This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Proper Conflict-free Coloring of
Graphs with Large Maximum Degree

Daniel W. Cranston Department of Computer Science, Virginia Commonwealth University, Richmond, VA, USA; [email protected].    Chun-Hung Liu Department of Mathematics, Texas A&M University, College Station, TX, USA; [email protected]. Partially supported by NSF under award DMS-1954054 and CAREER award DMS-2144042.
Abstract

A proper coloring of a graph is conflict-free if, for every non-isolated vertex, some color is used exactly once on its neighborhood. Caro, Petruševski, and Škrekovski proved that every graph GG has a proper conflict-free coloring with at most 5Δ(G)/25\Delta(G)/2 colors and conjectured that Δ(G)+1\Delta(G)+1 colors suffice for every connected graph GG with Δ(G)3\Delta(G)\geqslant 3. Our first main result is that even for list-coloring, 1.6550826Δ(G)+Δ(G)\left\lceil 1.6550826\Delta(G)+\sqrt{\Delta(G)}\right\rceil colors suffice for every graph GG with Δ(G)108\Delta(G)\geqslant 10^{8}; we also prove slightly weaker bounds for all graphs with Δ(G)750\Delta(G)\geqslant 750. These results follow from our more general framework on proper conflict-free list-coloring of a pair consisting of a graph GG and a “conflict” hypergraph \mathcal{H}. As another corollary of our results in this general framework, every graph has a proper (30+o(1))Δ(G)1.5(\sqrt{30}+o(1))\Delta(G)^{1.5}-list-coloring such that every bi-chromatic component is a path on at most three vertices, where the number of colors is optimal up to a constant factor. Our proof uses a fairly new type of recursive counting argument called Rosenfeld counting, which is a variant of the Lovász Local Lemma or entropy compression.

We also prove an asymptotically optimal result for a fractional analogue of our general framework for proper conflict-free coloring for pairs of a graph and a conflict hypergraph. A corollary states that every graph GG has a fractional (1+o(1))Δ(G)(1+o(1))\Delta(G)-coloring such that every fractionally bi-chromatic component has at most two vertices. In particular, it implies that the fractional analogue of the conjecture of Caro et al. holds asymptotically in a strong sense.

1 Introduction

Motivated by a frequency assignment problem in cellular networks, Even, Lotker, Ron, and Smorodinsky [8] introduced conflict-free coloring of hypergraphs. A coloringmargin: coloring of a graph or a hypergraph GG is a map φ:V(G)+\varphi\colon V(G)\to\mathbb{Z}^{+}. A coloring φ\varphi of a hypergraph \mathcal{H} is conflict-freemargin: conflict-free if for every (non-empty)111In this paper, we assume that every edge of a hypergraph is non-empty, though the edge set can be empty. eE()e\in E(\mathcal{H}), there exists a color that is used exactly once by φ\varphi on ee. Pach and Tardos [17] studied this notion and proved that every hypergraph with fewer than (s2){s\choose 2} edges (for some integer ss) has a conflict-free coloring with fewer than ss colors. Note that being conflict-free on an edge of size 2 is equivalent to the vertices in this edge using distinct colors. Hence, the result of Pach and Tardos is optimal, as witnessed by complete 2-uniform hypergraphs. Kostochka, Kumbhat, and Łuczak [13] further studied conflict-free coloring for uniform hypergraphs.

A coloring φ\varphi of a graph GG is propermargin: proper if φ(v)φ(w)\varphi(v)\neq\varphi(w) for all vwE(G)vw\in E(G). As we have seen, being conflict-free on every edge of a hypergraph with size 2 is equivalent to being a proper coloring of a graph. So it is more convenient to consider the following notion, so that we can focus on edges with larger size. For a graph GG and a hypergraph \mathcal{H} with V(G)=V()V(G)=V(\mathcal{H}), a proper conflict-free coloring of (G,)(G,\mathcal{H})margin: proper conflict-free coloring of (G,)(G,\mathcal{H}) is a proper coloring of GG that is also a conflict-free coloring of \mathcal{H}. This notion is general: given a graph GG, by appropriately defining an associated hypergraph \mathcal{H}, every proper conflict-free coloring of (G,)(G,\mathcal{H}) is an acyclic coloring, a star coloring, and a frugal coloring of GG, respectively.222Always V()=V(G)V(\mathcal{H})=V(G) and for acyclic, star, and kk-frugal coloring we add an edge to \mathcal{H} with vertex SS, respectively, when SS spans a cycle, SS spans a P4P_{4}, or SS is a subset of size k+1k+1 of the open neighborhood of some vertex in GG. (Note that proper conflict-free coloring is not equivalent to these other notions, but is in fact strictly more general.) So an upper bound for the number of colors used in a proper conflict-free coloring for (G,)(G,\mathcal{H}) provides an upper bound for those extensively studied notions in graph coloring. On the other hand, for acyclic coloring [1], star coloring [10], and kk-frugal coloring (for fixed kk) [12], the numbers of required colors are known to be superlinear in the graph’s maximum degree. So an upper bound for proper conflict-free coloring for a general pair (G,)(G,\mathcal{H}) cannot be linear in the maximum degree of GG.

In this paper we study sufficient conditions to have a proper conflict-free coloring for (G,)(G,\mathcal{H}) with a number of colors that is a linear in the maximum degree of GG. One such result is related to conflict-free proper coloring of graphs, which was introduced by Fabrici, Lužar, Rindošová, and Soták [9] and was further studied in [3, 5, 11, 14]. For a graph GG, a proper conflict-free coloring of GGmargin: proper conflict-free coloring of GG is a proper conflict-free coloring of the pair (G,)(G,\mathcal{H}), where \mathcal{H} is the hypergraph with V()=V(G)V(\mathcal{H})=V(G) and the edges of \mathcal{H} are the (open) neighborhoods of the non-isolated vertices of GG. In other words, a proper conflict-free coloring of a graph GG is a proper coloring of GG such that for every non-isolated vertex vv, some color appears exactly once on the neighbors of vv. This notion is a combination of proper coloring and the pointed conflict-free chromatic parameter studied in [4, 17].

For a graph or hypergraph GG, the degreemargin: degree of a vertex vv in GG, denoted by dG(v)d_{G}(v)margin: dG(v)d_{G}(v) , is the number of edges of GG containing vv, and we denote by Δ(G)\Delta(G)margin: Δ(G)\Delta(G) the maximum degree of GG. For a graph GG, we denote by χpcf(G)\chi_{\textrm{pcf}}(G)margin: χpcf(G)\chi_{\textrm{pcf}}(G) the minimum kk such that GG has a proper conflict-free coloring with kk colors. Caro, Petruševski, and Škrekovski [3] proposed the following conjecture.

Conjecture 1 ([3]).

χpcf(G)Δ(G)+1\chi_{\textrm{pcf}}(G)\leqslant\Delta(G)+1 for every connected graph GG with Δ(G)3\Delta(G)\geqslant 3.

The condition Δ(G)3\Delta(G)\geqslant 3 in Conjecture 1 is required since χpcf(C5)=5\chi_{\textrm{pcf}}(C_{5})=5, but if the conjecture is true, then the condition for connectivity can be removed when Δ(G)4\Delta(G)\geqslant 4. The case Δ(G)=3\Delta(G)=3 of Conjecture 1 follows from an earlier result of the second author and Yu [16, Theorem 2], even for the list-coloring setting.

As a first step toward their conjecture, Caro, Petruševski, and Škrekovski [3] proved that χpcf(G)5Δ(G)/2\chi_{\textrm{pcf}}(G)\leqslant 5\Delta(G)/2. In fact, we can prove χpcf(G)2Δ(G)+1\chi_{\textrm{pcf}}(G)\leqslant 2\Delta(G)+1 by a simple greedy algorithm (see Proposition 3 below). A goal of this paper is to make further progress toward this conjecture.333When a version of this paper was under review, the second author and Reed [15] proved that χpcf(G)(1+o(1))Δ(G)\chi_{\textrm{pcf}}(G)\leqslant(1+o(1))\Delta(G), so Conjecture 1 holds asymptotically. This bound in [15] is quantitatively stronger than the bounds in this paper. However, all results in this paper work for list-coloring or for proper conflict-free coloring of pairs of graphs and hypergraphs (G,)(G,\mathcal{H}). The result and proof in [15] do not work for those more general settings.

Our first result works for list-coloring. A list-assignmentmargin: list-assignment LL for a graph GG assigns to each vertex vV(G)v\in V(G) a list L(v)L(v) of allowable colors. An aa-assignmentmargin: aa-assignment , for some real number aa, is a list-assignment LL such that |L(v)|a|L(v)|\geqslant a for all vertices vv. An LL-coloringmargin: LL-coloring of GG is a coloring φ\varphi such that φ(v)L(v)\varphi(v)\in L(v) for all vV(G)v\in V(G). We prove the following.

Theorem 2.

Fix a positive integer Δ6.5107\Delta\geqslant 6.5\cdot 10^{7}, fix a real number β\beta with Δβ0.6550826Δ\Delta\geqslant\beta\geqslant 0.6550826\Delta, and let a:=Δ+β+Δa:=\left\lceil\Delta+\beta+\sqrt{\Delta}\right\rceil. If GG is a graph with maximum degree at most Δ\Delta and LL is an aa-assignment for GG, then there are at least β|V(G)|\beta^{|V(G)|} proper conflict-free LL-colorings of GG. Analogous statements hold when Δ4000\Delta\geqslant 4000 and Δβ0.6¯Δ\Delta\geqslant\beta\geqslant 0.\overline{6}\Delta and when Δ750\Delta\geqslant 750 and Δβ0.8Δ\Delta\geqslant\beta\geqslant 0.8\Delta.

It is obvious that the term Δ\sqrt{\Delta} in Theorem 2 can be replaced by 1010Δ10^{-10}\Delta when Δ\Delta is sufficiently large. We choose Δ\sqrt{\Delta} as the error term because it is a natural sublinear term and it enables us to only require a reasonably small lower bound on Δ\Delta. We put a small amount of effort into optimizing the lower bound for Δ\Delta for the cases β0.6¯Δ\beta\geqslant 0.\overline{6}\Delta and β0.8Δ\beta\geqslant 0.8\Delta. The proofs of the three cases β0.6550826Δ\beta\geqslant 0.6550826\Delta, β0.6¯Δ\beta\geqslant 0.\overline{6}\Delta, and β0.8Δ\beta\geqslant 0.8\Delta are essentially the same, and the proof can be simplified if we do not care about keeping the lower bound on Δ\Delta small. In fact, we prove a more general result (Theorem 4, below) about proper conflict-free coloring for pairs of graphs and hypergraphs, and Theorem 2 follows as a special case for Δ\Delta sufficiently large.

Recall that we mentioned a greedy upper bound of 2Δ(G)+12\Delta(G)+1 for Conjecture 1. It is obtained by the following simple observation, which is a modification of an observation by Pach and Tardos [17] on conflict-free coloring for hypergraphs, since the hypergraph \mathcal{H} associated with proper conflict-free coloring for GG has edge set equal to the set of neighborhoods of non-isolated vertices and hence has Δ()=Δ(G)\Delta(\mathcal{H})=\Delta(G).

Proposition 3.

Let GG be a graph and \mathcal{H} be a hypergraph with V()=V(G)V(\mathcal{H})=V(G). If GG is dd-degenerate, then (G,)(G,\mathcal{H}) has a proper conflict-free coloring with at most d+Δ()+1d+\Delta(\mathcal{H})+1 colors.

Proof.

Since GG is dd-degenerate, there exists an ordering v1,v2,v_{1},v_{2},... of V(G)V(G) such that for every ii, there are at most dd indices jj with j<ij<i such that vivjE(G)v_{i}v_{j}\in E(G). For each edge ff of \mathcal{H}, let vfv_{f} be the vertex in ff with the smallest index. We color v1,v2,v_{1},v_{2},... greedily in the order listed. For each ii, when we color viv_{i}, we avoid the colors used on all colored neighbors vjv_{j} of viv_{i}, and for each edge ff of \mathcal{H} containing viv_{i} with vivfv_{i}\neq v_{f}, we also avoid the color of vfv_{f}. Since there are at most dd vjv_{j}’s and at most Δ()\Delta(\mathcal{H}) vfv_{f}’s, we only have to avoid at most d+Δ()d+\Delta(\mathcal{H}) colors, so d+Δ()+1d+\Delta(\mathcal{H})+1 colors suffice. Moreover, this greedy coloring is clearly proper and is conflict-free for (G,)(G,\mathcal{H}) since the color assigned to vfv_{f} has a unique occurrence in ff for each fE()f\in E(\mathcal{H}). ∎

Proposition 3 shows that Δ()\Delta(\mathcal{H}) plays a role for upper bounding the number of colors for proper conflict-free colorings for (G,)(G,\mathcal{H}). Our more general Theorem 4 shows that the importance of Δ()\Delta(\mathcal{H}) is somehow secondary to the size of edges of \mathcal{H}. We need some terminology to state Theorem 4. Let \mathcal{H} be a hypergraph. The rank of \mathcal{H}, denoted by rank(){\rm{rank}}(\mathcal{H})margin: rank(){\rm{rank}}(\mathcal{H}) , is maxfE()|f|\max_{f\in E(\mathcal{H})}|f|. For every vertex vv of \mathcal{H}, we define mr(v){\rm{mr}}_{\mathcal{H}}(v)margin: mr(v){\rm{mr}}_{\mathcal{H}}(v) to be minfE(),fv|f|\min_{f\in E(\mathcal{H}),f\ni v}|f|.

Theorem 4.

Let RR be a positive integer. Let GG be a graph and \mathcal{H} be a hypergraph with V(G)=V()V(G)=V(\mathcal{H}) and rank()R{\rm{rank}}(\mathcal{H})\leqslant R such that |f|3|f|\geqslant 3 for every fE()f\in E(\mathcal{H}). Let β\beta be a real number with 0.6550826RβR0.6550826R\leqslant\beta\leqslant R. Let

a:=Δ(G)+β+maxvV(G)(d(v)b(v)),a:=\lceil\Delta(G)+\beta+\max_{v\in V(G)}\big{(}d_{\mathcal{H}}(v)\cdot b(v)\big{)}\rceil,

where

b(v):=max{2β1mr(v)2(logR)2mr(v)2,(1108)(logR)2}.b(v):=\max\{2\beta^{1-\lceil\frac{{\rm{mr}}_{\mathcal{H}}(v)}{2}\rceil}(\log R)^{2\lceil\frac{{\rm{mr}}_{\mathcal{H}}(v)}{2}\rceil},(1-10^{-8})^{(\log R)^{2}}\}.

If444In the first version of this paper [6], we proved the same result but only required Re5106R\geqslant e^{5\cdot 10^{6}} with a more complicated proof. We elect to present a simpler proof suggested by a referee in this version even though the lower bound for RR is weaker. Re3.1108R\geqslant e^{3.1\cdot 10^{8}}, then for every aa-assignment LL of GG, there are at least β|V(G)|\beta^{|V(G)|} proper conflict-free LL-colorings of (G,)(G,\mathcal{H}).

The condition |f|3|f|\geqslant 3 for every fE()f\in E(\mathcal{H}) in Theorem 4 is mild, since we may move edges of \mathcal{H} with size 2 to edges of GG. However, this operation might increase Δ(G)\Delta(G). When considering proper conflict-free coloring for a graph GG, this condition |f|3|f|\geqslant 3 is satisfied only when GG has minimum degree at least 3. But vertices of degree at most 2 can be handled by a simple argument, so Theorem 2 can be deduced (when RR is sufficiently large) from Theorem 4 without moving edges of size 2 from \mathcal{H} to GG.

The emphasis of Theorem 4 is on making the lower bound hypothesis on β\beta as weak as possible; that is, making the coefficient on RR as small as possible. So this result is more effective when rank(){\rm{rank}}(\mathcal{H}) is large. When rank(){\rm{rank}}(\mathcal{H}) is small, we can obtain the following result (Theorem 5) by slightly modifying the proof of Theorem 4 to drop logarithmic factors. We will show that the number of colors mentioned in Theorem 5 is optimal up to a constant factor.

Theorem 5.

Let r,ε,Rr,\varepsilon,R be positive real numbers. Let GG be a graph and \mathcal{H} be a hypergraph with V(G)=V()V(G)=V(\mathcal{H}) and rank()r{\rm{rank}}(\mathcal{H})\leqslant r such that |f|3|f|\geqslant 3 for every fE()f\in E(\mathcal{H}). If either

  • R(1+1ε)rR\geqslant(1+\frac{1}{\varepsilon})r and

    a:=Δ(G)+R+(1+ε)maxvV(G){d(v)rmr(v)2R1mr(v)2},a:=\lceil\Delta(G)+R+(1+\varepsilon)\cdot\max_{v\in V(G)}\{d_{\mathcal{H}}(v)\cdot r^{\lceil\frac{{\rm{mr}}_{\mathcal{H}}(v)}{2}\rceil}R^{1-\lceil\frac{{\rm{mr}}_{\mathcal{H}}(v)}{2}\rceil}\}\rceil,

    or

  • r4r\leqslant 4 and

    a:=Δ(G)+R+Δ()(3R1+R2),a:=\lceil\Delta(G)+R+\Delta(\mathcal{H})\cdot(3R^{-1}+R^{-2})\rceil,

then for every aa-assignment LL of GG, there are at least R|V(G)|R^{|V(G)|} proper conflict-free LL-colorings of (G,)(G,\mathcal{H}).

