This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Propagation of singularities under Schrödinger equations on manifolds with ends

Shota FUKUSHIMA Graduate School of Mathematical Sciences, the University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo, 153-8914, Japan. Email: [email protected] author is supported by Leading Graduate Course for Frontiers of Mathematical Sciences and Physics (FMSP), at Graduate School of Mathematical Science, the University of Tokyo.
Abstract

We prove a microlocal smoothing effect of Schrödinger equations on manifolds. We employ radially homogeneous wavefront sets introduced by Ito and Nakamura (Amer. J. Math., 2009). In terms of radially homogeneous wavefront sets, we can apply our theory to both of asymptotically conical and hyperbolic manifolds. We relate wavefront sets in initial states to radially homogeneous wavefront sets in states after a time development. We also prove a relation between radially homogeneous wavefront sets and homogeneous wavefront sets and prove a special case of Nakamura (2005).

1 Introduction

1.1 Motivation: homogeneous wavefront sets on Euclidean spaces

For proving a microlocal smoothing effect of a Schrödinger equation

iut(t,x)=Hu(t,x)(t,x)×n,i\frac{\partial u}{\partial t}(t,x)=Hu(t,x)\quad(t,x)\in\mathbb{R}\times\mathbb{R}^{n},

it is known that one does not need only the usual wavefront sets, which is localized with respect to positions, but also another notion of a wavefront set by which we can access to behavior of functions near infinity. One of the methods is a homogeneous wavefront set. Recall the definition of (homogeneous) wavefront sets from [17]:

Wavefront sets on Euclidean spaces. For uL2(n)u\in L^{2}(\mathbb{R}^{n}), we define a set WF(u)Tn0\mathop{\mathrm{WF}}(u)\subset T^{*}\mathbb{R}^{n}\setminus 0 by the following property: a point (x0,ξ0)Tn0(x_{0},\xi_{0})\in T^{*}\mathbb{R}^{n}\setminus 0 does not belong to WF(u)\mathop{\mathrm{WF}}(u) if there exists aCc(Tn)a\in C_{c}^{\infty}(T^{*}\mathbb{R}^{n}) such that a=1a=1 near (x0,ξ0)(x_{0},\xi_{0}) and

aw(x,D)uL2=O()\|a^{\mathrm{w}}(x,\hbar D)u\|_{L^{2}}=O(\hbar^{\infty})

as 0\hbar\to 0.

Here aw(x,D)a^{\mathrm{w}}(x,\hbar D) is the usual semiclassical Weyl quantization of the symbol a(x,ξ)a(x,\xi):

aw(x,D)u(x):=1(2π)n2na(x+y2,ξ)eiξ(xy)/u(y)dydξ.a^{\mathrm{w}}(x,\hbar D)u(x):=\frac{1}{(2\pi\hbar)^{n}}\int_{\mathbb{R}^{2n}}a\left(\frac{x+y}{2},\xi\right)e^{i\xi\cdot(x-y)/\hbar}u(y)\,\mathrm{d}y\mathrm{d}\xi.

Homogeneous wavefront sets on Euclidean spaces. For uL2(n)u\in L^{2}(\mathbb{R}^{n}), we define a set HWF(u)Tn{(0,0)}\mathop{\mathrm{HWF}}(u)\subset T^{*}\mathbb{R}^{n}\setminus\{(0,0)\} by the following property: a point (x0,ξ0)Tn{(0,0)}(x_{0},\xi_{0})\in T^{*}\mathbb{R}^{n}\setminus\{(0,0)\} does not belong to HWF(u)\mathop{\mathrm{HWF}}(u) if there exists aCc(Tn)a\in C_{c}^{\infty}(T^{*}\mathbb{R}^{n}) such that a=1a=1 near (x0,ξ0)(x_{0},\xi_{0}) and

aw(x,D)uL2=O()\|a^{\mathrm{w}}(\hbar x,\hbar D)u\|_{L^{2}}=O(\hbar^{\infty})

as 0\hbar\to 0.

Here aw(x,D)a^{\mathrm{w}}(\hbar x,\hbar D) is the semiclassical Weyl quantization of the symbol a(x,ξ)a(\hbar x,\xi):

aw(x,D)u(x):=1(2π)n2na(x+y2,ξ)eiξ(xy)/u(y)dydξ.a^{\mathrm{w}}(\hbar x,\hbar D)u(x):=\frac{1}{(2\pi\hbar)^{n}}\int_{\mathbb{R}^{2n}}a\left(\frac{\hbar x+\hbar y}{2},\xi\right)e^{i\xi\cdot(x-y)/\hbar}u(y)\,\mathrm{d}y\mathrm{d}\xi.

Nakamura [17] proved that, if

  • H=j,k=1nxjajk(x)xk/2+V(x)H=-\sum_{j,k=1}^{n}\partial_{x_{j}}a_{jk}(x)\partial_{x_{k}}/2+V(x), with a positive definite matrix (ajk(x))j,k=1n(a_{jk}(x))_{j,k=1}^{n}, ajk(x),V(x)a_{jk}(x),V(x)\in\mathbb{R}, |xα(ajk(x)δjk)|Cαxμ|α||\partial_{x}^{\alpha}(a_{jk}(x)-\delta_{jk})|\leq C_{\alpha}\left\langle{x}\right\rangle^{-\mu-|\alpha|} and |αV(x)|Cαxν|α||\partial^{\alpha}V(x)|\leq C_{\alpha}\left\langle{x}\right\rangle^{\nu-|\alpha|} for some μ>0\mu>0 and ν<2\nu<2, and

  • a classical orbit (x(t),ξ(t))(x(t),\xi(t)) with respect to the classical Hamiltonian h0(x,ξ):=j,k=1najk(x)ξjξk/2h_{0}(x,\xi):=\sum_{j,k=1}^{n}a_{jk}(x)\xi_{j}\xi_{k}/2 is nontrapping (|x(t)||x(t)|\to\infty as tt\to\infty) and has an initial point (x(0),ξ(0))=(x0,ξ0)(x(0),\xi(0))=(x_{0},\xi_{0}) and an asymptotic momentum ξ:=limtξ(t)\xi_{\infty}:=\lim_{t\to\infty}\xi(t),

then (x0,ξ0)WF(u)(x_{0},\xi_{0})\in\mathop{\mathrm{WF}}(u) implies (t0ξ,ξ)HWF(eit0Hu)(t_{0}\xi_{\infty},\xi_{\infty})\in\mathop{\mathrm{HWF}}(e^{-it_{0}H}u) for uL2(n)u\in L^{2}(\mathbb{R}^{n}) and t0>0t_{0}>0. As a corollary, eitHu=O(x)e^{-itH}u=O(\left\langle{x}\right\rangle^{-\infty}) (Γx\Gamma\ni x\to\infty) for some t>0t>0 and some conic neighborhood Γ\Gamma of the asymptotic momentum ξ\xi_{\infty} implies (x0,ξ0)WF(u)(x_{0},\xi_{0})\not\in\mathop{\mathrm{WF}}(u), which is proved by Craig, Kappeler and Strauss [4].

K. Ito [8] generalizes this result to Euclidean spaces with asymptotically flat scattering metrics. Other studies on singularities of solutions to Schrödinger equations is in Doi [5] and Nakamura [18].

There are other concepts of wavefront sets for investigating propagation of singularities under Schrödinger equations. One of them is a Gabor wavefront set, defined in terms of Gabor transforms (also known as short-time Fourier transforms or wave packet transforms). Schulz and Wahlberg [23] proved the equality of homogeneous wavefront sets and Gabor wavefront sets. Gabor wavefront sets are studied in Cordero, Nicola and Rodino [3], Pravda-Starov, Rodino and Wahlberg [19]. Other study by Gabor transforms is in Kato, Kobayashi and S. Ito [10, 11]. Another concept of wavefront sets is a quadratic scattering wavefront set, which is studied by Wunsch [24]. An equivalence of quadratic scattering wavefront sets and homogeneous wavefront sets is proved by K. Ito [8]. Melrose [14] introduced scattering wavefront sets for investigating singularities at infinity. Analytic wavefront sets are also employed for an investigation of propagation of singularities under Schrödinger equations. They are studied by Robbiano and Zuily [20, 21], Martinez, Nakamura and Sordoni [13].

1.2 Radially homogeneous wavefront sets on manifolds

In the following, contrary to Section 1.1, we employ pseudodifferential operators acting on half-densities. We will briefly describe basic definition and properties on half-densities in Section 4.2.

We recall wavefront sets on manifolds:

Definition 1.1 (Wavefront sets on manifolds).

Let uL2(M;Ω1/2)u\in L^{2}(M;\Omega^{1/2}). WF(u)\mathop{\mathrm{WF}}(u) is a subset of TM0T^{*}M\setminus 0 defined as follows: (x0,ξ0)TM0(x_{0},\xi_{0})\in T^{*}M\setminus 0 is not in WF(u)\mathop{\mathrm{WF}}(u) if there exist local coordinate φ:U(M)V(n)\varphi:U\,(\subset M)\to V\,(\subset\mathbb{R}^{n}), χCc(U)\chi\in C_{c}^{\infty}(U) and aCc(TM)a\in C_{c}^{\infty}(T^{*}M) such that χ=1\chi=1 near x0x_{0}, a=1a=1 near (x0,ξ0)(x_{0},\xi_{0}), suppaTU\mathop{\mathrm{supp}}a\subset T^{*}U and

χφ(φ~a)w(x,D)φ(χu)L2=O().\|\chi\varphi^{*}(\tilde{\varphi}_{*}a)^{\mathrm{w}}(x,\hbar D)\varphi_{*}(\chi u)\|_{L^{2}}=O(\hbar^{\infty}).

Next we introduce radially homogeneous wavefront sets, which are introduced by K. Ito and Nakamura [9] to prove a microlocal smoothing effect on scattering manifolds. Before we introduce radially homogeneous wavefront sets on manifolds, we need to equip manifolds with some structure corresponding to the dilation xxx\mapsto\hbar x on Euclidean spaces. In this paper, motivated by the fact that the dilation xxx\mapsto\hbar x on Euclidean spaces is equivalent to (r,θ)(r,θ)(r,\theta)\mapsto(\hbar r,\theta) in polar coordinates, we introduce a structure of ends of manifolds:

Assumption 1.2.

Let nn be the dimension of MM. We assume that there exist an open subset EE of MM, a compact manifold SS with dimension n1n-1, and a diffeomorphism Ψ:E+×S\Psi:E\to\mathbb{R}_{+}\times S. Here +:=(0,)\mathbb{R}_{+}:=(0,\infty). We also assume that MEM\setminus E is a compact subset of MM.

The mapping Ψ:E+×S\Psi:E\to\mathbb{R}_{+}\times S in Assumption 1.2 induces the canonical mapping

Ψ~:TET(+×S),Ψ~(x,ρdr+η):=(Ψ(x),ρ,η).\tilde{\Psi}:T^{*}E\longrightarrow T^{*}(\mathbb{R}_{+}\times S),\quad\tilde{\Psi}(x,\rho\mathrm{d}r+\eta):=(\Psi(x),\rho,\eta). (1.1)

We introduce a class of functions dependent only on angular variables θ\theta near infinity:

Definition 1.3.

A function uC(M)u\in C^{\infty}(M) is cylindrical if there exist a constant R1R\geq 1 and a function uangC(S)u_{\mathrm{ang}}\in C^{\infty}(S) such that (uΨ1)(r,θ)=uang(θ)(u\circ\Psi^{-1})(r,\theta)=u_{\mathrm{ang}}(\theta) for all rRr\geq R.

Example.
  • All constant functions are cylindrical.

  • All uCc(M)u\in C_{c}^{\infty}(M) are cylindrical by considering uang=0u_{\mathrm{ang}}=0.

  • The set of all cylindrical functions forms an algebra with respect to the natural sum, multiplication by complex numbers and product.

Throughout this paper, we use the term “polar coordinates” in the following sense:

Definition 1.4.

We call φ:U(M)V(n)\varphi:U\,(\subset M)\to V\,(\subset\mathbb{R}^{n}) polar coordinates if φ\varphi is a local coordinate of the form φ=(id×φ)Ψ\varphi=(\mathop{\mathrm{id}}\times\varphi^{\prime})\circ\Psi where φ:U(S)V(n1)\varphi^{\prime}:U^{\prime}\,(\subset S)\to V^{\prime}\,(\subset\mathbb{R}^{n-1}) is a local coordinate on SS.

Now we define radially homogeneous wavefront sets on manifolds.

Definition 1.5 (Radially homogeneous wavefront sets on manifolds).

For uL2(M;Ω1/2)u\in L^{2}(M;\Omega^{1/2}), we define WFrh(u)\mathop{\mathrm{WF}}\nolimits^{\mathrm{rh}}(u) as a subset of TET^{*}E defined as follows: (x0,ξ0)TE(x_{0},\xi_{0})\in T^{*}E is not in WFrh(u)\mathop{\mathrm{WF}}\nolimits^{\mathrm{rh}}(u) if there exist

  • a polar coordinate φ:UV\varphi:U\to V,

  • a cylindrical function χC(M)\chi\in C^{\infty}(M) such that suppχU\mathop{\mathrm{supp}}\chi\subset U and Ψχ(r,θ)=1\Psi_{*}\chi(r,\theta)=1 for large rr and θ\theta near θ0\theta_{0} with Ψ(x0)=(r0,θ0)\Psi(x_{0})=(r_{0},\theta_{0}), and

  • aCc(TV)a\in C_{c}^{\infty}(T^{*}V)

such that a=1a=1 near φ~(x0,ξ0)\tilde{\varphi}(x_{0},\xi_{0}) and

χφaw(r,θ,Dr,Dθ)φ(χu)L2=O().\|\chi\varphi^{*}a^{\mathrm{w}}(\hbar r,\theta,\hbar D_{r},\hbar D_{\theta})\varphi_{*}(\chi u)\|_{L^{2}}=O(\hbar^{\infty}). (1.2)

1.3 Main result

Our subject is a Schrödinger equation for half-densities on manifolds:

itu(t,x)=Hu(t,x).i\frac{\partial}{\partial t}u(t,x)=Hu(t,x). (1.3)

Here HH is a Hamiltonian of the form

H=12g+V(x),H=-\frac{1}{2}\triangle_{g}+V(x),

where g\triangle_{g} is the Laplace operator with respect to the Riemannian metric gg and VV is a real-valued smooth function with We further assume that

|rα0θαV(r,θ)|Cα|\partial_{r}^{\alpha_{0}}\partial_{\theta}^{\alpha^{\prime}}V(r,\theta)|\leq C_{\alpha} (1.4)

holds for all multiindices α=(α0,α)0×0\alpha=(\alpha_{0},\alpha^{\prime})\in\mathbb{Z}_{\geq 0}\times\mathbb{Z}_{\geq 0} in polar coordinates (r,θ)(r,\theta).

HH acts on half-densities as

H(u~|volg|1/2)=(12gu~(x)+V(x)u~(x))|volg|1/2.H(\tilde{u}|\mathrm{vol}_{g}|^{1/2})=\left(-\frac{1}{2}\triangle_{g}\tilde{u}(x)+V(x)\tilde{u}(x)\right)|\mathrm{vol}_{g}|^{1/2}.

(|volg|1/2|\mathrm{vol}_{g}|^{1/2} is the “square root” of the natural volume form volg=det(gjk)dx1dxn\mathrm{vol}_{g}=\sqrt{\det(g_{jk})}\mathrm{d}x_{1}\wedge\cdots\wedge\mathrm{d}x_{n} associated with the Riemannian metric gg. We will explain details in Section 4.2.)

We will explain our assumptions concretely in the following, but we emphasize that our setting includes not only the cases of asymptotically conical manifolds, but also those of asymptotically hyperbolic manifolds.

Remark.

We do not assume xαV=O(x2ε)\partial_{x}^{\alpha}V=O(\left\langle{x}\right\rangle^{2-\varepsilon}) for some ε>0\varepsilon>0, but the boundedness (1.4) in order to argue in the symbol class Scylm(TM)S^{m}_{\mathrm{cyl}}(T^{*}M) (introduced in Section 4.1), which do not allow any growth in spatial direction (rr\to\infty). It may be possible to introduce suitable classes of symbols with spatial growth and treat such potentials VV, we restrict ourselves to the case of bounded potentials for simplicity.

We take suitable polar coordinates such that the vector r\partial_{r} and the tangent space T(r,θ)ST_{(r,\theta)}S intersect orthogonally:

Assumption 1.6.

Under Assumption 1.2, the Riemannian metric gg has the representation

g=Ψ(c(r,θ)2dr2+h(r,θ,dθ)),for (r,θ)+×SE,g=\Psi^{*}(c(r,\theta)^{2}\mathrm{d}r^{2}+h(r,\theta,\mathrm{d}\theta)),\quad\text{for }(r,\theta)\in\mathbb{R}_{+}\times S\simeq E, (1.5)

where c:E+c:E\to\mathbb{R}_{+} is a smooth function and h(r,θ,dθ)h(r,\theta,\mathrm{d}\theta) is a metric on SS dependent smoothly on the radial variable rr.

We will see in Section A a construction of such diffeomorphism Ψ:E+×S\Psi:E\to\mathbb{R}_{+}\times S by escape functions, which is a generalization of the function |x||x| in n\mathbb{R}^{n}.

We further assume a compatibility condition of the diffeomorphism Ψ:E+×S\Psi:E\to\mathbb{R}_{+}\times S and the Riemannian metric . Let h(r,θ,η)h^{*}(r,\theta,\eta) be the fiber metric on TST^{*}S induced by h(r,θ,dθ)h(r,\theta,\mathrm{d}\theta). More explicitly, if h(r,θ,dθ)h(r,\theta,\mathrm{d}\theta) has a local representation

h(r,θ,dθ)=i,j=1n1hij(r,θ)dθidθj,h(r,\theta,\mathrm{d}\theta)=\sum_{i,j=1}^{n-1}h_{ij}(r,\theta)\mathrm{d}\theta_{i}\mathrm{d}\theta_{j},

then we define

h(r,θ,η):=i,j=1n1hij(r,θ)ηiηj,h^{*}(r,\theta,\eta):=\sum_{i,j=1}^{n-1}h^{ij}(r,\theta)\eta_{i}\eta_{j},

where (hij(r,θ))(h^{ij}(r,\theta)) is the inverse matrix of (hij(r,θ))(h_{ij}(r,\theta)) and η=η1dθ1++ηn1dθn1\eta=\eta_{1}\mathrm{d}\theta_{1}+\cdots+\eta_{n-1}\mathrm{d}\theta_{n-1}. Furthermore we define

|ξ|g2:=c(r,θ)2ρ2+h(r,θ,η)|\xi|_{g^{*}}^{2}:=c(r,\theta)^{-2}\rho^{2}+h^{*}(r,\theta,\eta)

for ξ=ρdr+ηTr+TθS\xi=\rho\,\mathrm{d}r+\eta\in T^{*}_{r}\mathbb{R}_{+}\oplus T^{*}_{\theta}S. |ξ|g|\xi|_{g^{*}} is the norm of ξTM\xi\in T^{*}M with respect to the fiber metric gg^{*} on TMT^{*}M induced by the metric gg. We define a free Hamiltonian h0(x,ξ)h_{0}(x,\xi) as

h0(x,ξ):=12|ξ|g2.h_{0}(x,\xi):=\frac{1}{2}|\xi|_{g^{*}}^{2}. (1.6)
Assumption 1.7.

There exist a function f(r)f(r) and constants c0>1/2c_{0}>1/2, C>0C>0 and μ>0\mu>0 such that the following properties hold.

  1. (i)

    ff is positive, belongs to C1C^{1} class and the inequality

    c0r1f(r)f(r)Cc_{0}r^{-1}\leq\frac{f^{\prime}(r)}{f(r)}\leq C (1.7)

    holds for all r1r\geq 1.

  2. (ii)

    The inequality

    C1f(r)2h(1,θ,η)h(r,θ,η)Cf(r)2h(1,θ,η)C^{-1}f(r)^{-2}h^{*}(1,\theta,\eta)\leq h^{*}(r,\theta,\eta)\leq Cf(r)^{-2}h^{*}(1,\theta,\eta) (1.8)

    holds for all (r,θ,η)[1,)×TS(r,\theta,\eta)\in[1,\infty)\times T^{*}S.

  3. (iii)

    The inequality

    |θhij(r,θ,η)|Ch(r,θ,η)|\partial_{\theta}h^{ij}(r,\theta,\eta)|\leq Ch^{*}(r,\theta,\eta) (1.9)

    holds for all (r,θ,η)[1,)×TS(r,\theta,\eta)\in[1,\infty)\times T^{*}S.

  4. (iv)

    (Classical analogue of Mourre estimate) The estimate

    {fρ,h0}2f(r)(h0(r,θ,η)Cr1μ),\{f\rho,h_{0}\}\geq 2f^{\prime}(r)(h_{0}(r,\theta,\eta)-Cr^{-1-\mu}), (1.10)

    holds for all (r,θ,ρ,η)T(+×S)(r,\theta,\rho,\eta)\in T^{*}(\mathbb{R}_{+}\times S). Here {,}\{\cdot,\cdot\} is the Poisson bracket on TMT^{*}M:

    {a,b}:=i=1n(axibξiaξibxi).\{a,b\}:=\sum_{i=1}^{n}\left(\frac{\partial a}{\partial x_{i}}\frac{\partial b}{\partial\xi_{i}}-\frac{\partial a}{\partial\xi_{i}}\frac{\partial b}{\partial x_{i}}\right).
  5. (v)

    (Short range conditions) |c1||c-1| and |θc||\partial_{\theta}c| are at most O(r1μ)O(r^{-1-\mu}) as rr\to\infty.

Remark.

The size of |θh(r,θ,η)||\partial_{\theta}h^{*}(r,\theta,\eta)| in (1.9) and |θV||\partial_{\theta}V| and |θc||\partial_{\theta}c| in (v) of Assumption 1.7 are measured by the metric h(1,θ,dθ)h(1,\theta,\mathrm{d}\theta).

Example (model manifolds).

Assumption 1.7 is a generalization of model cases g=dr2+f(r)2h(θ,dθ)g=\mathrm{d}r^{2}+f(r)^{2}h(\theta,\mathrm{d}\theta). For instance f(r)f(r) is the form f(r)=ra,ebrcf(r)=r^{a},e^{br^{c}} (a>1/2a>1/2, b>0b>0, 0<c10<c\leq 1) for r1r\geq 1. The free Hamiltonian (1.6) with respect to this metric becomes

h0=12(ρ2+f(r)2h(θ,η)).h_{0}=\frac{1}{2}(\rho^{2}+f(r)^{-2}h^{*}(\theta,\eta)).

The Poisson bracket {fρ,h0}=rh0\{f\rho,h_{0}\}=-\partial_{r}h_{0} is

{fρ,h0}=f(r)h0(θ,η).\{f\rho,h_{0}\}=f^{\prime}(r)h_{0}(\theta,\eta).

This is a prototype of classical Mourre type estimate in Assumption 1.7.

Then, for any nontrapping classical orbit Ψ1(r(t),θ(t),ρ(t),η(t))\Psi^{-1}(r(t),\theta(t),\rho(t),\eta(t)) (r(t)r(t)\to\infty) with respect to the free Hamiltonian h0h_{0}, the limit

(ρ,θ,η):=limt(ρ(t),θ(t),η(t))+×TS(\rho_{\infty},\theta_{\infty},\eta_{\infty}):=\lim_{t\to\infty}(\rho(t),\theta(t),\eta(t))\in\mathbb{R}_{+}\times T^{*}S

exists under Assumption 1.7. We state this more precisely in Theorem 3.1. We remark that the classical analogue of Mourre estimate (1.10) plays an essential role in a proof of Theorem 3.1. The inequality (1.10) insures that the classical orbit (x(t),ξ(t))(x(t),\xi(t)) approaches an asymptotic orbit Ψ1(ρt,θ,ρ,η)\Psi^{-1}(\rho_{\infty}t,\theta_{\infty},\rho_{\infty},\eta_{\infty}) rapidly.

Remark.

It is well known that the inequality

1I(H)i[H,A]1I(H)c1I(H)1I(H)K1I(H),1_{I}(H)i[H,A]1_{I}(H)\geq c1_{I}(H)-1_{I}(H)K1_{I}(H), (1.11)

where

  • AA, HH are self-adjoint operators on an abstract Hilbert space \mathcal{H},

  • I=(a,b)I=(a,b) is a bounded open interval and 1I:{0,1}1_{I}:\mathbb{R}\to\{0,1\}, is the indicator function of II,

  • cc is a positive constant, and

  • KK is a compact operator on \mathcal{H},

plays an important role in a quantum scattering theory. The inequality (1.11) is called the Mourre estimate [16]. A typical case is =L2(n)\mathcal{H}=L^{2}(\mathbb{R}^{n}), H=/2H=-\triangle/2 and A=(xDx+Dxx)/2A=(x\cdot D_{x}+D_{x}\cdot x)/2. The principal symbol of AA is equal to xξ=rρx\cdot\xi=r\rho in polar coordinates, and the principal symbol of i[H,A]i[H,A] is {rρ,h0}\{r\rho,h_{0}\}. Thus we can regard (1.10) as a classical analogue of (1.11) with f(r)=rf(r)=r.

The last assumption is a boundedness of quantities related to the metric necessary for applying microlocal analysis.

Assumption 1.8.

For all multiindices α0\alpha\in\mathbb{Z}_{\geq 0} with |α|1|\alpha|\geq 1, there exists C>0C>0 that the inequalities

|r,θαh(r,θ,η)|Ch(r,θ,η)|\partial_{r,\theta}^{\alpha}h^{*}(r,\theta,\eta)|\leq Ch^{*}(r,\theta,\eta)

and

|r,θαc(r,θ)|Cr1μ|\partial_{r,\theta}^{\alpha}c(r,\theta)|\leq Cr^{-1-\mu}

hold for all (r,θ,η)[1,)×TS(r,\theta,\eta)\in[1,\infty)\times T^{*}S.

Now we state our main theorem.

Theorem 1.9.

Suppose Assumption 1.21.8. Let uL2(M;Ω1/2)u\in L^{2}(M;\Omega^{1/2}) and t0>0t_{0}>0. Let (x(t),ξ(t))(x(t),\xi(t)) be a nontrapping classical orbit with initial point (x0,ξ0)TM(x_{0},\xi_{0})\in T^{*}M with respect to the free Hamiltonian h0h_{0} and (ρ,θ,η)×TS(\rho_{\infty},\theta_{\infty},\eta_{\infty})\in\mathbb{R}\times T^{*}S be the asymptotic angle and momentum. Then (x0,ξ0)WF(u)(x_{0},\xi_{0})\in\mathop{\mathrm{WF}}(u) implies Ψ~1(ρt0,θ,ρ,η)WFrh(eit0Hu)\tilde{\Psi}^{-1}(\rho_{\infty}t_{0},\theta_{\infty},\rho_{\infty},\eta_{\infty})\in\mathop{\mathrm{WF}}\nolimits^{\mathrm{rh}}(e^{-it_{0}H}u).

We emphasize that the proof of the main theorem in the case of asymptotically conical/hyperbolic is unified.

In the case of M=nM=\mathbb{R}^{n}, S=Sn1S=S^{n-1} ((n1n-1)-dimensional unit sphere) and Ψ(x):=(|x|,x/|x|)\Psi(x):=(|x|,x/|x|), we have a relation between radially homogeneous wavefront sets and homogeneous wavefront sets. First we remark a characterization of homogeneous wavefront sets by polar coordinates:

Proposition 1.10.

For uL2(M;Ω1/2)u\in L^{2}(M;\Omega^{1/2}), x0x\neq 0 and ξn\xi\in\mathbb{R}^{n}, the following statements are equivalent.

  1. (i)

    (x,ξ)HWF(u)(x,\xi)\not\in\mathop{\mathrm{HWF}}(u).

  2. (ii)

    There exist polar coordinates φ:UV\varphi:U\to V, cylindrical function χC(n)\chi\in C^{\infty}(\mathbb{R}^{n}) with suppχU\mathop{\mathrm{supp}}\chi\subset U and χ=1\chi=1 near the set {λxλ1}\{\lambda x\mid\lambda\geq 1\}, and aCc(V)a\in C_{c}^{\infty}(V) with a=1a=1 near Ψ(x,ξ)\Psi(x,\xi) such that

    aw(r,θ,Dr,2Dθ)φ(χu)L2(n;Ω1/2)=O()\|a^{\mathrm{w}}(\hbar r,\theta,\hbar D_{r},\hbar^{2}D_{\theta})\varphi_{*}(\chi u)\|_{L^{2}(\mathbb{R}^{n};\Omega^{1/2})}=O(\hbar^{\infty}) (1.12)

    holds.

We compare symbols a(r,θ,ρ,η)a(\hbar r,\theta,\hbar\rho,\hbar\eta) in (1.2) and a(r,θ,ρ,2η)a(\hbar r,\theta,\hbar\rho,\hbar^{2}\eta) in (1.12). Let us pay attention to the η\eta variable. The support of a(,θ,ρ,η)a(\hbar,\theta,\hbar\rho,\hbar\eta) is included in |η1η0|O(1)|\eta-\hbar^{-1}\eta_{0}|\leq O(\hbar^{-1}), whereas that of a(,θ,ρ,2η)a(\hbar,\theta,\hbar\rho,\hbar^{2}\eta) is included in |η2η0|O(2)|\eta-\hbar^{-2}\eta_{0}|\leq O(\hbar^{-2}) (Ψ~(x0,ξ0)=(r0,θ0,ρ0,η0)\tilde{\Psi}(x_{0},\xi_{0})=(r_{0},\theta_{0},\rho_{0},\eta_{0})). In particular, if η0=0\eta_{0}=0, then the support of a(r,θ,ρ,η)a(\hbar r,\theta,\hbar\rho,\hbar\eta) is included in the level set {a(r,θ,ρ,2η)}\{a(\hbar r,\theta,\hbar\rho,\hbar^{2}\eta)\} for sufficiently small >0\hbar>0. Thus we have the following corollary, noting that Ψ~1(r0,θ0,ρ0,0)=(x0,(ξ0x^0)x^0)\tilde{\Psi}^{-1}(r_{0},\theta_{0},\rho_{0},0)=(x_{0},(\xi_{0}\cdot\hat{x}_{0})\hat{x}_{0}) with x^0:=x0/|x0|\hat{x}_{0}:=x_{0}/|x_{0}|:

Corollary 1.11.

