This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Properties of independence in NSOP3\mathrm{NSOP}_{3} theories

Scott Mutchnik
Abstract.

We prove some results about the theory of independence in NSOP3\mathrm{NSOP}_{3} theories that do not hold in NSOP4\mathrm{NSOP}_{4} theories. We generalize Chernikov’s work on simple and co-simple types in NTP2\mathrm{NTP}_{2} theories to types with NSOP1\mathrm{NSOP}_{1} induced structure in N\mathrm{N}-ω\omega-DCTP2\mathrm{DCTP}_{2} and NSOP3\mathrm{NSOP}_{3} theories, and give an interpretation of our arguments and those of Chernikov in terms of the characteristic sequences introduced by Malliaris. We then prove an extension of the independence theorem to types in NSOP3\mathrm{NSOP}_{3} theories whose internal structure is NSOP1\mathrm{NSOP}_{1}. Additionally, we show that in NSOP3\mathrm{NSOP}_{3} theories with symmetric Conant-independence, finitely satisfiable types satisfy an independence theorem similar to one conjectured by Simon for invariant types in NTP2\mathrm{NTP}_{2} theories, and give generalizations of this result to invariant and Kim-nonforking types.

1. Introduction

A central program in pure model theory is to develop the theory of independence, which originated within the stable theories, beyond stability and simplicity. This has been successful for the original notion of forking-independence within NTP2\mathrm{NTP}_{2} theories: for example, Chernikov and Kaplan, in [9], show that forking coincides with dividing in NTP2\mathrm{NTP}_{2} theories; Ben-Yaacov and Chernikov, in [42], give an independence theorem for forking-independence in NTP2\mathrm{NTP}_{2} theories that is improved by Simon in [40], and Chernikov, in [8], studies simple types in NTP2\mathrm{NTP}_{2} theories and gives a characterization of NTP2\mathrm{NTP}_{2} theories in terms of Kim’s lemma. In a different direction, Kaplan and Ramsey in [19] extend the original theory of independence in simple theories to NSOP1\mathrm{NSOP}_{1} theories by introducing the notion of Kim-independence, described as forking-independence “at a generic scale.” Kaplan and Ramsey, in [19], show, using work of Chernikov and Ramsey in [10], that symmetry of Kim-independence characterizes the property NSOP1\mathrm{NSOP}_{1}; they also show that the independence theorem for Kim-independence characterizes NSOP1\mathrm{NSOP}_{1}. To give examples of further consequences of NSOP1\mathrm{NSOP}_{1} for the theory of Kim-independence, Kaplan and Ramsey in [20] give a characterization of NSOP1\mathrm{NSOP}_{1} in terms of transitivity, Kaplan, Ramsey and Shelah in [21] give a characterization in terms of local character; Dobrowolski, Kim and Ramsey in [13] and Chernikov, Kim and Ramsey in [6] study independence over arbitrary sets in NSOP1\mathrm{NSOP}_{1} theories. Kruckman and Ramsey, in [27], prove an improved independence theorem, developed further by Kruckman, Tran and Walsberg in the appendix of [28]. Kim ([23]) initiates a theory of canonical bases. For extensions to positive logic, see [12], [17], [5]; see also [7] for extensions of Kim-independence to NTP2\mathrm{NTP}_{2} theories. Beyond NSOP1\mathrm{NSOP}_{1} and NSOP2\mathrm{NSOP}_{2}, the author in [35] develops a theory of independence in NSOP2\mathrm{NSOP}_{2} theories and uses this to show that every NSOP2\mathrm{NSOP}_{2} theory is in fact NSOP1\mathrm{NSOP}_{1}, and Kim and Lee, in [25], use remarks by the author in [35] to develop Kim-forking and Kim-dividing in the NATP\mathrm{NATP} theories introduced by Ahn and Kim in [3] and further devloped by Ahn, Kim and Lee in [4], as well as the related N\mathrm{N}-kk-DCTP2\mathrm{DCTP}_{2} theories introduced by the author in [35].

However, much remains to be understood about the theory of independence in Shelah’s strong order hierarchy, NSOPn\mathrm{NSOP}_{n}, for n3n\geq 3. In [36], the author relativizes the theory of Kim-indpendence in [10], [19] by developing a theory of independence relative to abstract independence relations generalizing the free amalgamation axioms of [11]; though the theories to which this result applies may be strictly NSOP4\mathrm{NSOP}_{4} (NSOP4\mathrm{NSOP}_{4} and SOP3\mathrm{SOP}_{3}) as well as NSOP1\mathrm{NSOP}_{1}, NSOP4\mathrm{NSOP}_{4} is not actually used in the result. The author also observes in the same paper using the generalization in [35] of the arguments of [11] that theories possessing independence properties with no known NSOP4\mathrm{NSOP}_{4} counterxamples–symmetric Conant-independence and the strong witnessing property that generalizes Kim’s lemma–cannot be strictly NSOP3\mathrm{NSOP}_{3}. Conant-independence, which can be described as forking-independence at a maximally generic scale and is grounded in the strong Kim-dividing of [21], is introduced in that paper (based on a similar notion with the same name developed in [35] to show the equivalence of NSOP1\mathrm{NSOP}_{1} and NSOP2\mathrm{NSOP}_{2}) as a potential extension of the theory of Kim-independence beyond NSOP1\mathrm{NSOP}_{1}. There the author shows that a theory where Conant-independence is symmetric must be NSOP4\mathrm{NSOP}_{4}, and characterizes Conant-independence in most of the known examples of NSOP4\mathrm{NSOP}_{4} theories, where it is symmetric. This leaves open the question of whether Conant-independence is symmetric in any NSOP4\mathrm{NSOP}_{4} theory, a question intimately related to the question of whether any NSOP3\mathrm{NSOP}_{3} theory is NSOP2\mathrm{NSOP}_{2}. In [18], Kaplan, Ramsey and Simon have recently shown that all binary NSOP3\mathrm{NSOP}_{3} theories are simple, by developing a theory of independence for a class of theories containing all binary theories. In [34] the author develops the independence relations ðn\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}^{\eth^{n}}, based on the same idea of forking-independence at a maximally generic scale, shows that any theory where ðn\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}^{\eth^{n}} is symmetric must be NSOP2n+1+1\mathrm{NSOP}_{2^{n+1}+1}, and characterizes ðn\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}^{\eth^{n}} in the classical examples of NSOP2n+1+1\mathrm{NSOP}_{2^{n+1}+1} theories, leaving open the question of whether ðn\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}^{\eth^{n}} is symmetric in any NSOP2n+1+1\mathrm{NSOP}_{2^{n+1}+1} theory. (Demonstrating robustness of the result, the author proves a similar result for left and right transitivity.) In [32], Malliaris and Shelah initiate a structure theory for NSOP3\mathrm{NSOP}_{3} theories, though instead of a theory of independence along the lines of forking-independence or Kim-independence, they show symmetric inconsistency for higher formulas, a result on sequences of realizations of two invariant types yielding inconsistent instances of two formulas, rather than any kind of indiscernible sequence witnessing the dividing of a single formula. Malliaris, in [33], also investigates the graph-theoretic depth of independence in NSOP3\mathrm{NSOP}_{3} theories. The pressing question remains, for n3n\geq 3: using the assumption that TT is NSOPn\mathrm{NSOP}_{n} (and possibly some additional assumptions that are not already known to collapse NSOPn\mathrm{NSOP}_{n} into NSOP1\mathrm{NSOP}_{1}), can we show any properties of TT that fit into the program of generalizing the properties of independence in stable or simple theories, as was done for NSOP1\mathrm{NSOP}_{1} and NSOP2\mathrm{NSOP}_{2} theories?

The aim of this paper is to show that this question is tractable for NSOP3\mathrm{NSOP}_{3} theories, whose equivalence with NSOP1\mathrm{NSOP}_{1} remains open. We prove three results on NSOP3\mathrm{NSOP}_{3} theories, two about the NSOP1\mathrm{NSOP}_{1} “building blocks” of NSOP3\mathrm{NSOP}_{3} theories and the independence relations between them in the global NSOP3\mathrm{NSOP}_{3} structure, and one about NSOP3\mathrm{NSOP}_{3} theories with symmetric Conant-independence. All three of these results truly use NSOP3\mathrm{NSOP}_{3} in that they fail when the assumption is relaxed to NSOP4\mathrm{NSOP}_{4} (and the first two results, though both concerning the NSOP1\mathrm{NSOP}_{1} local structure, involve separate uses of NSOP3\mathrm{NSOP}_{3} in a sense that will become apparent.) The first and third result will also appear similar to properties known or proposed for NTP2\mathrm{NTP}_{2} theories, in contrast to the open question of whether NTP2NSOPn\mathrm{NTP}_{2}\cap\mathrm{NSOP}_{n} coincides with simplicity for n3n\geq 3, which would suggest that NSOPn\mathrm{NSOP}_{n} is much different from NTP2\mathrm{NTP}_{2}.

We give an outline of the paper.

In Section 3 we generalize work of Chernikov ([8]) on simple types in NTP2\mathrm{NTP}_{2} theories. As the property N\mathrm{N}-ω\omega-DCTP2\mathrm{DCTP}_{2} is a subclass of NATP\mathrm{NATP} which is one potential solution XX to [26]’s proposed analogy “simple : NTP2\mathrm{NTP}_{2} :: NSOP1\mathrm{NSOP}_{1} : XX,” ([35], [25]), it is to be expected that the analogous result for “NSOP1\mathrm{NSOP}_{1} types” holds for N\mathrm{N}-ω\omega-DCTP2\mathrm{DCTP}_{2} theories. What is not predicted by this analogy is that the same result on NSOP1\mathrm{NSOP}_{1} local structure holds in NSOP3\mathrm{NSOP}_{3} theories. Instead of generalizing the definition of simple types, we introduce a definition schema for the internal properties of a (partial) type, which is more natural in that it refers to the global properties of a structure associated with that type. (We could also have generalized the defintion of simple types to NSOP1\mathrm{NSOP}_{1} and gotten the same conclusion; see Remark 3.6.) We show that just as Chernikov implicitly showed in ([8]) for internally simple types in NTP2\mathrm{NTP}_{2} theories, the assumption of NSOP3\mathrm{NSOP}_{3} controls how internally NSOP1\mathrm{NSOP}_{1} types relate to the rest of the structure:

Theorem 1.1.

Let TT be NSOP3\mathrm{NSOP}_{3}, and p(x)p(x) an internally NSOP1\mathrm{NSOP}_{1} type. Then p(x)p(x) is co-NSOP1\mathrm{NSOP}_{1}.

See Definitions 3.1 and 3.3. When TT is only assumed to be NSOP4\mathrm{NSOP}_{4}, we give an internally simple type p(x)p(x) for which this fails.

We then interpret the proof of this result as well the results of Chernikov in [8] (and their direct generalization to N\mathrm{N}-ω\omega-DCTP2\mathrm{DCTP}_{2}) in terms of the characteristic sequences introduced by Malliaris in [30] to relate “classification-theoretic properties” of a theory to the “graph-theoretic properties” of hypergraphs, and used by Malliaris in [31] to study Keisler’s order. Internally to a type p(x)p(x), what the ambient theory perceives to be an instance of co-NSOP1\mathrm{NSOP}_{1} (an instance of NSOP1\mathrm{NSOP}_{1} with parameters realizing p(x)p(x)) is simply a definable hypergraph making no reference to consistency. Model-theoretic properties of a theory will give control of the graph-theoretic structure of hypergraphs definable in that theory, similarly to Shelah’s classic result that an definable bipartite graph with the order property in an NSOP\mathrm{NSOP} theory must even have the independence property. Applied in the case where the model-theoretic properties, such as simplicity and NSOP1\mathrm{NSOP}_{1}, are assumed of the internal structure on p(x)p(x), this will illuminate the proof in [8] of co-simplicity in NTP2\mathrm{NTP}_{2} theories and our proof of co-NSOP1\mathrm{NSOP}_{1} in N\mathrm{N}-ω\omega-DCTP2\mathrm{DCTP}_{2} and NSOP3\mathrm{NSOP}_{3} theories.

In Section 4, we discuss how internally NSOP1\mathrm{NSOP}_{1} types interrelate within the ambient structure of a NSOP3\mathrm{NSOP}_{3} theory, showing that their behavior is similar to how they would interrelate in a globally NSOP1\mathrm{NSOP}_{1} theory. By the Kim-Pillay characterization of NSOP1\mathrm{NSOP}_{1}, Theorem 9.1 of [19], for no reasonable notion of independence could a full independence theorem hold in an SOP1\mathrm{SOP}_{1} (that is, non-NSOP1\mathrm{NSOP}_{1}) theory. However, we prove an independence theorem between internally NSOP1\mathrm{NSOP}_{1} types in NSOP3\mathrm{NSOP}_{3} theories:

Theorem 1.2.

Let TT be NSOP3\mathrm{NSOP}_{3}, and let p1,p2,p3p_{1},p_{2},p_{3} be internally NSOP1\mathrm{NSOP}_{1} types over MM. Let a1Ma1p1(𝕄)a_{1}\equiv_{M}a^{\prime}_{1}\subset p_{1}(\mathbb{M}), a2p2(𝕄)a_{2}\subset p_{2}(\mathbb{M}), a3p3(𝕄)a_{3}\subset p_{3}(\mathbb{M}). If a1MKa2a_{1}\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}^{K^{*}}_{M}a_{2}, a1MKa3a^{\prime}_{1}\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}^{K^{*}}_{M}a_{3}, a2MKa3a_{2}\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}^{K^{*}}_{M}a_{3}, there is some a1′′a^{\prime\prime}_{1} with a1′′tp(a1/Ma2)tp(a1/Ma3)a^{\prime\prime}_{1}\models\mathrm{tp}(a_{1}/Ma_{2})\cup\mathrm{tp}(a^{\prime}_{1}/Ma_{3}). Moreover, a1′′a^{\prime\prime}_{1} can be chosen with a2a3MKa1′′a_{2}a_{3}\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}^{K^{*}}_{M}a^{\prime\prime}_{1}, a2a1′′MKa3a_{2}a^{\prime\prime}_{1}\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}^{K^{*}}_{M}a_{3} and a3a1′′MKa2a_{3}a^{\prime\prime}_{1}\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}^{K^{*}}_{M}a_{2}.

Here K\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}^{K^{*}} is Conant-independence, Definition 2.3. Motivating this result, in an NSOP1\mathrm{NSOP}_{1} theory, Conant-independence coincides with Kim-independence, K\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}^{K} and is symmetric; compare [19], Theorem 6.5, which characterizes NSOP1\mathrm{NSOP}_{1}. (Between tuples of realizations of two co-NSOP1\mathrm{NSOP}_{1} types pi,pjp_{i},p_{j} it coincides with Kim-diving independence.) While in proving this result, we apply 1.1, it does not just follow from co-NSOP1\mathrm{NSOP}_{1}: we exhibit internally stable types p1,p2,p3p_{1},p_{2},p_{3} in an NSOP4\mathrm{NSOP}_{4} theory TT for which this fails. This independence theorem for internally NSOP1\mathrm{NSOP}_{1} types in NSOP3\mathrm{NSOP}_{3} theories is not only of interest to the program of extending the theory of independence beyond NSOP1\mathrm{NSOP}_{1} theories; it is also of interest to the question of whether NSOP3\mathrm{NSOP}_{3} coincides with NSOP2=NSOP1\mathrm{NSOP}_{2}=\mathrm{NSOP}_{1}. One potential approach to building a strictly NSOP3\mathrm{NSOP}_{3} theory (that is, one that is SOP2\mathrm{SOP}_{2}) is by starting with NSOP2\mathrm{NSOP}_{2} structures and somehow combining them to obtain a failure of NSOP1\mathrm{NSOP}_{1} in the form of a failure of the independence theorem: this result says that it is impossible to obtain an NSOP3\mathrm{NSOP}_{3} theory from such a construction. It may be of interest to ask whether there is any connection between this result on stability-theoretic independence and Theorem 7.7 of [33], which concerns the graph-theoretic depth of independence in NSOP3\mathrm{NSOP}_{3} theories.

In section 5, we consider NSOP3\mathrm{NSOP}_{3} theories where Conant-independence is symmetric. It is natural to assume this, as there is no known NSOP4\mathrm{NSOP}_{4} theory where Conant-independence or Conant-dividing independence is not symmetric. Simon, in [40], proves an improved independence theorem for NTP2\mathrm{NTP}_{2} theories, Fact 5.1, and poses an existence question, Question 5.2, for invariant types with the same Morley sequence in NTP2\mathrm{NTP}_{2} theories; an independence theorem for forking-independence, for invariant types with the same Morley sequence in NTP2\mathrm{NTP}_{2} theories, would follow from a positive answer to this question, by Simon’s result. In an NSOP3\mathrm{NSOP}_{3} theory with symmetric Conant-independence, we prove a similar independence theorem for Conant-independence between finitely satisfiable types with the same Morley sequence:

Theorem 1.3.

Let TT be an NSOP3\mathrm{NSOP}_{3} theory, and assume K\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}^{K^{*}} is symmetric. Suppose pp and qq are MM-finitely satisfiable (global) types with pω|M=qω|Mp^{\omega}|_{M}=q^{\omega}|_{M}, and let a,bMa,b\supseteq M be small supersets of MM with aMKba\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}^{K}_{M}b. Then there is cp(x)|aq(x)|bc\models p(x)|_{a}\cup q(x)|_{b} with cMKabc\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}^{K^{*}}_{M}ab.

This fails when TT is the model companion of triangle-free graphs, which is NSOP4\mathrm{NSOP}_{4} with symmetric (indeed trivial) Conant-independence. We also give an extension of this result from finitely satisfiable types to Kim-nonforking types when Conant-dividing independence is symmetric, which has the advantage of exploiting the full force of symmetry for Conant-independence. While this result is again of interest to the question of extending the theory of independence beyond NSOP1=NSOP2\mathrm{NSOP}_{1}=\mathrm{NSOP}_{2}, since there is precedent (see [35]) for using facts about independence to prove the equivalence of classification-theoretic dividing lines, it is also of interest to another open question, whether an NSOP3\mathrm{NSOP}_{3} theory with symmetric Conant-independence is NSOP1\mathrm{NSOP}_{1}.

One final remark: in Theorem 3.15 of [36], a strategy was suggested for proving the equivalence of NSOP3\mathrm{NSOP}_{3} and NSOP2\mathrm{NSOP}_{2} by proving two facts that have no known NSOP4\mathrm{NSOP}_{4} counterexamples, symmetry for Conant-independence and the strong witnessing property, for all NSOP4\mathrm{NSOP}_{4} or even all NSOP3\mathrm{NSOP}_{3} theories. The results of this paper suggest a different approach, via finding properties of independence in NSOP3\mathrm{NSOP}_{3} theories that distinguish them from NSOP4\mathrm{NSOP}_{4} theories.

2. Preliminaries

Notations are standard. We will need some basic defintions and facts about some standard relations between sets, as well as some facts about NSOP1\mathrm{NSOP}_{1} and NSOP3\mathrm{NSOP}_{3} theories.

Relations between sets

Adler, in [2], defines some properties of abstract ternary relations AMBA\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}_{M}B between sets. In our case, we will assume MM is a model, and we will only need to refer to a few of these properties by name:

Left extension: If AMBA\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}_{M}B and ACA\subseteq C, there is some BABB^{\prime}\equiv_{A}B with CMBC\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}_{M}B^{\prime}.

Right extension: If AMBA\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}_{M}B and BCB\subseteq C, there is some ABAA^{\prime}\equiv_{B}A with AMCA^{\prime}\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}_{M}C.

Symmetry: If AMBA\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}_{M}B then BMAB\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}_{M}A.

Chain condition with respect to invariant Morley sequences: If AMBA\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}_{M}B and I={Bi}i<ωI=\{B_{i}\}_{i<\omega} is an invariant Morley sequence over MM (see below) with B0=BB_{0}=B, then there is IMBII^{\prime}\equiv_{MB}I indiscernible over MAMA with AMIA\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}_{M}I^{\prime}.

We will refer to various relations between sets. For the convenience of the reader, here is an index of the notation to be used. Kim-independence and Kim-dividing, as well as Conant-independence and Conant-dividing, will be defined later in this section.

aMiba\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}_{M}^{i}b if tp(a/Mb)\mathrm{tp}(a/Mb) extends to a global MM-invariant type

aMuba\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}^{u}_{M}b if tp(a/Mb)\mathrm{tp}(a/Mb) extends to a global MM-finitely satisfiable type

aMfba\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}^{f}_{M}b if aa is forking-independent from bb over MM

aMKba\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}^{K}_{M}b if aa is Kim-independent from bb over MM

aMKba\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}^{K^{*}}_{M}b if aa is Conant-independent from bb over MM

aMKdba\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}^{Kd}_{M}b if tp(a/Mb)\mathrm{tp}(a/Mb) contains no formulas Kim-dividing over MM

aMKdba\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}^{K^{*}d}_{M}b if tp(a/Mb)\mathrm{tp}(a/Mb) contains no formulas Conant-dividing over MM.

We will use K+\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}^{K^{+}} and K+u\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}^{K^{+}u} as ad-hoc notations in proofs; these will be defined in the course of those proofs.

We give an overview of some basic definitions. A global type p(x)p(x) is a complete type over the sufficiently saturated model 𝕄\mathbb{M}. For M𝕄M\prec\mathbb{M}, a global type p(x)p(x) is invariant over MM if φ(x,b)p(x)\varphi(x,b)\in p(x) and bMbb^{\prime}\equiv_{M}b implies φ(x,b)p(x)\varphi(x,b^{\prime})\in p(x). One class of types invariant over MM is the class of types that are finitely satisfiable over MM, meaning any formula in the type is satisfied by some element of MM. We say an infinite sequence {bi}iI\{b_{i}\}_{i\in I}, is an invariant Morley sequence over MM (in the type p(x)p(x)) if there is a fixed global type p(x)p(x) invariant over MM so that bip(x)|M{bj}j<ib_{i}\models p(x)|_{M\{b_{j}\}_{j<i}} for iIi\in I. If p(x)p(x) is finitely satisfiable over MM, we say {bi}iI\{b_{i}\}_{i\in I} is a coheir Morley sequence or finitely satisfiable Morley sequence over MM. Invariant Morley sequences over MM are indiscernible over MM, and the EM-type of an invariant Morley sequence over MM depends only on p(x)p(x). For p(x),q(y)p(x),q(y) MM-invariant types, p(x)q(y)p(x)\otimes q(y) is defined so that abp(x)q(y)|Aab\models p(x)\otimes q(y)|_{A} for MAM\subseteq A when bq(y)|Ab\models q(y)|_{A} and ap(x)|Aba\models p(x)|_{Ab}.