Theorem 5 has applications to other coloring parameters studied in the literature. Given a graph GG, if we define \mathcal{H} to be the hypergraph with V()=V(G)V(\mathcal{H})=V(G) such that E()E(\mathcal{H}) consists of the vertex sets of any 4-vertex path (not necessarily induced) in GG and the 3-element subsets of N(v)N(v) for each vertex vv of GG, then it is easy to show that d(v)2.5Δ(G)3d_{\mathcal{H}}(v)\leqslant 2.5\Delta(G)^{3}, rank()4{\rm{rank}}(\mathcal{H})\leqslant 4 and mr(v)3{\rm{mr}}_{\mathcal{H}}(v)\geqslant 3 for every vV(G)v\in V(G). So taking R=7.5Δ(G)3/2R=\sqrt{7.5}\Delta(G)^{3/2} in Statement 2 in Theorem 5 immediately gives the following corollary.

Corollary 6.

For every graph GG and every 30Δ(G)3/2+Δ(G)+13\lceil\sqrt{30}\Delta(G)^{3/2}+\Delta(G)+\frac{1}{3}\rceil-assignment LL of GG, there exist at least (7.5Δ(G)3)|V(G)|/2(7.5\Delta(G)^{3})^{|V(G)|/2} proper LL-colorings φ\varphi such that every 4-vertex path in GG has a color used exactly once, and for every vertex vv with dG(v)3d_{G}(v)\geqslant 3 and for any three neighbors of vv, some color is used exactly once on those three neighbors. In particular, every component of the subgraph of GG induced by any two arbitrarily chosen color classes of φ\varphi is a path on at most three vertices.

The coloring satisfying the conclusion of Corollary 6 is both a star coloringmargin: star coloring , which is a proper coloring with no bi-colored 4-vertex path, and also a linear coloringmargin: linear coloring , which is a proper coloring such that any two color classes induce a subgraph whose every component is a path. Yuster [21] proved that there exist infinitely many graphs GG having no linear coloring with at most Δ(G)3/2/11\Delta(G)^{3/2}/11 colors. So Corollary 6, and hence Theorem 5, are optimal up to a constant factor. Corollary 6 also improves the currently best known upper bound max{50Δ(G)4/3,10Δ(G)3/2}\max\{50\Delta(G)^{4/3},10\Delta(G)^{3/2}\} for linear coloring [21]. For star coloring, our (30+o(1))Δ(G)3/2(\sqrt{30}+o(1))\Delta(G)^{3/2} upper bound is not better than the currently best known upper bounds 22Δ(G)3/2+Δ(G)2\sqrt{2}\Delta(G)^{3/2}+\Delta(G) [7, 20], even though both results are only a O(logΔ(G))O(\sqrt{\log\Delta(G)}) factor away from the known lower bound Ω(Δ(G)3/2/logΔ(G))\Omega(\Delta(G)^{3/2}/\sqrt{\log\Delta(G)}) [10]. However, the coloring we obtain in Corollary 6 is stronger than a star coloring and than a linear coloring. Every bi-chromatic component of the coloring in Corollary 6 has at most three vertices, while the bi-chromatic components of a star coloring or a linear coloring can have arbitrarily many vertices.

Our next result shows that the fractional version of Conjecture 1 holds asymptotically. It follows from a more general setting for coloring pairs (G,)(G,\mathcal{H}).

Let [k][k]margin: [k][k] denote {1,,k}\{1,\ldots,k\}, for each k+k\in\mathbb{Z}^{+}. Let aa and bb be positive integers. An (a:b)(a:b)-coloringmargin: (a:b)(a:b)-coloring of a graph or a hypergraph assigns to each vertex a bb-element subset of [a][a]. An (a:b)(a:b)-coloring φ\varphi of a graph GG is propermargin: proper if for every j[a]j\in[a], the preimage φ1(j)\varphi^{-1}(j) is a stable set in GG. An (a:b)(a:b)-coloring φ\varphi of a hypergraph \mathcal{H} is conflict-freemargin: conflict-free if for every edge ee of \mathcal{H}, there exist at least bb elements \ell of [a][a] such that |eφ1()|=1|e\cap\varphi^{-1}(\ell)|=1. Let GG be a graph and \mathcal{H} be a hypergraph with V()=V(G)V(\mathcal{H})=V(G). An (a:b)(a:b)-coloring φ\varphi of (G,)(G,\mathcal{H}) is fractionally proper conflict-freemargin: fractionally proper conflict-free if it is a proper (a:b)(a:b)-coloring of GG and a conflict-free (a:b)(a:b)-coloring of \mathcal{H}. For a positive real number tt, (G,)(G,\mathcal{H}) is fractionally properly conflict-free tt-colorablemargin: fractionally properly conflict-free tt-colorable if there exists a proper conflict-free (x:y)(x:y)-coloring of (G,)(G,\mathcal{H}) for some positive integers x,yx,y with x/ytx/y\leqslant t.

Fractional proper conflict-free coloring for (G,)(G,\mathcal{H}), defined above, is a natural linear programming relaxation of proper conflict-free coloring for (G,)(G,\mathcal{H}). We prove that Δ()\Delta(\mathcal{H}) is no longer required for upper bounding the number of colors, if we consider fractional coloring and rank()Δ(G){\rm{rank}}(\mathcal{H})\leqslant\Delta(G).

Theorem 7.

For every ε>0\varepsilon>0, there exists d0d_{0} such that if Δd0\Delta\geqslant d_{0} and GG is a graph with maximum degree at most Δ\Delta, then (G,)(G,\mathcal{H}) is fractionally properly conflict-free (1+ε)Δ(1+\varepsilon)\Delta-colorable for every hypergraph \mathcal{H} with V()=V(G)V(\mathcal{H})=V(G) and rank()Δ{\rm{rank}}(\mathcal{H})\leqslant\Delta.

Theorem 7 is asymptotically optimal since, for each Δ2\Delta\geqslant 2, there are infinitely many connected graphs with maximum degree Δ\Delta that are not properly (Δ1)(\Delta-1)-colorable.

For a graph GG, we say that an (a:b)(a:b)-coloring of GG is a fractional proper conflict-free coloring of GGmargin: fractional proper conflict-free coloring of GG if it is a proper (a:b)(a:b)-coloring of GG such that for every non-isolated vertex vv of GG, at least bb colors appear exactly once on N(v)N(v). If we take \mathcal{H} so that E()E(\mathcal{H}) contains all nonempty subsets of V(G)V(G) with size at most Δ\Delta, then Theorem 7 leads to the following corollary.

Corollary 8.

For every ε>0\varepsilon>0, there exists d0d_{0} such that if Δd0\Delta\geqslant d_{0} and GG is a graph with maximum degree at most Δ\Delta, then there exists a proper (a:b)(a:b)-coloring φ\varphi of GG for some positive integers aa and bb with a(1+ε)Δba\leqslant(1+\varepsilon)\Delta b such that

  1. 1.

    φ\varphi is a fractional proper conflict-free (a:b)(a:b)-coloring of GG,

  2. 2.

    for any set CC of colors with size less than 5b/25b/2, every component of the subgraph of GG induced by the vertices that use only colors in CC has at most two vertices, and

  3. 3.

    |φ(v)φ(w)|b/2|\varphi(v)\cap\varphi(w)|\leqslant b/2 for any distinct vertices v,wv,w of GG.

Statement 1 of Corollary 8 implies that the fractional version of Conjecture 1 holds asymptotically. Statement 2 of Corollary 8 gives the asymptotically optimal upper bound for the fractional version of many types of coloring that address properties of bi-chromatic components, such as acyclic coloring, star coloring, frugal coloring, and linear coloring. It is also a fractional analogue of Corollary 6, but now each 2b2b-colored component has at most two vertices, which is clearly optimal.

The paper is organized as follows. To emphasize the key ideas in our proofs of Theorems 2, 4 and 5, for clarity we first present the proofs assuming certain estimates of quantities involving 2-associated Stirling numbers, which count the number of partitions of a set with certain properties. In Section 3 (and the appendix) we prove those estimates via a sequence of lemmas. Finally, we prove Theorem 7 and Corollary 8 in Section 4.

2 Proof of Theorems 2, 4, and 5

In this section, we prove Theorems 2, 4, and 5. The proofs use a clever inductive counting argument introduced by Rosenfeld [18] and extended by Wanless and Wood [20]. This technique works well for many problems amenable to the Lovász Local Lemma or entropy compression, but often gives simpler proofs. Our proof actually works for a slightly more general setting. For an integer tt, a graph GG, and a hypergraph \mathcal{H} with V()=V(G)V(\mathcal{H})=V(G), we say that φ\varphi is a proper tt-conflict-free coloring of (G,)(G,\mathcal{H})margin: proper tt-conflict-free coloring of (G,)(G,\mathcal{H}) if it is a proper coloring of GG such that for every fE()f\in E(\mathcal{H}),555For clarity, we always use ee to denote the base of the natural logarithm, which is the constant 2.718282.71828\cdots. For an edge of a hypergraph, we typically use ff. there exists a color that is used kk times by φ\varphi on ff for some k[t]k\in[t]. Note that conflict-free colorings of (G,)(G,\mathcal{H}) are exactly 11-conflict-free colorings of (G,)(G,\mathcal{H}).

When applying the aforementioned inductive counting argument to proper tt-conflict-free coloring, the computation involves tt-associated Stirling numbers of the second kind, denoted by St(d,i)S_{t}(d,i); for positive integers tt, ii, and dd, the quantity St(d,i)S_{t}(d,i)margin: St(d,i)S_{t}(d,i) is defined as the number of partitions of the set [d][d] into ii parts, each of size at least tt. Now we can state and prove our first key lemma.

Lemma 9.

Let GG be a graph and \mathcal{H} be a hypergraph with V(G)=V()V(G)=V(\mathcal{H}). Let tt be a positive integer. Let β\beta be a real number. If aa is a real number such that

aΔ(G)+β+fE(),fvi=1|f|/(t+1)St+1(|f|,i)βi|f|+1\displaystyle a\geqslant\Delta(G)+\beta+\sum_{f\in E(\mathcal{H}),f\ni v}\sum_{i=1}^{\lfloor|f|/(t+1)\rfloor}S_{t+1}(|f|,i)\cdot\beta^{i-|f|+1} (1)

for every vV(G)v\in V(G), then for every aa-assignment LL of GG, there are at least β|V(G)|\beta^{|V(G)|} proper tt-conflict-free LL-colorings of (G,)(G,\mathcal{H}).

Proof.

For a subset ZZ of V(G)V(G), an LL-coloring φ\varphi of G[Z]G[Z] is a proper tt-conflict-free partial coloring on ZZ if

  • (a)

    φ\varphi is a proper coloring of G[Z]G[Z], and

  • (b)

    for each fE()f\in E(\mathcal{H}), if fZf\subseteq Z, then φ\varphi uses some color exactly kk times on ff for some k[t]k\in[t].

For each subset ZZ of V(G)V(G), denote by R(Z)R(Z)margin: R(Z)R(Z) the number of proper tt-conflict-free partial LL-colorings on ZZ. For every nonempty subset ZZ of V(G)V(G), and every vZv\in Z, we will prove by induction on |Z||Z|:

R(Z)\displaystyle R(Z) βR(Z{v}).\displaystyle\geqslant\beta\cdot R(Z\setminus\{v\}). (2)

For each vV(G)v\in V(G), we have R({v})=aβR(\{v\})=a\geqslant\beta. So the desired base case holds. Thus, induction on |Z||Z| will give R(Z)β|Z|R(Z)\geqslant\beta^{|Z|} for all ZZ. In particular, R(V(G))β|V(G)|R(V(G))\geqslant\beta^{|V(G)|}.

Fix some ZV(G)Z\subseteq V(G) and vZv\in Z. If we extend a proper tt-conflict-free partial coloring on Z{v}Z\setminus\{v\} by further coloring vv with a color that is not used on its colored neighbors, then we form a proper LL-coloring of G[Z]G[Z]. Note that there are at least aΔ(G)a-\Delta(G) ways to extend a proper tt-conflict-free partial coloring on Z{v}Z\setminus\{v\} to a proper coloring of G[Z]G[Z]. Hence there are at least (aΔ(G))R(Z{v})(a-\Delta(G))\cdot R(Z\setminus\{v\}) LL-colorings of G[Z]G[Z] satisfying (a). We show that at least βR(Z{v})\beta\cdot R(Z\setminus\{v\}) of these also satisfy (b).

A proper LL-coloring φ\varphi of G[Z]G[Z] is badmargin: bad if it is not a proper tt-conflict-free partial coloring on ZZ but its restriction to Z{v}Z\setminus\{v\} is a proper tt-conflict-free partial coloring on Z{v}Z\setminus\{v\}. Let BBmargin: BB be the set of bad LL-colorings. For every fE(H)f\in E(H) with vfv\in f and fZf\subseteq Z, let BfB_{f}margin: BfB_{f} := {φB:φ\{\varphi\in B:\varphi does not use any color exactly kk times on ff for every k[t]}k\in[t]\}; these are the colorings that are bad for ff. So B=fE(),fvBfB=\bigcup_{f\in E(\mathcal{H}),f\ni v}B_{f}. To prove (2), it suffices to show (aΔ(G))R(Z{v})|B|βR(Z{v})(a-\Delta(G))\cdot R(Z\setminus\{v\})-|B|\geqslant\beta\cdot R(Z\setminus\{v\}).

We claim that for every edge ff of \mathcal{H} containing vv,

|Bf|i=1|f|/(t+1)St+1(|f|,i)R(Z{v})βi|f|+1.\displaystyle|B_{f}|\leqslant\sum_{i=1}^{\lfloor|f|/(t+1)\rfloor}S_{t+1}(|f|,i)\cdot R(Z\setminus\{v\})\beta^{i-|f|+1}. (3)

This claim implies this lemma since the number of proper tt-conflict-free partial colorings of G[Z]G[Z] is at least

R(Z{v})(aΔ(G))fE(),fv|Bf|\displaystyle R(Z\setminus\{v\})(a-\Delta(G))-\sum_{f\in E(\mathcal{H}),f\ni v}|B_{f}|
\displaystyle\geqslant~{} R(Z{v})[aΔ(G)fE(),fvi=1|f|/(t+1)St+1(|f|,i)βi|f|+1]\displaystyle R(Z\setminus\{v\})\left[a-\Delta(G)-\sum_{f\in E(\mathcal{H}),f\ni v}\sum_{i=1}^{\lfloor|f|/(t+1)\rfloor}S_{t+1}(|f|,i)\cdot\beta^{i-|f|+1}\right]
\displaystyle\geqslant~{} βR(Z{v}).\displaystyle\beta R(Z\setminus\{v\}).

Here the final inequality follows from (1).

Now we prove (3). Fix an edge ff of \mathcal{H} containing vv. For every φBf\varphi\in B_{f}, let 𝒫φ\mathcal{P}_{\varphi}margin: 𝒫φ\mathcal{P}_{\varphi} be the partition {φ1(j)f:j+}\{\varphi^{-1}(j)\cap f:j\in{\mathbb{Z}}^{+}\} of ff. These are the color classes of φ|f\varphi|_{f}, which is the coloring obtained by restricting φ\varphi to ff. Since φBf\varphi\in B_{f}, every part in 𝒫φ\mathcal{P}_{\varphi} has size at least t+1t+1. Hence the number of possibilities for 𝒫φ\mathcal{P}_{\varphi} is at most St+1(|f|,iφ)S_{t+1}(|f|,i_{\varphi}), where iφi_{\varphi} is the number of colors used in φ|f\varphi|_{f}. Note that for every partition 𝒫\mathcal{P} of ff into ii parts each having size at least t+12t+1\geqslant 2, there exists a subset T𝒫T_{\mathcal{P}}margin: T𝒫T_{\mathcal{P}} of ff consisting of a vertex in each part of 𝒫\mathcal{P} such that vT𝒫v\not\in T_{\mathcal{P}}. We define TφT_{\varphi}margin: TφT_{\varphi} to be T𝒫φ(Zf)T_{\mathcal{P}_{\varphi}}\cup(Z-f). Note that φ\varphi is uniquely determined by 𝒫φ\mathcal{P}_{\varphi} and φ|Tφ\varphi|_{T_{\varphi}}. Moreover, since TφZ{v}T_{\varphi}\subseteq Z\setminus\{v\}, the partial coloring φ|Tφ\varphi|_{T_{\varphi}} is a proper tt-conflict-free partial LL-coloring on Tφ=Z(fT𝒫φ)T_{\varphi}=Z\setminus(f\setminus T_{\mathcal{P}_{\varphi}}). Hence, for every partition 𝒫\mathcal{P} of ff into parts each having size at least t+1t+1, the number of possibilities for φ|Tφ\varphi|_{T_{\varphi}}, among all colorings φ\varphi in BfB_{f} with 𝒫φ=𝒫\mathcal{P}_{\varphi}=\mathcal{P}, is at most R(Z(fT𝒫))R(Z\setminus(f\setminus T_{\mathcal{P}})). By applying the inductive hypothesis |f||𝒫|1|f|-|\mathcal{P}|-1 times, we see that

R(Z{v})R(Z(fT𝒫))β|f||𝒫|1.\displaystyle R(Z\setminus\{v\})\geqslant R(Z\setminus(f\setminus T_{\mathcal{P}}))\beta^{|f|-|\mathcal{P}|-1}.

