This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Proper maps of ball complements & differences and rational sphere maps

Abdullah Al Helal Department of Mathematics, Oklahoma State University, Stillwater, OK 74078-5061 [email protected] Jiří Lebl Department of Mathematics, Oklahoma State University, Stillwater, OK 74078-5061 [email protected]  and  Achinta Kumar Nandi Department of Mathematics, Oklahoma State University, Stillwater, OK 74078-5061 [email protected]
Abstract.

We consider proper holomorphic maps of ball complements and differences in complex euclidean spaces of dimension at least two. Such maps are always rational, which naturally leads to a related problem of classifying rational maps taking concentric spheres to concentric spheres, what we call mm-fold sphere maps; a proper map of the difference of concentric balls is a 22-fold sphere map. We prove that proper maps of ball complements are in one to one correspondence with polynomial proper maps of balls taking infinity to infinity. We show that rational mm-fold sphere maps of degree less than mm (or polynomial maps of degree mm or less) must take all concentric spheres to concentric spheres and we provide a complete classification of them. We prove that these degree bounds are sharp.

Key words and phrases:
rational sphere maps, proper holomorphic mappings
2020 Mathematics Subject Classification:
32H35, 32A08, 32H02
The second author was in part supported by Simons Foundation collaboration grant 710294.

1. Introduction

Studying proper holomorphic maps between domains is a common problem in several complex variables. In general, such maps do not exist unless we choose specific domains. If the domain has many symmetries, such as the unit ball 𝔹nn\mathbb{B}_{n}\subset\mathbb{C}^{n}, many maps exist. Alexander [alexander-1977-proper] proved that every proper holomorphic map f:𝔹n𝔹nf\colon\mathbb{B}_{n}\to\mathbb{B}_{n}, n>1n>1, is an automorphism, and hence rational. On the other hand, Dor [dor-1990-proper] showed that there exist proper holomorphic maps from 𝔹n\mathbb{B}_{n} to 𝔹n+1\mathbb{B}_{n+1} that are continuous up to the boundary and are not rational. Forstnerič [forstneric-1989-extending] proved that if for some neighborhood UU of a point pp on the sphere, a sufficiently smooth f:U𝔹n¯Nf\colon U\cap\overline{\mathbb{B}_{n}}\to\mathbb{C}^{N} is holomorphic on U𝔹nU\cap\mathbb{B}_{n} and f(US2n1)S2N1f(U\cap S^{2n-1})\subset S^{2N-1}, then ff is rational and extends to a proper map of 𝔹n\mathbb{B}_{n} to 𝔹N\mathbb{B}_{N}. Moreover, the degree of ff is bounded by a function of nn and NN alone. We will make extensive use of Forstnerič’s result in this work. For simplicity, by a proper map of balls, we will always mean a proper holomorphic map f:𝔹n𝔹Nf\colon\mathbb{B}_{n}\to\mathbb{B}_{N}. Rudin [rudin-1984-homogeneous] proved that every homogeneous polynomial proper map of balls is unitarily equivalent to the symmetrized mm-fold tensor product of the identity map, while D’Angelo [dangelo-1988-polynomial] found a much simpler proof of Rudin’s result and moreover gave complete procedure for constructing all polynomial proper maps of balls. A key idea in D’Angelo’s work, and one that we will make use of, is that given two vector valued polynomials p:nmp\colon\mathbb{C}^{n}\to\mathbb{C}^{m} and q:nkq\colon\mathbb{C}^{n}\to\mathbb{C}^{k} such that p(z)2=q(z)2\mathopen{}\mathclose{{}\left\lVert p(z)}\right\rVert^{2}=\mathopen{}\mathclose{{}\left\lVert q(z)}\right\rVert^{2} for all zz, there is a unitary map UU such that U(p0)=q0U(p\oplus 0)=q\oplus 0. By 0\oplus 0 we mean we add zero components if they are needed to match the target dimensions. For more information on this subject, see [faran-1982-maps, forstneric-1993-proper, huang-1999-linearity, hamada-2005-rational, huang-2006-new, huang-2014-third, lebl-2024-exhaustion] and the references therein. In particular, the books by D’Angelo [dangelo-1993-several, dangelo-2019-hermitian, dangelo-2021-rational] are relevant.

We change the point of view slightly and consider the complements of balls and the differences of balls, that is, without loss of generality we study maps between the sets of the form n𝔹n¯\mathbb{C}^{n}\setminus\overline{\mathbb{B}_{n}} and 𝔹nBr(c)¯\mathbb{B}_{n}\setminus\overline{B_{r}(c)}, where Br(c)B_{r}(c) denotes the ball of radius rr centered at cc. As before, we say proper map of ball complements to mean a proper holomorphic map f:n𝔹n¯N𝔹N¯f\colon\mathbb{C}^{n}\setminus\overline{\mathbb{B}_{n}}\to\mathbb{C}^{N}\setminus\overline{\mathbb{B}_{N}}. Similarly, by proper map of ball differences we mean a proper holomorphic map f:𝔹nBr(c)¯𝔹NBR(C)¯f\colon\mathbb{B}_{n}\setminus\overline{B_{r}(c)}\to\mathbb{B}_{N}\setminus\overline{B_{R}(C)}. We remark that proper maps to domains that are complements of balls have been studied previously; see [forstnerivc-2014-oka]. However, we wish the domain of the map to also be a ball complement. First, we characterize all proper maps of ball complements.

Theorem 1.1.

Suppose f:n𝔹n¯N𝔹N¯f\colon\mathbb{C}^{n}\setminus\overline{\mathbb{B}_{n}}\to\mathbb{C}^{N}\setminus\overline{\mathbb{B}_{N}}, n2n\geq 2, is a proper holomorphic map. Then ff is a polynomial map, and when this polynomial is restricted to 𝔹n\mathbb{B}_{n}, it gives a proper map to 𝔹N\mathbb{B}_{N}.

Conversely, suppose p:nNp\colon\mathbb{C}^{n}\to\mathbb{C}^{N} is a polynomial that takes 𝔹n\mathbb{B}_{n} to 𝔹N\mathbb{B}_{N} properly. Then

  1. (i)

    p(n𝔹n¯)N𝔹N¯p(\mathbb{C}^{n}\setminus\overline{\mathbb{B}_{n}})\subset\mathbb{C}^{N}\setminus\overline{\mathbb{B}_{N}}, and

  2. (ii)

    if also p(z)\mathopen{}\mathclose{{}\left\lVert p(z)}\right\rVert\to\infty as z\mathopen{}\mathclose{{}\left\lVert z}\right\rVert\to\infty, then pp is a proper map of n𝔹n¯\mathbb{C}^{n}\setminus\overline{\mathbb{B}_{n}} to N𝔹N¯\mathbb{C}^{N}\setminus\overline{\mathbb{B}_{N}}.

The condition on the norm is clearly satisfied for proper maps of complements, but it is not clear if it is automatically true for polynomial proper maps of balls. We prove that the condition is satisfied if the polynomial takes the origin to the origin, or more trivially, if the top degree terms of pp do not vanish on the sphere.

That the proper map of ball complements is polynomial follows from a combination of the Hartogs phenomenon and Forstnerič’s theorem mentioned above. The key is then to show that polynomial maps of balls are precisely those that also take the outside to the outside. The theorem does not hold if n=1n=1: 𝔻¯\mathbb{C}\setminus\overline{\mathbb{D}} is biholomorphic to the punctured disc 𝔻\mathbb{D}^{*}, which properly, and certainly not rationally, embeds into N\mathbb{C}^{N} via the classical theorem of Remmert–Bishop–Narasimhan (see [forstneric-2017-stein-manifolds]*Theorem 2.4.1 and also Alexander [alexander-1977-punctured-disc] for an explicit embedding into 2\mathbb{C}^{2}). Such a map certainly avoids some small closed ball. A more complicated example where the sphere in the boundary of the target plays a role can be constructed via modifying the technique in the examples following Proposition 1.5. What is true, even in one dimension, is that a rational map f:nNf\colon\mathbb{C}^{n}\dashrightarrow\mathbb{C}^{N} that restricts to a proper map of 𝔹n\mathbb{B}_{n} to 𝔹N\mathbb{B}_{N} takes all the (nonpole) points of n𝔹n¯\mathbb{C}^{n}\setminus\overline{\mathbb{B}_{n}} to N𝔹N¯\mathbb{C}^{N}\setminus\overline{\mathbb{B}_{N}}; see Lemma 2.1.

Proper maps of differences of balls are somewhat more complicated. Via a similar argument, again heavily dependent on the result of Forstnerič, we prove the following result.

Theorem 1.2.

Suppose n2n\geq 2 and Br(c)nB_{r}(c)\subset\mathbb{C}^{n}, BR(C)NB_{R}(C)\subset\mathbb{C}^{N} are two balls such that Br(c)𝔹nB_{r}(c)\cap\mathbb{B}_{n}\not=\varnothing and BR(C)𝔹NB_{R}(C)\cap\mathbb{B}_{N}\not=\varnothing. Suppose f:𝔹nBr(c)¯𝔹NBR(C)¯f\colon\mathbb{B}_{n}\setminus\overline{B_{r}(c)}\to\mathbb{B}_{N}\setminus\overline{B_{R}(C)} is a proper holomorphic map. Then ff is rational and extends to a rational proper map of balls f:𝔹n𝔹Nf\colon\mathbb{B}_{n}\to\mathbb{B}_{N} that takes the sphere (Br(c))𝔹n(\partial B_{r}(c))\cap\mathbb{B}_{n} to the sphere (BR(C))𝔹N(\partial B_{R}(C))\cap\mathbb{B}_{N}. If c=0c=0 and C=0C=0 and f=pqf=\frac{p}{q} is written in lowest terms, then degq<degp\deg q<\deg p. Conversely, every proper holomorphic map f:𝔹n𝔹Nf\colon\mathbb{B}_{n}\to\mathbb{B}_{N} that takes the sphere (Br(c))𝔹n(\partial B_{r}(c))\cap\mathbb{B}_{n} to the sphere (BR(C))𝔹N(\partial B_{R}(C))\cap\mathbb{B}_{N} is rational and restricts to a proper map of 𝔹nBr(c)¯\mathbb{B}_{n}\setminus\overline{B_{r}(c)} to 𝔹NBR(C)¯\mathbb{B}_{N}\setminus\overline{B_{R}(C)}.

If n=1n=1, the theorem need not hold. For example the function z1zz\mapsto\frac{1}{z} takes an annulus centered at the origin to an annulus, swaps the inside and outside circles and does not extend to the entire disc. The theorem leads us to study what we call rational mm-fold sphere maps.

Definition 1.3.

A rational map f:nNf\colon\mathbb{C}^{n}\dashrightarrow\mathbb{C}^{N} is an mm-fold sphere map if there exist 2m2m numbers 0<r1<r2<<rm<0<r_{1}<r_{2}<\cdots<r_{m}<\infty and 0<R1,R2,,Rm<0<R_{1},R_{2},\ldots,R_{m}<\infty, such that the pole set of ff misses rmS2n1r_{m}S^{2n-1} (and therefore rjS2n1r_{j}S^{2n-1} for all jj) and f(rjS2n1)RjS2N1f(r_{j}S^{2n-1})\subset R_{j}S^{2N-1} for all j=1,,mj=1,\ldots,m. If there are infinitely many such numbers rjr_{j} and RjR_{j}, then we say that ff is an \infty-fold sphere map. We will call spheres such as rS2n1rS^{2n-1} zero-centric spheres and balls such as r𝔹nr\mathbb{B}_{n} zero-centric balls.

In light of this definition, the theorem above says that every proper holomorphic map of ball complements centered at the origin is a rational 22-fold sphere map. We remark that by Proposition 3.2, we can assume that R1<R2<<RmR_{1}<R_{2}<\cdots<R_{m}.

For the tensor of two polynomial maps we find that fg2=f2g2\mathopen{}\mathclose{{}\left\lVert f\otimes g}\right\rVert^{2}=\mathopen{}\mathclose{{}\left\lVert f}\right\rVert^{2}\mathopen{}\mathclose{{}\left\lVert g}\right\rVert^{2}. Hence zd2=z2d\mathopen{}\mathclose{{}\left\lVert z^{\otimes d}}\right\rVert^{2}=\mathopen{}\mathclose{{}\left\lVert z}\right\rVert^{2d}, and so zdz^{\otimes d} is a homogeneous \infty-fold sphere map. The map zdz^{\otimes d} does not have linearly independent components for d2d\geq 2, but after applying a unitary and a projection we find a symmetrized homogeneous map HdH_{d} with linearly independent components such that zd2=Hd(z)2\mathopen{}\mathclose{{}\left\lVert z^{\otimes d}}\right\rVert^{2}=\mathopen{}\mathclose{{}\left\lVert H_{d}(z)}\right\rVert^{2}, where the number of components of HdH_{d} is the rank of the underlying hermitian form of zd2\mathopen{}\mathclose{{}\left\lVert z^{\otimes d}}\right\rVert^{2}. For example in 2\mathbb{C}^{2}, (z1,z2)2=(z12,z1z2,z2z1,z22)(z_{1},z_{2})^{\otimes 2}=(z_{1}^{2},z_{1}z_{2},z_{2}z_{1},z_{2}^{2}) is symmetrized to H2(z1,z2)=(z12,2z1z2,z22)H_{2}(z_{1},z_{2})=(z_{1}^{2},\sqrt{2}z_{1}z_{2},z_{2}^{2}). See D’Angelo [dangelo-1993-several].