Let uL2(n;Ω1/2)u\in L^{2}(\mathbb{R}^{n};\Omega^{1/2}). We define a homogeneous wavefront set of half-density u=u~|dx|1/2u=\tilde{u}|\mathrm{d}x|^{1/2} as that of the function u~(x)\tilde{u}(x). Then, for x0x\neq 0, (x,ξ)WFrh(u)(x,\xi)\in\mathop{\mathrm{WF}}\nolimits^{\mathrm{rh}}(u) implies (x,(ξx^)x^)HWF(u)(x,(\xi\cdot\hat{x})\hat{x})\in\mathop{\mathrm{HWF}}(u) where x^:=x/|x|\hat{x}:=x/|x|.

We also prove Corollary 1.11 in Section 4.6. Combining Theorem 1.9 and Corollary 1.11, we immediately obtain a propagation of homogeneous wavefront sets on Euclidean spaces:

Corollary 1.12.

Let M=nM=\mathbb{R}^{n} with the usual Euclidean metric, Ψ(x)=(x,x/|x|)\Psi(x)=(x,x/|x|), and H=/2+VH=-\triangle/2+V with |rα0θαV|Cα|\partial_{r}^{\alpha_{0}}\partial_{\theta}^{\alpha^{\prime}}V|\leq C_{\alpha} for all multiindices α=(α0,α)0×0n1\alpha=(\alpha_{0},\alpha^{\prime})\in\mathbb{Z}_{\geq 0}\times\mathbb{Z}_{\geq 0}^{n-1}. Let (x(t),ξ(t))=(x(0)+tξ,ξ)(x(t),\xi(t))=(x(0)+t\xi_{\infty},\xi_{\infty}) be a free classical orbit. Then, for uL2(n;Ω1/2)u\in L^{2}(\mathbb{R}^{n};\Omega^{1/2}) and t0>0t_{0}>0, (x(0),ξ(0))WF(u)(x(0),\xi(0))\in\mathop{\mathrm{WF}}(u) implies (t0ξ,ξ)HWF(eit0Hu)(t_{0}\xi_{\infty},\xi_{\infty})\in\mathop{\mathrm{HWF}}(e^{-it_{0}H}u).

There are many studies on Schrödinger equations on manifolds. For example, Schrödinger propagator on scattering manifolds are studied by Hassell and Wunsch [7]. K. Ito and Nakamura [9] generalized the result of [7]. Microlocal analysis on asymptotically hyperbolic spaces are studied by, for instance, Bouclet [1, 2], Sá Barreto [22], Melrose, Sá Barreto and Vasy [15]. Our idea of microlocal analysis in polar coordinates is inspired by Bouclet [1, 2].

We describe outline of proof of the main Theorem 1.9 in Section 2. We reduce the proof of main theorem to three key propositions (Theorem 2.1, Theorem 2.2 and Proposition 2.3) there. In Section 3, we prove the existence of asymptotic angle and momentum (θ,ρ,η)(\theta_{\infty},\rho_{\infty},\eta_{\infty}). We develop a pseudodifferential calculus necessary for our aim in Section 4. In particular, we prove two of key propositions (Theorem 2.2 and Proposition 2.3) in Section 4.5. Finally, in Section 5, we estimate Heisenberg derivatives of operators constructed in Section 2 and prove the rest key proposition (Theorem 2.1).

Notation. For derivatives, we use notations Dxj:=ixjD_{x_{j}}:=-i\partial_{x_{j}} and multiindices Dα:=Dx1α1DxnαnD^{\alpha}:=D_{x_{1}}^{\alpha_{1}}\cdots D_{x_{n}}^{\alpha_{n}}. We also denote x:=1+|x|2\left\langle{x}\right\rangle:=\sqrt{1+|x|^{2}}. As in the definition (1.1) of Ψ~\tilde{\Psi} , for a diffeomorphism φ:UV\varphi:U\to V, we denote the canonical mapping associated with φ\varphi by φ~:TUTV\tilde{\varphi}:T^{*}U\to T^{*}V, φ~(x,ξ):=(φ(x),dφ1(φ(x))ξ)\tilde{\varphi}(x,\xi):=(\varphi(x),d\varphi^{-1}(\varphi(x))^{*}\xi).

2 Outline of proof

We prove our main theorem by following the argument in Nakamura [17].

We construct symbols connecting wave functions at time t=0t=0 and those at time t=t0t=t_{0} by the following procedure.

Step 1. We take a function χCc([0,))\chi\in C_{c}^{\infty}([0,\infty)) such that χ0\chi\geq 0, χ(x)0\chi^{\prime}(x)\leq 0 and

χ(x)={1if x1,0if x2.\chi(x)=\begin{cases}1&\text{if }x\leq 1,\\ 0&\text{if }x\geq 2.\end{cases}

Since χ\chi is constant near x=0x=0, χ\chi belongs to C()C^{\infty}(\mathbb{R}). Take polar coordinates φ:UV\varphi:U\to V near Ψ1(r0,θ)\Psi^{-1}(r_{0},\theta_{\infty}) where r01r_{0}\gg 1. We take sufficiently small constants δ0,δ1,δ2,>0\delta_{0},\delta_{1},\delta_{2},\ldots>0 and λ(0,1]\lambda\in(0,1] and consider

χ(|rr(t)|4δjt)=:χ1jχ(|θθ(t)|δjtλ)=:χ2jχ(|ρρ(t)|δjtλ)=:χ3jχ(|ηη(t)|δjtλ)=:χ4j\underbrace{\chi\left(\frac{|r-r(t)|}{4\delta_{j}t}\right)}_{=:\chi_{1j}}\underbrace{\chi\left(\frac{|\theta-\theta(t)|}{\delta_{j}-t^{-\lambda}}\right)}_{=:\chi_{2j}}\underbrace{\chi\left(\frac{|\rho-\rho(t)|}{\delta_{j}-t^{-\lambda}}\right)}_{=:\chi_{3j}}\underbrace{\chi\left(\frac{|\eta-\eta(t)|}{\delta_{j}-t^{-\lambda}}\right)}_{=:\chi_{4j}} (2.1)

for sufficiently large tt. Denote the range of tt by [T0,)[T_{0},\infty) with a sufficiently large T0>0T_{0}>0. We pull χ1jχ2jχ3jχ4j\chi_{1j}\chi_{2j}\chi_{3j}\chi_{4j} back by the canonical coordinates φ~:TUTV\tilde{\varphi}:T^{*}U\to T^{*}V induced by φ:UV\varphi:U\to V and define

ψ~j(t,x,ξ):=φ~(χ1jχ2jχ3jχ4j)C(TU;).\tilde{\psi}_{j}(t,x,\xi):=\tilde{\varphi}^{*}(\chi_{1j}\chi_{2j}\chi_{3j}\chi_{4j})\in C^{\infty}(T^{*}U;\mathbb{R}). (2.2)

Since the support of ψ~j\tilde{\psi}_{j} are included in TUT^{*}U, we extend ψ~j\tilde{\psi}_{j} to a smooth function on TMT^{*}M by defining ψ~j=0\tilde{\psi}_{j}=0 outside TUT^{*}U.

Step 2. We take a cutoff function αC()\alpha\in C^{\infty}(\mathbb{R}) which satisfies α0\alpha^{\prime}\geq 0 and

α(t)={0if tT0,1if tT0+1.\alpha(t)=\begin{cases}0&\text{if }t\leq T_{0},\\ 1&\text{if }t\geq T_{0}+1.\end{cases}

We define ψ0(t,x,ξ)\psi_{0}(t,x,\xi) as a solution to a transport equation

tψj+{ψj,h0}=α(t)(tψ~j+{ψ~j,h0}),ψj(T0+1,x,ξ)=ψ~j(T0+1,x,ξ).\begin{split}&\partial_{t}\psi_{j}+\{\psi_{j},h_{0}\}=\alpha(t)(\partial_{t}\tilde{\psi}_{j}+\{\tilde{\psi}_{j},h_{0}\}),\\ &\psi_{j}(T_{0}+1,x,\xi)=\tilde{\psi}_{j}(T_{0}+1,x,\xi).\end{split} (2.3)

Step 3. We choose positive constants c1,c2,c_{1},c_{2},\ldots and construct a symbol a~(,t,r,θ,ρ,η)\tilde{a}(\hbar,t,r,\theta,\rho,\eta) such that

a~(,t)j=1cjjtψj(,t)\tilde{a}(\hbar,t)\sim\sum_{j=1}^{\infty}c_{j}\hbar^{j}t\psi_{j}(\hbar,t) (2.4)

by the Borel theorem. We quantize symbols ψ0(1t)\psi_{0}(\hbar^{-1}t) and a~(;1t)\tilde{a}(\hbar;\hbar^{-1}t) (the procedure of quantization is in Definition 4.3) and obtain quantized operators Opψ0(1t)\mathop{\mathrm{Op}}\nolimits_{\hbar}\psi_{0}(\hbar^{-1}t) and Op(a~(,1t))\mathop{\mathrm{Op}}\nolimits_{\hbar}(\tilde{a}(\hbar,\hbar^{-1}t)). We define an operator A(t)A_{\hbar}(t) as

A(t):=Op(ψ0(1t))Op(ψ0(1t))+Op(a~(,1t)).A_{\hbar}(t):=\mathop{\mathrm{Op}}\nolimits_{\hbar}(\psi_{0}(\hbar^{-1}t))^{*}\mathop{\mathrm{Op}}\nolimits_{\hbar}(\psi_{0}(\hbar^{-1}t))+\mathop{\mathrm{Op}}\nolimits_{\hbar}(\tilde{a}(\hbar,\hbar^{-1}t)). (2.5)

Now we state two key lemmas for the proof of the main theorem (Theorem 1.9). The first lemma states the positivity of the Heisenberg derivative modulo O()O(\hbar^{\infty}) of the time-dependent operator A(t)A_{\hbar}(t).

Theorem 2.1.

If we take suitable δ0,δ1,δ2,>0\delta_{0},\delta_{1},\delta_{2},\ldots>0, λ(0,1]\lambda\in(0,1], T0>0T_{0}>0 and c1,c2,>0c_{1},c_{2},\ldots>0 in above construction procedure, then the following statements hold.

  1. (i)

    a(,t)Scyl2(TM)a(\hbar,t)\in S^{-2}_{\mathrm{cyl}}(T^{*}M) and forms a bounded family in Scyl2(TM)S^{-2}_{\mathrm{cyl}}(T^{*}M).

  2. (ii)

    For any k0k\geq 0, the inequality

    tA(t)i[A(t),H]OL2L2(k)\partial_{t}A_{\hbar}(t)-i[A_{\hbar}(t),H]\geq O_{L^{2}\to L^{2}}(\hbar^{k}) (2.6)

    holds uniformly in 0tt00\leq t\leq t_{0}.

The second lemma states that the operator which appeared in the definition of radially homogeneous wavefront sets (Definition 1.5) is approximated by A(t)A_{\hbar}(t).

Theorem 2.2.

Let polar coordinates φ:UV\varphi:U\to V in EE, aCc(TV)a\in C_{c}^{\infty}(T^{*}V) and a cylindrical function χC(M)\chi\in C^{\infty}(M) satisfy conditions in Definition 1.5 except for (1.2). Then, if we take sufficiently small δ0,δ1,>0\delta_{0},\delta_{1},\cdots>0 in Step 2 properly, then we have

A(t0)A(t0)χφaw(r,θ,Dr,Dθ)(φχ)φ=OL2L2().A_{\hbar}(t_{0})-A_{\hbar}(t_{0})\chi\varphi^{*}a^{\mathrm{w}}(\hbar r,\theta,\hbar D_{r},\hbar D_{\theta})(\varphi_{*}\chi)\varphi_{*}=O_{L^{2}\to L^{2}}(\hbar^{\infty}).

In addition to the above key lemmas, we state a technical lemma on the wavefront sets in order to describe the proof of the main theorem briefly.

Proposition 2.3.

Let (x0,ξ0)TM0(x_{0},\xi_{0})\in T^{*}M\setminus 0 and uL2(M;Ω1/2)u\in L^{2}(M;\Omega^{1/2}). If there exists a symbol aCc(TM)a\in C_{c}^{\infty}(T^{*}M) such that a=1a=1 near (x0,ξ0)(x_{0},\xi_{0}) and Op(a)u=OL2()\mathop{\mathrm{Op}}\nolimits_{\hbar}(a)u=O_{L^{2}}(\hbar^{\infty}), then (x0,ξ0)WF(u)(x_{0},\xi_{0})\not\in\mathop{\mathrm{WF}}(u).

We can prove Theorem 1.9 from Theorem 2.1, Proposition 2.3 and Theorem 2.2 as follows.

Proof of Theorem 1.9.

Assume (ρt0,θ,ρ,η)WFrh(eit0Hu)(\rho_{\infty}t_{0},\theta_{\infty},\rho_{\infty},\eta_{\infty})\not\in\mathop{\mathrm{WF}}\nolimits^{\mathrm{rh}}(e^{-it_{0}H}u). By considering t(eitHA(t)eitH)=eitH(tA(t)i[A(t),H])eitH\partial_{t}(e^{itH}A_{\hbar}(t)e^{-itH})=e^{itH}(\partial_{t}A_{\hbar}(t)-i[A_{\hbar}(t),H])e^{-itH}, we have

A(0)u,u=A(t0)eit0Hu,eit0Hu0t0(tA(s)i[A(s),H])eisHu,eisHudsA(t0)eit0Hu,eit0Hu+O(k)\begin{split}\left\langle{A_{\hbar}(0)u,u}\right\rangle&=\left\langle{A_{\hbar}(t_{0})e^{-it_{0}H}u,e^{-it_{0}H}u}\right\rangle\\ &\quad-\int_{0}^{t_{0}}\left\langle{(\partial_{t}A_{\hbar}(s)-i[A_{\hbar}(s),H])e^{-isH}u,e^{-isH}u}\right\rangle\,\mathrm{d}s\\ &\leq\left\langle{A_{\hbar}(t_{0})e^{-it_{0}H}u,e^{-it_{0}H}u}\right\rangle+O(\hbar^{k})\end{split} (2.7)

for any k0k\geq 0 by (2.6). We consider A(0)u,u\left\langle{A_{\hbar}(0)u,u}\right\rangle and A(t0)eit0Hu,eit0Hu\left\langle{A_{\hbar}(t_{0})e^{-it_{0}H}u,e^{-it_{0}H}u}\right\rangle respectively.

𝑨(𝟎)𝒖,𝒖\bm{\left\langle{A_{\hbar}(0)u,u}\right\rangle}. Since A(0)=Op(ψ0(0))Op(ψ0(0))A_{\hbar}(0)=\mathop{\mathrm{Op}}\nolimits_{\hbar}(\psi_{0}(0))^{*}\mathop{\mathrm{Op}}\nolimits_{\hbar}(\psi_{0}(0)) by (2.4), we have

A(0)u,u=Op(ψ0(0))uL22.\left\langle{A_{\hbar}(0)u,u}\right\rangle=\|\mathop{\mathrm{Op}}\nolimits_{\hbar}(\psi_{0}(0))u\|_{L^{2}}^{2}. (2.8)

𝑨(𝒕𝟎)𝒆𝒊𝒕𝟎𝑯𝒖,𝒆𝒊𝒕𝟎𝑯𝒖\bm{\left\langle{A_{\hbar}(t_{0})e^{-it_{0}H}u,e^{-it_{0}H}u}\right\rangle}. We set (x,ξ):=Ψ~1(ρt0,θ,ρ,η)(x_{\infty},\xi_{\infty}):=\tilde{\Psi}^{-1}(\rho_{\infty}t_{0},\theta_{\infty},\rho_{\infty},\eta_{\infty}). Since (x,ξ)WFrh(eit0Hu)(x_{\infty},\xi_{\infty})\not\in\mathop{\mathrm{WF}}\nolimits^{\mathrm{rh}}(e^{-it_{0}H}u), there exist a polar coordinate φ:UV\varphi:U\to V, cylindrical cutoff χC(M)\chi\in C^{\infty}(M) and aCc(TV)a\in C_{c}^{\infty}(T^{*}V) which satisfy the conditions in Definition 1.5. We put B=χφbw(r,θ,Dr,Dθ)(φχ)φB_{\hbar}=\chi\varphi^{*}b^{\mathrm{w}}(\hbar r,\theta,\hbar D_{r},\hbar D_{\theta})(\varphi_{*}\chi)\varphi_{*}. By Theorem 2.2, we take sufficiently small δ0,δ1,>0\delta_{0},\delta_{1},\cdots>0 properly such that A(t0)A(t0)B=OL2L2()A_{\hbar}(t_{0})-A_{\hbar}(t_{0})B_{\hbar}=O_{L^{2}\to L^{2}}(\hbar^{\infty}). Since Beit0Hu=OL2()B_{\hbar}e^{-it_{0}H}u=O_{L^{2}}(\infty^{\infty}) by the definition of radially homogeneous wavefront sets (Definition 1.5), we have

A(t0)eit0Hu=OL2().A_{\hbar}(t_{0})e^{-it_{0}H}u=O_{L^{2}}(\hbar^{\infty}). (2.9)

Conclusion. Combining (2.8), (2.7) and (2.9), we have

Op(ψ0(0))uL22O().\|\mathop{\mathrm{Op}}\nolimits_{\hbar}(\psi_{0}(0))u\|_{L^{2}}^{2}\leq O(\hbar^{\infty}).

We recall that (x(t),ξ(t))(x(t),\xi(t)) is a solution to Hamilton equation with respect to the free Hamiltonian (1.6). Then

ddt(ψ1(t,x(t),ξ(t)))=(tψ1+{ψ1,h0})(t,x(t),ξ(t)).\frac{\mathrm{d}}{\mathrm{d}t}(\psi_{-1}(t,x(t),\xi(t)))=(\partial_{t}\psi_{-1}+\{\psi_{-1},h_{0}\})(t,x(t),\xi(t)).

In particular ψ1(t,x(t),ξ(t))=1\psi_{-1}(t,x(t),\xi(t))=1 for tT0t\geq T_{0} in this case. Thus

(tψ1+{ψ1,h0})(t,x(t),ξ(t))=0,tT0.(\partial_{t}\psi_{-1}+\{\psi_{-1},h_{0}\})(t,x(t),\xi(t))=0,\quad\forall t\geq T_{0}.

Hence ψ0(t,x(t),ξ(t))\psi_{0}(t,x(t),\xi(t)) is a solution to the initial value problem t(ψ0(t,x(t),ξ(t)))=0\partial_{t}(\psi_{0}(t,x(t),\xi(t)))=0, ψ0(T0+1,x(T0+1),ξ(T0+1))=1\psi_{0}(T_{0}+1,x(T_{0}+1),\xi(T_{0}+1))=1. Thus ψ0(t,x(t),ξ(t))=1\psi_{0}(t,x(t),\xi(t))=1 for all tT0t\geq T_{0}. In particular we have ψ0(0,x(0),ξ(0))=1\psi_{0}(0,x(0),\xi(0))=1. Since flows are families of diffeomorphisms generally, we have ψ0(0,x,ξ)=1\psi_{0}(0,x,\xi)=1 near (x(0),ξ(0))(x(0),\xi(0)). Hence by Proposition 2.3, we obtain (x0,ξ0)WF(eit0Hu)(x_{0},\xi_{0})\not\in\mathop{\mathrm{WF}}(e^{-it_{0}H}u). ∎

3 Classical mechanics

The only purpose of this section is the proof of the existence of asymptotic angle and momentum:

Theorem 3.1.

Assume Assumption 1.7. Let Ψ1(r(t),θ(t),ρ(t),η(t))\Psi^{-1}(r(t),\theta(t),\rho(t),\eta(t)) be a nontrapping classical orbit (i.e., r(t)r(t)\to\infty as tt\to\infty) with respect to the free Hamiltonian (1.6). Then the asymptotic angle and momentum (ρ,θ,η):=limt(ρ(t),θ(t),η(t))(0,)×TS(\rho_{\infty},\theta_{\infty},\eta_{\infty}):=\lim_{t\to\infty}(\rho(t),\theta(t),\eta(t))\in(0,\infty)\times T^{*}S exists. Moreover, there exists a constant C>0C>0 such that the estimate

ρtCr(t)ρt+C\rho_{\infty}t-C\leq r(t)\leq\rho_{\infty}t+C

holds for all sufficiently large tt.

The proof of Theorem 3.1 is separated to several steps. In the following, (r(t),θ(t),ρ(t),η(t))(r(t),\theta(t),\rho(t),\eta(t)) is a classical orbit satisfying the assumption of Theorem 3.1.

We record the explicit form of the radial component of the Hamilton equation with respect to the free Hamiltonian (1.6):

drdt=c(r,θ)2ρ,dρdt=rcc3ρ212rh(r,θ,η)\frac{\mathrm{d}r}{\mathrm{d}t}=c(r,\theta)^{-2}\rho,\quad\frac{d\rho}{\mathrm{d}t}=\frac{\partial_{r}c}{c^{3}}\rho^{2}-\frac{1}{2}\frac{\partial}{\partial r}h^{*}(r,\theta,\eta) (3.1)

We also note the energy conservation law h0(x(t),ξ(t))=E0h_{0}(x(t),\xi(t))=E_{0}. The total energy E0E_{0} is positive by the nontrapping condition.

Lemma 3.2.

The asymptotic radial momentum ρ:=limtρ(t)\rho_{\infty}:=\lim_{t\to\infty}\rho(t) exists and equals to 2E0\sqrt{2E_{0}}.

Proof.

Step 1. We prove that ρ(t)>0\rho(t)>0 for sufficiently large tt. The classical Mourre type estimate (1.10) implies

ddt(f(r(t))ρ(t))f(r(t))(2E0Cr(t)1μ)\frac{\mathrm{d}}{\mathrm{d}t}(f(r(t))\rho(t))\geq f^{\prime}(r(t))(2E_{0}-Cr(t)^{-1-\mu}) (3.2)

By f>0f^{\prime}>0, the nontrapping condition r(t)r(t)\to\infty and E0>0E_{0}>0, the right hand side of (3.2) is positive for sufficiently large tt. Thus f(r(t))ρ(t)f(r(T))ρ(T)f(r(t))\rho(t)\geq f(r(T))\rho(T) for tT1t\geq T\gg 1.

We have to find a large TT such that f(r(T))ρ(T)>0f(r(T))\rho(T)>0. Suppose that there exists T>0T^{\prime}>0 such that ρ(T)0\rho(T)\leq 0 for all TTT\geq T^{\prime}. Then the Hamilton equation (3.1) implies

r(T)=r(T)+TTc(r(t),θ(t))2ρ(t)dtr(T)0r(T)=r(T^{\prime})+\int_{T^{\prime}}^{T}c(r(t),\theta(t))^{-2}\rho(t)\,\mathrm{d}t\leq r(T^{\prime})\leq 0

for all TTT\geq T^{\prime}. This contradicts to the nontrapping condition r(T)r(T)\to\infty. Thus, for any T>0T^{\prime}>0, there exists TTT\geq T^{\prime} such that ρ(T)>0\rho(T)>0. Hence we obtain ρ(t)f(r(T))ρ(T)/f(r(t))>0\rho(t)\geq f(r(T))\rho(T)/f(r(t))>0 for all tTt\geq T.

Step 2. We employ the classical Mourre type estimate (1.10) again. For ρ>0\rho>0 and r1r\gg 1, we have

{fρ,h0}f(r)(2h0Cr1μ)2h0Cr1μc(r,θ)12h0{f,h0}\{f\rho,h_{0}\}\geq f^{\prime}(r)(2h_{0}-Cr^{-1-\mu})\geq\frac{2h_{0}-Cr^{-1-\mu}}{c(r,\theta)^{-1}\sqrt{2h_{0}}}\{f,h_{0}\}

by c1ρ2h0c^{-1}\rho\leq\sqrt{2h_{0}}. Thus

ddt(f(r(t))ρ(t))2E0Cr(t)1μc(r(t),θ(t))12E0ddt(f(r(t))).\frac{\mathrm{d}}{\mathrm{d}t}(f(r(t))\rho(t))\geq\frac{2E_{0}-Cr(t)^{-1-\mu}}{c(r(t),\theta(t))^{-1}\sqrt{2E_{0}}}\frac{\mathrm{d}}{\mathrm{d}t}(f(r(t))). (3.3)

Take an arbitrary small ε>0\varepsilon>0. Since

limt2E0Cr(t)1μc(r(t),θ(t))12E0=2E0,\lim_{t\to\infty}\frac{2E_{0}-Cr(t)^{-1-\mu}}{c(r(t),\theta(t))^{-1}\sqrt{2E_{0}}}=\sqrt{2E_{0}},

(3.3) implies

ddt(f(r(t))ρ(t))(2E0ε)ddt(f(r(t)))\frac{\mathrm{d}}{\mathrm{d}t}(f(r(t))\rho(t))\geq(\sqrt{2E_{0}}-\varepsilon)\frac{\mathrm{d}}{\mathrm{d}t}(f(r(t)))

for sufficiently large tt. This differential inequality shows

f(r(t))ρ(t)(2E0ε)f(r(t))+Cf(r(t))\rho(t)\geq(\sqrt{2E_{0}}-\varepsilon)f(r(t))+C

for some constant C>0C>0 and sufficiently large tt. Dividing both sides by f(r(t))>0f(r(t))>0 and taking a infimum limit as tt\to\infty, we have

lim inftρ(t)2E0ε\liminf_{t\to\infty}\rho(t)\geq\sqrt{2E_{0}}-\varepsilon

by f(r)C1rc0f(r)\geq C^{-1}r^{c_{0}} and r(t)r(t)\to\infty as tt\to\infty. Since ε>0\varepsilon>0 is arbitrary, we can take a limit ε0\varepsilon\to 0 and obtain lim inftρ(t)2E0\liminf_{t\to\infty}\rho(t)\geq 2E_{0}. Combining this with ρc(r,θ)2h0\rho\leq c(r,\theta)\sqrt{2h_{0}} and limrc(r,θ)=1\lim_{r\to\infty}c(r,\theta)=1 (Assumption 1.7 (v)), we obtain

2E0lim inftρ(t)lim suptρ(t)lim suptc(r(t),θ(t))2E0=2E0.\sqrt{2E_{0}}\leq\liminf_{t\to\infty}\rho(t)\leq\limsup_{t\to\infty}\rho(t)\leq\limsup_{t\to\infty}c(r(t),\theta(t))\sqrt{2E_{0}}=\sqrt{2E_{0}}.\qed
Lemma 3.3.

We have an asymptotic behavior

ρ(t)=ρ+O(t1δ)(t)\rho(t)=\rho_{\infty}+O(t^{-1-\delta})\quad(t\to\infty) (3.4)

for any 0<δ<min{2c01,μ}0<\delta<\min\{2c_{0}-1,\mu\}.

Proof.

We define a(r,ρ):=f(r)2(2h0ρ)a(r,\rho):=f(r)^{2}(\sqrt{2h_{0}}-\rho). A direct calculation shows that

{a,h0}=2c2ffρaf2{ρ,h0}.\{a,h_{0}\}=2\frac{c^{-2}f^{\prime}}{f}\rho a-f^{2}\{\rho,h_{0}\}. (3.5)

A simple calculation shows that classical Mourre estimate (1.10) is equivalent to

{ρ,h0}f(r)f(r)(2h0c2ρ2Cr1μ).\{\rho,h_{0}\}\geq\frac{f^{\prime}(r)}{f(r)}\left(2h_{0}-c^{-2}\rho^{2}-Cr^{-1-\mu}\right). (3.6)

By (3.6), we have

{ρ,h0}ff(2h0c2ρ2Cr1μ)=c2ff(2h0+ρ)(2h0ρ)Cfr1μf+2h0ff(1c2)c2ff3(2h0+ρ)aCfr1μf(1+h0).\begin{split}\{\rho,h_{0}\}&\geq\frac{f^{\prime}}{f}(2h_{0}-c^{-2}\rho^{2}-Cr^{-1-\mu})\\ &=\frac{c^{-2}f^{\prime}}{f}(\sqrt{2h_{0}}+\rho)(\sqrt{2h_{0}}-\rho)-C\frac{f^{\prime}r^{-1-\mu}}{f}+\frac{2h_{0}f^{\prime}}{f}(1-c^{-2})\\ &\geq\frac{c^{-2}f^{\prime}}{f^{3}}(\sqrt{2h_{0}}+\rho)a-C\frac{f^{\prime}r^{-1-\mu}}{f}(1+h_{0}).\end{split} (3.7)

Here we used the short range condition |c1|=O(r1μ)|c-1|=O(r^{-1-\mu}) (Assumption 1.7 (v)). Combining (3.5) and (3.7), we have

{a,h0}c2ff(2ρ2h0ρ)a=f2a20+Cffr1μ(1+h0)Cffr1μ(1+h0)=C(1+h0)2c2ρ{f2r1μ,h0}+(1+μ)f2r2μ.\begin{split}\{a,h_{0}\}&\leq\frac{c^{-2}f^{\prime}}{f}\underbrace{(2\rho-\sqrt{2h_{0}}-\rho)a}_{=-f^{-2}a^{2}\leq 0}+Cff^{\prime}r^{-1-\mu}(1+h_{0})\\ &\leq Cff^{\prime}r^{-1-\mu}(1+h_{0})=\frac{C(1+h_{0})}{2c^{-2}\rho}\{f^{2}r^{-1-\mu},h_{0}\}+(1+\mu)f^{2}r^{-2-\mu}.\end{split} (3.8)

In the following we only consider (r,θ,ρ,η)(r,\theta,\rho,\eta) on the energy surface {h0=E0}\{h_{0}=E_{0}\} such that ρ\rho is sufficiently close to ρ=2E0\rho_{\infty}=\sqrt{2E_{0}}. Then (3.8) becomes

{a,h0}C{f2r1μ,h0}+Cf(r)2r2μ.\{a,h_{0}\}\leq C\{f^{2}r^{-1-\mu},h_{0}\}+Cf(r)^{2}r^{-2-\mu}. (3.9)

Fix a large R>0R>0. Since rf(r)/rc0r\mapsto f(r)/r^{c_{0}} is monotonically increasing by (1.7) and

ddr(f(r)rc0)=fc0fr1rc00,\frac{\mathrm{d}}{\mathrm{d}r}\left(\frac{f(r)}{r^{c_{0}}}\right)=\frac{f^{\prime}-c_{0}fr^{-1}}{r^{c_{0}}}\geq 0,

we have the inequality f(r)/f(R)(r/R)c0f(r)/f(R)\leq(r/R)^{c_{0}} for RrR\geq r. Thus (3.9) becomes

{a,h0}C{f2r1μ,h0}+Cf(R)2Rc0r2μ+c0.\{a,h_{0}\}\leq C\{f^{2}r^{-1-\mu},h_{0}\}+Cf(R)^{2}R^{-c_{0}}r^{-2-\mu+c_{0}}.