Both i\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}^{i} and u\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}^{u} have right extension, but it is sometimes advantageous to work with coheir Morley sequences rather than general invariant Morley sequences because u\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}^{u} is also known to have left extensions.

Kim-indepedence and NSOP1\mathrm{NSOP}_{1}

We assume knowledge of basic simplicity theory and the definition of forking-independence. An extension of the theory of independence from simple theories to NSOP1\mathrm{NSOP}_{1} theories was developed by Kaplan and Ramsey in [19], via the definition of Kim-independence

Definition 2.1.

A theory TT is NSOP1\mathrm{NSOP}_{1} if there does not exist a formula φ(x,y)\varphi(x,y) and tuples {bη}η2<ω\{b_{\eta}\}_{\eta\in 2^{<\omega}} so that {φ(x,bσn)}nω\{\varphi(x,b_{\sigma\upharpoonleft n})\}_{n\in\omega} is consistent for any σ2ω\sigma\in 2^{\omega}, but for any η2η10\eta_{2}\unrhd\eta_{1}\smallfrown\langle 0\rangle, {φ(x,bη2),φ(x,bη11)}\{\varphi(x,b_{\eta_{2}}),\varphi(x,b_{\eta_{1}\smallfrown\langle 1\rangle})\} is inconsistent. Otherwise it is SOP1\mathrm{SOP}_{1}.

Definition 2.2.

([19]) A formula φ(x,b)\varphi(x,b) Kim-divides over MM if there is an invariant Morley sequence {bi}iω\{b_{i}\}_{i\in\omega} starting with bb (said to witness the Kim-dividing) so that {φ(x,bi)}iω\{\varphi(x,b_{i})\}_{i\in\omega} is inconsistent. A formula φ(x,b)\varphi(x,b) Kim-forks over MM if it implies a (finite) disjunction of formulas Kim-dividing over MM. We write aMKba\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}^{K}_{M}b, and say that aa is Kim-independent from bb over MM if tp(a/Mb)\mathrm{tp}(a/Mb) does not include any formulas Kim-forking over MM.

Kim-independence in NSOP1\mathrm{NSOP}_{1} theories behaves, in many ways, like forking-independence in simple theories.

Fact 2.1.

([19]) Let TT be NSOP1\mathrm{NSOP}_{1}. Then for any formula φ(x,b)\varphi(x,b) Kim-dividing over MM, any invariant Morley sequence over MM starting with bb witnesses Kim-dividing of φ(x,b)\varphi(x,b) over MM. Conversely, suppose that for any formula φ(x,b)\varphi(x,b) Kim-dividing over MM, any invariant Morley sequence (even in a finitely satisfiable type) over MM starting with bb witnesses Kim-dividing of bb over MM. Then TT is NSOP1\mathrm{NSOP}_{1}.

It follows that Kim-forking coincides with Kim-dividing in any NSOP1\mathrm{NSOP}_{1} theory.

Fact 2.2.

([10], [19]) The theory TT is NSOP1\mathrm{NSOP}_{1} if and only if K\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}^{K} is symmetric.

The independence theorem for Kim-independence in NSOP1\mathrm{NSOP}_{1} theories generalizes that of [24] for simple theories, which in turn generalizes stationarity of forking-independence (the uniqueness of nonforking-extensions) in stable theories. Part of our argument for the results of section 4 will require re-proving the independence theorem in the context of co-NSOP1\mathrm{NSOP}_{1} types. For motivation, we give the original statement:

Fact 2.3.

(Independence theorem, [19].) Let TT be NSOP1\mathrm{NSOP}_{1}. Then if a1MKb1a_{1}\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}^{K}_{M}b_{1}, a2MKb2a_{2}\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}^{K}_{M}b_{2}, b1MKb2b_{1}\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}^{K}_{M}b_{2}, and a1Ma2a_{1}\equiv_{M}a_{2}, there is some aMKb1b2a\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}^{K}_{M}b_{1}b_{2} with aMbiaia\equiv_{Mb_{i}}a_{i} for i=1,2i=1,2.

Conant-independence

Conant-independence was introduced in a modified form in [35] to show that NSOP2\mathrm{NSOP}_{2} theories were NSOP1\mathrm{NSOP}_{1}. The standard version was defined in [36], based on Conant’s implcit use of the concept in [11] to classify modular free amalgamation theories. It was proposed by the author of this paper as an extension of Kim-independence beyond NSOP1\mathrm{NSOP}_{1} theories.

Definition 2.3.

Let MM be a model and φ(x,b)\varphi(x,b) a formula. We say φ(x,b)\varphi(x,b) Conant-divides over MM if for every invariant Morley sequence {bi}iω\{b_{i}\}_{i\in\omega} over MM starting with bb, {φ(x,b)}iω\{\varphi(x,b)\}_{i\in\omega} is inconsistent. We say φ(x,b)\varphi(x,b) Conant-forks over MM if and only if it implies a disjunction of formulas Conant-dividing over MM. We say aa is Conant-independent from bb over MM, written aMKba\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}^{K^{*}}_{M}b, if tp(a/Mb)\mathrm{tp}(a/Mb) does not contain any formulas Conant-forking over MM.

In [36] it is shown that if Conant-independence is symmetric in a theory TT, TT is NSOP4\mathrm{NSOP}_{4}. In the same paper, Conant-indepedence is characterized for most of the known examples of NSOP4\mathrm{NSOP}_{4} theories, where it is shown to be symmetric. It is open whether Conant-independence is symmetric in all NSOP4\mathrm{NSOP}_{4} theories, or even all NSOP3\mathrm{NSOP}_{3} theories. It is also open whether theories with symmetric Conant-independence display the classification-theoretic behavior characteristic of theories with a good notion of free amalgamation, first studied in [11] and later improved upon in [36]: either NSOP1\mathrm{NSOP}_{1} or SOP3\mathrm{SOP}_{3}, and either simple or TP2\mathrm{TP}_{2}.

Classification theory

In this paper, we will be interested in NSOP3\mathrm{NSOP}_{3} theories and how they differ from NSOP4\mathrm{NSOP}_{4} theories:

Definition 2.4.

Let n3n\geq 3. A theory TT is NSOPn\mathrm{NSOP}_{n} (that is, does not have the n-strong order property) if there is no definable relation R(x1,x2)R(x_{1},x_{2}) with no nn-cycles, but with tuples {ai}iω\{a_{i}\}_{i\in\omega} with R(ai,aj)\models R(a_{i},a_{j}) for i<ji<j. Otherwise it is SOPn\mathrm{SOP}_{n}.

We will need nothing about NSOP4\mathrm{NSOP}_{4}, other than that the below counterexamples to our results on NSOP3\mathrm{NSOP}_{3} theories are NSOP4\mathrm{NSOP}_{4}, because they are free amalgamation theories; see [11], Theorem 4.4. We will need the following syntactic fact about NSOP3\mathrm{NSOP}_{3}, proven independently by Malliaris (Conclusion 6.15, [33]) and Conant ([11], Proposition 7.2 and proof of Theorem 7.17):

Fact 2.4.

Suppose there is an array {ai,bi}i<ω\{a_{i},b_{i}\}_{i<\omega} and formulas φ(x,y)\varphi(x,y), ψ(x,z)\psi(x,z) with

(1) For m<nm<n, {φ(x,bi)}im{ψ(x,ai)}m<in\{\varphi(x,b_{i})\}_{i\leq m}\cup\{\psi(x,a_{i})\}_{m<i\leq n} is consistent.

(2) For i<ji<j, {φ(x,ai),ψ(x,bj)}\{\varphi(x,a_{i}),\psi(x,b_{j})\} is inconsistent.

Then TT is SOP3\mathrm{SOP}_{3}.

Finally NTP2\mathrm{NTP}_{2} and N\mathrm{N}-ω\omega-DCTP1\mathrm{DCTP}_{1} will play a secondary role in this paper, but we will discuss some results on these classes that motivate our main results on NSOP3\mathrm{NSOP}_{3} theories.

Definition 2.5.

A theory TT is NTP2\mathrm{NTP}_{2} (that is, does not have the tree property of the second kind) if there is no array {bij}i,jω\{b_{ij}\}_{i,j\in\omega} and formula φ(x,y)\varphi(x,y) so that there is some fixed kk so that, for all ii, {φ(x,bij)}jω\{\varphi(x,b_{ij})\}_{j\in\omega} is inconsistent, but for any σωω\sigma\in\omega^{\omega}, {φ(x,biσ(i))}iω\{\varphi(x,b_{i\sigma(i)})\}_{i\in\omega} is consistent.

The class NATP\mathrm{NATP} was introduced in [3] and further developed in [4] as a generalization of NTP2\mathrm{NTP}_{2}; it has been proposed as one possible answer to a question of Kruckman [26], on what class can be viewed to generalize properties of NIP\mathrm{NIP} and NSOP1\mathrm{NSOP}_{1} theories the same way NTP2\mathrm{NTP}_{2} theories generalize properties of NIP\mathrm{NIP} and simple theories. It is still open to what extent the analogy holds; for example, whether Kim-forking coincides with Kim-dividing in NATP\mathrm{NATP} theories, as forking coincides with dividing in NTP2\mathrm{NTP}_{2} theories. However, for N\mathrm{N}-ω\omega-DCTP2\mathrm{DCTP}_{2} theories, introduced in [35] and further developed in [25], the equivalence of Kim-forking and Kim-dividing was proven in [25] after being proven for coheir Kim-dividing and coheir Kim-forking in [35].

Definition 2.6.

(Proposition 2.51, item IIIa, [102]). A list η1,,ηnω<ω\eta_{1},\ldots,\eta_{n}\in\omega^{<\omega} is a descending comb if and only if it is an antichain so that η1<lex<lexηn\eta_{1}<_{\mathrm{lex}}\ldots<_{\mathrm{lex}}\eta_{n}, and so that, for 1k<n1\leq k<n, η1ηk+1η1ηk.\eta_{1}\wedge\ldots\wedge\eta_{k+1}\lhd\eta_{1}\wedge\ldots\wedge\eta_{k}.

Definition 2.7.

The theory TT has kk-DCTP2\mathrm{DCTP}_{2} if there exists a formula φ(x,y)\varphi(x,y) and tuples {bη}η2<ω\{b_{\eta}\}_{\eta\in 2^{<\omega}} so that {φ(x,bσn)}nω\{\varphi(x,b_{\sigma\upharpoonleft n})\}_{n\in\omega} is kk-inconsistent for any σ2ω\sigma\in 2^{\omega}, but for any descending comb η1,ηl2<ω\eta_{1}\ldots,\eta_{l}\in 2^{<\omega}, {φ(x,bηi)}i=1l\{\varphi(x,b_{\eta_{i}})\}_{i=1}^{l} is consistent. If TT does not have kk-DCTP2\mathrm{DCTP}_{2} for any kk, it has N\mathrm{N}-ω\omega-DCTP2\mathrm{DCTP}_{2}.

3. Reflection principles for hypergraph sequences

Simple types were defined in [16]; then co-simple and NTP2\mathrm{NTP}_{2} types were defined in [8]. We define co-NSOP1\mathrm{NSOP}_{1} types and give some equivalent definitions, similarly to Definition 6.7 of [8]. (When clear from context, when p(x)p(x) is an nn-type we refer to p(𝕄n)p(\mathbb{M}^{n}) by p(𝕄)p(\mathbb{M}).

Definition 3.1.

A partial type p(x)p(x) over MM is co-NSOP1\mathrm{NSOP}_{1} if it satisfies one of the following equivalent conditions:

(1) There does not exist a formula φ(x,y)L(M)\varphi(x,y)\in L(M) and tuples {bη}η2<ω\{b_{\eta}\}_{\eta\in 2^{<\omega}}, bηp(𝕄)b_{\eta}\subset p(\mathbb{M}) so that {φ(x,bσn)}nω\{\varphi(x,b_{\sigma\upharpoonleft n})\}_{n\in\omega} is consistent for any σ2ω\sigma\in 2^{\omega}, but for any η2η10\eta_{2}\unrhd\eta_{1}\smallfrown\langle 0\rangle, {φ(x,bη2),φ(x,bη11)}\{\varphi(x,b_{\eta_{2}}),\varphi(x,b_{\eta_{1}\smallfrown\langle 1\rangle})\} is inconsistent.

(2, 2’) There does not exist a formula φ(x,y)L(M)\varphi(x,y)\in L(M) and an array {ci,j}i=0,1,j<ω\{c_{i,j}\}_{i=0,1,j<\omega}, ci,jp(𝕄)c_{i,j}\subset p(\mathbb{M}), so that {φ(x,c0,j)}j<ω\{\varphi(x,c_{0,j})\}_{j<\omega} is consistent, {φ(x,c1,j)}j<ω\{\varphi(x,c_{1,j})\}_{j<\omega} is kk-inconsistent for some kk (22-inconsistent), and c0,jMc0,<jc1,<jc1,jc_{0,j}\equiv_{Mc_{0,<j}c_{1,<j}}c_{1,j} for each j<ωj<\omega.

(3) Kim’s lemma for Kim-dividing: For MMM^{\prime}\succeq M, and φ(x,y)L(M)\varphi(x,y)\in L(M), if φ(x,b)\varphi(x,b) Kim-divides over MM for bp(𝕄)b\subset p(\mathbb{M}), then for every MM^{\prime}-invariant Morley sequence {bi}iω\{b_{i}\}_{i\in\omega} with b0=bb_{0}=b, {φ(x,bi)}iω\{\varphi(x,b_{i})\}_{i\in\omega} is inconsistent.

Proof.

This is essentially proven in Chernikov and Ramsey, [10], and Kaplan and Ramsey, [19], so we will only give a sketch.

(1 \Leftrightarrow 2 \Leftrightarrow 2’) Follows from the proof of Proposition 2.4 of [10] uses the proof of Proposition 5.6 of [10]) The part due to [10] shows that if there is a formula φ(x,y)L(M)\varphi(x,y)\in L(M) and tuples {bη}η2<ω\{b_{\eta}\}_{\eta\in 2^{<\omega}}, bηp(𝕄)b_{\eta}\subset p(\mathbb{M}) so that {φ(x,bσn)}nω\{\varphi(x,b_{\sigma\upharpoonleft n})\}_{n\in\omega} is consistent for any σ2ω\sigma\in 2^{\omega}, but for any η2η10\eta_{2}\unrhd\eta_{1}\smallfrown\langle 0\rangle, {φ(x,bη2),φ(x,bη11)}\{\varphi(x,b_{\eta_{2}}),\varphi(x,b_{\eta_{1}\smallfrown\langle 1\rangle})\} is inconsistent, then there is an array {ci,j}i=0,1,j<ω\{c_{i,j}\}_{i=0,1,j<\omega}, so that {φ(x,c0,j)}j<ω\{\varphi(x,c_{0,j})\}_{j<\omega} is consistent, {φ(x,c1,j)}j<ω\{\varphi(x,c_{1,j})\}_{j<\omega} is 22-inconsistent, and c0,jMc0,<jc1,<jc1,jc_{0,j}\equiv_{Mc_{0,<j}c_{1,<j}}c_{1,j} for each j<ωj<\omega. The other direction due to [19] shows that if there is φ(x,y)\varphi(x,y) and {ci,j}i=0,1,j<ω\{c_{i,j}\}_{i=0,1,j<\omega}, so that {φ(x,c0,j)}j<ω\{\varphi(x,c_{0,j})\}_{j<\omega} is consistent, {φ(x,c1,j)}j<ω\{\varphi(x,c_{1,j})\}_{j<\omega} is kk-inconsistent for some kk, and c0,jMc0,<jc1,<jc1,jc_{0,j}\equiv_{Mc_{0,<j}c_{1,<j}}c_{1,j} for each j<ωj<\omega, then there is a formula ψ(x,y)L(M)\psi(x,y^{\prime})\in L(M) (obtained as a conjunction of instances of φ\varphi) and tuples {bη}η2<ω\{b_{\eta}\}_{\eta\in 2^{<\omega}}, bηp(𝕄)b_{\eta}\subset p(\mathbb{M}) so that {ψ(x,bσn)}nω\{\psi(x,b_{\sigma\upharpoonleft n})\}_{n\in\omega} is consistent for any σ2ω\sigma\in 2^{\omega}, but for any η2η10\eta_{2}\unrhd\eta_{1}\smallfrown\langle 0\rangle, {ψ(x,bη2),ψ(x,bη11)}\{\psi(x,b_{\eta_{2}}),\psi(x,b_{\eta_{1}\smallfrown\langle 1\rangle})\} is inconsistent. And if each bηp(𝕄)b_{\eta}\subseteq p(\mathbb{M}) for p(x)p(x) a fixed partial type, the former direction even shows that we can choose ci,jp(𝕄)c_{i,j}\subseteq p(\mathbb{M}), and vice versa for the latter direction, proving the equivalence in the co-NSOP1\mathrm{NSOP}_{1} case.

(3 \Rightarrow 2). This is basically the proof of Proposition 3.14 of [19]. Assume (2) is false; we show (3) is false. The equivalence (1 \Leftrightarrow 2) does not use anything about the fact that MM is a model, and the failure of (1) to hold is preserved under expanding the language; therefore, we can fix a Skolemization TSkT^{\mathrm{Sk}} of TT, and assume that c0,jMc0,<jc1,<jLSkc1,jc_{0,j}\equiv^{L^{\mathrm{Sk}}}_{Mc_{0,<j}c_{1,<j}}c_{1,j} for each j<ωj<\omega. By Ramsey’s theorem and compactness, we can choose {c¯j}j<ω\{\bar{c}_{j}\}_{j<\omega} MM-indiscnernible in TSkT^{\mathrm{Sk}}. Let M=dclSk(c¯<ωM)M^{\prime}=\mathrm{dcl}_{\mathrm{Sk}}(\bar{c}_{<\omega}M). Choose non-principal ultrafilters UiU_{i}, i=0,1i=0,1, containing ci,<ωc_{i,<\omega}, and let the global types pi(x)={φ(x,c):φ(M,c)Ui}p_{i}(x)=\{\varphi(x,c):\varphi(M,c)\in U_{i}\}, so that each of the pip_{i} are finitely satisfiable over MM. It can be shown from c0,jMc0,<jc1,<jLSkc1,jc_{0,j}\equiv^{L^{\mathrm{Sk}}}_{Mc_{0,<j}c_{1,<j}}c_{1,j} that p0|M=p1|Mp_{0}|_{M}=p_{1}|_{M}; let bb realize this, so bp(𝕄)b\subseteq p(\mathbb{M}). Then {φ(x,bi)}i<ω\{\varphi(x,b_{i})\}_{i<\omega} will be consistent for {bi}i<ω\{b_{i}\}_{i<\omega} a Morley sequence in p0p_{0}, but {φ(x,bi)}i<ω\{\varphi(x,b^{\prime}_{i})\}_{i<\omega} will be consistent for {bi}i<ω\{b^{\prime}_{i}\}_{i<\omega} a Morley sequence in p1p_{1}, so Kim’s lemma fails.

(2 \Rightarrow 3). This is the proof of Proposition 3.15 of [19]. We assume that (3) is false and show that (2) is false. Let φ(x,b)\varphi(x,b) for bp(𝕄)b\subseteq p(\mathbb{M}) Kim-divide over MM^{\prime}, winessed by a Morley sequence in the MM^{\prime}-invariant type p1p_{1}. Let Morley sequences in the MM^{\prime}-invariant type p0p_{0} fail to witness Kim-dividing of φ(x,b)\varphi(x,b) over MM^{\prime}. Find {c0,i,c1,i}i\{c_{0,i},c_{1,i}\}_{i\in\mathbb{Z}} so that (c0,i,c1,i)i(p0p1)(c_{0,i},c_{1,i})_{i\in\mathbb{Z}}\models(p_{0}\otimes p_{1})^{\mathbb{Z}}. Then {c0,i,c1,i}0i<ω\{c_{0,i},c_{1,i}\}_{0\leq i<\omega} will be as desired.

While Chernikov ([19], Defintion 6.7) gives an additional characterization of co-simplicity in terms of symmetry for forking-independence, it requires additional elements of the base to belong to p(𝕄)p(\mathbb{M}). Giving a characterization of co-NSOP1\mathrm{NSOP}_{1} types in terms of symmetry for Kim-independence would be more complicated, because defining Kim-independence over arbitrary sets, rather than models, requires additional considerations; see [19]. However, co-NSOP1\mathrm{NSOP}_{1} types over MM do have a symmetry property over MM, which will be useful in the sequel:

Proposition 3.1.

(Symmetry) Let p(x)p(x) be a co-NSOP1\mathrm{NSOP}_{1} type over MM and ap(𝕄)a\subset p(\mathbb{M}). If aMKdba\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}^{Kd}_{M^{\prime}}b, then bMKdab\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}_{M}^{Kd}a.

Proof.

Because bb is not necessarily contained in p(𝕄)p(\mathbb{M}) construction of the original tree must proceed like the proof of Theorem 5.4 of [35] (based in turn on the proof of Lemma 5.11 of [19]) in taking a specially chosen Morley sequence at each stage, rather than directly following the proof of Theorem 6.5 of [19]. Though the rest of the proof can be done as in Lemma 5.12 and Proposition 5.13 of [19], we give our own exposition, which only requires us to construct a tree of countable size rather than a much larger tree.

Suppose p(𝕄)p(\mathbb{M}) is co-NSOP1\mathrm{NSOP}_{1}. We begin with the following claim (which we could have avoided by following Lemma 5.12 and Proposition 5.13 of [19]):

Claim 3.2.

Let φ(x,c)\varphi(x,c) Kim-divide over MM for φ(x,y)L(M)\varphi(x,y)\in L(M) and cp(𝕄)c\subseteq p(\mathbb{M}). Then there is a bound depending only on φ(x,y)\varphi(x,y) and tp(c/M)\mathrm{tp}(c/M) on the size of a set {ci}0n\{c_{i}\}^{n}_{0}, citp(c/M)c_{i}\models\mathrm{tp}(c/M) for 0in0\leq i\leq n, so that there are MM-finitely satisfiable types p0pnp_{0}\ldots p_{n} so that cipi(x)|Mc0ci1c_{i}\models p_{i}(x)|_{Mc_{0}\ldots c_{i-1}} for 0in0\leq i\leq n, and {φ(x,ci)}i=0n\{\varphi(x,c_{i})\}^{n}_{i=0} is consistent.

Proof.