By Rudin’s theorem we mentioned above, a homogeneous 11-fold sphere map is unitarily equivalent to a scalar multiple of HdH_{d}. Thus every homogeneous 11-fold sphere map is an \infty-fold sphere map. Similarly, if we take a direct sum of properly scaled homogeneous sphere maps, we get an \infty-fold sphere map. In fact, we have the following:

Theorem 1.4.

Suppose that f:nNf\colon\mathbb{C}^{n}\dashrightarrow\mathbb{C}^{N}, n2n\geq 2, is a rational mm-fold sphere map, where 1m1\leq m\leq\infty.

  1. (i)

    If m<m<\infty and ff is a polynomial map of degree mm or less, then ff is an \infty-fold sphere map.

  2. (ii)

    If m<m<\infty and ff is a rational map of degree m1m-1 or less, then ff is an \infty-fold sphere map.

If ff is an \infty-fold sphere map, then ff is polynomial and for every r>0r>0 there exists an R>0R>0 such that f(rS2n1)RS2N1f(rS^{2n-1})\subset RS^{2N-1}. Moreover, there exists a unitary UU(N)U\in U(\mathbb{C}^{N}) and homogeneous sphere maps (possibly constant) hj:njh_{j}\colon\mathbb{C}^{n}\to\mathbb{C}^{\ell_{j}}, j=1,,kj=1,\ldots,k and where 1++kN\ell_{1}+\cdots+\ell_{k}\leq N, such that

f=U(h1hk0).f=U(h_{1}\oplus\cdots\oplus h_{k}\oplus 0).

The question then arises about the existence of other maps than the \infty-fold sphere maps. For every kk and mkm\geq k, we will show that there exists a rational (nonpolynomial) kk-fold sphere map of degree mm that is not a (k+1)(k+1)-fold sphere map. In particular, every first-degree rational proper map of the difference of zero-centric balls is a unitary composed with an affine linear embedding; however, there exist nonpolynomial second-degree rational maps of a difference of balls. We will also show (Lemma 3.10) that the denominator of a kk-fold sphere map for k>1k>1 must be necessarily of a lower degree than the numerator, extending the analogous result by D’Angelo (see e.g. [dangelo-2019-hermitian]*Proposition 5.1) for sphere maps that also fix the origin.

Finally, we consider proper maps of ball differences to ball complements and vice versa. Using the result of Forstnerič, one can prove that when dimension is at least 22, no proper holomorphic maps exist between the two different sets.

Proposition 1.5.

Suppose n2n\geq 2, 𝔹nBr(c)\mathbb{B}_{n}\cap B_{r}(c)\not=\varnothing, and 𝔹NBR(C)\mathbb{B}_{N}\cap B_{R}(C)\not=\varnothing. There exist no proper holomorphic maps f:𝔹nBr(c)¯N𝔹N¯f\colon\mathbb{B}_{n}\setminus\overline{B_{r}(c)}\to\mathbb{C}^{N}\setminus\overline{\mathbb{B}_{N}} nor f:n𝔹n¯𝔹NBR(C)¯f\colon\mathbb{C}^{n}\setminus\overline{\mathbb{B}_{n}}\to\mathbb{B}_{N}\setminus\overline{B_{R}(C)}.

If n=1n=1, start with a proper embedding of the disc into N\mathbb{C}^{N} (e.g. Remmert–Bishop–Narasimhan again). We can construct a nonrational proper map from 𝔻r𝔻¯\mathbb{D}\setminus\overline{r\mathbb{D}} to N𝔹N¯\mathbb{C}^{N}\setminus\overline{\mathbb{B}_{N}}: Take a proper holomorphic embedding f:𝔻Nf\colon\mathbb{D}\to\mathbb{C}^{N}. Take a small closed ball B¯N\overline{B}\subset\mathbb{C}^{N} so that f1(B¯)f^{-1}(\overline{B}) is a connected set with more than one point and 𝔻f1(B¯)\mathbb{D}\setminus f^{-1}(\overline{B}) is connected. Then it is classical that the doubly connected domain 𝔻f1(B¯)\mathbb{D}\setminus f^{-1}(\overline{B}) is biholomorphic to an annulus 𝔻r𝔻¯\mathbb{D}\setminus\overline{r\mathbb{D}} for some 0<r<10<r<1. Composition of the maps and taking BB to the unit ball obtains the desired map. To construct the second map when n=1n=1, 𝔻¯\mathbb{C}\setminus\overline{\mathbb{D}} is biholomorphic to the punctured disc 𝔻\mathbb{D}^{*}, which can be properly embedded into some 𝔹NBR(C)¯\mathbb{B}_{N}\setminus\overline{B_{R}(C)} in many ways (e.g., linearly).

Interestingly, it is not difficult to construct many nontrivial proper maps of 𝔹n\mathbb{B}_{n} to N𝔹N¯\mathbb{C}^{N}\setminus\overline{\mathbb{B}_{N}} when N>nN>n, but the proposition says that if n2n\geq 2, there is no way to properly map the annulus to the complement of the ball.

The organization of this paper is the following. In section 2, we study proper maps of ball complements and prove Theorem 1.1. In section 3, we study the rational mm-fold sphere maps and prove Theorem 1.4. Finally, in section 4, we study proper mappings of ball differences and we prove Theorem 1.2.

2. Proper mappings of ball complements

We start with a lemma about where rational proper holomorphic maps of balls take the complement of the ball. We remark that unlike many of the results we consider, this lemma still holds in n=1n=1.

Lemma 2.1.

If f:nNf\colon\mathbb{C}^{n}\dashrightarrow\mathbb{C}^{N} is a rational map such that the restriction of ff to 𝔹n\mathbb{B}_{n} is a proper map to 𝔹N\mathbb{B}_{N}, then f(z)>1\mathopen{}\mathclose{{}\left\lVert f(z)}\right\rVert>1 for every z𝔹n¯z\notin\overline{\mathbb{B}_{n}} that is not a pole of ff.

Proof.

Write f=pqf=\frac{p}{q} for polynomials pp and qq. As ff takes the sphere S2n1S^{2n-1} to the sphere S2N1S^{2N-1}, there is a real polynomial Q(z,z¯)Q(z,\bar{z}) such that

p(z)2q(z)2=Q(z,z¯)(z21)orf(z)21=Q(z,z¯)|q(z)|2(z21)\mathopen{}\mathclose{{}\left\lVert p(z)}\right\rVert^{2}-\mathopen{}\mathclose{{}\left\lVert q(z)}\right\rVert^{2}=Q(z,\bar{z})\bigl{(}\mathopen{}\mathclose{{}\left\lVert z}\right\rVert^{2}-1\bigr{)}\quad\text{or}\quad\mathopen{}\mathclose{{}\left\lVert f(z)}\right\rVert^{2}-1=\frac{Q(z,\bar{z})}{\mathopen{}\mathclose{{}\left\lvert q(z)}\right\rvert^{2}}\bigl{(}\mathopen{}\mathclose{{}\left\lVert z}\right\rVert^{2}-1\bigr{)}

outside the set where q=0q=0. Polarization gives us

f(z)f(w)¯1=Q(z,w¯)q(z)q¯(w¯)(zw¯1),f(z)\cdot\overline{f(w)}-1=\frac{Q(z,\bar{w})}{q(z)\bar{q}(\bar{w})}\bigl{(}z\cdot\bar{w}-1\bigr{)},

where zw=z1w1++znwnz\cdot w=z_{1}w_{1}+\cdots+z_{n}w_{n} is the standard symmetric dot product.

Suppose z𝔹n¯z\notin\overline{\mathbb{B}_{n}} is not a pole of ff. Set w=zz2w=\frac{z}{\mathopen{}\mathclose{{}\left\lVert z}\right\rVert^{2}} so that 0<w=1z<10<\mathopen{}\mathclose{{}\left\lVert w}\right\rVert=\frac{1}{\mathopen{}\mathclose{{}\left\lVert z}\right\rVert}<1. As ff has no poles in the ball, g(w)0g(w)\not=0. Hence f(w)<1\mathopen{}\mathclose{{}\left\lVert f(w)}\right\rVert<1 and zw¯=1z\cdot\bar{w}=1. Then

(1) f(z)f(zz2)¯=1.f(z)\cdot\overline{f\mathopen{}\mathclose{{}\left(\frac{z}{\mathopen{}\mathclose{{}\left\lVert z}\right\rVert^{2}}}\right)}=1.

Cauchy-Schwarz inequality gives

1=f(z)f(w)¯f(z)f(w)<f(z).1=f(z)\cdot\overline{f(w)}\leq\mathopen{}\mathclose{{}\left\lVert f(z)}\right\rVert\mathopen{}\mathclose{{}\left\lVert f(w)}\right\rVert<\mathopen{}\mathclose{{}\left\lVert f(z)}\right\rVert.\qed

The lemma proves the converse statement of Theorem 1.1. That is, if f:nNf\colon\mathbb{C}^{n}\to\mathbb{C}^{N} is a polynomial map such that its restriction to 𝔹n\mathbb{B}_{n} is a proper map to 𝔹N\mathbb{B}_{N}, it takes the sphere S2n1S^{2n-1} to the sphere S2N1S^{2N-1}, and the lemma says that it takes n𝔹n¯\mathbb{C}^{n}\setminus\overline{\mathbb{B}_{n}} to N𝔹N¯\mathbb{C}^{N}\setminus\overline{\mathbb{B}_{N}}. If we furthermore assume that f(z)\mathopen{}\mathclose{{}\left\lVert f(z)}\right\rVert\to\infty as z\mathopen{}\mathclose{{}\left\lVert z}\right\rVert\to\infty, we find that ff is proper.

It is not clear if the norm of a polynomial proper of balls always goes to infinity at infinity thereby giving a proper map of n𝔹n¯\mathbb{C}^{n}\setminus\overline{\mathbb{B}_{n}} to N𝔹N¯\mathbb{C}^{N}\setminus\overline{\mathbb{B}_{N}}. We provide a proof in some natural special cases.

Proposition 2.2.

Suppose p:nNp\colon\mathbb{C}^{n}\to\mathbb{C}^{N} is a polynomial which is also a proper map of 𝔹n\mathbb{B}_{n} to 𝔹N\mathbb{B}_{N}. Suppose that

  1. (i)

    p(0)=0p(0)=0, or

  2. (ii)

    p=p0+p1++pdp=p_{0}+p_{1}+\cdots+p_{d} is the decomposition into homogeneous parts and pdp_{d} is not zero on the unit sphere.

Then p(z)\mathopen{}\mathclose{{}\left\lVert p(z)}\right\rVert\to\infty as z\mathopen{}\mathclose{{}\left\lVert z}\right\rVert\to\infty.

Proof.

Suppose first that p(0)=0p(0)=0 and suppose for contradiction that the conclusion does not hold. Then without loss of generality, there is a sequence (zk)n(z_{k})\subset\mathbb{C}^{n} such that zk\mathopen{}\mathclose{{}\left\lVert z_{k}}\right\rVert\to\infty and p(zk)LNp(z_{k})\to L\in\mathbb{C}^{N}. Letting kk\to\infty in the reflection principle 1 with z=zkz=z_{k}, we get 1=Lp(0)¯=L0¯=01=L\cdot\overline{p(0)}=L\cdot\overline{0}=0, a contradiction.

Next, suppose that pdp_{d} is not zero on the unit sphere. Let C>0C>0 be a lower bound for pd(z)\mathopen{}\mathclose{{}\left\lVert p_{d}(z)}\right\rVert for zS2n1z\in S^{2n-1}. Writing any znz\in\mathbb{C}^{n} as ruru with r0r\geq 0 and uS2n1u\in S^{2n-1}, we have

pd(z)=rdpd(u)Crd.\mathopen{}\mathclose{{}\left\lVert p_{d}(z)}\right\rVert=r^{d}\mathopen{}\mathclose{{}\left\lVert p_{d}(u)}\right\rVert\geq Cr^{d}.

As pd(z)2\mathopen{}\mathclose{{}\left\lVert p_{d}(z)}\right\rVert^{2} is the top degree homogeneous part of p(z)2\mathopen{}\mathclose{{}\left\lVert p(z)}\right\rVert^{2}, we find that p(z)\mathopen{}\mathclose{{}\left\lVert p(z)}\right\rVert\to\infty as z\mathopen{}\mathclose{{}\left\lVert z}\right\rVert\to\infty. ∎

We remark that the conclusion of the proposition also follows if the polynomial proper map of balls is constructed using tensoring only starting with the identity in the procedure of D’Angelo [dangelo-1988-proper].

The rest of Theorem 1.1 follows from the following lemma.

Lemma 2.3.

Suppose f:n𝔹n¯N𝔹N¯f\colon\mathbb{C}^{n}\setminus\overline{\mathbb{B}_{n}}\to\mathbb{C}^{N}\setminus\overline{\mathbb{B}_{N}}, n2n\geq 2, is a proper holomorphic map. Then ff is a polynomial map, and when this polynomial is restricted to 𝔹n\mathbb{B}_{n}, it gives a proper map to 𝔹N\mathbb{B}_{N}.

Proof.

The Hartogs phenomenon says that ff extends to a holomorphic map of n\mathbb{C}^{n} to N\mathbb{C}^{N}. By the properness of ff, we have f(S2n1)S2N1f(S^{2n-1})\subset S^{2N-1} and therefore the map when restricted to 𝔹n\mathbb{B}_{n} gives a proper map to 𝔹N\mathbb{B}_{N}. The theorem of Forstnerič says that ff is rational. As ff is holomorphic on n\mathbb{C}^{n}, it must necessarily be polynomial. ∎

3. mm-fold sphere maps

This section is split into two parts. In the first part, we consider polynomial mm-fold sphere maps, proving Theorem 1.4 for polynomials. We then give a construction of maps of higher degree showing that the bound is sharp. In the second part of the section, we extend the results to rational maps and give the construction showing that the result is sharp also in the rational case.