Now we substitute (r,θ,ρ,η)=(r(t),θ(t),ρ(t),η(t))(r,\theta,\rho,\eta)=(r(t),\theta(t),\rho(t),\eta(t)). Then we have

ddt(a(r(t),ρ(t)))\displaystyle\frac{\mathrm{d}}{\mathrm{d}t}(a(r(t),\rho(t))) Cddt(f(r(t))2+r(t)1μ)+Cf(R)2Rc0r(t)2μ+c0\displaystyle\leq C\frac{\mathrm{d}}{\mathrm{d}t}(f(r(t))^{2}+r(t)^{-1-\mu})+Cf(R)^{2}R^{-c_{0}}r(t)^{-2-\mu+c_{0}}

for large tt such that r(t)Rr(t)\leq R. Note that tr(t)t\mapsto r(t) is monotonically increasing for large tt by ρ>0\rho_{\infty}>0 and the Hamilton equation (3.1). Integrating both sides in [T,t][T,t] and substituting R=r(t)R=r(t), we obtain

a(r(t),ρ(t))Cf(r(t))2r(t)1μ+Cf(r(t))2r(t)c0Ttr(s)2μ+c0ds+C.a(r(t),\rho(t))\leq Cf(r(t))^{2}r(t)^{-1-\mu}+Cf(r(t))^{2}r(t)^{-c_{0}}\int_{T}^{t}r(s)^{-2-\mu+c_{0}}\,\mathrm{d}s+C.

Recall a(r,ρ)=f(r)2(2h0ρ)a(r,\rho)=f(r)^{2}(\sqrt{2h_{0}}-\rho). Then we have

2E0ρ(t)Cr(t)1μCr(t)c0Ttr(s)2μ+c0ds+Cf(r(t))2.\sqrt{2E_{0}}-\rho(t)\leq Cr(t)^{-1-\mu}Cr(t)^{-c_{0}}\int_{T}^{t}r(s)^{-2-\mu+c_{0}}\,\mathrm{d}s+Cf(r(t))^{-2}. (3.10)

Since f(r)C1rc0f(r)\geq C^{-1}r^{c_{0}} by (1.7) and

r(t)c0Ttr(s)2μ+c0ds\displaystyle r(t)^{-c_{0}}\int_{T}^{t}r(s)^{-2-\mu+c_{0}}\,\mathrm{d}s
=r(t)c0Ttr(s)2μ+c0dr/ds(s)c(r(s),θ(s))2ρ(s)dsCr(t)c0Ttr(s)2μ+c0drds(s)ds\displaystyle=r(t)^{-c_{0}}\int_{T}^{t}\frac{r(s)^{-2-\mu+c_{0}}\mathrm{d}r/ds(s)}{c(r(s),\theta(s))^{-2}\rho(s)}\,\mathrm{d}s\leq Cr(t)^{-c_{0}}\int_{T}^{t}r(s)^{-2-\mu+c_{0}}\frac{\mathrm{d}r}{ds}(s)\,\mathrm{d}s
{Cr(t)1μ+Cr(t)c0if μ+1c0,Cr(t)1μlogr(t)if μ+1=c0\displaystyle\leq\begin{cases}Cr(t)^{-1-\mu}+Cr(t)^{-c_{0}}&\text{if }\mu+1\neq c_{0},\\ Cr(t)^{-1-\mu}\log r(t)&\text{if }\mu+1=c_{0}\end{cases}
Cr(t)1δ\displaystyle\leq Cr(t)^{-1-\delta}

for 0<δ<min{μ,2c01}0<\delta<\min\{\mu,2c_{0}-1\}, (3.10) becomes

2E0ρ(t)Cr(t)1μ+Cr(t)1δ+Cr(t)2c0Cr(t)1δ.\sqrt{2E_{0}}-\rho(t)\leq Cr(t)^{-1-\mu}+Cr(t)^{-1-\delta}+Cr(t)^{-2c_{0}}\leq Cr(t)^{-1-\delta}.

We can replace r(t)r(t) to tt since

limtr(t)t\displaystyle\lim_{t\to\infty}\frac{r(t)}{t}
=limttTt01c(r(T+(tT)s),θ(T+(tT)s))2ρ(T+(tT)s)ds\displaystyle=\lim_{t\to\infty}\frac{t-T}{t}\int_{0}^{1}c(r(T+(t-T)s),\theta(T+(t-T)s))^{-2}\rho(T+(t-T)s)\,\mathrm{d}s
=ρ\displaystyle=\rho_{\infty}

by the Hamilton equation (3.1) and the Lebesgue dominated convergence theorem. Thus 2E0ρ(t)O(t1δ)\sqrt{2E_{0}}-\rho(t)\leq O(t^{-1-\delta}).

The converse inequality is easily proved by the estimate

ρ(t)c2E0(1+Cr(t)1μ)2E02E0+O(t1μ).\rho(t)\leq c\sqrt{2E_{0}}\leq(1+Cr(t)^{-1-\mu})\sqrt{2E_{0}}\leq\sqrt{2E_{0}}+O(t^{-1-\mu}).\qed
Proof of Theorem 3.1.

We already proved the existence of the asymptotically radial momentum ρ=limtρ(t)\rho_{\infty}=\lim_{t\to\infty}\rho(t) in Lemma 3.2. Noting the integrability of t1δt^{-1-\delta} in [1,)[1,\infty) and integrating both sides of (3.4), we obtain

ρtCr(t)ρ+C.\rho_{\infty}t-C\leq r(t)\leq\rho_{\infty}+C.

In the following we prove the existence of asymptotic angle and angular momentum (θ,η):=limt(θ(t),η(t))TS(\theta_{\infty},\eta_{\infty}):=\lim_{t\to\infty}(\theta(t),\eta(t))\in T^{*}S. Let dSd_{S} be the distance function on SS associated with the Riemannian metric h(1,θ,dθ)h(1,\theta,\mathrm{d}\theta). For tst\geq s, we have

dS(θ(t),θ(s))st|dθdt(σ)|h(1)dσstf(r(σ))1|dθdt(σ)|h(r(σ))dσ.d_{S}(\theta(t),\theta(s))\leq\int_{s}^{t}\left|\frac{\mathrm{d}\theta}{\mathrm{d}t}(\sigma)\right|_{h(1)}\,\mathrm{d}\sigma\leq\int_{s}^{t}f(r(\sigma))^{-1}\left|\frac{\mathrm{d}\theta}{\mathrm{d}t}(\sigma)\right|_{h(r(\sigma))}\,\mathrm{d}\sigma. (3.11)

The angle component of the Hamilton equation is

dθjdt(t)=k=1n1hjk(r(t),θ(t))ηk(t),\frac{\mathrm{d}\theta_{j}}{\mathrm{d}t}(t)=\sum_{k=1}^{n-1}h^{jk}(r(t),\theta(t))\eta_{k}(t), (3.12)

which implies

|dθdt(t)|h(r)=|η|h(r).\left|\frac{\mathrm{d}\theta}{\mathrm{d}t}(t)\right|_{h(r)}=|\eta|_{h^{*}(r)}.

By this relation and the energy conservation law, we have

|dθdt(σ)|h(r(σ))=|η(σ)|h(r(σ))=2E0c2ρ2\left|\frac{\mathrm{d}\theta}{\mathrm{d}t}(\sigma)\right|_{h(r(\sigma))}=|\eta(\sigma)|_{h^{*}(r(\sigma))}=\sqrt{2E_{0}-c^{-2}\rho^{2}}

by (1.8). We apply Lemma 3.3 and obtain

2E0c2ρ2Ct1δ=Ct(1+δ)/2.\sqrt{2E_{0}-c^{-2}\rho^{2}}\leq\sqrt{Ct^{-1-\delta}}=Ct^{-(1+\delta)/2}.

Combining this with f(r)C1rc0f(r)\geq C^{-1}r^{c_{0}}, which follows from (1.7), (3.11) becomes

dS(θ(t),θ(s))Cstr(σ)c0σ(1+δ)/2dσCstσc0(1+δ)/2dσ.d_{S}(\theta(t),\theta(s))\leq C\int_{s}^{t}r(\sigma)^{-c_{0}}\sigma^{-(1+\delta)/2}\,\mathrm{d}\sigma\leq C\int_{s}^{t}\sigma^{-c_{0}-(1+\delta)/2}\,\mathrm{d}\sigma.

Since c0+(1+δ)/2>1c_{0}+(1+\delta)/2>1 by c0>1/2c_{0}>1/2, the integrand σc0(1+δ)/2\sigma^{-c_{0}^{(}1+\delta)/2} is integrable in [1,)[1,\infty). Thus

dS(θ(t),θ(s))0(ts).d_{S}(\theta(t),\theta(s))\to 0\quad(t\geq s\to\infty).

Hence the limit

θ:=limtθ(t)\theta_{\infty}:=\lim_{t\to\infty}\theta(t)

exists by the completeness of compact Riemannian manifolds.

Finally we consider the η\eta component. Take local coordinates near θ\theta_{\infty}. We take sufficiently large T>0T>0 such that θ(t)\theta(t) is in the coordinate neighborhood for all tTt\geq T. In the associated canonical coordinates, we have

|dηidt|\displaystyle\left|\frac{\mathrm{d}\eta_{i}}{\mathrm{d}t}\right| Cr1μ+Ch(r,θ,η)=Cr1μ+C(2E0c2ρ2)\displaystyle\leq Cr^{-1-\mu}+Ch^{*}(r,\theta,\eta)=Cr^{-1-\mu}+C(2E_{0}-c^{-2}\rho^{2})
Ct1μ+C(2E0+Ct1μ(ρ2Ct1δ))=Ct1δ.\displaystyle\leq Ct^{-1-\mu}+C(2E_{0}+Ct^{-1-\mu}-(\rho_{\infty}^{2}-Ct^{-1-\delta}))=Ct^{-1-\delta}.

Thus

|ηi(t)ηi(s)|Cstσ1δdσ=C(sδtδ)0(ts)|\eta_{i}(t)-\eta_{i}(s)|\leq C\int_{s}^{t}\sigma^{-1-\delta}\,\mathrm{d}\sigma=C(s^{-\delta}-t^{-\delta})\to 0\quad(t\geq s\to\infty)

for tsTt\geq s\geq T. Hence the limit η,i:=limtηi(t)\eta_{\infty,i}:=\lim_{t\to\infty}\eta_{i}(t) exists. We pull (η,1,,η,n1)(\eta_{\infty,1},\ldots,\eta_{\infty,n-1}) back by the canonical coordinates and obtain the asymptotic angular momentum ηTθS\eta_{\infty}\in T^{*}_{\theta_{\infty}}S. ∎

4 Pseudodifferential operators on manifolds

4.1 Symbol classes

We first introduce a suitable symbol class for analyzing the symbols defined as (2.5). In order to deduce global properties of pseudodifferential operators (L2L^{2} boundedness for example), we need to control behavior of symbols near infinity (rr\to\infty).

Definition 4.1.

Let mm\in\mathbb{R}. A function aC(TM)a\in C^{\infty}(T^{*}M) belongs to Scylm(TM)S_{\mathrm{cyl}}^{m}(T^{*}M) if it satisfies the following conditions.

  • For every local coordinate φ:UV\varphi:U\to V, the push forward φ~a\tilde{\varphi}_{*}a by the induced canonical coordinate φ~:TUTV\tilde{\varphi}:T^{*}U\to T^{*}V belongs to Slocm(TV)S^{m}_{\mathrm{loc}}(T^{*}V). Here Slocm(TV)C(V×n)S^{m}_{\mathrm{loc}}(T^{*}V)\subset C^{\infty}(V\times\mathbb{R}^{n}) stands for the set of all functions which satisfy

    ξm+|β|xαξβaL(K×n)\left\langle{\xi}\right\rangle^{-m+|\beta|}\partial_{x}^{\alpha}\partial_{\xi}^{\beta}a\in L^{\infty}(K\times\mathbb{R}^{n})

    for all compact subsets KVK\subset V and all multiindices α,β0n\alpha,\beta\in\mathbb{Z}_{\geq 0}^{n}.

  • For any polar coordinate φ:UV\varphi:U\to V in the end EE, the push forward φ~a(r,θ,ρ,η)\tilde{\varphi}_{*}a(r,\theta,\rho,\eta) by the induced canonical coordinate φ~:TUTV\tilde{\varphi}:T^{*}U\to T^{*}V satisfies

    ξm+|β|r,θαξβ(φ~a)L([δ,)×K×n)\left\langle{\xi}\right\rangle^{-m+|\beta|}\partial_{r,\theta}^{\alpha}\partial_{\xi}^{\beta}(\tilde{\varphi}_{*}a)\in L^{\infty}([\delta,\infty)\times K^{\prime}\times\mathbb{R}^{n})

    for all δ>0\delta>0, compact subsets Kn1K^{\prime}\subset\mathbb{R}^{n-1} with +×KV\mathbb{R}_{+}\times K^{\prime}\subset V, and all multiindices α,β0n\alpha,\beta\in\mathbb{Z}_{\geq 0}^{n}. Here ξ=(ρ,η)\xi=(\rho,\eta).

Remark.

We denote the subscript “cyl\mathrm{cyl}” in Scylm(TM)S^{m}_{\mathrm{cyl}}(T^{*}M) since the symbol in Scylm(TM)S^{m}_{\mathrm{cyl}}(T^{*}M) can be regarded as a natural symbol class on E+×SE\simeq\mathbb{R}_{+}\times S with a cylindrical metric dr2+dθ2\mathrm{d}r^{2}+\mathrm{d}\theta^{2}.

It is useful to introduce a terminology for describing supports of symbols up to O()O(\hbar^{\infty}). We define it following [8].

Definition 4.2.

An \hbar-dependent symbol a(;x,ξ)Scylm(TM)a(\hbar;x,\xi)\in S^{m}_{\mathrm{cyl}}(T^{*}M) satisfies suppaK\mathop{\mathrm{supp}}a\subset K modulo O()O(\hbar^{\infty}) if there exists a possibly \hbar-dependent symbol a~(;x,ξ)Scylm(TM)\tilde{a}(\hbar;x,\xi)\in S^{m}_{\mathrm{cyl}}(T^{*}M) such that suppa~K\mathop{\mathrm{supp}}\tilde{a}\subset K and aa~=OScyl0()a-\tilde{a}=O_{S^{0}_{\mathrm{cyl}}}(\hbar^{\infty}).

We explain a motivation to consider the support modulo O()O(\hbar^{\infty}) and also recall facts on a symbol calculus on Euclidean spaces. Let Sm(Tn)S^{m}(T^{*}\mathbb{R}^{n}) be the Kohn-Nirenberg symbol class

Sm(Tn):={aC(Tn)|xαξβa(x,ξ)|Cαβξm|β|}.S^{m}(T^{*}\mathbb{R}^{n}):=\{a\in C^{\infty}(T^{*}\mathbb{R}^{n})\mid|\partial_{x}^{\alpha}\partial_{\xi}^{\beta}a(x,\xi)|\leq C_{\alpha\beta}\left\langle{\xi}\right\rangle^{m-|\beta|}\}.

Similarly to Definition 4.2, we call suppaK\mathop{\mathrm{supp}}a\subset K modulo O()O(\hbar^{\infty}) for a(;x,ξ)Sm(Tn)a(\hbar;x,\xi)\in S^{m}(T^{*}\mathbb{R}^{n}) if there exists a symbol a~(;x,ξ)\tilde{a}(\hbar;x,\xi) such that suppa~K\mathop{\mathrm{supp}}\tilde{a}\subset K and aa~=OS0(Tn)()a-\tilde{a}=O_{S^{0}(T^{*}\mathbb{R}^{n})}(\hbar^{\infty}). What to recall are the composition of symbols and the changing variables.

Composition of symbols. For aSm1(Tn)a\in S^{m_{1}}(T^{*}\mathbb{R}^{n}) and bSm2(Tn)b\in S^{m_{2}}(T^{*}\mathbb{R}^{n}), we can calculate a symbol (a#b)(;x,ξ)Sm1+m2(Tn)(a\#b)(\hbar;x,\xi)\in S^{m_{1}+m_{2}}(T^{*}\mathbb{R}^{n}) such that

aw(x,D)bw(x,D)=(a#b)w(x,D)a^{\mathrm{w}}(x,\hbar D)b^{\mathrm{w}}(x,\hbar D)=(a\#b)^{\mathrm{w}}(x,\hbar D)

and

(a#b)(;x,ξ)\displaystyle(a\#b)(\hbar;x,\xi)
=k=0Nkk!(DxDξDxDξ2i)k(a(x,ξ)b(x,ξ))|x=xξ=ξ\displaystyle=\sum_{k=0}^{N}\frac{\hbar^{k}}{k!}\left(\frac{D_{x}\cdot D_{\xi^{\prime}}-D_{x^{\prime}}\cdot D_{\xi}}{2i}\right)^{k}(a(x,\xi)b(x^{\prime},\xi^{\prime}))\biggr{|}_{\begin{subarray}{c}x^{\prime}=x\\ \xi^{\prime}=\xi\end{subarray}}
+OSm1+m2N1(Tn)(N+1)\displaystyle\quad+O_{S^{m_{1}+m_{2}-N-1}(T^{*}\mathbb{R}^{n})}(\hbar^{N+1})

for any integer N0N\geq 0 (see Theorem 9.5 in [25]). Each term

(DxDξDxDξ2i)k(a(x,ξ)b(x,ξ))|x=xξ=ξ\left(\frac{D_{x}\cdot D_{\xi^{\prime}}-D_{x^{\prime}}\cdot D_{\xi}}{2i}\right)^{k}(a(x,\xi)b(x^{\prime},\xi^{\prime}))\biggr{|}_{\begin{subarray}{c}x^{\prime}=x\\ \xi^{\prime}=\xi\end{subarray}}

is supported in supp(ab)\mathop{\mathrm{supp}}(ab). Thus if we define a symbol cSm1+m2(Tn)c\in S^{m_{1}+m_{2}}(T^{*}\mathbb{R}^{n}) as an asymptotic sum

c(;x,ξ)k=0kk!(DxDξDxDξ2i)k(a(x,ξ)b(x,ξ))|x=xξ=ξc(\hbar;x,\xi)\sim\sum_{k=0}^{\infty}\frac{\hbar^{k}}{k!}\left(\frac{D_{x}\cdot D_{\xi^{\prime}}-D_{x^{\prime}}\cdot D_{\xi}}{2i}\right)^{k}(a(x,\xi)b(x^{\prime},\xi^{\prime}))\biggr{|}_{\begin{subarray}{c}x^{\prime}=x\\ \xi^{\prime}=\xi\end{subarray}}

by the Borel theorem, then suppcsupp(ab)\mathop{\mathrm{supp}}c\subset\mathop{\mathrm{supp}}(ab) and a#bc=OS0(Tn)()a\#b-c=O_{S^{0}(T^{*}\mathbb{R}^{n})}(\hbar^{\infty}). Hence we have supp(a#b)supp(ab)\mathop{\mathrm{supp}}(a\#b)\subset\mathop{\mathrm{supp}}(ab) modulo O()O(\hbar^{\infty}).

Changing variables. For a suitable diffeomorphism γ:nn\gamma:\mathbb{R}^{n}\to\mathbb{R}^{n} and a symbol aSm(Tn)a\in S^{m}(T^{*}\mathbb{R}^{n}), we have

γaw(x,D)γ=a~w(x,D)\gamma_{*}a^{\mathrm{w}}(x,\hbar D)\gamma^{*}=\tilde{a}^{\mathrm{w}}(x,\hbar D)

for some symbol a~(;x,ξ)Sm(Tn)\tilde{a}(\hbar;x,\xi)\in S^{m}(T^{*}\mathbb{R}^{n}) which has an asymptotic expansion

a~(;x,ξ)j=0ja~j(x,ξ),a~jSmj(Tn)\tilde{a}(\hbar;x,\xi)\sim\sum_{j=0}^{\infty}\hbar^{j}\tilde{a}_{j}(x,\xi),\quad\tilde{a}_{j}\in S^{m-j}(T^{*}\mathbb{R}^{n})

and

a~0(x,ξ)=a(γ(x),dγ(x)1ξ)=:γ~a(x,ξ)\tilde{a}_{0}(x,\xi)=a(\gamma(x),\mathrm{d}\gamma(x)^{-1*}\xi)=:\tilde{\gamma}^{*}a(x,\xi)

and suppajsuppa0\mathop{\mathrm{supp}}a_{j}\subset\mathop{\mathrm{supp}}a_{0} for all j0j\geq 0. This implies suppa~suppγ~a\mathop{\mathrm{supp}}\tilde{a}\subset\mathop{\mathrm{supp}}\tilde{\gamma}^{*}a modulo O()O(\hbar^{\infty}). Here dγ(x)1ξ=η\mathrm{d}\gamma(x)^{-1*}\xi=\eta if and only if

ξj=k=1nγkxj(x)ηk.\xi_{j}=\sum_{k=1}^{n}\frac{\partial\gamma_{k}}{\partial x_{j}}(x)\eta_{k}.

Furthermore, since we consider pseudodifferential operators acting on half-densities (we will explain them in Section 4.2), we have a~1=0\tilde{a}_{1}=0. Thus

a~=γ~a+OSm2(Tn)(2).\tilde{a}=\tilde{\gamma}^{*}a+O_{S^{m-2}(T^{*}\mathbb{R}^{n})}(\hbar^{2}).

For more details, see Theorem 9.9 and Theorem 9.10 in [25] or Proposition E.10 in [6].

4.2 Pseudodifferential operators acting on half-densities

Before definition of pseudodifferential operators, we recall basic facts on half-densities on manifolds. For a manifold MM, a line bundle π:Ω1/2(M)M\pi:\Omega^{1/2}(M)\to M is defined as follows and call sections of the line bundle Ω1/2(M)M\Omega^{1/2}(M)\to M half-densities of MM:

Fiber. A fiber π1(x)\pi^{-1}(x) is a complex vector space spanned by functions of the form

|ω|1/2:(v1,,vn)(TM)n|ω(v1,,vn)|1/2,ωΛnTxM.|\omega|^{1/2}:(v_{1},\ldots,v_{n})\in(T^{*}M)^{n}\longmapsto|\omega(v_{1},\ldots,v_{n})|^{1/2}\in\mathbb{R},\quad\omega\in\Lambda^{n}T^{*}_{x}M.

Local trivialization. Each local coordinates φ=(x1,,xn):UV\varphi=(x_{1},\ldots,x_{n}):U\to V on MM induces a local line bundle isomorphism

(x,v|dx1dxn|1/2)π1(U)(x,v)U×.(x,v|\mathrm{d}x_{1}\wedge\cdots\wedge\mathrm{d}x_{n}|^{1/2})\in\pi^{-1}(U)\overset{\simeq}{\longmapsto}(x,v)\in U\times\mathbb{C}.

. We denote the space of all smooth compactly supported half-densities by Cc(M;Ω1/2)C_{c}^{\infty}(M;\Omega^{1/2}).

We employ two manipulations for half-densities.

Inner product. Similarly to the definition of integration of differential forms, we define

u,v:=ιIn((κιu~v~¯)φι1)(x)dx.\left\langle{u,v}\right\rangle:=\sum_{\iota\in I}\int_{\mathbb{R}^{n}}((\kappa_{\iota}\tilde{u}\overline{\tilde{v}})\circ\varphi_{\iota}^{-1})(x)\,\mathrm{d}x. (4.1)

Here

  • {φι:UιVι}ιI\{\varphi_{\iota}:U_{\iota}\to V_{\iota}\}_{\iota\in I} is a locally finite atlas;

  • {κιC(M)}ιI\{\kappa_{\iota}\in C^{\infty}(M)\}_{\iota\in I} is a partition of unity subordinate to {Uι}ιI\{U_{\iota}\}_{\iota\in I};

  • u=u~|dx1dxn|1/2u=\tilde{u}|\mathrm{d}x_{1}\wedge\cdots\wedge\mathrm{d}x_{n}|^{1/2} and v=v~|dx1dxn|1/2v=\tilde{v}|\mathrm{d}x_{1}\wedge\cdots\wedge\mathrm{d}x_{n}|^{1/2} in UιU_{\iota} are compactly supported half-densities.

(4.1) is independent of the choice of an atlas and a partition of unity. The inner product (4.1) induces an L2L^{2}-norm uL2:=u,u1/2\|u\|_{L^{2}}:=\left\langle{u,u}\right\rangle^{1/2}. We define L2(M;Ω1/2)L^{2}(M;\Omega^{1/2}) as the completion of Cc(M;Ω1/2)C_{c}^{\infty}(M;\Omega^{1/2}) with respect to the norm L2\|\cdot\|_{L^{2}}.

Pull back. For a smooth map f:MMf:M\to M, we define a pull back fuf^{*}u for uCc(M;Ω1/2)u\in C_{c}^{\infty}(M;\Omega^{1/2}) as

fu(x)(v1,,vn):=u(df(x)(v1),,df(x)(vn))f^{*}u(x)(v_{1},\ldots,v_{n}):=u(df(x)(v_{1}),\ldots,df(x)(v_{n}))

for xMx\in M and v1,,vnTxMv_{1},\ldots,v_{n}\in T_{x}M. If f(x1,,xn)=(y1,,yn)f(x_{1},\ldots,x_{n})=(y_{1},\ldots,y_{n}) locally, then

f(u~|dy|1/2)=(u~f)(x)|detfx(x)|1/2|dx|1/2.f^{*}(\tilde{u}|\mathrm{d}y|^{1/2})=(\tilde{u}\circ f)(x)\left|\det\frac{\partial f}{\partial x}(x)\right|^{1/2}|\mathrm{d}x|^{1/2}.

All pull back manipulations by diffeomorphisms are unitary operators with respect to the inner product (4.1).

If f:MMf:M\to M be a diffeomorphism, then we define a push forward of half-densities as f:=(f1)f_{*}:=(f^{-1})^{*}.

4.3 Properties of pseudodifferential operators

For the definition of a quantization procedure, we take a finite atlas {φι:UιVι}\{\varphi_{\iota}:U_{\iota}\to V_{\iota}\} on MM as below.

  1. 1.

    We cover the compact subset r1(0)r^{-1}(0) by finite atlas {φι:UιVι}ιIK\{\varphi_{\iota}:U_{\iota}\to V_{\iota}\}_{\iota\in I_{K}}. Here UιMU_{\iota}\subset M, VιnV_{\iota}\subset\mathbb{R}^{n} and #IK<\#I_{K}<\infty.

  2. 2.

    We cover the compact manifold SS by finite atlas {φι:UιVι}ιI\{\varphi^{\prime}_{\iota}:U^{\prime}_{\iota}\to V^{\prime}_{\iota}\}_{\iota\in I_{\infty}}. Here UιSU^{\prime}_{\iota}\subset S, Vιn1V^{\prime}_{\iota}\subset\mathbb{R}^{n-1} and #I<\#I_{\infty}<\infty. We set Uι:=+×UιU_{\iota}:=\mathbb{R}_{+}\times U^{\prime}_{\iota}, Vι:=+×VιV_{\iota}:=\mathbb{R}_{+}\times V^{\prime}_{\iota} and φι:=id×φι:UιVι\varphi_{\iota}:=\mathop{\mathrm{id}}\times\varphi^{\prime}_{\iota}:U_{\iota}\to V_{\iota}.

  3. 3.

    We define I:=IKII:=I_{K}\cup I_{\infty} (assuming that IKI=I_{K}\cap I_{\infty}=\varnothing).

Furthermore, we take a partition of unity {κιC(M)}ιI\{\kappa_{\iota}\in C^{\infty}(M)\}_{\iota\in I} subordinate to {φι}ιI\{\varphi_{\iota}\}_{\iota\in I} such that the following statements hold.

  • For ιIK\iota\in I_{K}, κιCc(Uι)\kappa_{\iota}\in C_{c}^{\infty}(U_{\iota}).

  • For ιI\iota\in I_{\infty}, κι\kappa_{\iota} is a cylindrical function (see Definition 1.3) with suppκιUι\mathop{\mathrm{supp}}\kappa_{\iota}\subset U_{\iota}.

  • ιIκι=1\sum_{\iota\in I}\kappa_{\iota}=1.

In the following we fix the atlas {φι}ιI\{\varphi_{\iota}\}_{\iota\in I} and the partition of unity {κι}ιI\{\kappa_{\iota}\}_{\iota\in I}.

Definition 4.3 ((Non-canonical) quantization).