Equivalently, R(Z(fT𝒫))R(Z{v})β|𝒫||f|+1.R(Z\setminus(f\setminus T_{\mathcal{P}}))\leqslant R(Z\setminus\{v\})\beta^{|\mathcal{P}|-|f|+1}. Therefore, for any fixed integer ii, the number of colorings φ\varphi in BfB_{f} with |𝒫φ|=i|\mathcal{P}_{\varphi}|=i is at most St+1(|f|,i)R(Z{v})βi|f|+1S_{t+1}(|f|,i)\cdot R(Z\setminus\{v\})\beta^{i-|f|+1}. Since every color is used at least t+1t+1 times or zero times on ff, we have 1i|f|/(t+1)1\leqslant i\leqslant\lfloor|f|/(t+1)\rfloor.

This proves the lemma. ∎

As we have seen in Lemma 9, estimates for tt-associated Stirling numbers of the second kind are crucial. In this paper, we will only need sophisticated estimates for the case t=2t=2. These S2(d,i)S_{2}(d,i) have been widely studied in the literature (see [2, 19] and the references therein), but the known formulas are unhelpful for our purposes here.

Instead, we will prove the following two estimates for S2(d,i)S_{2}(d,i). We prove the second in Section 3. But the proof of the first essentially consists of straightforward but tedious calculation, so we defer it to the appendix.

Lemma 10.

Let dd and RR be positive integers and β\beta be a real number with β0.6R14\beta\geqslant 0.6R\geqslant 14. If 3dβ19/203\leqslant{d}\leqslant\beta^{19/20} and β600\beta\geqslant 600 and R750R\geqslant 750, then

i=1d/2S2(d,i)βid+1R1/2.\sum_{i=1}^{\left\lfloor{d}/2\right\rfloor}S_{2}(d,i)\beta^{i-d+1}\leqslant R^{-1/2}.
Lemma 11.

Let dd and RR be positive integers with 110dR110\leqslant d\leqslant R. If ε\varepsilon, cc, and β\beta are real numbers such that 0.6251ε<10.6251\leqslant\varepsilon<1, 0.3c<ε20.3\leqslant c<\frac{\varepsilon}{2} and εRβR\varepsilon R\leqslant\beta\leqslant R, then

i=1d/2S2(d,i)βid+1dβ2(2cε)(1c)d+2R3(ε0.6251)d/2.\sum_{i=1}^{\lfloor d/2\rfloor}S_{2}(d,i)\beta^{i-d+1}\leqslant\frac{d\beta}{2}\left(\frac{2c}{\varepsilon}\right)^{(1-c)d}+2R^{3}\left(\frac{\varepsilon}{0.6251}\right)^{-d/2}.

Moreover, if dmax{7.6logRlog(ε/0.6251),2.5logR(1c)log(ε/(2c))}d\geqslant\max\{\frac{7.6\log R}{\log(\varepsilon/0.6251)},\frac{2.5\log R}{(1-c)\log(\varepsilon/(2c))}\}, then

i=1d/2S2(d,i)βid+1R1/2.\sum_{i=1}^{\lfloor d/2\rfloor}S_{2}(d,i)\beta^{i-d+1}\leqslant R^{-1/2}.

Now we can prove a special case of Theorem 2 for graphs with minimum degree at least three.

Lemma 12.

Fix a positive integer Δ6.5107\Delta\geqslant 6.5\cdot 10^{7}, fix a real number β\beta with Δβ0.6550826Δ\Delta\geqslant\beta\geqslant 0.6550826\Delta, and let a:=Δ+β+Δa:=\left\lceil\Delta+\beta+\sqrt{\Delta}\right\rceil. If GG is a graph with minimum degree at least 3 and maximum degree at most Δ\Delta, and LL is an aa-assignment for GG, then there are at least β|V(G)|\beta^{|V(G)|} proper conflict-free LL-colorings of GG. Analogous statements hold when Δ4000\Delta\geqslant 4000 and β0.6¯Δ\beta\geqslant 0.\overline{6}\Delta and when Δ750\Delta\geqslant 750 and β0.8Δ\beta\geqslant 0.8\Delta.

Proof.

Let \mathcal{H}margin: \mathcal{H} be the hypergraph with V()=V(G)V(\mathcal{H})=V(G) and E()={N(v):vV(G)}E(\mathcal{H})=\{N(v):v\in V(G)\}. By Lemma 9, it suffices to show fE(),fvi=1|f|/2S2(|f|,i)βi|f|+1Δ\sum_{f\in E(\mathcal{H}),f\ni v}\sum_{i=1}^{\lfloor|f|/2\rfloor}S_{2}(|f|,i)\cdot\beta^{i-|f|+1}\leqslant\sqrt{\Delta} for every vV(G)v\in V(G). Note that Δ()Δ\Delta(\mathcal{H})\leqslant\Delta. So it suffices to show, for every fE()f\in E(\mathcal{H}), that

i=1|f|/2S2(|f|,i)βi|f|+11/Δ.\displaystyle\sum_{i=1}^{\lfloor|f|/2\rfloor}S_{2}(|f|,i)\cdot\beta^{i-|f|+1}\leqslant 1/\sqrt{\Delta}. (4)

Fix an edge ff of \mathcal{H}. Every vertex of GG has degree at least 3 and at most Δ\Delta, so 3|f|Δ3\leqslant|f|\leqslant\Delta. Our assumptions for Δ\Delta and β\beta imply β600\beta\geqslant 600. So (4) holds when |f|β19/20|f|\leqslant\beta^{19/20} by Lemma 10. Hence we may assume |f|>β19/20|f|>\beta^{19/20}. By Lemma 11, it suffices to show β19/20max{7.6logΔlog(ε/0.6251),2.5logΔ(1c)log(ε/(2c))}\beta^{19/20}\geqslant\max\{\frac{7.6\log\Delta}{\log(\varepsilon/0.6251)},\frac{2.5\log\Delta}{(1-c)\log(\varepsilon/(2c))}\}, for corresponding choices of ε\varepsilon and cc.

Let ε=0.6550826\varepsilon=0.6550826 and c=0.32754c=0.32754. So ΔβεΔ\Delta\geqslant\beta\geqslant\varepsilon\Delta. We have max{7.6log(ε/0.6251),2.5(1c)log(ε/(2c))}max{164,936689}=936689\max\{\frac{7.6}{\log(\varepsilon/0.6251)},\frac{2.5}{(1-c)\log(\varepsilon/(2c))}\}\leqslant\max\{164,936689\}=936689. By considering the derivative, we know (εΔ)19/20/logΔ(\varepsilon\Delta)^{19/20}/\log\Delta is increasing when Δ>10\Delta>10. If Δ6.5107\Delta\geqslant 6.5\cdot 10^{7}, then β19/20logΔ(εΔ)19/20logΔ(ε6.5107)19/20log(6.5107)983377>936689max{7.6log(ε/0.6251),2.5(1c)log(ε/(2c))}\frac{\beta^{19/20}}{\log\Delta}\geqslant\frac{(\varepsilon\Delta)^{19/20}}{\log\Delta}\geqslant\frac{(\varepsilon\cdot 6.5\cdot 10^{7})^{19/20}}{\log(6.5\cdot 10^{7})}\geqslant 983377>936689\geqslant\max\{\frac{7.6}{\log(\varepsilon/0.6251)},\frac{2.5}{(1-c)\log(\varepsilon/(2c))}\}. So we are done.

Now we assume ε=0.6¯\varepsilon=0.\overline{6} and c=0.3272c=0.3272. We have max{7.6log(ε/0.6251),2.5(1c)log(ε/(2c))}max{120,201}=201\max\{\frac{7.6}{\log(\varepsilon/0.6251)},\frac{2.5}{(1-c)\log(\varepsilon/(2c))}\}\leqslant\max\{120,\allowbreak 201\}=201. If Δ4000\Delta\geqslant 4000, then β19/20logΔ(εΔ)19/20logΔ(ε4000)19/20log4000216201\frac{\beta^{19/20}}{\log\Delta}\geqslant\frac{(\varepsilon\Delta)^{19/20}}{\log\Delta}\geqslant\frac{(\varepsilon\cdot 4000)^{19/20}}{\log 4000}\geqslant 216\geqslant 201. So we are done.

Finally, we assume ε=0.8\varepsilon=0.8 and c=0.32c=0.32. We have max{7.6log(ε/0.6251),2.5(1c)log(ε/(2c))}max{32,22}=32\max\{\frac{7.6}{\log(\varepsilon/0.6251)},\frac{2.5}{(1-c)\log(\varepsilon/(2c))}\}\leqslant\max\{32,\allowbreak 22\}=32. If Δ750\Delta\geqslant 750, then β19/20logΔ(εΔ)19/20logΔ(ε750)19/20log7506532\frac{\beta^{19/20}}{\log\Delta}\geqslant\frac{(\varepsilon\Delta)^{19/20}}{\log\Delta}\geqslant\frac{(\varepsilon\cdot 750)^{19/20}}{\log 750}\geqslant 65\geqslant 32. This proves the lemma. ∎

Now we are ready to prove Theorem 2.

Proof of Theorem 2.

Suppose that GG is a counterexample with the minimum number of vertices. Clearly, GG is connected and has at least three vertices. Let vv be a vertex of GG with smallest degree. By Lemma 12, the degree of vv is 1 or 2. Let xx and yy be the neighbors of vv, where x=yx=y if vv has degree 1. If xyx\neq y, and xx and yy are non-adjacent, then let G:=Gv+xyG^{\prime}:=G-v+xy; otherwise, let G:=GvG^{\prime}:=G-v. Let LL^{\prime} be the restriction of LL to V(G)V(G^{\prime}). Since GG^{\prime} has maximum degree at most Δ\Delta, the minimality of GG implies that there exist at least β|V(G)|1\beta^{|V(G)|-1} proper conflict-free LL^{\prime}-colorings of GG^{\prime}. Hence, to obtain a contradiction, it suffices to show that for every proper conflict-free LL^{\prime}-coloring φ\varphi of GG^{\prime}, there are at least β\beta ways to extend φ\varphi to a proper conflict-free LL-coloring of GG.

Fix a proper conflict-free LL^{\prime}-coloring φ\varphi of GG^{\prime}. Since GG is connected and has at least three vertices, xx and yy each have degree at least one in GG^{\prime}, by the choice of vv. So there exist colors cxc_{x} and cyc_{y} such that cxc_{x} appears on NG(x)N_{G^{\prime}}(x) exactly once and cyc_{y} appears on NG(y)N_{G^{\prime}}(y) exactly once. If possible, we choose cxφ(y)c_{x}\neq\varphi(y) and cyφ(x)c_{y}\neq\varphi(x). If G=GvG^{\prime}=G-v, then either NG(v)={x}N_{G}(v)=\{x\}, or xyE(G)xy\in E(G^{\prime}) and φ(x)φ(y)\varphi(x)\neq\varphi(y), so there are at least a4βa-4\geqslant\beta ways to extend φ\varphi to a proper conflict-free coloring of GG by coloring vv with a color in L(v){φ(x),φ(y),cx,cy}L(v)\setminus\{\varphi(x),\varphi(y),c_{x},c_{y}\}, a contradiction. So G=Gv+xyG^{\prime}=G-v+xy and xyx\neq y. For each u{x,y}u\in\{x,y\} and u{x,y}{u}u^{\prime}\in\{x,y\}\setminus\{u\}, if cu=φ(u)c_{u}=\varphi(u^{\prime}), then let Su:={φ(z):zNG(u){v}}S_{u}:=\{\varphi(z):z\in N_{G}(u)\setminus\{v\}\}; otherwise, let Su:={cu}S_{u}:=\{c_{u}\}. For the former, since cuc_{u} is chosen to be different from φ(u)\varphi(u^{\prime}) if possible, we know that every color appears on NG(u){v}N_{G}(u)\setminus\{v\} zero times or at least twice, so |Su||NG(u){v}|/2(Δ1)/2|S_{u}|\leqslant|N_{G}(u)\setminus\{v\}|/2\leqslant(\Delta-1)/2; for the latter, |Su|=1(Δ1)/2|S_{u}|=1\leqslant(\Delta-1)/2. But there are at least a|Sx||Sy|2a(Δ1)2βa-|S_{x}|-|S_{y}|-2\geqslant a-(\Delta-1)-2\geqslant\beta ways to extend φ\varphi to a proper conflict-free coloring of GG by coloring vv with a color in L(v)(SxSy{φ(x),φ(y)})L(v)\setminus(S_{x}\cup S_{y}\cup\{\varphi(x),\varphi(y)\}), a contradiction. ∎

To prove Theorem 4, we use the following estimate for S2(d,i)S_{2}(d,i), which we will prove in Section 3.

Lemma 13.

If dd is a positive integer and β\beta is a real number with d<βd<\beta, then

i=1d/2S2(d,i)βid+1β(d/β)d/21dβ.\sum_{i=1}^{\left\lfloor{d}/2\right\rfloor}S_{2}(d,i)\beta^{i-d+1}\leqslant\beta\cdot\frac{(d/\beta)^{\lceil d/2\rceil}}{1-\frac{d}{\beta}}.

Now we prove Theorem 4.

Proof of Theorem 4.

By Lemma 9, it suffices to prove that fE(),fvi=1|f|/2S2(|f|,i)βi|f|+1d(v)max{2β((logR)2β)mr(v)/2,(1108)(logR)2}\sum_{f\in E(\mathcal{H}),f\ni v}\sum_{i=1}^{\lfloor|f|/2\rfloor}S_{2}(|f|,i)\cdot\beta^{i-|f|+1}\leqslant d_{\mathcal{H}}(v)\cdot\max\{2\beta(\frac{(\log R)^{2}}{\beta})^{\lceil{\rm{mr}}_{\mathcal{H}}(v)/2\rceil},(1-10^{-8})^{(\log R)^{2}}\} for every vV(G)v\in V(G), when Re3.1108R\geqslant e^{3.1\cdot 10^{8}}. And it suffices to prove i=1|f|/2S2(|f|,i)βi|f|+1max{2β((logR)2β)mr(v)/2,(1108)(logR)2}\sum_{i=1}^{\lfloor|f|/2\rfloor}S_{2}(|f|,i)\cdot\beta^{i-|f|+1}\leqslant\max\{2\beta(\frac{(\log R)^{2}}{\beta})^{\lceil{\rm{mr}}_{\mathcal{H}}(v)/2\rceil},(1-10^{-8})^{(\log R)^{2}}\} for every vV(G)v\in V(G) and fE()f\in E(\mathcal{H}) containing vv, when Re3.1108R\geqslant e^{3.1\cdot 10^{8}}.

Fix a vertex vv of GG and an edge ff of \mathcal{H} containing vv.

Suppose |f|(logR)2|f|\leqslant(\log R)^{2}. Since Re5106R\geqslant e^{5\cdot 10^{6}}, we get |f|(logR)20.50.65R<β|f|\leqslant(\log R)^{2}\leqslant 0.5\cdot 0.65R<\beta. By Lemma 13,

i=1|f|/2S2(|f|,i)βi|f|+1β(|f|/β)|f|/21|f|ββ((logR)2/β)mr(v)/21(logR)20.65R2β1mr(v)2(logR)2mr(v)2.\sum_{i=1}^{\lfloor|f|/2\rfloor}S_{2}(|f|,i)\beta^{i-|f|+1}\leqslant\beta\frac{(|f|/\beta)^{\lceil|f|/2\rceil}}{1-\frac{|f|}{\beta}}\leqslant\beta\frac{((\log R)^{2}/\beta)^{\lceil{\rm{mr}}_{\mathcal{H}}(v)/2\rceil}}{1-\frac{(\log R)^{2}}{0.65R}}\leqslant 2\beta^{1-\lceil\frac{{\rm{mr}}_{\mathcal{H}}(v)}{2}\rceil}(\log R)^{2\lceil\frac{{\rm{mr}}_{\mathcal{H}}(v)}{2}\rceil}.

Assume instead that |f|>(logR)2|f|>(\log R)^{2}. Let ε=0.6550826\varepsilon=0.6550826 and c=0.32754125c=0.32754125. Now 0.6251ε<10.6251\leqslant\varepsilon<1, 0.3c<ε/20.3\leqslant c<\varepsilon/2, and εRβR\varepsilon R\leqslant\beta\leqslant R. Since |f|rank()R|f|\leqslant{\rm{rank}}(\mathcal{H})\leqslant R and R|f|110R\geqslant|f|\geqslant 110, by Lemma 11,

i=1|f|/2S2(|f|,i)βi|f|+1\displaystyle\sum_{i=1}^{\lfloor|f|/2\rfloor}S_{2}(|f|,i)\beta^{i-|f|+1} |f|R2(20.327541250.6550826)(10.32754125)|f|+2R3(0.65508260.6251)|f|/2\displaystyle\leqslant\frac{|f|R}{2}\left(\frac{2\cdot 0.32754125}{0.6550826}\right)^{(1-0.32754125)|f|}+2R^{3}\left(\frac{0.6550826}{0.6251}\right)^{-|f|/2}
2.5R3(1107)|f|.\displaystyle\leqslant 2.5R^{3}\cdot(1-10^{-7})^{|f|}.