3.1. Polynomial mm-fold sphere maps

We remark that unlike many of the results we consider and except for Propositions 3.2 and 3.7, the results in this section still hold in n=1n=1.

Definition 3.1.

For k1k\geq 1, distinct rjr_{j}s and rj,Rj>0r_{j},R_{j}>0 for j=1,,kj=1,\dots,k, we define the divided differences as

[Rj2]\displaystyle[R_{j}^{2}] =Rj2,j=1,,k,\displaystyle=R_{j}^{2},\quad j=1,\dots,k,
[R12,,Rj2,R2]\displaystyle[R_{1}^{2},\dots,R_{j}^{2},R_{\ell}^{2}] =[R12,,Rj12,R2][R12,,Rj12,Rj2]r2rj2,\displaystyle=\frac{[R_{1}^{2},\dots,R_{j-1}^{2},R_{\ell}^{2}]-[R_{1}^{2},\dots,R_{j-1}^{2},R_{j}^{2}]}{r_{\ell}^{2}-r_{j}^{2}},
=j+1,,k,j=1,,k1.\displaystyle\qquad\qquad\ell=j+1,\dots,k,\quad j=1,\dots,k-1.

For j=1,,k1j=1,\dots,k-1, we write

bj=[R12,,Rj2,Rj+12]b_{j}=[R_{1}^{2},\dots,R_{j}^{2},R_{j+1}^{2}]

and define the degree-jj Newton polynomial of the indeterminate xx as the real polynomial

b0+b1(xr12)++bj(xr12)(xrj2).b_{0}+b_{1}(x-r_{1}^{2})+\dots+b_{j}(x-r_{1}^{2})\dots(x-r_{j}^{2}).
Proposition 3.2.

Let k2k\geq 2, n2n\geq 2 and f:nNf\colon\mathbb{C}^{n}\dashrightarrow\mathbb{C}^{N} be a nonconstant rational kk-fold sphere map, that is, it takes rjr_{j}-spheres to RjR_{j}-spheres, where all rjr_{j}s are distinct and rj,Rj>0r_{j},R_{j}>0 for j=1,,kj=1,\dots,k. Then rj<rr_{j}<r_{\ell} implies Rj<RR_{j}<R_{\ell}, and in particular, the divided differences b0b_{0} and b1b_{1} are positive.

Proof.

We notice that

b0=[R12]=R12>0.b_{0}=[R_{1}^{2}]=R_{1}^{2}>0.

Suppose that rj<rr_{j}<r_{\ell}. As ff is a nonconstant rational map that takes rr_{\ell}-sphere to RR_{\ell}-sphere, it is a rational sphere map and hence a rational proper map of rr_{\ell}-ball to RR_{\ell}-ball. As rj<rr_{j}<r_{\ell}, f(rjS2n1)R𝔹Nf(r_{j}S^{2n-1})\subset R_{\ell}\mathbb{B}_{N}, so that Rj<RR_{j}<R_{\ell}.

In particular,

b1=[R12,R22]=R22R12r22r12>0.b_{1}=[R_{1}^{2},R_{2}^{2}]=\frac{R_{2}^{2}-R_{1}^{2}}{r_{2}^{2}-r_{1}^{2}}>0.\qed

In the following few results, we will obtain convenient expressions of p(z)2\mathopen{}\mathclose{{}\left\lVert p(z)}\right\rVert^{2} reminiscent of a Newton polynomial of indeterminate z2\mathopen{}\mathclose{{}\left\lVert z}\right\rVert^{2} for the polynomial mm-fold sphere map pp. By bidegree of a polynomial p(z,z¯)p(z,\bar{z}), we mean a pair (m,k)(m,k) where mm is the degree in zz and kk is the degree in z¯\bar{z}.

Lemma 3.3.

Let 1km1\leq k\leq m and p:nNp\colon\mathbb{C}^{n}\to\mathbb{C}^{N} be a polynomial kk-fold sphere map of degree mm, that is, it takes rjr_{j}-spheres to RjR_{j}-spheres, where all rjr_{j}s are distinct and rj,Rj>0r_{j},R_{j}>0 for j=1,,kj=1,\dots,k. Let Q0(z,z¯)=p(z)2Q_{0}(z,\bar{z})=\mathopen{}\mathclose{{}\left\lVert p(z)}\right\rVert^{2}. Then for j=1,,kj=1,\dots,k, there is a real polynomial Qj(z,z¯)Q_{j}(z,\bar{z}) of bidegree (mj,mj)(m-j,m-j) such that

Qj1(z,z¯)Qj1(z,z¯)|z=rj=Qj(z,z¯)(z2rj2)Q_{j-1}(z,\bar{z})-Q_{j-1}(z,\bar{z})\Big{|}_{\mathopen{}\mathclose{{}\left\lVert z}\right\rVert=r_{j}}=Q_{j}(z,\bar{z})\bigl{(}\mathopen{}\mathclose{{}\left\lVert z}\right\rVert^{2}-r_{j}^{2}\bigr{)}

which becomes

Qj1(z,z¯)bj1=Qj(z,z¯)(z2rj2),Q_{j-1}(z,\bar{z})-b_{j-1}=Q_{j}(z,\bar{z})\bigl{(}\mathopen{}\mathclose{{}\left\lVert z}\right\rVert^{2}-r_{j}^{2}\bigr{)},

and for =j+1,,k\ell=j+1,\dots,k, Qj(z,z¯)Q_{j}(z,\bar{z}) is constant on the rr_{\ell}-sphere and equals [R12,,Rj2,R2][R_{1}^{2},\dots,R_{j}^{2},R_{\ell}^{2}].

Proof.

We prove the result by induction on jj. For j=1j=1, on the r1r_{1}-sphere, Q0(z,z¯)=p(z)2Q_{0}(z,\bar{z})=\mathopen{}\mathclose{{}\left\lVert p(z)}\right\rVert^{2} equals R12=[R12]=b0R_{1}^{2}=[R_{1}^{2}]=b_{0} and so is constant on the r1r_{1}-sphere. Thus there is a real polynomial Q1(z,z¯)Q_{1}(z,\bar{z}) such that

Q0(z,z¯)Q0(z,z¯)|z=r1=Q1(z,z¯)(z2r12),Q_{0}(z,\bar{z})-Q_{0}(z,\bar{z})\Big{|}_{\mathopen{}\mathclose{{}\left\lVert z}\right\rVert=r_{1}}=Q_{1}(z,\bar{z})\bigl{(}\mathopen{}\mathclose{{}\left\lVert z}\right\rVert^{2}-r_{1}^{2}\bigr{)},

that is,

Q0(z,z¯)b0=Q1(z,z¯)(z2r12).Q_{0}(z,\bar{z})-b_{0}=Q_{1}(z,\bar{z})\bigl{(}\mathopen{}\mathclose{{}\left\lVert z}\right\rVert^{2}-r_{1}^{2}\bigr{)}.

As Q0(z,z¯)=p(z)2Q_{0}(z,\bar{z})=\mathopen{}\mathclose{{}\left\lVert p(z)}\right\rVert^{2} is of bidegree (m,m)(m,m) and z2\mathopen{}\mathclose{{}\left\lVert z}\right\rVert^{2} is of bidegree (1,1)(1,1), Q1(z,z¯)Q_{1}(z,\bar{z}) is of bidegree (m1,m1)(m-1,m-1). As for =2,,k\ell=2,\dots,k, Q0(z,z¯)Q_{0}(z,\bar{z}) is constant and equals R2=[R2]R_{\ell}^{2}=[R_{\ell}^{2}] on the rr_{\ell}-sphere, Q1(z,z¯)Q_{1}(z,\bar{z}) is constant on the rr_{\ell}-sphere and equals

[R2][R12]r2r12=[R12,R2].\frac{[R_{\ell}^{2}]-[R_{1}^{2}]}{r_{\ell}^{2}-r_{1}^{2}}=[R_{1}^{2},R_{\ell}^{2}].

Suppose that for some jj, 1j<k1\leq j<k, there is a real polynomial Qj(z,z¯)Q_{j}(z,\bar{z}) such that Qj(z,z¯)Q_{j}(z,\bar{z}) is of bidegree (mj,mj)(m-j,m-j), and for =j+1,,k\ell=j+1,\dots,k, Qj(z,z¯)Q_{j}(z,\bar{z}) is constant on the rr_{\ell}-sphere and equals [R12,,Rj2,R2][R_{1}^{2},\dots,R_{j}^{2},R_{\ell}^{2}].

Now, Qj(z,z¯)Q_{j}(z,\bar{z}) is constant on the rj+1r_{j+1}-sphere. Thus there is a real polynomial Qj+1(z,z¯)Q_{j+1}(z,\bar{z}) such that

Qj(z,z¯)Qj(z,z¯)|z=rj+1=Qj+1(z,z¯)(z2rj+12).Q_{j}(z,\bar{z})-Q_{j}(z,\bar{z})\Big{|}_{\mathopen{}\mathclose{{}\left\lVert z}\right\rVert=r_{j+1}}=Q_{j+1}(z,\bar{z})\bigl{(}\mathopen{}\mathclose{{}\left\lVert z}\right\rVert^{2}-r_{j+1}^{2}\bigr{)}.

As Qj(z,z¯)Q_{j}(z,\bar{z}) is of bidegree (mj,mj)(m-j,m-j) and z2\mathopen{}\mathclose{{}\left\lVert z}\right\rVert^{2} is of bidegree (1,1)(1,1), Qj+1(z,z¯)Q_{j+1}(z,\bar{z}) is of bidegree (mj1,mj1)(m-j-1,m-j-1). As for =j+2,,k\ell=j+2,\dots,k, Qj(z,z¯)Q_{j}(z,\bar{z}) is constant on the rr_{\ell}-sphere and equals [R12,,Rj2,R2][R_{1}^{2},\dots,R_{j}^{2},R_{\ell}^{2}], Qj+1(z,z¯)Q_{j+1}(z,\bar{z}) is constant on the rr_{\ell}-sphere and equals

[R12,,Rj2,R2][R12,,Rj2,Rj+12]r2rj+12=[R12,,Rj+12,R2].\frac{[R_{1}^{2},\dots,R_{j}^{2},R_{\ell}^{2}]-[R_{1}^{2},\dots,R_{j}^{2},R_{j+1}^{2}]}{r_{\ell}^{2}-r_{j+1}^{2}}=[R_{1}^{2},\dots,R_{j+1}^{2},R_{\ell}^{2}].

Moreover, Qj(z,z¯)|z=rj+1=[R12,,Rj2,Rj+12]=bjQ_{j}(z,\bar{z})\big{|}_{\mathopen{}\mathclose{{}\left\lVert z}\right\rVert=r_{j+1}}=[R_{1}^{2},\dots,R_{j}^{2},R_{j+1}^{2}]=b_{j}, that is,

Qj(z,z¯)bj=Qj+1(z,z¯)(z2rj+12).Q_{j}(z,\bar{z})-b_{j}=Q_{j+1}(z,\bar{z})\bigl{(}\mathopen{}\mathclose{{}\left\lVert z}\right\rVert^{2}-r_{j+1}^{2}\bigr{)}.

The result then follows by induction. ∎

Lemma 3.4.

Let 1km1\leq k\leq m and p:nNp\colon\mathbb{C}^{n}\to\mathbb{C}^{N} be a polynomial kk-fold sphere map of degree mm, that is, it takes rjr_{j}-spheres to RjR_{j}-spheres, where all rjr_{j}s are distinct and rj,Rj>0r_{j},R_{j}>0 for j=1,,kj=1,\dots,k. Then

p(z)2\displaystyle\mathopen{}\mathclose{{}\left\lVert p(z)}\right\rVert^{2} =b0+b1(z2r12)+b2(z2r12)(z2r22)+\displaystyle=b_{0}+b_{1}\bigl{(}\mathopen{}\mathclose{{}\left\lVert z}\right\rVert^{2}-r_{1}^{2}\bigr{)}+b_{2}\bigl{(}\mathopen{}\mathclose{{}\left\lVert z}\right\rVert^{2}-r_{1}^{2}\bigr{)}\bigl{(}\mathopen{}\mathclose{{}\left\lVert z}\right\rVert^{2}-r_{2}^{2}\bigr{)}+\dots
+bk1(z2r12)(z2rk12)+Qk(z,z¯)(z2r12)(z2rk2)\displaystyle\phantom{={}}+b_{k-1}\bigl{(}\mathopen{}\mathclose{{}\left\lVert z}\right\rVert^{2}-r_{1}^{2}\bigr{)}\dots\bigl{(}\mathopen{}\mathclose{{}\left\lVert z}\right\rVert^{2}-r_{k-1}^{2}\bigr{)}+Q_{k}(z,\bar{z})\bigl{(}\mathopen{}\mathclose{{}\left\lVert z}\right\rVert^{2}-r_{1}^{2}\bigr{)}\dots\bigl{(}\mathopen{}\mathclose{{}\left\lVert z}\right\rVert^{2}-r_{k}^{2}\bigr{)}

for a real polynomial Qk(z,z¯)Q_{k}(z,\bar{z}) of bidegree (mk,mk)(m-k,m-k). In other words, p(z)2\mathopen{}\mathclose{{}\left\lVert p(z)}\right\rVert^{2} can be written as a Newton polynomial of z2\mathopen{}\mathclose{{}\left\lVert z}\right\rVert^{2} with the leading coefficient replaced by a bidegree-(mk,mk)(m-k,m-k) real polynomial.

Proof.

