alpha_{2}^{2}+4\alpha_{4}\alpha_{2}^{3}})}{2\alpha_{3}\alpha_{1}-2\alpha_{2}^{2}}, (25)

where

α1=B^Π1QCD(T),α2=B^Π2QCD(T),α3=dΠ1QCD(T)d(1/M2),α4=dΠ2QCD(T)d(1/M2).\displaystyle\alpha_{1}=\hat{B}\Pi_{1}^{QCD}(T),\alpha_{2}=\hat{B}\Pi_{2}^{QCD}(T),\alpha_{3}=\frac{d\Pi_{1}^{QCD}(T)}{d(-1/M^{2})},\alpha_{4}=\frac{d\Pi_{2}^{QCD}(T)}{d(-1/M^{2})}. (26)

Similar results are obtained for the temperature-dependent residues.

III Numerical results

In this section, we perform the numerical analyses of the sum rules for the masses and residues of the spin-1/2 heavy ΛQ\Lambda_{Q}, ΞQ\Xi_{Q}, ΣQ\Sigma_{Q}, ΞQ\Xi_{Q}^{{}^{\prime}} and ΩQ\Omega_{Q} baryons at nonzero temperature. For this aim, firstly we use the numerical values of some input parameters collected in Table 2 in our calculations.

Parameters Values
q0Λbq_{0}^{\Lambda_{b}}; q0Λcq_{0}^{\Lambda_{c}} (5619.6±0.17)(5619.6\pm 0.17); (2286.46±0.14)(2286.46\pm 0.14) MeVMeV
q0Ξbq_{0}^{\Xi_{b}}; q0Ξcq_{0}^{\Xi_{c}} (5791.9±0.5)(5791.9\pm 0.5); (2467.71±0.23)(2467.71\pm 0.23) MeVMeV
q0Σbq_{0}^{\Sigma_{b}}; q0Σcq_{0}^{\Sigma_{c}} (5810.56±0.25)(5810.56\pm 0.25); (2452.9±0.4)(2452.9\pm 0.4) MeVMeV
q0Ξbq_{0}^{\Xi_{b}^{{}^{\prime}}}; q0Ξcq_{0}^{\Xi_{c}^{{}^{\prime}}} (5935.02±0.02±0.05)(5935.02\pm 0.02\pm 0.05); (2578.7±0.5)(2578.7\pm 0.5) MeVMeV
q0Ωbq_{0}^{\Omega_{b}}; q0Ωcq_{0}^{\Omega_{c}} (6046.1±1.7)(6046.1\pm 1.7); (2695.2±1.7)(2695.2\pm 1.7) MeVMeV
mum_{u} ; mdm_{d} (2.30.5+0.7)(2.3_{-0.5}^{+0.7}) MeVMeV; (4.80.3+0.7)(4.8_{-0.3}^{+0.7}) MeVMeV
msm_{s} (935+11)(93_{-5}^{+11}) MeVMeV
mbm_{b} ; mcm_{c} (4.180.03+0.04)(4.18_{-0.03}^{+0.04}) GeVGeV; (1.2750.035+0.025)(1.275_{-0.035}^{+0.025}) GeVGeV
m02;m_{0}^{2}; (0.8±0.2)(0.8\pm 0.2) GeV2GeV^{2}
0|q¯q|0(q=u,d)\langle 0|\overline{q}q|0\rangle(q=u,d) (0.24±0.01)3-(0.24\pm 0.01)^{3} GeV3GeV^{3}
0|s¯s|0\langle 0|\overline{s}s|0\rangle 0.8(0.24±0.01)3-0.8(0.24\pm 0.01)^{3} GeV3GeV^{3}
01παsG20{\langle}0\mid\frac{1}{\pi}\alpha_{s}G^{2}\mid 0{\rangle} 0.012(3)GeV40.012(3)~{}GeV^{4}
Table 2: Numerical values for the energy of quasi particles in medium, quark masses and vacuum condensates Belyaev ; Dosch ; Ioffe1 ; PDG ; Gubler . In the rest frames of the heat bath and the particle, we set the energy of the quasi particle to its ground state positive parity mass value at each channel.

To go further in the analyses, we also need to know the thermal quark condensates q¯qT\langle\bar{q}q\rangle_{T} (for q=u,dq=u,d and ss), parametrized in terms of vacuum condensates and temperature. For this purpose, we use the following parametrization, which are based on lattice QCD results presented in Ref. Gubler

q¯qT\displaystyle\langle\bar{q}q\rangle_{T} =\displaystyle= (AeTB[GeV]+C)0|q¯q|0,\displaystyle(Ae^{\frac{T}{B[GeV]}}+C)\langle 0|\bar{q}q|0\rangle, (27)

where the coefficients A, B and C for the corresponding q=u,dq=u,d and ss are given in Table 3. Note, that the lattice results in Ref. Gubler are given in a wide range of the temperature, however, we find their fit functions up to the critical temperature under consideration in the present study (see also AziziTurkan ). The above fit together with the parameters in the Table 3 exactly reproduce the graphics for the temperature-dependent quark condensates in Ref. Gubler .

A B [GeV] C
for q=u,dq=u,d 6.534×104-6.534\times 10^{-4} 0.025 1.015
for q=sq=s 2.169×105-2.169\times 10^{-5} 0.019 1.002
Table 3: The coefficients A, B and C in the thermal quark condensates q¯qT\langle\bar{q}q\rangle_{T}.