Because |f|(logR)2|f|\geqslant(\log R)^{2},

2.5R3(1107)|f|\displaystyle 2.5R^{3}\cdot(1-10^{-7})^{|f|} 2R2(1107)(logR)2\displaystyle\leqslant 2R^{2}\cdot(1-10^{-7})^{(\log R)^{2}}
=2.5R3(11071108)(logR)2(1108)(logR)2\displaystyle=2.5R^{3}\cdot(\frac{1-10^{-7}}{1-10^{-8}})^{(\log R)^{2}}\cdot(1-10^{-8})^{(\log R)^{2}}
2.5R3(11+108)(logR)2(1108)(logR)2.\displaystyle\leqslant 2.5R^{3}\cdot(\frac{1}{1+10^{-8}})^{(\log R)^{2}}\cdot(1-10^{-8})^{(\log R)^{2}}.

Note that log(1+108)9.99999995109\log(1+10^{-8})\geqslant 9.99999995\cdot 10^{-9}. Since Re3.1108R\geqslant e^{3.1\cdot 10^{8}}, we have 2.5R3R3.012.5R^{3}\leqslant R^{3.01} and logR3.1108\log R\geqslant 3.1\cdot 10^{8}, so 3.01logR(logR)29.99999995109(logR)2log(1+108)3.01\log R\leqslant(\log R)^{2}\cdot 9.99999995\cdot 10^{-9}\leqslant(\log R)^{2}\cdot\log(1+10^{-8}). Hence 2.5R3(11+108)(logR)2(1108)(logR)2(1108)(logR)22.5R^{3}\cdot(\frac{1}{1+10^{-8}})^{(\log R)^{2}}\cdot(1-10^{-8})^{(\log R)^{2}}\leqslant(1-10^{-8})^{(\log R)^{2}}. This proves the theorem. ∎

Finally, we prove Theorem 5.

Proof of Theorem 5.

Let vV(G)v\in V(G) and fE()f\in E(\mathcal{H}) with vfv\in f. Since rank()r{\rm{rank}}(\mathcal{H})\leqslant r, |f|r|f|\leqslant r. If R(1+1ε)rR\geqslant(1+\frac{1}{\varepsilon})r, then 1rR11+ε1-\frac{r}{R}\geqslant\frac{1}{1+\varepsilon}, so by Lemma 13,

i=1|f|/2S2(|f|,i)Ri|f|+1R(|f|/R)|f|/21|f|RR(r/R)mr(v)/21rR(1+ε)R1mr(v)2rmr(v)2.\sum_{i=1}^{\lfloor|f|/2\rfloor}S_{2}(|f|,i)R^{i-|f|+1}\leqslant R\frac{(|f|/R)^{\lceil|f|/2\rceil}}{1-\frac{|f|}{R}}\leqslant R\frac{(r/R)^{\lceil{\rm{mr}}_{\mathcal{H}}(v)/2\rceil}}{1-\frac{r}{R}}\leqslant(1+\varepsilon)R^{1-\lceil\frac{{\rm{mr}}_{\mathcal{H}}(v)}{2}\rceil}r^{\lceil\frac{{\rm{mr}}_{\mathcal{H}}(v)}{2}\rceil}.

Hence fE(),fvi=1|f|/2S2(|f|,i)Ri|f|+1d(v)(1+ε)R1mr(v)2rmr(v)2\sum_{f\in E(\mathcal{H}),f\ni v}\sum_{i=1}^{\lfloor|f|/2\rfloor}S_{2}(|f|,i)\cdot R^{i-|f|+1}\leqslant d_{\mathcal{H}}(v)\cdot(1+\varepsilon)R^{1-\lceil\frac{{\rm{mr}}_{\mathcal{H}}(v)}{2}\rceil}r^{\lceil\frac{{\rm{mr}}_{\mathcal{H}}(v)}{2}\rceil}. Therefore, Statement 1 of this theorem follows from Lemma 9 (with taking β=R\beta=R).

Now we assume r4r\leqslant 4. Then 3|f|43\leqslant|f|\leqslant 4. If |f|=3|f|=3, then

i=1|f|/2S2(|f|,i)Ri|f|+1=S2(3,1)R1=R1.\sum_{i=1}^{\lfloor|f|/2\rfloor}S_{2}(|f|,i)R^{i-|f|+1}=S_{2}(3,1)R^{-1}=R^{-1}.

If |f|=4|f|=4, then

i=1|f|/2S2(|f|,i)Ri|f|+1=S2(4,1)R2+S2(4,2)R1=R2+12(42)R1=R2+3R1.\sum_{i=1}^{\lfloor|f|/2\rfloor}S_{2}(|f|,i)R^{i-|f|+1}=S_{2}(4,1)R^{-2}+S_{2}(4,2)R^{-1}=R^{-2}+\frac{1}{2}{4\choose 2}R^{-1}=R^{-2}+3R^{-1}.

Hence fE(),fvi=1|f|/2S2(|f|,i)Ri|f|+1d(v)(3R1+R2)\sum_{f\in E(\mathcal{H}),f\ni v}\sum_{i=1}^{\lfloor|f|/2\rfloor}S_{2}(|f|,i)\cdot R^{i-|f|+1}\leqslant d_{\mathcal{H}}(v)\cdot(3R^{-1}+R^{-2}). Therefore, Statement 2 of this theorem follows from Lemma 9 (with taking β=R\beta=R). ∎

3 Estimates for 2-Associated Stirling Numbers

Recall that, to prove our results in the previous section, we assumed the correctness of estimates about summations involving S2(d,i)S_{2}(d,i) (Lemmas 10, 11, and 13). In this section, we prove the second and third of these; the proof of Lemma 10 consists of calculation that is tedious but straightforward, so we defer it to the appendix. For simplicity, we denote S2(d,i)S_{2}(d,i) by Ei(d)E_{i}(d)margin: Ei(d)E_{i}(d) for any positive integers dd and ii. We will extensively use two simple upper bounds for Ei(d)E_{i}(d), combined via min{,}\min\{\cdot,\cdot\} in the following lemma.

Lemma 14.

For positive integers ii and dd,

Ei(d)\displaystyle E_{i}(d)\leqslant min{(di)idi2i,\displaystyle\min\Big{\{}{{d}\choose i}i^{{d}-i}2^{-i},
d!d/2!2d/2𝟏d/2+j=max{3id,0}i1(d2j)(2j)!j!2j(d2j3(ij))(3(ij))!(ij)!(3!)ij(ij)d2j3(ij)},\displaystyle\frac{d!}{\lfloor d/2\rfloor!2^{d/2}}\cdot{\bf 1}_{d/2\in{\mathbb{Z}}}+\sum_{j=\max\{3i-d,0\}}^{i-1}\binom{d}{2j}\frac{(2j)!}{j!2^{j}}\binom{d-2j}{3(i-j)}\frac{(3(i-j))!}{(i-j)!(3!)^{i-j}}(i-j)^{d-2j-3(i-j)}\Big{\}},

where 𝟏d/2=1{\bf 1}_{d/2\in{\mathbb{Z}}}=1 if d/2d/2\in{\mathbb{Z}}, and 𝟏d/2=0{\bf 1}_{d/2\in{\mathbb{Z}}}=0 otherwise.

Proof.

To form a partition of [d][d] into ii parts, each of size at least 2, we can choose ii elements to be “leaders” and then assign each other element to the part of a leader. (This also forms partitions with parts of size 1 but, since we seek an upper bound, this is not a problem.) Since each part has at least two elements, this process overcounts by a factor of at least 2i2^{i}. Thus,

Ei(d)(di)idi2i.\displaystyle E_{i}(d)\leqslant{{d}\choose i}i^{{d}-i}2^{-i}.

Now we prove the other upper bound. To form a partition of [d][d] into ii parts each of size at least 2, we first consider the parts of size exactly 2; denote the number of them by jj. To form these jj parts of size 2, we choose 2j2j elements and pair them up. The number of ways to pair 2j2j elements is precisely (2j)!j!2j\frac{(2j)!}{j!2^{j}}. If i=ji=j, then d=2id=2i; if j<ij<i, then each of the remaining iji-j parts has size at least 3, and to form these, we choose 3(ij)3(i-j) of the remaining elements, group them into triples, then assign each element still remaining to one of these triples. The number of ways to group 3(ij)3(i-j) elements into triples is (3(ij))!(ij)!(3!)ij\frac{(3(i-j))!}{(i-j)!(3!)^{i-j}}. This gives

Ei(d)d!d/2!2d/2𝟏d/2+j=max{3id,0}i1(d2j)(2j)!j!2j(d2j3(ij))(3(ij))!(ij)!(3!)ij(ij)d2j3(ij).\displaystyle E_{i}(d)\leqslant\frac{d!}{\lfloor d/2\rfloor!2^{d/2}}\cdot{\bf 1}_{d/2\in{\mathbb{Z}}}+\sum_{j=\max\{3i-d,0\}}^{i-1}\binom{d}{2j}\frac{(2j)!}{j!2^{j}}\binom{d-2j}{3(i-j)}\frac{(3(i-j))!}{(i-j)!(3!)^{i-j}}(i-j)^{d-2j-3(i-j)}.

(For the lower bound on the index jj, note that 2j+3(ij)d2j+3(i-j)\leqslant d, which implies that j3idj\geqslant 3i-d.) ∎

3.1 Proof of Lemma 13

We begin by proving Lemma 13. For easy reference, we restate it. This result will also be used when proving Lemma 10.

Lemma 13.

If dd is a positive integer and β\beta is a real number with d<βd<\beta, then

i=1d/2Ei(d)βid+1β(d/β)d/21dβ.\sum_{i=1}^{\left\lfloor{d}/2\right\rfloor}E_{i}(d)\beta^{i-d+1}\leqslant\beta\cdot\frac{(d/\beta)^{\lceil d/2\rceil}}{1-\frac{d}{\beta}}.
Proof.

By the first bound in Lemma 14,

i=1d/2Ei(d)βid+1i=1d/2(di)idi2iβid+1=βi=1d/2(di)2d(2iβ)di.\sum_{i=1}^{\left\lfloor{d}/2\right\rfloor}E_{i}(d)\beta^{i-d+1}\leqslant\sum_{i=1}^{\lfloor d/2\rfloor}{{d}\choose i}i^{{d}-i}2^{-i}\beta^{i-d+1}=\beta\sum_{i=1}^{\left\lfloor{d}/2\right\rfloor}{{d}\choose i}2^{-{d}}\left(\frac{2i}{\beta}\right)^{{d}-i}.

Since (di)2d{d\choose i}\leqslant 2^{d} and d<βd<\beta,

βi=1d/2(di)2d(2iβ)diβi=1d/2(dβ)diβj=d/2(dβ)j=β(d/β)d/21dβ.\beta\sum_{i=1}^{\left\lfloor{d}/2\right\rfloor}{{d}\choose i}2^{-{d}}\left(\frac{2i}{\beta}\right)^{{d}-i}\leqslant\beta\sum_{i=1}^{\left\lfloor{d}/2\right\rfloor}\left(\frac{d}{\beta}\right)^{{d}-i}\leqslant\beta\sum_{j=\left\lceil{d}/2\right\rceil}^{\infty}\left(\frac{d}{\beta}\right)^{j}=\beta\frac{({d}/\beta)^{\left\lceil{d}/2\right\rceil}}{1-\frac{d}{\beta}}.

3.2 Proof of Lemma 11

In the rest of this section, we prove Lemma 11. To upper bound binomial coefficients when proving Lemma 20, we need the following two upper bounds; for completeness we include their short proofs.

Proposition 15.

If kk and nn are integers with 0<k<n0<k<n, then

(nk)nnkk(nk)nk.\binom{n}{k}\leqslant\frac{n^{n}}{k^{k}(n-k)^{n-k}}.
Proof.

By the Binomial Theorem, we have

nn=(k+(nk))n=i=0n(ni)ki(nk)ni>(nk)kk(nk)nk.n^{n}=(k+(n-k))^{n}=\sum_{i=0}^{n}\binom{n}{i}k^{i}(n-k)^{n-i}>\binom{n}{k}k^{k}(n-k)^{n-k}.

Proposition 16.

If ii is a positive integer, then

(2i)!i!2i2i(2ie)i.\frac{(2i)!}{i!2^{i}}\leqslant 2i\left(\frac{2i}{e}\right)^{i}.
Proof.

It is well-known that nnen1n!nn+1en1\frac{n^{n}}{e^{n-1}}\leqslant n!\leqslant\frac{n^{n+1}}{e^{n-1}}; for example, see [6] for a complete proof. Direct computation gives

(2i)!i!2i((2i)2i+1e2i1)/(iiei12i)=(2i)i+1ei.\frac{(2i)!}{i!2^{i}}\leqslant\left(\frac{(2i)^{2i+1}}{e^{2i-1}}\right)/\left(\frac{i^{i}}{e^{i-1}}\cdot 2^{i}\right)=\frac{(2i)^{i+1}}{e^{i}}.

To prove Lemma 11, we estimate separately the summations of lower indexed terms and of higher indexed terms. (We remark that whenever we write i=ab\sum_{i=a}^{b}, we mean that we sum over all terms with index ii satisfying ii\in{\mathbb{Z}} and aiba\leqslant i\leqslant b, so aa and bb are not necessarily integers.)

Lemma 17.

Let dd and RRmargin: dd, RR be positive integers with dRd\leqslant R. Let ε\varepsilon, cc, and β\betamargin: ε\varepsilon, cc, β\beta be real numbers such that 0<ε<10<\varepsilon<1 and 0<c<ε20<c<\frac{\varepsilon}{2} and εRβR\varepsilon R\leqslant\beta\leqslant R. Then

i=1cdEi(d)βid+1dβ2(2cε)(1c)d.\sum_{i=1}^{cd}E_{i}(d)\beta^{i-d+1}\leqslant\frac{d\beta}{2}\cdot\left(\frac{2c}{\varepsilon}\right)^{(1-c)d}.

Moreover, if dlog(R2.5)(1c)logε2cd\geqslant\frac{\log(R^{2.5})}{(1-c)\log\frac{\varepsilon}{2c}}, then

i=1cdEi(d)βid+112R0.5.\sum_{i=1}^{cd}E_{i}(d)\beta^{i-d+1}\leqslant\frac{1}{2}R^{-0.5}.
Proof.

By Lemma 14, and the fact that (di)2d{d\choose i}\leqslant 2^{d},

i=1cdEi(d)βid+1\displaystyle\sum_{i=1}^{cd}E_{i}(d)\beta^{i-d+1} i=1cd(di)idi2iβid+1βi=1cd(2iβ)di\displaystyle\leqslant\sum_{i=1}^{cd}{d\choose i}i^{d-i}2^{-i}\beta^{i-d+1}\leqslant\beta\sum_{i=1}^{cd}\left(\frac{2i}{\beta}\right)^{d-i}
βi=1cd(2cdβ)diβi=1cd(2cRεR)didβ2(2cε)(1c)d.\displaystyle\leqslant\beta\sum_{i=1}^{cd}\left(\frac{2cd}{\beta}\right)^{d-i}\leqslant\beta\sum_{i=1}^{cd}\left(\frac{2cR}{\varepsilon R}\right)^{d-i}\leqslant\frac{d\beta}{2}\left(\frac{2c}{\varepsilon}\right)^{(1-c)d}.

If also dlog(R2.5)(1c)logε2cd\geqslant\frac{\log(R^{2.5)}}{(1-c)\log\frac{\varepsilon}{2c}}, then we have

i=1cdEi(d)βid+1dβ2(2cε)(1c)ddβ2(2cε)(log(R2.5))/log(ε/(2c))=dβ2R2.512R0.5.\displaystyle\sum_{i=1}^{cd}E_{i}(d)\beta^{i-d+1}\leqslant\frac{d\beta}{2}\left(\frac{2c}{\varepsilon}\right)^{(1-c)d}\leqslant\frac{d\beta}{2}\left(\frac{2c}{\varepsilon}\right)^{(\log(R^{2.5}))/\log(\varepsilon/(2c))}=\frac{d\beta}{2}R^{-2.5}\leqslant\frac{1}{2}R^{-0.5}.

Our next lemma allows us to focus on partitions counted by Ei(d)E_{i}(d) that have many parts of size at least 3, since it shows that these are at least 1/41/4 of all partitions counted by Ei(d)E_{i}(d).

Lemma 18.

Let n,k,jn,k,j be positive integers with jkj\leqslant k. Perform kk independent draws from {1,2,,n}\{1,2,...,n\} with uniform probability. Let p(j,k,n)p(j,k,n) be the probability that at most jj distinct elements are collected. If 2jk2j\leqslant k and 2jn2j\leqslant n and n110n\geqslant 110, then p(j,k,n)3/4p(j,k,n)\leqslant 3/4.

Proof.