Let Q0(z,z¯)=p2Q_{0}(z,\bar{z})=\mathopen{}\mathclose{{}\left\lVert p}\right\rVert^{2}. By Lemma 3.3, for j=1,,kj=1,\dots,k, there is a real polynomial Qj(z,z¯)Q_{j}(z,\bar{z}) of bidegree (mj,mj)(m-j,m-j) such that

Qj1(z,z¯)bj1=Qj(z,z¯)(z2rj2).Q_{j-1}(z,\bar{z})-b_{j-1}=Q_{j}(z,\bar{z})\bigl{(}\mathopen{}\mathclose{{}\left\lVert z}\right\rVert^{2}-r_{j}^{2}\bigr{)}.

Inductively, we get

p(z)2\displaystyle\mathopen{}\mathclose{{}\left\lVert p(z)}\right\rVert^{2} =Q0(z,z¯)\displaystyle=Q_{0}(z,\bar{z})
=b0+(z2r12)(b1+(z2r22)(b2+(z2r32)(\displaystyle=b_{0}+\bigl{(}\mathopen{}\mathclose{{}\left\lVert z}\right\rVert^{2}-r_{1}^{2}\bigr{)}\biggl{(}b_{1}+\bigl{(}\mathopen{}\mathclose{{}\left\lVert z}\right\rVert^{2}-r_{2}^{2}\bigr{)}\Bigl{(}b_{2}+\bigl{(}\mathopen{}\mathclose{{}\left\lVert z}\right\rVert^{2}-r_{3}^{2}\bigr{)}\bigl{(}\dots
+bk1+(z2rk2)Qk(z,z¯))))\displaystyle\phantom{={}}+b_{k-1}+\bigl{(}\mathopen{}\mathclose{{}\left\lVert z}\right\rVert^{2}-r_{k}^{2}\bigr{)}Q_{k}(z,\bar{z})\bigr{)}\Bigr{)}\biggr{)}
=b0+b1(z2r12)+b2(z2r12)(z2r22)+\displaystyle=b_{0}+b_{1}\bigl{(}\mathopen{}\mathclose{{}\left\lVert z}\right\rVert^{2}-r_{1}^{2}\bigr{)}+b_{2}\bigl{(}\mathopen{}\mathclose{{}\left\lVert z}\right\rVert^{2}-r_{1}^{2}\bigr{)}\bigl{(}\mathopen{}\mathclose{{}\left\lVert z}\right\rVert^{2}-r_{2}^{2}\bigr{)}+\dots
+bk1(z2r12)(z2rk12)+Qk(z,z¯)(z2r12)(z2rk2),\displaystyle\phantom{={}}+b_{k-1}\bigl{(}\mathopen{}\mathclose{{}\left\lVert z}\right\rVert^{2}-r_{1}^{2}\bigr{)}\dots\bigl{(}\mathopen{}\mathclose{{}\left\lVert z}\right\rVert^{2}-r_{k-1}^{2}\bigr{)}+Q_{k}(z,\bar{z})\bigl{(}\mathopen{}\mathclose{{}\left\lVert z}\right\rVert^{2}-r_{1}^{2}\bigr{)}\dots\bigl{(}\mathopen{}\mathclose{{}\left\lVert z}\right\rVert^{2}-r_{k}^{2}\bigr{)},

where Qk(z,z¯)Q_{k}(z,\bar{z}) is a real polynomial of bidegree (mk,mk)(m-k,m-k). This is formally a degree-mm Newton polynomial of z2\mathopen{}\mathclose{{}\left\lVert z}\right\rVert^{2} that passes through the kk points (r12,R12),,(rk2,Rk2)(r_{1}^{2},R_{1}^{2}),\dots,(r_{k}^{2},R_{k}^{2}). ∎

As an immediate consequence, we obtain the following, proving the first part of Theorem 1.4.

Theorem 3.5.

Let p:nNp\colon\mathbb{C}^{n}\to\mathbb{C}^{N} be a polynomial mm-fold sphere map of degree mm. Then p(z)2\mathopen{}\mathclose{{}\left\lVert p(z)}\right\rVert^{2} is a polynomial of z2\mathopen{}\mathclose{{}\left\lVert z}\right\rVert^{2}. In particular, pp is an \infty-fold sphere map. In fact, pp takes all zero-centric spheres to zero-centric spheres.

Proof.

The Qm(z,z¯)Q_{m}(z,\bar{z}) from Lemma 3.4 is of bidegree (0,0)(0,0), that is, a constant. So p(z)2\mathopen{}\mathclose{{}\left\lVert p(z)}\right\rVert^{2} is a polynomial of z2\mathopen{}\mathclose{{}\left\lVert z}\right\rVert^{2}, and hence pp takes all zero-centric spheres to zero-centric spheres. In particular, pp is an \infty-fold sphere map. ∎

This gives us the following:

Corollary 3.6.

A polynomial \infty-fold sphere map takes all zero-centric spheres to zero-centric spheres.

Proof.

Let p:nNp\colon\mathbb{C}^{n}\to\mathbb{C}^{N} be a polynomial \infty-fold sphere map of degree mm. Then it is a polynomial mm-fold sphere map. By Theorem 3.5, it takes all zero-centric spheres to zero-centric spheres. ∎

The mm-fold requirement in Theorem 3.5 is necessary. In fact, we have the following:

Theorem 3.7.

Let n2n\geq 2, 1k<m1\leq k<m. Then there exist some NnN\geq n and monomial maps (see 2 below) of degree mm from n\mathbb{C}^{n} to N\mathbb{C}^{N} that are kk-fold sphere maps, but not (k+1)(k+1)-fold sphere maps. In particular, these maps do not take all zero-centric spheres to zero-centric spheres.

Proof.

Take arbitrary distinct rj>0r_{j}>0 for j=1,,kj=1,\dots,k. Consider the bidegree-(k,k)(k,k) real polynomial

Q′′(z,z¯)\displaystyle Q^{\prime\prime}(z,\bar{z}) =j=1k(z2rj2)\displaystyle=\prod_{j=1}^{k}\bigl{(}\mathopen{}\mathclose{{}\left\lVert z}\right\rVert^{2}-r_{j}^{2}\bigr{)}
=j=1k(|z1|2++|zn|2rj2)\displaystyle=\prod_{j=1}^{k}\bigl{(}\mathopen{}\mathclose{{}\left\lvert z_{1}}\right\rvert^{2}+\dots+\mathopen{}\mathclose{{}\left\lvert z_{n}}\right\rvert^{2}-r_{j}^{2}\bigr{)}
=0|α|kcα|zα|2,\displaystyle=\sum_{0\leq\mathopen{}\mathclose{{}\left\lvert\alpha}\right\rvert\leq k}c_{\alpha}\mathopen{}\mathclose{{}\left\lvert z^{\alpha}}\right\rvert^{2},

which is constant on z=s\mathopen{}\mathclose{{}\left\lVert z}\right\rVert=s for all s>0s>0. Choose cc such that

c>max{|cα|:0|α|k}>0,c>\max\bigl{\{}\mathopen{}\mathclose{{}\left\lvert c_{\alpha}}\right\rvert:0\leq\mathopen{}\mathclose{{}\left\lvert\alpha}\right\rvert\leq k\bigr{\}}>0,

write

z2(k+1)=(|z1|2++|zn|2)k+1=0|α|k+1dα|zα|2,\mathopen{}\mathclose{{}\left\lVert z}\right\rVert^{2(k+1)}=\mathopen{}\mathclose{{}\left(\mathopen{}\mathclose{{}\left\lvert z_{1}}\right\rvert^{2}+\dots+\mathopen{}\mathclose{{}\left\lvert z_{n}}\right\rvert^{2}}\right)^{k+1}=\sum_{0\leq\mathopen{}\mathclose{{}\left\lvert\alpha}\right\rvert\leq k+1}d_{\alpha}\mathopen{}\mathclose{{}\left\lvert z^{\alpha}}\right\rvert^{2},

and consider

Q(z,z¯)\displaystyle Q^{\prime}(z,\bar{z}) =1c|z1|2Q′′(z,z¯)+z2(k+1)\displaystyle=\frac{1}{c}\mathopen{}\mathclose{{}\left\lvert z_{1}}\right\rvert^{2}Q^{\prime\prime}(z,\bar{z})+\mathopen{}\mathclose{{}\left\lVert z}\right\rVert^{2(k+1)}
=|z1|20|α|kcαc|zα|2+0|α|k+1dα|zα|2\displaystyle=\mathopen{}\mathclose{{}\left\lvert z_{1}}\right\rvert^{2}\sum_{0\leq\mathopen{}\mathclose{{}\left\lvert\alpha}\right\rvert\leq k}\frac{c_{\alpha}}{c}\mathopen{}\mathclose{{}\left\lvert z^{\alpha}}\right\rvert^{2}+\sum_{0\leq\mathopen{}\mathclose{{}\left\lvert\alpha}\right\rvert\leq k+1}d_{\alpha}\mathopen{}\mathclose{{}\left\lvert z^{\alpha}}\right\rvert^{2}
=0|α|k+1,α1>0cα11,α2,,αnc|zα|2+0|α|k+1dα|zα|2\displaystyle=\sum_{0\leq\mathopen{}\mathclose{{}\left\lvert\alpha}\right\rvert\leq k+1,\alpha_{1}>0}\frac{c_{\alpha_{1}-1,\alpha_{2},\dots,\alpha_{n}}}{c}\mathopen{}\mathclose{{}\left\lvert z^{\alpha}}\right\rvert^{2}+\sum_{0\leq\mathopen{}\mathclose{{}\left\lvert\alpha}\right\rvert\leq k+1}d_{\alpha}\mathopen{}\mathclose{{}\left\lvert z^{\alpha}}\right\rvert^{2}
=0|α|k+1eα|zα|2,\displaystyle=\sum_{0\leq\mathopen{}\mathclose{{}\left\lvert\alpha}\right\rvert\leq k+1}e_{\alpha}\mathopen{}\mathclose{{}\left\lvert z^{\alpha}}\right\rvert^{2},

where

eα={dα,α1=0dα+cα11,α2,,αnc,α1>0.e_{\alpha}=\begin{cases}d_{\alpha},&\alpha_{1}=0\\ d_{\alpha}+\frac{c_{\alpha_{1}-1,\alpha_{2},\dots,\alpha_{n}}}{c},&\alpha_{1}>0\end{cases}.

We see that Q(z,z¯)Q^{\prime}(z,\bar{z}) is constant on z=s\mathopen{}\mathclose{{}\left\lVert z}\right\rVert=s for only s=r1,,rks=r_{1},\dots,r_{k} due to the |z1|2\mathopen{}\mathclose{{}\left\lvert z_{1}}\right\rvert^{2} term, and is of bidegree (k+1,k+1)(k+1,k+1). Moreover, each |cα11,α2,,αnc|<1\mathopen{}\mathclose{{}\left\lvert\frac{c_{\alpha_{1}-1,\alpha_{2},\dots,\alpha_{n}}}{c}}\right\rvert<1 and each dα1d_{\alpha}\geq 1, so that each eα>0e_{\alpha}>0. This lets us write QQ^{\prime} as a sum of squared norms of polynomial maps, that is,

Q(z,z¯)=0|α|k+1|eαzα|2Q^{\prime}(z,\bar{z})=\sum_{0\leq\mathopen{}\mathclose{{}\left\lvert\alpha}\right\rvert\leq k+1}\mathopen{}\mathclose{{}\left\lvert\sqrt{e_{\alpha}}z^{\alpha}}\right\rvert^{2}

is the squared norm of the map

(eαzα)0|α|k+1.(\sqrt{e_{\alpha}}z^{\alpha})_{0\leq\mathopen{}\mathclose{{}\left\lvert\alpha}\right\rvert\leq k+1}.

Finally, we form

Q0(z,z¯)\displaystyle Q_{0}(z,\bar{z}) =z2(mk1)Q(z,z¯)\displaystyle=\mathopen{}\mathclose{{}\left\lVert z}\right\rVert^{2(m-k-1)}Q^{\prime}(z,\bar{z})
=0|β|mk10|α|k+1fβeα|zβ|2|zα|2,\displaystyle=\sum_{\begin{subarray}{c}0\leq\mathopen{}\mathclose{{}\left\lvert\beta}\right\rvert\leq m-k-1\\ 0\leq\mathopen{}\mathclose{{}\left\lvert\alpha}\right\rvert\leq k+1\end{subarray}}f_{\beta}e_{\alpha}\mathopen{}\mathclose{{}\left\lvert z^{\beta}}\right\rvert^{2}\mathopen{}\mathclose{{}\left\lvert z^{\alpha}}\right\rvert^{2},

where

z2(mk1)=0|β|mk1fβ|zβ|2,\mathopen{}\mathclose{{}\left\lVert z}\right\rVert^{2(m-k-1)}=\sum_{0\leq\mathopen{}\mathclose{{}\left\lvert\beta}\right\rvert\leq m-k-1}f_{\beta}\mathopen{}\mathclose{{}\left\lvert z^{\beta}}\right\rvert^{2},

so that each fβeα>0f_{\beta}e_{\alpha}>0, as fβ1f_{\beta}\geq 1 and eα>0e_{\alpha}>0. We see that Q0(z,z¯)Q_{0}(z,\bar{z}) is constant on z=s\mathopen{}\mathclose{{}\left\lVert z}\right\rVert=s for only s=r12,,rk2s=r_{1}^{2},\dots,r_{k}^{2}, and is of bidegree (m,m)(m,m).