The temperature-dependent gluon condensate G2T\langle G^{2}\rangle_{T} is given as Gubler :

δαsπG2T\displaystyle\delta\langle\frac{\alpha_{s}}{\pi}G^{2}\rangle_{T} =\displaystyle= 89[δTμμ(T)muδu¯uT\displaystyle-\frac{8}{9}[\delta T^{\mu}_{\mu}(T)-m_{u}\delta\langle\bar{u}u\rangle_{T} (28)
\displaystyle- mdδd¯dTmsδs¯sT],\displaystyle m_{d}\delta\langle\bar{d}d\rangle_{T}-m_{s}\delta\langle\bar{s}s\rangle_{T}],

where

δf(T)f(T)f(0),\displaystyle\delta f(T)\equiv f(T)-f(0), (29)

and δTμμ(T)\delta T^{\mu}_{\mu}(T) is defined as

δTμμ(T)=ε(T)3p(T),\displaystyle\delta T^{\mu}_{\mu}(T)=\varepsilon(T)-3p(T), (30)

with ε(T)\varepsilon(T) being the energy density and p(T)p(T) is the pressure. Using the recent Lattice calculations given in Bazavov1 ; Borsanyi , we obtain the following fit function for δTμμ(T)\delta T^{\mu}_{\mu}(T) (see also AziziTurkan ):

δTμμ(T)\displaystyle\delta T^{\mu}_{\mu}(T) =\displaystyle= (0.020eT0.034[GeV]+0.115)T4.\displaystyle(0.020e^{\frac{T}{0.034[GeV]}}+0.115)T^{4}. (31)

Note that this function, obtained in the present study, exactly reproduces the lattice QCD graphics for δTμμ(T)\delta T^{\mu}_{\mu}(T) with respect to temperature presented in Refs. Bazavov1 ; Borsanyi . The temperature-dependent strong coupling is also given as Kaczmarek ; Morita

gs2(T)=118π2ln(2πTΛMS¯)+5188π2ln[2ln(2πTΛMS¯)],\displaystyle g_{s}^{-2}(T)=\frac{11}{8\pi^{2}}\ln\Big{(}\frac{2\pi T}{\Lambda_{\overline{MS}}}\Big{)}+\frac{51}{88\pi^{2}}\ln\Big{[}2\ln\Big{(}\frac{2\pi T}{\Lambda_{\overline{MS}}}\Big{)}\Big{]},

where, ΛMS¯Tpc/1.14\Lambda_{\overline{MS}}\simeq T_{pc}/1.14.

We use results on the thermal behavior of the energy-momentum tensor given by lattice QCD in Ref. Bazavov1 and parametrize the gluonic and fermionic parts of the energy density up to thepseudocritical temperature. Hence, we use:

Θf(g)\displaystyle\langle\Theta^{f(g)}\rangle =\displaystyle= (DeTE[GeV]+F)T4,\displaystyle(De^{\frac{T}{E[GeV]}}+F)T^{4}, (33)

with the related coefficients defined in Table 4. This function, obtained in the present study, reproduces the temperature-dependent energy densities presented in Ref. Bazavov1 by graphics.

D E [Gev] F
for Θf\langle\Theta^{f}\rangle 0.0090.009 0.040 0.024
for Θg\langle\Theta^{g}\rangle 0.0910.091 0.047 -0.731
Table 4: The coefficients D, E and F in Eq. (33) .

In the next step, we have to obtain the temperature-dependent continuum threshold s0(T)s_{0}(T). For this purpose, we use the following parametrization:

s0(T)=s0f(T),\displaystyle s_{0}(T)=s_{0}f(T), (34)

where s0s_{0} is continuum threshold at zero temperature. It is not totally arbitrary and depends on the energy of the first excited state lies just above the considered positive and negative parity states with the same quantum numbers. s0(T)s_{0}(T) should reduce to s0s_{0} at T0T\rightarrow 0 limit and f(T)f(T) must obey f(T)1f(T)\rightarrow 1 at this limit. As we mentioned in the previous section, the four unknowns (masses of the positive and negative parity baryons as well as their residues) at each channel are obtained in terms of Borel parameter, QCD degrees of freedom and s0(T)s_{0}(T). As it is seen the temperature-dependent continuum threshold, s0(T)s_{0}(T) , contains the vacuum continuum threshold and f(T)f(T). The s0s_{0} together with M2M^{2} are determined considering the standard prescriptions of the method and will be discussed below. One of the main tasks is to determine the function f(T)f(T), which plays an important role in determination of the behavior of the physical quantities with respect to the temperature. To determine f(T)f(T) we apply another derivative with respect to dd(1M2)\frac{d}{d(-\frac{1}{M^{2}})} to both sides of Eq. (22) and use the expressions of the masses and residues, obtained in the previous section that also contain f(T)f(T) though s0(T)s_{0}(T), in the resultant equation . By numerical solving of the obtained equation at different temperature (up to thepseudocritical temperature used in the present study), we find the following fit function for f(T)f(T):

f(T)=10.96(TTpc)9.\displaystyle f(T)=1-0.96\Big{(}\frac{T}{T_{pc}}\Big{)}^{9}. (35)

Let us now discuss how we determine the working windows for the Borel parameter and vacuum continuum threshold s0s_{0}. They are fixed using the standard criteria of the method. Namely, the pole dominance, OPE convergence and weak dependence of the physical quantities on these parameters. All of these requirements lead to the following working intervals for different members of the baryons under study:

43.0GeV2s0Λb44.0GeV2,\displaystyle 43.0~{}GeV^{2}\leqslant s^{\Lambda_{b}}_{0}\leqslant 44.0~{}GeV^{2},
44.0GeV2s0Σb46.0GeV2,\displaystyle 44.0~{}GeV^{2}\leqslant s^{\Sigma_{b}}_{0}\leqslant 46.0~{}GeV^{2},
45.0GeV2s0Ξb46.0GeV2,\displaystyle 45.0~{}GeV^{2}\leqslant s^{\Xi_{b}}_{0}\leqslant 46.0~{}GeV^{2},
47.0GeV2s0Ξb48.0GeV2,\displaystyle 47.0~{}GeV^{2}\leqslant s^{\Xi_{b}^{{}^{\prime}}}_{0}\leqslant 48.0~{}GeV^{2},
48.5GeV2s0Ωb49.5GeV2,\displaystyle 48.5~{}GeV^{2}\leqslant s^{\Omega_{b}}_{0}\leqslant 49.5~{}GeV^{2},
M2[5,8]GeV2,\displaystyle M^{2}\in[5,8]~{}GeV^{2},~{}~{}~{}~{} (36)

for bottom and

8.5GeV2s0Λc9.5GeV2,\displaystyle 8.5~{}GeV^{2}\leqslant s^{\Lambda_{c}}_{0}\leqslant 9.5~{}GeV^{2},
9.5GeV2s0Σc10.5GeV2,\displaystyle 9.5~{}GeV^{2}\leqslant s^{\Sigma_{c}}_{0}\leqslant 10.5~{}GeV^{2},
10.5GeV2s0Ξc11.5GeV2,\displaystyle 10.5~{}GeV^{2}\leqslant s^{\Xi_{c}}_{0}\leqslant 11.5~{}GeV^{2},
11.5GeV2s0Ξc12.5GeV2,\displaystyle 11.5~{}GeV^{2}\leqslant s^{\Xi_{c}^{{}^{\prime}}}_{0}\leqslant 12.5~{}GeV^{2},
11.8GeV2s0Ωc12.8GeV2,\displaystyle 11.8~{}GeV^{2}\leqslant s^{\Omega_{c}}_{0}\leqslant 12.8~{}GeV^{2},
M2[3,5]GeV2,\displaystyle M^{2}\in[3,5]~{}GeV^{2},~{}~{}~{}~{} (37)

for charmed baryons. To check the stability of the results with respect to the changes in M2M^{2} and s0s_{0} in their working intervals, as an example, we plot a 3D graphic of the mass of Σb0\Sigma^{0}_{b} positive parity baryon as functions of these auxiliary parameters at T=0T=0 in Figure 1. We see that the dependence of the mass on both M2M^{2} and s0s_{0} is weak and the changes remain within the acceptable limits of the method. The parameters of other members show similar behavior.

Refer to caption
Figure 1: The mass of the positive parity Σb\Sigma_{b} baryon as functions of M2M^{2} and s0s_{0} at T=0T=0.

Now, we proceed to investigate the temperature dependence of the masses and residues of the BQB_{Q} baryons. As examples, we only present the results on the temperature-dependent masses and residues for the positive parity baryons. They reflects behavior of the OPE sides, which are common for both the positive and negative parity baryons, i.e., the masses and residues of both parities are obtained in terms of the functions in OPE sides as presented in the previous section. To this end, we plot the ratio of the temperature-dependent mass (residue) to its vacuum value, m(T)/m(0)m(T)/m(0) (λ(T)/λ(0)\lambda(T)/\lambda(0)), for the positive parity baryons as functions of M2M^{2} and ratio T/TpcT/T_{pc} in 3D at average values of s0s_{0} for Λb\Lambda_{b}, Ξb\Xi_{b}, Σb\Sigma_{b}, Ξb\Xi_{b}^{{}^{\prime}} and Ωb\Omega_{b} baryons in Figs. 2 and 3. From these figures, we see that the spectroscopic parameters of these baryons remain approximately unchanged with respect to the changes in T/TpcT/T_{pc} up to T108MeVT\cong 108~{}MeV for masses and T93MeVT\cong 93~{}MeV for residues. After these points, they start to decrease rapidly with increasing the temperature and we are witness of melting of these baryons. We realize that similar situation is valid for the charmed Λc\Lambda_{c}, Ξc\Xi_{c}, Σc\Sigma_{c}, Ξc\Xi_{c}^{{}^{\prime}} and Ωc\Omega_{c} baryons. The amount of negative shifts in masses and residues near to the critical point are shown in Tables 5 and 6. In the case of mass, the order of shifts roughly are comparable between the bottom and charmed baryons of each channel. Among the results, the order of negative shifts for all channels in bottom case is roughly the same but shows some differences among the charmed baryons. The sum rules for masses give reliable predictions up to thepseudocritical point considered in the present study. As far as the residues are concerned, the amount of shifts are roughly the same for b- and c-baryons and they are very large. Thus, at TTpcT\rightarrow T_{pc} limit, the residues approaches to zero and we see the melting of the baryons.