Clearly p(j,k+1,n)p(j,k,n)p(j,k+1,n)\leqslant p(j,k,n) since drawing fewer times increases the likelihood of at most jj distinct draws. By the union bound and 15 above, letting ε:=j/n\varepsilon:=j/n, we get

p(j,k,n)\displaystyle p(j,k,n) p(j,2j,n)(nj)(jn)2jnnjj(nj)nj(jn)2j\displaystyle\leqslant p(j,2j,n)\leqslant\binom{n}{j}\left(\frac{j}{n}\right)^{2j}\leqslant\frac{n^{n}}{j^{j}(n-j)^{n-j}}\left(\frac{j}{n}\right)^{2j}
=nn2jjj(nj)nj=nn(12ε)(εn)εn(n(1ε))n(1ε)=εεn(1ε)n(1ε)=[εε(1ε)(1ε)]n.\displaystyle=\frac{n^{n-2j}j^{j}}{(n-j)^{n-j}}=\frac{n^{n(1-2\varepsilon)}(\varepsilon n)^{\varepsilon n}}{(n(1-\varepsilon))^{n(1-\varepsilon)}}=\frac{\varepsilon^{\varepsilon n}}{(1-\varepsilon)^{n(1-\varepsilon)}}=\left[\frac{\varepsilon^{\varepsilon}}{(1-\varepsilon)^{(1-\varepsilon)}}\right]^{n}. (5)

Note that 1nε12\frac{1}{n}\leqslant\varepsilon\leqslant\frac{1}{2}. Let ff be the function f(x)=xlogx(1x)log(1x)f(x)=x\log x-(1-x)\log(1-x). So p(j,k,n)enf(ε)p(j,k,n)\leqslant e^{n\cdot f(\varepsilon)}. Since f′′(x)=12xx(1x)>0f^{\prime\prime}(x)=\frac{1-2x}{x(1-x)}>0 for 1nx<12\frac{1}{n}\leqslant x<\frac{1}{2}, we have that if 2j<n2j<n, then 1nε(n1)2n\frac{1}{n}\leqslant\varepsilon\leqslant\frac{(n-1)}{2n} and

p(j,k,n)enf(ε)max{enf(1n),enf(n12n)}.p(j,k,n)\leqslant e^{n\cdot f(\varepsilon)}\leqslant\max\{e^{n\cdot f(\frac{1}{n})},e^{n\cdot f(\frac{n-1}{2n})}\}.

Note that by Taylor’s approximation, 1xex1-x\leqslant e^{-x} for every real number xx with 0<x<10<x<1. When ε=1/n\varepsilon=1/n, we know j=1j=1, so by (5),

enf(1n)=nn21(n1)n1(nn1)n11n=(1+1n1)n11nen<34.e^{n\cdot f(\frac{1}{n})}=\frac{n^{n-2}\cdot 1}{(n-1)^{n-1}}\leqslant\left(\frac{n}{n-1}\right)^{n-1}\cdot\frac{1}{n}=\left(1+\frac{1}{n-1}\right)^{n-1}\cdot\frac{1}{n}\leqslant\frac{e}{n}<\frac{3}{4}.

When ε=n12n\varepsilon=\frac{n-1}{2n}, we know j=n12j=\frac{n-1}{2}, so by (5),

enf(n12n)=n1(n12)(n1)/2(n+12)(n+1)/2=2nn+1(n1n+1)n122(12n+1)n122en1n+12e109111<34.e^{n\cdot f(\frac{n-1}{2n})}=\frac{n^{1}\left(\frac{n-1}{2}\right)^{(n-1)/2}}{\left(\frac{n+1}{2}\right)^{(n+1)/2}}=\frac{2n}{n+1}\left(\frac{n-1}{n+1}\right)^{\frac{n-1}{2}}\leqslant 2\left(1-\frac{2}{n+1}\right)^{\frac{n-1}{2}}\leqslant 2e^{-\frac{n-1}{n+1}}\leqslant 2e^{-\frac{109}{111}}<\frac{3}{4}.

This shows that if 2j<n2j<n, then p(j,k,n)<34p(j,k,n)<\frac{3}{4}.

So it remains to consider the case 2j=n2j=n. Let XX be a random variable denoting the number of elements of {1,2,,n}\{1,2,...,n\} that are not drawn. Since 2j=n2j=n, p(j,k,n)p(j,2j,2j)=Pr[Xj]=Pr[Xn/2]p(j,k,n)\leqslant p(j,2j,2j)=\Pr[X\geqslant j]=\Pr[X\geqslant n/2]. By linearity of expectation, we have E[X]=n(11/n)nE[X]=n(1-1/n)^{n}. By Markov’s inequality,

p(j,k,n)Pr[Xn/2]E[X]n/2=2(11/n)n2e<34.p(j,k,n)\leqslant\Pr[X\geqslant n/2]\leqslant\frac{E[X]}{n/2}=2(1-1/n)^{n}\leqslant\frac{2}{e}<\frac{3}{4}.

Lemma 19.

Let ii and dd be positive integers with id/2i\leqslant d/2. Then for every integer tt with 1tmin{d2i,i2}1\leqslant t\leqslant\min\{\frac{d}{2}-i,\frac{i}{2}\}, the number of partitions of [d][d] into ii parts each having size at least 2 for which there are at most tt parts of size at least 3 is at most p(t,d2i,i)Ei(d)p(t,d-2i,i)\cdot E_{i}(d), where the function pp is defined in Lemma 18.

Proof.

For every partition 𝒫\mathcal{P} of [d][d] into ii parts each having size at least 2, let Z𝒫={{mP,mP}:P𝒫}Z_{\mathcal{P}}=\{\{m_{P},m^{\prime}_{P}\}:P\in\mathcal{P}\}, where mPm_{P} and mPm_{P}^{\prime} are the minimum and the second minimum of the part PP of 𝒫\mathcal{P}, respectively. Note that each Z𝒫Z_{\mathcal{P}} is a pairing of 2i2i elements of [d][d]. For every pairing ZZ of 2i2i elements of [d][d], let AZA_{Z} be the set consisting of the partitions 𝒫\mathcal{P} of [d][d] into ii parts each having size at least 2 with Z𝒫=ZZ_{\mathcal{P}}=Z. Hence {AZ:Z\{A_{Z}:Z is a pairing of 2i2i elements of [d]}[d]\} is a partition of the set of partitions of [d][d] into ii parts each having size at least 2. Note that for every such a pairing ZZ, there exists a bijection ιZ\iota_{Z} from AZA_{Z} to [i]d2i[i]^{d-2i} defined by for every PAZP\in A_{Z} and j[d2i]j\in[d-2i], the jj-th entry of ιZ(P)\iota_{Z}(P) equals kk, where kk is the integer such that the jj-th smallest element in [d][d] not used in ZZ is contained in the part PP of 𝒫\mathcal{P} for which mPm_{P} is the kk-th smallest element in {mP:P𝒫}\{m_{P^{\prime}}:P^{\prime}\in\mathcal{P}\}. Hence for every integer tt with 1tmin{d2i,i2}1\leqslant t\leqslant\min\{\frac{d}{2}-i,\frac{i}{2}\}, the number of partitions in AZA_{Z} having at most tt parts of size at least 3 equals p(t,d2i,i)|AZ|p(t,d-2i,i)\cdot|A_{Z}|. ∎

Our next lemma provides the key step in proving our upper bound on the sum of the higher indexed terms.

Lemma 20.

Let ii and dd be integers with d110d\geqslant 110. If 0.3did/20.3d\leqslant i\leqslant d/2, then Ei(d)8i(0.6251d)diE_{i}(d)\leqslant 8i(0.6251d)^{d-i}.

Proof.

Among the partitions counted by Ei(d)E_{i}(d), the fraction of partitions contain at most min{d2i,i2}\min\{\frac{d}{2}-i,\frac{i}{2}\} parts of size at least 3 is p(min{d2i,i2},d2i,i)p(\min\{\frac{d}{2}-i,\frac{i}{2}\},d-2i,i) by Lemma 19; by Lemma 18, this fraction is at most 3/43/4. So it suffices to show that the number of partitions of [d][d] into ii parts each having size at least 2 with more than min{d2i,i2}\min\{\frac{d}{2}-i,\frac{i}{2}\} parts of size at least 3 is at most 2i(0.6251d)di2i(0.6251d)^{d-i}. (Hence we may assume i<d2i<\frac{d}{2}, since i=d2i=\frac{d}{2} implies that min{d2i,i2}=d2i=0\min\{\frac{d}{2}-i,\frac{i}{2}\}=\frac{d}{2}-i=0 and it is impossible to have a partition of [d][d] with i=d2i=\frac{d}{2} parts of size at least 2 and more than 0 part of size at least 3.)

To count these partitions, we first draw 2i2i elements that we pair together. Then, for each of the d2id-2i remaining elements, we assign it to one of the ii parts formed by the pairing. For each part of size at least 3, there are at least 3 choices for the initial pair of elements. Thus, there are at least 3j3^{j} ways to construct a partition with jj parts of size at least 3 by this process. Since we only count those with j>min{d2i,i2}j>\min\{\frac{d}{2}-i,\frac{i}{2}\}, we get the inequality

14Ei(d)(d2i)(2i)!i!2iid2i3min{d2i,i2}.\frac{1}{4}E_{i}(d)\leqslant\binom{d}{2i}\cdot\frac{(2i)!}{i!2^{i}}\cdot\frac{i^{d-2i}}{3^{\min\{\frac{d}{2}-i,\frac{i}{2}\}}}.

We first assume min{d2i,i2}=d2i\min\{\frac{d}{2}-i,\frac{i}{2}\}=\frac{d}{2}-i. Then

14Ei(d)\displaystyle\frac{1}{4}E_{i}(d) (d2i)(2i)!i!2iid2i3d/2i\displaystyle\leqslant\binom{d}{2i}\cdot\frac{(2i)!}{i!2^{i}}\cdot\frac{i^{d-2i}}{3^{d/2-i}}
dd(2i)2i(d2i)d2i2i(2ie)i(i3)d2i\displaystyle\leqslant\frac{d^{d}}{(2i)^{2i}(d-2i)^{d-2i}}\cdot 2i\left(\frac{2i}{e}\right)^{i}\cdot\left(\frac{i}{\sqrt{3}}\right)^{d-2i}
=2idd(2ei)i(i3(d2i))d2i,\displaystyle=2i\frac{d^{d}}{(2ei)^{i}}\left(\frac{i}{\sqrt{3}(d-2i)}\right)^{d-2i},

where the second inequality follows from 15 and 16. Letting ε:=i/d\varepsilon:=i/d,

Ei(d)\displaystyle E_{i}(d) 42iddi[diid2i(2ei)i(3(d2i))d2i]\displaystyle\leqslant 4\cdot 2i\cdot d^{d-i}\left[\frac{d^{i}i^{d-2i}}{(2ei)^{i}(\sqrt{3}(d-2i))^{d-2i}}\right]
=42iddi[dεd(εd)d2εd(2eεd)εd(3d(12ε))d2εd]\displaystyle=4\cdot 2i\cdot d^{d-i}\left[\frac{d^{\varepsilon d}{(\varepsilon d)}^{d-2\varepsilon d}}{(2e\varepsilon d)^{\varepsilon d}(\sqrt{3}d(1-2\varepsilon))^{d-2\varepsilon d}}\right]
=42iddi[εd(12ε)(2eε)εd(3(12ε))d2εd]\displaystyle=4\cdot 2i\cdot d^{d-i}\left[\frac{{\varepsilon}^{d(1-2\varepsilon)}}{(2e\varepsilon)^{\varepsilon d}(\sqrt{3}(1-2\varepsilon))^{d-2\varepsilon d}}\right]
=42iddi[ε(12ε)(2eε)ε(3(12ε))12ε]d\displaystyle=4\cdot 2i\cdot d^{d-i}\left[\frac{{\varepsilon}^{(1-2\varepsilon)}}{(2e\varepsilon)^{\varepsilon}(\sqrt{3}(1-2\varepsilon))^{1-2\varepsilon}}\right]^{d}
=42i[d[ε(12ε)(2eε)ε(3(12ε))12ε]11ε]di.\displaystyle=4\cdot 2i\cdot\left[d\left[\frac{{\varepsilon}^{(1-2\varepsilon)}}{(2e\varepsilon)^{\varepsilon}(\sqrt{3}(1-2\varepsilon))^{1-2\varepsilon}}\right]^{\frac{1}{1-\varepsilon}}\right]^{d-i}.

Let

f(ε)\displaystyle f(\varepsilon) :=[ε(12ε)(2eε)ε(3(12ε))12ε]11ε.\displaystyle:=\left[\frac{{\varepsilon}^{(1-2\varepsilon)}}{(2e\varepsilon)^{\varepsilon}(\sqrt{3}(1-2\varepsilon))^{1-2\varepsilon}}\right]^{\frac{1}{1-\varepsilon}}.

Since min{d2i,i2}=d2i\min\{\frac{d}{2}-i,\frac{i}{2}\}=\frac{d}{2}-i, we have d3i<d2\frac{d}{3}\leqslant i<\frac{d}{2}, so 13ε<12\frac{1}{3}\leqslant\varepsilon<\frac{1}{2}. With Mathematica we know that max1/3ε1/2f(ε)0.6251\max_{1/3\leqslant\varepsilon\leqslant 1/2}f(\varepsilon)\leqslant 0.6251. Thus, we conclude that Ei(d)42i(0.6251d)diE_{i}(d)\leqslant 4\cdot 2i\cdot(0.6251d)^{d-i}, as claimed.

Now we assume min{d2i,i2}=i2\min\{\frac{d}{2}-i,\frac{i}{2}\}=\frac{i}{2}. That is, 0.3did30.3d\leqslant i\leqslant\frac{d}{3}. Then

14Ei(d)\displaystyle\frac{1}{4}E_{i}(d) (d2i)(2i)!i!2iid2i3i/2\displaystyle\leqslant\binom{d}{2i}\cdot\frac{(2i)!}{i!2^{i}}\cdot\frac{i^{d-2i}}{3^{i/2}}
dd(2i)2i(d2i)d2i2i(2ie3)iid2i\displaystyle\leqslant\frac{d^{d}}{(2i)^{2i}(d-2i)^{d-2i}}\cdot 2i\left(\frac{2i}{e\sqrt{3}}\right)^{i}\cdot i^{d-2i}
=2idd(23ei)i(id2i)d2i,\displaystyle=2i\frac{d^{d}}{(2\sqrt{3}ei)^{i}}\left(\frac{i}{d-2i}\right)^{d-2i},

where the second inequality follows from 15 and 16. Letting ε:=i/d\varepsilon:=i/d,

Ei(d)\displaystyle E_{i}(d) 42iddi[diid2i(23ei)i(d2i)d2i]\displaystyle\leqslant 4\cdot 2i\cdot d^{d-i}\left[\frac{d^{i}i^{d-2i}}{(2\sqrt{3}ei)^{i}(d-2i)^{d-2i}}\right]
=42iddi[dεd(εd)d2εd(23eεd)εd(d(12ε))d2εd]\displaystyle=4\cdot 2i\cdot d^{d-i}\left[\frac{d^{\varepsilon d}{(\varepsilon d)}^{d-2\varepsilon d}}{(2\sqrt{3}e\varepsilon d)^{\varepsilon d}(d(1-2\varepsilon))^{d-2\varepsilon d}}\right]
=42iddi[εd(12ε)(23eε)εd(12ε)d2εd]\displaystyle=4\cdot 2i\cdot d^{d-i}\left[\frac{{\varepsilon}^{d(1-2\varepsilon)}}{(2\sqrt{3}e\varepsilon)^{\varepsilon d}(1-2\varepsilon)^{d-2\varepsilon d}}\right]
=42iddi[ε(12ε)(23eε)ε(12ε)12ε]d\displaystyle=4\cdot 2i\cdot d^{d-i}\left[\frac{{\varepsilon}^{(1-2\varepsilon)}}{(2\sqrt{3}e\varepsilon)^{\varepsilon}(1-2\varepsilon)^{1-2\varepsilon}}\right]^{d}
=42i[d[ε(12ε)(23eε)ε(12ε)12ε]11ε]di.\displaystyle=4\cdot 2i\cdot\left[d\left[\frac{{\varepsilon}^{(1-2\varepsilon)}}{(2\sqrt{3}e\varepsilon)^{\varepsilon}(1-2\varepsilon)^{1-2\varepsilon}}\right]^{\frac{1}{1-\varepsilon}}\right]^{d-i}.

Let

g(ε)\displaystyle g(\varepsilon) :=[ε(12ε)(23eε)ε(12ε)12ε]11ε.\displaystyle:=\left[\frac{{\varepsilon}^{(1-2\varepsilon)}}{(2\sqrt{3}e\varepsilon)^{\varepsilon}(1-2\varepsilon)^{1-2\varepsilon}}\right]^{\frac{1}{1-\varepsilon}}.

Since 0.3did30.3d\leqslant i\leqslant\frac{d}{3}, so 0.3ε130.3\leqslant\varepsilon\leqslant\frac{1}{3}. With Mathematica we know that max0.3ε1/3g(ε)0.57<0.6251\max_{0.3\leqslant\varepsilon\leqslant 1/3}g(\varepsilon)\leqslant 0.57<0.6251. Thus, we conclude that Ei(d)42i(0.6251d)diE_{i}(d)\leqslant 4\cdot 2i\cdot(0.6251d)^{d-i}, as claimed. ∎

Now we can finally use the previous three lemmas to bound the sum of higher indexed terms.