We fix cylindrical functions χιC(M)\chi_{\iota}\in C^{\infty}(M) with suppχιUι\mathop{\mathrm{supp}}\chi_{\iota}\subset U_{\iota} and suppχι=1\mathop{\mathrm{supp}}\chi_{\iota}=1 near suppκι\mathop{\mathrm{supp}}\kappa_{\iota}. For a symbol aScylm(TM)a\in S^{m}_{\mathrm{cyl}}(T^{*}M) and a function uCc(M;Ω1/2)u\in C_{c}^{\infty}(M;\Omega^{1/2}), we define a quantization as

Op(a)u:=ιIχιφι(φ~ι(κιa))w(x,D)φι(χιu).\mathop{\mathrm{Op}}\nolimits_{\hbar}(a)u:=\sum_{\iota\in I}\chi_{\iota}\varphi_{\iota}^{*}(\tilde{\varphi}_{\iota*}(\kappa_{\iota}a))^{\mathrm{w}}(x,\hbar D)\varphi_{\iota*}(\chi_{\iota}u). (4.2)

Here pseudodifferential operators acting on half-densities on Euclidean spaces are defined as

aw(x,D)(u~|dx|1/2):=1(2π)n2na(x+y2,ξ)eiξ(xy)/u~(y)dydξ|dx|1/2.a^{\mathrm{w}}(x,\hbar D)(\tilde{u}|\mathrm{d}x|^{1/2}):=\frac{1}{(2\pi\hbar)^{n}}\int_{\mathbb{R}^{2n}}a\left(\frac{x+y}{2},\xi\right)e^{i\xi\cdot(x-y)/\hbar}\tilde{u}(y)\,\mathrm{d}y\mathrm{d}\xi|\mathrm{d}x|^{1/2}.

Examples which we keep in mind are the quantization of polynomials in momentum variables. In polar coordinates, the quantization of polynomials in Scylm(TM)S^{m}_{\mathrm{cyl}}(T^{*}M) is a sum of aβ(r,θ)Drβ0Dθβa_{\beta}(r,\theta)D_{r}^{\beta_{0}}D_{\theta}^{\beta^{\prime}} with bounded aα(r,θ)a_{\alpha}(r,\theta) in the sense that

|rα0θαaβ(r,θ)|Cαβ.|\partial_{r}^{\alpha_{0}}\partial_{\theta}^{\alpha^{\prime}}a_{\beta}(r,\theta)|\leq C_{\alpha\beta}.
Remark.

If (M,g)(M,g) is a Riemannian manifold and φ:UV\varphi:U\to V are local coordinates, then φaw(x,D)φ\varphi^{*}a^{\mathrm{w}}(x,\hbar D)\varphi_{*} is

φaw(x,D)φ(u~|volg|1/2)\displaystyle\varphi^{*}a^{\mathrm{w}}(x,\hbar D)\varphi_{*}(\tilde{u}|\mathrm{vol}_{g}|^{1/2})
:=g(x)1/4(2π)n2na(x+y2,ξ)eiξ(xy)/u~(y)g(y)1/4dydξ|volg|1/2.\displaystyle:=\frac{g(x)^{-1/4}}{(2\pi\hbar)^{n}}\int_{\mathbb{R}^{2n}}a\left(\frac{x+y}{2},\xi\right)e^{i\xi\cdot(x-y)/\hbar}\tilde{u}(y)g(y)^{1/4}\,\mathrm{d}y\mathrm{d}\xi|\mathrm{vol}_{g}|^{1/2}.

Here g(x)g(x) is defined by the relation volg(x)=g(x)1/2dx\mathrm{vol}_{g}(x)=g(x)^{1/2}\mathrm{d}x. The difference between pseudodifferential operators acting on half-densities and those acting on functions is the existence of the factor g(x)1/4g(y)1/4g(x)^{-1/4}g(y)^{1/4}.

We employ composition and commutator of pseudodifferential operators, boundedness on the L2L^{2} space and the sharp Gårding inequality in proof of the main theorem.

Theorem 4.4.

Let m1,m2m_{1},m_{2}\in\mathbb{R}. For aScylm1(TM)a\in S^{m_{1}}_{\mathrm{cyl}}(T^{*}M), bScylm2(TM)b\in S^{m_{2}}_{\mathrm{cyl}}(T^{*}M), the following statements hold.

  1. 1.

    The composition Op(a)Op(b)\mathop{\mathrm{Op}}\nolimits_{\hbar}(a)\mathop{\mathrm{Op}}\nolimits_{\hbar}(b) is represented by some symbol c(;x,ξ)Scylm1+m22(TM)c(\hbar;x,\xi)\in S^{m_{1}+m_{2}-2}_{\mathrm{cyl}}(T^{*}M) as

    Op(a)Op(b)=Op(ab+i2{a,b}+2c)+OL2L2().\mathop{\mathrm{Op}}\nolimits_{\hbar}(a)\mathop{\mathrm{Op}}\nolimits_{\hbar}(b)=\mathop{\mathrm{Op}}\nolimits_{\hbar}\left(ab+\frac{i\hbar}{2}\{a,b\}+\hbar^{2}c\right)+O_{L^{2}\to L^{2}}(\hbar^{\infty}). (4.3)

    The symbol c(;x,ξ)c(\hbar;x,\xi) satisfies suppc(;x,ξ)supp(ab)\mathop{\mathrm{supp}}c(\hbar;x,\xi)\subset\mathop{\mathrm{supp}}(ab) mod O()O(\hbar^{\infty}).

  2. 2.

    In particular, the commutator [Op(a),Op(b)][\mathop{\mathrm{Op}}\nolimits_{\hbar}(a),\mathop{\mathrm{Op}}\nolimits_{\hbar}(b)] is represented by some cScylm1+m22(TM)c\in S^{m_{1}+m_{2}-2}_{\mathrm{cyl}}(T^{*}M) as

    [Op(a),Op(b)]=Op(i{a,b}+2c)+OL2L2().[\mathop{\mathrm{Op}}\nolimits_{\hbar}(a),\mathop{\mathrm{Op}}\nolimits_{\hbar}(b)]=\mathop{\mathrm{Op}}\nolimits_{\hbar}(i\hbar\{a,b\}+\hbar^{2}c)+O_{L^{2}\to L^{2}}(\hbar^{\infty}). (4.4)

    The symbol c=c(;x,ξ)c=c(\hbar;x,\xi) satisfies suppc(;x,ξ)supp(ab)\mathop{\mathrm{supp}}c(\hbar;x,\xi)\subset\mathop{\mathrm{supp}}(ab) mod O()O(\hbar^{\infty}).

Remark.

One can prove that the OL2L2()O_{L^{2}\to L^{2}}(\hbar^{\infty}) term in (4.3) and (4.4) has smooth integral kernels. However, we do not use it in this paper.

Theorem 4.5.

For any symbol aScyl0(TM)a\in S^{0}_{\mathrm{cyl}}(T^{*}M), the operator Op(a)\mathop{\mathrm{Op}}\nolimits_{\hbar}(a) is bounded on L2(M;Ω)L^{2}(M;\Omega).

Furthermore, if the symbol aa also depends on some parameter τΩ\tau\in\Omega and are uniformly bounded in Scyl0(TM)S^{0}_{\mathrm{cyl}}(T^{*}M), then the operator norm Op(a)L2L2\|\mathop{\mathrm{Op}}\nolimits_{\hbar}(a)\|_{L^{2}\to L^{2}} is uniformly bounded with respect to τΩ\tau\in\Omega.

Proof.

Each terms χιφι(φ~ι(κιa))w(x,D)φιχι\chi_{\iota}\varphi_{\iota}^{*}(\tilde{\varphi}_{\iota*}(\kappa_{\iota}a))^{\mathrm{w}}(x,\hbar D)\varphi_{\iota*}\chi_{\iota} in the definition (4.2) of pseudodifferential operators is bounded on L2(M;Ω)L^{2}(M;\Omega) by the Calderón-Vaillancourt theorem for φ~ι(κιa)S0(Tn)\tilde{\varphi}_{\iota*}(\kappa_{\iota}a)\in S^{0}(T^{*}\mathbb{R}^{n}) and the unitarity of the pull back φ\varphi^{*} and the push forward φ\varphi_{*}. Thus the finite sum (4.2) over ιI\iota\in I is also a bounded operator on L2(M;Ω1/2)L^{2}(M;\Omega^{1/2}). ∎

Theorem 4.6 (Sharp Gårding inequality).

For every aScyl0(TM)a\in S^{0}_{\mathrm{cyl}}(T^{*}M) with Rea0\mathop{\mathrm{Re}}a\geq 0, there exists a real symbol b(;x,ξ)Scyl0(TM)b(\hbar;x,\xi)\in S^{0}_{\mathrm{cyl}}(T^{*}M) such that the inequality

ReOp(a)Op(b)+OL2L2()\mathop{\mathrm{Re}}\mathop{\mathrm{Op}}\nolimits_{\hbar}(a)\geq-\hbar\mathop{\mathrm{Op}}\nolimits_{\hbar}(b)+O_{L^{2}\to L^{2}}(\hbar^{\infty}) (4.5)

holds and suppbsuppa\mathop{\mathrm{supp}}b\subset\mathop{\mathrm{supp}}a mod O()O(\hbar^{\infty}).

Furthermore, if the symbol aa also depends on some parameter τΩ\tau\in\Omega and are uniformly bounded in Scyl0(TM)S^{0}_{\mathrm{cyl}}(T^{*}M), then the OL2L2()O_{L^{2}\to L^{2}}(\hbar^{\infty}) in (4.5), and the symbol bScyl0(TM)b\in S^{0}_{\mathrm{cyl}}(T^{*}M) itself are uniformly bounded with respect to τΩ\tau\in\Omega.

We prove Theorem 4.4 and Theorem 4.6 in Subsection 4.4.

In order to treat [A(t),H][A_{\hbar}(t),H] in (2.6), we represent the semiclassical Laplacian

2g(u|volg|1/2):=div(gradu)|volg|1/2-\hbar^{2}\triangle_{g}(u|\mathrm{vol}_{g}|^{1/2}):=\mathop{\mathrm{div}}(\mathop{\mathrm{grad}}u)|\mathrm{vol}_{g}|^{1/2}

as a pseudodifferential operator:

Theorem 4.7.

We have

2g=Op(|ξ|g2+2Vg),-\hbar^{2}\triangle_{g}=\mathop{\mathrm{Op}}\nolimits_{\hbar}(|\xi|_{g^{*}}^{2}+\hbar^{2}V_{g}),

where VgC(M)V_{g}\in C^{\infty}(M) is defined as

Vg(x):=ιIj,k=1n(14xjxk(κιgιjk)+gι1/4xj(κιgιjkxkgι1/4)),V_{g}(x):=\sum_{\iota\in I}\sum_{j,k=1}^{n}\left(\frac{1}{4}\partial_{x_{j}}\partial_{x_{k}}(\kappa_{\iota}g_{\iota}^{jk})+g_{\iota}^{-1/4}\partial_{x_{j}}(\kappa_{\iota}g_{\iota}^{jk}\partial_{x_{k}}g_{\iota}^{1/4})\right),

gιjkg_{\iota}^{jk}, gιg_{\iota} are defined on UιU_{\iota} as

(gιjk):=(gjkι)1,gι:=det(gjkι),where g=j,k=1ngjkιdxjdxk.(g_{\iota}^{jk}):=(g^{\iota}_{jk})^{-1},\quad g_{\iota}:=\sqrt{\det(g^{\iota}_{jk})},\quad\text{where }g=\sum_{j,k=1}^{n}g^{\iota}_{jk}\mathrm{d}x_{j}\mathrm{d}x_{k}.

Furthermore, VgV_{g} belongs to the symbol class Scyl0(TM)S^{0}_{\mathrm{cyl}}(T^{*}M).

Proof.

We decompose 2g-\hbar^{2}\triangle_{g} into

2gu=ιIχιdiv(κιgrad(χιu)).-\hbar^{2}\triangle_{g}u=\sum_{\iota\in I}\chi_{\iota}\mathop{\mathrm{div}}(\kappa_{\iota}\mathop{\mathrm{grad}}(\chi_{\iota}u)). (4.6)

Direct calculation of (φ~ι(κι|ξ|g2))w(x,D)(\tilde{\varphi}_{\iota*}(\kappa_{\iota}|\xi|_{g^{*}}^{2}))^{\mathrm{w}}(x,\hbar D) shows that

φι(φ~ι(κι|ξ|g2))w(x,D)φιu=div(κιgradu)Vιu\varphi_{\iota}^{*}(\tilde{\varphi}_{\iota*}(\kappa_{\iota}|\xi|_{g^{*}}^{2}))^{\mathrm{w}}(x,\hbar D)\varphi_{\iota*}u=-\mathop{\mathrm{div}}(\kappa_{\iota}\mathop{\mathrm{grad}}u)-V_{\iota}u

and

Vι(x):=14xjxk(κιgιjk)+gι1/4xj(κιgιjkxkgι1/4).V_{\iota}(x):=\frac{1}{4}\partial_{x_{j}}\partial_{x_{k}}(\kappa_{\iota}g_{\iota}^{jk})+g_{\iota}^{-1/4}\partial_{x_{j}}(\kappa_{\iota}g_{\iota}^{jk}\partial_{x_{k}}g_{\iota}^{1/4}). (4.7)

Thus, by (4.6), we have

2gu=ιIχιφι(φ~ι(κι|ξ|g2))w(x,D)φι(χιu)+ιIVιχι2u.-\hbar^{2}\triangle_{g}u=\sum_{\iota\in I}\chi_{\iota}\varphi_{\iota}^{*}(\tilde{\varphi}_{\iota*}(\kappa_{\iota}|\xi|_{g^{*}}^{2}))^{\mathrm{w}}(x,\hbar D)\varphi_{\iota*}(\chi_{\iota}u)+\sum_{\iota\in I}V_{\iota}\chi_{\iota}^{2}u.

Vιχι2V_{\iota}\chi_{\iota}^{2} by χι=1\chi_{\iota}=1 on suppVι\mathop{\mathrm{supp}}V_{\iota} and Vg=ιIVιV_{g}=\sum_{\iota\in I}V_{\iota} implies that

ιIVιχι2u=Vu=ιIχιφι(φ~ι(κιV))wφι(χιu)=Op(V)u.\sum_{\iota\in I}V_{\iota}\chi_{\iota}^{2}u=Vu=\sum_{\iota\in I}\chi_{\iota}\varphi_{\iota}^{*}(\tilde{\varphi}_{\iota*}(\kappa_{\iota}V))^{\mathrm{w}}\varphi_{\iota*}(\chi_{\iota}u)=\mathop{\mathrm{Op}}\nolimits_{\hbar}(V)u.

We have to show that VgScyl0(TM)V_{g}\in S^{0}_{\mathrm{cyl}}(T^{*}M). The problem is the behavior of derivatives of gιjkg^{jk}_{\iota} and gιg_{\iota} for ιI\iota\in I_{\infty}. By (1.5), we have

gιjk\displaystyle g^{jk}_{\iota} ={c(r,θ)2if j=k=1,hιj1,k1(r,θ)if j,k2,0otherwise,\displaystyle=\begin{cases}c(r,\theta)^{-2}&\text{if }j=k=1,\\ h^{j-1,k-1}_{\iota}(r,\theta)&\text{if }j,k\geq 2,\\ 0&\text{otherwise},\end{cases}
gι\displaystyle g_{\iota} =c(r,θ)2hι(r,θ),\displaystyle=c(r,\theta)^{2}h_{\iota}(r,\theta),

where

(hιjk):=(hjkι)1,hι:=det(hjkι),h(r,θ,dθ)=j,k=1n1hjkι(r,θ)dθjdθk.(h^{jk}_{\iota}):=(h^{\iota}_{jk})^{-1},\quad h_{\iota}:=\det(h^{\iota}_{jk}),\quad h(r,\theta,\mathrm{d}\theta)=\sum_{j,k=1}^{n-1}h^{\iota}_{jk}(r,\theta)\mathrm{d}\theta_{j}\mathrm{d}\theta_{k}.

Assumption 1.7 (v) (in particular c1c\to 1 as rr\to\infty) and Assumption 1.8 implies the boundedness of

|r,θαxjxk(κιgιjk)||\partial_{r,\theta}^{\alpha}\partial_{x_{j}}\partial_{x_{k}}(\kappa_{\iota}g_{\iota}^{jk})|

and

|r,θα(gι1/4xj(κιgιjkxkgι1/4))||\partial_{r,\theta}^{\alpha}(g_{\iota}^{-1/4}\partial_{x_{j}}(\kappa_{\iota}g_{\iota}^{jk}\partial_{x_{k}}g_{\iota}^{1/4}))|

in (4.7). This shows that VιScyl0(TM)V_{\iota}\in S^{0}_{\mathrm{cyl}}(T^{*}M) for ιI\iota\in I_{\infty}. ∎

Remark.

Vg(x)V_{g}(x) depends on choices of atlas on MM.

4.4 Proof of Theorem 4.4 and Theorem 4.6

It is useful to introduce a notation of pseudodifferential operators associated with locally defined symbols.

Definition 4.8.

For aιScylm(Tn)a_{\iota}\in S^{m}_{\mathrm{cyl}}(T^{*}\mathbb{R}^{n}) and uCc(M;Ω1/2)u\in C_{c}^{\infty}(M;\Omega^{1/2}), we define

Oploc,ι(aι)u:=χιφιaιw(x,D)φι(χιu).\mathop{\mathrm{Op}}\nolimits_{\hbar}^{\mathrm{loc},{\iota}}(a_{\iota})u:=\chi_{\iota}\varphi_{\iota}^{*}a_{\iota}^{\mathrm{w}}(x,\hbar D)\varphi_{\iota*}(\chi_{\iota}u).

The operators in Definition 4.8 are represented by a quantization of globally defined symbols.

Lemma 4.9.

Assume that symbols aιSm(Tn)a_{\iota}\in S^{m}(T^{*}\mathbb{R}^{n}) satisfy suppaιπ1(suppφικι)\mathop{\mathrm{supp}}a_{\iota}\subset\pi^{-1}(\mathop{\mathrm{supp}}\varphi_{\iota*}\kappa_{\iota}) for all ιI\iota\in I, where π:TMM\pi:T^{*}M\to M is the natural projection. Then there exists a(;x,ξ)Scylm(TM)a(\hbar;x,\xi)\in S^{m}_{\mathrm{cyl}}(T^{*}M) such that

ιIOploc,ι(aι)=Op(a)+OL2L2().\sum_{\iota\in I}\mathop{\mathrm{Op}}\nolimits_{\hbar}^{\mathrm{loc},{\iota}}(a_{\iota})=\mathop{\mathrm{Op}}\nolimits_{\hbar}(a)+O_{L^{2}\to L^{2}}(\hbar^{\infty}). (4.8)

This symbol aScylm(TM)a\in S^{m}_{\mathrm{cyl}}(T^{*}M) satisfies suppasuppa0\mathop{\mathrm{supp}}a\subset\mathop{\mathrm{supp}}a_{0} modulo O()O(\hbar^{\infty}) where

a0(x,ξ)=ιIφ~ιaι(x,ξ).a_{0}(x,\xi)=\sum_{\iota\in I}\tilde{\varphi}_{\iota}^{*}a_{\iota}(x,\xi).

Furthermore, if the symbols aιa_{\iota} also depend on some parameter τΩ\tau\in\Omega and are uniformly bounded in Sm(Tn)S^{m}(T^{*}\mathbb{R}^{n}), then the OL2L2()O_{L^{2}\to L^{2}}(\hbar^{\infty}) in (4.8) are uniformly bounded with respect to τΩ\tau\in\Omega.

Proof.

The explicit form of Op(a0)\mathop{\mathrm{Op}}\nolimits_{\hbar}(a_{0}) is

Op(a0)\displaystyle\mathop{\mathrm{Op}}\nolimits_{\hbar}(a_{0}) =UιUιχιφι(φ~ι(κιφ~ιaι))w(x,D)(φιχι)φι\displaystyle=\sum_{U_{\iota}\cap U_{\iota^{\prime}}\neq\varnothing}\chi_{\iota}\varphi_{\iota}^{*}(\tilde{\varphi}_{\iota*}(\kappa_{\iota}\tilde{\varphi}_{\iota^{\prime}}^{*}a_{\iota^{\prime}}))^{\mathrm{w}}(x,\hbar D)(\varphi_{\iota*}\chi_{\iota})\varphi_{\iota*}
=UιUιχιφι(κιaι+OSm2(2))w(x,D)(φιχι)φι\displaystyle=\sum_{U_{\iota}\cap U_{\iota^{\prime}}\neq\varnothing}\chi_{\iota}\varphi_{\iota^{\prime}}^{*}(\kappa_{\iota}a_{\iota^{\prime}}+O_{S^{m-2}}(\hbar^{2}))^{\mathrm{w}}(x,\hbar D)(\varphi_{\iota^{\prime}*}\chi_{\iota})\varphi_{\iota^{\prime}*}
=ιIφι(aι+OSm2(2))w(x,D)φι+OL2L2()\displaystyle=\sum_{\iota^{\prime}\in I}\varphi_{\iota^{\prime}}^{*}(a_{\iota^{\prime}}+O_{S^{m-2}}(\hbar^{2}))^{\mathrm{w}}(x,\hbar D)\varphi_{\iota^{\prime}*}+O_{L^{2}\to L^{2}}(\hbar^{\infty})
=ιIOploc,ι(aιb1,ι)+OL2L2()\displaystyle=\sum_{\iota\in I}\mathop{\mathrm{Op}}\nolimits_{\hbar}^{\mathrm{loc},{\iota}}\left(a_{\iota}-\hbar b_{1,\iota}\right)+O_{L^{2}\to L^{2}}(\hbar^{\infty}) (4.9)

by changing variables of pseudodifferential operators and the assumption suppaιsuppφικι\mathop{\mathrm{supp}}a_{\iota}\subset\mathop{\mathrm{supp}}\varphi_{\iota*}\kappa_{\iota}. Here b1,ι=b1,ι(;x,ξ)Sm1(Tn)b_{1,\iota}=b_{1,\iota}(\hbar;x,\xi)\in S^{m-1}(T^{*}\mathbb{R}^{n}) has an asymptotic expansion

b1,ι(;x,ξ)j=0jb1j,ι(x,ξ),b1j,ιSmj1(Tn)b_{1,\iota}(\hbar;x,\xi)\sim\sum_{j=0}^{\infty}\hbar^{j}b_{1j,\iota}(x,\xi),\quad b_{1j,\iota}\in S^{m-j-1}(T^{*}\mathbb{R}^{n})

with suppb1j,ιsuppφι(κιa0)\mathop{\mathrm{supp}}b_{1j,\iota}\subset\mathop{\mathrm{supp}}\varphi_{\iota*}(\kappa_{\iota}a_{0}).

We repeat the same argument for b10,ι(x,ξ)b_{10,\iota}(x,\xi). If we set

a1(x,ξ):=ιIφ~ιb10,ι(x,ξ),a_{1}(x,\xi):=-\sum_{\iota\in I}\tilde{\varphi}_{\iota}^{*}b_{10,\iota}(x,\xi),

then we have

Op(a1)=ιIOploc,ι(b10,ιc2,ι)+OL2L2().\mathop{\mathrm{Op}}\nolimits_{\hbar}(a_{1})=\sum_{\iota\in I}\mathop{\mathrm{Op}}\nolimits_{\hbar}^{\mathrm{loc},{\iota}}\left(b_{10,\iota}-\hbar c_{2,\iota}\right)+O_{L^{2}\to L^{2}}(\hbar^{\infty}). (4.10)

Here c2,ι(;x,ξ)Sm2(Tn)c_{2,\iota}(\hbar;x,\xi)\in S^{m-2}(T^{*}\mathbb{R}^{n}) has an asymptotic expansion

c2,ι(;x,ξ)j=0jc2j,ι(x,ξ),c2j,ιSmj2(Tn)c_{2,\iota}(\hbar;x,\xi)\sim\sum_{j=0}^{\infty}\hbar^{j}c_{2j,\iota}(x,\xi),\quad c_{2j,\iota}\in S^{m-j-2}(T^{*}\mathbb{R}^{n})

with suppc2j,ιsuppφι(κιa0)\mathop{\mathrm{supp}}c_{2j,\iota}\subset\mathop{\mathrm{supp}}\varphi_{\iota*}(\kappa_{\iota}a_{0}).

Summing up (4.9) and (4.10)×\times\hbar, we obtain

Op(a0+a1)=ιIOploc,ι(aι2b2,ι)+OL2L2(),\mathop{\mathrm{Op}}\nolimits_{\hbar}(a_{0}+\hbar a_{1})=\sum_{\iota\in I}\mathop{\mathrm{Op}}\nolimits_{\hbar}^{\mathrm{loc},{\iota}}(a_{\iota}-\hbar^{2}b_{2,\iota})+O_{L^{2}\to L^{2}}(\hbar^{\infty}),

where

b2,ι(;x,ξ):=1(b1,ιb10,ι)+c2,ιSm2(Tn).b_{2,\iota}(\hbar;x,\xi):=\hbar^{-1}(b_{1,\iota}-b_{10,\iota})+c_{2,\iota}\in S^{m-2}(T^{*}\mathbb{R}^{n}).

b2,ι(;x,ξ)b_{2,\iota}(\hbar;x,\xi) has an asymptotic expansion

b2,ι(;x,ξ)j=0jb2j,ι(x,ξ),b2j,ιSmj2(Tn)b_{2,\iota}(\hbar;x,\xi)\sim\sum_{j=0}^{\infty}\hbar^{j}b_{2j,\iota}(x,\xi),\quad b_{2j,\iota}\in S^{m-j-2}(T^{*}\mathbb{R}^{n})

with suppb2j,ιsuppφι(κιa0)\mathop{\mathrm{supp}}b_{2j,\iota}\subset\mathop{\mathrm{supp}}\varphi_{\iota*}(\kappa_{\iota}a_{0}).

We repeat this argument and construct ajScylmj(TM)a_{j}\in S^{m-j}_{\mathrm{cyl}}(T^{*}M) such that

Op(j=0Njaj)=ιIOploc,ι(aιN+1bN+1,ι)+OL2L2()\mathop{\mathrm{Op}}\nolimits_{\hbar}\left(\sum_{j=0}^{N}\hbar^{j}a_{j}\right)=\sum_{\iota\in I}\mathop{\mathrm{Op}}\nolimits_{\hbar}^{\mathrm{loc},{\iota}}(a_{\iota}-\hbar^{N+1}b_{N+1,\iota})+O_{L^{2}\to L^{2}}(\hbar^{\infty})

for all N0N\in\mathbb{Z}_{\geq 0}, where bN+1,ι(;x,ξ)SN+1j(Tn)b_{N+1,\iota}(\hbar;x,\xi)\in S^{N+1-j}(T^{*}\mathbb{R}^{n}) has an asymptotic expansion

bN+1,ι(;x,ξ)j=0jbN+1,j,ι(x,ξ),bN+1,j,ιSmjN1(Tn)b_{N+1,\iota}(\hbar;x,\xi)\sim\sum_{j=0}^{\infty}\hbar^{j}b_{N+1,j,\iota}(x,\xi),\quad b_{N+1,j,\iota}\in S^{m-j-N-1}(T^{*}\mathbb{R}^{n})

with suppbN+1,j,ιsuppφι(κιa0)\mathop{\mathrm{supp}}b_{N+1,j,\iota}\subset\mathop{\mathrm{supp}}\varphi_{\iota*}(\kappa_{\iota}a_{0}).

The desired symbol a(;x,ξ)a(\hbar;x,\xi) is defined as an asymptotic expansion

a(;x,ξ)j=0jaj(x,ξ)a(\hbar;x,\xi)\sim\sum_{j=0}^{\infty}\hbar^{j}a_{j}(x,\xi)

by Borel’s theorem. ∎

Proof of Theorem 4.4.

For uCc(M;Ω1/2)u\in C_{c}^{\infty}(M;\Omega^{1/2}) We decompose Op(a)Op(b)\mathop{\mathrm{Op}}\nolimits_{\hbar}(a)\mathop{\mathrm{Op}}\nolimits_{\hbar}(b) into

Op(a)Op(b)=UιUιAι(φι(χιχι))Bιι,\mathop{\mathrm{Op}}\nolimits_{\hbar}(a)\mathop{\mathrm{Op}}\nolimits_{\hbar}(b)=\sum_{U_{\iota}\cap U_{\iota^{\prime}}\neq\varnothing}A_{\iota}(\varphi_{\iota*}(\chi_{\iota}\chi_{\iota^{\prime}}))B_{\iota\iota^{\prime}}, (4.11)

where

Aι:=χιφι(φ~ι(κιa))w(x,D)A_{\iota}:=\chi_{\iota}\varphi_{\iota}^{*}(\tilde{\varphi}_{\iota*}(\kappa_{\iota}a))^{\mathrm{w}}(x,\hbar D) (4.12)

and

Bιιu:=φιφι(φ~ι(κιb))w(x,D)(φι(χιu)).B_{\iota\iota^{\prime}}u:=\varphi_{\iota*}\varphi_{\iota^{\prime}}^{*}(\tilde{\varphi}_{\iota^{\prime}*}(\kappa_{\iota^{\prime}}b))^{\mathrm{w}}(x,\hbar D)(\varphi_{\iota^{\prime}*}(\chi_{\iota^{\prime}}u)). (4.13)

Take cylindrical functions χιC(M)\chi_{\iota}^{\prime}\in C^{\infty}(M) such that suppχιUι\mathop{\mathrm{supp}}\chi_{\iota}^{\prime}\subset U_{\iota} and χι=1\chi_{\iota}^{\prime}=1 near suppχι\mathop{\mathrm{supp}}\chi_{\iota}.