This proceeds as in the direction (2 \Rightarrow 3) of the previous definition (again, see [19], Proposition 3.15). Let p0,,pnp_{0},\ldots,p_{n} be as in the claim, and let Morley sequences in the MM-invariant type q(x)tp(c/M)q(x)\vdash\mathrm{tp}(c/M) witness Kim-dividing of φ(x,c)\varphi(x,c) over MM: for c¯qω(x)\bar{c}^{\prime}\models q^{\omega}(x), {φ(x,ci)}i<ω\{\varphi(x,c_{i})\}_{i<\omega} is kk-inconsistent for some fixed kk. Find {c0,i,c1,i}0in\{c_{0,i},c_{1,i}\}_{0\leq i\leq n} so that (c0,i,c1,i)0in(pnq)(p0q)(c_{0,i},c_{1,i})_{0\leq i\leq n}\models(p_{n}\otimes q)\otimes\ldots\otimes(p_{0}\otimes q). Then c0,nc0,0Mc0,cnc_{0,n}\ldots c_{0,0}\equiv_{M}c_{0},\ldots c_{n}, so {φ(x,c0,i)}i=0n\{\varphi(x,c_{0,i})\}^{n}_{i=0} is consistent. However, c1,n,,c1,0q(n+1)(x)c_{1,n},\ldots,c_{1,0}\models q^{(n+1)}(x), so {φ(x,c1,i)}i=0n\{\varphi(x,c_{1,i})\}^{n}_{i=0} is kk-inconsistent. Finally, c0,0c1,0c0,i1c1,i1Mic0,ic1,ic_{0,0}c_{1,0}\ldots c_{0,i-1}c_{1,i-1}\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}^{i}_{M}c_{0,i}c_{1,i} for all 1in1\leq i\leq n, and c0,iMcMc1,ic_{0,i}\equiv_{M}c\equiv_{M}c_{1,i}, so c0,iMc0,0c1,0c0,i1c1,i1c1,ic_{0,i}\equiv_{M_{c_{0,0}c_{1,0}\ldots c_{0,i-1}c_{1,i-1}}}c_{1,i} for all 1in1\leq i\leq n.

Now if nn is unbounded (kk is fixed) this contradicts Defintion 3.1 (2), by compactness. ∎

The following step, where we construct a tree, is where we must deviate from the proof of Theorem 5.16 of [19]. We use the notation aMK+uba\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}^{K^{+}u}_{M}b to denote that there is a coheir Morley sequence {bi}i<ω\{b_{i}\}_{i<\omega} over MM with b0=bb_{0}=b that remains indiscernible over MaMa. We prove some basic facts about this relation:

Claim 3.3.

Right extension: The relation K+u\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}^{K^{+}u} satisfies right extension: if aMK+uba\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}^{K^{+}u}_{M}b, for any cc there is some aMbaa^{\prime}\equiv_{Mb}a with aMK+ubca^{\prime}\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}^{K^{+}u}_{M}bc.

Proof.

Let I={bi}i<ωI=\{b_{i}\}_{i<\omega} be a Morley sequence in the MM-finitely satisfiable type q(x)q(x), b0=bb_{0}=b, that remains indiscernible over MaMa. By left extension for u\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}^{u} there is some MM-finitely satisfiable type r(x,y)r(x,y) extending q(x)q(x) and tp(bc/M)\mathrm{tp}(bc/M). Then there are cic_{i}^{\prime}, i<ωi<\omega c0=cc_{0}=c, so that {bici}i<ω\{b_{i}c_{i}\}_{i<\omega} is a Morley sequence in r(x,y)r(x,y). By Ramsey’s theorem, compactness and an automorphism, aa^{\prime} can then be chosen so that aMbaa^{\prime}\equiv_{Mb}a, indeed so that aMIaa^{\prime}\equiv_{MI}a, and {bici}i<ω\{b_{i}c_{i}\}_{i<\omega} is indiscernible over MaMa. ∎

Claim 3.4.

Chain condition: Let I={bi}iωI=\{b_{i}\}_{i\in\omega} be an MM-finitely satisfiable Morley sequence indiscernible over MaMa. Then aMK+uIa\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}^{K^{+}u}_{M}I.

Proof.

By compactness there is I={bi}iω2I^{\prime}=\{b_{i}\}_{i\in\omega^{2}} so that I|ω=II^{\prime}|_{\omega}=I and II^{\prime} is indiscernible over MaMa. Then {biωbiω+j}i<ω\{b^{\prime}_{i\omega}\ldots b^{\prime}_{i\omega+j}\ldots\}_{i<\omega} will be an MM-finitely satisfiable Morley sequence starting with II^{\prime} and indiscernible over MaMa. ∎

Assume for contradiction that aMKdba\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}^{Kd}_{M}b with bp(𝕄)b\subseteq p(\mathbb{M}), but a/MKdba\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mathchar 12854\relax$\kern 8.00134pt\hss}\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mathchar 12854\relax$\kern 8.00134pt\hss}\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mathchar 12854\relax$\kern 3.92064pt\hss}\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mathchar 12854\relax$\kern 2.00034pt\hss}\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}^{Kd}_{M}b. We find, for all nn, a tree (In,Jn)=({aη}ηωn,{bσ}σωn)(I_{n},J_{n})=(\{a_{\eta}\}_{\eta\in\omega^{\leq n}},\{b_{\sigma}\}_{\sigma\in\omega^{n}}), with the first n+1n+1 levels InI_{n} forming an infinitely branching tree, then with each aσa_{\sigma} for σωn\sigma\in\omega^{n} at level n+1n+1 followed by a single additional leaf bσb_{\sigma} at level n+2n+2, with the following two properties:

(1) For ησ\eta\unlhd\sigma, |σ|=n|\sigma|=n, aηbσMaba_{\eta}b_{\sigma}\equiv_{M}ab.

(2) For ηω<n\eta\in\omega^{<n}, the subtrees at η\eta form an MM-finitely satisfiable Morley sequence indiscernible over aηa_{\eta} (so for II this sequence of subtrees, aηKK+uIa_{\eta}\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}^{K^{+}u}_{K}I.)

For n=0n=0, let a=aa_{\emptyset}=a, b=bb_{\emptyset}=b; then (2) follows from the fact that Kd\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}^{Kd} easily implies K+u\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}^{K^{+}u}. Assume (In,Jn)(I_{n},J_{n}) already constructed; we construct (In+1,Jn+1)(I_{n+1},J_{n+1}). We see by (2) that for (In,Jn)(I^{*}_{n},J_{n}) the nodes of the tree excluding aa_{\emptyset}, aMK+uInJna_{\emptyset}\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}^{K^{+}u}_{M}I^{*}_{n}J_{n}. By Claim 3.3, find aMInJnaa^{\prime}_{\emptyset}\equiv_{MI^{*}_{n}J_{n}}a_{\emptyset} with aMK+uInJna^{\prime}_{\emptyset}\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}^{K^{+}u}_{M}I_{n}J_{n}, which will be the new root of (In+1,Jn+1)(I_{n+1},J_{n+1}). Then find some MM-finitely satisfiable Morley sequence {(In,Jn)i}iω\{(I_{n},J_{n})^{i}\}_{i\in\omega} starting with (In,Jn)(I_{n},J_{n}) indiscernible over MaMa^{\prime}_{\emptyset}, giving the subtrees of (In,Jn)(I_{n},J_{n}) at aa^{\prime}_{\emptyset}. From aJnMaJnMaJnia_{\emptyset}J_{n}\equiv_{M}a^{\prime}_{\emptyset}J_{n}\equiv_{M}a^{\prime}_{\emptyset}J^{i}_{n}, we will preserve (1) by indexing accordingly, and from choice of {(In,Jn)i}iω\{(I_{n},J_{n})^{i}\}_{i\in\omega}, we will preserve (2) as well.

We now find a contradiction to Definition 3.1.2; this is where, by constructing a much larger tree, we could have just followed Lemma 5.12 and Proposition 5.13 of [19]. By (1), the paths of each InI_{n} are consistent: for σωn\sigma\in\omega^{n}, {φ(x,aη)}ησ\{\varphi(x,a_{\eta})\}_{\eta\unlhd\sigma} is consistent, realized by bσb_{\sigma}. But by (2), for any kk nodes η1,,ηnω<ω\eta_{1},\ldots,\eta_{n}\in\omega^{<\omega}, forming an antichain so that η1<lex<lexηk\eta_{1}<_{\mathrm{lex}}\ldots<_{\mathrm{lex}}\eta_{k}, and so that, for 1i<k1\leq i<k, η1ηi+1η1ηi\eta_{1}\wedge\ldots\wedge\eta_{i+1}\lhd\eta_{1}\wedge\ldots\wedge\eta_{i}, {aηi}i=1k\{a_{\eta_{i}}\}_{i=1}^{k} form a sequence with aηiMiaη1aηi1a_{\eta_{i}}\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}^{i}_{M}a_{\eta_{1}}\ldots a_{\eta_{i-1}}; by (1), aip(𝕄)a_{i}\subseteq p(\mathbb{M}). So for kk the bound from Claim 3.2, and ηi\eta_{i} with these conditions (forming a descending comb, Definition 2.6), for ηi\eta_{i} for 1ik1\leq i\leq k satisfying the above property, {φ(x,aηi)}i=1k\{\varphi(x,a_{\eta_{i}})\}_{i=1}^{k} is kk-inconsistent. So by compactness, we can find a tree {aη}ηω<ω\{a_{\eta}\}_{\eta\in\omega^{<\omega}} with the same consistency and inconsistency properties for φ(x,y)\varphi(x,y) (consistency along the paths and inconsistency on descending combs of size kk), and with bηp(𝕄)b_{\eta}\subseteq p(\mathbb{M}).

We recall the following defintion and fact:

Definition 3.2.

(Definitions 11 and 12, [41]) For tuples η¯,η¯ω<ω\overline{\eta},\overline{\eta}^{\prime}\in\omega^{<\omega} of elements of ω<ω\omega^{<\omega}, we write η¯0η¯\overline{\eta}\sim_{0}\overline{\eta}^{\prime} to mean that η¯\overline{\eta} has the same quantifier-free type in the language {<lex,,}\{<_{\mathrm{lex}},\lhd,\wedge\} as η¯\overline{\eta}^{\prime}. For (bη)ηω<ω(b_{\eta})_{\eta\in\omega^{<\omega}} a tree-indexed set of tuples and η¯=η1,,ηnω<ω\overline{\eta}=\eta_{1},\ldots,\eta_{n}\in\omega^{<\omega} an nn-tuple of elements of ω<ω\omega^{<\omega}, we write bη¯=:bη1bηnb_{\overline{\eta}}=:b_{\eta_{1}}\ldots b_{\eta_{n}}, and call (bη)ηω<ω(b_{\eta})_{\eta\in\omega^{<\omega}} strongly indiscernible over a set AA if for all tuples η¯,η¯ω<ω\overline{\eta},\overline{\eta}^{\prime}\in\omega^{<\omega} of elements of ω<ω\omega^{<\omega} with η¯0η¯\overline{\eta}\sim_{0}\overline{\eta}^{\prime}, bη¯Abη¯b_{\overline{\eta}}\equiv_{A}b_{\overline{\eta}^{\prime}}.

Fact 3.5.

(Theorem 16, [41]; see [37] for an alternate proof) Let (bη)ηω<ω(b_{\eta})_{\eta\in\omega^{<\omega}} be a tree-indexed set of tuples, and AA a set. Then there is (cη)ηω<ω(c_{\eta})_{\eta\in\omega^{<\omega}} strongly indiscernible over AA so that for any tuple η¯ω<ω\overline{\eta}\in\omega^{<\omega} of elements of ω<ω\omega^{<\omega} and φ(x)L(A)\varphi(x)\in L(A), if φ(bη¯)\models\varphi(b_{\overline{\eta}^{\prime}}) for all η¯0η\overline{\eta}^{\prime}\sim_{0}\eta, then φ(cη¯)\models\varphi(c_{\overline{\eta}}).

Now use Fact 3.5 to extract a strongly indiscernible tree (cη)ηω<ω(c_{\eta})_{\eta\in\omega^{<\omega}}. Let {cj,i}j=0,1,i<ω={c0ij}\{c_{j,i}\}_{j=0,1,i<\omega}=\{c_{\langle 0\rangle^{i}\smallfrown\langle j\rangle}\}. Then {cj,i}j=0,1,i<ω\{c_{j,i}\}_{j=0,1,i<\omega} is as in Defintion 3.1.2, contradiction.

We could likely have also proven Proposition 3.1 in the style of Definition 6.1 of [8]: use right extension to find an Kd\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}^{Kd}-Morley sequence of aa over MM, indiscernible over bb, and then developed local character and Kim’s lemma for Kd\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}^{Kd}-Morley sequences in the context of co-NSOP1\mathrm{NSOP}_{1} types, [21] and [20]. Since these characterizations of co-NSOP1\mathrm{NSOP}_{1} are not necessary for our main theorem on internally NSOP1\mathrm{NSOP}_{1} types, we leave the details to the reader.

Notions such as co-simple and co-NSOP1\mathrm{NSOP}_{1} types involve interaction of the types with the rest of the structure. In the other direction, there are the simple types defined in [16], the NIP\mathrm{NIP} and NTP2\mathrm{NTP}_{2} types defined in [8], and the fully stable types defined in [39]. We introduce a new schema for defining the local classification-theoretic properties of a type, which is in some sense more natural, because it depends only on the corresponding properties for a structure associated with the type.

Definition 3.3.

(1) Let p(x)p(x) be a partial nn-type over MM. Let p\mathcal{L}_{p} contain an mm-ary relation symbol RφR_{\varphi} for each formula φ(x1,,xm)L(M)\varphi(x_{1},\ldots,x_{m})\in L(M) with |xi|=n|x_{i}|=n for ini\leq n. Then p\mathcal{M}_{p} is the p\mathcal{L}_{p}-structure with domain p(𝕄n)p(\mathbb{M}^{n}) and with Rφ(p(𝕄n)m)=φ(𝕄mn)p(𝕄n)mR_{\varphi}(p(\mathbb{M}^{n})^{m})=\varphi(\mathbb{M}^{mn})\cap p(\mathbb{M}^{n})^{m}.

(2) Let 𝒫\mathcal{P} be a property of theories. Then a partial type p(x)p(x) is internally 𝒫\mathcal{P} if the theory of p\mathcal{M}_{p} is 𝒫\mathcal{P}.

Remark 3.6.

If p(x)p(x) is not just a partial type, but a formula with parameters in MM, then the theory of p\mathcal{M}_{p} clearly has quantifier elimination. In this case, for pp to be internally simple, NIP\mathrm{NIP}, etc. is weaker than for it to be simple or NIP\mathrm{NIP} in the sense of [16], [8]. The case of a definable formula is in fact all we need to find counterexamples in NSOP4\mathrm{NSOP}_{4} theories to our results on the internally NSOP1\mathrm{NSOP}_{1} types of NSOP3\mathrm{NSOP}_{3} theories. In the case of a general partial type, we could have have also considered the case where 𝒫\mathcal{P} is a property of formulas and all quantifier-free formulas of p\mathcal{L}_{p} have property 𝒫\mathcal{P}. This defintion would also be weaker than the corresponding “external” property, and our results should go through even assuming only the quantifier-free version, by developing the theory of Kim-independence relative to only the quantifier-free formulas.

Theorem 6.17 of [8] says that simple types are co-simple; in fact, only internal simplicity is needed. By way of analogy, internally NSOP1\mathrm{NSOP}_{1} types are co-NSOP1\mathrm{NSOP}_{1} in ω\omega-NDCTP2\mathrm{NDCTP}_{2} theories; see below. Beyond this analogy, we find that:

Theorem 3.7.

Let TT be NSOP3\mathrm{NSOP}_{3}, and p(x)p(x) an internally NSOP1\mathrm{NSOP}_{1} type. Then p(x)p(x) is co-NSOP1\mathrm{NSOP}_{1}.

Example 3.8.

Theorem 3.7 becomes false if we relax NSOP3\mathrm{NSOP}_{3} to NSOP4\mathrm{NSOP}_{4}. Let TT be the model companion of (undirected) triangle-free tripartite graphs, with the partition denoted by unary predicates P1,P2,P3P_{1},P_{2},P_{3}. Let MM be a model and p(x)={P1(x)P2(x)}p(x)=\{P_{1}(x)\vee P_{2}(x)\}. Then TT is NSOP4\mathrm{NSOP}_{4}, in fact a free amalgamation theory in the sense of Conant ([11]). Moreover, p(x)p(x) is internally NSOP1\mathrm{NSOP}_{1}, in fact, internally simple. The associated theory has quantifier elimination in the language with unary predicates for P1P_{1}, P2P_{2}, PmP_{m} denoting xEmxEm for each mMm\in M, and a binary relation symbol for the edge relation between elements of P1P_{1} and elements of P2P_{2}. It is the model companion of graphs with interpretations for the unary predicates P1,P2P_{1},P_{2} and PmP_{m}, so that P1P_{1} and P2P_{2} partition the graph and have no edges within them, there are no edges within PmP_{m} for any mMm\in M, Pm1P_{m_{1}} and Pm2P_{m_{2}} are disjoint for m1,m2Mm_{1},m_{2}\in M with Mm1Em2M\models m_{1}Em_{2}, and for i=1,2i=1,2 PmP_{m} is disjoint from PiP_{i} when MPi(m)M\models P_{i}(m). In this form, the theory associated to p(x)p(x) can be easily seen to be simple (for example, check that the relation AB=CA\cap B=C coincides with forking-independence).

However, p(x)p(x) is not co-NSOP1\mathrm{NSOP}_{1}: let φ(x,y)=:xEy1xEy2\varphi(x,y)=:xEy_{1}\wedge xEy_{2}. For η2<ω\eta\in 2^{<\omega}, choose bη=(bη1,bη2)b_{\eta}=(b^{1}_{\eta},b^{2}_{\eta}) with, for any η,ν2<ω\eta,\nu\in 2^{<\omega}, bηiPib^{i}_{\eta}\in P_{i}, ¬bηiEm\models\neg b^{i}_{\eta}Em for i=1,2i=1,2 and mMm\in M, and bη1Ebν2\models b^{1}_{\eta}Eb^{2}_{\nu} if and only if η\eta and ν\nu are incomparable. This is possible, as we create no triangles. But φ(x,y)\varphi(x,y), bηb_{\eta} witness the failure of definition 3.1.1.

We prove Theorem 3.7. Again following the arguments of Chernikov and Ramsey [10] and Kaplan and Ramsey [19], we start by carrying out the arguments of Definition 3.1, (1 \Leftarrow 2’ \Leftarrow 3 (for 22-Kim-dividing)) internally to p\mathcal{M}_{p}. Since the consistency in the defintion of (1) need not be witnessed by a realization of p(x)p(x), we will no longer be dealing with actual consistency or inconsistency of instances of φ(x,y)\varphi(x,y), but rather the definable relations in p\mathcal{M}_{p} corresponding to this consistency, treated only as a definable hypergraph. This hypergraph will be part of the characteristic sequence of φ(x,y)\varphi(x,y), introduced by Malliaris in [30].

Suppose p(x)p(x) is not co-NSOP1\mathrm{NSOP}_{1}. Let φ(x,y)L(M)\varphi(x,y)\in L(M), bηp(𝕄)b_{\eta}\subseteq p(\mathbb{M}), η2ω\eta\in 2^{\omega} be as in Defintion 3.1.1. By compactness, we can replace 2<ω2^{<\omega} with 2<κ2^{<\kappa}, for large κ\kappa. Define Rn(y1,,yn)=:Rxφ(x,y1)φ(x,yn)(y1,,yn)pR_{n}(y_{1},\ldots,y_{n})=:R_{\exists x\varphi(x,y_{1})\wedge\ldots\wedge\varphi(x,y_{n})}(y_{1},\ldots,y_{n})\in\mathcal{L}_{p}. Then pRn(bη1,,bηn)\mathcal{M}_{p}\models R_{n}(b_{\eta_{1}},\ldots,b_{\eta_{n}}) for η1ηn2<κ\eta_{1}\lhd\ldots\lhd\eta_{n}\in 2^{<\kappa}, but for any η2η10\eta_{2}\unrhd\eta_{1}\smallfrown\langle 0\rangle, pR2(bη2,bη11)\mathcal{M}_{p}\models R_{2}(b_{\eta_{2}},b_{\eta_{1}\smallfrown\langle 1\rangle}).

For a sequence of relations {Rn}n<ω\{R_{n}\}_{n<\omega} on a set, where RnR_{n} is an nn-ary relation, call a sequence {ai}iI\{a_{i}\}_{i\in I} a clique if for i1,,inIi_{1},\ldots,i_{n}\in I, (a1,ain)Rn(a_{1},\ldots a_{i_{n}})\in R_{n}, and an nn-anticlique if for i1,,inIi_{1},\ldots,i_{n}\in I, (a1,ain)Rn(a_{1},\ldots a_{i_{n}})\notin R_{n}. Choose a Skolemization of p\mathcal{M}_{p}. We show that there is an array {ci,j}i=0,1,j<ω\{c_{i,j}\}_{i=0,1,j<\omega}, ci,jpc_{i,j}\in\mathcal{M}_{p}, so that {c0,j}j<ω\{c_{0,j}\}_{j<\omega} is a clique, {c1,j}j<ω\{c_{1,j}\}_{j<\omega} is a 22-anticlique, and c0,jc0,<jc1,<jpSkc1,jc_{0,j}\equiv^{\mathcal{L}^{\mathrm{Sk}}_{p}}_{c_{0,<j}c_{1,<j}}c_{1,j} for each j<ωj<\omega. We may follow the proof of [10], Proposition 5.6, that we cited in the direction (1\Rightarrow 2’) of Definition 3.1. We sketch the argument: we will draw the ci,jc_{i,j} from {bη}ηωκ\{b_{\eta}\}_{\eta\in\omega^{\kappa}}. Suppose that, for 1in1\leq i\leq n ci,0=bλic_{i,0}=b_{\lambda_{i}}, and ci,1=bηic_{i,1}=b_{\eta_{i}} are already chosen to satisfy these properties, with ηjλjλi\eta_{j}\wedge\lambda_{j}\rhd\lambda_{i} and λi(ηiλi)0,ηi(ηiλi)1\lambda_{i}\unrhd(\eta_{i}\wedge\lambda_{i})\smallfrown\langle 0\rangle,\eta_{i}\unrhd(\eta_{i}\wedge\lambda_{i})\smallfrown\langle 1\rangle, for 1i<jn1\leq i<j\leq n. Then using the pigeonhole principle, choose nodes λn+1=λn0κ11\lambda_{n+1}=\lambda_{n}\smallfrown\langle 0\rangle^{\kappa_{1}}\smallfrown\langle 1\rangle, ηn+1=λn0κ21\eta_{n+1}=\lambda_{n}\smallfrown\langle 0\rangle^{\kappa_{2}}\smallfrown\langle 1\rangle for κ1<κ2<κ\kappa_{1}<\kappa_{2}<\kappa so that cn+1,0=cλn+1c_{n+1,0}=c_{\lambda_{n+1}} and cn+1,1=cηn+1c_{n+1,1}=c_{\eta_{n+1}} are such that cn+1,0c0,nc1,npSkcn+1,1c_{n+1,0}\equiv^{\mathcal{L}^{\mathrm{Sk}}_{p}}_{c_{0,\leq n}c_{1,\leq n}}c_{n+1,1}.