Λb(c)+\Lambda_{b(c)}^{+} Ξb(c)+\Xi_{b(c)}^{+} Σb(c)+\Sigma_{b(c)}^{+} Ξb(c)+\Xi_{b(c)}^{{}^{\prime}+} Ωb(c)+\Omega_{b(c)}^{+}
Negative shift (%)(\%) 74(72)74(72) 74(72)74(72) 74(80)74(80) 74(77)74(77) 75(77)75(77)
Table 5: At TTpcT\rightarrow T_{pc} limit, the percent of negative shifts in masses of the spin-1/2 heavy baryons with the positive parity compared to their vacuum values.
Λb(c)+\Lambda_{b(c)}^{+} Ξb(c)+\Xi_{b(c)}^{+} Σb(c)+\Sigma_{b(c)}^{+} Ξb(c)+\Xi_{b(c)}^{{}^{\prime}+} Ωb(c)+\Omega_{b(c)}^{+}
Negative shift (%)(\%) 9292 9494 9696 9797 9696
Table 6: The percent of negative shift in residues of the spin-1/2 heavy baryons with the positive parity relative to their vacuum values near to thepseudocritical point.
Refer to caption
Refer to caption
Refer to caption
Refer to caption
Refer to caption
Figure 2: The ratio m(T)/m(0)m(T)/m(0) as functions of M2M^{2} and T/TpcT/T_{pc} for positive parity Λb\Lambda_{b}, Ξb\Xi_{b}, Σb\Sigma_{b}, Ξb\Xi_{b}^{{}^{\prime}} and Ωb\Omega_{b} baryons at average value of s0s_{0}.
Refer to caption
Refer to caption
Refer to caption
Refer to caption
Refer to caption
Figure 3: The ratio λ(T)/λ(0)\lambda(T)/\lambda(0) as functions of M2M^{2} and T/TpcT/T_{pc} for positive parity Λb\Lambda_{b}, Ξb\Xi_{b}, Σb\Sigma_{b}, Ξb\Xi_{b}^{{}^{\prime}} and Ωb\Omega_{b} baryons at average value of s0s_{0}.

Our final task in this section is to discuss the results at T0T\rightarrow 0 limit. In this limit, the values of masses for the spin-1/2 heavy baryons containing a bottom quark with both the positive and negative parities are presented in Tables 7 and 8, respectively. Similarly, the vacuum masses for the spin-1/2 heavy baryons containing a charm quark with both the positive and negative parities are presented in Tables 9 and 10, respectively. From these tables, we see that our results are in good consistency with existing experimental data and other theoretical predictions within the presented uncertainties. These consistency lead us to hope that, the obtained results at nonzero temperature in the present study can shed light on the future heavy ion collision experiments and can be used in analyses of the related data. The uncertainties in our predictions belong to those related to the working intervals of the auxiliary parameters as well as the uncertainties of all the presented input parameters.