Lemma 21.

Let dd and RRmargin: dd, RR be positive integers with 110dR110\leqslant d\leqslant R. If ε\varepsilon, cc, and β\betamargin: ε\varepsilon, cc, β\beta are real numbers such that 0.6251ε<10.6251\leqslant\varepsilon<1 and 0.3c<ε20.3\leqslant c<\frac{\varepsilon}{2} and εRβR\varepsilon R\leqslant\beta\leqslant R, then

i=cdd/2Ei(d)βid+12R3(ε0.6251)d/2.\sum_{i=cd}^{\lfloor d/2\rfloor}E_{i}(d)\beta^{i-d+1}\leqslant 2R^{3}\left(\frac{\varepsilon}{0.6251}\right)^{-d/2}.

Moreover, if d7.6logRlog(ε/0.6251)d\geqslant\frac{7.6\log R}{\log(\varepsilon/0.6251)}, then

i=cdd/2Ei(d)βid+112R0.5.\sum_{i=cd}^{\lfloor d/2\rfloor}E_{i}(d)\beta^{i-d+1}\leqslant\frac{1}{2}R^{-0.5}.
Proof.

By Lemma 20, we have

i=cdd/2Ei(d)βid+1\displaystyle\sum_{i=cd}^{d/2}E_{i}(d)\beta^{i-d+1} i=cdd/28i(0.6251d)diβid+1\displaystyle\leqslant\sum_{i=cd}^{d/2}8i(0.6251d)^{d-i}\beta^{i-d+1}
=8βi=cdd/2i(β0.6251d)id\displaystyle=8\beta\sum_{i=cd}^{d/2}i\left(\frac{\beta}{0.6251d}\right)^{i-d}
=8βi=cdd/2i(εR0.6251R)id\displaystyle=8\beta\sum_{i=cd}^{d/2}i\left(\frac{\varepsilon R}{0.6251R}\right)^{i-d}
2R3(ε0.6251)d/2.\displaystyle\leqslant 2R^{3}\left(\frac{\varepsilon}{0.6251}\right)^{-d/2}.

If also d(7.6logR)/(log(ε/0.6251))d\geqslant(7.6\log R)/(\log(\varepsilon/0.6251)), then

i=cdd/2Ei(d)βid+12R3(ε0.6251)(3.8logR)/(log(ε/0.6251))=2R3(R3.8)=2R0.812R0.5.\sum_{i=cd}^{d/2}E_{i}(d)\beta^{i-d+1}\leqslant 2R^{3}\left(\frac{\varepsilon}{0.6251}\right)^{(-3.8\log R)/(\log(\varepsilon/0.6251))}=2R^{3}(R^{-3.8})=2R^{-0.8}\leqslant\frac{1}{2}R^{-0.5}.

Corollary 22.

Lemma 11 is true.

Proof.

This follows immediately from Lemmas 17 and 21. ∎

4 Fractional Coloring

The goal of this section is to prove Theorem 7, which is an asymptotically optimal theorem for fractional proper conflict-free coloring. The following is a restatement.

Theorem 23.

For every ε>0\varepsilon>0, there exists d0d_{0} such that if Δ\Delta is a real number with Δd0\Delta\geqslant d_{0} and GG is a graph with maximum degree at most Δ\Delta, then (G,)(G,\mathcal{H}) is fractionally properly conflict-free (1+ε)Δ(1+\varepsilon)\Delta-colorable for any hypergraph \mathcal{H} with V()=V(G)V(\mathcal{H})=V(G) and rank()Δ{\rm{rank}}(\mathcal{H})\leqslant\Delta.

To prove the theorem, we consider the dual problem of fractional coloring that transforms the problem to finding maximum weighted stable sets with specific properties and is easier to work with. We state the dual problem and prove the duality in Lemma 24. The remaining task, Lemma 25, is to construct a desired stable set randomly. We first randomly construct an induced subgraph with small maximum degree (and hence with small chromatic number) with a very large fraction of the weight by using concentration inequalities, and then choose a stable set from it that hits a large fraction of the weight.

Lemma 24.

If GG is a graph and \mathcal{H} is a hypergraph with V()=V(G)V(\mathcal{H})=V(G), then for every positive real number tt, the following two statements are equivalent.

  1. (1)

    (G,)(G,\mathcal{H}) is fractionally properly conflict-free tt-colorable.

  2. (2)

    For any functions f:V(G)0f:V(G)\rightarrow{\mathbb{R}}_{\geqslant 0} and g:E()0g:E(\mathcal{H})\rightarrow{\mathbb{R}}_{\geqslant 0} with vV(G)f(v)+zE()g(z)=1\sum_{v\in V(G)}f(v)+\sum_{z\in E(\mathcal{H})}g(z)=1, there exists a stable set SS in GG such that vSf(v)+zE(),|zS|=1g(z)1t\sum_{v\in S}f(v)+\sum_{z\in E(\mathcal{H}),|z\cap S|=1}g(z)\geqslant\frac{1}{t}.

Lemma 25.

For every ε>0\varepsilon>0, there exists an integer d0d_{0} such that if Δd0\Delta\geqslant d_{0}, GG is a graph with maximum degree at most Δ\Delta, \mathcal{H} a hypergraph with V()=V(G)V(\mathcal{H})=V(G) and rank()Δ{\rm{rank}}(\mathcal{H})\leqslant\Delta, and f:V(G)0f:V(G)\rightarrow{\mathbb{R}}_{\geqslant 0} and g:E()0g:E(\mathcal{H})\rightarrow{\mathbb{R}}_{\geqslant 0} are functions with vV(G)f(v)+zE()g(z)=1\sum_{v\in V(G)}f(v)+\sum_{z\in E(\mathcal{H})}g(z)=1, then there exists a stable set SS of GG such that vSf(v)+zE(),|zS|=1g(z)(1ε)2(1+2ε)Δ\sum_{v\in S}f(v)+\sum_{z\in E(\mathcal{H}),|z\cap S|=1}g(z)\geqslant\frac{(1-\varepsilon)^{2}}{(1+2\varepsilon)\Delta}.

Before proving Lemmas 24 and 25, we prove Theorem 23 assuming the lemmas.

Proof of Theorem 23.

To show (G,)(G,\mathcal{H}) is fractionally properly conflict-free (1+ε)Δ(1+\varepsilon)\Delta-colorable, by Lemma 24, it suffices, given functions f:V(G)0f:V(G)\rightarrow{\mathbb{R}}_{\geqslant 0} and g:E()0g:E(\mathcal{H})\rightarrow{\mathbb{R}}_{\geqslant 0} with vV(G)f(v)+zE()g(z)=1\sum_{v\in V(G)}f(v)+\sum_{z\in E(\mathcal{H})}g(z)=1, to show there is a stable set SS of GG with vSf(v)+zE(),|zS|=1g(z)1(1+ε)Δ\sum_{v\in S}f(v)+\sum_{z\in E(\mathcal{H}),|z\cap S|=1}g(z)\geqslant\frac{1}{(1+\varepsilon)\Delta}.

By Lemma 25, for every ε0>0\varepsilon_{0}>0, there exists an integer d0d_{0} such that if Δd0\Delta\geqslant d_{0}, then there exists a stable set SS in GG with vSf(v)+zE(),|zS|=1g(z)(1ε0)2(1+2ε0)Δ\sum_{v\in S}f(v)+\sum_{z\in E(\mathcal{H}),|z\cap S|=1}g(z)\geqslant\frac{(1-\varepsilon_{0})^{2}}{(1+2\varepsilon_{0})\Delta}. Since limx01+2x(1x)2=1\lim_{x\to 0}\frac{1+2x}{(1-x)^{2}}=1, there exists ε0>0\varepsilon_{0}>0 such that 1+2ε0(1ε0)21+ε\frac{1+2\varepsilon_{0}}{(1-\varepsilon_{0})^{2}}\leqslant 1+\varepsilon. Let d0d_{0} be the constant mentioned in Lemma 25 for ε0\varepsilon_{0}. Now we are done by Lemma 25. ∎

Proof of Lemma 24.

We begin by formulating fractional proper conflict-free coloring as a linear program. Let A1A_{1}margin: A1A_{1} be a matrix with rows indexed by V(G)V(G) and columns indexed by the set of all stable sets in GG, such that for each vV(G)v\in V(G) and stable set SS in GG, the entry of A1A_{1} in the vv-th row and SS-th column equals 1 if vSv\in S and equals 0 otherwise. Let A2A_{2}margin: A2A_{2} be a matrix with rows indexed by E()E(\mathcal{H}), and columns indexed by the set of all stable sets in GG, in the same order as in A1A_{1}, and for each zE()z\in E(\mathcal{H}) and stable set SS in GG, the entry of A2A_{2} in the zz-th row and SS-th column equals 1 if |zS|=1|z\cap S|=1 and equals 0 otherwise. Let AAmargin: AA be the matrix with |V(G)|+|E()||V(G)|+|E(\mathcal{H})| rows such that its first |V(G)||V(G)| rows form A1A_{1} and its last |E()||E(\mathcal{H})| rows form A2A_{2}. In the rest of proof, we will frequently denote by 1 a vector all of whose entries are 1.

It is easy to see that (G,)(G,\mathcal{H}) is fractionally properly conflict-free tt-colorable if and only if there exists a nonnegative rational vector xx with 1Txt1^{T}x\leqslant t and Ax1Ax\geqslant 1, where x[0,1]|(G)|x\in[0,1]^{|\mathcal{I}(G)|}, where (G)\mathcal{I}(G) is the set of all independent sets of GG. Since AA is an integral matrix, the fractional proper conflict-free chromatic number of (G,)(G,\mathcal{H}) equals minx1Tx\min_{x}1^{T}x over nonnegative real vectors xx with Ax1Ax\geqslant 1; moreover, this minimum is attained by a nonnegative rational vector xx.

Now we prove that (1) implies (2). Assume that the fractional proper conflict-free chromatic number of (G,)(G,\mathcal{H}) is at most tt. So there exist positive integers a,ba,b with a/bta/b\leqslant t and a propermargin: tt, aa, bb conflict-free (a:b)(a:b)-coloring φ\varphi of (G,)(G,\mathcal{H}). Let f,gf,g be functions as given in (2). Since φ\varphi is a proper conflict-freemargin: ff, gg, φ\varphi (a:b)(a:b)-coloring of (G,)(G,\mathcal{H}), by the definition of (a:b)(a:b)-coloring,

i=1a(vφ1(i)f(v)+zE()|zφ1(i)|=1g(z))\displaystyle\sum_{i=1}^{a}\left(\sum_{v\in\varphi^{-1}(i)}f(v)+\sum_{\begin{subarray}{c}z\in E(\mathcal{H})\\ |z\cap\varphi^{-1}(i)|=1\end{subarray}}g(z)\right) bvV(G)f(v)+i=1azE()|zφ1(i)|=1g(z)\displaystyle\geqslant b\sum_{v\in V(G)}f(v)+\sum_{i=1}^{a}\sum_{\begin{subarray}{c}z\in E(\mathcal{H})\\ |z\cap\varphi^{-1}(i)|=1\end{subarray}}g(z)
bvV(G)f(v)+bzE()g(z)=b.\displaystyle\geqslant b\sum_{v\in V(G)}f(v)+b\sum_{z\in E(\mathcal{H})}g(z)=b.

By the pigeonhole principle, there exists i[a]i\in[a] with vφ1(i)f(v)+zE(),|zφ1(i)|=1g(z)ba1t\sum_{v\in\varphi^{-1}(i)}f(v)+\sum_{z\in E(\mathcal{H}),|z\cap\varphi^{-1}(i)|=1}g(z)\geqslant\frac{b}{a}\geqslant\frac{1}{t}. So (2) holds, since φ1(i)\varphi^{-1}(i) is a stable set.

Now we prove that (2) implies (1). Assume that (2) holds. Suppose to the contrary that the fractional proper conflict-free chromatic number of (G,)(G,\mathcal{H}) is greater than ttmargin: tt . By the duality theorem of linear programming, there exist nonnegative functions f1:V(G)0f_{1}:V(G)\rightarrow{\mathbb{R}}_{\geqslant 0} and g1:E()0g_{1}:E(\mathcal{H})\rightarrow{\mathbb{R}}_{\geqslant 0}margin: f1f_{1}, g1g_{1} such that vV(G)f1(v)+zE()g1(z)>t\sum_{v\in V(G)}f_{1}(v)+\sum_{z\in E(\mathcal{H})}g_{1}(z)>t, and for every stable set SS in GG, we have vSf1(v)+zE(),|zS|=1g1(z)1\sum_{v\in S}f_{1}(v)+\sum_{z\in E(\mathcal{H}),|z\cap S|=1}g_{1}(z)\leqslant 1. Let s:=vV(G)f1(v)+zE()g1(z)s:=\sum_{v\in V(G)}f_{1}(v)+\sum_{z\in E(\mathcal{H})}g_{1}(z).margin: ss Note that s>ts>t. Let ff and gg be the functions such that f:=1sf1f:=\frac{1}{s}\cdot f_{1} and g:=1sg1g:=\frac{1}{s}\cdot g_{1}.margin: ff, gg Hence vV(G)f(v)+zE()g(z)=1s(vV(G)f1(v)+zE()g1(z))=1\sum_{v\in V(G)}f(v)+\sum_{z\in E(\mathcal{H})}g(z)=\frac{1}{s}\cdot(\sum_{v\in V(G)}f_{1}(v)+\sum_{z\in E(\mathcal{H})}g_{1}(z))=1, and for every stable set SS in GG, we have vSf(v)+zE(),|zS|=1g(z)=1s(vSf1(v)+zE(),|zS|=1g1(z))1s<1t\sum_{v\in S}f(v)+\sum_{z\in E(\mathcal{H}),|z\cap S|=1}g(z)=\frac{1}{s}\cdot(\sum_{v\in S}f_{1}(v)+\sum_{z\in E(\mathcal{H}),|z\cap S|=1}g_{1}(z))\leqslant\frac{1}{s}<\frac{1}{t}, contradicting (2). ∎

To prove Lemma 25, the second main step in our plan, we need the following three lemmas to bound various probabilities. The first is the Chernoff Bound, which is well-known (proofs are available in most probability textbooks). The second and third are straightforward applications of elementary calculus, so we defer their proofs to the appendix.

Lemma 26 (Chernoff bound).

Let X1,,XnX_{1},\ldots,X_{n} be i.i.d. random variables such that for every i[n]i\in[n], we have Xi=1X_{i}=1 with probability pp and Xi=0X_{i}=0 with probability 1p1-p. Let X:=i=1nXiX:=\sum_{i=1}^{n}X_{i}. For every δ\delta with 0<δ<10<\delta<1, we have P(|X𝔼[X]|δ𝔼[X])2eδ2𝔼[X]/3P(|X-{\mathbb{E}}[X]|\geqslant\delta{\mathbb{E}}[X])\leqslant 2e^{-\delta^{2}{\mathbb{E}}[X]/3}.

Lemma 27.

Let pp be a real number with 0<p<10<p<1. Let a,ba,b be real numbers. If f(x):=x(1p)xf(x):=x(1-p)^{x} for every real number xx, then f(x)min{f(a),f(b)}f(x)\geqslant\min\{f(a),f(b)\} for every xx with axba\leqslant x\leqslant b.

Lemma 28.

limxx(1logxx)x=1\lim_{x\to\infty}x(1-\frac{\log x}{x})^{x}=1.

Now we prove Lemma 25, completing the proof of Theorem 23. For convenience, we restate it.

Lemma 25. For every ε>0\varepsilon>0, there exists an integer d0d_{0} such that if Δd0\Delta\geqslant d_{0}, GG is a graph with maximum degree at most Δ\Delta, \mathcal{H} a hypergraph with V()=V(G)V(\mathcal{H})=V(G) and rank()Δ{\rm{rank}}(\mathcal{H})\leqslant\Delta, and f:V(G)0f:V(G)\rightarrow{\mathbb{R}}_{\geqslant 0} and g:E()0g:E(\mathcal{H})\rightarrow{\mathbb{R}}_{\geqslant 0} are functions with vV(G)f(v)+zE()g(z)=1\sum_{v\in V(G)}f(v)+\sum_{z\in E(\mathcal{H})}g(z)=1, then there exists a stable set SS of GG such that vSf(v)+zE(),|zS|=1g(z)(1ε)2(1+2ε)Δ\sum_{v\in S}f(v)+\sum_{z\in E(\mathcal{H}),|z\cap S|=1}g(z)\geqslant\frac{(1-\varepsilon)^{2}}{(1+2\varepsilon)\Delta}.

Proof.