As mentioned in the introduction, z2(mk1)\mathopen{}\mathclose{{}\left\lVert z}\right\rVert^{2(m-k-1)} is the squared norm of the map z(mk1)z^{\otimes(m-k-1)}. We get that Q0(z,z¯)Q_{0}(z,\bar{z}) is the squared norm of the map

(2) p(z)=z(mk1)(eαzα)0|α|k+1.p(z)=z^{\otimes(m-k-1)}\otimes(\sqrt{e_{\alpha}}z^{\alpha})_{0\leq\mathopen{}\mathclose{{}\left\lvert\alpha}\right\rvert\leq k+1}.

This defines a family of maps for some NN, where each member is a monomial kk-fold sphere map p:nNp\colon\mathbb{C}^{n}\to\mathbb{C}^{N} of degree of mm that is not a (k+1)(k+1)-fold sphere map. ∎

3.2. Rational mm-fold sphere maps

In the following few results, we will obtain convenient expressions of p(z)2\mathopen{}\mathclose{{}\left\lVert p(z)}\right\rVert^{2} reminiscent of a Newton polynomial of indeterminate z2\mathopen{}\mathclose{{}\left\lVert z}\right\rVert^{2} for the rational mm-fold sphere map pq\frac{p}{q}.

Notation 3.8.

We write Q(z,z¯)[d,d]Q(z,\bar{z})^{[d,d]} to denote the bidegree-(d,d)(d,d) homogeneous part of a real polynomial Q(z,z¯)Q(z,\bar{z}), and write q(z)[d]q(z)^{[d]} to denote the degree-dd homogeneous part of a polynomial q(z)q(z).

Remark 3.9.

For convenience, we consider the zero real polynomial as a bidegree-(1,1)(-1,-1) real polynomial in (z,z¯)(z,\bar{z}).

Lemma 3.10.

Let n2n\geq 2, 1km+11\leq k\leq m+1, and f=pq:nNf=\frac{p}{q}\colon\mathbb{C}^{n}\dashrightarrow\mathbb{C}^{N} be a rational kk-fold sphere map of degree mm in reduced terms, that is, it takes rjr_{j}-spheres to RjR_{j}-spheres, where all rjr_{j}s are distinct and rj,Rj>0r_{j},R_{j}>0 for j=1,,kj=1,\dots,k. Let Q0(z,z¯)=p(z)2Q_{0}(z,\bar{z})=\mathopen{}\mathclose{{}\left\lVert p(z)}\right\rVert^{2}. Then for j=1,,kj=1,\dots,k, there is a real polynomial Qj(z,z¯)Q_{j}(z,\bar{z}) of bidegree at most (mj,mj)(m-j,m-j) such that

Qj1(z,z¯)Qj1(z,z¯)|q(z)|2|z=rj|q(z)|2=Qj(z,z¯)(z2rj2)Q_{j-1}(z,\bar{z})-\mathopen{}\mathclose{{}\left.\frac{Q_{j-1}(z,\bar{z})}{\mathopen{}\mathclose{{}\left\lvert q(z)}\right\rvert^{2}}}\right|_{\mathopen{}\mathclose{{}\left\lVert z}\right\rVert=r_{j}}\mathopen{}\mathclose{{}\left\lvert q(z)}\right\rvert^{2}=Q_{j}(z,\bar{z})\bigl{(}\mathopen{}\mathclose{{}\left\lVert z}\right\rVert^{2}-r_{j}^{2}\bigr{)}

which becomes

Qj1(z,z¯)bj1|q(z)|2=Qj(z,z¯)(z2rj2),Q_{j-1}(z,\bar{z})-b_{j-1}\mathopen{}\mathclose{{}\left\lvert q(z)}\right\rvert^{2}=Q_{j}(z,\bar{z})\bigl{(}\mathopen{}\mathclose{{}\left\lVert z}\right\rVert^{2}-r_{j}^{2}\bigr{)},

and for =j+1,,k\ell=j+1,\dots,k, Qj(z,z¯)|q(z)|2\frac{Q_{j}(z,\bar{z})}{\mathopen{}\mathclose{{}\left\lvert q(z)}\right\rvert^{2}} is constant on the rr_{\ell}-sphere and equals [R12,,Rj2,R2][R_{1}^{2},\dots,R_{j}^{2},R_{\ell}^{2}].

Moreover, if bj0b_{j}\neq 0, then q(z)q(z) is of degree at most mjm-j.

We remark that by Proposition 3.2, both b0b_{0} and b1b_{1} are always nonzero, so an immediate consequence is that if f=pqf=\frac{p}{q} is a rational 22-fold sphere map, then degq<degp\deg q<\deg p.

Proof.

The result is trivial if ff is constant, so we assume otherwise. The proof is essentially the same as that of Lemma 3.3. We prove the result by induction on jj. For j=1j=1, on the r1r_{1}-sphere, Q0(z,z¯)|q(z)|2=p(z)2|q(z)|2\frac{Q_{0}(z,\bar{z})}{\mathopen{}\mathclose{{}\left\lvert q(z)}\right\rvert^{2}}=\frac{\mathopen{}\mathclose{{}\left\lVert p(z)}\right\rVert^{2}}{\mathopen{}\mathclose{{}\left\lvert q(z)}\right\rvert^{2}} equals R12=[R12]=b0R_{1}^{2}=[R_{1}^{2}]=b_{0} and so is constant on the r1r_{1}-sphere. Rearranging,

Q0(z,z¯)=Q0(z,z¯)|q(z)|2|z=r1|q(z)|2Q_{0}(z,\bar{z})=\mathopen{}\mathclose{{}\left.\frac{Q_{0}(z,\bar{z})}{\mathopen{}\mathclose{{}\left\lvert q(z)}\right\rvert^{2}}}\right|_{\mathopen{}\mathclose{{}\left\lVert z}\right\rVert=r_{1}}\mathopen{}\mathclose{{}\left\lvert q(z)}\right\rvert^{2}

on the r1r_{1}-sphere, so that there is a real polynomial Q1(z,z¯)Q_{1}(z,\bar{z}) such that

Q0(z,z¯)Q0(z,z¯)|q(z)|2|z=r1|q(z)|2=Q1(z,z¯)(z2r12),Q_{0}(z,\bar{z})-\mathopen{}\mathclose{{}\left.\frac{Q_{0}(z,\bar{z})}{\mathopen{}\mathclose{{}\left\lvert q(z)}\right\rvert^{2}}}\right|_{\mathopen{}\mathclose{{}\left\lVert z}\right\rVert=r_{1}}\mathopen{}\mathclose{{}\left\lvert q(z)}\right\rvert^{2}=Q_{1}(z,\bar{z})\bigl{(}\mathopen{}\mathclose{{}\left\lVert z}\right\rVert^{2}-r_{1}^{2}\bigr{)},

that is,

Q0(z,z¯)b0|q(z)|2=Q1(z,z¯)(z2r12).Q_{0}(z,\bar{z})-b_{0}\mathopen{}\mathclose{{}\left\lvert q(z)}\right\rvert^{2}=Q_{1}(z,\bar{z})\bigl{(}\mathopen{}\mathclose{{}\left\lVert z}\right\rVert^{2}-r_{1}^{2}\bigr{)}.

We get

Q0(z,z¯)|q(z)|2Q0(z,z¯)|q(z)|2|z=r1=Q1(z,z¯)|q(z)|2(z2r12)\frac{Q_{0}(z,\bar{z})}{\mathopen{}\mathclose{{}\left\lvert q(z)}\right\rvert^{2}}-\mathopen{}\mathclose{{}\left.\frac{Q_{0}(z,\bar{z})}{\mathopen{}\mathclose{{}\left\lvert q(z)}\right\rvert^{2}}}\right|_{\mathopen{}\mathclose{{}\left\lVert z}\right\rVert=r_{1}}=\frac{Q_{1}(z,\bar{z})}{\mathopen{}\mathclose{{}\left\lvert q(z)}\right\rvert^{2}}\bigl{(}\mathopen{}\mathclose{{}\left\lVert z}\right\rVert^{2}-r_{1}^{2}\bigr{)}

outside the pole set.

As ff is a nonconstant rational map that takes r1r_{1}-sphere to R1R_{1}-sphere, it is a rational proper map of r1𝔹nr_{1}\mathbb{B}_{n} to R1𝔹NR_{1}\mathbb{B}_{N}. By [dangelo-2019-hermitian]*Proposition 5.1, degqdegp=m\deg q\leq\deg p=m. As Q0(z,z¯)=p(z)2Q_{0}(z,\bar{z})=\mathopen{}\mathclose{{}\left\lVert p(z)}\right\rVert^{2} is of bidegree (m,m)(m,m) and |q(z)|2\mathopen{}\mathclose{{}\left\lvert q(z)}\right\rvert^{2} is of bidegree at most (m,m)(m,m), Q1(z,z¯)Q_{1}(z,\bar{z}) is of bidegree (m1,m1)(m-1,m-1). As for =2,,k\ell=2,\dots,k, Q0(z,z¯)|q(z)|2\frac{Q_{0}(z,\bar{z})}{\mathopen{}\mathclose{{}\left\lvert q(z)}\right\rvert^{2}} is constant and equals R2=[R2]R_{\ell}^{2}=[R_{\ell}^{2}] on the rr_{\ell}-sphere, Q1(z,z¯)|q(z)|2\frac{Q_{1}(z,\bar{z})}{\mathopen{}\mathclose{{}\left\lvert q(z)}\right\rvert^{2}} is constant on the rr_{\ell}-sphere and equals

[R2][R12]r2r12=[R12,R2].\frac{[R_{\ell}^{2}]-[R_{1}^{2}]}{r_{\ell}^{2}-r_{1}^{2}}=[R_{1}^{2},R_{\ell}^{2}].

Suppose that for some jj, 1j<k1\leq j<k, there is a real polynomial Qj(z,z¯)Q_{j}(z,\bar{z}) of bidegree at most (mj,mj)(m-j,m-j) such that

Qj1(z,z¯)Qj1(z,z¯)|q(z)|2|z=rj|q(z)|2=Qj(z,z¯)(z2rj2),Q_{j-1}(z,\bar{z})-\mathopen{}\mathclose{{}\left.\frac{Q_{j-1}(z,\bar{z})}{\mathopen{}\mathclose{{}\left\lvert q(z)}\right\rvert^{2}}}\right|_{\mathopen{}\mathclose{{}\left\lVert z}\right\rVert=r_{j}}\mathopen{}\mathclose{{}\left\lvert q(z)}\right\rvert^{2}=Q_{j}(z,\bar{z})\bigl{(}\mathopen{}\mathclose{{}\left\lVert z}\right\rVert^{2}-r_{j}^{2}\bigr{)},

and for =j+1,,k\ell=j+1,\dots,k, Qj(z,z¯)|q(z)|2\frac{Q_{j}(z,\bar{z})}{\mathopen{}\mathclose{{}\left\lvert q(z)}\right\rvert^{2}} is constant on the rr_{\ell}-sphere and equals [R12,,Rj2,R2][R_{1}^{2},\dots,R_{j}^{2},R_{\ell}^{2}].

Now, Qj(z,z¯)|q(z)|2\frac{Q_{j}(z,\bar{z})}{\mathopen{}\mathclose{{}\left\lvert q(z)}\right\rvert^{2}} is constant on the rj+1r_{j+1}-sphere. Rearranging,

Qj(z,z¯)=Qj(z,z¯)|q(z)|2|z=rj|q(z)|2Q_{j}(z,\bar{z})=\mathopen{}\mathclose{{}\left.\frac{Q_{j}(z,\bar{z})}{\mathopen{}\mathclose{{}\left\lvert q(z)}\right\rvert^{2}}}\right|_{\mathopen{}\mathclose{{}\left\lVert z}\right\rVert=r_{j}}\mathopen{}\mathclose{{}\left\lvert q(z)}\right\rvert^{2}

on the rj+1r_{j+1}-sphere, so that there is a real polynomial Qj+1(z,z¯)Q_{j+1}(z,\bar{z}) such that

(3) Qj(z,z¯)Qj(z,z¯)|q(z)|2|z=rj+1|q(z)|2=Qj+1(z,z¯)(z2rj+12).Q_{j}(z,\bar{z})-\mathopen{}\mathclose{{}\left.\frac{Q_{j}(z,\bar{z})}{\mathopen{}\mathclose{{}\left\lvert q(z)}\right\rvert^{2}}}\right|_{\mathopen{}\mathclose{{}\left\lVert z}\right\rVert=r_{j+1}}\mathopen{}\mathclose{{}\left\lvert q(z)}\right\rvert^{2}=Q_{j+1}(z,\bar{z})\bigl{(}\mathopen{}\mathclose{{}\left\lVert z}\right\rVert^{2}-r_{j+1}^{2}\bigr{)}.

We get

Qj(z,z¯)|q(z)|2Qj(z,z¯)|q(z)|2|z=rj+1=Qj+1(z,z¯)|q(z)|2(z2rj+12)\frac{Q_{j}(z,\bar{z})}{\mathopen{}\mathclose{{}\left\lvert q(z)}\right\rvert^{2}}-\mathopen{}\mathclose{{}\left.\frac{Q_{j}(z,\bar{z})}{\mathopen{}\mathclose{{}\left\lvert q(z)}\right\rvert^{2}}}\right|_{\mathopen{}\mathclose{{}\left\lVert z}\right\rVert=r_{j+1}}=\frac{Q_{j+1}(z,\bar{z})}{\mathopen{}\mathclose{{}\left\lvert q(z)}\right\rvert^{2}}\bigl{(}\mathopen{}\mathclose{{}\left\lVert z}\right\rVert^{2}-r_{j+1}^{2}\bigr{)}

outside the pole set.