mΛb+m_{\Lambda_{b}^{+}} mΞb+m_{\Xi_{b}^{+}} mΣb+m_{\Sigma_{b}^{+}} mΞb+m_{\Xi_{b}^{{}^{\prime}+}} mΩb+m_{\Omega_{b}^{+}}
present work 5.6910.109+0.1015.691^{+0.101}_{-0.109} 5.7970.077+0.0785.797^{+0.078}_{-0.077} 5.8450.144+0.1375.845^{+0.137}_{-0.144} 5.9570.157+0.1475.957^{+0.147}_{-0.157} 6.0650.112+0.1136.065^{+0.113}_{-0.112}
ExpPDG 5.61960±0.000175.61960\pm 0.00017 5.7919±0.00055.7919\pm 0.0005 5.81056±0.000255.81056\pm 0.00025 5.93502±0.00002±0.000055.93502\pm 0.00002\pm 0.00005 6.0461±0.00176.0461\pm 0.0017
Roberts 5.612 5.844 5.833 - 6.081
Karliner - 5.790-5800 - 5.930±0.0055.930\pm 0.005 6.0521±0.00566.0521\pm 0.0056
Capstick 5.585 - 5.795 - -
Dai - - 5.83±0.095.83\pm 0.09 - -
Liu 5.6370.056+0.0685.637^{+0.068}_{-0.056} 5.7800.068+0.0735.780^{+0.073}_{-0.068} 5.8090.076+0.0825.809^{+0.082}_{-0.076} 5.9030.079+0.0815.903^{+0.081}_{-0.079} 6.036±0.0816.036\pm 0.081
Korner 5.641±0.055.641\pm 0.05 5.80 5.82 5.94 6.04
Roncaglia 5.620±0.0405.620\pm 0.040 5.810±0.0405.810\pm 0.040 5.820±0.0405.820\pm 0.040 5.950±0.0405.950\pm 0.040 6.060±0.0506.060\pm 0.050
Ghalenovi1 - 5.833 5.815 - 5.948
Ghalenovi2 5.683 5.833 5.708 - 5.967
Brown 5.626 5.771 5.856 5.933 6.056
Mathur 5.664 5.762 - - 6.021
Ebert1 5.622 5.812 5.805 5.937 6.065
Ebert2 5.622 5.812 5.805 - 6.065
Ebert3 5.620 5.803 5.808 - 6.064
Kim 5.609 5.8036 5.8055 5.9338 6.0571
Yin 5.62 5.75 5.75 5.88 6.00
Azizi 5.614±0.3455.614\pm 0.345 - 5.810±0.2415.810\pm 0.241 - -
Wang1 ; Wang2 5.6180.104+0.0785.618^{+0.078}_{-0.104} - 5.96±0.105.96\pm 0.10 - -
Wang3 5.65±0.205.65\pm 0.20 5.73±0.185.73\pm 0.18 - - -
Zhang1 ; Zhang2 5.69±0.135.69\pm 0.13 5.75±0.135.75\pm 0.13 5.73±0.215.73\pm 0.21 5.87±0.205.87\pm 0.20 5.89±0.185.89\pm 0.18
Agaev2 - - - - 6.487±0.187\pm 0.187
Agaev4 - - - - 6.024±0.0656.024\pm 0.065
Table 7: Vacuum masses of the spin-1/2 positive parity heavy baryons containing a bottom quark (in GeVGeV).
mΛbm_{\Lambda_{b}^{-}} mΞbm_{\Xi_{b}^{-}} mΣbm_{\Sigma_{b}^{-}} mΞbm_{\Xi_{b}^{{}^{\prime}-}} mΩbm_{\Omega_{b}^{-}}
present work 5.9100.132+0.1185.910^{+0.118}_{-0.132} 6.0950.150+0.1356.095^{+0.135}_{-0.150} 6.1430.087+0.0956.143^{+0.095}_{-0.087} 6.2550.104+0.1136.255^{+0.113}_{-0.104} 6.3700.061+0.0666.370^{+0.066}_{-0.061}
ExpPDG 5.91219±0.000175.91219\pm 0.00017 - - - -
Roberts 5.939 6.108 6.099 - 6.301
Capstick 5.912 - 6.070 - -
Ebert2 5.930 6.119 6.1086.108 - 6.352
Ebert3 5.9305.930 6.1206.120 6.1016.101 - 6.3396.339
Garcilazo 5.8905.890 6.076 6.039 - 6.278
Yin 6.036.03 6.156.15 6.326.32 6.406.40 6.496.49
Wang3 5.85±0.185.85\pm 0.18 6.01±0.166.01\pm 0.16 - - -
Zhang1 ; Zhang2 5.85±0.155.85\pm 0.15 5.95±0.165.95\pm 0.16 - - -
Agaev2 - - - - 6.336±0.1836.336\pm 0.183
Table 8: Vacuum masses of the spin-1/2 negative parity heavy baryons containing a bottom quark (in GeVGeV).
mΛc+m_{\Lambda_{c}^{+}} mΞc+m_{\Xi_{c}^{+}} mΣc+m_{\Sigma_{c}^{+}} mΞc+m_{\Xi_{c}^{{}^{\prime}+}} mΩc+m_{\Omega_{c}^{+}}
present work 2.2830.095+0.0872.283^{+0.087}_{-0.095} 2.4600.094+0.0252.460^{+0.025}_{-0.094} 2.4880.113+0.1052.488^{+0.105}_{-0.113} 2.5760.101+0.0952.576^{+0.095}_{-0.101} 2.6890.093+0.1002.689^{+0.100}_{-0.093}
ExpPDG 2.28646±0.000142.28646\pm 0.00014 2.46771±0.000232.46771\pm 0.00023 2.4529±0.00042.4529\pm 0.0004 2.5787±0.00052.5787\pm 0.0005 2.6952±0.00172.6952\pm 0.0017
Roberts 2.268 2.492 2.455 - 2.718
Capstick 2.265 - 2.440 - -
Dai - - 2.52±0.082.52\pm 0.08 2.5808±0.00212.5808\pm 0.0021 -
Liu 2.2710.049+0.0672.271^{+0.067}_{-0.049} 2.4320.068+0.0792.432^{+0.079}_{-0.068} 2.4110.081+0.0932.411^{+0.093}_{-0.081} 2.5080.091+0.0972.508^{+0.097}_{-0.091} 2.6570.099+0.1022.657^{+0.102}_{-0.099}
Korner 2.285±0.00062.285\pm 0.0006 2.4728±0.00172.4728\pm 0.0017 2.4525±0.00092.4525\pm 0.0009 2.57 2.719±0.007±0.00252.719\pm 0.007\pm 0.0025
Roncaglia 2.285±0.0012.285\pm 0.001 2.468±0.0032.468\pm 0.003 2.453±0.0032.453\pm 0.003 2.580±0.0202.580\pm 0.020 2.710±0.0302.710\pm 0.030
Ghalenovi1 - 2.473 2.455 - 2.588
Ghalenovi2 2.303 2.453 2.328 - 2.587
Patel1 - 2.653 2.586 - 2.720
Patel2 - 2.648 2.575 - 2.723
Brown 2.254 2.433 2.474 2.574 2.679
Mathur - 2.440 2.407 - 2.652
Lewis 2.295 2.462 2.490 2.594 2.699
Bahtiyar 2.343(23) 2.474(11) 2.459(45)2.459(45) 2.593(22)2.593(22) 2.711(16)
Ebert1 ; Ebert2 2.297 2.481 2.439 2.578 2.698
Ebert3 2.286 2.476 2.443 - 2.698
Kim 2.2807 2.4752 2.4485 2.5768 2.7001
Yin 2.40 2.55 2.45 2.59 2.73
Azizi 2.295±0.2512.295\pm 0.251 - 2.451±0.2082.451\pm 0.208 - -
Wang1 ; Wang2 2.2840.078+0.0492.284^{+0.049}_{-0.078} - 2.54±0.152.54\pm 0.15 - -
Wang3 2.26±0.272.26\pm 0.27 2.44±0.232.44\pm 0.23 - - -
Zhang1 ; Zhang2 2.31±0.192.31\pm 0.19 2.48±0.212.48\pm 0.21 2.40±0.312.40\pm 0.31 2.50±0.292.50\pm 0.29 2.62±0.292.62\pm 0.29
Agaev1 - - - 2.925±0.1152.925\pm 0.115 -
Agaev3 ; Agaev4 - - - - 2.685±0.1232.685\pm 0.123
Table 9: Vacuum masses of the spin-1/2 positive parity heavy baryons containing a charm quark (in GeVGeV).
mΛcm_{\Lambda_{c}^{-}} mΞcm_{\Xi_{c}^{-}} mΣcm_{\Sigma_{c}^{-}} mΞcm_{\Xi_{c}^{{}^{\prime}-}} mΩcm_{\Omega_{c}^{-}}
present work 2.5480.086+0.0902.548^{+0.090}_{-0.086} 2.7630.102+0.1032.763^{+0.103}_{-0.102} 2.8680.037+0.0512.868^{+0.051}_{-0.037} 2.9010.079+0.0822.901^{+0.082}_{-0.079} 3.0990.024+0.0463.099^{+0.046}_{-0.024}
ExpPDG 2.59225±0.000282.59225\pm 0.00028 2.7919±0.00052.7919\pm 0.0005 - - -
Roberts 2.625 2.763 2.748 - 2.977
Capstick 2.630 - 2.795 - -
Bahtiyar 2.668(16) 2.770(67) 2.814(20)2.814(20) 2.933(16)2.933(16) 3.044(15)
Ebert2 2.598 2.801 2.7952.795 - 3.020
Ebert3 2.5982.598 2.7922.792 2.7992.799 - 3.0553.055
Migura 2.5942.594 2.769 2.769 - -
Gerasyuta1 ; Gerasyuta2 ; Gerasyuta3 2.4002.400 - 2.700 - -
Garcilazo 2.5592.559 2.749 2.706 - 2.959
Yin 2.672.67 2.79 2.84 2.942.94 3.03
Wang3 2.61±0.212.61\pm 0.21 2.76±0.182.76\pm 0.18 - - -
Zhang1 ; Zhang2 2.53±0.222.53\pm 0.22 2.65±0.272.65\pm 0.27 - - -
Agaev1 - - - 2.925±0.1152.925\pm 0.115 -
Agaev3 ; Agaev4 - - - - 2.990±0.1292.990\pm 0.129
Table 10: Vacuum masses of the spin-1/2 negative parity heavy baryons containing a charm quark (in GeVGeV).