We next find a model \mathcal{M} of the theory of p\mathcal{M}_{p} and \mathcal{M}-invariant Morley sequences {bi}i<ω\{b_{i}\}_{i<\omega} in the \mathcal{M}-invariant type p0p_{0} and {bi}i<ω\{b^{\prime}_{i}\}_{i<\omega} in the \mathcal{M}-invariant type p1p_{1}, so that b0=b0b_{0}=b^{\prime}_{0}, {bi}i<ω\{b_{i}\}_{i<\omega} is a clique, and {bi}i<ω\{b^{\prime}_{i}\}_{i<\omega} is a 22-anticlique.111It was observed by Hyoyoon Lee, Byunghan Kim, and the other participants of the Yonsei University logic seminar that the proof of Propsition 3.14 of [19] actually shows that in a SOP1\mathrm{SOP}_{1} theory, there is a formula that 22-Kim-divides for which Kim’s lemma fails. This is the “internal” version of this observation. As in the proof of (3 \Rightarrow 2) of Definition 3.1, we follow the proof of Proposition 3.14 of [19]. By Ramsey’s theorem and compactness, we can choose {c¯j}j<ω\{\bar{c}_{j}\}_{j<\omega} indiscernible in the theory of pSk\mathcal{M}_{p}^{\mathrm{Sk}}. Let =dclSk(c¯<ω)\mathcal{M}=\mathrm{dcl}_{\mathrm{Sk}}(\bar{c}_{<\omega}), and let \mathcal{M}^{\prime}\succ\mathcal{M} be sufficiently saturated. Choose non-principal ultrafilters UiU_{i}, i=0,1i=0,1, containing ci,<ωc_{i,<\omega}, and let the global types pi(x)={φ(x,c):φ(,c)Ui}p_{i}(x)=\{\varphi(x,c)\in\mathcal{M}^{\prime}:\varphi(\mathcal{M},c)\in U_{i}\}, so that each of the pip_{i} are finitely satisfiable over \mathcal{M}. It can be shown from c0,jc0,<jc1,<jpSkc1,jc_{0,j}\equiv^{\mathcal{L}_{p}^{\mathrm{Sk}}}_{c_{0,<j}c_{1,<j}}c_{1,j} that p0|=p1|p_{0}|_{\mathcal{M}}=p_{1}|_{\mathcal{M}}; let bb realize this. Then we can choose bb so that a p0p_{0}-Morley sequence {bi}i<ω\{b_{i}\}_{i<\omega} with b0=bb_{0}=b is a clique, and a p1p_{1}-Morley sequence {bi}i<ω\{b^{\prime}_{i}\}_{i<\omega} with b0=bb^{\prime}_{0}=b is a 22-anticlique.

Finally, we show, using the technique of Theorem 7.17 of [11], that the RnR_{n} have the compatible order property (SOP3\mathrm{SOP}_{3}), Definition 3.10 of [30]. By compactness and Fact 2.4, the following will translate into an instance of SOP3\mathrm{SOP}_{3} in TT, a contradiction. We find an array c0,,cn,,d0,,dn,c_{0},\ldots,c_{n},\ldots,d_{0},\ldots,d_{n},\ldots, with the following properties:

(1) For m<nm<n, d0,,dm,cm+1,,cnd_{0},\ldots,d_{m},c_{m+1},\ldots,c_{n} form a Morley sequence in p0p_{0}, so a clique.

(2) For m<nm<n, cmdnc_{m}d_{n} begin a Morley sequence in p1p_{1}, so ¬R2(cm,dn)\neg R_{2}(c_{m},d_{n}).

(3) c0,,cn,Kd0,,dn,c_{0},\ldots,c_{n},\ldots\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}_{\mathcal{M}}^{K}d_{0},\ldots,d_{n},\ldots

Suppose we have constructed c0,,cn,d0,,dnc_{0},\ldots,c_{n},d_{0},\ldots,d_{n} satisfying these properties up to nn. We find cn+1,dn+1c_{n+1},d_{n+1}. To find dn+1d_{n+1}, let dn+1p0(x)|d0dnd^{\prime}_{n+1}\models p_{0}(x)|_{\mathcal{M}d_{0}\ldots d_{n}} so dn+1Kd0,,dnd^{\prime}_{n+1}\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}^{K}_{\mathcal{M}}d_{0},\ldots,d_{n}. By (3), c0,,cnKd0,,dnc_{0},\ldots,c_{n}\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}_{\mathcal{M}}^{K}d_{0},\ldots,d_{n}. Finally, if dn+1′′p1(x)|c0cnd^{\prime\prime}_{n+1}\models p_{1}(x)|_{\mathcal{M}c_{0}\ldots c_{n}}, by symmetry of Kim-independence, Fact 2.2, c0cnKdn+1′′c_{0}\ldots c_{n}\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}^{K}d^{\prime\prime}_{n+1}. So by the independence theorem (fact 2.3) and an automorphism, there is dn+1p0(x)|d0dnp1(x)|c0cnd_{n+1}\models p_{0}(x)|_{\mathcal{M}d_{0}\ldots d_{n}}\cup p_{1}(x)|_{\mathcal{M}c_{0}\ldots c_{n}} with c0,,cnKd0,,dndn+1c_{0},\ldots,c_{n}\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}_{\mathcal{M}}^{K}d_{0},\ldots,d_{n}d_{n+1}. Finally choose cn+1p0(x)|c0,cnd0dnc_{n+1}\models p_{0}(x)|_{\mathcal{M}c_{0},\ldots c_{n}d_{0}\ldots d_{n}}. It remains to show that this preserves (3). This follows from the following claim:

Claim 3.9.

For any a,b,ca,b,c, MM, if aMKba\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}^{K}_{M}b and tp(c/Mab)\mathrm{tp}(c/Mab) extends to an MM-invariant type q(x)q(x), then aMKbca\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}^{K}_{M}bc.

This follows from Claim 5.13 below, using the fact that K+=K\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}^{K^{+}}=\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}^{K} in the language of that claim (Kim’s lemma, Fact 2.1, and compactness) and symmetry of K\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}^{K} (Fact 2.2).

This concludes the proof of Theorem 3.7.

This proof can be viewed as an instance of a more general phenomenon. In this proof, the RnR_{n} are the restriction to pn(𝕄)p_{n}(\mathbb{M}) of the characteristic sequence of φ(x,y)\varphi(x,y), defined by Malliaris:

Definition 3.4.

([30] Let φ(x,y)\varphi(x,y) be a formula. The characteristic sequence of φ(x,y)\varphi(x,y) is the sequence of hypergraphs, on the vertices 𝕄|y|\mathbb{M}^{|y|}, defined by

Rn(a1,,an)=:(a1,,an)xi=1nφ(x,yi)R_{n}(a_{1},\ldots,a_{n})=:(a_{1},\ldots,a_{n})\models\exists x\wedge_{i=1}^{n}\varphi(x,y_{i})

On the other hand, within p\mathcal{M}_{p}, the RnR_{n} are just a sequence of hypergraphs, and do not describe a pattern of consistency internally to p\mathcal{M}_{p}. Nonetheless, by showing that a particular configuration, the compatible order property, arises among the RnR_{n}, we get a description of the complexity of φ(x,y)\varphi(x,y) in the original theory TT. In [30], Malliaris introduces some hypergraph configurations corresponding, via the characteristic sequence, to consistency patterns (in the sense of [15]) in a first-order formula. We introduce some additional defintions to cover the case of the tree property, ω\omega-DCTP2\mathrm{DCTP}_{2}, and SOP1\mathrm{SOP}_{1}; the first of these comes from Observation 5.20 of [30].

Definition 3.5.

Let R=(V,{Rn}n<ω)R_{\infty}=(V,\{R_{n}\}_{n<\omega}) be a sequence of hypergraphs on a common set of vertices VV, where RnR_{n} is an nn-ary edge relation Then RR_{\infty} has

(1) An (ω,ω,1)(\omega,\omega,1)-array if there is an array {bij}i,jω\{b_{ij}\}_{i,j\in\omega} so that there is some fixed kk so that, for all ii, {bij}jω\{b_{ij}\}_{j\in\omega} is a clique, but for any σωω\sigma\in\omega^{\omega}, {biσ(i)}iω\{b_{i\sigma(i)}\}_{i\in\omega} is a kk-anticlique. (Definition 3.4.2, [30]. By Claim 3.8, [30], TP2\mathrm{TP}_{2} is equivalence to the presence of an (ω,ω,1)(\omega,\omega,1)-array in the characteristic sequence of a formula.

(2) The compatible order property if there are c0,,cn,,d0,,dn,c_{0},\ldots,c_{n},\ldots,d_{0},\ldots,d_{n},\ldots so that for m<nm<n, d0,,dm,cm+1,,cnd_{0},\ldots,d_{m},c_{m+1},\ldots,c_{n} form a clique, while for m<nm<n, ¬R2(cm,dn)\neg R_{2}(c_{m},d_{n}). (Definition 3.10, [30]. In Conclusion 6.15 of [30], SOP3\mathrm{SOP}_{3} is shown to be equivalent to the compatible order property in the characteristic sequence of a formula.)

(3) MTP\mathrm{MTP} if there is some fixed kk and parameters {bη}ηω<ω\{b_{\eta}\}_{\eta\in\omega^{<\omega}} so that for each path σωω\sigma\in\omega^{\omega}, {bσ|n}nω\{b_{\sigma|_{n}}\}_{n\in\omega} is a clique, but for each node ηω<ω\eta\in\omega^{<\omega}, {bηn}nω\{b_{\eta\smallfrown\langle n\rangle}\}_{n\in\omega} is a kk-anticlique. (In Observation 5.10 of [30], the failure of a formula to be simple is observed to be equivalent to MTP\mathrm{MTP} in the characteristic sequence.

(4) MSOP1\mathrm{MSOP}_{1} if there are parameters {bη}η2<ω\{b_{\eta}\}_{\eta\in 2^{<\omega}} so that {bσn}nω\{b_{\sigma\upharpoonleft n}\}_{n\in\omega} is a clique for any σ2ω\sigma\in 2^{\omega}, but for any η2η10\eta_{2}\unrhd\eta_{1}\smallfrown\langle 0\rangle, {bη2,bη11}\{b_{\eta_{2}},b_{\eta_{1}\smallfrown\langle 1\rangle}\} is a 22-anticlique.

(5) ω\omega-MDCTP2\mathrm{MDCTP}_{2} if for some fixed kk, there are parameters {bη}η2<ω\{b_{\eta}\}_{\eta\in 2^{<\omega}} so that {bσn}nω\{b_{\sigma\upharpoonleft n}\}_{n\in\omega} is a kk-anticlique for any σ2ω\sigma\in 2^{\omega}, but for any descending comb η1,ηl2<ω\eta_{1}\ldots,\eta_{l}\in 2^{<\omega}, {x,bηi}i=1l\{x,b_{\eta_{i}}\}_{i=1}^{l} is a clique.

Remark 3.10.

The letter M\mathrm{M} in MTP\mathrm{MTP}, MSOP1\mathrm{MSOP}_{1} and ω\omega-MDCTP2\mathrm{MDCTP}_{2} stands for Malliaris.

Note that these properties are all graph-theoretic in the sense of Malliaris, [30], referring only to incidence patterns of the edges, rather than their consistency. They are similar in this sense to stability or NIP\mathrm{NIP}, which make no reference to consistency but only ask for graph-theoretic configurations. In [38], Shelah shows the following:

Fact 3.11.

Let R(x,y)R(x,y) be an unstable formula, and assume that all Boolean combinations of instances of R(x,y)R(x,y) are NSOP\mathrm{NSOP}. Then R(x,y)R(x,y) has the independence property.

Note that the form of this result is as follows: if a graph has one graph-theoretic configuration (instability), and an ambient model-theoretic tameness property (NSOP\mathrm{NSOP}, indeed quantifier-free NSOP\mathrm{NSOP}), then it has a more complicated graph-theoretic configuration (the independence property). It was Malliaris who first implicitly asked, in the context of strengthenings of the compatible order property (Remark 7.12, [31]), whether ambient classification-theoretic properties imply further graph-theoretic complexity gaps for hypergraphs. In the remainder of this section, we observe that model-theoretic tameness properties of hypergraph sequences that refer to consistency, such as simplicity and NSOP1\mathrm{NSOP}_{1}, provide additional information about their graph-theoretic structure, just as Shelah shows a gap between simplicity and independence in NSOP\mathrm{NSOP} graphs. We then further observe that the connection between internal properties of types and external properties of theories, including the aforementioned work of Chernikov on co-simplicity ([8]), can be reinterpreted in terms of these graph-theoretic complexity gaps for model-theoretically tame hypergraphs.

Proposition 3.12.

Let R=(V,{Rn}n<ω)R_{\infty}=(V,\{R_{n}\}_{n<\omega}) be sequence of hypergraphs on a common set of vertices VV, where RnR_{n} is an nn-ary edge relation.

(1) If RR_{\infty} is simple (in the hypergraph language) and has MTP\mathrm{MTP}, it has an (ω,ω,1)(\omega,\omega,1) array.

(2) If RR_{\infty} is NSOP1\mathrm{NSOP}_{1} and has MSOP1\mathrm{MSOP}_{1}, then it has ω\omega-MDCTP2\mathrm{MDCTP}_{2} and the compatible order property.

In fact, for (1), it suffices that no quantifier-free formula has the tree property, and similarly for (2) and SOP1\mathrm{SOP}_{1}.

Example 3.13.

If RR_{\infty} is the model companion of the empty theory in the language of hypergraph sequences (or, say, the theory axiomatizing the basic properties of characteristic sequences; see [30], Observation 2.4), then it is a simple structure. But it has ω\omega-MDCTP2\mathrm{MDCTP}_{2} and the compatible order property.

Proof.

(Sketch) The argument for (1) is extracted from Chernikov’s proof in [8] that simple types are co-simple. In particular, we notice that the proof Lemma 6.13 of [8] works when the rows are general indiscnernible sequences, not just Morley sequences, and relies only on the internal simplicity of a type, not the full definition of a simple type. Suppose RR_{\infty} has MTP\mathrm{MTP}, but is simple as a structure in the language of hypergraph sequences. By the proof, which can be found in a standard reference on simplicity theory such as [22], that formulas with the tree property fail Kim’s lemma for dividing, there is a model MM of the theory of RR_{\infty}, some element bb of the monster model, and some indiscernible kk-anticlique I={bi}iII=\{b_{i}\}_{i\in I} starting with b0=bb_{0}=b, as well as a Morley sequence J={bi}iωJ=\{b^{\prime}_{i}\}_{i\in\omega} starting with b0=bb^{\prime}_{0}=b and forming a clique. Now suppose, by induction, that for ini\leq n there are are Ii={bji}j<ωI^{i}=\{b_{j}^{i}\}_{j<\omega} with IiMII^{i}\equiv_{M}I and b0i=bib_{0}^{i}=b^{\prime}_{i} (so the IiI^{i} are anticliques), so that for σωn\sigma\in\omega^{n}, {bσ(i)i}in{bi}in+1\{b^{i}_{\sigma(i)}\}_{i\leq n}\smallfrown\{b^{\prime}_{i}\}_{i\geq n+1} is a clique, and so that InMbn+1I_{\leq n}\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}_{M}b^{\prime}_{\geq n+1}. By properties of independence in simple theories, Inb>n+1Mbn+1I_{\leq n}b_{>n+1}\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}_{M}b^{\prime}_{n+1}. By the chain condition, take In+1={bjn+1}j<ωI^{n+1}=\{b_{j}^{n+1}\}_{j<\omega}, In+1MII^{n+1}\equiv_{M}I, with b0n+1=bn+1b^{n+1}_{0}=b^{\prime}_{n+1} so that In+1I_{n+1} is indiscnernible over Inb>n+1I_{\leq n}b^{\prime}_{>n+1}, and with Inb>n+1MIn+1I_{\leq n}b^{\prime}_{>n+1}\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}_{M}I_{n+1}. This suffices for the induction. Now the existence of an (ω,ω,1)(\omega,\omega,1)-array follows.

For (2), suppose RR_{\infty} is NSOP1\mathrm{NSOP}_{1} in the hypergraph language, but has MSOP1\mathrm{MSOP}_{1}. Then as in the proof of Theorem 3.7, there is a model \mathcal{M} of the theory of RR_{\infty} and there are MM-invariant Morley sequences {bi}i<ω\{b_{i}\}_{i<\omega} in the MM-invariant type p0p_{0} and {bi}i<ω\{b^{\prime}_{i}\}_{i<\omega} in the MM-invariant type p1p_{1}, so that b0=b0b_{0}=b^{\prime}_{0}, {bi}i<ω\{b_{i}\}_{i<\omega} is a clique, and {bi}i<ω\{b^{\prime}_{i}\}_{i<\omega} is a 22-anticlique. To show ω\omega-MDCTP1\mathrm{MDCTP}_{1}, it suffices to find a tree {bη}η2<ω\{b_{\eta}\}_{\eta\in 2^{<\omega}} so that the paths, read downward, are Morley sequences in p1p_{1}, and the descending combs are Morley sequences in p0p_{0}. Formally, the construction will follow [35], Lemma 4.5. Say that a tree {cη}η2n\{c_{\eta}\}_{\eta\in 2^{\leq n}} is a generic tree if for η2<n\eta\in 2^{<n} cη0MKcη1c_{\unrhd\eta\smallfrown\langle 0\rangle}\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}^{K}_{M}c_{\unrhd\eta\smallfrown\langle 1\rangle} (two subtrees at a node are Kim-independent), and cηp1(x)|Mcηc_{\eta}\models p_{1}(x)|_{Mc_{\rhd\eta}} (each node satisfies the restriction of p1(x)p_{1}(x) to its subtrees.) We prove the following claim (corresponding to Claim 4.6 of [35]):

Claim 3.14.

Let {cη}η2n\{c_{\eta}\}_{\eta\in 2^{\leq n}} be a generic tree, and AA any set. Then there is some {cη}η2nM{cη}η2n\{c^{\prime}_{\eta}\}_{\eta\in 2^{\leq n}}\equiv_{M}\{c_{\eta}\}_{\eta\in 2^{\leq n}} with cηp0(x)|MAc^{\prime}_{\eta}\models p_{0}(x)|_{MA} for each η2n\eta\in 2^{\leq n}, and with AMK{cη}η2nA\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}_{M}^{K}\{c^{\prime}_{\eta}\}_{\eta\in 2^{\leq n}}.

Proof.

By induction on nn, we may assume this is true for {cη}η0\{c_{\eta}\}_{\eta\unrhd\langle 0\rangle} and {cη}η1\{c_{\eta}\}_{\eta\unrhd\langle 1\rangle}. Namely, fin {cη′′}η0M{cη}η0\{c^{\prime\prime}_{\eta}\}_{\eta\unrhd\langle 0\rangle}\equiv_{M}\{c_{\eta}\}_{\eta\unrhd\langle 0\rangle} with cη′′p0(x)|MAc^{\prime\prime}_{\eta}\models p_{0}(x)|_{MA} for each 0η2n\langle 0\rangle\unlhd\eta\in 2^{\leq n} and AMK{cη′′}η0A\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}^{K}_{M}\{c^{\prime\prime}_{\eta}\}_{\eta\unrhd\langle 0\rangle}, and similarly, {cη′′}η1M{cη}η1\{c^{\prime\prime}_{\eta}\}_{\eta\unrhd\langle 1\rangle}\equiv_{M}\{c_{\eta}\}_{\eta\unrhd\langle 1\rangle} with cη′′p1(x)|MAc^{\prime\prime}_{\eta}\models p_{1}(x)|_{MA} for each 1η2n\langle 1\rangle\unlhd\eta\in 2^{\leq n} and AMK{cη′′}η1A\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}^{K}_{M}\{c^{\prime\prime}_{\eta}\}_{\eta\unrhd\langle 1\rangle}. Recall that c0MKc1c_{\unrhd\langle 0\rangle}\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}^{K}_{M}c_{\unrhd\langle 1\rangle} as {cη}η2n\{c_{\eta}\}_{\eta\in 2^{\leq n}} is a generic tree, so by the independence theorem and an automorphism, we can find {cη}ηM{cη}η\{c^{\prime}_{\eta}\}_{\eta\rhd\langle\rangle}\equiv_{M}\{c_{\eta}\}_{\eta\rhd\langle\rangle} with cηp0(x)|MAc^{\prime}_{\eta}\models p_{0}(x)|_{MA} for each η2n\langle\rangle\lhd\eta\in 2^{\leq n} and AMK{cη}ηA\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}^{K}_{M}\{c^{\prime}_{\eta}\}_{\eta\rhd\langle\rangle}. Finally, by the independence theorem and an automorphism, find cp0(x)|MAp1(x)|M{cη}ηc^{\prime}_{\langle\rangle}\models p_{0}(x)|_{MA}\cup p_{1}(x)|_{M\{c^{\prime}_{\eta}\}_{\eta\rhd\langle\rangle}} so that AMK{cη}η2nA\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}_{M}^{K}\{c^{\prime}_{\eta}\}_{\eta\in 2^{\leq n}}, as desired. ∎

By induction, we construct a generic tree {bη}η2<ω\{b_{\eta}\}_{\eta\in 2^{<\omega}} so that the paths, read downward, are Morley sequences in p1p_{1}, and the descending combs are Morley sequences in p0p_{0}. Suppose we have constructed I={bη}η2nI=\{b_{\eta}\}_{\eta\in 2^{\leq n}} with these properties. By Claim 3.14, we can find I1MIMI2I^{1}\equiv_{M}I\equiv_{M}I^{2} with I1MKI2I^{1}\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}^{K}_{M}I^{2} and for I1={bη1}η2nI^{1}=\{b^{1}_{\eta}\}_{\eta\in 2^{\leq n}}, I2={bη2}η2nI^{2}=\{b^{2}_{\eta}\}_{\eta\in 2^{\leq n}}, bη2p0(x)|MI1b^{2}_{\eta}\models p_{0}(x)|_{MI_{1}} for η2n\eta\in 2^{\leq n}. The trees I1I_{1} and I2I_{2} of height nn will be the subtrees of our new generic tree of height n+1n+1. Finally, let bq1(x)|MI1I2b_{*}\models q_{1}(x)|_{MI_{1}I_{2}} be the new root. Reindexing accordingly, we get a generic tree {bη}η2n+1\{b_{\eta}\}_{\eta\in 2^{\leq n+1}} so that the paths, read downward, are Morley sequences in p1p_{1}, and the descending combs are Morley sequences in p0p_{0}. This completes the induction.