As for =j+2,,k\ell=j+2,\dots,k, Qj(z,z¯)|q(z)|2\frac{Q_{j}(z,\bar{z})}{\mathopen{}\mathclose{{}\left\lvert q(z)}\right\rvert^{2}} is constant on the rr_{\ell}-sphere and equals [R12,,Rj2,R2][R_{1}^{2},\dots,R_{j}^{2},R_{\ell}^{2}], Qj+1(z,z¯)|q(z)|2\frac{Q_{j+1}(z,\bar{z})}{\mathopen{}\mathclose{{}\left\lvert q(z)}\right\rvert^{2}} is constant on the rr_{\ell}-sphere and equals

[R12,,Rj2,R2][R12,,Rj2,Rj+12]r2rj+12=[R12,,Rj+12,R2].\frac{[R_{1}^{2},\dots,R_{j}^{2},R_{\ell}^{2}]-[R_{1}^{2},\dots,R_{j}^{2},R_{j+1}^{2}]}{r_{\ell}^{2}-r_{j+1}^{2}}=[R_{1}^{2},\dots,R_{j+1}^{2},R_{\ell}^{2}].

Moreover, Qj(z,z¯)|q(z)|2|z=rj+1=[R12,,Rj2,Rj+12]=bj\frac{Q_{j}(z,\bar{z})}{\mathopen{}\mathclose{{}\left\lvert q(z)}\right\rvert^{2}}\big{|}_{\mathopen{}\mathclose{{}\left\lVert z}\right\rVert=r_{j+1}}=[R_{1}^{2},\dots,R_{j}^{2},R_{j+1}^{2}]=b_{j}, that is,

Qj(z,z¯)bj|q(z)2|=Qj+1(z,z¯)(z2rj+12).Q_{j}(z,\bar{z})-b_{j}\mathopen{}\mathclose{{}\left\lvert q(z)^{2}}\right\rvert=Q_{j+1}(z,\bar{z})\bigl{(}\mathopen{}\mathclose{{}\left\lVert z}\right\rVert^{2}-r_{j+1}^{2}\bigr{)}.

If bj=0b_{j}=0, then

Qj(z,z¯)=Qj+1(z,z¯)(z2rj+12).Q_{j}(z,\bar{z})=Q_{j+1}(z,\bar{z})\bigl{(}\mathopen{}\mathclose{{}\left\lVert z}\right\rVert^{2}-r_{j+1}^{2}\bigr{)}.

As Qj(z,z¯)Q_{j}(z,\bar{z}) is of bidegree at most (mj,mj)(m-j,m-j), Qj+1(z,z¯)Q_{j+1}(z,\bar{z}) is of bidegree at most (mj1,mj1)(m-j-1,m-j-1).

If bj0b_{j}\neq 0, suppose for contradiction that the degree \ell of qq is bigger than mjm-j. As Qj(z,z¯)Q_{j}(z,\bar{z}) is of bidegree at most (mj,mj)(m-j,m-j) and |q(z)|2\mathopen{}\mathclose{{}\left\lvert q(z)}\right\rvert^{2} is of bidegree (,)(\ell,\ell), Qj+1(z,z¯)Q_{j+1}(z,\bar{z}) is of bidegree (1,1)(\ell-1,\ell-1). Collecting bidegree-(,)(\ell,\ell) terms on both sides of 3 and using the notation from 3.8, we get

bj|q(z)[]|2=Qj+1(z,z¯)[1,1]z2.-b_{j}\mathopen{}\mathclose{{}\left\lvert q(z)^{[\ell]}}\right\rvert^{2}=Q_{j+1}(z,\bar{z})^{[\ell-1,\ell-1]}\mathopen{}\mathclose{{}\left\lVert z}\right\rVert^{2}.

By Huang’s lemma [huang-1999-linearity]*Lemma 3.2, a product of z2\mathopen{}\mathclose{{}\left\lVert z}\right\rVert^{2} that is not zero cannot be a sum or difference of fewer than nn hermitian squares, and so

|q(z)[]|2=0,Qj+1(z,z¯)[1,1]=0,\mathopen{}\mathclose{{}\left\lvert q(z)^{[\ell]}}\right\rvert^{2}=0,\quad Q_{j+1}(z,\bar{z})^{[\ell-1,\ell-1]}=0,

as n>1n>1 and bj0b_{j}\neq 0, contradicting degq=\deg q=\ell. Thus q(z)q(z) is of degree at most mjm-j. As both Qj(z,z¯)Q_{j}(z,\bar{z}) and |q(z)|2\mathopen{}\mathclose{{}\left\lvert q(z)}\right\rvert^{2} are of bidegree at most (mj,mj)(m-j,m-j), Qj+1(z,z¯)Q_{j+1}(z,\bar{z}) is of bidegree at most (mj1,mj1)(m-j-1,m-j-1). The result then follows by induction. ∎

Lemma 3.11.

Let n2n\geq 2, 1km+11\leq k\leq m+1, and f=pq:nNf=\frac{p}{q}\colon\mathbb{C}^{n}\dashrightarrow\mathbb{C}^{N} be a rational kk-fold sphere map of degree mm in reduced terms, that is, it takes rjr_{j}-spheres to RjR_{j}-spheres, where all rjr_{j}s are distinct and rj,Rj>0r_{j},R_{j}>0 for j=1,,kj=1,\dots,k. Then

p(z)2\displaystyle\mathopen{}\mathclose{{}\left\lVert p(z)}\right\rVert^{2} =(b0+b1(z2r12)+b2(z2r12)(z2r22)+\displaystyle=\Bigl{(}b_{0}+b_{1}\bigl{(}\mathopen{}\mathclose{{}\left\lVert z}\right\rVert^{2}-r_{1}^{2}\bigr{)}+b_{2}\bigl{(}\mathopen{}\mathclose{{}\left\lVert z}\right\rVert^{2}-r_{1}^{2}\bigr{)}\bigl{(}\mathopen{}\mathclose{{}\left\lVert z}\right\rVert^{2}-r_{2}^{2}\bigr{)}+\cdots
+bk1(z2r12)(z2rk12))|q(z)|2\displaystyle\phantom{=\Bigl{(}}+b_{k-1}\bigl{(}\mathopen{}\mathclose{{}\left\lVert z}\right\rVert^{2}-r_{1}^{2}\bigr{)}\cdots\bigl{(}\mathopen{}\mathclose{{}\left\lVert z}\right\rVert^{2}-r_{k-1}^{2}\bigr{)}\Bigr{)}\mathopen{}\mathclose{{}\left\lvert q(z)}\right\rvert^{2}
+Qk(z,z¯)(z2r12)(z2rk2)\displaystyle\phantom{={}}+Q_{k}(z,\bar{z})\bigl{(}\mathopen{}\mathclose{{}\left\lVert z}\right\rVert^{2}-r_{1}^{2}\bigr{)}\cdots\bigl{(}\mathopen{}\mathclose{{}\left\lVert z}\right\rVert^{2}-r_{k}^{2}\bigr{)}

for a real polynomial Qk(z,z¯)Q_{k}(z,\bar{z}) of bidegree at most (mk,mk)(m-k,m-k). In other words, p(z)2\mathopen{}\mathclose{{}\left\lVert p(z)}\right\rVert^{2} can be written as a Newton polynomial of z2\mathopen{}\mathclose{{}\left\lVert z}\right\rVert^{2} with the leading coefficient replaced by a real polynomial of bidegree (mk,mk)(m-k,m-k) and the rest of the Newton polynomial multiplied by |q(z)|2\mathopen{}\mathclose{{}\left\lvert q(z)}\right\rvert^{2}.

Proof.

Let Q0(z,z¯)=p2Q_{0}(z,\bar{z})=\mathopen{}\mathclose{{}\left\lVert p}\right\rVert^{2}. By Lemma 3.10, for j=1,,kj=1,\dots,k, there is a real polynomial Qj(z,z¯)Q_{j}(z,\bar{z}) of bidegree at most (mj,mj)(m-j,m-j) such that

Qj1(z,z¯)bj1|q(z)|2=Qj(z,z¯)(z2rj2).Q_{j-1}(z,\bar{z})-b_{j-1}\mathopen{}\mathclose{{}\left\lvert q(z)}\right\rvert^{2}=Q_{j}(z,\bar{z})\bigl{(}\mathopen{}\mathclose{{}\left\lVert z}\right\rVert^{2}-r_{j}^{2}\bigr{)}.

Inductively, we get

p(z)2\displaystyle\mathopen{}\mathclose{{}\left\lVert p(z)}\right\rVert^{2} =Q0(z,z¯)\displaystyle=Q_{0}(z,\bar{z})
=b0|q(z)|2+(z2r12)(b1|q(z)|2+(z2r22)(b2|q(z)|2\displaystyle=b_{0}\mathopen{}\mathclose{{}\left\lvert q(z)}\right\rvert^{2}+\bigl{(}\mathopen{}\mathclose{{}\left\lVert z}\right\rVert^{2}-r_{1}^{2}\bigr{)}\Biggl{(}b_{1}\mathopen{}\mathclose{{}\left\lvert q(z)}\right\rvert^{2}+\bigl{(}\mathopen{}\mathclose{{}\left\lVert z}\right\rVert^{2}-r_{2}^{2}\bigr{)}\biggl{(}b_{2}\mathopen{}\mathclose{{}\left\lvert q(z)}\right\rvert^{2}
+(z2r32)(+bk1|q(z)|2+(z2rk2)Qk(z,z¯))))\displaystyle\phantom{={}}+\bigl{(}\mathopen{}\mathclose{{}\left\lVert z}\right\rVert^{2}-r_{3}^{2}\bigr{)}\Bigl{(}\cdots+b_{k-1}\mathopen{}\mathclose{{}\left\lvert q(z)}\right\rvert^{2}+\bigl{(}\mathopen{}\mathclose{{}\left\lVert z}\right\rVert^{2}-r_{k}^{2}\bigr{)}Q_{k}(z,\bar{z})\Bigr{)}\biggr{)}\Biggr{)}
=(b0+b1(z2r12)+b2(z2r12)(z2r22)+\displaystyle=\Bigl{(}b_{0}+b_{1}\bigl{(}\mathopen{}\mathclose{{}\left\lVert z}\right\rVert^{2}-r_{1}^{2}\bigr{)}+b_{2}\bigl{(}\mathopen{}\mathclose{{}\left\lVert z}\right\rVert^{2}-r_{1}^{2}\bigr{)}\bigl{(}\mathopen{}\mathclose{{}\left\lVert z}\right\rVert^{2}-r_{2}^{2}\bigr{)}+\cdots
+bk1(z2r12)(z2rk12))|q(z)|2\displaystyle\phantom{=\Bigl{(}}+b_{k-1}\bigl{(}\mathopen{}\mathclose{{}\left\lVert z}\right\rVert^{2}-r_{1}^{2}\bigr{)}\cdots\bigl{(}\mathopen{}\mathclose{{}\left\lVert z}\right\rVert^{2}-r_{k-1}^{2}\bigr{)}\Bigr{)}\mathopen{}\mathclose{{}\left\lvert q(z)}\right\rvert^{2}
+Qk(z,z¯)(z2r12)(z2rk2),\displaystyle\phantom{={}}+Q_{k}(z,\bar{z})\bigl{(}\mathopen{}\mathclose{{}\left\lVert z}\right\rVert^{2}-r_{1}^{2}\bigr{)}\cdots\bigl{(}\mathopen{}\mathclose{{}\left\lVert z}\right\rVert^{2}-r_{k}^{2}\bigr{)},

where Qk(z,z¯)Q_{k}(z,\bar{z}) is a real polynomial of bidegree at most (mk,mk)(m-k,m-k). For q1q\equiv 1, this becomes formally a degree-mm Newton polynomial of z2\mathopen{}\mathclose{{}\left\lVert z}\right\rVert^{2} that passes through the kk points (r12,R12),,(rk2,Rk2)(r_{1}^{2},R_{1}^{2}),\dots,(r_{k}^{2},R_{k}^{2}). ∎

As a consequence, we obtain the following, proving the second part of Theorem 1.4.

Theorem 3.12.

Let n2n\geq 2 and f=pq:nNf=\frac{p}{q}\colon\mathbb{C}^{n}\dashrightarrow\mathbb{C}^{N} be a rational (m+1)(m+1)-fold sphere map of degree mm. Then ff is a polynomial \infty-fold sphere map. In particular, it takes all zero-centric spheres to zero-centric spheres.

Proof.

By Lemma 3.11,

p(z)2=Q(z,z¯)|q(z)|2+Qm+1(z,z¯)(z2r12)(z2rm+12),\displaystyle\mathopen{}\mathclose{{}\left\lVert p(z)}\right\rVert^{2}=Q(z,\bar{z})\mathopen{}\mathclose{{}\left\lvert q(z)}\right\rvert^{2}+Q_{m+1}(z,\bar{z})\bigl{(}\mathopen{}\mathclose{{}\left\lVert z}\right\rVert^{2}-r_{1}^{2}\bigr{)}\dots\bigl{(}\mathopen{}\mathclose{{}\left\lVert z}\right\rVert^{2}-r_{m+1}^{2}\bigr{)},

where

Q(z,z¯)=b0+b1(z2r12)++bm(z2r12)(z2rm2)Q(z,\bar{z})=b_{0}+b_{1}\bigl{(}\mathopen{}\mathclose{{}\left\lVert z}\right\rVert^{2}-r_{1}^{2}\bigr{)}+\dots\\ +b_{m}\bigl{(}\mathopen{}\mathclose{{}\left\lVert z}\right\rVert^{2}-r_{1}^{2}\bigr{)}\dots\bigl{(}\mathopen{}\mathclose{{}\left\lVert z}\right\rVert^{2}-r_{m}^{2}\bigr{)}

is a polynomial of z2\mathopen{}\mathclose{{}\left\lVert z}\right\rVert^{2}, and Qm+1(z,z¯)Q_{m+1}(z,\bar{z}) is of bidegree at most (1,1)(-1,-1), hence zero. Thus outside the set where q=0q=0, we have f(z)2=p(z)2|q(z)|2=Q(z,z¯)\mathopen{}\mathclose{{}\left\lVert f(z)}\right\rVert^{2}=\frac{\mathopen{}\mathclose{{}\left\lVert p(z)}\right\rVert^{2}}{\mathopen{}\mathclose{{}\left\lvert q(z)}\right\rvert^{2}}=Q(z,\bar{z}).