We treat AιA_{\iota}. In local coordinates,

(φικι)(φ~ι(χιa))w\displaystyle(\varphi_{\iota*}\kappa_{\iota})(\tilde{\varphi}_{\iota*}(\chi_{\iota}^{\prime}a))^{\mathrm{w}} =((φικι)#(φ~ι(χιa)))w\displaystyle=((\varphi_{\iota*}\kappa_{\iota})\#(\tilde{\varphi}_{\iota*}(\chi_{\iota}^{\prime}a)))^{\mathrm{w}}
=(φ~ι(κιa+i2{κι,a})+OSm12(2))w.\displaystyle=\left(\tilde{\varphi}_{\iota*}\left(\kappa_{\iota}a+\frac{i\hbar}{2}\{\kappa_{\iota},a\}\right)+O_{S^{m_{1}-2}}(\hbar^{2})\right)^{\mathrm{w}}.

Thus

Aι=κιφι(φ~ι(χιa))w=:Aιi2χιφι(φ~ι{κι,a}+cι)w=:Aι′′.A_{\iota}=\underbrace{\kappa_{\iota}\varphi_{\iota}^{*}(\tilde{\varphi}_{\iota*}(\chi_{\iota}^{\prime}a))^{\mathrm{w}}}_{=:A_{\iota}^{\prime}}-\frac{i\hbar}{2}\underbrace{\chi_{\iota}\varphi_{\iota}^{*}(\tilde{\varphi}_{\iota*}\{\kappa_{\iota},a\}+\hbar c_{\iota}^{\prime})^{\mathrm{w}}}_{=:A_{\iota}^{\prime\prime}}. (4.14)

Here cι(;x,ξ)Sm12(Tn)c_{\iota}^{\prime}(\hbar;x,\xi)\in S^{m_{1}-2}(T^{*}\mathbb{R}^{n}) satisfies suppcιsuppsuppφ~ι(κιa)\mathop{\mathrm{supp}}c_{\iota}^{\prime}\subset\mathop{\mathrm{supp}}\mathop{\mathrm{supp}}\tilde{\varphi}_{\iota*}(\kappa_{\iota}a) modulo O()O(\hbar^{\infty}).

We calculate Aι(φι(χιχι))BιιA_{\iota}^{\prime}(\varphi_{\iota*}(\chi_{\iota}\chi_{\iota^{\prime}}))B_{\iota\iota^{\prime}} and Aι′′(φι(χιχι))BιιA_{\iota}^{\prime\prime}(\varphi_{\iota*}(\chi_{\iota}\chi_{\iota^{\prime}}))B_{\iota\iota^{\prime}} respectively.

Calculation of Aι(φι(χιχι))Bιι\bm{A_{\iota}^{\prime}(\varphi_{\iota*}(\chi_{\iota}\chi_{\iota^{\prime}}))B_{\iota\iota^{\prime}}}. We apply the changing variables for Weyl quantization acting on half densities to BιιB_{\iota\iota^{\prime}} and obtain

(φι(χιχι))Bιι=(φι(χιχι))φιφι(φ~ι(χικιb))w(x,D)(φι(χιχι))φι+OL2L2()=(φι(χιχι))bιιw(x,D)(φι(χιχι))φι+OL2L2(),\begin{split}(\varphi_{\iota*}(\chi_{\iota}\chi_{\iota^{\prime}}))B_{\iota\iota^{\prime}}&=(\varphi_{\iota*}(\chi_{\iota}\chi_{\iota^{\prime}}))\varphi_{\iota*}\varphi_{\iota^{\prime}}^{*}(\tilde{\varphi}_{\iota^{\prime}*}(\chi_{\iota}^{\prime}\kappa_{\iota^{\prime}}b))^{\mathrm{w}}(x,\hbar D)(\varphi_{\iota^{\prime}*}(\chi_{\iota}^{\prime}\chi_{\iota^{\prime}}))\varphi_{\iota^{\prime}*}\\ &\quad+O_{L^{2}\to L^{2}}(\hbar^{\infty})\\ &=(\varphi_{\iota*}(\chi_{\iota}\chi_{\iota^{\prime}}))b_{\iota\iota^{\prime}}^{\mathrm{w}}(x,\hbar D)(\varphi_{\iota*}(\chi_{\iota}^{\prime}\chi_{\iota^{\prime}}))\varphi_{\iota*}+O_{L^{2}\to L^{2}}(\hbar^{\infty}),\end{split} (4.15)

where

bιι(x,ξ)=(φ~ιφ~ι1)(φ~ι(χικιb))+2qιι=φ~ι(χικιb)+2qιιb_{\iota\iota^{\prime}}(x,\xi)=(\tilde{\varphi}_{\iota^{\prime}}\circ\tilde{\varphi}_{\iota}^{-1})^{*}(\tilde{\varphi}_{\iota^{\prime}*}(\chi_{\iota}^{\prime}\kappa_{\iota^{\prime}}b))+\hbar^{2}q^{\prime}_{\iota\iota^{\prime}}=\tilde{\varphi}_{\iota*}(\chi_{\iota}^{\prime}\kappa_{\iota^{\prime}}b)+\hbar^{2}q^{\prime}_{\iota\iota^{\prime}}

and qιι(;x,ξ)Sm22(Tn)q^{\prime}_{\iota\iota^{\prime}}(\hbar;x,\xi)\in S^{m_{2}-2}(T^{*}\mathbb{R}^{n}) satisfies suppqιιsuppφ~ι(χικιb)\mathop{\mathrm{supp}}q^{\prime}_{\iota\iota^{\prime}}\subset\mathop{\mathrm{supp}}\tilde{\varphi}_{\iota*}(\chi_{\iota}\kappa_{\iota^{\prime}}b) modulo O()O(\hbar^{\infty}).

Hence by (4.14), we have

Aι(φι(χιχι))Bιι=κιφι(φ~ι(χιa))w(φι(χιχι))(φ~ι(χικιb)+2qιι)wφι(χιχι)φι+OL2L2()=κιφι((φ~ι(χιa))#(φι(χιχι))#(φ~ι(χικιb)+2qιι))wφι(χιχι)φι+OL2L2()=κιφι(φ~ι(χικιab+i2({a,b}χικι+{a,χικι}b+{χι,b}κιa))+2q~ιι)w(φι(χιχι))φι+OL2L2()=κιφι(φ~ι(χικιab+i2({a,b}χικι+{a,κι}χιb))+2q~ιι)w(φιχι)φι+OL2L2().\begin{split}&A_{\iota}^{\prime}(\varphi_{\iota*}(\chi_{\iota}\chi_{\iota^{\prime}}))B_{\iota\iota^{\prime}}\\ &=\kappa_{\iota}\varphi_{\iota}^{*}(\tilde{\varphi}_{\iota*}(\chi_{\iota}^{\prime}a))^{\mathrm{w}}(\varphi_{\iota*}(\chi_{\iota}\chi_{\iota^{\prime}}))(\tilde{\varphi}_{\iota*}(\chi_{\iota}^{\prime}\kappa_{\iota^{\prime}}b)+\hbar^{2}q^{\prime}_{\iota\iota^{\prime}})^{\mathrm{w}}\varphi_{\iota*}(\chi_{\iota}^{\prime}\chi_{\iota^{\prime}})\varphi_{\iota*}\\ &\quad+O_{L^{2}\to L^{2}}(\hbar^{\infty})\\ &=\kappa_{\iota}\varphi_{\iota}^{*}((\tilde{\varphi}_{\iota*}(\chi_{\iota}^{\prime}a))\#(\varphi_{\iota*}(\chi_{\iota}\chi_{\iota^{\prime}}))\#(\tilde{\varphi}_{\iota*}(\chi_{\iota}^{\prime}\kappa_{\iota^{\prime}}b)+\hbar^{2}q^{\prime}_{\iota\iota^{\prime}}))^{\mathrm{w}}\varphi_{\iota*}(\chi_{\iota}^{\prime}\chi_{\iota^{\prime}})\varphi_{\iota*}\\ &\quad+O_{L^{2}\to L^{2}}(\hbar^{\infty})\\ &=\kappa_{\iota}\varphi_{\iota}^{*}\biggl{(}\tilde{\varphi}_{\iota*}\biggl{(}\chi_{\iota}\kappa_{\iota^{\prime}}ab+\frac{i\hbar}{2}(\{a,b\}\chi_{\iota}\kappa_{\iota^{\prime}}+\{a,\chi_{\iota}\kappa_{\iota^{\prime}}\}b+\{\chi_{\iota},b\}\kappa_{\iota^{\prime}}a)\biggr{)}+\hbar^{2}\tilde{q}^{\prime}_{\iota\iota^{\prime}}\biggr{)}^{\mathrm{w}}\\ &\quad(\varphi_{\iota*}(\chi_{\iota}^{\prime}\chi_{\iota^{\prime}}))\varphi_{\iota*}+O_{L^{2}\to L^{2}}(\hbar^{\infty})\\ &=\kappa_{\iota}\varphi_{\iota}^{*}\biggl{(}\tilde{\varphi}_{\iota*}\biggl{(}\chi_{\iota}\kappa_{\iota^{\prime}}ab+\frac{i\hbar}{2}(\{a,b\}\chi_{\iota}\kappa_{\iota^{\prime}}+\{a,\kappa_{\iota^{\prime}}\}\chi_{\iota}b)\biggr{)}+\hbar^{2}\tilde{q}^{\prime}_{\iota\iota^{\prime}}\biggr{)}^{\mathrm{w}}(\varphi_{\iota*}\chi_{\iota}^{\prime})\varphi_{\iota*}\\ &\quad+O_{L^{2}\to L^{2}}(\hbar^{\infty}).\end{split} (4.16)

Here q~ιι(;x,ξ)Sm22(Tn)\tilde{q}^{\prime}_{\iota\iota^{\prime}}(\hbar;x,\xi)\in S^{m_{2}-2}(T^{*}\mathbb{R}^{n}) satisfies suppq~ιιsuppφ~ι(χικιab)\mathop{\mathrm{supp}}\tilde{q}^{\prime}_{\iota\iota^{\prime}}\subset\mathop{\mathrm{supp}}\tilde{\varphi}_{\iota*}(\chi_{\iota}\kappa_{\iota^{\prime}}ab) modulo O()O(\hbar^{\infty}). For fixed ιI\iota\in I, we sum (4.16) over ιI\iota^{\prime}\in I such that UιUιU_{\iota}\cap U_{\iota^{\prime}}\neq\varnothing and obtain

ι:UιUιAι(φι(χιχι))Bιι=κιφι(φ~ι(χιab+i2{a,b}χι)+2q~ι)w(φιχι)φι+OL2L2().\begin{split}&\sum_{\iota^{\prime}:U_{\iota}\cap U_{\iota^{\prime}}\neq\varnothing}A_{\iota}^{\prime}(\varphi_{\iota*}(\chi_{\iota}\chi_{\iota^{\prime}}))B_{\iota\iota^{\prime}}\\ &=\kappa_{\iota}\varphi_{\iota}^{*}\biggl{(}\tilde{\varphi}_{\iota*}\biggl{(}\chi_{\iota}ab+\frac{i\hbar}{2}\{a,b\}\chi_{\iota}\biggr{)}+\hbar^{2}\tilde{q}^{\prime}_{\iota}\biggr{)}^{\mathrm{w}}(\varphi_{\iota*}\chi_{\iota}^{\prime})\varphi_{\iota*}\\ &\quad+O_{L^{2}\to L^{2}}(\hbar^{\infty}).\end{split} (4.17)

Here q~ι:=ι:UιUιq~ιι\tilde{q}^{\prime}_{\iota}:=\sum_{\iota^{\prime}:U_{\iota}\cap U_{\iota^{\prime}}\neq\varnothing}\tilde{q}^{\prime}_{\iota\iota^{\prime}}.

Since q~ι=χι2q~ι+OS0()\tilde{q}^{\prime}_{\iota}=\chi_{\iota}^{2}\tilde{q}^{\prime}_{\iota}+O_{S^{0}}(\hbar^{\infty}), we can find a symbol c~ι(;x,ξ)Sm1+m22(Tn)\tilde{c}^{\prime}_{\iota}(\hbar;x,\xi)\in S^{m_{1}+m_{2}-2}(T^{*}\mathbb{R}^{n}) which satisfies

(φικι)(φ~ι(χιab+i2{a,b}χι)+2q~ι)w\displaystyle(\varphi_{\iota*}\kappa_{\iota})\left(\tilde{\varphi}_{\iota*}\left(\chi_{\iota}ab+\frac{i\hbar}{2}\{a,b\}\chi_{\iota}\right)+\hbar^{2}\tilde{q}^{\prime}_{\iota}\right)^{\mathrm{w}}
=(φιχι)(φ~ι(κιab+i2{a,b}κι+i2{κι,ab})+2cι)w(φιχι)\displaystyle=(\varphi_{\iota*}\chi_{\iota})\left(\tilde{\varphi}_{\iota*}\left(\kappa_{\iota}ab+\frac{i\hbar}{2}\{a,b\}\kappa_{\iota}+\frac{i\hbar}{2}\{\kappa_{\iota},ab\}\right)+\hbar^{2}c^{\prime}_{\iota}\right)^{\mathrm{w}}(\varphi_{\iota*}\chi_{\iota})
+OL2L2()\displaystyle\quad+O_{L^{2}\to L^{2}}(\hbar^{\infty})

and suppcjιsuppφ~ι(κιab)\mathop{\mathrm{supp}}c^{\prime}_{j\iota}\subset\mathop{\mathrm{supp}}\tilde{\varphi}_{\iota*}(\kappa_{\iota}ab) modulo O()O(\hbar^{\infty}). Hence (4.17) becomes

ι:UιUιAι(φι(χιχι))Bιι\displaystyle\sum_{\iota^{\prime}:U_{\iota}\cap U_{\iota^{\prime}}\neq\varnothing}A_{\iota}^{\prime}(\varphi_{\iota*}(\chi_{\iota}\chi_{\iota^{\prime}}))B_{\iota\iota^{\prime}}
=χιφι(φ~ι(κιab+i2{a,b}κι+i2{κι,ab})+2cι)w(φιχι)φι\displaystyle=\chi_{\iota}\varphi_{\iota}^{*}\left(\tilde{\varphi}_{\iota*}\left(\kappa_{\iota}ab+\frac{i\hbar}{2}\{a,b\}\kappa_{\iota}+\frac{i\hbar}{2}\{\kappa_{\iota},ab\}\right)+\hbar^{2}c^{\prime}_{\iota}\right)^{\mathrm{w}}(\varphi_{\iota*}\chi_{\iota})\varphi_{\iota*}
+OL2L2().\displaystyle\quad+O_{L^{2}\to L^{2}}(\hbar^{\infty}).

Summing up this over ιI\iota\in I and obtain

UιUιAι(φι(χιχι))Bιι=Op(ab+i2{a,b})+ιIOploc,ι(i2φ~ι{κι,ab}+2cι)+OL2L2().\begin{split}&\sum_{U_{\iota}\cap U_{\iota^{\prime}}\neq\varnothing}A_{\iota}^{\prime}(\varphi_{\iota*}(\chi_{\iota}\chi_{\iota^{\prime}}))B_{\iota\iota^{\prime}}\\ &=\mathop{\mathrm{Op}}\nolimits_{\hbar}\left(ab+\frac{i\hbar}{2}\{a,b\}\right)+\sum_{\iota\in I}\mathop{\mathrm{Op}}\nolimits_{\hbar}^{\mathrm{loc},{\iota}}\left(\frac{i\hbar}{2}\tilde{\varphi}_{\iota*}\{\kappa_{\iota},ab\}+\hbar^{2}c^{\prime}_{\iota}\right)\\ &\quad+O_{L^{2}\to L^{2}}(\hbar^{\infty}).\end{split} (4.18)

Since the support of φ~ι{κι,ab}\tilde{\varphi}_{\iota*}\{\kappa_{\iota},ab\} and cιc^{\prime}_{\iota} is included in suppφ~ι(κιab)\mathop{\mathrm{supp}}\tilde{\varphi}_{\iota*}(\kappa_{\iota}ab), we can apply Lemma 4.9 for (4.18) and find a symbol c(;x,ξ)Scylm1+m22(TM)c^{\prime}(\hbar;x,\xi)\in S^{m_{1}+m_{2}-2}_{\mathrm{cyl}}(T^{*}M) which satisfies

ιIOploc,ι(i2φ~ι{κι,ab}+2cι)=Op(c)+OL2L2(),\sum_{\iota\in I}\mathop{\mathrm{Op}}\nolimits_{\hbar}^{\mathrm{loc},{\iota}}\left(\frac{i\hbar}{2}\tilde{\varphi}_{\iota*}\{\kappa_{\iota},ab\}+\hbar^{2}c^{\prime}_{\iota}\right)=\hbar\mathop{\mathrm{Op}}\nolimits_{\hbar}(c^{\prime})+O_{L^{2}\to L^{2}}(\hbar^{\infty}),

suppcjsupp(ab)\mathop{\mathrm{supp}}c^{\prime}_{j}\subset\mathop{\mathrm{supp}}(ab) modulo O()O(\hbar^{\infty}) and

c0(x,ξ)=ιIi2{κι,ab}=0.c^{\prime}_{0}(x,\xi)=\sum_{\iota\in I}\frac{i}{2}\{\kappa_{\iota},ab\}=0.

Thus (4.18) becomes

UιUιAι(φι(χιχι))Bιι=Op(ab+i2{a,b}+2(1c))+OL2L2().\begin{split}&\sum_{U_{\iota}\cap U_{\iota^{\prime}}\neq\varnothing}A_{\iota}^{\prime}(\varphi_{\iota*}(\chi_{\iota}\chi_{\iota^{\prime}}))B_{\iota\iota^{\prime}}\\ &=\mathop{\mathrm{Op}}\nolimits_{\hbar}\left(ab+\frac{i\hbar}{2}\{a,b\}+\hbar^{2}(\hbar^{-1}c^{\prime})\right)+O_{L^{2}\to L^{2}}(\hbar^{\infty}).\end{split} (4.19)

Calculation of Aι′′(φι(χιχι))Bιι\bm{A_{\iota}^{\prime\prime}(\varphi_{\iota*}(\chi_{\iota}\chi_{\iota^{\prime}}))B_{\iota\iota^{\prime}}}. It is enough to calculate the principal term of Aιι′′BιιA_{\iota\iota^{\prime}}^{\prime\prime}B_{\iota\iota^{\prime}} in (4.14) since Aιι′′A_{\iota\iota^{\prime}}^{\prime\prime} has a coefficient \hbar. By changing variables of the Weyl quantization acting on half-densities, we have

Aι′′=φι(φ~ι(χι{κι,a})+OSm12())w(φιφι1)+OL2L2().A_{\iota}^{\prime\prime}=\varphi_{\iota^{\prime}}^{*}\left(\tilde{\varphi}_{\iota^{\prime}*}(\chi_{\iota^{\prime}}^{\prime}\{\kappa_{\iota},a\})+O_{S^{m_{1}-2}}(\hbar)\right)^{\mathrm{w}}(\varphi_{\iota^{\prime}}\circ\varphi_{\iota}^{-1})_{*}+O_{L^{2}\to L^{2}}(\hbar^{\infty}).

Hence

Aιι′′(φι(χιχι))Bιι\displaystyle A_{\iota\iota^{\prime}}^{\prime\prime}(\varphi_{\iota*}(\chi_{\iota}\chi_{\iota^{\prime}}))B_{\iota\iota^{\prime}}
=φι(φ~ι(χι{κι,a})+OSm12())w(φι(χιχι))(φ~ι(κιb))w(φιχι)φι\displaystyle=\varphi_{\iota^{\prime}}^{*}\left(\tilde{\varphi}_{\iota^{\prime}*}(\chi_{\iota^{\prime}}^{\prime}\{\kappa_{\iota},a\})+O_{S^{m_{1}-2}}(\hbar)\right)^{\mathrm{w}}(\varphi_{\iota*}(\chi_{\iota}\chi_{\iota^{\prime}}))\left(\tilde{\varphi}_{\iota^{\prime}*}(\kappa_{\iota^{\prime}}b)\right)^{\mathrm{w}}(\varphi_{\iota^{\prime}*}\chi_{\iota^{\prime}})\varphi_{\iota^{\prime}*}
+OL2L2()\displaystyle\quad+O_{L^{2}\to L^{2}}(\hbar^{\infty})
=χιφι(φ~ι(κιb{κι,a})+cιι′′)wφι(χιu)+OL2L2().\displaystyle=\chi_{\iota^{\prime}}\varphi_{\iota^{\prime}}^{*}(\tilde{\varphi}_{\iota^{\prime}*}(\kappa_{\iota^{\prime}}b\{\kappa_{\iota},a\})+\hbar c^{\prime\prime}_{\iota\iota^{\prime}})^{\mathrm{w}}\varphi_{\iota^{\prime}}(\chi_{\iota^{\prime}}u)+O_{L^{2}\to L^{2}}(\hbar^{\infty}).

cιι′′(;x,ξ)Sm1+m22j(Tn)c^{\prime\prime}_{\iota\iota^{\prime}}(\hbar;x,\xi)\in S^{m_{1}+m_{2}-2-j}(T^{*}\mathbb{R}^{n}) satisfies suppcιι′′suppφ~ι(κικιab)\mathop{\mathrm{supp}}c^{\prime\prime}_{\iota\iota^{\prime}}\subset\mathop{\mathrm{supp}}\tilde{\varphi}_{\iota*}(\kappa_{\iota}\kappa_{\iota^{\prime}}ab) modulo O()O(\hbar^{\infty}). We sum them up over ιI\iota\in I such that UιUιU_{\iota}\cap U_{\iota^{\prime}}\neq\varnothing. Then the terms including {κι,a}\{\kappa_{\iota},a\} vanish and we obtain

ι:UιUιAιι′′(φι(χιχι))Bιι=χιφι(cι′′)w(φιχι)φι+OL2L2(),\sum_{\iota:U_{\iota}\cap U_{\iota^{\prime}}\neq\varnothing}A_{\iota\iota^{\prime}}^{\prime\prime}(\varphi_{\iota*}(\chi_{\iota}\chi_{\iota^{\prime}}))B_{\iota\iota^{\prime}}=\hbar\chi_{\iota^{\prime}}\varphi_{\iota^{\prime}}^{*}(c^{\prime\prime}_{\iota^{\prime}})^{\mathrm{w}}(\varphi_{\iota^{\prime}*}\chi_{\iota^{\prime}})\varphi_{\iota^{\prime}*}+O_{L^{2}\to L^{2}}(\hbar^{\infty}), (4.20)

where cι′′:=ι:UιUιcιι′′c^{\prime\prime}_{\iota^{\prime}}:=\sum_{\iota:U_{\iota}\cap U_{\iota^{\prime}}\neq\varnothing}c^{\prime\prime}_{\iota\iota^{\prime}}. The sum of (4.20) over ιI\iota^{\prime}\in I is

UιUιAιι′′(φι(χιχι))Bιι=ιIOploc,ι(cι′′)+OL2L2().\sum_{U_{\iota}\cap U_{\iota^{\prime}}\neq\varnothing}A_{\iota\iota^{\prime}}^{\prime\prime}(\varphi_{\iota*}(\chi_{\iota}\chi_{\iota^{\prime}}))B_{\iota\iota^{\prime}}=\hbar\sum_{\iota^{\prime}\in I}\mathop{\mathrm{Op}}\nolimits_{\hbar}^{\mathrm{loc},{\iota^{\prime}}}(c^{\prime\prime}_{\iota^{\prime}})+O_{L^{2}\to L^{2}}(\hbar^{\infty}). (4.21)

Since suppcι′′suppφ~ι(κιab)\mathop{\mathrm{supp}}c^{\prime\prime}_{\iota^{\prime}}\subset\mathop{\mathrm{supp}}\tilde{\varphi}_{\iota^{\prime}*}(\kappa_{\iota^{\prime}}ab), we can apply Lemma 4.9 and find a symbol c′′(;x,ξ)Scylm1+m22(TM)c^{\prime\prime}(\hbar;x,\xi)\in S^{m_{1}+m_{2}-2}_{\mathrm{cyl}}(T^{*}M) which satisfies

ιIOploc,ι(cι′′)=Op(c′′)+OL2L2()\sum_{\iota^{\prime}\in I}\mathop{\mathrm{Op}}\nolimits_{\hbar}^{\mathrm{loc},{\iota^{\prime}}}(c^{\prime\prime}_{\iota^{\prime}})=\mathop{\mathrm{Op}}\nolimits_{\hbar}(c^{\prime\prime})+O_{L^{2}\to L^{2}}(\hbar^{\infty})

and suppcj′′supp(ab)\mathop{\mathrm{supp}}c^{\prime\prime}_{j}\subset\mathop{\mathrm{supp}}(ab) modulo O()O(\hbar^{\infty}). Hence (4.21) becomes

UιUιAιι′′(φι(χιχι))Bιι=Op(c′′)+OL2L2().\sum_{U_{\iota}\cap U_{\iota^{\prime}}\neq\varnothing}A_{\iota\iota^{\prime}}^{\prime\prime}(\varphi_{\iota*}(\chi_{\iota}\chi_{\iota^{\prime}}))B_{\iota\iota^{\prime}}=\hbar\mathop{\mathrm{Op}}\nolimits_{\hbar}(c^{\prime\prime})+O_{L^{2}\to L^{2}}(\hbar^{\infty}). (4.22)

Conclusion. (4.14), (4.19) and (4.22) imply

Op(a)Op(b)=Op(ab+i2{a,b}+2(1c)i2(c′′))+OL2L2()=Op(ab+i2{a,b}+2c)+OL2L2()\begin{split}&\mathop{\mathrm{Op}}\nolimits_{\hbar}(a)\mathop{\mathrm{Op}}\nolimits_{\hbar}(b)\\ &=\mathop{\mathrm{Op}}\nolimits_{\hbar}\left(ab+\frac{i\hbar}{2}\{a,b\}+\hbar^{2}(\hbar^{-1}c^{\prime})-\frac{i\hbar}{2}(\hbar c^{\prime\prime})\right)+O_{L^{2}\to L^{2}}(\hbar^{\infty})\\ &=\mathop{\mathrm{Op}}\nolimits_{\hbar}\left(ab+\frac{i\hbar}{2}\{a,b\}+\hbar^{2}c\right)+O_{L^{2}\to L^{2}}(\hbar^{\infty})\end{split} (4.23)

where

c(;x,ξ):=1c(;x,ξ)i2c′′(;x,ξ).c(\hbar;x,\xi):=\hbar^{-1}c^{\prime}(\hbar;x,\xi)-\frac{i}{2}c^{\prime\prime}(\hbar;x,\xi).

The symbol cScylm1+m22(TM)c\in S^{m_{1}+m_{2}-2}_{\mathrm{cyl}}(T^{*}M) has the desired properties. ∎

Next we prove the sharp Gårding inequality (Theorem 4.6). We begin with the case of Euclidean spaces.

Theorem 4.10 (Sharp Gårding inequality on Euclidean spaces).

For all aS0(n)a\in S^{0}(\mathbb{R}^{n}) with Rea0\mathop{\mathrm{Re}}a\geq 0, there exists a symbol b=b()S0(n)b=b(\hbar)\in S^{0}(\mathbb{R}^{n}) such that the following statements hold:

  • The inequality

    Reaw(x,D)Rebw(x,D)\mathop{\mathrm{Re}}a^{\mathrm{w}}(x,\hbar D)\geq-\hbar\mathop{\mathrm{Re}}b^{\mathrm{w}}(x,\hbar D) (4.24)

    holds.

  • suppbsuppa\mathop{\mathrm{supp}}b\subset\mathop{\mathrm{supp}}a modulo O()O(\hbar^{\infty}).

Furthermore, if the symbol aa also depends on some parameter τΩ\tau\in\Omega and are uniformly bounded in S0(Tn)S^{0}(T^{*}\mathbb{R}^{n}), then the symbol bS0(Tn)b\in S^{0}(T^{*}\mathbb{R}^{n}) itself are uniformly bounded with respect to τΩ\tau\in\Omega.

For investigation of the support of b(;x,ξ)b(\hbar;x,\xi) in (4.10), we recall the FBI transform and its fundamental properties.

Proposition 4.11.

We define an FBI transform FuFu of u𝒮(n)u\in\mathscr{S}(\mathbb{R}^{n}) as

Fu(x,ξ):=2n/4(2π)3n/4ne|xy|2/2+iξ(xy)/u(y)dy.Fu(x,\xi):=\frac{2^{n/4}}{(2\pi\hbar)^{3n/4}}\int_{\mathbb{R}^{n}}e^{-|x-y|^{2}/2\hbar+i\xi\cdot(x-y)/\hbar}u(y)\,\mathrm{d}y.

Then the following statements hold.

  1. (i)

    FF is continuously extended to a linear isometry from L2(n)L^{2}(\mathbb{R}^{n}) to L2(2n)L^{2}(\mathbb{R}^{2n}).

  2. (ii)

    For bS0(Tn)b\in S^{0}(T^{*}\mathbb{R}^{n}), we define

    pb(x,ξ):=(1π)n2ne|xy|2/|ξη|2/b(y,η)dydη.p_{b}(x,\xi):=\left(\frac{1}{\pi\hbar}\right)^{n}\int_{\mathbb{R}^{2n}}e^{-|x-y|^{2}/\hbar-|\xi-\eta|^{2}/\hbar}b(y,\eta)\,\mathrm{d}y\mathrm{d}\eta.

    Then pbS0(Tn)p_{b}\in S^{0}(T^{*}\mathbb{R}^{n}) and

    FMbF=pbw(x,D).F^{*}M_{b}F=p_{b}^{\mathrm{w}}(x,\hbar D). (4.25)

    Here Mb:ubuM_{b}:u\mapsto bu is the multiplication operator by bb.

Remark.

FMbFF^{*}M_{b}F is so-called anti-Wick quantization of the symbol bb.

Proof.