Now the compatible order property comes from the proof of Theorem 3.7.

We connect this to the internal properties of types. We recall the defintion of co-simplicity from [8]:

Definition 3.6.

A type p(x)p(x) over AA is co-simple if there is no formula φ(x,y)\varphi(x,y), k2k\geq 2 and parameters {bη}ηω<ω\{b_{\eta}\}_{\eta\in\omega^{<\omega}}, bηp(𝕄)b_{\eta}\subseteq p(\mathbb{M}) so that for each path σωω\sigma\in\omega^{\omega}, {φ(x,bσ|n)}nω\{\varphi(x,b_{\sigma|_{n}})\}_{n\in\omega} is consistent, but for each node ηω<ω\eta\in\omega^{<\omega}, {φ(x,bηn)}nω\{\varphi(x,b_{\eta\smallfrown\langle n\rangle})\}_{n\in\omega} is kk-inconsistent.

Corollary 3.14.1.

(1) ([8], Theorem 6.17) In a NTP2\mathrm{NTP}_{2} theory, internally simple types are co-simple.

(2) In an N\mathrm{N}-ω\omega-DCTP2\mathrm{DCTP}_{2} theory or an NSOP3\mathrm{NSOP}_{3} theory, internally NSOP1\mathrm{NSOP}_{1} types are co-NSOP1\mathrm{NSOP}_{1}

Proof.

(1). If p(x)p(x) is not co-simple then the restriction RR_{\infty} of some charcateristic sequence to p(𝕄)p(\mathbb{M}) has MTP\mathrm{MTP}. If p(x)p(x) is internally NSOP1\mathrm{NSOP}_{1}, then RR_{\infty} is simplesimple, so by the previous proposition it has an (,,1)(\infty,\infty,1) array. So TT must have TP2\mathrm{TP}_{2}.

(2). If p(x)p(x) is not co-NSOP1\mathrm{NSOP}_{1} then the restriction RR_{\infty} of some charcateristic sequence to p(𝕄)p(\mathbb{M}) has MSOP1\mathrm{MSOP}_{1}. If p(x)p(x) is internally NSOP1\mathrm{NSOP}_{1}, then RR_{\infty} is NSOP1\mathrm{NSOP}_{1}, so by the previous proposition it has ω\omega-MDCTP2\mathrm{MDCTP}_{2} and the compatible order property. So TT must have ω\omega-DCTP2\mathrm{DCTP}_{2} and SOP3\mathrm{SOP}_{3}. ∎

In other words, the fact that internally NSOP1\mathrm{NSOP}_{1} types are co-NSOP1\mathrm{NSOP}_{1} in NSOP3\mathrm{NSOP}_{3} theories can be interpreted as saying that in an NSOP3\mathrm{NSOP}_{3} theory, the graph-theoretic complexity of a characteristic sequence must be reflected in its model-theoretic complexity in the hypergraph language.

Remark 3.15.

For RR_{\infty} a hypergraph sequence, define R(m)R^{(m)}_{\infty} to be the hypergraph sequence whose vertices are mm-tuples of vertices of RR_{\infty}, and define Rn(m)((a11,a1m),(an1,amm))=:Rmn(a11,a1m,an1,amm)R_{n}^{(m)}((a^{1}_{1},\ldots a^{m}_{1}),\ldots(a^{1}_{n},\ldots a^{m}_{m}))=:R_{mn}(a^{1}_{1},\ldots a^{m}_{1},\ldots a^{1}_{n},\ldots a^{m}_{m}). For example, if RR_{\infty} is the characteristic sequence of φ(x,y)\varphi(x,y), then R(m)R^{(m)}_{\infty} is the characteristic sequence of i=1mφ(x,yi)\wedge_{i=1}^{m}\varphi(x,y_{i}). If we consider hypergraphs up to the concatenation operation RR(m)R_{\infty}\mapsto R^{(m)}_{\infty}, then we obtain additional information. For example, we can define MSOP2=MTP1\mathrm{MSOP}_{2}=\mathrm{MTP}_{1} to mean that there exists a binary (or infinitely branching; see [1], recounted in Fact 4.2 of [10]) tree whose paths are cliques and whose incomparable pairs are 22-anticliques. It follows from the proof of [38], III.7.7, III.7.11 that up to concatenation, a hypergraph sequence with MTP\mathrm{MTP} either has an (ω,ω,1)(\omega,\omega,1) array or has MTP1\mathrm{MTP}_{1}. So by Proposition 3.12.2, if RR_{\infty} is NSOP1\mathrm{NSOP}_{1}, and has MTP\mathrm{MTP}, then up to concatenation it either has MTP\mathrm{MTP} or an (ω,ω,1)(\omega,\omega,1) array.

It is also worth noting that if we define MATP\mathrm{MATP} to be the existence of a tree so that the antichains are cliques and the paths are kk-anticliques, it follows from the proof of Theorem 4.8 of [3] that up to concatenation, an MSOP1\mathrm{MSOP}_{1} hypergraph sequence has either MSOP2\mathrm{MSOP}_{2} or MATP\mathrm{MATP}.

Although it is shown in [35] that NSOP1\mathrm{NSOP}_{1} coincides with NSOP2\mathrm{NSOP}_{2} for theories, we get additional graph-theoretic information when we assume only the quantifier-free formulas of RR_{\infty} to be NSOP2\mathrm{NSOP}_{2}. Namely, if RR_{\infty} has MSOP1\mathrm{MSOP}_{1}, it has MSOP2\mathrm{MSOP}_{2} up to concatenation. This follows from the arguments in [35]; we give an overview. If RR_{\infty} has MSOP1\mathrm{MSOP}_{1}, there is a model MM and two MM-finitely satisfiable Morley sequences, one of which is a clique and one of which is a 22-anticlique. (That kk may chosen to be 22 comes from [29], [19]). Now Lemma 4.5 of [35] says that for any coheir p(x)p(x) over MM and canonical coheir q(x)q(x) over MM, there is a tree whose paths are Morley sequences in p(x)p(x) and whose descending combs are Morley sequences in q(x)q(x). So if Morley sequences in q(x)q(x) are anticliques and Morley sequences in p(x)p(x) are cliques, the descending combs will be anticliques and the paths will be cliques. By the proof of Lemma 2.8 of [35] (SOP2\mathrm{SOP}_{2} = k-DCTP1\mathrm{DCTP}_{1}), such a tree, up to concatenation, gives an instance of MSOP2\mathrm{MSOP}_{2}.

So because there exists a finitely satisfiable Morley sequence that is a clique, either RR_{\infty} has MSOP2\mathrm{MSOP}_{2} and we are done, or there is also a canonical Morley sequence that is a clique. At this point, now that we have an MM-finitely satisfiable Morley sequence that is a 22-anticlique and a canonical Morley sequence that is a clique, we can prove Kim’s lemma for canonical Morley sequences, symmetry for Conant-independence, and the weak independence theorem for Conant-independence, all in the quantifier-free context as for NSOP2\mathrm{NSOP}_{2} theories, and then use the technique of Conant ([11]) developed in section 6 of [35] to show the compatible order property. But up to concatenation, the compatible order property implies MSOP2\mathrm{MSOP}_{2} ([30], Observation 3.11).

There are SOP1\mathrm{SOP}_{1} formulas φ(x,y)\varphi(x,y) so that i=1nφ(x,yi)\wedge_{i=1}^{n}\varphi(x,y_{i}) is NSOP2\mathrm{NSOP}_{2}; see [3], §6. Byunghan Kim asked, at the 2023 BIRS meeting on neostability theory, whether it can be shown that if a formula is SOP1\mathrm{SOP}_{1}, a related formula is SOP2\mathrm{SOP}_{2}. It follows from the above discussion that if a formula is SOP1\mathrm{SOP}_{1}, SOP2\mathrm{SOP}_{2} must appear in the quantifier-free formulas of its characteristic sequence.

4. Independence of internally NSOP1\mathrm{NSOP}_{1} types in NSOP3\mathrm{NSOP}_{3} theories

In this section, we prove an extension of the independence theorem of Kaplan and Ramsey ([19]) to internally NSOP1\mathrm{NSOP}_{1} types in NSOP3\mathrm{NSOP}_{3} theories. We will use Theorem 3.7, namely that internally NSOP1\mathrm{NSOP}_{1} types in NSOP3\mathrm{NSOP}_{3} theories are co-NSOP1\mathrm{NSOP}_{1}.

While the theorem does not give a1′′MKa2a2a_{1}^{\prime\prime}\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}_{M}^{K^{*}}a_{2}a_{2}, a1′′a^{\prime\prime}_{1} can be chosen so that any two of a1′′,a2,a3a^{\prime\prime}_{1},a_{2},a_{3} is Conant-independent from the third, somewhat similarly to Theorem 2.13 of [27].

Theorem 4.1.

Let TT be NSOP3\mathrm{NSOP}_{3}, and let p1,p2,p3p_{1},p_{2},p_{3} be internally NSOP1\mathrm{NSOP}_{1} types over MM. Let a1Ma1p1(𝕄)a_{1}\equiv_{M}a^{\prime}_{1}\subset p_{1}(\mathbb{M}), a2p2(𝕄)a_{2}\subset p_{2}(\mathbb{M}), a3p3(𝕄)a_{3}\subset p_{3}(\mathbb{M}). If a1MKa2a_{1}\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}^{K^{*}}_{M}a_{2}, a1MKa3a^{\prime}_{1}\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}^{K^{*}}_{M}a_{3}, a2MKa3a_{2}\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}^{K^{*}}_{M}a_{3}, there is some a1′′a^{\prime\prime}_{1} with a1′′tp(a1/Ma2)tp(a1/Ma3)a^{\prime\prime}_{1}\models\mathrm{tp}(a_{1}/Ma_{2})\cup\mathrm{tp}(a^{\prime}_{1}/Ma_{3}). Moreover, a1′′a^{\prime\prime}_{1} can be chosen with a2a3MKa1′′a_{2}a_{3}\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}^{K^{*}}_{M}a^{\prime\prime}_{1}, a2a1′′MKa3a_{2}a^{\prime\prime}_{1}\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}^{K^{*}}_{M}a_{3} and a3a1′′MKa2a_{3}a^{\prime\prime}_{1}\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}^{K^{*}}_{M}a_{2}.

It is of interest that the conclusion does not hold for NSOP4\mathrm{NSOP}_{4} theories, nor does it follow from co-NSOP1\mathrm{NSOP}_{1}.

Example 4.2.

Let TT be the model companion of the theory of triangle-free tripartite graphs, with the partition denoted by P1(x),P2(x),P3(x)P_{1}(x),P_{2}(x),P_{3}(x) as in Example 3.8. Recall that TT is NSOP4\mathrm{NSOP}_{4}, and TT is a free amalgamation theory in the sense of [11], so aMKba\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}_{M}^{K^{*}}b if and only of abMa\cap b\subseteq M; see Proposition 4.3 of [36]. Let pi(x)=:Pi(x)p_{i}(x)=:P_{i}(x) for i=1,2,3i=1,2,3. Then the pi(x)p_{i}(x) are internally stable–the structures pi\mathcal{M}_{p_{i}} have quantifier elimination in the unary language of MM-definable subsets of Pi(x)P_{i}(x). Internally stable types are always co-NSOP1\mathrm{NSOP}_{1}: by the proof of Theorem 3.7, if an internally stable type pp is not co-NSOP1\mathrm{NSOP}_{1}, then in the theory of p\mathcal{M}_{p}, there is a hypergraph sequence {Rn}\{R_{n}\}, a model \mathcal{M}, and Morley sequences {bi}i<ω\{b_{i}\}_{i<\omega} and {bi}i<ω\{b^{\prime}_{i}\}_{i<\omega} with b0b0b_{0}\equiv_{\mathcal{M}}b^{\prime}_{0} so that {bi}i<ω\{b_{i}\}_{i<\omega} is a clique and {bi}i<ω\{b^{\prime}_{i}\}_{i<\omega} is an anti-clique. But this is impossible if the theory of p\mathcal{M}_{p} is stable, as b0b0b_{0}\equiv_{\mathcal{M}}b^{\prime}_{0} implies {bi}i<ωM{bi}i<ω\{b_{i}\}_{i<\omega}\equiv_{M}\{b^{\prime}_{i}\}_{i<\omega} when {bi}i<ω\{b_{i}\}_{i<\omega} and {bi}i<ω\{b^{\prime}_{i}\}_{i<\omega} are Morley sequences in a stable theory.

However, the conclusion of theorem 4.1 does not hold. Let a1Ma1p1(𝕄)a_{1}\equiv_{M}a^{\prime}_{1}\subseteq p_{1}(\mathbb{M}), a2p2(𝕄)a_{2}\models p_{2}(\mathbb{M}), a3p3(𝕄)a_{3}\models p_{3}(\mathbb{M}) with a1Ea2\models a_{1}Ea_{2}, a1Ea3\models a^{\prime}_{1}Ea_{3}, a2Ea3\models a_{2}Ea_{3}. Then a1MKa2a_{1}\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}^{K^{*}}_{M}a_{2}, a1MKa3a^{\prime}_{1}\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}^{K^{*}}_{M}a_{3}, a2MKa3a_{2}\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}^{K^{*}}_{M}a_{3}, but tp(a1/Ma2)tp(a1/Ma3)\mathrm{tp}(a_{1}/Ma_{2})\cup\mathrm{tp}(a^{\prime}_{1}/Ma_{3}) is inconsistent.

We prove theorem 4.1, beginning with some observations on co-NSOP1\mathrm{NSOP}_{1} types. First of all, Conant-independence between co-NSOP1\mathrm{NSOP}_{1} types is just Kim-dividing independence.

Claim 4.3.

If bp(𝕄)b\subset p(\mathbb{M}) for p(x)p(x) a co-NSOP1\mathrm{NSOP}_{1} type over MM, then aMKba\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}^{K^{*}}_{M}b if and only if aMKdba\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}^{Kd}_{M}b.

Proof.

If aMKba\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}^{K^{*}}_{M}b, then aMKdba\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}^{Kd}_{M}b by Kim’s lemma, Definition 3.1.3. Conversely, if aMKdba\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}^{Kd}_{M}b, then in particular, by compactness we can choose an MM-finitely satisfiable Morley sequence {bi}i<ω\{b_{i}\}_{i<\omega}, b0=bb_{0}=b, that is indiscernible over MaMa. But then, by Fact 5.7 below, formulas that do not Kim-divide over MM by a some MM-finitely satisfiable Morley sequence do not Conant-fork over MM, so aMKba\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}^{K^{*}}_{M}b. ∎

Claim 4.4.

If p(x),q(x)p(x),q(x) are co-NSOP1\mathrm{NSOP}_{1} types over MM and ap(𝕄)a\subseteq p(\mathbb{M}), bq(𝕄)b\subseteq q(\mathbb{M}), then aMKba\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}^{K^{*}}_{M}b if and only if bMKab\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}^{K^{*}}_{M}a.

This follows from Proposition 3.1.

Claim 4.5.

If bp(𝕄)b\subset p(\mathbb{M}) for p(x)p(x) a co-NSOP1\mathrm{NSOP}_{1} type over MM, and aMKba\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}^{K^{*}}_{M}b, then for any MM-finitely satisfiable type q(x)q(x), there is a Morley sequence I={bi}i<ωI=\{b_{i}\}_{i<\omega} in q(x)q(x), b0=bb_{0}=b, that is indiscernible over MaMa, and any such Morley sequence will satisfy aMKIa\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}^{K^{*}}_{M}I.

This is the “chain condition”, Claim 3.4, together with compactness. We use Claims 4.3-4.5 throughout.

Third, we have the weak independence theorem between two co-NSOP1\mathrm{NSOP}_{1} types, analogously to Proposition 6.1 of Kaplan and Ramsey, [19]:

Claim 4.6.

Let p(x),q(x)p(x),q(x) be co-NSOP1\mathrm{NSOP}_{1} types over MM, and let aMap(𝕄)a\equiv_{M}a^{\prime}\subseteq p(\mathbb{M}), b,cq(𝕄)b,c\subseteq q(\mathbb{M}), aMKba\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}^{K^{*}}_{M}b, aMKca^{\prime}\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}^{K^{*}}_{M}c, cMubc\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}^{u}_{M}b. Then there is a′′MKbca^{\prime\prime}\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}_{M}^{K^{*}}bc with a′′tp(a/Mb)tp(a/Mc)a^{\prime\prime}\models\mathrm{tp}(a/Mb)\cup\mathrm{tp}(a^{\prime}/Mc).

Proof.

The proof is similar to Proposition 6.1 of [19]. By Claims 4.4 and 4.5 and aMKba\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}^{K^{*}}_{M}b, let I={ai}i<ωI=\{a_{i}\}_{i<\omega} be an MM-invariant Morley sequence with a0=aa_{0}=a that is indiscernible over MbMb. Again by Claims 4.4 and 4.5., aMKca^{\prime}\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}^{K^{*}}_{M}c and aMaa^{\prime}\equiv_{M}a, for r(x,y)=tp(a,c)r(x,y)=\mathrm{tp}(a^{\prime},c), i<ωq(ai,y)\cup_{i<\omega}q(a_{i},y) is consistent, so we can choose some ci<ωr(ai,y)c^{\prime}\models\cup_{i<\omega}r(a_{i},y). By Ramsey’s theorem, compactness and an automorphism, we can choose cc^{\prime} in particular so that II remains indiscernible over MbcMbc^{\prime}. So bcMKabc^{\prime}\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}_{M}^{K^{*}}a, and aMKbca\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}_{M}^{K^{*}}bc^{\prime}, with caMcac^{\prime}a\equiv_{M}ca^{\prime}.

Let s(y)s(y) be an MM-finitely satisfiable type extending tp(c/Mb)\mathrm{tp}(c/Mb), and let c′′s(y)|Mbcc^{\prime\prime}\models s(y)|_{Mbc^{\prime}}, so c′′Mbcc^{\prime\prime}\equiv_{Mb}c and c′′ubcc^{\prime\prime}\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}^{u}bc^{\prime}. As c′′Mcc^{\prime\prime}\equiv_{M}c, choose bb^{\prime} with bc′′Mbcb^{\prime}c^{\prime\prime}\equiv_{M}bc^{\prime}; by left extension for u\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}^{u}, bb^{\prime} can further be chosen with bc′′ubcb^{\prime}c^{\prime\prime}\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}^{u}bc^{\prime}. Then bc,bc′′bc^{\prime},b^{\prime}c^{\prime\prime} begin an MM-invariant Morley sequence JJ. As aKbca\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}^{K^{*}}bc^{\prime}, there is an MM-invariant Morley sequence JbcJJ^{\prime}\equiv_{bc^{\prime}}J indiscernible over MaMa; using claim 4.5, aKJa\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}^{K^{*}}J^{\prime}. Write J=(bc,b′′′c′′′,)J^{\prime}=(bc^{\prime},b^{\prime\prime\prime}c^{\prime\prime\prime},\ldots). Then c′′′aMcaMcac^{\prime\prime\prime}a\equiv_{M}c^{\prime}a\equiv_{M}ca^{\prime}, c′′′Mbc′′Mbcc^{\prime\prime\prime}\equiv_{Mb}c^{\prime\prime}\equiv_{Mb}c and aKbc′′′a\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}^{K^{*}}bc^{\prime\prime\prime}. By an MbMb-automorphism taking c′′c^{\prime\prime} to cc, we obtain aa^{\prime} as desired.

Using this weak independence theorem, we can now show the full independence theorem between two co-NSOP1\mathrm{NSOP}_{1} types.

Claim 4.7.

Let p(x),q(x)p(x),q(x) be co-NSOP1\mathrm{NSOP}_{1} types over MM, and let aMap(𝕄)a\equiv_{M}a^{\prime}\subseteq p(\mathbb{M}), b,cq(𝕄)b,c\subseteq q(\mathbb{M}), aMKba\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}^{K^{*}}_{M}b, aMKca^{\prime}\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}^{K^{*}}_{M}c, cMKbc\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}^{K^{*}}_{M}b. Then there is a′′MKbca^{\prime\prime}\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}_{M}^{K^{*}}bc with a′′tp(a/Mb)tp(a/Mc)a^{\prime\prime}\models\mathrm{tp}(a/Mb)\cup\mathrm{tp}(a^{\prime}/Mc).

Proof.

We could have followed the proof of Theorem 6.5 of [19], but we offer our own exposition. We first show that it suffices to show consistency of tp(a/Mb)tp(a/Mc)\mathrm{tp}(a/Mb)\cup\mathrm{tp}(a^{\prime}/Mc) in the statement of Claim 4.9. Let r(x)r(x) be an MM-finitely satisfiable type extending tp(A/M)\mathrm{tp}(A/M). By Claims 4.4 and 4.5, we can find I={ai}i<ωI=\{a_{i}\}_{i<\omega} with a0=aa_{0}=a indiscernible over MbMb and I={ai}i<ωI^{\prime}=\{a^{\prime}_{i}\}_{i<\omega} with a0=aa^{\prime}_{0}=a^{\prime} indiscernible over MbMb, both MM-finitely satisfiable Morley sequences in r(x)r(x). Then IMII\equiv_{M}I^{\prime}. So using the consistency, we can find I′′(I/Mb)tp(I/Mc)I^{\prime\prime}\models(I/Mb)\cup\mathrm{tp}(I^{\prime}/Mc), which by Ramsey’s theorem and compactness, can be assumed indiscernible over MbcMbc. So I′′MKbcI^{\prime\prime}\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}^{K}_{M}bc by claim 4.4, and we can find a′′a^{\prime\prime} in this sequence as desired.