Suppose that f=pqf=\frac{p}{q} is in lowest terms. As ff takes r1r_{1}-sphere to R1R_{1}-sphere, q(0)q(0) is not zero, and so ff has a power series expansion at the origin, and hence so does f(z)2\mathopen{}\mathclose{{}\left\lVert f(z)}\right\rVert^{2}. The (infinite) matrix of coefficients of this power series is positive semidefnite (being a squared norm) and as the matrix of coefficients of Q(z,z¯)Q(z,\bar{z}) is a principal submatrix of this infinite matrix, it is itself positive semidefinite. Thus there is a polynomial map PP such that Q(z,z¯)=P(z)2Q(z,\bar{z})=\mathopen{}\mathclose{{}\left\lVert P(z)}\right\rVert^{2}. But then P=Uf=UpqP=Uf=\frac{Up}{q} for some unitary matrix UU near the origin, again using the result of D’Angelo. This means that qq(0)q\equiv q(0) and so ff is a polynomial.

Since ff is a polynomial (m+1)(m+1)-fold sphere map, it is a polynomial mm-fold sphere map, so by Theorem 3.5, it is an \infty-fold sphere map and takes all zero-centric spheres to zero-centric spheres. ∎

This gives us the following, generalizing Corollary 3.6.

Corollary 3.13.

A rational \infty-fold sphere map takes all zero-centric spheres to zero-centric spheres.

Proof.

Let f:nNf\colon\mathbb{C}^{n}\dashrightarrow\mathbb{C}^{N} be a rational \infty-fold sphere map of degree mm. Then it is a rational (m+1)(m+1)-fold sphere map. By Theorem 3.12, it takes all zero-centric spheres to zero-centric spheres. ∎

The (m+1)(m+1)-fold requirement in Theorem 3.12 is necessary. In fact, we have the following:

Theorem 3.14.

Let n2n\geq 2, 1k<m+11\leq k<m+1. Then there exist an integer NnN\geq n and rational maps (see 4 below) of degree mm from n\mathbb{C}^{n} to N\mathbb{C}^{N} that are kk-fold sphere maps, but not (k+1)(k+1)-fold sphere maps. In particular, these maps do not take all zero-centric spheres to zero-centric spheres.

Proof.

Take any arbitrary degree-11 polynomial function q:nq\colon\mathbb{C}^{n}\to\mathbb{C}, that is, of the form a0+az=a0+a1z1++anzna_{0}+a\cdot z=a_{0}+a_{1}z_{1}+\dots+a_{n}z_{n}, which after a unitary transformation becomes a0+a1z1a_{0}+a_{1}z_{1} with a1a_{1}\in\mathbb{C}, which after another unitary transformation becomes a0+a1z1a_{0}+a_{1}z_{1} with a1>0a_{1}>0. If qq is the denominator of a rational map, qq can be scaled to have q(0)=1q(0)=1. Thus without loss of generality, assume that q(z)=1+az1,a>0q(z)=1+az_{1},a>0.

Take arbitrary distinct rj>0r_{j}>0 for j=1,,kj=1,\dots,k. Consider the bidegree-(k,k)(k,k) real polynomial

Q′′(z,z¯)\displaystyle Q^{\prime\prime}(z,\bar{z}) =j=1k(z2rj2)\displaystyle=\prod_{j=1}^{k}\bigl{(}\mathopen{}\mathclose{{}\left\lVert z}\right\rVert^{2}-r_{j}^{2}\bigr{)}
=j=1k(|z1|2++|zn|2rj2)\displaystyle=\prod_{j=1}^{k}\bigl{(}\mathopen{}\mathclose{{}\left\lvert z_{1}}\right\rvert^{2}+\dots+\mathopen{}\mathclose{{}\left\lvert z_{n}}\right\rvert^{2}-r_{j}^{2}\bigr{)}
=0|α|kcα|zα|2,\displaystyle=\sum_{0\leq\mathopen{}\mathclose{{}\left\lvert\alpha}\right\rvert\leq k}c_{\alpha}\mathopen{}\mathclose{{}\left\lvert z^{\alpha}}\right\rvert^{2},

which is constant on z=s\mathopen{}\mathclose{{}\left\lVert z}\right\rVert=s for all s>0s>0. Choose cc such that

c>max{|cα|:0|α|k}>0,c>\max\bigl{\{}\mathopen{}\mathclose{{}\left\lvert c_{\alpha}}\right\rvert:0\leq\mathopen{}\mathclose{{}\left\lvert\alpha}\right\rvert\leq k\bigr{\}}>0,

write

z2(k1)=(|z1|2++|zn|2)k1=0|α|k1dα|zα|2,\mathopen{}\mathclose{{}\left\lVert z}\right\rVert^{2(k-1)}=\mathopen{}\mathclose{{}\left(\mathopen{}\mathclose{{}\left\lvert z_{1}}\right\rvert^{2}+\dots+\mathopen{}\mathclose{{}\left\lvert z_{n}}\right\rvert^{2}}\right)^{k-1}=\sum_{0\leq\mathopen{}\mathclose{{}\left\lvert\alpha}\right\rvert\leq k-1}d_{\alpha}\mathopen{}\mathclose{{}\left\lvert z^{\alpha}}\right\rvert^{2},

and consider

Q(z,z¯)\displaystyle Q^{\prime}(z,\bar{z}) =1cQ′′(z,z¯)+z2(k1)\displaystyle=\frac{1}{c}Q^{\prime\prime}(z,\bar{z})+\mathopen{}\mathclose{{}\left\lVert z}\right\rVert^{2(k-1)}
=0|α|kcαc|zα|2+0|α|k1dα|zα|2\displaystyle=\sum_{0\leq\mathopen{}\mathclose{{}\left\lvert\alpha}\right\rvert\leq k}\frac{c_{\alpha}}{c}\mathopen{}\mathclose{{}\left\lvert z^{\alpha}}\right\rvert^{2}+\sum_{0\leq\mathopen{}\mathclose{{}\left\lvert\alpha}\right\rvert\leq k-1}d_{\alpha}\mathopen{}\mathclose{{}\left\lvert z^{\alpha}}\right\rvert^{2}
=0|α|keα|zα|2,\displaystyle=\sum_{0\leq\mathopen{}\mathclose{{}\left\lvert\alpha}\right\rvert\leq k}e_{\alpha}\mathopen{}\mathclose{{}\left\lvert z^{\alpha}}\right\rvert^{2},

where

eα={cαc,|α|=kcαc+dα,|α|k1e_{\alpha}=\begin{cases}\frac{c_{\alpha}}{c},&\mathopen{}\mathclose{{}\left\lvert\alpha}\right\rvert=k\\ \frac{c_{\alpha}}{c}+d_{\alpha},&\mathopen{}\mathclose{{}\left\lvert\alpha}\right\rvert\leq k-1\end{cases}

We see that for |α|=k\mathopen{}\mathclose{{}\left\lvert\alpha}\right\rvert=k, each cα=1>0c_{\alpha}=1>0, so that each eα>0e_{\alpha}>0, and for |α|k1\mathopen{}\mathclose{{}\left\lvert\alpha}\right\rvert\leq k-1, each |cαc|<1\mathopen{}\mathclose{{}\left\lvert\frac{c_{\alpha}}{c}}\right\rvert<1 and each dα1d_{\alpha}\geq 1, so that each eα>0e_{\alpha}>0. Thus the matrix (Q)(Q^{\prime}) of coefficients of Q(z,z¯)Q^{\prime}(z,\bar{z}) is positive definite.

Now consider

Q(z,z¯)\displaystyle Q(z,\bar{z}) =1cQ′′(z,z¯)+|q(z)|2z2(k1).\displaystyle=\frac{1}{c}Q^{\prime\prime}(z,\bar{z})+\mathopen{}\mathclose{{}\left\lvert q(z)}\right\rvert^{2}\mathopen{}\mathclose{{}\left\lVert z}\right\rVert^{2(k-1)}.

As a0a\to 0, we get that q1q\to 1, Q(z,z¯)Q(z,z¯)Q(z,\bar{z})\to Q^{\prime}(z,\bar{z}) and the matrix (Q)(Q) approaches (Q)(Q^{\prime}), which is positive definite. This means that (Q)(Q) is also positive definite for small enough a>0a>0. Thus there is a polynomial map p0p_{0} such that Q(z,z¯)=p0(z)2Q(z,\bar{z})=\mathopen{}\mathclose{{}\left\lVert p_{0}(z)}\right\rVert^{2}.

Finally, we form

Q0(z,z¯)=z2(mk)Q(z,z¯)=z(mk)p0(z)2.Q_{0}(z,\bar{z})=\mathopen{}\mathclose{{}\left\lVert z}\right\rVert^{2(m-k)}Q(z,\bar{z})=\mathopen{}\mathclose{{}\left\lVert z^{\otimes(m-k)}\otimes p_{0}(z)}\right\rVert^{2}.

This gives us

Q0(z,z¯)|q(z)|2\displaystyle\frac{Q_{0}(z,\bar{z})}{\mathopen{}\mathclose{{}\left\lvert q(z)}\right\rvert^{2}} =1cz2(mk)j=1k(z2rj2)+z2(m1)|q(z)|2|q(z)|2\displaystyle=\frac{\frac{1}{c}\mathopen{}\mathclose{{}\left\lVert z}\right\rVert^{2(m-k)}\prod_{j=1}^{k}\bigl{(}\mathopen{}\mathclose{{}\left\lVert z}\right\rVert^{2}-r_{j}^{2}\bigr{)}+\mathopen{}\mathclose{{}\left\lVert z}\right\rVert^{2(m-1)}\mathopen{}\mathclose{{}\left\lvert q(z)}\right\rvert^{2}}{\mathopen{}\mathclose{{}\left\lvert q(z)}\right\rvert^{2}}
=1cz2(mk)j=1k(z2rj2)|q(z)|2+z2(m1).\displaystyle=\frac{1}{c}\frac{\mathopen{}\mathclose{{}\left\lVert z}\right\rVert^{2(m-k)}\prod_{j=1}^{k}\bigl{(}\mathopen{}\mathclose{{}\left\lVert z}\right\rVert^{2}-r_{j}^{2}\bigr{)}}{\mathopen{}\mathclose{{}\left\lvert q(z)}\right\rvert^{2}}+\mathopen{}\mathclose{{}\left\lVert z}\right\rVert^{2(m-1)}.

Now, j=1k(z2rj2)\prod_{j=1}^{k}\bigl{(}\mathopen{}\mathclose{{}\left\lVert z}\right\rVert^{2}-r_{j}^{2}\bigr{)} has a finite bidegree and hence can be divisible by |1+az1|2\mathopen{}\mathclose{{}\left\lvert 1+az_{1}}\right\rvert^{2} for only a finite number of values of aa. So assume that a>0a>0 is small enough so that |q(z)|2\mathopen{}\mathclose{{}\left\lvert q(z)}\right\rvert^{2} does not divide j=1k(z2rj2)\prod_{j=1}^{k}\bigl{(}\mathopen{}\mathclose{{}\left\lVert z}\right\rVert^{2}-r_{j}^{2}\bigr{)}. We see that Q0(z,z¯)|q(z)|2\frac{Q_{0}(z,\bar{z})}{\mathopen{}\mathclose{{}\left\lvert q(z)}\right\rvert^{2}} is constant on z=s\mathopen{}\mathclose{{}\left\lVert z}\right\rVert=s for only s=r1,,rks=r_{1},\dots,r_{k} due to the |q(z)|2\mathopen{}\mathclose{{}\left\lvert q(z)}\right\rvert^{2} term and gives a rational map in reduced terms

p(z)q(z)=z(mk1)p0(z)1+az1.\frac{p(z)}{q(z)}=\frac{z^{\otimes(m-k-1)}\otimes p_{0}(z)}{1+az_{1}}.

Replacing 1+az11+az_{1} with a more general denominator q(z)=1+azq(z)=1+a\cdot z with small enough nonzero ana\in\mathbb{C}^{n} gives a rational map in reduced terms

(4) f(z)=p(z)q(z)=z(mk1)p0(z)1+az.f(z)=\frac{p(z)}{q(z)}=\frac{z^{\otimes(m-k-1)}\otimes p_{0}(z)}{1+a\cdot z}.

This defines a family of maps for some NN, where each member is a rational kk-fold sphere map f=pq:nNf=\frac{p}{q}\colon\mathbb{C}^{n}\dashrightarrow\mathbb{C}^{N} of degree of mm that is not a (k+1)(k+1)-fold sphere map. ∎

The description of f(z)2\mathopen{}\mathclose{{}\left\lVert f(z)}\right\rVert^{2} in Theorem 3.5 enables us to obtain a normal form of ff when ff is a rational \infty-fold sphere map, proving the last part of Theorem 1.4.

Theorem 3.15.