IV Summary and Conclusions

We investigated the mass and residue of the spin-1/2 single heavy ΛQ\Lambda_{Q}, ΞQ\Xi_{Q}, ΣQ\Sigma_{Q}, ΞQ\Xi_{Q}^{{}^{\prime}} and ΩQ\Omega_{Q} baryons as functions of temperature in the framework of thermal QCD sum rule. In our calculations, we took into account the non-perturbative operators up to mass dimension 8 including those arising from the Wilson expansion at finite temperature due to breaking the Lorentz invariance. The obtained results indicate that the mass of these baryons in both the bottom and charm channels remain stable up to roughly T=108T=108 MeV while their residue are unchanged up to T=93T=93 MeV. After these points, the masses and residues start to diminish by increasing in the temperature. The shifts in the mass and residue for both the bottom and charm channels are considerably large and we observe the melting of these baryons near to thepseudocritical temperature determined by recent lattice QCD calculations. The amount of negative shifts near to thepseudocritical point have been shown in Tables 5 and 6. The order of shifts in masses are roughly the same between the bottom and charmed baryons of each channel. Among the results, the order of shifts for all channels for bottom baryons is roughly the same but shows some differences among the charmed members. The sum rules for masses give reliable predictions up to thepseudocritical point considered in the present study (roughly 155155 MeV). As far as the residues are concerned, the amounts of shifts in bottom and charmed cases of each channel are the same. The negative shifts near to the end point are very large for all baryons and the residues approach to zero atpseudocritical point.

We presented our results for the mass of the single heavy baryons with both the positive and negative parities at T0T\rightarrow 0 limit in Tables 7, 8, 9 and 10. We observed that the obtained results for the single heavy bottom and charmed baryons of spin-1/2 with both the positive and negative parities in the present study are in good consistencies with the experimental data presented in Ref. PDG as well as with other theoretical predictions made via different phenomenological approaches. Our results on the behavior of the physical quantities considered in the present study with respect to temperature and the amount of shifts in these quantities near to the pseudocritical point may be checked via other phenomenological approaches. The obtained results in the present study may shed light on analyses of the data provided by the future heavy ion collision experiments.

V Appendix

In this appendix, we present the explicit forms of the spectral density ρ1QCD(s,T)\rho^{QCD}_{1}(s,T) (for perturbative and some non-perturbative parts) and the function B^Γ1QCD(T)\hat{B}\Gamma_{1}^{QCD}(T) defining other non-perturbative contributions for Σb0\Sigma^{0}_{b} baryon as examples. They are obtained as

ρ1pert.(s,T)\displaystyle\rho_{1}^{\mathrm{pert.}}(s,T) =\displaystyle= 164π401dz(z1){6β[mb2mumdβsmumd]3z2mb48βz2smb25β2z2s2}×Θ[L(s,z)],\displaystyle-\frac{1}{64\pi^{4}}\int_{0}^{1}\frac{dz}{(z-1)}\Bigg{\{}6\beta\Big{[}m_{b}^{2}m_{u}m_{d}-\beta sm_{u}m_{d}\Big{]}-3z^{2}m_{b}^{4}-8\beta z^{2}sm_{b}^{2}-5\beta^{2}z^{2}s^{2}\Bigg{\}}\times\Theta[L(s,z)], (38)
ρ1qq¯(s,T)\displaystyle\rho_{1}^{\langle q\bar{q}\rangle}(s,T) =\displaystyle= 18π201𝑑zβ{mu[d¯d3zu¯u]+md[u¯u3zd¯d]}×Θ[L(s,z)],\displaystyle-\frac{1}{8\pi^{2}}\int_{0}^{1}dz\beta\Bigg{\{}m_{u}\Big{[}\langle\bar{d}d\rangle-3z\langle\bar{u}u\rangle\Big{]}+m_{d}\Big{[}\langle\bar{u}u\rangle-3z\langle\bar{d}d\rangle\Big{]}\Bigg{\}}\times\Theta[L(s,z)], (39)
ρ1G2+Θf,g(s,T)=1π201𝑑z{z2[gs296π2uΘgu332αsG2π]zβ3uΘfu}×Θ[L(s,z)],\displaystyle\rho_{1}^{\langle G^{2}\rangle+\langle\Theta^{f,g}\rangle}(s,T)=\frac{1}{\pi^{2}}\int_{0}^{1}dz\Bigg{\{}z^{2}\Bigg{[}\frac{g_{s}^{2}}{96\pi^{2}}\langle u\Theta^{g}u\rangle-\frac{3}{32}\Big{\langle}\frac{\alpha_{s}G^{2}}{\pi}\Big{\rangle}\Bigg{]}-\frac{z\beta}{3}\langle u\Theta^{f}u\rangle\Bigg{\}}\times\Theta[L(s,z)], (40)