Therefore, suppose a,a,b,ca,a^{\prime},b,c are as in the statement of the claim, and tp(a/Mb)tp(b/Mc)\mathrm{tp}(a/Mb)\cup\mathrm{tp}(b/Mc) is inconsistent. By compactness, there are some φ(x,b)tp(a/Mb)\varphi(x,b)\in\mathrm{tp}(a/Mb) and ψ(x,c)tp(a/Mc)\psi(x,c)\in\mathrm{tp}(a/Mc) with φ(x,b)ψ(x,c)\varphi(x,b)\cup\psi(x,c) inconsistent. Let s(y,z)=tp(bc/M)s(y,z)=\mathrm{tp}(bc/M). We find b1,,bnq(𝕄)b_{1},\ldots,b_{n}\ldots\subset q(\mathbb{M}), c1,,cnq(𝕄)c_{1},\ldots,c_{n}\subset q(\mathbb{M}) with the following properties

(1) For m<nm<n, biMubi1b1b_{i}\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}_{M}^{u}b_{i-1}\ldots b_{1} for imi\leq m, and ciMuci1cm+1bmb1c_{i}\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}_{M}^{u}c_{i-1}\ldots c_{m+1}b_{m}\ldots b_{1} for minm\leq i\neq n. Thus by repeated applications of Claim 4.9, {φ(x,b1),φ(x,bm),ψ(x,cm+1),,ψ(x,cn)}\{\varphi(x,b_{1}),\ldots\varphi(x,b_{m}),\psi(x,c_{m+1}),\ldots,\psi(x,c_{n})\} is consistent.

(2) For i<ji<j, bicjs(y,z)b_{i}c_{j}\models s(y,z), so φ(x,bi)ψ(y,cj)\varphi(x,b_{i})\psi(y,c_{j}) is inconsistent.

(3) b1,bnMKc1,cnb_{1}\ldots,b_{n}\ldots\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}_{M}^{K^{*}}c_{1}\ldots,c_{n}\ldots .

By Fact 2.4, this will give us a failure of co-NSOP1\mathrm{NSOP}_{1}, a contradiction. We use the technique of Conant, [11] (though it is not yet necessary to get SOP3\mathrm{SOP}_{3}; this technique is similar to the “zig-zag lemma,” Lemma 6.4, from the original proof of the independence theorem in [19]). Assume b1,,bn,c1,,cnb_{1},\ldots,b_{n},c_{1},\ldots,c_{n} already constructed, satisfying these properties up to nn (including cnMcc_{n}\equiv_{M}c). By repeated instances of Claim 4.9 (applied to q(x),q(x)q(x),q(x)), and bMKcb\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}^{K}_{M}c, there is bn+1Kc1cnb^{\prime}_{n+1}\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}^{K}c_{1}\ldots c_{n} with bn+1i=1ns(y,ci)b^{\prime}_{n+1}\models\cup_{i=1}^{n}s(y,c_{i}). Again by Claim 4.9, bnb1MKc1,cnb_{n}\ldots b_{1}\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}^{K^{*}}_{M}c_{1},\ldots c_{n}, and an automorphism, we can additionally choose bn+1=bn+1b^{\prime}_{n+1}=b_{n+1} so that bn+1Mub1bnb_{n+1}\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}_{M}^{u}b_{1}\ldots b_{n} and bn+1b1MKc1,cnb_{n+1}\ldots b_{1}\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}^{K^{*}}_{M}c_{1},\ldots c_{n}. Now choose cn+1Mcc_{n+1}\equiv_{M}c with cn+1uc1cnb1bn+1c_{n+1}\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}^{u}c_{1}\ldots c_{n}b_{1}\ldots b_{n+1}. We get bn+1b1MKc1,cn+1b_{n+1}\ldots b_{1}\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}^{K^{*}}_{M}c_{1},\ldots c_{n+1}, by the proof of Claim 5.13. ∎

We first show that the “moreover” clause follows from the conclusion. Let a1Ma1p1(𝕄)a_{1}\equiv_{M}a^{\prime}_{1}\subseteq p_{1}(\mathbb{M}), a2p2(𝕄)a_{2}\models p_{2}(\mathbb{M}), a3p3(𝕄)a_{3}\models p_{3}(\mathbb{M}) be as in the hypotheses of the theorem. As a2Ka3a_{2}\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}^{K^{*}}a_{3}, by Claims 4.3 and 4.5, there is an MM-finitely satisfiable Morley sequence I2={a2i}i<ωI_{2}=\{a^{i}_{2}\}_{i<\omega} with a20=a2a_{2}^{0}=a_{2} that is indiscernible over Ma3Ma_{3} and I2Ka3I_{2}\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}^{K^{*}}a_{3}. Likewise, there is an MM-finitely satisfiable Morley sequence I3={a3i}i<ωI_{3}=\{a^{i}_{3}\}_{i<\omega} with a30=a3a_{3}^{0}=a_{3} that is indiscernible over MI2MI_{2} and with I2KI3I_{2}\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}^{K^{*}}I_{3}. By a1MKa2a_{1}\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}^{K^{*}}_{M}a_{2} and an automorphism, we can find a1Ma2a1a^{*}_{1}\equiv_{Ma_{2}}a_{1} with a1MKI2a^{*}_{1}\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}^{K^{*}}_{M}I_{2} and I2I_{2} indiscernible over Ma1Ma^{*}_{1}, so we can assume a1MKI2a_{1}\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}^{K^{*}}_{M}I_{2} and I2I_{2} is indiscernible over Ma1Ma_{1}. Similarly, we can assume a1MKI3a^{\prime}_{1}\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}_{M}^{K^{*}}I_{3} and I3I_{3} is indiscnernible over Ma1Ma^{\prime}_{1}. Fix an MM-finitely satisfiable type q(x)q(x) extending tp(a1/M)\mathrm{tp}(a_{1}/M). Then there is a Morley sequence I1={a1i}i<ωI_{1}=\{a^{i}_{1}\}_{i<\omega} in q(x)q(x) with a10=a1a^{0}_{1}=a_{1}, I1MKI2I_{1}\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}^{K^{*}}_{M}I_{2} and I1I_{1} indiscernible over I2I_{2}. There is also a Morley sequence I1={a1i}i<ωI^{\prime}_{1}=\{a^{i}_{1}\}_{i<\omega} in q(x)q(x) with a10=a1a^{\prime 0}_{1}=a^{\prime}_{1}, I1MKI3I^{\prime}_{1}\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}^{K^{*}}_{M}I_{3} and I1I^{\prime}_{1} indiscernible over I3I_{3}. Since the Morley sequences were chosen to be in the same MM-finitely satisfiable type, I1MI1I_{1}\equiv_{M}I^{\prime}_{1}. So applying the consistency part of the theorem, we can find {a1′′i}i<ω=I1′′tp(I1/MI2)tp(I1/MI3)\{a^{\prime\prime i}_{1}\}_{i<\omega}=I^{\prime\prime}_{1}\models\mathrm{tp}(I_{1}/MI_{2})\cup\mathrm{tp}(I^{\prime}_{1}/MI_{3}). For j,k,<ωj,k,\ell<\omega a1′′ja2kMa1a2a^{\prime\prime j}_{1}a_{2}^{k}\equiv_{M}a_{1}a_{2}, a1′′ja3Ma1a3a^{\prime\prime j}_{1}a_{3}^{\ell}\equiv_{M}a^{\prime}_{1}a_{3}, a2ka3Ma2a3a^{k}_{2}a_{3}^{\ell}\equiv_{M}a_{2}a_{3}. We apply the following case of Lemma 1.2.1 [8]:

Fact 4.8.

Let I1′′={a1′′i}i<ωI^{\prime\prime}_{1}=\{a^{\prime\prime i}_{1}\}_{i<\omega}, I2={a2i}i<ωI_{2}=\{a^{i}_{2}\}_{i<\omega}, I3={a3i}i<ωI_{3}=\{a^{i}_{3}\}_{i<\omega} be indiscernible sequences over MM. Then there are mutually indiscernible I1′′′={a1′′′i}i<ωI^{\prime\prime\prime}_{1}=\{a^{\prime\prime\prime i}_{1}\}_{i<\omega}, I2′′′={a2′′′i}i<ωI^{\prime\prime\prime}_{2}=\{a^{\prime\prime\prime i}_{2}\}_{i<\omega}, I3′′′={a3′′′i}i<ωI^{\prime\prime\prime}_{3}=\{a^{\prime\prime\prime i}_{3}\}_{i<\omega}, (i.e. each Im′′′I^{\prime\prime\prime}_{m} indiscernible over MIm′′′MI^{\prime\prime\prime}_{\neq m}) so that for any formula φ(x¯,y¯,z¯)L(M)\varphi(\overline{x},\overline{y},\overline{z})\in L(M), if for all j¯,k¯,l¯\overline{j},\overline{k},\overline{l} with j1<<jn<ωj_{1}<\ldots<j_{n}<\omega, k1<<kn<ωk_{1}<\ldots<k_{n}<\omega, 1<<n<ω\ell_{1}<\ldots<\ell_{n}<\omega, φ(a¯1′′j¯,a¯2k¯,a¯3¯)\models\varphi(\overline{a}^{\prime\prime\overline{j}}_{1},\overline{a}^{\overline{k}}_{2},\overline{a}^{\overline{\ell}}_{3}), then for all such j¯,k¯,l¯\overline{j},\overline{k},\overline{l}, φ(a¯1′′′j¯,a¯2′′′k¯,a¯3′′′¯)\models\varphi(\overline{a}^{\prime\prime\prime\overline{j}}_{1},\overline{a}^{\prime\prime\prime\overline{k}}_{2},\overline{a}^{\prime\prime\prime\overline{\ell}}_{3})

Let I1′′′={a1′′′i}i<ωI^{\prime\prime\prime}_{1}=\{a^{\prime\prime\prime i}_{1}\}_{i<\omega}, I2′′′={a2′′′i}i<ωI^{\prime\prime\prime}_{2}=\{a^{\prime\prime\prime i}_{2}\}_{i<\omega}, I3′′′={a3′′′i}i<ωI^{\prime\prime\prime}_{3}=\{a^{\prime\prime\prime i}_{3}\}_{i<\omega} be as in Fact 4.3. Then a2′′′0a3′′′0MKa1′′′0{a^{\prime\prime\prime}_{2}}^{0}{a^{\prime\prime\prime}_{3}}^{0}\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}^{K^{*}}_{M}{a^{\prime\prime\prime}_{1}}^{0}, a1′′′0a2′′′0MKa3′′′0{a^{\prime\prime\prime}_{1}}^{0}{a^{\prime\prime\prime}_{2}}^{0}\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}^{K^{*}}_{M}{a^{\prime\prime\prime}_{3}}^{0}, and a1′′′0a3′′′0MKa2′′′0{a^{\prime\prime\prime}_{1}}^{0}{a^{\prime\prime\prime}_{3}}^{0}\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}^{K^{*}}_{M}{a^{\prime\prime\prime}_{2}}^{0}, and a1′′′0a2′′′0Ma1a2{a^{\prime\prime\prime}_{1}}^{0}{a^{\prime\prime\prime}_{2}}^{0}\equiv_{M}a_{1}a_{2}, a1′′′0a3′′′0Ma1a3{a^{\prime\prime\prime}_{1}}^{0}{a^{\prime\prime\prime}_{3}}^{0}\equiv_{M}a^{\prime}_{1}a_{3}, a2′′′0a3′′′0Ma2a3{a^{\prime\prime\prime}_{2}}^{0}{a^{\prime\prime\prime}_{3}}^{0}\equiv_{M}a_{2}a_{3}. So by an automorphism, we find a1′′a^{\prime\prime}_{1} as desired in the “moreover” clause.

We finally show the actual consistency part of the theorem. Let q1(y,z)=tp(a2a3/M)q_{1}(y,z)=\mathrm{tp}(a_{2}a_{3}/M), q2(x,z)=tp(a1a3/M)q_{2}(x,z)=\mathrm{tp}(a^{\prime}_{1}a_{3}/M), q3(x,y)=tp(a1a2/M)q_{3}(x,y)=\mathrm{tp}(a^{\prime}_{1}a_{2}/M). By an automorphism, it sufficies to show that q1(y,z)q2(x,z)q3(x,y)q_{1}(y,z)\cup q_{2}(x,z)\cup q_{3}(x,y) is consistent. This will require NSOP3\mathrm{NSOP}_{3}; formally, we will use the technique of Evans and Wong, from Theorem 2.8 of [14]. Call Ap1(𝕄)A\subset p_{1}(\mathbb{M}), Bp2(𝕄)B\subset p_{2}(\mathbb{M}), Cp3(M)C\subset p_{3}(M) a generic triple if there are mutually indiscernible MM-invariant Morley sequences IA={Ai}i<ωI_{A}=\{A_{i}\}_{i<\omega} with A0=AA_{0}=A, IB={Bi}i<ωI_{B}=\{B_{i}\}_{i<\omega} with B0=BB_{0}=B, IC={Ci}i<ωI_{C}=\{C_{i}\}_{i<\omega} with C0=CC_{0}=C; note that it follows that AA, BB and CC are pairwise Conant-independent.

Claim 4.9.

Let AA, BB, CC be a generic triple, and bp2(𝕄)b\subseteq p_{2}(\mathbb{M}) such that AMKbA\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}^{K^{*}}_{M}b. Then there is some bMAbb^{\prime}\equiv_{MA}b with bMKBb^{\prime}\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}^{K^{*}}_{M}B so that A,Bb,CA,Bb^{\prime},C form a generic triple.

Proof.

Let IAI_{A}, IBI_{B}, ICI_{C} be as in the definition of a generic triple.

Subclaim 4.10.

There is b′′Mbb^{\prime\prime}\equiv_{M}b and Ib′′={bi′′}i<ωI_{b^{\prime\prime}}=\{b^{\prime\prime}_{i}\}_{i<\omega} with b0′′=b′′b^{\prime\prime}_{0}=b^{\prime\prime} so that {Bibi′′}i<ω\{B_{i}b^{\prime\prime}_{i}\}_{i<\omega} forms an invariant Morley sequence over MM and IBMKIb′′I_{B}\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}^{K^{*}}_{M}I_{b^{\prime\prime}}.

Proof.

Let IBI_{B} be a Morley sequence in the MM-invariant type p(x)p(x). Chose an MM-invariant type q(x)q(x) extending tp(b/M)\mathrm{tp}(b/M). By an automorphism, there is Ib={bi}i<ωI_{b^{\prime}}=\{b^{\prime}_{i}\}_{i<\omega} so that, for n<ωn<\omega, bnBnb0B0(q(x)p(x))(n)b^{\prime}_{n}B_{n}\ldots b^{\prime}_{0}B_{0}\models(q(x)\otimes p(x))^{(n)}. So {Bibi′′}i<ω\{B_{i}b^{\prime\prime}_{i}\}_{i<\omega} is an MM-invariant Morley sequence. Let b0′′=b′′b^{\prime\prime}_{0}=b^{\prime\prime}; then b′′Mbb^{\prime\prime}\equiv_{M}b. Finally, we show that IBMKIb′′I_{B}\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}^{K^{*}}_{M}I_{b^{\prime\prime}}. Suppose by induction that B0BnMKb0bnB_{0}\ldots B_{n}\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}^{K^{*}}_{M}b^{\prime}_{0}\ldots b^{\prime}_{n} Note that tp(Bn+1/MB0Bnb0bn)\mathrm{tp}(B_{n+1}/MB_{0}\ldots B_{n}b^{\prime}_{0}\ldots b^{\prime}_{n}) extends to an MM-invariant type, and tp(bn+1/MB0BnBn+1b0bn)\mathrm{tp}(b^{\prime}_{n+1}/MB_{0}\ldots B_{n}B_{n+1}b^{\prime}_{0}\ldots b^{\prime}_{n}) also extends to an MM-invariant type. By the proof of Claim 5.13 below, we see that for any sets e,f,ge,f,g of realizations of a common co-NSOP1\mathrm{NSOP}_{1} type over MM, if eMKfe\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}^{K^{*}}_{M}f and tp(g/Mef)\mathrm{tp}(g/Mef) extends to an MM-invariant type q(x)q(x), then eMKfge\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}^{K^{*}}_{M}fg. So by two applications of this fact and symmetry (claim 4.4), B0BnBn+1MKb0bnbn+1B_{0}\ldots B_{n}B_{n+1}\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}^{K^{*}}_{M}b^{\prime}_{0}\ldots b^{\prime}_{n}b^{\prime}_{n+1}. This completes the induction, from which it follows that IBMKIb′′I_{B}\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}^{K^{*}}_{M}I_{b^{\prime\prime}}. ∎

Let b′′b^{\prime\prime} be as in the subclaim. As AMKbA\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}^{K^{*}}_{M}b, for p(X,y)=tp(Ab/M)p(X,y)=\mathrm{tp}(Ab/M), by claim 4.5 and an automorphism there is Ai<ωp(X,bi′′)A^{\prime}\models\cup_{i<\omega}p(X,b^{\prime\prime}_{i}) with AMKIb′′A^{\prime}\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}^{K^{*}}_{M}I_{b^{\prime\prime}}. By claims 4.4 and 4.5, we can then find {Ai}=IAMIA\{A^{\prime}_{i}\}=I_{A^{\prime}}\equiv_{M}I_{A} indiscernible over MIb′′MI_{b^{\prime\prime}} with A0=AA^{\prime}_{0}=A^{\prime} and IAMKIb′′I_{A^{\prime}}\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}^{K^{*}}_{M}I_{b^{\prime\prime}}. So we have IAMIAI_{A^{\prime}}\equiv_{M}I_{A} and IAMKIb′′I_{A^{\prime}}\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}^{K^{*}}_{M}I_{b^{\prime\prime}}, IAMKIBI_{A}\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}^{K^{*}}_{M}I_{B} by indiscernibility of IBI_{B} over IAI_{A} and claim 4.5, and IBMKIb′′I_{B}\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}^{K^{*}}_{M}I_{b^{\prime\prime}} by the subclaim. So by the independence theorem between two co-NSOP1\mathrm{NSOP}_{1} types (Claim 4.7) and an automorphism, there is some {bi}i<ω=Ib′′\{b^{*}_{i}\}_{i<\omega}=I^{*}_{b^{\prime\prime}} with Ib′′MIBIb′′I^{*}_{b^{\prime\prime}}\equiv_{MI_{B}}I_{b^{\prime\prime}} and Ib′′IAMIb′′IAI^{*}_{b^{\prime\prime}}I_{A}\equiv_{M}I_{b^{\prime\prime}}I_{A^{\prime}}. The sequence {bi}i<ω=Ib′′\{b^{*}_{i}\}_{i<\omega}=I^{*}_{b^{\prime\prime}} will have the following three properties: bip(Aj,y)b^{*}_{i}\models p(A_{j},y), so biMAjbb^{*}_{i}\equiv_{MA_{j}}b, for i,j<ωi,j<\omega, {Bibi}i<ω\{B_{i}b^{*}_{i}\}_{i<\omega} form an MM-invariant Morley sequence, and biMKBib^{*}_{i}\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}_{M}^{K}B_{i} for i<ωi<\omega. If we extract mutually indiscernible sequences from IA,IBIb′′,ICI_{A},I_{B}I^{*}_{b^{\prime\prime}},I_{C}, finding IˇA,IˇBIˇb′′,IˇC\check{I}_{A},\check{I}_{B}\check{I}^{*}_{b^{\prime\prime}},\check{I}_{C} as in Fact 4.8, then IAIBICMIˇAIˇBIˇCI_{A}I_{B}I_{C}\equiv_{M}\check{I}_{A}\check{I}_{B}\check{I}_{C}, so we may assume IˇA=IA\check{I}_{A}=I_{A}, IˇB=IB\check{I}_{B}=I_{B}, IˇC=IC\check{I}_{C}=I_{C} and then Iˇb′′={bˇi}i<ω\check{I}^{*}_{b^{\prime\prime}}=\{\check{b}_{i}^{*}\}_{i<\omega} will also have these three properties that {bi}i<ω=Ib′′\{b^{*}_{i}\}_{i<\omega}=I^{*}_{b^{\prime\prime}} has. Let b=bˇ0b^{\prime}=\check{b}_{0}^{*}. Then bMAbb^{\prime}\equiv_{MA}b, bMKBb^{\prime}\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}_{M}^{K}B and IA,IBIˇb′′,ICI_{A},I_{B}\check{I}^{*}_{b^{\prime\prime}},I_{C} will be mutually indiscernible MM-invariant Morley sequences, so A,Bb,CA,Bb^{\prime},C form a generic triple. ∎

Now we find a1,,an,tp(a1/M)a^{1},\ldots,a^{n},\ldots\models\mathrm{tp}(a_{1}/M), b1,,bn,tp(a2/M)b^{1},\ldots,b^{n},\ldots\models\mathrm{tp}(a_{2}/M), and c1,,cn,tp(a3/M)c^{1},\ldots,c^{n},\ldots\models\mathrm{tp}(a_{3}/M) with the following properties:

(1) For i<ji<j, ajciq2(x,z)a^{j}c^{i}\models q_{2}(x,z), aibjq3(x,y)a^{i}b^{j}\models q_{3}(x,y), bicjq1(y,z)b^{i}c^{j}\models q_{1}(y,z).

(2) For i<ωi<\omega, aiMKa1ai1a^{i}\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}^{K}_{M}a^{1}\ldots a^{i-1}, biMKb1bi1b^{i}\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}^{K}_{M}b^{1}\ldots b^{i-1}, and ciMKc1ci1c^{i}\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}^{K}_{M}c^{1}\ldots c^{i-1}

(3) For each n<ωn<\omega a1ana^{1}\ldots a^{n}, b1bnb^{1}\ldots b^{n}, c1cnc^{1}\ldots c^{n} form a generic triple.

Assume a1,,ana^{1},\ldots,a^{n}, b1,,bnb^{1},\ldots,b^{n}, c1,,cnc^{1},\ldots,c^{n} already constructed, satisfying these properties up to nn. As for ini\leq n, aiMKa1ai1a^{i}\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}^{K}_{M}a^{1}\ldots a^{i-1}, we can find some bi=1nq3(ai,y)b\models\cup^{n}_{i=1}q_{3}(a^{i},y) with bMKa1anb\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}_{M}^{K}a^{1}\ldots a^{n}, by, say, repeated applications of the independence theorem between two co-NSOP1\mathrm{NSOP}_{1} types, Claim 4.7 (though could have stated the claim so that we need less than this). Then letting a1,,an=Aa^{1},\ldots,a^{n}=A, b1,,bn=Bb^{1},\ldots,b^{n}=B, c1,,cn=Cc^{1},\ldots,c^{n}=C, we can choose bn+1=bb_{n+1}=b^{\prime} as in Claim 4.9, while will be as desired. Symmetrically, we find cn+1c_{n+1} and an+1a_{n+1}.