If ff is a rational \infty-fold sphere map, then ff is polynomial and for every r>0r>0 there exists an R>0R>0 such that f(rS2n1)RS2N1f(rS^{2n-1})\subset RS^{2N-1}. Moreover, there exists a unitary UU(N)U\in U(\mathbb{C}^{N}) and homogeneous sphere maps (possibly constant) hj:njh_{j}\colon\mathbb{C}^{n}\to\mathbb{C}^{\ell_{j}}, j=1,,kj=1,\ldots,k and where 1++kN\ell_{1}+\cdots+\ell_{k}\leq N, such that

(5) f=U(h1hk0).f=U(h_{1}\oplus\cdots\oplus h_{k}\oplus 0).
Proof.

The first part of the statement follows from Theorem 3.12.

Suppose the degree of the polynomial ff is mm. To obtain the stated presentation of ff, we use the expression of f(z)2\mathopen{}\mathclose{{}\left\lVert f(z)}\right\rVert^{2} in Theorem 3.5:

f(z)2\displaystyle\mathopen{}\mathclose{{}\left\lVert f(z)}\right\rVert^{2} =[R12]+[R12,R22](z2r12)+[R12,R22,R32](z2r12)(z2r22)+\displaystyle=[R_{1}^{2}]+[R_{1}^{2},R_{2}^{2}]\bigl{(}\mathopen{}\mathclose{{}\left\lVert z}\right\rVert^{2}-r_{1}^{2}\bigr{)}+[R_{1}^{2},R_{2}^{2},R_{3}^{2}]\bigl{(}\mathopen{}\mathclose{{}\left\lVert z}\right\rVert^{2}-r_{1}^{2}\bigr{)}\bigl{(}\mathopen{}\mathclose{{}\left\lVert z}\right\rVert^{2}-r_{2}^{2}\bigr{)}+\dots
+Qm(z,z¯)(z2r12)(z2rm2),\displaystyle\phantom{={}}+Q_{m}(z,\bar{z})\bigl{(}\mathopen{}\mathclose{{}\left\lVert z}\right\rVert^{2}-r_{1}^{2}\bigr{)}\dots\bigl{(}\mathopen{}\mathclose{{}\left\lVert z}\right\rVert^{2}-r_{m}^{2}\bigr{)},

where Qm(z,z¯)Q_{m}(z,\bar{z}) is a constant, and ff maps a sphere of radius rjr_{j} centered at the origin to a sphere of radius RjR_{j} centered at the origin.

Now as ff is a degree-mm polynomial, f(z)2\mathopen{}\mathclose{{}\left\lVert f(z)}\right\rVert^{2} is a bidegree-(m,m)(m,m) polynomial in the coordinates zj,z¯jz_{j},\bar{z}_{j}, and it must be of the above form. Thus f(z)2\mathopen{}\mathclose{{}\left\lVert f(z)}\right\rVert^{2} is of the form:

f(z)2=C0+C1z2+C2z4++Cmz2m,\mathopen{}\mathclose{{}\left\lVert f(z)}\right\rVert^{2}=C_{0}+C_{1}\mathopen{}\mathclose{{}\left\lVert z}\right\rVert^{2}+C_{2}\mathopen{}\mathclose{{}\left\lVert z}\right\rVert^{4}+\dots+C_{m}\mathopen{}\mathclose{{}\left\lVert z}\right\rVert^{2m},

where the CjC_{j}s are nonnegative real numbers, and Cm>0C_{m}>0 since ff is a polynomial mapping of degree mm. Set hj(z)=CjHj(z)h^{j}(z)=\sqrt{C_{j}}H_{j}(z) (where h0(z)h^{0}(z) is the constant mapping C0\sqrt{C_{0}}), the scaled and symmetrized jj-fold tensor of the identity map with itself. Suppose d1<d2<<dkd_{1}<d_{2}<\cdots<d_{k} are exactly the degrees for which Cdj>0C_{d_{j}}>0. Let hj=hdjh_{j}=h^{d_{j}}. Then h=h1hkh=h_{1}\oplus\cdots\oplus h_{k} is a \infty-fold sphere map with linearly independent components. We have that f(z)2=h(z)2\mathopen{}\mathclose{{}\left\lVert f(z)}\right\rVert^{2}=\mathopen{}\mathclose{{}\left\lVert h(z)}\right\rVert^{2} for all zz, thus by a result of D’Angelo [dangelo-1993-several], after possibly adding zero components to hh, there is a unitary UU such that (5) holds. ∎

Remark 3.16.

Let n2n\geq 2. Given any nonconstant rational map F:nNF\colon\mathbb{C}^{n}\dashrightarrow\mathbb{C}^{N} that takes rr-sphere to RR-sphere, we can scale it by f(z)=1RF(rz)f(z)=\frac{1}{R}F(rz), giving us a rational sphere map and hence a rational proper map of balls f:𝔹n𝔹Nf\colon\mathbb{B}_{n}\to\mathbb{B}_{N}.

Thus our results can be stated for rational proper maps of balls as the following:

Theorem 3.17.

Let n2n\geq 2. Let f=pq:𝔹n𝔹Nf=\frac{p}{q}\colon\mathbb{B}_{n}\to\mathbb{B}_{N} be a rational proper map of balls that takes m1m-1 zero-centric spheres in 𝔹n\mathbb{B}_{n} to zero-centric spheres in 𝔹N\mathbb{B}_{N}.

  1. (i)

    If ff is rational of degree less than mm, then ff is a polynomial and takes all zero-centric spheres to zero-centric spheres. The limit mm is strict.

  2. (ii)

    If ff is polynomial of degree at most mm, then ff takes all zero-centric spheres to zero-centric spheres. The limit mm is strict.

4. Proper mappings of ball differences

The first part of Theorem 1.2 is the following lemma.

Lemma 4.1.

Suppose n2n\geq 2 and Br(c)nB_{r}(c)\subset\mathbb{C}^{n}, BR(C)NB_{R}(C)\subset\mathbb{C}^{N} are two balls such that Br(c)𝔹nB_{r}(c)\cap\mathbb{B}_{n}\not=\varnothing and BR(C)𝔹NB_{R}(C)\cap\mathbb{B}_{N}\not=\varnothing. Suppose f:𝔹nBr(c)¯𝔹NBR(C)¯f\colon\mathbb{B}_{n}\setminus\overline{B_{r}(c)}\to\mathbb{B}_{N}\setminus\overline{B_{R}(C)} is a proper holomorphic map. Then ff is rational and extends to a rational proper map of balls f:𝔹n𝔹Nf\colon\mathbb{B}_{n}\to\mathbb{B}_{N} that takes the sphere (Br(c))𝔹n(\partial B_{r}(c))\cap\mathbb{B}_{n} to the sphere (BR(C))𝔹N(\partial B_{R}(C))\cap\mathbb{B}_{N}.

Proof.

Since (Br(c))𝔹n(\partial B_{r}(c))\cap\mathbb{B}_{n} is nonempty and ff is defined on the pseudoconcave side of it, we find that ff extends locally past Br(c)\partial B_{r}(c) at some point. As ff is proper it means that ff must take a small piece of Br(c)\partial B_{r}(c) to some piece of the boundary of 𝔹NBR(C)¯\mathbb{B}_{N}\setminus\overline{B_{R}(C)}. As the derivative of ff is of full rank at most points, we find that ff must take this small piece of the sphere to the pseudoconcave part of 𝔹NBR(C)¯\mathbb{B}_{N}\setminus\overline{B_{R}(C)}, that is, it must go to some part of BR(C)\partial B_{R}(C). Via Forstnerič’s result, we find that ff is rational, and extends to a proper map of Br(c)B_{r}(c) to BR(C)B_{R}(C). In particular, ff extends past the boundary at some points of S2n1S^{2n-1}. Then again it must take those points to the sphere S2N1S^{2N-1} via the same argument as above, and again it extends to a rational proper map of 𝔹n\mathbb{B}_{n} to 𝔹N\mathbb{B}_{N}. That it takes (Br(c))𝔹n(\partial B_{r}(c))\cap\mathbb{B}_{n} to (BR(C))𝔹N(\partial B_{R}(C))\cap\mathbb{B}_{N} follows as the map we started with was proper. ∎

If the two spheres are concentric with the unit ball, that is, c=0c=0 and C=0C=0, then the hypotheses on the spheres mean that r<1r<1 and R<1R<1. The conclusion of the lemma is then that ff is a rational proper map of the unit balls, hence takes S2n1S^{2n-1} to S2N1S^{2N-1}. Moreover, the lemma says that ff also takes rS2n1rS^{2n-1} to RS2N1RS^{2N-1}, and thus is a rational 22-fold sphere map. Hence, by Lemma 3.10, we find that the degree of the denominator is less than the degree of the numerator, proving the next part of Theorem 1.2.

For the last part of Theorem 1.2 we prove the following lemma.

Lemma 4.2.

Suppose n2n\geq 2 and Br(c)nB_{r}(c)\subset\mathbb{C}^{n}, BR(C)NB_{R}(C)\subset\mathbb{C}^{N} are two balls such that Br(c)𝔹nB_{r}(c)\cap\mathbb{B}_{n}\not=\varnothing and BR(C)𝔹NB_{R}(C)\cap\mathbb{B}_{N}\not=\varnothing. Suppose f:𝔹n𝔹Nf\colon\mathbb{B}_{n}\to\mathbb{B}_{N} is a holomorphic proper map that takes the sphere (Br(c))𝔹n(\partial B_{r}(c))\cap\mathbb{B}_{n} to the sphere (BR(C))𝔹N(\partial B_{R}(C))\cap\mathbb{B}_{N}. Then ff is rational and restricts to a proper map of 𝔹nBr(c)¯\mathbb{B}_{n}\setminus\overline{B_{r}(c)} to 𝔹NBR(C)¯\mathbb{B}_{N}\setminus\overline{B_{R}(C)}.

Proof.

The first part of the theorem follows by Forstnerič’s result again as we get that the piece of the sphere (Br(c))𝔹n(\partial B_{r}(c))\cap\mathbb{B}_{n} is taken to the piece of the sphere (BR(C))𝔹N(\partial B_{R}(C))\cap\mathbb{B}_{N}. So ff is rational. As ff is a rational proper map of balls 𝔹n\mathbb{B}_{n} to 𝔹N\mathbb{B}_{N}, it extends past the boundary by the result of Cima–Suffridge [cima-1990-boundary], and hence takes the the sphere S2n1S^{2n-1} to the sphere S2N1S^{2N-1}. Similarly, as the application of Forstnerič’s theorem gave a proper rational map of Br(c)B_{r}(c) to BR(C)B_{R}(C), we get that ff takes Br(c)\partial B_{r}(c) to BR(C)\partial B_{R}(C). To be a proper map of the differences, we need no point of 𝔹nBr(c)¯\mathbb{B}_{n}\setminus\overline{B_{r}(c)} to go to a point of BR(C)¯\overline{B_{R}(C)}. An even stronger conclusion holds, as ff is a proper rational map of Br(c)B_{r}(c) to BR(C)B_{R}(C), Lemma 2.1 gives that no point of the complement of Br(c)¯\overline{B_{r}(c)} in n\mathbb{C}^{n} can go to BR(C)¯\overline{B_{R}(C)}. ∎

Theorem 1.2 is now proved. Finally, we prove Proposition 1.5: there are no proper maps from the difference of balls to the complement of balls or vice-versa.

Proposition 4.3.

Suppose n2n\geq 2, 𝔹nBr(c)\mathbb{B}_{n}\cap B_{r}(c)\not=\varnothing, and 𝔹NBR(C)\mathbb{B}_{N}\cap B_{R}(C)\not=\varnothing. There exist no proper holomorphic maps f:𝔹nBr(c)¯N𝔹N¯f\colon\mathbb{B}_{n}\setminus\overline{B_{r}(c)}\to\mathbb{C}^{N}\setminus\overline{\mathbb{B}_{N}} nor f:n𝔹n¯𝔹NBR(C)¯f\colon\mathbb{C}^{n}\setminus\overline{\mathbb{B}_{n}}\to\mathbb{B}_{N}\setminus\overline{B_{R}(C)}.

Proof.

First, suppose f:𝔹nBr(c)¯N𝔹N¯f\colon\mathbb{B}_{n}\setminus\overline{B_{r}(c)}\to\mathbb{C}^{N}\setminus\overline{\mathbb{B}_{N}} is a proper holomorphic map. As before, ff extends holomorphically across some piece of the pseudoconcave boundary Br(c)\partial B_{r}(c). Hence it takes some piece of Br(c)\partial B_{r}(c) to a bounded set, and as the map is proper it must go to the boundary of the target, that is, S2N1S^{2N-1}. By the theorem of Forstnerič, ff is rational. As ff is rational, we can also extend to most points of S2n1S^{2n-1}. But this means that this extension is a holomorphic map that takes a piece of the sphere S2n1S^{2n-1} to the finite part of the boundary, that is, S2N1S^{2N-1}. Again, Forstnerič says that this map is actually a proper map of 𝔹n𝔹N\mathbb{B}_{n}\to\mathbb{B}_{N}. That is impossible as ff takes 𝔹nBr(c)¯\mathbb{B}_{n}\setminus\overline{B_{r}(c)} to the complement of 𝔹N¯\overline{\mathbb{B}_{N}}.

Next, suppose that we are given a proper holomorphic map f:n𝔹n¯𝔹NBR(C)¯f\colon\mathbb{C}^{n}\setminus\overline{\mathbb{B}_{n}}\to\mathbb{B}_{N}\setminus\overline{B_{R}(C)}. By Hartogs, ff extends to all of n\mathbb{C}^{n}. By the maximum principle ff takes 𝔹n¯\overline{\mathbb{B}_{n}} to 𝔹N\mathbb{B}_{N}, but that violates Liouville’s theorem. ∎

References