Here, zz is Feynman parameter, Θ\Theta indicates the unit-step function, L(s,z)=sz(1z)zmb2L(s,z)=s~{}z(1-z)-z~{}m_{b}^{2} and β=z1\beta=z-1. The explicit form of the function B^Γ1QCD(T)\hat{B}\Gamma_{1}^{QCD}(T) for the Σb0\Sigma^{0}_{b} baryon is obtained as

B^Γ1QCD(T)=11728π2M601dzemb2M2ββ6{αsG2π(9M4mumdmb2zβ43βπ2mumdmbd¯d[mb2β3\displaystyle\hat{B}\Gamma_{1}^{QCD}(T)=\frac{1}{1728\pi^{2}M^{6}}\int_{0}^{1}dz\frac{e^{\frac{m_{b}^{2}}{M^{2}\beta}}}{\beta^{6}}\Bigg{\{}\langle\frac{\alpha_{s}G^{2}}{\pi}\rangle\Bigg{(}-9M^{4}m_{u}m_{d}m_{b}^{2}z\beta^{4}-3\beta\pi^{2}m_{u}m_{d}m_{b}\langle\bar{d}d\rangle\Big{[}m_{b}^{2}\beta^{3} (41)
+\displaystyle+ 3M2β4+M2β2(14z+3z2)]+muu¯uπ2[63M2β2mb2(1z3)+180M4β6+9mb4β3z\displaystyle 3M^{2}\beta^{4}+M^{2}\beta^{2}(1-4z+3z^{2})\Big{]}+m_{u}\langle\bar{u}u\rangle\pi^{2}\Big{[}-63M^{2}\beta^{2}m_{b}^{2}(1-z^{3})+180M^{4}\beta^{6}+9m_{b}^{4}\beta^{3}z
\displaystyle- 27M2mb2β(1+3z33z2)]+mdd¯dπ2[M2β2mb2(36++153z198z2+81z3)+108M4β4(1+z2)\displaystyle 27M^{2}m_{b}^{2}\beta(1+3z^{3}-3z^{2})\Big{]}+m_{d}\langle\bar{d}d\rangle\pi^{2}\Big{[}M^{2}\beta^{2}m_{b}^{2}(-36++153z-198z^{2}+81z^{3})+108M^{4}\beta^{4}(1+z^{2})
+\displaystyle+ 8505M2βmb2z2+72M4β3(z316zβ)+15mb4zβ3+45M2β4mb2z]12π2M2β4mb2(mud¯d+mdu¯u)\displaystyle 8505M^{2}\beta m_{b}^{2}z^{2}+72M^{4}\beta^{3}(z^{3}-1-6z\beta)+15m_{b}^{4}z\beta^{3}+45M^{2}\beta^{4}m_{b}^{2}z\Big{]}-12\pi^{2}M^{2}\beta^{4}m_{b}^{2}\Big{(}m_{u}\langle\bar{d}d\rangle+m_{d}\langle\bar{u}u\rangle\Big{)}
+\displaystyle+ (12π2M2β3zmbd¯d6π2M2β3zmbu¯u)(βmb2+5M2β+2M2))(12M2β5gs2mb2uΘgu+36M4β6gs2uΘgu\displaystyle\Big{(}12\pi^{2}M^{2}\beta^{3}zm_{b}\langle\bar{d}d\rangle-6\pi^{2}M^{2}\beta^{3}zm_{b}\langle\bar{u}u\rangle\Big{)}\Big{(}\beta m_{b}^{2}+5M^{2}\beta+2M^{2}\Big{)}\Bigg{)}-\Big{(}12M^{2}\beta^{5}g_{s}^{2}m_{b}^{2}\langle u\Theta^{g}u\rangle+36M^{4}\beta^{6}g_{s}^{2}\langle u\Theta^{g}u\rangle
+\displaystyle+ 48M2β6q02gs2uΘgu)(muu¯u+mdd¯d)+uΘfu[αsG2π(M2π2β2mb2(144176z80z3+208z2)\displaystyle 48M^{2}\beta^{6}q_{0}^{2}g_{s}^{2}\langle u\Theta^{g}u\rangle\Big{)}\Big{(}m_{u}\langle\bar{u}u\rangle+m_{d}\langle\bar{d}d\rangle\Big{)}+\langle u\Theta^{f}u\rangle\Bigg{[}\langle\frac{\alpha_{s}G^{2}}{\pi}\rangle\Bigg{(}M^{2}\pi^{2}\beta^{2}m_{b}^{2}(144-176z-80z^{3}+208z^{2})
+\displaystyle+ 96M2π2β(mb2(1+3z33z2z4)M2β5)+32mb4z(π2+3zz3+3z2)128π2β4mb2q02z\displaystyle 96M^{2}\pi^{2}\beta\Big{(}m_{b}^{2}(1+3z^{3}-3z^{2}-z^{4})-M^{2}\beta^{5}\Big{)}+32m_{b}^{4}z(\pi^{2}+3z-z^{3}+3z^{2})-128\pi^{2}\beta^{4}m_{b}^{2}q_{0}^{2}z
+\displaystyle+ 144M4π2β3z2(2β)+48M4π2β3(23β6z))+M2β3gs2uΘgu(80M2β3416M2βz+16β2mb2+256β3q02\displaystyle 144M^{4}\pi^{2}\beta^{3}z^{2}(2-\beta)+48M^{4}\pi^{2}\beta^{3}(2-3\beta-6z)\Bigg{)}+M^{2}\beta^{3}g_{s}^{2}\langle u\Theta^{g}u\rangle\Big{(}80M^{2}\beta^{3}-416M^{2}\beta z+16\beta^{2}m_{b}^{2}+256\beta^{3}q_{0}^{2}
\displaystyle- 96βmb21536β2q0296mb21536βq02)]}Θ[L(s0,z)]+emb2M2864π2M8{27M8m02(mud¯d+mdu¯u)\displaystyle 96\beta m_{b}^{2}-1536\beta^{2}q_{0}^{2}-96m_{b}^{2}-1536\beta q_{0}^{2}\Big{)}\Bigg{]}\Bigg{\}}\Theta[L(s_{0},z)]+\frac{e^{-\frac{m_{b}^{2}}{M^{2}}}}{864\pi^{2}M^{8}}\Bigg{\{}27M^{8}m_{0}^{2}\Big{(}m_{u}\langle\bar{d}d\rangle+m_{d}\langle\bar{u}u\rangle\Big{)}
+\displaystyle+ 144π2M8u¯ud¯d+72π2M4[mdd¯d(muu¯u(mb2+M2)+M2uΘfu)mb2muu¯uuΘfuM2m02u¯ud¯d]\displaystyle 144\pi^{2}M^{8}\langle\bar{u}u\rangle\langle\bar{d}d\rangle+72\pi^{2}M^{4}\Big{[}m_{d}\langle\bar{d}d\rangle\Big{(}m_{u}\langle\bar{u}u\rangle(m_{b}^{2}+M^{2})+M^{2}\langle u\Theta^{f}u\rangle\Big{)}-m_{b}^{2}m_{u}\langle\bar{u}u\rangle\langle u\Theta^{f}u\rangle-M^{2}m_{0}^{2}\langle\bar{u}u\rangle\langle\bar{d}d\rangle\Big{]}
+\displaystyle+ 3π2M4αsG2πu¯u(mb2(mumd)M2(mu+md))+48π2M6mbuΘfu(u¯ud¯d)\displaystyle 3\pi^{2}M^{4}\langle\frac{\alpha_{s}G^{2}}{\pi}\rangle\langle\bar{u}u\rangle\Big{(}m_{b}^{2}(m_{u}-m_{d})-M^{2}(m_{u}+m_{d})\Big{)}+48\pi^{2}M^{6}m_{b}\langle u\Theta^{f}u\rangle\Big{(}\langle\bar{u}u\rangle-\langle\bar{d}d\rangle\Big{)}
+\displaystyle+ 9π2M4muu¯uuΘfu(24M2+64q02)π2M4mdd¯duΘfu(120mb2384q02)8π2m02mb2u¯ud¯d(mb2mumd+9M4)\displaystyle 9\pi^{2}M^{4}m_{u}\langle\bar{u}u\rangle\langle u\Theta^{f}u\rangle\Big{(}24M^{2}+64q_{0}^{2}\Big{)}-\pi^{2}M^{4}m_{d}\langle\bar{d}d\rangle\langle u\Theta^{f}u\rangle\Big{(}120m_{b}^{2}-384q_{0}^{2}\Big{)}-8\pi^{2}m_{0}^{2}m_{b}^{2}\langle\bar{u}u\rangle\langle\bar{d}d\rangle\Big{(}m_{b}^{2}m_{u}m_{d}+9M^{4}\Big{)}
+\displaystyle+ 128π2M4uΘfu2(mb23M28q02)},\displaystyle 128\pi^{2}M^{4}\langle u\Theta^{f}u\rangle^{2}\Big{(}m_{b}^{2}-3M^{2}-8q_{0}^{2}\Big{)}\Bigg{\}},