Now let

Φ(x1,y1,z1;x2,y2,z2)=q2(x2,z1)q3(x1,y2)q1(y1,z2)\Phi(x^{1},y^{1},z^{1};x^{2},y^{2},z^{2})=q_{2}(x^{2},z^{1})\cup q_{3}(x^{1},y^{2})\cup q_{1}(y^{1},z^{2})

By (1) this has infinite chains, so by NSOP3\mathrm{NSOP}_{3} and compactness it has a 33-cycle: some

(d1,e1,f1,d2,e2,f2,d3,e3,f3)(d^{1},e^{1},f^{1},d^{2},e^{2},f^{2},d^{3},e^{3},f^{3})
Φ(x1,y1,z1;x2,y2,z2)Φ(x2,y2,z2;x3,y3,z3)Φ(x3,y3,z3;x1,y1,z1)\models\Phi(x^{1},y^{1},z^{1};x^{2},y^{2},z^{2})\cup\Phi(x^{2},y^{2},z^{2};x^{3},y^{3},z^{3})\cup\Phi(x^{3},y^{3},z^{3};x^{1},y^{1},z^{1})

In particular, (d1,e2,f3)q3(x,y)q1(y,z)q2(x,z)(d^{1},e^{2},f^{3})\models q_{3}(x,y)\cup q_{1}(y,z)\cup q_{2}(x,z), as desired. This concludes the proof of Theorem 4.2.

5. NSOP3\mathrm{NSOP}_{3} theories with symmetric Conant-independence

In [40], Simon proves the following independence theorem for NTP2\mathrm{NTP}_{2} theories, using the independence theorem for NTP2\mathrm{NTP}_{2} theories of Ben Yaacov and Chernikov ([42]).

Fact 5.1.

Let TT be NTP2\mathrm{NTP}_{2}, and let cMfabc\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}^{f}_{M}ab and bMfab\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}^{f}_{M}a. Let bMbb^{\prime}\equiv_{M}b with bMfab^{\prime}\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}^{f}_{M}a. Then there is some cMfabc^{\prime}\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}^{f}_{M}ab^{\prime} with caMcac^{\prime}a\equiv_{M}ca and cbMcbc^{\prime}b^{\prime}\equiv_{M}cb.

(In fact, Simon proves a more general version of this over extension bases.) He then poses the question

Question 5.2.

Suppose pp and qq are MM-invariant types in an NTP2\mathrm{NTP}_{2} theory with pω|M=qω|Mp^{\omega}|_{M}=q^{\omega}|_{M}, and let B,CMB,C\supseteq M be small supersets of MM. For some/every BMBB^{\prime}\equiv_{M}B so that BMfCB^{\prime}\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}^{f}_{M}C, is there ap(x)|Bq(x)|Ca\models p(x)|_{B^{\prime}}\cup q(x)|_{C} with aMfBCa\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}^{f}_{M}B^{\prime}C?

This is true for simple theories by the independence theorem for simple theories ([24]), and for NIP theories because pω(x)|Mp^{\omega}(x)|_{M} determines any invariant type p(x)p(x) (Proposition 2.36 of [39]); fact 5.1 justifies the equivalence of “some” with “any” BB^{\prime}. We show that a similar property holds for finitely satisfiable types in NSOP3\mathrm{NSOP}_{3} theories with symmetric Conant-independence:

Theorem 5.3.

Let TT be an NSOP3\mathrm{NSOP}_{3} theory, and assume K\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}^{K^{*}} is symmetric. Suppose pp and qq are MM-finitely satisfiable (global) types with pω|M=qω|Mp^{\omega}|_{M}=q^{\omega}|_{M}, and let a,bMa,b\supseteq M be small supersets of MM with aMKba\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}^{K}_{M}b. Then there is cp(x)|aq(x)|bc\models p(x)|_{a}\cup q(x)|_{b} with cMKabc\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}^{K^{*}}_{M}ab

The “some” part, the analogue of a positive answer to Question 5.2, will be supplied by the symmetry of Conant-independence. Then the “every” part, correspnding to Fact 5.1, will follow from NSOP3\mathrm{NSOP}_{3}. Before proceeding, we will show this fails for NSOP4\mathrm{NSOP}_{4} theories with symmetric Conant-independence.

Example 5.4.

The model companion TT of the theory of triangle-free graphs has NSOP4\mathrm{NSOP}_{4} and symmetric Conant-independence; see [36]. If pp is a nonalgebraic MM-finitely satisfiable type, p|Mp|_{M}^{\infty} is determined by p|Mp|_{M}: By indiscernibility, ¬xiExjpω(x¯)\neg x_{i}Ex_{j}\in p^{\omega}(\bar{x}) for i<ji<j, as ¬xiExjpω(x¯)\neg x_{i}Ex_{j}\in p^{\omega}(\bar{x}) for all i<ji<j is impossible.

Next, we claim that, if MM is countable, for p0(x)S1(M)p_{0}(x)\in S_{1}(M) the complete type over MM containing ¬p0Em\neg p_{0}Em for all mMm\in M, there are MM-finitely satisfiable types p1p_{1} and p2p_{2} extending p0(x)p_{0}(x), and xEbipi(x)xEb_{i}\in p_{i}(x) for i=1,2i=1,2, biMb_{i}\notin M, so that there is no mMm\in M with b1Emb2Emb_{1}Em\wedge b_{2}Em. Let {Si}iω\{S_{i}\}_{i\in\omega} enumerate the set FF of subsets of MM defined by MM-formulas in p0(x)p_{0}(x). We choose, by induction, disjoint anticliques AA, BB of MM, both of which meet each of the SiS_{i}. Namely, we construct disjoint anticliques An,BnA_{n},B_{n} for nωn\in\omega, so that AnSiA_{n}\cap S_{i}\neq\emptyset and BnSiB_{n}\cap S_{i}\neq\emptyset for ini\leq n and AiAjA_{i}\subseteq A_{j} and BiBjB_{i}\subseteq B_{j} for iji\leq j, and take A=i=0AiA=\cup^{\infty}_{i=0}A_{i} and B=i=0BiB=\cup^{\infty}_{i=0}B_{i}. Suppose An,BnA_{n},B_{n} already constructed. Since Sn+1S_{n+1} is defined by a conjunction of formulas of the form xmx\neq m and ¬xEm\neg xEm for mMm\in M, and MM is a model of the model companion of the theory of triangle-free graphs, we can find distinct an+1,bn+1Sn+1\AnBna_{n+1},b_{n+1}\in S_{n+1}\backslash A_{n}\cup B_{n} so that ¬an+1Ea\neg a_{n+1}Ea for any aAna\in A_{n}, ¬bn+1Eb\neg b_{n+1}Eb for bBnb\in B_{n}, and take An+1=An{an+1}A_{n+1}=A_{n}\cup\{a_{n+1}\} and Bn+1=Bn{bn+1}B_{n+1}=B_{n}\cup\{b_{n+1}\}. Now let U1U_{1} be an ultrafilter containing F{A}F\cup\{A\} and U2U_{2} be an ultrafilter containing F{B}F\cup\{B\}. Let pi(x)={φ(x,b)L(𝕄):φ(M,b)Ui}p_{i}(x)=\{\varphi(x,b)\in L(\mathbb{M}):\varphi(M,b)\in U_{i}\}. Let b1𝕄b_{1}\in\mathbb{M} be such that, for mMm\in M, b1Emb_{1}Em if and only if mAm\in A, and similarly for b2b_{2} and BB. This is possible because AA and BB are anticliques. Then p1p_{1}, p2p_{2}, b1b_{1}, b2b_{2} are as desired in the claim.

There is an invariant type qq extending tp(b1/M)\mathrm{tp}(b_{1}/M) so that, for b1q(x)|Mb2b^{\prime}_{1}\models q(x)|_{Mb_{2}}, b1Eb2b^{\prime}_{1}Eb_{2}; for example, we can require that xEbq(x)xEb\in q(x) if and only if xEbtp(b1/M)xEb\in\mathrm{tp}(b_{1}/M) or btp(b2/M)b\models\mathrm{tp}(b_{2}/M). This gives a consistent type: let aa_{*} be a node satisfying these relations in a graph extending 𝕄\mathbb{M}; then there are no triangles involving aa_{*}, a realization of tp(b2/M)\mathrm{tp}(b_{2}/M) in 𝕄\mathbb{M}, and an element of MM, because we chose AA and BB to be disjoint; there are also no edges between realizations of tp(b2/M)\mathrm{tp}(b_{2}/M) in 𝕄\mathbb{M}, because BB is nonempty and there are no triangles in 𝕄\mathbb{M}, so there are no triangles involving aa_{*} and two realizations of tp(b2/M)\mathrm{tp}(b_{2}/M) in 𝕄\mathbb{M}. Let b1q(x)|Mb2b^{\prime}_{1}\models q(x)|_{Mb_{2}}; then b1Kb2b^{\prime}_{1}\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}^{K}b_{2} and b1Eb2b^{\prime}_{1}Eb_{2}.

But p1(x)|Mb1p2(x)|Mb2p_{1}(x)|Mb^{\prime}_{1}\cup p_{2}(x)|Mb_{2} is inconsistent.

We first study theories where Conant-independence is symmetric. Naïvely, one expects it to follow from compactness that aMKba\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}^{K^{*}}_{M}b implies the existence of an MaMa-indiscernible MM-invariant Morley sequence starting with bb. This naïve argument fails, because the property of being an invariant Morley sequence of realizations of a fixed complete type over MM is not type-definable. However, the following proposition about theories with symmetric Conant-independence is enough for our purposes:

Lemma 5.5.

Suppose K\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}^{K^{*}} is symmetric, and let I={ai}iωI=\{a_{i}\}_{i\in\omega} be a coheir Morley sequence over MM with a0=aa_{0}=a that is indiscernible over MbMb. Then there is an MM-invariant Morley sequence J={bi}iωJ=\{b_{i}\}_{i\in\omega} with b0=bb_{0}=b that is indiscernible over MaMa.

Proof.

The main claim of this proof is the following;

Claim 5.6.

There exists bMIbb^{\prime}\equiv_{MI}b with bibb^{\prime}\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}^{i}b so that II remains indiscernible over bbbb^{\prime}.

Proof.

We first show that bMKIb\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}_{M}^{K^{*}}I. We need the following fact:

Fact 5.7.

(Fact 6.1, [36]) Let {ci}iI\{c_{i}\}_{i\in I} be a coheir Morley sequence over MM with c0=Cc_{0}=C so that {φ(x,ci)}iω\{\varphi(x,c_{i})\}_{i\in\omega} is consistent. Then φ(x,c)\varphi(x,c) does not Conant-fork over MM.

Now suppose φ(x,a¯)tp(b/MI)\varphi(x,\bar{a})\in\mathrm{tp}(b/MI) for a¯=a0an\bar{a}=a_{0}\ldots a_{n}. Then {a¯i}iω\{\bar{a}_{i}\}_{i\in\omega} for a¯i=aniani+(n1)\bar{a}_{i}=a_{ni}\ldots a_{ni+(n-1)} is a finitely satisfiable Morley sequence over MM with a¯0=a¯\bar{a}_{0}=\bar{a} so that {φ(x,a¯i)}iω\{\varphi(x,\bar{a}_{i})\}_{i\in\omega} is consistent, so by the fact, φ(x,a¯)\varphi(x,\bar{a}) does not Conant-fork over MM and bMKIb\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}_{M}^{K^{*}}I is as desired. (See the proof of Proposition 5.3 of [35], or Proposition 3.21 of [19].)

Let q(x¯,b)=tp(I/Mb)q(\bar{x},b)=\mathrm{tp}(I/Mb). By symmetry, IMKbI\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}^{K^{*}}_{M}b, so for every φ(x¯,b)q(x¯,b)\varphi(\bar{x},b)\in q(\bar{x},b), there is some bMbb^{\prime}\equiv_{M}b with bMibb^{\prime}\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}^{i}_{M}b so that {φ(x¯,b),φ(x¯,b)}\{\varphi(\bar{x},b),\varphi(\bar{x},b^{\prime})\} is consistent. By compactness, the condition xMibx\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}^{i}_{M}b is type-definable over MbMb (contrast with the remark on invariant Morley sequences in the paragraph immediately preceding the proof of the proposition), so there is bMbb^{\prime}\equiv_{M}b with bMibb^{\prime}\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}^{i}_{M}b so that q(x¯,b)q(x¯,b)q(\bar{x},b)\cup q(\bar{x},b^{\prime}) is consistent. By an automorphism, we can assume bMIbb^{\prime}\equiv_{MI}b, and by Ramsey’s theorem and compactness (and an automorphism), we can assume II^{\prime} is indiscernible over bbbb^{\prime}.

We now show by induction that we can find bib_{i} for i<κi<\kappa, κ\kappa large, so that b=b0b=b_{0}, biMIbb_{i}\equiv_{MI}b, biMib<ib_{i}\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}^{i}_{M}b_{<i}, and II is indiscernible over Mb0bλMb_{0}\ldots b_{\lambda} for λκ\lambda\leq\kappa. Suppose we have found bib_{i} for i<λi<\lambda and we find bλb_{\lambda}: By the claim, there are b<λMIbλb^{\prime}_{<\lambda}\equiv_{MI}b_{\lambda} with b<λMib<λb^{\prime}_{<\lambda}\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}^{i}_{M}b_{<\lambda} and II indiscernible over b<λbλb_{<\lambda}b^{\prime}_{\lambda}. Now let bλ=b0b_{\lambda}=b^{\prime}_{0}.

Then by the Erdős-Rado theorem, we can find an MIMI-indiscernible invariant Morley sequence sequence JJ over MM starting with BB, which will in particular be MaMa-indiscernible.

Remark 5.8.

Conant-forking is often equal to Conant-dividing at the level of formulas; for example if i\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}^{i} satisfies left extension, or TT has the strong witnessing property that has no known counterexamples among the NSOP4\mathrm{NSOP}_{4} theories (Definition 3.5 of [36]). In particular, we know of no theories where K\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}^{K^{*}} is symmetric and the relation aMKdba\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}^{K^{*}d}_{M}b, defined to hold when tp(a/Mb)\mathrm{tp}(a/Mb) has no Conant-dividing formulas, is not symmetric. If we assume the symmetry of Kd\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}^{K^{*}d} rather than K\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}^{K^{*}}, we can prove lemma 5.5 for II an invariant Morley sequence over MM rather than a coheir Morley sequence over MM; the only difference is that we no longer use Fact 5.7 on coheir Morley sequences. If we assume the symmetry of Kd\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}^{K^{*}d} rather than K\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}^{K^{*}} in Theorem 5.3, we can then prove the conclusion when pp and qq are assumed to be MM-invariant types rather than MM-finitely satisfiable types and K\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}^{K^{*}} is replaced with Kd\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}^{K^{*}d}, getting something closer to the claim of Simon in [40]; the proof will be exactly the same as the below, except Fact 5.7 will not be used.

Lemma 5.9.

Assume K\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}^{K^{*}} is symmetric. Let pp and qq be MM-finitely satisfiable types with pω|M=qω|Mp^{\omega}|_{M}=q^{\omega}|_{M}, and let a,bMa,b\supseteq M be small sets containing MM. Then there is some MM- invariant type rtp(b/M)r\vdash\mathrm{tp}(b/M) so that, for any a1ana_{1}\ldots a_{n} with aitp(a/M)a_{i}\models\mathrm{tp}(a/M) and b1,bmr(m)(y)|Ma1anb_{1},\ldots b_{m}\models r^{(m)}(y)|_{Ma_{1}\ldots a_{n}}, p(x)|a1,,anq(x)|b1,,bmp(x)|_{a_{1},\ldots,a_{n}}\cup q(x)|_{b_{1},\ldots,b_{m}} is consistent.

Proof.

(See also the proof of Proposition 5.7 of [35], or Proposition 6.10, [19].) Let Ipω|M=qω|MI\models p^{\omega}|_{M}=q^{\omega}|_{M}. By an automorphism, there is an |M|+|a||M|+|a|-saturated model MM^{\prime} so that Ipω|MI\models p^{\omega}|_{M^{\prime}}, and also by an automorphism, there is some bMbb^{\prime}\equiv_{M}b with Iqω|bI\models q^{\omega}|_{b^{\prime}}. By Ramsey’s theorem and compactness, we can assume II is indiscernible over MbM^{\prime}b^{\prime}; now let c=c0c=c_{0} for I={ci}iωI=\{c_{i}\}_{i\in\omega}. By lemma 5.5, there is an MM-invariant type s(X,y)tp(Mb/M)s(X,y)\vdash\mathrm{tp}(M^{\prime}b^{\prime}/M) and a Morley sequence {Mibi}iI\{M^{\prime}_{i}b^{\prime}_{i}\}_{i\in I} with M0b0=MbM^{\prime}_{0}b^{\prime}_{0}=M^{\prime}b^{\prime} in s(X,y)s(X,y) that is indiscernible over McMc. In particular, p(x)|Mq(x)|b1,,bm,p(x)|_{M^{\prime}}\cup q(x)|_{b^{\prime}_{1},\ldots,b^{\prime}_{m},\ldots} is consistent, realized by cc. Let r(y)=s(X,y)|yr(y)=s(X,y)|_{y}; then for b1′′,bm′′r(m)(y)|Mb^{\prime\prime}_{1},\ldots b^{\prime\prime}_{m}\models r^{(m)}(y)|_{M^{\prime}}, p(x)|Mq(x)|b1′′,,bm′′p(x)|_{M^{\prime}}\cup q(x)|_{b^{\prime\prime}_{1},\ldots,b^{\prime\prime}_{m}} is consistent. Let a1,,ana_{1},\ldots,a_{n} have aitp(a/M)a_{i}\models\mathrm{tp}(a/M) for ini\leq n, and b1,bmr(m)(y)|Ma1,,anb_{1},\ldots b_{m}\models r^{(m)}(y)|_{Ma_{1},\ldots,a_{n}}. By |M|+|a||M|+|a|-saturation of MM^{\prime}, there are a1,anMa^{\prime}_{1},\ldots a^{\prime}_{n}\in M^{\prime} with a1,anMa1,ana^{\prime}_{1},\ldots a^{\prime}_{n}\equiv_{M}a_{1},\ldots a_{n}. Let b1′′,bm′′r(m)(y)|Mb^{\prime\prime}_{1},\ldots b^{\prime\prime}_{m}\models r^{(m)}(y)|_{M^{\prime}}. Then p(x)|a1,,anq(x)|b1′′,,bm′′p(x)|_{a^{\prime}_{1},\ldots,a^{\prime}_{n}}\cup q(x)|_{b^{\prime\prime}_{1},\ldots,b^{\prime\prime}_{m}} is consistent. But by invariance, a1anb1′′bn′′Ma1anb1bna^{\prime}_{1}\ldots a^{\prime}_{n}b^{\prime\prime}_{1}\ldots b^{\prime\prime}_{n}\equiv_{M}a_{1}\ldots a_{n}b_{1}\ldots b_{n}. So p(x)|a1,,anq(x)|b1,,bmp(x)|_{a_{1},\ldots,a_{n}}\cup q(x)|_{b_{1},\ldots,b_{m}} is consistent, as desired. ∎

We are now ready to prove Theorem 5.3. First of all, replacing pp with pωp^{\omega} and qq with qωq^{\omega}, we may assume that p|M=q|Mp|_{M}=q|_{M} is the type of a coheir Morley sequence over MM. Now assume p(x)|aq(x)|bp(x)|_{a}\cup q(x)|_{b} is consistent, realized by a coheir Morley sequence II. It can be assumed indiscernible over abab by Ramsey’s theorem and compactness, so abMKIab\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}^{K^{*}}_{M}I by the paragraph immediately following Fact 5.7, and IMKabI\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}^{K^{*}}_{M}ab by symmetry. So it suffices to show p(x)|aq(x)|bp(x)|_{a}\cup q(x)|_{b} is consistent. Suppose otherwise, so there are φ(x,a)p(x)|a\varphi(x,a)\in p(x)|_{a} and ψ(x,b)q(x)|b\psi(x,b)\in q(x)|_{b} such that {φ(x,a),ψ(x,b)}\{\varphi(x,a),\psi(x,b)\} is inconsistent. Let s(w,y)=tp(a,b/M)s(w,y)=\mathrm{tp}(a,b/M), and let r(y)r(y) be as in lemma 5.9. Once again, we use Conant’s technique, Theorem 7.17 of [11]. By induction, we will find a1,,an,,b1,,bn,a_{1},\ldots,a_{n},\ldots,b_{1},\ldots,b_{n},\ldots so that

(1) For i<ji<j, ajbiMaba_{j}b_{i}\equiv_{M}ab, so {φ(x,aj),ψ(x,bi)}\{\varphi(x,a_{j}),\psi(x,b_{i})\} is inconsistent and aitp(a/M)a_{i}\models\mathrm{tp}(a/M) for each i1i\geq 1.

(2) For nmn\leq m, bn+1,bmr(mn)(y)|Ma1anb_{n+1},\ldots b_{m}\models r^{(m-n)}(y)|_{Ma_{1}\ldots a_{n}}, so p(x)|a1,,anq(x)|bn+1,,bmp(x)|_{a_{1},\ldots,a_{n}}\cup q(x)|_{b_{n+1},\ldots,b_{m}} and in particular {φ(x,a1),φ(x,an),ψ(x,bn+1)ψ(x,bm)}\{\varphi(x,a_{1}),\ldots\varphi(x,a_{n}),\psi(x,b_{n+1})\ldots\psi(x,b_{m})\} is consistent by lemma 5.9.

Assume a1,,an,b1,,bna_{1},\ldots,a_{n},b_{1},\ldots,b_{n} have already been constructed satisfying (1) and (2) up to nn. Then b1,,bnb_{1},\ldots,b_{n} begin an invariant Morley sequence in tp(b/M)\mathrm{tp}(b/M), so because aMKba\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}^{K}_{M}b, i=1ns(w,bi)\cup_{i=1}^{n}s(w,b_{i}) is consistent, and we can take an+1a_{n+1} to realize it. Then we can take bn+1r(y)|a1,,an+1b1bnb_{n+1}\models r(y)|_{a_{1},\ldots,a_{n+1}b_{1}\ldots b_{n}}.

By 2.4, properties (1) and (2) imply SOP3\mathrm{SOP}_{3}–a contradiction. This proves Theorem 5.3.

Symmetry of K\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}^{K^{*}} is not used directly in building the configuration satisfying (1) and (2); this is in contrast to [35], where the rows are required to be (coheir) Conant-independent throughout the construction. We now prove a version of Theorem 5.3 for Kim-nonforking types over MM rather than finitely satisfiable or invariant types over MM, that uses the full force of the assumption that the relevant independence relation, in this case Kd\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}^{K^{*}d}, is symmetric.