Fix ε>0\varepsilon>0.margin: ε\varepsilon Note that limxxε2/3=0=limxlogxx\lim_{x\to\infty}x^{-\varepsilon^{2}/3}=0=\lim_{x\to\infty}\frac{\log x}{x} and recall (from Lemma 28), that limxx(1logxx)x=1\lim_{x\to\infty}x(1-\frac{\log x}{x})^{x}=1. So there exists an integer d0d_{0}margin: d0d_{0} such that for every real number dd, if dd0d\geqslant d_{0}, then εmax{2dε2/3,logdd,1d(1logdd)d,1/logd}\varepsilon\geqslant\max\{2d^{-\varepsilon^{2}/3},\frac{\log d}{d},1-d(1-\frac{\log d}{d})^{d},1/\log d\}. Let Δ\Delta, GG, \mathcal{H}, and functions f,gf,gmargin: Δ\Delta, GG, \mathcal{H}, ff, gg be as prescribed in the lemma. Let p:=logΔΔp:=\frac{\log\Delta}{\Delta}.margin: pp

Let AAmargin: AA be the subset of V(G)V(G) obtained by, for each vertex vv of GG, independently putting vv into AA with probability pp. For each vV(G)v\in V(G), let XvX_{v}margin: XvX_{v} be the random variable with Xv=1X_{v}=1 if vAv\in A, and Xv=0X_{v}=0 otherwise. For each vV(G)v\in V(G), let YvY_{v}margin: YvY_{v} be the random variable such that Yv=1Y_{v}=1 if Xv=1X_{v}=1 and there are more than (1+ε)pΔ(1+\varepsilon)p\Delta neighbors ww of vv with Xw=1X_{w}=1; otherwise, Yv=0Y_{v}=0. Let B:={vV(G):Xv=1,Yv=0}B:=\{v\in V(G):X_{v}=1,Y_{v}=0\}.margin: BB Hence

𝔼[vBf(v)+zE()|zB|=1g(z)]=vV(G)f(v)P(vB)+zE()g(z)P(|zB|=1).{\mathbb{E}}[\sum_{v\in B}f(v)+\sum_{\begin{subarray}{c}z\in E(\mathcal{H})\\ |z\cap B|=1\end{subarray}}g(z)]=\sum_{v\in V(G)}f(v)\cdot P(v\in B)+\sum_{z\in E(\mathcal{H})}g(z)\cdot P(|z\cap B|=1).

For every vV(G)v\in V(G), by the Chernoff bound (Lemma 26),

P(Yv=1)\displaystyle P(Y_{v}=1) =P(Xv=1 and wN(v)Xw>(1+ε)pΔ)\displaystyle=P(X_{v}=1\mbox{ and }\sum_{w\in N(v)}X_{w}>(1+\varepsilon)p\Delta)
=P(Xv=1)P(wN(v)Xw>(1+ε)Δd(v)𝔼[wN(v)Xw])\displaystyle=P(X_{v}=1)\cdot P\left(\sum_{w\in N(v)}X_{w}>(1+\varepsilon)\frac{\Delta}{d(v)}\cdot{\mathbb{E}}[\sum_{w\in N(v)}X_{w}]\right)
p2e13((1+ε)Δd(v)1)2𝔼[wN(v)Xw]\displaystyle\leqslant p\cdot 2e^{-\frac{1}{3}((1+\varepsilon)\frac{\Delta}{d(v)}-1)^{2}{\mathbb{E}}[\sum_{w\in N(v)}X_{w}]}
=2pe13((1+ε)Δd(v)1)2pd(v)\displaystyle=2p\cdot e^{-\frac{1}{3}((1+\varepsilon)\frac{\Delta}{d(v)}-1)^{2}\cdot p\cdot d(v)}
=2pe13((1+ε)Δd(v)d(v))2p\displaystyle=2p\cdot e^{-\frac{1}{3}((1+\varepsilon)\frac{\Delta}{\sqrt{d(v)}}-\sqrt{d(v)})^{2}\cdot p}
2pe13(εΔd(v))2p\displaystyle\leqslant 2p\cdot e^{-\frac{1}{3}(\varepsilon\frac{\Delta}{\sqrt{d(v)}})^{2}\cdot p}
2pe13ε2Δp=2pe13ε2logΔ=2pΔε2/3.\displaystyle\leqslant 2p\cdot e^{-\frac{1}{3}\varepsilon^{2}\Delta p}=2pe^{-\frac{1}{3}\varepsilon^{2}\log\Delta}=2p\cdot\Delta^{-\varepsilon^{2}/3}.

Since Δd0\Delta\geqslant d_{0}, by our choice of d0d_{0}, we know 2Δε2/3ε2\Delta^{-\varepsilon^{2}/3}\leqslant\varepsilon. So P(Yv=1)pεP(Y_{v}=1)\leqslant p\varepsilon. Hence, for every vV(G)v\in V(G), we know P(vB)=P(Xv=1,Yv=0)=P(Xv=1)P(Xv=1,Yv=1)=P(Xv=1)P(Yv=1)ppε=p(1ε)P(v\in B)=P(X_{v}=1,Y_{v}=0)=P(X_{v}=1)-P(X_{v}=1,Y_{v}=1)=P(X_{v}=1)-P(Y_{v}=1)\geqslant p-p\varepsilon=p\cdot(1-\varepsilon).

For each zE()z\in E(\mathcal{H}), note that P(|zB|=1)uzP(Xu=1,Yu=0,Xw=0P(|z\cap B|=1)\geqslant\sum_{u\in z}P(X_{u}=1,Y_{u}=0,X_{w}=0 for every wz{u})w\in z\setminus\{u\}). For each vertex zE()z\in E(\mathcal{H}) and uzu\in z, by the Chernoff bound,

P(Yu=1|Xu=1 and Xw=0foreverywz{u})\displaystyle~{}~{}~{}~{}P(Y_{u}=1|X_{u}=1\mbox{ and }X_{w}=0{\rm\ for\ every\ }w\in z-\{u\})
=P(wN(u)zXw>(1+ε)pΔ)\displaystyle=P(\sum_{w\in N(u)\setminus z}X_{w}>(1+\varepsilon)p\Delta)
=P(wN(u)zXw>(1+ε)Δ|N(u)z|𝔼[wN(u)zXw])\displaystyle=P(\sum_{w\in N(u)\setminus z}X_{w}>(1+\varepsilon)\frac{\Delta}{|N(u)\setminus z|}{\mathbb{E}}[\sum_{w\in N(u)\setminus z}X_{w}])
2e((1+ε)Δ|N(u)z|1)23𝔼[wN(u)zXw]\displaystyle\leqslant 2e^{-\frac{((1+\varepsilon)\frac{\Delta}{|N(u)\setminus z|}-1)^{2}}{3}{\mathbb{E}}[\sum_{w\in N(u)\setminus z}X_{w}]}
=2e((1+ε)Δ|N(u)z|1)23p|N(u)z|\displaystyle=2e^{-\frac{((1+\varepsilon)\frac{\Delta}{|N(u)\setminus z|}-1)^{2}}{3}p|N(u)\setminus z|}
=2e((1+ε)Δ|N(u)z||N(u)z|)2p3\displaystyle=2e^{-((1+\varepsilon)\frac{\Delta}{\sqrt{|N(u)\setminus z|}}-\sqrt{|N(u)\setminus z|})^{2}\cdot\frac{p}{3}}
2e(εΔ|N(u)z|)2p3\displaystyle\leqslant 2e^{-(\varepsilon\frac{\Delta}{\sqrt{|N(u)\setminus z|}})^{2}\cdot\frac{p}{3}}
2eε2Δp/3=2eε2logΔ/3=2Δε2/3ε.\displaystyle\leqslant 2e^{-\varepsilon^{2}\Delta p/3}=2e^{-\varepsilon^{2}\log\Delta/3}=2\Delta^{-\varepsilon^{2}/3}\leqslant\varepsilon.

So P(Yu=0|Xu=1,Xw=0P(Y_{u}=0|X_{u}=1,X_{w}=0 for every wz{u})1εw\in z-\{u\})\geqslant 1-\varepsilon. For each zE()z\in E(\mathcal{H}) and uzu\in z, we have P(Xu=1,Xw=0P(X_{u}=1,X_{w}=0 for every wz{u})=p(1p)|z|1p(1p)|z|w\in z-\{u\})=p(1-p)^{|z|-1}\geqslant p(1-p)^{|z|}. Hence, for each zE()z\in E(\mathcal{H}) and uzu\in z,

P(Xu=1 and Yu=0 and Xw=0forallwz{u})\displaystyle~{}~{}~{}~{}P(X_{u}=1\mbox{ and }Y_{u}=0\mbox{ and }X_{w}=0{\rm\ for\ all\ }w\in z\setminus\{u\})
=P(Xu=1 and Xw=0forallwz{u})P(Yu=0|Xu=1 and Xw=0forallwz{u})\displaystyle=P(X_{u}=1\mbox{ and }X_{w}=0{\rm\ for\ all\ }w\in z\setminus\{u\})\cdot P(Y_{u}=0|X_{u}=1\mbox{ and }X_{w}=0{\rm\ for\ all\ }w\in z\setminus\{u\})
p(1p)|z|(1ε).\displaystyle\geqslant p(1-p)^{|z|}\cdot(1-\varepsilon).

All zE()z\in E(\mathcal{H}) satisfy 1|z|Δ1\leqslant|z|\leqslant\Delta, so Lemma 27 gives |z|(1p)|z|min{1p,Δ(1p)Δ}|z|(1-p)^{|z|}\geqslant\min\{1-p,\Delta(1-p)^{\Delta}\}. Since Δd0\Delta\geqslant d_{0}, we get 1p=1logΔΔ1ε1-p=1-\frac{\log\Delta}{\Delta}\geqslant 1-\varepsilon and Δ(1p)Δ=Δ(1logΔΔ)Δ1ε\Delta(1-p)^{\Delta}=\Delta(1-\frac{\log\Delta}{\Delta})^{\Delta}\geqslant 1-\varepsilon. Thus, by summing the probabilities of some disjoint events, we have

P(|zB|=1)\displaystyle P(|z\cap B|=1) uzP(Xu=1,Yu=0,Xw=0foreverywz\{u})\displaystyle\geqslant\sum_{u\in z}P(X_{u}=1,Y_{u}=0,X_{w}=0{\rm\ for\ every}\ w\in z\backslash\{u\})
|z|p(1p)|z|(1ε)\displaystyle\geqslant|z|\cdot p(1-p)^{|z|}\cdot(1-\varepsilon)
=(1ε)p|z|(1p)|z|\displaystyle=(1-\varepsilon)p\cdot|z|(1-p)^{|z|}
(1ε)pmin{1p,Δ(1p)Δ}\displaystyle\geqslant(1-\varepsilon)p\cdot\min\{1-p,\Delta(1-p)^{\Delta}\}
(1ε)p(1ε)=(1ε)2p.\displaystyle\geqslant(1-\varepsilon)p\cdot(1-\varepsilon)=(1-\varepsilon)^{2}p.

Hence

𝔼[vBf(v)+zE()|zB|=1g(z)]\displaystyle{\mathbb{E}}[\sum_{v\in B}f(v)+\sum_{\begin{subarray}{c}z\in E(\mathcal{H})\\ |z\cap B|=1\end{subarray}}g(z)] =vV(G)f(v)P(vB)+zE()g(z)P(|zB|=1)\displaystyle=\sum_{v\in V(G)}f(v)\cdot P(v\in B)+\sum_{z\in E(\mathcal{H})}g(z)\cdot P(|z\cap B|=1)
p(1ε)vV(G)f(v)+(1ε)2pzE()g(z)\displaystyle\geqslant p(1-\varepsilon)\sum_{v\in V(G)}f(v)+(1-\varepsilon)^{2}p\sum_{z\in E(\mathcal{H})}g(z)
p(1ε)2(vV(G)f(v)+zE()g(z))=p(1ε)2.\displaystyle\geqslant p(1-\varepsilon)^{2}(\sum_{v\in V(G)}f(v)+\sum_{z\in E(\mathcal{H})}g(z))=p(1-\varepsilon)^{2}.

So there exists BV(G)B^{*}\subseteq V(G) such that G[B]G[B^{*}] has maximum degree at most (1+ε)pΔ(1+\varepsilon)p\Delta and

vBf(v)+zE()|zB|=1g(z)p(1ε)2.\sum_{v\in B^{*}}f(v)+\sum_{\begin{subarray}{c}z\in E(\mathcal{H})\\ |z\cap B^{*}|=1\end{subarray}}g(z)\geqslant p(1-\varepsilon)^{2}.

Since G[B]G[B^{*}] has maximum degree at most (1+ε)pΔ(1+\varepsilon)p\Delta, G[B]G[B^{*}] is properly ((1+ε)pΔ+1)(\lfloor(1+\varepsilon)p\Delta\rfloor+1)-colorable. Hence BB^{*} is a union of disjoint stable sets S1,S2,,S(1+ε)pΔ+1S_{1},S_{2},...,S_{\lfloor(1+\varepsilon)p\Delta\rfloor+1} in GG. Note that for every zE()z\in E(\mathcal{H}), if |zB|=1|z\cap B^{*}|=1, then |zSj|=1|z\cap S_{j}|=1 for some jj. So

j=1(1+ε)pΔ+1zE()|zSj|=1g(z)zE()|zB|=1g(z).\sum_{j=1}^{\lfloor(1+\varepsilon)p\Delta\rfloor+1}\sum_{\begin{subarray}{c}z\in E(\mathcal{H})\\ |z\cap S_{j}|=1\end{subarray}}g(z)\geqslant\sum_{\begin{subarray}{c}z\in E(\mathcal{H})\\ |z\cap B^{*}|=1\end{subarray}}g(z).

Hence

j=1(1+ε)pΔ+1(vSjf(v)+zE()|zSj|=1g(z))\displaystyle\sum_{j=1}^{\lfloor(1+\varepsilon)p\Delta\rfloor+1}(\sum_{v\in S_{j}}f(v)+\sum_{\begin{subarray}{c}z\in E(\mathcal{H})\\ |z\cap S_{j}|=1\end{subarray}}g(z)) vBf(v)+zE()|zB|=1g(z)\displaystyle\geqslant\sum_{v\in B^{*}}f(v)+\sum_{\begin{subarray}{c}z\in E(\mathcal{H})\\ |z\cap B^{*}|=1\end{subarray}}g(z)
p(1ε)2.\displaystyle\geqslant p(1-\varepsilon)^{2}.

Therefore, there exists a subset SS of BB^{*} such that SS is a stable set in GG and

vSf(v)+zE()|zS|=1g(z)\displaystyle\sum_{v\in S}f(v)+\sum_{\begin{subarray}{c}z\in E(\mathcal{H})\\ |z\cap S|=1\end{subarray}}g(z)\geqslant 1(1+ε)pΔ+1p(1ε)2\displaystyle\frac{1}{\lfloor(1+\varepsilon)p\Delta\rfloor+1}\cdot p(1-\varepsilon)^{2}
\displaystyle\geqslant 1(1+2ε)pΔp(1ε)2=(1ε)2(1+2ε)Δ.\displaystyle\frac{1}{(1+2\varepsilon)p\Delta}\cdot p(1-\varepsilon)^{2}=\frac{(1-\varepsilon)^{2}}{(1+2\varepsilon)\Delta}.

Finally, we prove Corollary 8. We restate it here.

Corollary 8. For every ε>0\varepsilon>0, there exists d0d_{0} such that if Δd0\Delta\geqslant d_{0} and GG is a graph with maximum degree at most Δ\Delta, then there exists a proper (a:b)(a:b)-coloring φ\varphi of GG for some positive integers aa and bb with a(1+ε)Δba\leqslant(1+\varepsilon)\Delta b such that

  1. 1.

    φ\varphi is a fractionally proper conflict-free (a:b)(a:b)-coloring of GG,

  2. 2.

    for any set CC of colors with size less than 5b/25b/2, every component of the subgraph of GG induced by the vertices that use only colors in CC has at most two vertices, and

  3. 3.

    |φ(v)φ(w)|b/2|\varphi(v)\cap\varphi(w)|\leqslant b/2 for any distinct vertices v,wv,w of GG.

Proof.

Fix a graph GG. Let \mathcal{H} be the hypergraph with V()=V(G)V(\mathcal{H})=V(G) and E()E(\mathcal{H}) consists of all nonempty subsets of V(G)V(G) with size at most Δ\Delta. By Theorem 23, there exists a proper (a:b)(a:b)-coloring φ\varphi of (G,)(G,\mathcal{H}) for some positive integers aa and bb with a(1+ε)Δba\leqslant(1+\varepsilon)\Delta b. So for every non-isolated vertex vv of GG, since |NG(v)|Δ(G)Δ|N_{G}(v)|\leqslant\Delta(G)\leqslant\Delta, we have NG(v)E()N_{G}(v)\in E(\mathcal{H}), so at least bb colors appear exactly once on NG(v)N_{G}(v). This proves Statement 1.

For any two distinct vertices v,wv,w of GG, since |{v,w}|Δ|\{v,w\}|\leqslant\Delta, by the definition of E()E(\mathcal{H}) some edge of \mathcal{H} is precisely {v,w}\{v,w\}. Since the coloring of \mathcal{H} is conflict-free, by definition at least bb colors appear exactly once on {v,w}\{v,w\}. So |φ(v)φ(w)|+|φ(w)φ(v)|b|\varphi(v)\setminus\varphi(w)|+|\varphi(w)\setminus\varphi(v)|\geqslant b, and hence |φ(v)φ(w)|=(|φ(v)|+|φ(w)|(|φ(v)φ(w)|+|φ(w)φ(v)|))/2b/2|\varphi(v)\cap\varphi(w)|=(|\varphi(v)|+|\varphi(w)|-(|\varphi(v)\setminus\varphi(w)|+|\varphi(w)\setminus\varphi(v)|))/2\leqslant b/2. This proves Statement 3.