A direct calculation shows (i) and the relation (4.25) (see [12] or Chapter 13 in [25] for details). We have to prove pbS0(Tn)p_{b}\in S^{0}(T^{*}\mathbb{R}^{n}) if bS0(Tn)b\in S^{0}(T^{*}\mathbb{R}^{n}). The facts xe|xy|2/=ye|xy|2/\partial_{x}e^{-|x-y|^{2}/\hbar}=-\partial_{y}e^{-|x-y|^{2}/\hbar}, ξe|ξη|2/=ηe|ξη|2/\partial_{\xi}e^{-|\xi-\eta|^{2}/\hbar}=-\partial_{\eta}e^{-|\xi-\eta|^{2}/\hbar} and integration by parts show that

xαξβpb(x,ξ)=pxαξβb(x,ξ).\partial_{x}^{\alpha}\partial_{\xi}^{\beta}p_{b}(x,\xi)=p_{\partial_{x}^{\alpha}\partial_{\xi}^{\beta}b}(x,\xi).

Thus the estimate

|xαξβpb(x,ξ)|\displaystyle|\partial_{x}^{\alpha}\partial_{\xi}^{\beta}p_{b}(x,\xi)| |b|0,α,β(π)n2ne|xy|2/|ξη|2/η|β|dydη\displaystyle\leq\frac{|b|_{0,\alpha,\beta}}{(\pi\hbar)^{n}}\int_{\mathbb{R}^{2n}}e^{-|x-y|^{2}/\hbar-|\xi-\eta|^{2}/\hbar}\left\langle{\eta}\right\rangle^{-|\beta|}\,\mathrm{d}y\mathrm{d}\eta
C|b|0,α,βξ|β|,\displaystyle\leq C|b|_{0,\alpha,\beta}\left\langle{\xi}\right\rangle^{-|\beta|},

where

|b|0,α,β:=sup(x,ξ)Tnξ|β||xαξβb(x,ξ)|.|b|_{0,\alpha,\beta}:=\sup_{(x,\xi)\in T^{*}\mathbb{R}^{n}}\left\langle{\xi}\right\rangle^{|\beta|}|\partial_{x}^{\alpha}\partial_{\xi}^{\beta}b(x,\xi)|.

This shows that pbS0(Tn)p_{b}\in S^{0}(T^{*}\mathbb{R}^{n}). ∎

Proof of Theorem 4.10.

We define a symbol b(;x,ξ)S0(Tn)b(\hbar;x,\xi)\in S^{0}(T^{*}\mathbb{R}^{n}) as

b(;x,ξ)=1(pa(;x,ξ)a(x,ξ)).b(\hbar;x,\xi)=\hbar^{-1}(p_{a}(\hbar;x,\xi)-a(x,\xi)).

Then by Rea0\mathop{\mathrm{Re}}a\geq 0, we have

Reaw(x,D)u,uL2(n)\displaystyle\mathop{\mathrm{Re}}\left\langle{a^{\mathrm{w}}(x,\hbar D)u,u}\right\rangle_{L^{2}(\mathbb{R}^{n})}
=MReaFu,FuL2(n)Rebw(;x,D)u,uL2(n)\displaystyle=\left\langle{M_{\mathop{\mathrm{Re}}a}Fu,Fu}\right\rangle_{L^{2}(\mathbb{C}^{n})}-\hbar\mathop{\mathrm{Re}}\left\langle{b^{\mathrm{w}}(\hbar;x,\hbar D)u,u}\right\rangle_{L^{2}(\mathbb{R}^{n})}
Rebw(;x,D)u,uL2(n).\displaystyle\geq-\hbar\mathop{\mathrm{Re}}\left\langle{b^{\mathrm{w}}(\hbar;x,\hbar D)u,u}\right\rangle_{L^{2}(\mathbb{R}^{n})}.

By a calculation by the Taylor theorem, we obtain

pa(x,ξ)\displaystyle p_{a}(x,\xi) =j=0N1j!(4)jx,ξja(x,ξ)+N+1qN+1(;x,ξ),\displaystyle=\sum_{j=0}^{N}\frac{1}{j!}\left(\frac{\hbar}{4}\right)^{j}\triangle_{x,\xi}^{j}a(x,\xi)+\hbar^{N+1}q_{N+1}(\hbar;x,\xi),
qN+1(;x,ξ)\displaystyle q_{N+1}(\hbar;x,\xi) :=|α|+|β|=2N+2πn2ndydηe|y|2|η|2yαηβ\displaystyle:=\sum_{|\alpha|+|\beta|=2N+2}\pi^{-n}\int_{\mathbb{R}^{2n}}\mathrm{d}y\mathrm{d}\eta\,e^{-|y|^{2}-|\eta|^{2}}y^{\alpha}\eta^{\beta}
×01dτxαξβa(x+1/2τy,ξ+1/2τη)\displaystyle\quad\times\int_{0}^{1}\mathrm{d}\tau\,\partial_{x}^{\alpha}\partial_{\xi}^{\beta}a(x+\hbar^{1/2}\tau y,\xi+\hbar^{1/2}\tau\eta)

Thus

b(;x,ξ)=j=0N11(j+1)!j4j+1x,ξj+1a(x,ξ)+NqN+1(;x,ξ).b(\hbar;x,\xi)=\sum_{j=0}^{N-1}\frac{1}{(j+1)!}\frac{\hbar^{j}}{4^{j+1}}\triangle_{x,\xi}^{j+1}a(x,\xi)+\hbar^{N}q_{N+1}(\hbar;x,\xi).\qed

This implies suppbsuppa\mathop{\mathrm{supp}}b\subset\mathop{\mathrm{supp}}a modulo O()O(\hbar^{\infty}).

Proof of Theorem 4.6.

Let uCc(M;Ω1/2)u\in C_{c}^{\infty}(M;\Omega^{1/2}). Since

ReOp(a)u,uL2=ιIRe(φ~ι(κιa))w(x,D)(φι(χιu)),φι(χιu)L2,\mathop{\mathrm{Re}}\left\langle{\mathop{\mathrm{Op}}\nolimits_{\hbar}(a)u,u}\right\rangle_{L^{2}}=\sum_{\iota\in I}\mathop{\mathrm{Re}}\left\langle{(\tilde{\varphi}_{\iota*}(\kappa_{\iota}a))^{\mathrm{w}}(x,\hbar D)(\varphi_{\iota*}(\chi_{\iota}u)),\varphi_{\iota*}(\chi_{\iota}u)}\right\rangle_{L^{2}}, (4.26)

it is enough to investigate (φ~ι(κιa))w(x,D)(\tilde{\varphi}_{\iota*}(\kappa_{\iota}a))^{\mathrm{w}}(x,\hbar D) for each ιI\iota\in I. By Theorem 4.10, there exists bι=bι()S0(Tn)b_{\iota}=b_{\iota}(\hbar)\in S^{0}(T^{*}\mathbb{R}^{n}) such that

Re(φ~ι(κιa))w(x,D)φι(χιu),φι(χιu)L2\displaystyle\mathop{\mathrm{Re}}\left\langle{(\tilde{\varphi}_{\iota*}(\kappa_{\iota}a))^{\mathrm{w}}(x,\hbar D)\varphi_{\iota*}(\chi_{\iota}u),\varphi_{\iota*}(\chi_{\iota}u)}\right\rangle_{L^{2}}
bιw(x,D)φι(χιu),φι(χιu)L2\displaystyle\geq-\hbar\left\langle{b_{\iota}^{\mathrm{w}}(x,\hbar D)\varphi_{\iota*}(\chi_{\iota}u),\varphi_{\iota*}(\chi_{\iota}u)}\right\rangle_{L^{2}}

and suppbι(φ~ι(κιa))\mathop{\mathrm{supp}}b_{\iota}\subset(\tilde{\varphi}_{\iota*}(\kappa_{\iota}a)) modulo O()O(\hbar^{\infty}).

bι(;x,ξ)j=01(j+1)!j4j+1x,ξj+1(φ~ι(κιa))(x,ξ)in S0(Tn).b_{\iota}(\hbar;x,\xi)\sim\sum_{j=0}^{\infty}\frac{1}{(j+1)!}\frac{\hbar^{j}}{4^{j+1}}\triangle_{x,\xi}^{j+1}(\tilde{\varphi}_{\iota*}(\kappa_{\iota}a))(x,\xi)\quad\text{in }S^{0}(T^{*}\mathbb{R}^{n}).

Thus by (4.26), we obtain

ReOp(a)u,uL2\displaystyle\mathop{\mathrm{Re}}\left\langle{\mathop{\mathrm{Op}}\nolimits_{\hbar}(a)u,u}\right\rangle_{L^{2}} ιIRebιw(x,D)(φι(χιu)),φι(χιu)L2\displaystyle\geq-\hbar\sum_{\iota\in I}\mathop{\mathrm{Re}}\left\langle{b_{\iota}^{\mathrm{w}}(x,\hbar D)(\varphi_{\iota*}(\chi_{\iota}u)),\varphi_{\iota*}(\chi_{\iota}u)}\right\rangle_{L^{2}}
=ιIOploc,ι(bι)u,uL2.\displaystyle=-\hbar\left\langle{\sum_{\iota\in I}\mathop{\mathrm{Op}}\nolimits_{\hbar}^{\mathrm{loc},{\iota}}(b_{\iota})u,u}\right\rangle_{L^{2}}.

Since suppbιsupp(φ~ι(κιa))\mathop{\mathrm{supp}}b_{\iota}\subset\mathop{\mathrm{supp}}(\tilde{\varphi}_{\iota*}(\kappa_{\iota}a)) modulo O()O(\hbar^{\infty}), we can apply Lemma 4.9 and obtain a symbol b(;x,ξ)Scyl0(TM)b(\hbar;x,\xi)\in S^{0}_{\mathrm{cyl}}(T^{*}M) which satisfies

ιIOploc,ι(bι)=Op(b)+OL2L2()\sum_{\iota\in I}\mathop{\mathrm{Op}}\nolimits_{\hbar}^{\mathrm{loc},{\iota}}(b_{\iota})=\mathop{\mathrm{Op}}\nolimits_{\hbar}(b)+O_{L^{2}\to L^{2}}(\hbar^{\infty})

and suppbsuppa\mathop{\mathrm{supp}}b\subset\mathop{\mathrm{supp}}a modulo O()O(\hbar^{\infty}). ∎

4.5 Non-canonical quantization and (radially homogeneous) wavefront sets

In this section we prove Theorem 2.2 and Proposition 2.3. As a preparation, we prove a lemma on the relation between a quantization of locally defined symbols and the quantization procedure Op\mathop{\mathrm{Op}}\nolimits_{\hbar}.

Lemma 4.12.

Let φ:UV\varphi:U\to V be polar coordinates on MM and χC(M)\chi\in C^{\infty}(M) be a cylindrical function supported in UU. Then, for a symbol bSm(Tn)b\in S^{m}(T^{*}\mathbb{R}^{n}), there exists a(;x,ξ)Scylm(TM)a(\hbar;x,\xi)\in S^{m}_{\mathrm{cyl}}(T^{*}M) which satisfies

χφbw(x,D)(φχ)φ=Op(a)+OL2L2()\chi\varphi^{*}b^{\mathrm{w}}(x,\hbar D)(\varphi_{*}\chi)\varphi_{*}=\mathop{\mathrm{Op}}\nolimits_{\hbar}(a)+O_{L^{2}\to L^{2}}(\hbar^{\infty})

and has an asymptotic expansion

a(;x,ξ)j=0jaj(x,ξ),ajScylmj(TM)a(\hbar;x,\xi)\sim\sum_{j=0}^{\infty}\hbar^{j}a_{j}(x,\xi),\quad a_{j}\in S^{m-j}_{\mathrm{cyl}}(T^{*}M)

with suppajsupp(χ2φ~b)\mathop{\mathrm{supp}}a_{j}\subset\mathop{\mathrm{supp}}(\chi^{2}\tilde{\varphi}^{*}b) and a0(x,ξ)=χ(x)2φ~b(x,ξ)a_{0}(x,\xi)=\chi(x)^{2}\tilde{\varphi}^{*}b(x,\xi).

Proof.

We calculate the composition

χφbw(x,D)(φχ)φ=φbχw(x,D)φ.\displaystyle\chi\varphi^{*}b^{\mathrm{w}}(x,\hbar D)(\varphi_{*}\chi)\varphi_{*}=\varphi^{*}b_{\chi}^{\mathrm{w}}(x,\hbar D)\varphi_{*}.

Here bχ(;x,ξ)Sm(Tn)b_{\chi}(\hbar;x,\xi)\in S^{m}(T^{*}\mathbb{R}^{n}) has an asymptotic expansion

bχ(;x,ξ)j=0jbχ,j(x,ξ),bχ,jSmj(Tn)b_{\chi}(\hbar;x,\xi)\sim\sum_{j=0}^{\infty}\hbar^{j}b_{\chi,j}(x,\xi),\quad b_{\chi,j}\in S^{m-j}(T^{*}\mathbb{R}^{n})

with suppbχ,j(b(φχ))\mathop{\mathrm{supp}}b_{\chi,j}\subset(b(\varphi_{*}\chi)) and b0(x,ξ)=χ(x)2b(x,ξ)b_{0}(x,\xi)=\chi(x)^{2}b(x,\xi). We decompose φbχwφ\varphi^{*}b_{\chi}^{\mathrm{w}}\varphi_{*} into

φbχw(;x,D)φ=ι:UιUφ((φ~κι)bχ)w(;x,D)φ.\varphi^{*}b_{\chi}^{\mathrm{w}}(\hbar;x,\hbar D)\varphi_{*}=\sum_{\iota:U_{\iota}\cap U\neq\varnothing}\varphi^{*}((\tilde{\varphi}_{*}\kappa_{\iota})b_{\chi})^{\mathrm{w}}(\hbar;x,\hbar D)\varphi_{*}. (4.27)

By the changing variables of pseudodifferential operators and bχ,0=χ2φ~bb_{\chi,0}=\chi^{2}\tilde{\varphi}^{*}b, we have

((φ~κι)bχ)w(;x,D)=φφι(φ~ι(κιχ2φ~b)+cι)w(;x,D)φιφ,((\tilde{\varphi}_{*}\kappa_{\iota})b_{\chi})^{\mathrm{w}}(\hbar;x,\hbar D)=\varphi_{*}\varphi_{\iota}^{*}(\tilde{\varphi}_{\iota*}(\kappa_{\iota}\chi^{2}\tilde{\varphi}^{*}b)+\hbar c_{\iota})^{\mathrm{w}}(\hbar;x,\hbar D)\varphi_{\iota*}\varphi^{*}, (4.28)

where cι(;x,ξ)Sm1(Tn)c_{\iota}(\hbar;x,\xi)\in S^{m-1}(T^{*}\mathbb{R}^{n}) and has an asymptotic expansion

cι(;x,ξ)j=0jcj,ι(x,ξ),cj,ιSm1j(Tn)c_{\iota}(\hbar;x,\xi)\sim\sum_{j=0}^{\infty}\hbar^{j}c_{j,\iota}(x,\xi),\quad c_{j,\iota}\in S^{m-1-j}(T^{*}\mathbb{R}^{n})

with suppcj,ιsuppφ~ι(κιχ2φ~b)\mathop{\mathrm{supp}}c_{j,\iota}\subset\mathop{\mathrm{supp}}\tilde{\varphi}_{\iota*}(\kappa_{\iota}\chi^{2}\tilde{\varphi}^{*}b). Substituting (4.28) to (4.27), we obtain

φbχw(;x,D)φ=ι:UιUφι(φ~ι(κιφbχ)+cι)w(;x,D)φι=ιIOploc,ι(φ~ι(κιφbχ)+cι)+OL2L2().\begin{split}&\varphi^{*}b_{\chi}^{\mathrm{w}}(\hbar;x,\hbar D)\varphi_{*}\\ &=\sum_{\iota:U_{\iota}\cap U\neq\varnothing}\varphi_{\iota}^{*}(\tilde{\varphi}_{\iota*}(\kappa_{\iota}\varphi^{*}b_{\chi})+\hbar c_{\iota})^{\mathrm{w}}(\hbar;x,\hbar D)\varphi_{\iota*}\\ &=\sum_{\iota\in I}\mathop{\mathrm{Op}}\nolimits_{\hbar}^{\mathrm{loc},{\iota}}(\tilde{\varphi}_{\iota*}(\kappa_{\iota}\varphi^{*}b_{\chi})+\hbar c_{\iota})+O_{L^{2}\to L^{2}}(\hbar^{\infty}).\\ \end{split} (4.29)

Since the support of φ~ι(κιφbχ)+cι\tilde{\varphi}_{\iota*}(\kappa_{\iota}\varphi^{*}b_{\chi})+\hbar c_{\iota} is included in suppφικι\mathop{\mathrm{supp}}\varphi_{\iota*}\kappa_{\iota}, we can apply Lemma 4.9 for (4.29) and obtain a symbol a(;x,ξ)Scylm(TM)a(\hbar;x,\xi)\in S^{m}_{\mathrm{cyl}}(T^{*}M) which satisfies

ιIOploc,ι(φ~ι(κιφb)+cι)=Op(a)+OL2L2()\sum_{\iota\in I}\mathop{\mathrm{Op}}\nolimits_{\hbar}^{\mathrm{loc},{\iota}}(\tilde{\varphi}_{\iota*}(\kappa_{\iota}\varphi^{*}b)+\hbar c_{\iota})=\mathop{\mathrm{Op}}\nolimits_{\hbar}(a)+O_{L^{2}\to L^{2}}(\hbar^{\infty})

and has an asymptotic expansion

a(;x,ξ)j=0jaj(x,ξ),ajScylmj(TM)a(\hbar;x,\xi)\sim\sum_{j=0}^{\infty}\hbar^{j}a_{j}(x,\xi),\quad a_{j}\in S^{m-j}_{\mathrm{cyl}}(T^{*}M)

with suppajsupp(χ2φ~b)\mathop{\mathrm{supp}}a_{j}\subset\mathop{\mathrm{supp}}(\chi^{2}\tilde{\varphi}^{*}b) and a0(x,ξ)=χ(x)2φb(x,ξ)a_{0}(x,\xi)=\chi(x)^{2}\varphi^{*}b(x,\xi). ∎

Proof of Theorem 2.2.

Take a cylindrical function χC(M)\chi^{\prime}\in C^{\infty}(M) such that suppχU\mathop{\mathrm{supp}}\chi^{\prime}\subset U and χ=1\chi^{\prime}=1 near suppχ\mathop{\mathrm{supp}}\chi. By Lemma 4.12, there exists a symbol c(;x,ξ)Scyl0(TM)c(\hbar;x,\xi)\in S^{0}_{\mathrm{cyl}}(T^{*}M) which satisfies

χφ(φχa)w(r,θ,Dr,Dθ)φ(χu)=Op(c)u\chi\varphi^{*}(\varphi_{*}\chi^{\prime}-a)^{\mathrm{w}}(\hbar r,\theta,\hbar D_{r},\hbar D_{\theta})\varphi_{*}(\chi u)=\mathop{\mathrm{Op}}\nolimits_{\hbar}(c)u (4.30)

and has an asymptotic expansion

c(;x,ξ)j=0jcj(;x,ξ),cj(;x,ξ)Scylj(TM)c(\hbar;x,\xi)\sim\sum_{j=0}^{\infty}\hbar^{j}c_{j}(\hbar;x,\xi),\quad c_{j}(\hbar;x,\xi)\in S^{-j}_{\mathrm{cyl}}(T^{*}M)

with suppcj()suppχ2(1φ~ιa(r,θ,ρ,η))\mathop{\mathrm{supp}}c_{j}(\hbar)\subset\mathop{\mathrm{supp}}\chi^{2}(1-\tilde{\varphi}_{\iota}^{*}a(\hbar r,\theta,\rho,\eta)). We compose A(t0)A_{\hbar}(t_{0}) to the left hand side of (4.30) and obtain

A(t0)(χ2u)A(t0)χφaw(r,θ,Dr,Dθ)φ(χu)=A(t0)Op(c)uA_{\hbar}(t_{0})(\chi^{2}u)-A_{\hbar}(t_{0})\chi\varphi^{*}a^{\mathrm{w}}(\hbar r,\theta,\hbar D_{r},\hbar D_{\theta})\varphi_{*}(\chi u)=A_{\hbar}(t_{0})\mathop{\mathrm{Op}}\nolimits_{\hbar}(c)u (4.31)

Taking δ0,δ1,\delta_{0},\delta_{1},\ldots sufficiently small, we can assume that

suppa(1t0)supp(χφ~a(r,θ,ρ,η))=\mathop{\mathrm{supp}}a(\hbar^{-1}t_{0})\cap\mathop{\mathrm{supp}}(\chi^{\prime}-\tilde{\varphi}^{*}a(\hbar r,\theta,\rho,\eta))=\varnothing

and

suppa(1t0)supp(1χ2)=.\mathop{\mathrm{supp}}a(\hbar^{-1}t_{0})\cap\mathop{\mathrm{supp}}(1-\chi^{2})=\varnothing.

Then, by (4.31), we obtain

A(t0)A(t0)χφaw(x,D)(φχ)φ\displaystyle A_{\hbar}(t_{0})-A_{\hbar}(t_{0})\chi\varphi^{*}a^{\mathrm{w}}(x,\hbar D)(\varphi_{*}\chi)\varphi_{*}
=A(t0)Op(c)+A(t0)(1χ2)=OL2L2().\displaystyle=A_{\hbar}(t_{0})\mathop{\mathrm{Op}}\nolimits_{\hbar}(c)+A_{\hbar}(t_{0})(1-\chi^{2})=O_{L^{2}\to L^{2}}(\hbar^{\infty}).\qed
Proof of Proposition 2.3.

Let aCc(TM)a\in C_{c}^{\infty}(T^{*}M) be a symbol such that a=1a=1 near (x0,ξ0)(x_{0},\xi_{0}) and Op(a)u=OL2()\mathop{\mathrm{Op}}\nolimits_{\hbar}(a)u=O_{L^{2}}(\hbar^{\infty}). Take a coordinate function φ:UV\varphi:U\to V near x0x_{0}. We take a cutoff function χCc(U)\chi\in C_{c}^{\infty}(U) and a symbol bCc(Tn)b\in C_{c}^{\infty}(T^{*}\mathbb{R}^{n}) such that χ=1\chi=1 near x0x_{0}, b=1b=1 near φ~(x0,ξ0)\tilde{\varphi}(x_{0},\xi_{0}) and a=1a=1 near suppφ~b\mathop{\mathrm{supp}}\tilde{\varphi}^{*}b. By Lemma 4.9, there exists a symbol c(;x,ξ)S0cyl(TM)c(\hbar;x,\xi)\in S^{0}_{\mathrm{cyl}}(T^{*}M) such that

χφbw(x,D)(φχ)φ=Op(c)+OL2L2()\chi\varphi^{*}b^{\mathrm{w}}(x,\hbar D)(\varphi_{*}\chi)\varphi_{*}=\mathop{\mathrm{Op}}\nolimits_{\hbar}(c)+O_{L^{2}\to L^{2}}(\hbar^{\infty})

and suppcsuppχ2φ~b\mathop{\mathrm{supp}}c\subset\mathop{\mathrm{supp}}\chi^{2}\tilde{\varphi}^{*}b modulo O()O(\hbar^{\infty}). Since suppχ2φ~bsupp(1a)=\mathop{\mathrm{supp}}\chi^{2}\tilde{\varphi}^{*}b\cap\mathop{\mathrm{supp}}(1-a)=\varnothing, Theorem 4.4 shows that Op(c)Op(1a)=OL2L2()\mathop{\mathrm{Op}}\nolimits_{\hbar}(c)\mathop{\mathrm{Op}}\nolimits_{\hbar}(1-a)=O_{L^{2}\to L^{2}}(\hbar^{\infty}). Thus

χφbw(x,D)φ(χu)\displaystyle\chi\varphi^{*}b^{\mathrm{w}}(x,\hbar D)\varphi_{*}(\chi u) =Op(c)u+OL2()\displaystyle=\mathop{\mathrm{Op}}\nolimits_{\hbar}(c)u+O_{L^{2}}(\hbar^{\infty})
=Op(c)Op(a)u=OL2()+Op(c)Op(1a)=OL2L2()u+OL2()\displaystyle=\mathop{\mathrm{Op}}\nolimits_{\hbar}(c)\underbrace{\mathop{\mathrm{Op}}\nolimits_{\hbar}(a)u}_{=O_{L^{2}}(\hbar^{\infty})}+\underbrace{\mathop{\mathrm{Op}}\nolimits_{\hbar}(c)\mathop{\mathrm{Op}}\nolimits_{\hbar}(1-a)}_{=O_{L^{2}\to L^{2}}(\hbar^{\infty})}u+O_{L^{2}}(\hbar^{\infty})
=OL2().\displaystyle=O_{L^{2}}(\hbar^{\infty}).

This shows that (x0,ξ0)WF(u)(x_{0},\xi_{0})\not\in\mathop{\mathrm{WF}}(u). ∎

4.6 Radially homogeneous wavefront sets and homogeneous wavefront sets

In this section, we prove Proposition 1.10 and Corollary 1.11.

Proof of Proposition 1.10.

(i) \bm{\Rightarrow} (ii). Assume that (x0,ξ0)HWF(u)(x_{0},\xi_{0})\not\in\mathop{\mathrm{HWF}}(u). By definition of homogeneous wavefront sets, there exists a symbol aCc(Tn)a\in C_{c}^{\infty}(T^{*}\mathbb{R}^{n}) such that a=1a=1 near (x0,ξ0)(x_{0},\xi_{0}) and aw(x,D)uL2=O()\|a^{\mathrm{w}}(\hbar x,\hbar D)u\|_{L^{2}}=O(\hbar^{\infty}). We can assume that suppaΓ×n\mathop{\mathrm{supp}}a\subset\Gamma\times\mathbb{R}^{n} for small conic neighborhood Γ\Gamma of x0x_{0}. Let φ:Γ+×V\varphi:\Gamma\to\mathbb{R}_{+}\times V^{\prime} be polar coordinates. Take a cylindrical function χC(n)\chi\in C^{\infty}(\mathbb{R}^{n}) such that suppχΓ\mathop{\mathrm{supp}}\chi\subset\Gamma and χ=1\chi=1 near suppa\mathop{\mathrm{supp}}a. Then, by the changing variables of pseudodifferential operators (see Section 4.1), we have

(χa)w(x,D)=φbw(;r,θ,Dr,Dθ)φ,(\chi-a)^{\mathrm{w}}(\hbar x,\hbar D)=\varphi^{*}b^{\mathrm{w}}(\hbar;r,\theta,\hbar D_{r},\hbar D_{\theta})\varphi_{*}, (4.32)

where b(;r,θ,ρ,η)Cc(Tn)b(\hbar;r,\theta,\rho,\eta)\in C_{c}^{\infty}(T^{*}\mathbb{R}^{n}) satisfies

suppb()\displaystyle\mathop{\mathrm{supp}}b(\hbar) {φ~(x,ξ)Tn(x,ξ)supp(χa)}\displaystyle\subset\{\tilde{\varphi}(x,\xi)\in T^{*}\mathbb{R}^{n}\mid(\hbar x,\xi)\in\mathop{\mathrm{supp}}(\chi-a)\}
={(r,θ,ρ,η)T(+×V)(r,θ,ρ,η)suppφ~(χa)}\displaystyle=\{(r,\theta,\rho,\eta)\in T^{*}(\mathbb{R}_{+}\times V^{\prime})\mid(\hbar r,\theta,\rho,\hbar\eta)\in\mathop{\mathrm{supp}}\tilde{\varphi}_{*}(\chi-a)\} (4.33)

modulo O()O(\hbar^{\infty}). Here we employed the explicit form of φ~1\tilde{\varphi}^{-1}:

φ~1(r,θ,ρ,η)=(rω(θ),ρω(θ)+1rj,k=1n1hjk(θ)ηjωθk(θ)),\tilde{\varphi}^{-1}(r,\theta,\rho,\eta)=\left(r\omega(\theta),\rho\omega(\theta)+\frac{1}{r}\sum_{j,k=1}^{n-1}h^{jk}(\theta)\eta_{j}\frac{\partial\omega}{\partial\theta_{k}}(\theta)\right), (4.34)

where φ1(r,θ)=rω(θ)\varphi^{-1}(r,\theta)=r\omega(\theta), ω:VSn1\omega:V^{\prime}\to S^{n-1} is an embedding into the (n1)(n-1)-dimensional sphere Sn1S^{n-1} and (hjk(θ))j,k=1n1(h^{jk}(\theta))_{j,k=1}^{n-1} is the inverse matrix of the positive definite symmetric matrix (θjω(θ)θkω(θ))j,k=1n1(\partial_{\theta_{j}}\omega(\theta)\cdot\partial_{\theta_{k}}\omega(\theta))_{j,k=1}^{n-1} (equal to the metric tensor on the sphere).

We set φ~(x0,ξ0)=(r0,θ0,ρ0,η0)\tilde{\varphi}(x_{0},\xi_{0})=(r_{0},\theta_{0},\rho_{0},\eta_{0}). Since χa=0\chi-a=0 near (x0,(ξ0x^0)x^0)(x_{0},(\xi_{0}\cdot\hat{x}_{0})\hat{x}_{0}), we can take a symbol c(r,θ,ρ,η)Cc(T(+×V))c(r,\theta,\rho,\eta)\in C_{c}^{\infty}(T^{*}(\mathbb{R}_{+}\times V^{\prime})) such that φ~(χa)=0\tilde{\varphi}_{*}(\chi-a)=0 near the set

{(r,θ,ρ,η)(r,θ,ρ,η+η0)suppc}.\{(r,\theta,\rho,\eta)\mid(r,\theta,\rho,\eta+\eta_{0})\in\mathop{\mathrm{supp}}c\}.

Then

suppc(r,θ,ρ,η)suppφ~(χa)(r,θ,ρ,η)=.\mathop{\mathrm{supp}}c(\hbar r,\theta,\rho,\hbar\eta)\cap\mathop{\mathrm{supp}}\tilde{\varphi}_{*}(\chi-a)(\hbar r,\theta,\rho,\hbar\eta)=\varnothing.