By remark 5.8, in an NSOP3\mathrm{NSOP}_{3} theory where Conant-forking coincides with Conant-dividing and K\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}^{K^{*}} is symmetric, Theorem 5.3 holds even if pp and qq are only assumed to be MM-invariant types with pω|M=qω|Mp^{\omega}|_{M}=q^{\omega}|_{M}, rather than MM-finitely satisfiable types. In this case, pp and qq are examples of types, so that for any small A,BMA,B\supseteq M, there are MM-invariant Morley sequences I={ai}iωI=\{a_{i}\}_{i\in\omega} and I={bj}jωI^{\prime}=\{b_{j}\}_{j\in\omega}, so that aip(x)|Aa_{i}\models p(x)|_{A} and biq(x)|Bb_{i}\models q(x)|_{B} for i0i\geq 0, IMII\equiv_{M}I, and IMKAI\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}^{K}_{M}A (and IMKBI\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}^{K}_{M}B). This assumption can be seen as an analogue of pω|M=qω|Mp^{\omega}|_{M}=q^{\omega}|_{M} for Kim-nonforking types over MM, and yields the conclusion of Theorem 5.3 with respect to i\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}^{i}:

Theorem 5.10.

Assume Kd\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}^{K^{*}d} is symmetric and TT is NSOP3\mathrm{NSOP}_{3}. Let p(x)p(x) be an MM-invariant type, a,bMa,b\supseteq M be small supersets of MM with aMiba\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}_{M}^{i}b and II, JJ MM-invariant Morley sequences in p(x)p(x) indiscernible over aa and bb respectively, with IMKaI\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}_{M}^{K}a. Then there is some I′′MKdabI^{\prime\prime}\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}_{M}^{K^{*}d}ab with I′′aII^{\prime\prime}\equiv_{a}I and I′′bII^{\prime\prime}\equiv_{b}I^{\prime}. If f\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}^{f} (resp. K\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}^{K}) satisfies the chain condition, the assumption aMiba\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}_{M}^{i}b can be relaxed to aMfba\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}_{M}^{f}b (resp. aMKba\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}_{M}^{K}b).

Note that f\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}^{f} is known to satisfy the chain condition in NTP2\mathrm{NTP}_{2} theories (Proposition 2.8, [42]). It is not known whether there are non-simple examples of NSOP3\mathrm{NSOP}_{3} NTP2\mathrm{NTP}_{2} theories. (Problem 3.16, [8]).

We start with the analogue of lemma 5.5.

Lemma 5.11.

Let MM, II, JJ, aa, bb, be as in the statement of Theorem 5.10, and assume Kd\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}^{K^{*}d} is symmetric. Let p(X,y)=tp(I,a/M)p(X,y)=\mathrm{tp}(I,a/M) and q(X,z)=tp(J,b/M)q(X,z)=\mathrm{tp}(J,b/M). Then there is some invariant type rtp(b/M)r\models\mathrm{tp}(b/M) so that for a1,,ana_{1},\ldots,a_{n} with aitp(a/M)a_{i}\models\mathrm{tp}(a/M) for i<ni<n beginning an invariant Morley sequence over MM and b1,bmr(m)(y)|Ma1anb_{1},\ldots b_{m}\models r^{(m)}(y)|_{Ma_{1}\ldots a_{n}}, i=1np(X,ai)i=1mq(X,bi)\cup_{i=1}^{n}p(X,a_{i})\cup\cup_{i=1}^{m}q(X,b_{i}) is consistent.

Proof.

Let {Ki}i<κ\{K^{i}\}_{i<\kappa} enumerate the invariant Morley sequences in tp(a/M)\mathrm{tp}(a/M). Since IMKaI\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}_{M}^{K}a, {p(X,ai)}iω\{p(X,a_{i})\}_{i\in\omega} is consistent for {ai}\{a_{i}\} any invariant Morley sequence in tp(a/M)\mathrm{tp}(a/M), so by automorphisms, there are {Ki}i<κ\{K^{\prime i}\}_{i<\kappa} so that for i<κi<\kappa and Ki={aji}jωK^{\prime i}=\{a^{\prime i}_{j}\}_{j\in\omega}, for jωj\in\omega, ajiMIaa^{\prime i}_{j}\equiv_{MI}a. Let K=i<κKiK^{\prime}=\cup_{i<\kappa}K^{\prime i}. By another automorphism, find bb^{\prime} with bIbJb^{\prime}I\equiv bJ. Then by Ramsey’s theorem and compactness, II can be assumed indiscernible over KbK^{\prime}b^{\prime}. By remark 5.8, there is an MM-invariant type s(X,y)tp(Kb/M)s(X,y)\vdash\mathrm{tp}(K^{\prime}b^{\prime}/M) and a Morley sequence {Kibi}i<ω\{K^{\prime}_{i}b^{\prime}_{i}\}_{i<\omega} with K0b0=MbK^{\prime}_{0}b^{\prime}_{0}=M^{\prime}b^{\prime} in s(X,y)s(X,y) that is indiscernible over MIMI.

In particular, for any iκi\leq\kappa, j<ωp(X,aji)j<ωq(X,bj)\cup_{j<\omega}p(X,a^{i}_{j})\cup\cup_{j<\omega}q(X,b^{\prime}_{j}) is consistent, realized by II. Let r(y)=s(X,y)|yr(y)=s(X,y)|_{y}; then for b1′′,bm′′r(m)(y)|Kb^{\prime\prime}_{1},\ldots b^{\prime\prime}_{m}\models r^{(m)}(y)|_{K^{\prime}}, for any i<κi<\kappa, j<ωp(X,aji)jmq(X,bj′′)\cup_{j<\omega}p(X,a^{i}_{j})\cup\cup_{j\leq m}q(X,b^{\prime\prime}_{j}) is consistent. Let a1,,ana_{1},\ldots,a_{n} begin an invariant Morley sequence over MM with aitp(a/M)a_{i}\models\mathrm{tp}(a/M) for ini\leq n, and b1,bmr(m)(y)|Ma1,,anb_{1},\ldots b_{m}\models r^{(m)}(y)|_{Ma_{1},\ldots,a_{n}}. Then there are a1,anKa^{\prime}_{1},\ldots a^{\prime}_{n}\in K^{\prime} with a1,anMa1,ana^{\prime}_{1},\ldots a^{\prime}_{n}\equiv_{M}a_{1},\ldots a_{n}. Let b1′′,bm′′r(m)(y)|Kb^{\prime\prime}_{1},\ldots b^{\prime\prime}_{m}\models r^{(m)}(y)|_{K^{\prime}}. Then jnp(X,aj)jmq(X,bj′′)\cup_{j\leq n}p(X,a^{\prime}_{j})\cup\cup_{j\leq m}q(X,b^{\prime\prime}_{j}) is consistent. But by invariance, a1anb1′′bn′′Ma1anb1bna^{\prime}_{1}\ldots a^{\prime}_{n}b^{\prime\prime}_{1}\ldots b^{\prime\prime}_{n}\equiv_{M}a_{1}\ldots a_{n}b_{1}\ldots b_{n}. So jnp(X,aj)jmq(X,bj)\cup_{j\leq n}p(X,a_{j})\cup\cup_{j\leq m}q(X,b_{j}) is consistent, as desired. ∎

We fix the auxilliary notation aMK+ba\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}_{M}^{K^{+}}b to mean that there is an MM-invariant Morley sequence J={bi}iωJ=\{b_{i}\}_{i\in\omega} with b0=bb_{0}=b that is indiscernible over MaMa. By Remark 5.8, if Kd\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}^{K^{*}d} is symmetric then so is K+\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}^{K^{+}}. We prove the following lemma about K+\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}^{K^{+}} and K\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}^{K}:

Lemma 5.12.

Let d0MK+cd_{0}\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}^{K^{+}}_{M}c and d1MKcd_{1}\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}^{K}_{M}c. Then there is d1Mcd1d^{\prime}_{1}\equiv_{Mc}d_{1} with d0d1K+cd_{0}d^{\prime}_{1}\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}^{K^{+}}c and d1Mid0d^{\prime}_{1}\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}^{i}_{M}d_{0}.

Proof.

(See also the proof of Proposition 5.7 of [35], or Proposition 6.10, [19].) By d0MK+cd_{0}\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}^{K^{+}}_{M}c, let I={ci}iII=\{c_{i}\}_{i\in I} with c0=cc_{0}=c be an MM-invariant Morley sequence indiscernible over d0d_{0}. By d1MKcd_{1}\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}^{K}_{M}c and compactness, there is some d1′′d^{\prime\prime}_{1} with d1′′ciMd1cid^{\prime\prime}_{1}c_{i}\equiv_{M}d_{1}c_{i} for i<ωi<\omega. By Ramsey’s theorem, compactness, and an automorphism, we can choose d1′′d^{\prime\prime}_{1} so that II is indiscernible over d0d1′′d_{0}d^{\prime\prime}_{1}, so d0d1′′MK+Id_{0}d^{\prime\prime}_{1}\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}^{K^{+}}_{M}I: if II is a Morley sequence in the MM-invariant type ss, then by compactness, there is a Morley sequence {Ii}i<ω\{I_{i}\}_{i<\omega} in sωs^{\omega} with I0=II_{0}=I that is indiscernible over d0d1′′d_{0}d^{\prime\prime}_{1} (See also the paragraph immediately following Fact 5.7). So by the paragraph immediately preceding the statement of the lemma, IMK+d0d1′′I\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}^{K^{+}}_{M}d_{0}d^{\prime\prime}_{1}, and in particular there is d0d1Mid0d1′′d^{\prime}_{0}d^{\prime}_{1}\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}^{i}_{M}d_{0}d^{\prime\prime}_{1} with d0d1MId0d1′′d^{\prime}_{0}d^{\prime}_{1}\equiv_{MI}d_{0}d^{\prime\prime}_{1}; by Ramsey’s theorem, compactness, and an automorphism, we can choose d0d1d^{\prime}_{0}d^{\prime}_{1} so that II is indiscernible over d0d1d0d1′′d^{\prime}_{0}d^{\prime}_{1}d_{0}d^{\prime\prime}_{1}. Then, again, d0d1d0d1′′MK+Id^{\prime}_{0}d^{\prime}_{1}d_{0}d^{\prime\prime}_{1}\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}^{K^{+}}_{M}I, so in particular, d0d1K+cd_{0}d^{\prime}_{1}\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}^{K^{+}}c; also, d1Mcd1′′Mcd1d_{1}^{\prime}\equiv_{Mc}d^{\prime\prime}_{1}\equiv_{Mc}d_{1}. ∎

We are now ready to prove Theorem 5.10. Note that if we can find I′′I^{\prime\prime} so that I′′aII^{\prime\prime}\equiv_{a}I and I′′bII^{\prime\prime}\equiv_{b}I^{\prime}, then I′′I^{\prime\prime} can be chosen indiscernible over abab, so abMKdI′′ab\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}^{K^{*}d}_{M}I^{\prime\prime}, and I′′MKdabI^{\prime\prime}\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}^{K^{*}d}_{M}ab. So it suffices to show p(X,a)q(X,b)p(X,a)\cup q(X,b) is consistent. Suppose it is inconsistent. Then by compactness, there are some φ(X,a)p(X,a)\varphi(X,a)\in p(X,a) and ψ(X,b)q(X,b)\psi(X,b)\in q(X,b) so that {φ(X,a),ψ(X,b)}\{\varphi(X,a),\psi(X,b)\} is inconsistent. Let s(w,y)=tp(a,b/M)s(w,y)=\mathrm{tp}(a,b/M) and let r(y)r(y) be as in Lemma 5.1. Let κ\kappa be large. By transfinite induction, we will find ai,bia_{i},b_{i}, i<κi<\kappa so that

(1) For i<j<κi<j<\kappa, ajbiMaba_{j}b_{i}\equiv_{M}ab, so {φ(x,aj),ψ(x,bi)}\{\varphi(x,a_{j}),\psi(x,b_{i})\} is inconsistent and aitp(a/M)a_{i}\models\mathrm{tp}(a/M).

(2) For i<j1<<jm<κi<j_{1}<\ldots<j_{m}<\kappa, bj1,bjmr(m)(y)|Maib_{j_{1}},\ldots b_{j_{m}}\models r^{(m)}(y)|_{Ma_{\leq i}} and aiia<ia_{i}\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}^{i}a_{<i}.

(3) For i<κi<\kappa, aiMK+bia_{\leq i}\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}_{M}^{K^{+}}b_{\leq i}.

Suppose ai,bia_{i},b_{i} already constructed satisfying (1)-(3) for i<λi<\lambda. We find aλa_{\lambda} and bλb_{\lambda}. By aMiba\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}^{i}_{M}b, or aMfba\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}^{f}_{M}b or aMKba\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}^{K}_{M}b and the respective chain condition, since {bi}i<λ\{b_{i}\}_{i<\lambda} is an invariant Morley sequence in tp(b/M)\mathrm{tp}(b/M), there is some aλi<λs(w,bi)a_{\lambda}\models\cup_{i<\lambda}s(w,b_{i}) with aλMKb<λa_{\lambda}\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}^{K}_{M}b_{<\lambda}. By Lemma 5.12, aλa_{\lambda} can then additionally be chosen with aλMia<λa_{\lambda}\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}^{i}_{M}a_{<\lambda} and aλa<λMK+b<λa_{\lambda}a_{<\lambda}\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}^{K^{+}}_{M}b_{<\lambda}, as desired. We then choose bλr(y)|aλb<λb_{\lambda}\models r(y)|_{a_{\leq\lambda}b_{<\lambda}}, which will preserve (1) and (2); it remains to show (3). This will follow from the following claim, analogous to Claim 6.2 of [35]:

Claim 5.13.

For any a,b,ca,b,c, MM, if aMK+ba\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}^{K^{+}}_{M}b and tp(c/Mab)\mathrm{tp}(c/Mab) extends to an MM-invariant type q(x)q(x), then aMK+bca\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}^{K^{+}}_{M}bc. (This is true as long as K+\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}^{K^{+}} is symmetric.)

Proof.

It follows that bMK+ab\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}^{K^{+}}_{M}a, so let I={ai}iωI=\{a_{i}\}_{i\in\omega} be an MbMb-indiscernible invariant Morley sequence over MM with a0=aa_{0}=a. By an automorphism, we can choose II so that cq|MIbc\models q|MIb. By Ramsey and compactness, we can further choose II indiscernible over MbcMbc, so bcMK+abc\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}^{K^{+}}_{M}a and by symmetry of K+\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}^{K^{+}}, aK+bca\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}^{K^{+}}bc. ∎

Finally, by the Erdős-Rado theorem, we can find {aibi}i<ω\{a_{i}b_{i}\}_{i<\omega} indiscnernible over MM, satisfying (1) and (2) (and (3)). Then {ai}iω\{a_{i}\}_{i\in\omega} will be an invariant Morley sequence over MM with aitp(a/M)a_{i}\models\mathrm{tp}(a/M), so for nmn\leq m, by (2) and Lemma 5.11, i=1np(X,ai)i=n+1mq(X,bi)\cup_{i=1}^{n}p(X,a_{i})\cup\cup_{i=n+1}^{m}q(X,b_{i}) and therefore {φ(x,a1),φ(x,an),ψ(x,bn+1)ψ(x,bm)}\{\varphi(x,a_{1}),\ldots\varphi(x,a_{n}),\psi(x,b_{n+1})\ldots\psi(x,b_{m})\} is consistent. This, together with (1), implies SOP3\mathrm{SOP}_{3} by fact 2.4 –a contradiction.

Acknowledgements The author would like to thank Hyoyoon Lee, Byunghan Kim, and the other participants of the Yonsei University logic seminar for their comments on the degree of Kim-dividing k=2k=2, and Nicholas Ramsey for bringing to the author’s attention Question 5.2 of Simon.

References

  • [1] Hans Adler. Strong theories, burden and weight, , preprint. Available at http://www.logic.univie.ac.at/ adler/docs/strong.pdf. 2007.
  • [2] Hans Adler. A geometric introduction to forking and thorn-forking. Journal of Mathematical Logic, 9, 2009.
  • [3] JinHoo Ahn and Joonhee Kim. SOP1\mathrm{SOP}_{1}, SOP2\mathrm{SOP}_{2}, and antichain tree property, preprint. Available at https://arxiv.org/abs/2003.10030. 2020.
  • [4] JinHoo Ahn, Joonhee Kim, and Junguk Lee. On the antichain tree property, preprint. Available at https://arxiv.org/abs/2106.03779. 2021.
  • [5] Franceso Gallinaro Anna Dimitrieva and Mark Kamsma. Dividing lines between positive theories, , preprint. Available at https://arxiv.org/pdf/2304.07557.pdf. 2023.
  • [6] Byunghan Kim Artem Chernikov and Nicholas Ramsey. Transitivity, lowness and ranks in NSOP1\mathrm{NSOP}_{1} theories, , preprint. Available at https://arxiv.org/pdf/2006.10486.pdf. 2020,.
  • [7] Enrique Casanovas and Byunghan Kim. More on tree properties. Fundamenta Mathematicae, 2019.
  • [8] Artem Chernikov. Theories without the tree property of the second kind. Ann. Pure Appl. Log., 165:695–723, 2014.
  • [9] Artem Chernikov and Itay Kaplan. Forking and dividing in NTP2\mathrm{NTP}_{2} theories. The Journal of Symbolic Logic, 77(1):1–20, 2012.
  • [10] Artem Chernikov and Nicholas Ramsey. On model-theoretic tree properties. Journal of Mathematical Logic, 16(2):1650009, 2016.
  • [11] Gabriel Conant. An axiomatic approach to free amalgamation. The Journal of Symbolic Logic, 82(2):648–671, 2017.
  • [12] Jan Dobrowolski and Mark Kamsma. Kim-independence in positive logic. Model Theory, 1(1):55–113, jun 2022.
  • [13] Jan Dobrowolski, Byunghan Kim, and Nicholas Ramsey. Independence over arbitrary sets in nsop1 theories. Annals of Pure and Applied Logic, 173(2):103058, 2022.
  • [14] David E. Evans and Mark Wing Ho Wong. Some remarks on generic structures. Journal of Symbolic Logic, 74(4):1143 – 1154, 2009.
  • [15] Darío García and Rosario Mennuni. Model-theoretic dividing lines via posets, , preprint. Available at https://arxiv.org/pdf/2211.04213.pdf. 2022.
  • [16] Bradd Hart, Byunghan Kim, and Anand Pillay. Coordinatisation and canonical bases in simple theories. The Journal of Symbolic Logic, 65(1):293–309, 2000.
  • [17] Mark Kamsma. Independence relations in abstract elementary categories. Bulletin of Symbolic Logic, 28(4):531–531, 2022.
  • [18] Itay Kaplan, Nicholas Ramsey, , and Pierre Simon. Generic stability independence and treeless theories, , preprint. Available at https://arxiv.org/pdf/2305.01296.pdf. 2023,.
  • [19] Itay Kaplan and Nicholas Ramsey. On kim-independence. Journal of the European Mathematical Society, 22, 02 2017.
  • [20] Itay Kaplan and Nicholas Ramsey. Transitivity of kim-independence. Advances in Mathematics, 379:107573, 2021.
  • [21] Itay Kaplan, Nicholas Ramsey, and Saharon Shelah. Local character of kim-independence. Proceedings of the American Mathematical Society, 147, 07 2017.
  • [22] Byunghan Kim. Simplicity theory. Oxford University Press, 2014.
  • [23] BYUNGHAN KIM. Weak canonical bases in nsop 1 theories. The Journal of Symbolic Logic, 86(3):1259–1281, 2021.
  • [24] Byunghan Kim and Anand Pillay. Simple theories. Annals of Pure and Applied Logic, 88(2):149–164, 1997. Joint AILA-KGS Model Theory Meeting.
  • [25] Joonhee Kim and Hyoyoon Lee. Some remarks on kim-dividing in NATP\mathrm{NATP} theories, , preprint. Available at https://arxiv.org/pdf/2211.04213.pdf. 2022,.
  • [26] Alex Kruckman. Research statement, Available at https://akruckman.faculty.wesleyan.edu/files/2019/07/researchstatement.pdf.
  • [27] Alex Kruckman and Nicholas Ramsey. Generic expansion and Skolemization in NSOP1\mathrm{NSOP}_{1} theories. Annals of Pure and Applied Logic, 169(8):755–774, aug 2018.
  • [28] Alex Kruckman, Minh Chieu Tran, and Erik Walsberg. Interpolative fusions ii: Preservation results, preprint. Available at https://arxiv.org/abs/2206.08512. 2022.
  • [29] Hyoyoon Lee, Personal communication. Feb. 10, 2023.
  • [30] M. E. MALLIARIS. The characteristic sequence of a first-order formula. The Journal of Symbolic Logic, 75(4):1415–1440, 2010.
  • [31] M. E. MALLIARIS. Hypergraph sequences as a tool for saturation of ultrapowers. The Journal of Symbolic Logic, 77(1):195–223, 2012.
  • [32] Maryanthe Malliaris and Saharon Shelah. Model-theoretic applications of cofinality spectrum problems. Israel Journal of Mathematics, 220(2):947–1014, 2017.
  • [33] M.E. Malliaris. Edge distribution and density in the characteristic sequence. Annals of Pure and Applied Logic, 162(1):1–19, 2010.
  • [34] Scott Mutchnik. On the properties SOP2n+1+1\mathrm{SOP}_{2^{n+1}+1}, manuscript. 2023.
  • [35] Scott Mutchnik. On NSOP2\mathrm{NSOP}_{2} theories, preprint. Available at https://arxiv.org/abs/2206.08512. 2022.
  • [36] Scott Mutchnik. Conant-independence in generalized free amalgamation theories, preprint. Available at https://arxiv.org/abs/2210.07527. 2022.
  • [37] Lynn Scow. Indiscernibles, em-types, and ramsey classes of trees. Notre Dame Journal of Formal Logic, 56(3):429–447, 2015.
  • [38] Saharon Shelah. Classification theory: and the number of non-isomorphic models. Elsevier, 1990.
  • [39] Pierre Simon. A Guide to NIP\mathrm{NIP} Theories. Lecture Notes in Logic. Cambridge University Press, 2015.
  • [40] Pierre Simon. On Amalgamation in NTP2 Theories and Generically Simple Generics. Notre Dame Journal of Formal Logic, 61(2):233 – 243, 2020.
  • [41] Kota Takeuchi and Akito Tsuboi. On the existence of indiscernible trees. Annals of Pure and Applied Logic, 163(12):1891–1902, 2012.
  • [42] Itaï Ben Yaacov and Artem Chernikov. An independence theorem for NTP2\mathrm{NTP}_{2} theories. The Journal of Symbolic Logic, 79(1):135–153, 2014.