Now we prove Statement 2. Suppose to the contrary that there exists a subset SS of V(G)V(G) with |S|=3|S|=3 such that vSφ(v)=C\bigcup_{v\in S}\varphi(v)=C of size less than 5b/25b/2 and the subgraph of GG induced on SS is connected. So some vertex xx in SS is adjacent to the other two vertices yy and zz in SS. By Statement 3, |φ(y)φ(z)|=|φ(y)|+|φ(z)||φ(y)φ(z)|3b/2|\varphi(y)\cup\varphi(z)|=|\varphi(y)|+|\varphi(z)|-|\varphi(y)\cap\varphi(z)|\geqslant 3b/2. Since φ\varphi is proper, φ(x)(φ(y)φ(z))=\varphi(x)\cap(\varphi(y)\cup\varphi(z))=\emptyset, so |φ(x)φ(y)φ(z)|=|φ(x)|+|φ(y)φ(z)|5b/2|\varphi(x)\cup\varphi(y)\cup\varphi(z)|=|\varphi(x)|+|\varphi(y)\cup\varphi(z)|\geqslant 5b/2, a contradiction. This proves Statement 2. ∎

Acknowledgments

Thanks to an anonymous referee whose helpful suggestions shortened and simplified Section 3. Thanks also to Louis Esperet for helpful comments on an early draft of this paper.

References

  • [1] N. Alon, C. McDiarmid, and B. Reed. Acyclic coloring of graphs. Random Structures Algorithms, 2(3):277–288, 1991.
  • [2] M. Bóna and I. Mező. Real zeros and partitions without singleton blocks. European J. Combin., 51:500–510, 2016.
  • [3] Y. Caro, M. Petruševski, and R. Škrekovski. Remarks on proper conflict-free colorings of graphs. Discrete Math., 346(2):Paper No. 113221, 14, 2023.
  • [4] P. Cheilaris. Conflict-free coloring. PhD thesis, City University of New York, 2009.
  • [5] E.-K. Cho, I. Choi, H. Kwon, and B. Park. Proper conflict-free coloring of sparse graphs. March 2022, arXiv:2203.16390.
  • [6] D. W. Cranston and C.-H. Liu. Proper conflict-free coloring of graphs with large maximum degree. arXiv:2211.02818v1.
  • [7] L. Esperet and A. Parreau. Acyclic edge-coloring using entropy compression. European J. Combin., 34(6):1019--1027, 2013.
  • [8] G. Even, Z. Lotker, D. Ron, and S. Smorodinsky. Conflict-free colorings of simple geometric regions with applications to frequency assignment in cellular networks. SIAM J. Comput., 33(1):94--136, 2003.
  • [9] I. Fabrici, B. Lužar, S. Rindošová, and R. Soták. Proper conflict-free and unique-maximum colorings of planar graphs with respect to neighborhoods. Discrete Appl. Math., 324:80--92, 2023.
  • [10] G. Fertin, A. Raspaud, and B. Reed. Star coloring of graphs. J. Graph Theory, 47(3):163--182, 2004.
  • [11] R. Hickingbotham. Odd colourings, conflict-free colourings and strong colouring numbers. March 2022, arXiv:2203.10402.
  • [12] H. Hind, M. Molloy, and B. Reed. Colouring a graph frugally. Combinatorica, 17(4):469--482, 1997.
  • [13] A. Kostochka, M. Kumbhat, and T. Ł uczak. Conflict-free colourings of uniform hypergraphs with few edges. Combin. Probab. Comput., 21(4):611--622, 2012.
  • [14] C.-H. Liu. Proper conflict-free list-coloring, odd minors, subdivisions, and layered treewidth. Discrete Math., 347(1):113668, 2024.
  • [15] C.-H. Liu and B. Reed. Asymptotically optimal proper conflict-free colouring. January 2024, arXiv:2401.02155.
  • [16] C.-H. Liu and G. Yu. Linear colorings of subcubic graphs. European J. Combin., 34(6):1040--1050, 2013, arXiv:1206.5348.
  • [17] J. Pach and G. Tardos. Conflict-free colourings of graphs and hypergraphs. Combin. Probab. Comput., 18(5):819--834, 2009.
  • [18] M. Rosenfeld. Another approach to non-repetitive colorings of graphs of bounded degree. Electron. J. Combin., 27(3):Paper No. 3.43, 16, 2020, arXiv:2006.09094.
  • [19] N. J. A. Sloane and T. O. F. Inc. The on-line encyclopedia of integer sequences, 2022. https://oeis.org/A008299.
  • [20] I. M. Wanless and D. R. Wood. A general framework for hypergraph coloring. SIAM J. Discrete Math., 36(3):1663--1677, 2022.
  • [21] R. Yuster. Linear coloring of graphs. Discrete Math., 185(1-3):293--297, 1998.

Appendix: 3 Omitted Proofs

Here we include 3 proofs that we omitted from the body of the text.

4.1 Proof of Lemma 10

We prove Lemma 10 by considering the range of possible values of dd.

Lemma 29.

If 3d93\leqslant{d}\leqslant 9 and β0.6R\beta\geqslant 0.6R and R750R\geqslant 750, then

i=1d/2Ei(d)βid+1R1/2.\sum_{i=1}^{\left\lfloor{d}/2\right\rfloor}E_{i}(d)\beta^{i-d+1}\leqslant R^{-1/2}.
Proof.

Since d3d\geqslant 3 and β0.6R\beta\geqslant 0.6R, i=1d/2Ei(d)βid+1i=1d/2Ei(d)(0.6R)id+1\sum_{i=1}^{\left\lfloor{d}/2\right\rfloor}E_{i}(d)\beta^{i-d+1}\leqslant\sum_{i=1}^{\left\lfloor{d}/2\right\rfloor}E_{i}(d)(0.6R)^{i-d+1}. Note that E1(d)=1E_{1}(d)=1, Ei(2i)=(2i)!i!2iE_{i}(2i)=\frac{(2i)!}{i!2^{i}} (by the second bound in Lemma 14), and Ei(j)Ei(k)E_{i}(j)\leqslant E_{i}(k) for every jkj\leqslant k. When d=3d=3, i=1d/2Ei(d)(0.6R)id+1=(0.6R)1R1/2\sum_{i=1}^{\left\lfloor{d}/2\right\rfloor}E_{i}(d)(0.6R)^{i-d+1}=(0.6R)^{-1}\leqslant R^{-1/2}. When d=4d=4,

i=1d/2Ei(d)(0.6R)id+1=(0.6R)2+E2(4)(0.6R)1(1+4!2!22)(0.6R)1=4(0.6R)1R1/2.\displaystyle\sum_{i=1}^{\left\lfloor{d}/2\right\rfloor}E_{i}(d)(0.6R)^{i-d+1}=(0.6R)^{-2}+E_{2}(4)(0.6R)^{-1}\leqslant(1+\frac{4!}{2!2^{2}})(0.6R)^{-1}=4(0.6R)^{-1}\leqslant R^{-1/2}.

Since Ei(d)E_{i}(d) is the number of partitions of the set [d][d] into ii parts with extra properties, Ei(d)idE_{i}(d)\leqslant i^{d}. When 5d65\leqslant d\leqslant 6,

i=1d/2Ei(d)(0.6R)id+1\displaystyle\sum_{i=1}^{\left\lfloor{d}/2\right\rfloor}E_{i}(d)(0.6R)^{i-d+1} (0.6R)2d+E2(d)(0.6R)3d+(d5)E3(6)(0.6R)4d\displaystyle\leqslant(0.6R)^{2-d}+E_{2}(d)(0.6R)^{3-d}+(d-5)E_{3}(6)(0.6R)^{4-d}
(0.6R)2d+2d(0.6R)3d+(d5)6!3!23(0.6R)4d\displaystyle\leqslant(0.6R)^{2-d}+2^{d}(0.6R)^{3-d}+(d-5)\frac{6!}{3!2^{3}}(0.6R)^{4-d}
(1+26)(0.6R)2+15(d5)(0.6R)4d.\displaystyle\leqslant(1+2^{6})(0.6R)^{-2}+15(d-5)(0.6R)^{4-d}.

So if d=5d=5, then i=1d/2Ei(d)(0.6R)id+1181/R2R1/2\sum_{i=1}^{\left\lfloor{d}/2\right\rfloor}E_{i}(d)(0.6R)^{i-d+1}\leqslant 181/R^{2}\leqslant R^{-1/2}, since R750R\geqslant 750; if d=6d=6, then i=1d/2Ei(d)(0.6R)id+1181R2+15(0.6R)2R1/2\sum_{i=1}^{\left\lfloor{d}/2\right\rfloor}E_{i}(d)(0.6R)^{i-d+1}\leqslant 181R^{-2}+15(0.6R)^{-2}\leqslant R^{-1/2}.

When 7d87\leqslant d\leqslant 8,

i=1d/2Ei(d)(0.6R)id+1\displaystyle\sum_{i=1}^{\left\lfloor{d}/2\right\rfloor}E_{i}(d)(0.6R)^{i-d+1} (0.6R)2d+E2(d)(0.6R)3d+E3(d)(0.6R)4d+E4(d)(0.6R)5d\displaystyle\leqslant(0.6R)^{2-d}+E_{2}(d)(0.6R)^{3-d}+E_{3}(d)(0.6R)^{4-d}+E_{4}(d)(0.6R)^{5-d}
(0.6R)5+28(0.6R)4+38(0.6R)3+8!4!24(0.6R)2\displaystyle\leqslant(0.6R)^{-5}+2^{8}(0.6R)^{-4}+3^{8}(0.6R)^{-3}+\frac{8!}{4!2^{4}}(0.6R)^{-2}
(1+256+6561)(0.6R)3+105(0.6R)2\displaystyle\leqslant(1+256+6561)(0.6R)^{-3}+105(0.6R)^{-2}
31565R3+300R2=(31565R2.5+300R1.5)R1/2\displaystyle\leqslant 31565R^{-3}+300R^{-2}=(31565R^{-2.5}+300R^{-1.5})R^{-1/2}
(315657502.5+3007501.5)R1/2R1/2.\displaystyle\leqslant(31565\cdot 750^{-2.5}+300\cdot 750^{-1.5})R^{-1/2}\leqslant R^{-1/2}.

When d=9d=9,

i=1d/2Ei(d)(0.6R)id+1\displaystyle\sum_{i=1}^{\left\lfloor{d}/2\right\rfloor}E_{i}(d)(0.6R)^{i-d+1} =(0.6R)7+E2(9)(0.6R)6+E3(9)(0.6R)5+E4(9)(0.6R)4\displaystyle=(0.6R)^{-7}+E_{2}(9)(0.6R)^{-6}+E_{3}(9)(0.6R)^{-5}+E_{4}(9)(0.6R)^{-4}
449(0.6R)4410(5/3)47503.5R1/2R1/2.\displaystyle\leqslant 4\cdot 4^{9}(0.6R)^{-4}\leqslant 4^{10}\cdot(5/3)^{4}\cdot 750^{-3.5}\cdot R^{-1/2}\leqslant R^{-1/2}.

Lemma 30.

If 10dβ2/310\leqslant{d}\leqslant\beta^{2/3} and β0.6R14\beta\geqslant 0.6R\geqslant 14, then

i=1d/2Ei(d)βid+1R1/2.\sum_{i=1}^{\left\lfloor{d}/2\right\rfloor}E_{i}(d)\beta^{i-d+1}\leqslant R^{-1/2}.
Proof.

Since 10dβ2/310\leqslant d\leqslant\beta^{2/3}, we have d/ββ1/31/2d/\beta\leqslant\beta^{-1/3}\leqslant 1/2, so

i=1d/2Ei(d)βid+1β(d/β)d/21dβ2β(β13)d2=2β1d62β2/3(β0.6)1/2R1/2,\sum_{i=1}^{\left\lfloor{d}/2\right\rfloor}E_{i}(d)\beta^{i-d+1}\leqslant\beta\frac{({d}/\beta)^{\left\lceil{d}/2\right\rceil}}{1-\frac{d}{\beta}}\leqslant 2\beta(\beta^{-\frac{1}{3}})^{\frac{d}{2}}=2\beta^{1-\frac{d}{6}}\leqslant 2\beta^{-2/3}\leqslant\left(\frac{\beta}{0.6}\right)^{-1/2}\leqslant R^{-1/2},

where the first inequality follows from Lemma 13, and the final two inequalities holds because β14\beta\geqslant 14 and because β0.6R\beta\geqslant 0.6R. ∎

Lemma 31.

If β2/3dβ19/20\beta^{2/3}\leqslant{d}\leqslant\beta^{19/20} and βmax{0.6R,600}\beta\geqslant\max\{0.6R,600\} and R750R\geqslant 750, then

i=1d/2Ei(d)βid+1R1/2.\sum_{i=1}^{\left\lfloor{d}/2\right\rfloor}E_{i}(d)\beta^{i-d+1}\leqslant R^{-1/2}.
Proof.

Since β600\beta\geqslant 600, we have d/ββ1/206001/203/4d/\beta\leqslant\beta^{-1/20}\leqslant 600^{-1/20}\leqslant 3/4, so by Lemma 13,

i=1d/2Ei(d)βid+1\displaystyle\sum_{i=1}^{\left\lfloor{d}/2\right\rfloor}E_{i}(d)\beta^{i-d+1} β(d/β)d/21dβ4β(β120)d/2=4β1d404(0.6R)1d40.\displaystyle\leqslant\beta\frac{({d}/\beta)^{\left\lceil{d}/2\right\rceil}}{1-\frac{d}{\beta}}\leqslant 4\beta(\beta^{-\frac{1}{20}})^{{d}/2}=4\beta^{1-\frac{d}{40}}\leqslant 4\cdot(0.6R)^{1-\frac{d}{40}}.

Since β600\beta\geqslant 600, we have dβ2/371d\geqslant\beta^{2/3}\geqslant 71, so 4(0.6R)1d/404(0.6R)31/406R31/40675011/40R1/2R1/24\cdot(0.6R)^{1-d/40}\leqslant 4\cdot(0.6R)^{-31/40}\leqslant 6R^{-31/40}\leqslant 6\cdot 750^{-11/40}\cdot R^{-1/2}\leqslant R^{-1/2}, where the penultimate inequality follows from R750R\geqslant 750. ∎

Corollary 32.

Lemma 10 is true.

Proof.

This follows immediately from Lemmas 29, 30, and 31. ∎

4.2 Proofs of Lemmas 27 and 28

27. Let pp be a real number with 0<p<10<p<1. Let a,ba,b be real numbers. If f(x):=x(1p)xf(x):=x(1-p)^{x} for every real number xx, then f(x)min{f(a),f(b)}f(x)\geqslant\min\{f(a),f(b)\} for every xx with axba\leqslant x\leqslant b.

Proof.

Let t:=1/log(1p)t:=-1/\log(1-p). Since df(x)dx=(1p)x+x(1p)xlog(1p)=(1p)x(1+xlog(1p))\frac{{\rm d}f(x)}{{\rm d}x}=(1-p)^{x}+x(1-p)^{x}\log(1-p)=(1-p)^{x}(1+x\log(1-p)), f(x)f(x) is increasing when xtx\leqslant t, and f(x)f(x) is decreasing when xtx\geqslant t. Hence f(x)min{f(a),f(b)}f(x)\geqslant\min\{f(a),f(b)\} for every xx with axba\leqslant x\leqslant b. ∎

28. limxx(1logxx)x=1\lim_{x\to\infty}x(1-\frac{\log x}{x})^{x}=1.

Proof.

This is a straightforward application of L’Hôspital’s rule. We have

limxlog(x(1logxx)x)=limx(log(x)+xlog(1logxx))\displaystyle~{}~{}~{}~{}\lim_{x\to\infty}\log\left(x\left(1-\frac{\log x}{x}\right)^{x}\right)=\lim_{x\to\infty}\left(\log(x)+x\log\left(1-\frac{\log x}{x}\right)\right)
=limx(log(x)x+log(1logxx))/x1\displaystyle=\lim_{x\to\infty}\left(\frac{\log(x)}{x}+\log\left(1-\frac{\log x}{x}\right)\right)/x^{-1}
=Hlimx(1x2logxx2+(1log(x)x)1(1+logxx2))/(x2)\displaystyle\stackrel{{\scriptstyle\text{H}}}{{=}}\lim_{x\to\infty}\left(\frac{1}{x^{2}}-\frac{\log x}{x^{2}}+\left(1-\frac{\log(x)}{x}\right)^{-1}\left(\frac{-1+\log x}{x^{2}}\right)\right)/(-x^{-2})
=limx(1+logxx(logx1)xlogx)=limxlogxlog2xxlogx=0.\displaystyle=\lim_{x\to\infty}\left(-1+\log x-\frac{x(\log x-1)}{x-\log x}\right)=\lim_{x\to\infty}\frac{\log x-\log^{2}x}{x-\log x}=0.

So

limxx(1logxx)x=limxexp(log(x(1logxx)x))=1\displaystyle~{}~{}~{}~{}\lim_{x\to\infty}x\left(1-\frac{\log x}{x}\right)^{x}=\lim_{x\to\infty}\exp\left(\log\left(x\left(1-\frac{\log x}{x}\right)^{x}\right)\right)=1