Thus (4.32) implies

cw(r,θ,Dr,2Dθ)bw(;r,θ,Dr,Dθ)=OL2L2().c^{\mathrm{w}}(\hbar r,\theta,\hbar D_{r},\hbar^{2}D_{\theta})b^{\mathrm{w}}(\hbar;r,\theta,\hbar D_{r},\hbar D_{\theta})=O_{L^{2}\to L^{2}}(\hbar^{\infty}). (4.35)

Since

suppc(r,θ,ρ,η)supp((φχ)(r,θ,ρ,η)φχ)=,\mathop{\mathrm{supp}}c(\hbar r,\theta,\rho,\hbar\eta)\cap\mathop{\mathrm{supp}}((\varphi_{*}\chi)(\hbar r,\theta,\rho,\eta)-\varphi_{*}\chi)=\varnothing,

(4.35) becomes

cw(r,θ,Dr,2Dθ)(φχ)φφaw(x,D)=OL2L2().c^{\mathrm{w}}(\hbar r,\theta,\hbar D_{r},\hbar^{2}D_{\theta})(\varphi_{*}\chi)\varphi_{*}-\varphi_{*}a^{\mathrm{w}}(\hbar x,\hbar D)=O_{L^{2}\to L^{2}}(\hbar^{\infty}).

Hence, since aw(x,D)u=OL2()a^{\mathrm{w}}(\hbar x,\hbar D)u=O_{L^{2}}(\hbar^{\infty}), we have

cw(r,θ,Dr,2Dθ)(φ(χu))=OL2().c^{\mathrm{w}}(\hbar r,\theta,\hbar D_{r},\hbar^{2}D_{\theta})(\varphi_{*}(\chi u))=O_{L^{2}}(\hbar^{\infty}).

(ii) \bm{\Rightarrow} (i). We take polar coordinates φ:UV\varphi:U\to V, cylindrical function χC(n)\chi\in C^{\infty}(\mathbb{R}^{n}) and aCc(T)a\in C_{c}^{\infty}(T^{*}\mathbb{R}) as in the statement (ii). Take a cylindrical function χC(n)\chi\in C^{\infty}(\mathbb{R}^{n}) such that suppχU\mathop{\mathrm{supp}}\chi\subset U and χ=1\chi=1 near suppφ~a\mathop{\mathrm{supp}}\tilde{\varphi}^{*}a. By the changing variables of pseudodifferential operators, we have

(φχa)w(r,θ,Dr,2Dθ)=φbw(;x,D)φ+OL2L2(),(\varphi_{*}\chi-a)^{\mathrm{w}}(\hbar r,\theta,\hbar D_{r},\hbar^{2}D_{\theta})=\varphi_{*}b^{\mathrm{w}}(\hbar;x,\hbar D)\varphi^{*}+O_{L^{2}\to L^{2}}(\hbar^{\infty}), (4.36)

where b(;x,ξ)S0(Tn)b(\hbar;x,\xi)\in S^{0}(T^{*}\mathbb{R}^{n}) satisfies

suppb(){φ~1(r,θ,ρ,η)(r,θ,ρ,η)supp(φχa)}={(x,ξ)(x,ξ)supp(χφ~a)}\begin{split}\mathop{\mathrm{supp}}b(\hbar)&\subset\{\tilde{\varphi}^{-1}(r,\theta,\rho,\eta)\mid(\hbar r,\theta,\rho,\hbar\eta)\in\mathop{\mathrm{supp}}(\varphi_{*}\chi-a)\}\\ &=\{(x,\xi)\mid(\hbar x,\xi)\in\mathop{\mathrm{supp}}(\chi-\tilde{\varphi}^{*}a)\}\end{split} (4.37)

modulo O()O(\hbar^{\infty}) by (4.34). Thus we can take a symbol c(x,ξ)Cc(Tn)c(x,\xi)\in C_{c}^{\infty}(T^{*}\mathbb{R}^{n}) such that χφ~a=0\chi-\tilde{\varphi}^{*}a=0 near suppc\mathop{\mathrm{supp}}c. Then

suppc(x,ξ)suppb(;x,ξ)=.\mathop{\mathrm{supp}}c(\hbar x,\xi)\cap\mathop{\mathrm{supp}}b(\hbar;x,\xi)=\varnothing.

Thus (4.37) implies

cw(x,D)bw(;x,D)=OL2L2().c^{\mathrm{w}}(\hbar x,\hbar D)b^{\mathrm{w}}(\hbar;x,\hbar D)=O_{L^{2}\to L^{2}}(\hbar^{\infty}). (4.38)

Since

suppc(x,ξ)supp(χ(x))=,\mathop{\mathrm{supp}}c(\hbar x,\xi)\cap\mathop{\mathrm{supp}}(\chi(\hbar x))=\varnothing,

(4.38) becomes

cw(x,D)φφaw(r,θ,Dr,2Dθ)=OL2L2().c^{\mathrm{w}}(\hbar x,\hbar D)\varphi^{*}-\varphi^{*}a^{\mathrm{w}}(\hbar r,\theta,\hbar D_{r},\hbar^{2}D_{\theta})=O_{L^{2}\to L^{2}}(\hbar^{\infty}).

Hence, since aw(r,θ,Dr,2Dθ)φ(χu)=OL2()a^{\mathrm{w}}(\hbar r,\theta,\hbar D_{r},\hbar^{2}D_{\theta})\varphi_{*}(\chi u)=O_{L^{2}}(\hbar^{\infty}), we have

cw(x,D)u=OL2().c^{\mathrm{w}}(\hbar x,\hbar D)u=O_{L^{2}}(\hbar^{\infty}).\qed
Proof of Corollary 1.11.

Assume that x00x_{0}\neq 0 and (x0,(ξ0x^0)x^0)HWF(u)(x_{0},(\xi_{0}\cdot\hat{x}_{0})\hat{x}_{0})\not\in\mathop{\mathrm{HWF}}(u), where x^0:=x0/|x0|\hat{x}_{0}:=x_{0}/|x_{0}|. By Proposition 1.10, there exist polar coordinates φ:UV\varphi:U\to V, cylindrical function χC(n)\chi\in C^{\infty}(\mathbb{R}^{n}) with suppχU\mathop{\mathrm{supp}}\chi\subset U and χ=1\chi=1 near the set {λxλ1}\{\lambda x\mid\lambda\geq 1\}, and aCc(V)a\in C_{c}^{\infty}(V) with a=1a=1 near Ψ(x,ξ)\Psi(x,\xi) such that

aw(r,θ,Dr,2Dθ)φ(χu)L2(n;Ω1/2)=O()\|a^{\mathrm{w}}(\hbar r,\theta,\hbar D_{r},\hbar^{2}D_{\theta})\varphi_{*}(\chi u)\|_{L^{2}(\mathbb{R}^{n};\Omega^{1/2})}=O(\hbar^{\infty}) (4.39)

holds.

Since φ~(x0,(ξ0x^0)x^0)=(|x0|,x^0,ξ0x^0,0)\tilde{\varphi}(x_{0},(\xi_{0}\cdot\hat{x}_{0})\hat{x}_{0})=(|x_{0}|,\hat{x}_{0},\xi_{0}\cdot\hat{x}_{0},0), the symbol aa is identically equals to 1 near (|x0|,x^0,ξ0x^0,0)(|x_{0}|,\hat{x}_{0},\xi_{0}\cdot\hat{x}_{0},0). Thus we can take a symbol c(r,θ,ρ,η)Cc(T(+×V))c(r,\theta,\rho,\eta)\in C_{c}^{\infty}(T^{*}(\mathbb{R}_{+}\times V^{\prime})) such that a=1a=1 near the set

{(r,θ,ρ,η)(r,θ,ρ,η+η0)suppc}.\{(r,\theta,\rho,\eta)\mid(r,\theta,\rho,\eta+\eta_{0})\in\mathop{\mathrm{supp}}c\}.

Then

cw(r,θ,Dr,Dθ)aw(r,θ,Dr,2Dθ)=cw(r,θ,Dr,Dθ)+OL2L2()c^{\mathrm{w}}(\hbar r,\theta,\hbar D_{r},\hbar D_{\theta})a^{\mathrm{w}}(\hbar r,\theta,\hbar D_{r},\hbar^{2}D_{\theta})=c^{\mathrm{w}}(\hbar r,\theta,\hbar D_{r},\hbar D_{\theta})+O_{L^{2}\to L^{2}}(\hbar^{\infty})

for sufficiently small >0\hbar>0. Thus (4.39) implies

cw(r,θ,Dr,Dθ)φ(χu)=OL2().c^{\mathrm{w}}(\hbar r,\theta,\hbar D_{r},\hbar D_{\theta})\varphi_{*}(\chi u)=O_{L^{2}}(\hbar^{\infty}).\qed

5 Estimates for Heisenberg derivatives

5.1 Estimates for symbols

We begin with the estimate of ψj=φψ~j\psi_{j}=\varphi^{*}\tilde{\psi}_{j}. Recall the definition (2.1) and (2.2).

Lemma 5.1.

For all multiindices α=(α0,α),β=(β0,β)0×0n1\alpha=(\alpha_{0},\alpha^{\prime}),\beta=(\beta_{0},\beta^{\prime})\in\mathbb{Z}_{\geq 0}\times\mathbb{Z}_{\geq 0}^{n-1}, the estimates

rα0θαρβ0ηβψ~j(t)LCjαβtα0,rα0θαρβ0ηβtψ~j(t)LCjαβtα0\|\partial_{r}^{\alpha_{0}}\partial_{\theta}^{\alpha^{\prime}}\partial_{\rho}^{\beta_{0}}\partial_{\eta}^{\beta^{\prime}}\tilde{\psi}_{j}(t)\|_{L^{\infty}}\leq C_{j\alpha\beta}t^{-\alpha_{0}},\quad\|\partial_{r}^{\alpha_{0}}\partial_{\theta}^{\alpha^{\prime}}\partial_{\rho}^{\beta_{0}}\partial_{\eta}^{\beta^{\prime}}\partial_{t}\tilde{\psi}_{j}(t)\|_{L^{\infty}}\leq C_{j\alpha\beta}t^{-\alpha_{0}}

hold.

Remark.

We will only use the boundedness of derivatives of ψ~j\tilde{\psi}_{j}, and the decay tα0t^{-\alpha_{0}} is not necessary for a proof of our main theorem. However, since rtr\sim t on the support of ψ~j\tilde{\psi}_{j}, Lemma 5.1 states that rα0θαρβ0ηβψ~j(t)=O(rα0)\partial_{r}^{\alpha_{0}}\partial_{\theta}^{\alpha^{\prime}}\partial_{\rho}^{\beta_{0}}\partial_{\eta}^{\beta^{\prime}}\tilde{\psi}_{j}(t)=O(r^{-\alpha_{0}}) and rα0θαρβ0ηβtψ~j(t)=O(rα0)\partial_{r}^{\alpha_{0}}\partial_{\theta}^{\alpha^{\prime}}\partial_{\rho}^{\beta_{0}}\partial_{\eta}^{\beta^{\prime}}\partial_{t}\tilde{\psi}_{j}(t)=O(r^{-\alpha_{0}}).

Proof.

By the Leibnitz rule, it is enough to estimate each χ1j,χ2j,χ3j,χ4j\chi_{1j},\chi_{2j},\chi_{3j},\chi_{4j} and their derivatives respectively.

Estimate of χ𝟏j\bm{\chi_{1j}}. A direct calculation shows that

|rα0χ1j(t,r)|=|χ(α0)|(4δjt)α0χ(α0)L(4δjt)α0.|\partial_{r}^{\alpha_{0}}\chi_{1j}(t,r)|=|\chi^{(\alpha_{0})}|(4\delta_{j}t)^{-\alpha_{0}}\leq\|\chi^{(\alpha_{0})}\|_{L^{\infty}}(4\delta_{j}t)^{-\alpha_{0}}.

The time derivative of χ1j\chi_{1j} is

tχ1j=14δjtχ(|rr(t)|4δjt)(drdt(t)sgn(rr(t))|rr(t)|t).\partial_{t}\chi_{1j}=\frac{1}{4\delta_{j}t}\chi^{\prime}\left(\frac{|r-r(t)|}{4\delta_{j}t}\right)\left(-\frac{\mathrm{d}r}{\mathrm{d}t}(t)\mathop{\mathrm{sgn}}(r-r(t))-\frac{|r-r(t)|}{t}\right).

The rr derivatives of the first term is estimated as

|rα0(χ(|rr(t)|4δjt)drdt(t)sgn(rr(t)))|Cχ(α0+1)L(4δjt)α0\left|\partial_{r}^{\alpha_{0}}\left(\chi^{\prime}\left(\frac{|r-r(t)|}{4\delta_{j}t}\right)\frac{\mathrm{d}r}{\mathrm{d}t}(t)\mathop{\mathrm{sgn}}(r-r(t))\right)\right|\leq C\|\chi^{(\alpha_{0}+1)}\|_{L^{\infty}}(4\delta_{j}t)^{-\alpha_{0}} (5.1)

by the Hamilton equation (3.1) and the boundedness of |ρ(t)||\rho(t)| insured by Theorem 3.1. The second term of (5.1) is written as

χ(|rr(t)|4δjt)|rr(t)|t=4δjχ~(rr(t)4δjt),\chi^{\prime}\left(\frac{|r-r(t)|}{4\delta_{j}t}\right)\frac{|r-r(t)|}{t}=4\delta_{j}\tilde{\chi}\left(\frac{r-r(t)}{4\delta_{j}t}\right),

where χ~(x):=|x|χ(|x|)Cc()\tilde{\chi}(x):=|x|\chi^{\prime}(|x|)\in C_{c}^{\infty}(\mathbb{R}). Thus a similar estimate to (5.1) shows that

|rα0(χ(|rr(t)|4δjt)|rr(t)|t)|χ~L(4δj)α0+1tα0.\left|\partial_{r}^{\alpha_{0}}\left(\chi^{\prime}\left(\frac{|r-r(t)|}{4\delta_{j}t}\right)\frac{|r-r(t)|}{t}\right)\right|\leq\|\tilde{\chi}\|_{L^{\infty}}(4\delta_{j})^{-\alpha_{0}+1}t^{-\alpha_{0}}.

Hence if 0<δj1/40<\delta_{j}\leq 1/4, then |rα0tχ1j|Cjα0tα01|\partial_{r}^{\alpha_{0}}\partial_{t}\chi_{1j}|\leq C_{j\alpha_{0}}t^{-\alpha_{0}-1}.

Estimate of αχ𝟐j\bm{\partial^{\alpha}\chi_{2j}}. A similar estimate to χ1j\chi_{1j} shows

|θαχ2j(t,θ)|θαχL(δjtλ)|α|.|\partial_{\theta}^{\alpha^{\prime}}\chi_{2j}(t,\theta)|\leq\|\partial_{\theta}^{\alpha^{\prime}}\chi\|_{L^{\infty}}(\delta_{j}-t^{-\lambda})^{-|\alpha^{\prime}|}.

The time derivative of χ2j\chi_{2j} is

tχ2j(t,θ)=1δjtλχ(|θθ(t)|δjtλ)(dθdt(t)θθ(t)|θθ(t)|λtλ1|θθ(t)|δjtλ).\begin{split}&\partial_{t}\chi_{2j}(t,\theta)\\ &=\frac{1}{\delta_{j}-t^{-\lambda}}\chi^{\prime}\left(\frac{|\theta-\theta(t)|}{\delta_{j}-t^{-\lambda}}\right)\left(-\frac{\mathrm{d}\theta}{\mathrm{d}t}(t)\cdot\frac{\theta-\theta(t)}{|\theta-\theta(t)|}-\frac{\lambda t^{-\lambda-1}|\theta-\theta(t)|}{\delta_{j}-t^{-\lambda}}\right).\end{split} (5.2)

We set Fk(x):=xkχ(|x|)/|x|Cc(n1)F_{k}(x):=x_{k}\chi^{\prime}(|x|)/|x|\in C_{c}^{\infty}(\mathbb{R}^{n-1}). Then we have

χ(|θθ(t)|δjtλ)dθdt(t)θθ(t)|θθ(t)|=k,l=1n1hkl(r(t),θ(t))Fk(θθ(t)δjtλ)ηl(t)\chi^{\prime}\left(\frac{|\theta-\theta(t)|}{\delta_{j}-t^{-\lambda}}\right)\frac{\mathrm{d}\theta}{\mathrm{d}t}(t)\cdot\frac{\theta-\theta(t)}{|\theta-\theta(t)|}=\sum_{k,l=1}^{n-1}h^{kl}(r(t),\theta(t))F_{k}\left(\frac{\theta-\theta(t)}{\delta_{j}-t^{-\lambda}}\right)\eta_{l}(t)

by the Hamilton equation (3.12). We apply the boundedness of |η(t)||\eta(t)| with respect to the fiber metric h(1,θ,θ)h^{*}(1,\theta,\partial_{\theta}) by Theorem 3.1 and h(r,θ,η)Ch(1,θ,η)h^{*}(r,\theta,\eta)\leq Ch^{*}(1,\theta,\eta) by (1.7) and (1.8). Then we obtain

|θα(k,l=1n1hkl(r(t),θ(t))Fk(θθ(t)δjtλ)ηl(t))|Cjα.\left|\partial_{\theta}^{\alpha^{\prime}}\left(\sum_{k,l=1}^{n-1}h^{kl}(r(t),\theta(t))F_{k}\left(\frac{\theta-\theta(t)}{\delta_{j}-t^{-\lambda}}\right)\eta_{l}(t)\right)\right|\leq C_{j\alpha^{\prime}}.

For the second term of (5.2), if we set χ~(x)=|x|χ(|x|)Cc(n1)\tilde{\chi}(x)=|x|\chi^{\prime}(|x|)\in C_{c}^{\infty}(\mathbb{R}^{n-1}), then

|θα(χ(|θθ(t)|δjtλ)|θθ(t)|δjtλ)|=|θα(χ~(θθ(t)δjtλ))|Cjα.\displaystyle\left|\partial_{\theta}^{\alpha^{\prime}}\left(\chi^{\prime}\left(\frac{|\theta-\theta(t)|}{\delta_{j}-t^{-\lambda}}\right)\frac{|\theta-\theta(t)|}{\delta_{j}-t^{-\lambda}}\right)\right|=\left|\partial_{\theta}^{\alpha^{\prime}}\left(\tilde{\chi}\left(\frac{\theta-\theta(t)}{\delta_{j}-t^{-\lambda}}\right)\right)\right|\leq C_{j\alpha^{\prime}}.

Hence the θ\theta derivative of (5.2) is estimated as |θαtχ2j|Cjα|\partial_{\theta}^{\alpha^{\prime}}\partial_{t}\chi_{2j}|\leq C_{j\alpha^{\prime}}.

Estimate of αχ𝟑j\bm{\partial^{\alpha}\chi_{3j}}. By the same procedure as the estimate of χ2j\chi_{2j}, we have |ρβ0taχ3j|Cjβ0|\partial_{\rho}^{\beta_{0}}\partial_{t}^{a}\chi_{3j}|\leq C_{j\beta_{0}} (β00\beta_{0}\geq 0, a=0,1a=0,1).

Estimate of αχ𝟒j\bm{\partial^{\alpha}\chi_{4j}}. We have |ηβχ4j|Cjβ|\partial_{\eta}^{\beta^{\prime}}\chi_{4j}|\leq C_{j\beta^{\prime}} by the same procedure as the estimate of θαχ2j\partial_{\theta}^{\alpha^{\prime}}\chi_{2j}. The tt derivative is

tχ4j=1δjtλχ(|ηη(t)|δjtλ)(dηdt(t)ηη(t)|ηη(t)|λtλ1|ηη(t)|).\partial_{t}\chi_{4j}=\frac{1}{\delta_{j}-t^{-\lambda}}\chi^{\prime}\left(\frac{|\eta-\eta(t)|}{\delta_{j}-t^{-\lambda}}\right)\left(-\frac{\mathrm{d}\eta}{\mathrm{d}t}(t)\cdot\frac{\eta-\eta(t)}{|\eta-\eta(t)|}-\lambda t^{-\lambda-1}|\eta-\eta(t)|\right). (5.3)

The η\eta derivative of the first term is estimated as

|ηβ(χ(|ηη(t)|δjtλ)dηdt(t)ηη(t)|ηη(t)|)|\displaystyle\left|\partial_{\eta}^{\beta^{\prime}}\left(\chi^{\prime}\left(\frac{|\eta-\eta(t)|}{\delta_{j}-t^{-\lambda}}\right)\frac{\mathrm{d}\eta}{\mathrm{d}t}(t)\cdot\frac{\eta-\eta(t)}{|\eta-\eta(t)|}\right)\right|
=|dηdt(t)ηβ(F(ηη(t)δjtλ))|C|dηdt(t)|.\displaystyle=\left|\frac{\mathrm{d}\eta}{\mathrm{d}t}(t)\cdot\partial_{\eta}^{\beta^{\prime}}\left(F\left(\frac{\eta-\eta(t)}{\delta_{j}-t^{-\lambda}}\right)\right)\right|\leq C\left|\frac{\mathrm{d}\eta}{\mathrm{d}t}(t)\right|.

By the angular momentum component of Hamilton equations

dηjdt(t)=12hklθj(r(t),θ(t))ηk(t)ηl(t)\frac{\mathrm{d}\eta_{j}}{\mathrm{d}t}(t)=-\frac{1}{2}\frac{\partial h^{kl}}{\partial\theta_{j}}(r(t),\theta(t))\eta_{k}(t)\eta_{l}(t) (5.4)

and |η(t)|C|\eta(t)|\leq C by Theorem 3.1, we obtain

|ηβ(χ(|ηη(t)|δjλ)dηdt(t)ηη(t)|ηη(t)|)|Cjβ.\left|\partial_{\eta}^{\beta^{\prime}}\left(\chi^{\prime}\left(\frac{|\eta-\eta(t)|}{\delta_{j}-^{-\lambda}}\right)\frac{d\eta}{\mathrm{d}t}(t)\cdot\frac{\eta-\eta(t)}{|\eta-\eta(t)|}\right)\right|\leq C_{j\beta^{\prime}}.

The η\eta derivatives of the second term in (5.3) are estimated as

|ηβ(χ(|ηη(t)|δjtλ)|ηη(t)|)|\displaystyle\left|\partial_{\eta}^{\beta^{\prime}}\left(\chi^{\prime}\left(\frac{|\eta-\eta(t)|}{\delta_{j}-t^{-\lambda}}\right)|\eta-\eta(t)|\right)\right|
=(δjtλ)|ηβ(χ~(ηη(t)δjtλ))|Cjβ.\displaystyle=(\delta_{j}-t^{-\lambda})\left|\partial_{\eta}^{\beta^{\prime}}\left(\tilde{\chi}\left(\frac{\eta-\eta(t)}{\delta_{j}-t^{-\lambda}}\right)\right)\right|\leq C_{j\beta^{\prime}}.

Hence the derivatives of (5.3) are estimated as |ηβtχ4j|Cjβ|\partial_{\eta}^{\beta^{\prime}}\partial_{t}\chi_{4j}|\leq C_{j\beta^{\prime}}. ∎

Next we prove the positivity and an O(t1)O(\left\langle{t}\right\rangle^{-1}) decay as tt\to\infty of the Lagrange derivative tψ~j(t)+{ψ~j(t),h0}\partial_{t}\tilde{\psi}_{j}(t)+\{\tilde{\psi}_{j}(t),h_{0}\}. Both of them play a crucial role in estimates of Heisenberg derivatives in the proof of Theorem 5.3.

Lemma 5.2.

Take sufficiently small 0<δ0<δ1<<2δ00<\delta_{0}<\delta_{1}<\cdots<2\delta_{0} and 0<λ<min{2c01,μ}0<\lambda<\min\{2c_{0}-1,\mu\} in (2.1). Then the inequalities

tψ~j(t)+{ψ~j(t),h0}0\partial_{t}\tilde{\psi}_{j}(t)+\{\tilde{\psi}_{j}(t),h_{0}\}\geq 0

and

|rα0θαρβ0ηβ(tψ~j(t)+{ψ~j(t),h0})|Cjαβt1|\partial_{r}^{\alpha_{0}}\partial_{\theta}^{\alpha^{\prime}}\partial_{\rho}^{\beta_{0}}\partial_{\eta}^{\beta^{\prime}}(\partial_{t}\tilde{\psi}_{j}(t)+\{\tilde{\psi}_{j}(t),h_{0}\})|\leq C_{j\alpha\beta}\left\langle{t}\right\rangle^{-1}

hold for sufficiently large t>0t>0.

Proof.

As in the proof of Lemma 5.1, we estimate each tχjk+{χjk,h0}\partial_{t}\chi_{jk}+\{\chi_{jk},h_{0}\} respectively. We also borrow following functions from the proof of Lemma 5.1:

χ~(x):=|x|χ(|x|)Cc(),Fk(x):=xkχ(|x|)/|x|Cc(n1).\tilde{\chi}(x):=|x|\chi^{\prime}(|x|)\in C_{c}^{\infty}(\mathbb{R}),\quad F_{k}(x):=x_{k}\chi^{\prime}(|x|)/|x|\in C_{c}^{\infty}(\mathbb{R}^{n-1}).

𝒕𝝌𝟏𝒋+{𝝌𝟏𝒋,𝒉𝟎}\bm{\partial_{t}\chi_{1j}+\{\chi_{1j},h_{0}\}}. We have

tχ1j+{χ1j,h0}\displaystyle\partial_{t}\chi_{1j}+\{\chi_{1j},h_{0}\}
=|χ|2δjt(|rr(t)|t+(c(r(t),θ(t))2ρ(t)c(r,θ)2ρ)sgn(rr(t)))\displaystyle=\frac{|\chi^{\prime}|}{2\delta_{j}t}\left(\frac{|r-r(t)|}{t}+(c(r(t),\theta(t))^{-2}\rho(t)-c(r,\theta)^{-2}\rho)\mathop{\mathrm{sgn}}(r-r(t))\right) (5.5)
=1tχ~(rr(t)2δjt)c(r(t),θ(t))2ρ(t)c(r,θ)2ρ2δjtF(rr(t)2δjt).\displaystyle=-\frac{1}{t}\tilde{\chi}\left(\frac{r-r(t)}{2\delta_{j}t}\right)-\frac{c(r(t),\theta(t))^{-2}\rho(t)-c(r,\theta)^{-2}\rho}{2\delta_{j}t}F\left(\frac{r-r(t)}{2\delta_{j}t}\right). (5.6)

Here F(x):=χ(|x|)sgnxCc()F(x):=\chi^{\prime}(|x|)\mathop{\mathrm{sgn}}x\in C_{c}^{\infty}(\mathbb{R}). We recall the short range condition c(r,θ)=1+O(r1μ)c(r,\theta)=1+O(r^{-1-\mu}) (Assumption 1.7 (v)). Since |rr(t)|4δjt|r-r(t)|\geq 4\delta_{j}t and |ρρ(t)|2δj2|\rho-\rho(t)|\leq 2\delta_{j}-2 on the support of (χ1j)χ2jχ3jχ4j(\partial\chi_{1j})\chi_{2j}\chi_{3j}\chi_{4j}, we have

|c(r(t),θ(t))2ρ(t)c(r,θ)2ρ|\displaystyle|c(r(t),\theta(t))^{-2}\rho(t)-c(r,\theta)^{-2}\rho|
c(r(t),θ(t))2|ρ(t)ρ|+|ρ||c(r(t),θ(t))2c(r,θ)2|\displaystyle\leq c(r(t),\theta(t))^{-2}|\rho(t)-\rho|+|\rho||c(r(t),\theta(t))^{-2}-c(r,\theta)^{-2}|
2(1+Cr(t)1μ)(δj)+C(1+δj)(r1μ+r(t)1μ)\displaystyle\leq 2(1+Cr(t)^{-1-\mu})(\delta_{j}-)+C(1+\delta_{j}-)(r^{-1-\mu}+r(t)^{-1-\mu})
2δj+Ctλ,\displaystyle\leq 2\delta_{j}+Ct^{-\lambda},

and thus, by (5.5),

tχ1j+{χ1j,h0}|χ|2δjt(|rr(t)|t|ρ(t)ρ|)|χ|2δjt(4δj2δj2)0.\displaystyle\partial_{t}\chi_{1j}+\{\chi_{1j},h_{0}\}\geq\frac{|\chi^{\prime}|}{2\delta_{j}t}\left(\frac{|r-r(t)|}{t}-|\rho(t)-\rho|\right)\geq\frac{|\chi^{\prime}|}{2\delta_{j}t}(4\delta_{j}-2\delta_{j}-2)\geq 0.

rr derivatives are estimated as

|rα0ρβ0(tχ1j(t,r)+{χ1j,h0})(t,r,ρ)|\displaystyle|\partial_{r}^{\alpha_{0}}\partial_{\rho}^{\beta_{0}}(\partial_{t}\chi_{1j}(t,r)+\{\chi_{1j},h_{0}\})(t,r,\rho)|
{C(1+|δjtλ|)δjα0tα01if β0=0,C(δjt)α01if β0=1,0if β0=2\displaystyle\leq\begin{cases}C(1+|\delta_{j}-t^{-\lambda}|)\delta_{j}^{-\alpha_{0}}t^{-\alpha_{0}-1}&\text{if }\beta_{0}=0,\\ C(\delta_{j}t)^{-\alpha_{0}-1}&\text{if }\beta_{0}=1,\\ 0&\text{if }\beta_{0}=2\end{cases}
Cjα0β0tα01\displaystyle\leq C_{j\alpha_{0}\beta_{0}}t^{-\alpha_{0}-1}

by (5.6).