where the dimensions of some operators included in the formulas are given in Table 11.

Dimension Operator
1 II
3 q¯1(2)q1(2)\langle\bar{q}_{1(2)}q_{1(2)}\rangle
4 Θf(g)\langle\Theta^{f(g)}\rangle
4 G2\langle G^{2}\rangle
5 m02q¯1(2)q1(2)m_{0}^{2}\langle\bar{q}_{1(2)}q_{1(2)}\rangle
6 q¯1q1q¯2q2\langle\bar{q}_{1}q_{1}\rangle\langle\bar{q}_{2}q_{2}\rangle
6 q¯1(2)q1(2)2\langle\bar{q}_{1(2)}q_{1(2)}\rangle^{2}
7 q¯1(2)q1(2)G2\langle\bar{q}_{1(2)}q_{1(2)}\rangle\langle G^{2}\rangle
7 q¯1(2)q1(2)Θf(g)\langle\bar{q}_{1(2)}q_{1(2)}\rangle\langle\Theta^{f(g)}\rangle
8 Θf(g)2\langle\Theta^{f(g)}\rangle^{2}
8 G22\langle G^{2}\rangle^{2}
8 Θf(g)G2\langle\Theta^{f(g)}\rangle\langle G^{2}\rangle
Table 11: List of some operators and their mass dimensions entering our calculations.

References