𝒕𝝌𝟐𝒋+{𝝌𝟐𝒋,𝒉𝟎}\bm{\partial_{t}\chi_{2j}+\{\chi_{2j},h_{0}\}}. By the Hamilton equation (3.12), we have

tχ2j+{χ2j,h0}\displaystyle\partial_{t}\chi_{2j}+\{\chi_{2j},h_{0}\}
=|χ|δjtλ(λ|θθ(t)|δjtλ+k,l=1n1(hkl(r(t),θ(t))ηk(t)hkl(r,θ)ηk)θlθl(t)|θθ(t)|)\displaystyle\begin{aligned} &=\frac{|\chi^{\prime}|}{\delta_{j}-t^{-\lambda}}\biggl{(}\frac{\lambda|\theta-\theta(t)|}{\delta_{j}-t^{-\lambda}}\\ &\quad+\sum_{k,l=1}^{n-1}(h^{kl}(r(t),\theta(t))\eta_{k}(t)-h^{kl}(r,\theta)\eta_{k})\frac{\theta_{l}-\theta_{l}(t)}{|\theta-\theta(t)|}\biggr{)}\end{aligned} (5.7)
=λδjtλχ~(θθ(t)δjtλ)1δjtλk,l=1n1(hkl(r(t),θ(t))ηk(t)hkl(r,θ)ηk)Fl(θθ(t)δjtλ).\displaystyle\begin{aligned} &=-\frac{\lambda}{\delta_{j}-t^{-\lambda}}\tilde{\chi}\left(\frac{\theta-\theta(t)}{\delta_{j}-t^{-\lambda}}\right)\\ &\quad-\frac{1}{\delta_{j}-t^{-\lambda}}\sum_{k,l=1}^{n-1}(h^{kl}(r(t),\theta(t))\eta_{k}(t)-h^{kl}(r,\theta)\eta_{k})F_{l}\left(\frac{\theta-\theta(t)}{\delta_{j}-t^{-\lambda}}\right).\end{aligned} (5.8)

Since |θθ(t)|δj|\theta-\theta(t)|\geq\delta_{j}-, |rr(t)|8δjt|r-r(t)|\leq 8\delta_{j}t and |ηη(t)|2(δjtλ)2δj|\eta-\eta(t)|\leq 2(\delta_{j}-t^{-\lambda})\leq 2\delta_{j} on the support of χ1j(χ2j)χ3jχ4j\chi_{1j}(\partial\chi_{2j})\chi_{3j}\chi_{4j}, we obtain the following inequality from (5.7):

|h(r(t),θ(t))η(t)h(r,θ)η|\displaystyle|h^{*}(r(t),\theta(t))\eta(t)-h^{*}(r,\theta)\eta|
|h(r(t),θ(t))(η(t)η)|+|(h(r(t),θ(t))h(r,θ))η|\displaystyle\leq|h^{*}(r(t),\theta(t))(\eta(t)-\eta)|+|(h^{*}(r(t),\theta(t))-h^{*}(r,\theta))\eta|
Cf(r(t))2+C(f(r(t))2+f(r)2)\displaystyle\leq Cf(r(t))^{-2}+C(f(r(t))^{-2}+f(r)^{-2})
Cf(r(t))2\displaystyle\leq Cf(r(t))^{-2}

and thus

tχ2j+{χ2j,h0}\displaystyle\partial_{t}\chi_{2j}+\{\chi_{2j},h_{0}\}
|χ|δjtλ(λ|h(r(t),θ(t))η(t)h(r,θ)η|)\displaystyle\geq\frac{|\chi^{\prime}|}{\delta_{j}-t^{-\lambda}}\left(\lambda-|h^{*}(r(t),\theta(t))\eta(t)-h^{*}(r,\theta)\eta|\right)
|χ|δjtλ(λCf(r(t))2)0.\displaystyle\geq\frac{|\chi^{\prime}|}{\delta_{j}-t^{-\lambda}}(\lambda-Cf(r(t))^{-2})\geq 0.

Here we introduced a shorthand notation (l=1n1hkl(r,θ)ηl)k=1n1=h(r,θ)η\left(\sum_{l=1}^{n-1}h^{kl}(r,\theta)\eta_{l}\right)_{k=1}^{n-1}=h^{*}(r,\theta)\eta. We employ the estimates of classical orbits r(t)ρtCr(t)\geq\rho_{\infty}t-C, |η(t)|C|\eta(t)|\leq C by Theorem 3.1, f(r)C1r2c0f(r)\geq C^{-1}r^{2c_{0}} by (1.7) and the assumption 0<λ<2c010<\lambda<2c_{0}-1, and we obtain

tχ2j+{χ2j,h0}Cδjtλ(λCt2c0)0.\partial_{t}\chi_{2j}+\{\chi_{2j},h_{0}\}\geq\frac{C}{\delta_{j}-t^{-\lambda}}(\lambda-Ct^{-2c_{0}})\geq 0.

Furthermore we have

|rα0θαηβ(tχ2j+{χ2j,h0})|Cjαβt1λ|\partial_{r}^{\alpha_{0}}\partial_{\theta}^{\alpha^{\prime}}\partial_{\eta}^{\beta^{\prime}}(\partial_{t}\chi_{2j}+\{\chi_{2j},h_{0}\})|\leq C_{j\alpha\beta^{\prime}}t^{-1-\lambda}

by differentiating (5.8).

𝒕𝝌𝟑𝒋+{𝝌𝟑𝒋,𝒉𝟎}\bm{\partial_{t}\chi_{3j}+\{\chi_{3j},h_{0}\}}. We have

tχ3j+{χ3j,h0}\displaystyle\partial_{t}\chi_{3j}+\{\chi_{3j},h_{0}\}
=|χ|δjtλ(λ|ρρ(t)|δjtλ\displaystyle=\frac{|\chi^{\prime}|}{\delta_{j}-t^{-\lambda}}\biggl{(}\frac{\lambda|\rho-\rho(t)|}{\delta_{j}-t^{-\lambda}}
+(rh0(r(t),θ(t),ρ(t),η(t))rh0(r,θ,ρ,η))ρρ(t)|ρρ(t)|)\displaystyle\quad+(\partial_{r}h_{0}(r(t),\theta(t),\rho(t),\eta(t))-\partial_{r}h_{0}(r,\theta,\rho,\eta))\frac{\rho-\rho(t)}{|\rho-\rho(t)|}\biggr{)}
=λδjtλχ~(ρρ(t)δjtλ)\displaystyle=-\frac{\lambda}{\delta_{j}-t^{-\lambda}}\tilde{\chi}\left(\frac{\rho-\rho(t)}{\delta_{j}-t^{-\lambda}}\right)
rh0(r(t),θ(t),ρ(t),η(t))rh0(r,θ,ρ,η)δjtλF(ρρ(t)δjtλ).\displaystyle\quad-\frac{\partial_{r}h_{0}(r(t),\theta(t),\rho(t),\eta(t))-\partial_{r}h_{0}(r,\theta,\rho,\eta)}{\delta_{j}-t^{-\lambda}}F\left(\frac{\rho-\rho(t)}{\delta_{j}-t^{-\lambda}}\right).

As in the estimate of tχ2j+{χ2j,h0}\partial_{t}\chi_{2j}+\{\chi_{2j},h_{0}\}, on the support of χ1jχ2j(χ3j)χ4j\chi_{1j}\chi_{2j}(\partial\chi_{3j})\chi_{4j}, we have the estimate

|rh0(r(t),θ(t),ρ(t),η(t))rh0(r,θ,ρ,η)|\displaystyle|\partial_{r}h_{0}(r(t),\theta(t),\rho(t),\eta(t))-\partial_{r}h_{0}(r,\theta,\rho,\eta)|
|ρ2rc2/2|+|rh(r,θ,η)|\displaystyle\leq|\rho^{2}\partial_{r}c^{-2}/2|+|\partial_{r}h^{*}(r,\theta,\eta)|
C(r1μρ2+r2c0|η|2)\displaystyle\leq C(r^{-1-\mu}\rho^{2}+r^{-2c_{0}}|\eta|^{2})

by Assumption 1.8 and thus

tχ3j+{χ3j,h0}|χ|δjtλ(λC(r1μ+r(t)1μ))0\partial_{t}\chi_{3j}+\{\chi_{3j},h_{0}\}\geq\frac{|\chi^{\prime}|}{\delta_{j}-t^{-\lambda}}\left(\lambda-C(r^{-1-\mu}+r(t)^{-1-\mu})\right)\geq 0

and

|rα0θαρβ0ηβ(tχ3j+{χ3j,h0})|Cjαβ(λ+t1μ)Cjαβt1λ.|\partial_{r}^{\alpha_{0}}\partial_{\theta}^{\alpha^{\prime}}\partial_{\rho}^{\beta_{0}}\partial_{\eta}^{\beta^{\prime}}(\partial_{t}\chi_{3j}+\{\chi_{3j},h_{0}\})|\leq C_{j\alpha\beta}(\lambda+t^{-1-\mu})\leq C_{j\alpha\beta}t^{-1-\lambda}.

𝒕𝝌𝟒𝒋+{𝝌𝟒𝒋,𝒉𝟎}\bm{\partial_{t}\chi_{4j}+\{\chi_{4j},h_{0}\}}. By the Hamilton equation (5.4), we have

tχ4j+{χ4j,h0}\displaystyle\partial_{t}\chi_{4j}+\{\chi_{4j},h_{0}\}
=|χ|δjtλ(λ|ηη(t)|δjtλ\displaystyle=\frac{|\chi^{\prime}|}{\delta_{j}-t^{-\lambda}}\biggl{(}\frac{\lambda|\eta-\eta(t)|}{\delta_{j}-t^{-\lambda}}
k=1n1(θkh0(r(t),θ(t),ρ(t),η(t))θkh0(r,θ,ρ,η))ηkηk(t)|ηη(t)|)\displaystyle\quad-\sum_{k=1}^{n-1}(\partial_{\theta_{k}}h_{0}(r(t),\theta(t),\rho(t),\eta(t))-\partial_{\theta_{k}}h_{0}(r,\theta,\rho,\eta))\frac{\eta_{k}-\eta_{k}(t)}{|\eta-\eta(t)|}\biggr{)}
=λδjtλχ~(ηη(t)δjtλ)\displaystyle=-\frac{\lambda}{\delta_{j}-t^{-\lambda}}\tilde{\chi}\left(\frac{\eta-\eta(t)}{\delta_{j}-t^{-\lambda}}\right)
k=1n1θkh0(r(t),θ(t),ρ(t),η(t))θkh0(r,θ,ρ,η)δjtλFk(ηη(t)δjtλ).\displaystyle\quad-\sum_{k=1}^{n-1}\frac{\partial_{\theta_{k}}h_{0}(r(t),\theta(t),\rho(t),\eta(t))-\partial_{\theta_{k}}h_{0}(r,\theta,\rho,\eta)}{\delta_{j}-t^{-\lambda}}F_{k}\left(\frac{\eta-\eta(t)}{\delta_{j}-t^{-\lambda}}\right).

On the support of χ1jχ2jχ3j(χ4j)\chi_{1j}\chi_{2j}\chi_{3j}(\partial\chi_{4j}), we have

|θkh0(r,θ,ρ,η)||ρ2θkc2|+|θkh(r,θ,η)|C(r1μρ2+r2c0|η|2)|\partial_{\theta_{k}}h_{0}(r,\theta,\rho,\eta)|\leq|\rho^{2}\partial_{\theta_{k}}c^{-2}|+|\partial_{\theta_{k}}h^{*}(r,\theta,\eta)|\leq C(r^{-1-\mu}\rho^{2}+r^{-2c_{0}}|\eta|^{2})

and thus

tχ4j+{χ4j,h0}|χ|δjtλ(λC(t1μ+t2c0))0\partial_{t}\chi_{4j}+\{\chi_{4j},h_{0}\}\geq\frac{|\chi^{\prime}|}{\delta_{j}-t^{-\lambda}}\left(\lambda-C(t^{-1-\mu}+t^{-2c_{0}})\right)\geq 0

and

|rα0θαρβ0ηβ(tχ4j+{χ4j,h0})|Cjαβtλ1.|\partial_{r}^{\alpha_{0}}\partial_{\theta}^{\alpha^{\prime}}\partial_{\rho}^{\beta_{0}}\partial_{\eta}^{\beta^{\prime}}(\partial_{t}\chi_{4j}+\{\chi_{4j},h_{0}\})|\leq C_{j\alpha\beta}t^{-\lambda-1}.\qed

5.2 Proof of Theorem 2.1

We prove Theorem 2.1 in this section.

Theorem 5.3.

There exist constants c1,c2,c3>0c_{1},c_{2},c_{3}\ldots>0 such that, if we set

Fk(t):=Op(ψ0(t))Op(ψ0(t))+tj=1kcjjOp(ψj(t)),F_{k}(t):=\mathop{\mathrm{Op}}\nolimits_{\hbar}(\psi_{0}(t))^{*}\mathop{\mathrm{Op}}\nolimits_{\hbar}(\psi_{0}(t))+t\sum_{j=1}^{k}c_{j}\hbar^{j}\mathop{\mathrm{Op}}\nolimits_{\hbar}(\psi_{j}(t)),

for k1k\geq 1, then the inequality

tFk(t)i[Fk(t),H]OL2L2(k+1)\partial_{t}F_{k}(t)-i\hbar[F_{k}(t),H]\geq O_{L^{2}\to L^{2}}(\hbar^{k+1}) (5.9)

holds for all (0,1]\hbar\in(0,1] uniformly in t0t\geq 0.

Proof.

Step 1. We first prove the existence of a real symbol b0(;t,x,y)S0cyl(TM)b_{0}(\hbar;t,x,y)\in S^{0}_{\mathrm{cyl}}(T^{*}M) which satisfies

t(Op(ψ0(t))Op(ψ0(t)))i[Op(ψ0(t))Op(ψ0(t)),H]Op(b0(t))+OL2L2()\begin{split}&\partial_{t}(\mathop{\mathrm{Op}}\nolimits_{\hbar}(\psi_{0}(t))^{*}\mathop{\mathrm{Op}}\nolimits_{\hbar}(\psi_{0}(t)))-i\hbar[\mathop{\mathrm{Op}}\nolimits_{\hbar}(\psi_{0}(t))^{*}\mathop{\mathrm{Op}}\nolimits_{\hbar}(\psi_{0}(t)),H]\\ &\geq-\hbar\mathop{\mathrm{Op}}\nolimits_{\hbar}(b_{0}(t))+O_{L^{2}\to L^{2}}(\hbar^{\infty})\end{split} (5.10)

and has an asymptotic expansion

b0(;t,x,ξ)j=0jb0j(t,x,ξ),b0j(t,x,ξ)Sjcyl(TM)b_{0}(\hbar;t,x,\xi)\sim\sum_{j=0}^{\infty}\hbar^{j}b_{0j}(t,x,\xi),\quad b_{0j}(t,x,\xi)\in S^{-j}_{\mathrm{cyl}}(T^{*}M) (5.11)

with suppb0j(t)suppψ0(t)\mathop{\mathrm{supp}}b_{0j}(t)\subset\mathop{\mathrm{supp}}\psi_{0}(t).

By the Leibnitz rule, we have

t(Op(ψ0(t))Op(ψ0(t)))i[Op(ψ0(t))Op(ψ0(t)),H]\displaystyle\partial_{t}(\mathop{\mathrm{Op}}\nolimits_{\hbar}(\psi_{0}(t))^{*}\mathop{\mathrm{Op}}\nolimits_{\hbar}(\psi_{0}(t)))-i\hbar[\mathop{\mathrm{Op}}\nolimits_{\hbar}(\psi_{0}(t))^{*}\mathop{\mathrm{Op}}\nolimits_{\hbar}(\psi_{0}(t)),H]
=2ReOp(ψ0(t))(tOp(ψ0(t))i[Op(ψ0(t)),H]).\displaystyle=2\mathop{\mathrm{Re}}\mathop{\mathrm{Op}}\nolimits_{\hbar}(\psi_{0}(t))^{*}(\partial_{t}\mathop{\mathrm{Op}}\nolimits_{\hbar}(\psi_{0}(t))-i\hbar[\mathop{\mathrm{Op}}\nolimits_{\hbar}(\psi_{0}(t)),H]).

We employ Theorem 4.4 and Theorem 4.7, and we take a symbol b(;t,x,ξ)S0cyl(TM)b(\hbar;t,x,\xi)\in S^{0}_{\mathrm{cyl}}(T^{*}M) which satisfies

2ReOp(ψ0(t))(tOp(ψ0(t))i1[Op(ψ0(t)),H])\displaystyle 2\mathop{\mathrm{Re}}\mathop{\mathrm{Op}}\nolimits_{\hbar}(\psi_{0}(t))^{*}(\partial_{t}\mathop{\mathrm{Op}}\nolimits_{\hbar}(\psi_{0}(t))-i\hbar^{-1}[\mathop{\mathrm{Op}}\nolimits_{\hbar}(\psi_{0}(t)),H])
=Op(t|ψ0(t)|2+{|ψ0(t)|2,h0}+b(t))+OL2L2()\displaystyle=\mathop{\mathrm{Op}}\nolimits_{\hbar}\left(\partial_{t}|\psi_{0}(t)|^{2}+\{|\psi_{0}(t)|^{2},h_{0}\}+\hbar b(t)\right)+O_{L^{2}\to L^{2}}(\hbar^{\infty})

and has an asymptotic expansion

b(;t,x,ξ)j=0jbj(t,x,ξ),bj(t,x,ξ)Sjcyl(TM)b(\hbar;t,x,\xi)\sim\sum_{j=0}^{\infty}\hbar^{j}b_{j}(t,x,\xi),\quad b_{j}(t,x,\xi)\in S^{-j}_{\mathrm{cyl}}(T^{*}M)

with suppbj(t)suppψ0(t)\mathop{\mathrm{supp}}b_{j}(t)\subset\mathop{\mathrm{supp}}\psi_{0}(t). Since t|ψ0(t)|2+{|ψ0(t)|2,h0}S0cyl(TM)\partial_{t}|\psi_{0}(t)|^{2}+\{|\psi_{0}(t)|^{2},h_{0}\}\in S^{0}_{\mathrm{cyl}}(T^{*}M) and t|ψ0(t)|2+{|ψ0(t)|2,h0}0\partial_{t}|\psi_{0}(t)|^{2}+\{|\psi_{0}(t)|^{2},h_{0}\}\geq 0, we apply Theorem 4.6 and obtain

Op(t|ψ0(t)|2+{|ψ0(t)|2,h0})Op(c)+OL2L2(),\mathop{\mathrm{Op}}\nolimits_{\hbar}\left(\partial_{t}|\psi_{0}(t)|^{2}+\{|\psi_{0}(t)|^{2},h_{0}\}\right)\geq-\hbar\mathop{\mathrm{Op}}\nolimits_{\hbar}(c)+O_{L^{2}\to L^{2}}(\hbar^{\infty}),

where c=c(;t,x,ξ)c=c(\hbar;t,x,\xi) has an asymptotic expansion

c(;t,x,ξ)j=0jcj(t,x,ξ),cj(t,x,ξ)Sjcyl(TM)c(\hbar;t,x,\xi)\sim\sum_{j=0}^{\infty}\hbar^{j}c_{j}(t,x,\xi),\quad c_{j}(t,x,\xi)\in S^{-j}_{\mathrm{cyl}}(T^{*}M)

with suppcj(t)suppψ0(t)\mathop{\mathrm{supp}}c_{j}(t)\subset\mathop{\mathrm{supp}}\psi_{0}(t). We obtain (5.10) and (5.11) by setting b0=b+cb_{0}=b+c and b0j=bj+cjb_{0j}=b_{j}+c_{j}.

Step 2. We secondly prove that, if we take a sufficiently large constant c1>0c_{1}>0 and set F1(t):=Op(ψ0(t))Op(ψ0(t))+c1tOp(a1(t))F_{1}(t):=\mathop{\mathrm{Op}}\nolimits_{\hbar}(\psi_{0}(t))^{*}\mathop{\mathrm{Op}}\nolimits_{\hbar}(\psi_{0}(t))+c_{1}\hbar t\mathop{\mathrm{Op}}\nolimits_{\hbar}(a_{1}(t)), then we have

tF1(t)i[F1(t),H]2Op(b1(t))+OL2L2(),\partial_{t}F_{1}(t)-i\hbar[F_{1}(t),H]\geq-\hbar^{2}\mathop{\mathrm{Op}}\nolimits_{\hbar}(b_{1}(t))+O_{L^{2}\to L^{2}}(\hbar^{\infty}), (5.12)

where b1=b1(;t,x,ξ)S0cyl(TM)b_{1}=b_{1}(\hbar;t,x,\xi)\in S^{0}_{\mathrm{cyl}}(T^{*}M) has an asymptotic expansion

b1(;t,x,ξ)j=0jb1j(t,x,ξ),b1j(t,x,ξ)Sjcyl(TM)b_{1}(\hbar;t,x,\xi)\sim\sum_{j=0}^{\infty}\hbar^{j}b_{1j}(t,x,\xi),\quad b_{1j}(t,x,\xi)\in S^{-j}_{\mathrm{cyl}}(T^{*}M) (5.13)

with suppb1j(t)suppa1(t)\mathop{\mathrm{supp}}b_{1j}(t)\subset\mathop{\mathrm{supp}}a_{1}(t).

The left hand side of (5.12) is equal to

t(Op(ψ0(t))Op(ψ0(t)))i[Op(ψ0(t))Op(ψ0(t)),H]\displaystyle\partial_{t}(\mathop{\mathrm{Op}}\nolimits_{\hbar}(\psi_{0}(t))^{*}\mathop{\mathrm{Op}}\nolimits_{\hbar}(\psi_{0}(t)))-i\hbar[\mathop{\mathrm{Op}}\nolimits_{\hbar}(\psi_{0}(t))^{*}\mathop{\mathrm{Op}}\nolimits_{\hbar}(\psi_{0}(t)),H]
+c1t(tOp(a1(t))i[Op(a1(t)),H])\displaystyle+c_{1}\hbar t(\partial_{t}\mathop{\mathrm{Op}}\nolimits_{\hbar}(a_{1}(t))-i\hbar[\mathop{\mathrm{Op}}\nolimits_{\hbar}(a_{1}(t)),H])
+c1Op(a1(t)).\displaystyle+c_{1}\hbar\mathop{\mathrm{Op}}\nolimits_{\hbar}(a_{1}(t)).

The first term is estimated by (5.10). Since ta1(t)+{a1(t),h0}=OS0cyl(TM)(t1)\partial_{t}a_{1}(t)+\{a_{1}(t),h_{0}\}=O_{S^{0}_{\mathrm{cyl}}(T^{*}M)}(\left\langle{t}\right\rangle^{-1}) and ta1(t)+{a1(t),h0}0\partial_{t}a_{1}(t)+\{a_{1}(t),h_{0}\}\geq 0 by Lemma 5.2, we apply Theorem 4.6 for the second term and obtain a symbol b(;t,x,ξ)S0cyl(TM)b(\hbar;t,x,\xi)\in S^{0}_{\mathrm{cyl}}(T^{*}M) which satisfies

Op(ta1(t)+{a1(t),h0})t1Op(b(t))+OL2L2()\mathop{\mathrm{Op}}\nolimits_{\hbar}\left(\partial_{t}a_{1}(t)+\{a_{1}(t),h_{0}\}\right)\geq-\hbar\left\langle{t}\right\rangle^{-1}\mathop{\mathrm{Op}}\nolimits_{\hbar}(b^{\prime}(t))+O_{L^{2}\to L^{2}}(\hbar^{\infty})

and has an asymptotic expansion

b(;t,x,ξ)j=0jbj(t,x,ξ),bj(t,x,ξ)Sjcyl(TM)b^{\prime}(\hbar;t,x,\xi)\sim\sum_{j=0}^{\infty}\hbar^{j}b^{\prime}_{j}(t,x,\xi),\quad b_{j}(t,x,\xi)\in S^{-j}_{\mathrm{cyl}}(T^{*}M)

with suppbj(t)suppa1(t)\mathop{\mathrm{supp}}b^{\prime}_{j}(t)\subset\mathop{\mathrm{supp}}a_{1}(t). Hence we have

tF1(t)i[F1(t),H]Op(b0(t))c12tt1Op(b(t))+c1Op(a1(t))+OL2L2().\begin{split}&\partial_{t}F_{1}(t)-i\hbar[F_{1}(t),H]\\ &\geq-\hbar\mathop{\mathrm{Op}}\nolimits_{\hbar}(b_{0}(t))-c_{1}\hbar^{2}t\left\langle{t}\right\rangle^{-1}\mathop{\mathrm{Op}}\nolimits_{\hbar}(b^{\prime}(t))+c_{1}\hbar\mathop{\mathrm{Op}}\nolimits_{\hbar}(a_{1}(t))+O_{L^{2}\to L^{2}}(\hbar^{\infty}).\end{split} (5.14)

Since suppb0(t)suppψ0(t)\mathop{\mathrm{supp}}b_{0}(t)\subset\mathop{\mathrm{supp}}\psi_{0}(t) mod O()O(\hbar^{\infty}) by (5.11) and a1(t)=1a_{1}(t)=1 near suppψ0(t)\mathop{\mathrm{supp}}\psi_{0}(t), we can take a constant c1>0c_{1}>0 such that

Op(b0(t))+c1Op(a1(t))Op(b(t))+OL2L2()-\mathop{\mathrm{Op}}\nolimits_{\hbar}(b_{0}(t))+c_{1}\mathop{\mathrm{Op}}\nolimits_{\hbar}(a_{1}(t))\geq-\hbar\mathop{\mathrm{Op}}\nolimits_{\hbar}(b^{\prime\prime}(t))+O_{L^{2}\to L^{2}}(\hbar^{\infty}) (5.15)

where b(;t,x,ξ)S0cyl(TM)b^{\prime\prime}(\hbar;t,x,\xi)\in S^{0}_{\mathrm{cyl}}(T^{*}M) has an asymptotic expansion

b(;t,x,ξ)j=0jbj(t,x,ξ),bj(t,x,ξ)Sjcyl(TM)b^{\prime\prime}(\hbar;t,x,\xi)\sim\sum_{j=0}^{\infty}\hbar^{j}b^{\prime\prime}_{j}(t,x,\xi),\quad b^{\prime\prime}_{j}(t,x,\xi)\in S^{-j}_{\mathrm{cyl}}(T^{*}M)

with suppbj(t)suppa1(t)\mathop{\mathrm{supp}}b^{\prime\prime}_{j}(t)\subset\mathop{\mathrm{supp}}a_{1}(t). We set b1(t):=b(t)+c1tt1b(t)b_{1}(t):=b^{\prime\prime}(t)+c_{1}t\left\langle{t}\right\rangle^{-1}b^{\prime}(t). Then (5.14) and (5.15) implies (5.12) and (5.13) with b1j(t):=bj(t)+c1tt1bj(t)b_{1j}(t):=b^{\prime\prime}_{j}(t)+c_{1}t\left\langle{t}\right\rangle^{-1}b^{\prime}_{j}(t).

Step 3. We repeat the procedure in Step 2 and obtain positive constants c2,c3,>0c_{2},c_{3},\ldots>0 and bk(;t,x,ξ)S0cyl(TM)b_{k}(\hbar;t,x,\xi)\in S^{0}_{\mathrm{cyl}}(T^{*}M) such that, if we set

Fk(t):=Op(ψ0(t))Op(ψ0(t))+tj=1kcjjOp(ψj(t)),F_{k}(t):=\mathop{\mathrm{Op}}\nolimits_{\hbar}(\psi_{0}(t))^{*}\mathop{\mathrm{Op}}\nolimits_{\hbar}(\psi_{0}(t))+t\sum_{j=1}^{k}c_{j}\hbar^{j}\mathop{\mathrm{Op}}\nolimits_{\hbar}(\psi_{j}(t)),

then

tFk(t)i[Fk(t),H]k+1Op(bk(t))+OL2L2()\partial_{t}F_{k}(t)-i\hbar[F_{k}(t),H]\geq-\hbar^{k+1}\mathop{\mathrm{Op}}\nolimits_{\hbar}(b_{k}(t))+O_{L^{2}\to L^{2}}(\hbar^{\infty})

and bk=bk(;t,x,ξ)S0cyl(TM)b_{k}=b_{k}(\hbar;t,x,\xi)\in S^{0}_{\mathrm{cyl}}(T^{*}M) has an asymptotic expansion

bk(;t,x,ξ)j=0jbkj(t,x,ξ),bkj(t,x,ξ)Sjcyl(TM)b_{k}(\hbar;t,x,\xi)\sim\sum_{j=0}^{\infty}\hbar^{j}b_{kj}(t,x,\xi),\quad b_{kj}(t,x,\xi)\in S^{-j}_{\mathrm{cyl}}(T^{*}M)

with suppbkj(t)suppak(t)\mathop{\mathrm{supp}}b_{kj}(t)\subset\mathop{\mathrm{supp}}a_{k}(t). In particular, since Op(bk(t))L2L2\|\mathop{\mathrm{Op}}\nolimits_{\hbar}(b_{k}(t))\|_{L^{2}\to L^{2}} is uniformly bounded in t0t\geq 0 and 0<10<\hbar\leq 1, we obtain the desired inequality (5.9). ∎

Proof of Theorem 2.1.

(i) is an immediate consequence of Lemma 5.1 and the definition (2.3) of ψj(t,x,ξ)\psi_{j}(t,x,\xi).

(ii) Take symbols ψj(t)\psi_{j}(t) in Theorem 5.3 and define a~(;t,x,ξ)S2cyl(TM)\tilde{a}(\hbar;t,x,\xi)\in S^{-2}_{\mathrm{cyl}}(T^{*}M) by an asymptotic expansion

a~(;t,x,ξ)j=1cj1jψj(1t).\tilde{a}(\hbar;t,x,\xi)\sim\sum_{j=1}^{\infty}c_{j-1}\hbar^{j}\psi_{j}(\hbar^{-1}t).

We set

A(t):=Op(a0(1t))Op(a0(1t))+tOp(a~(;t))A_{\hbar}(t):=\mathop{\mathrm{Op}}\nolimits_{\hbar}(a_{0}(\hbar^{-1}t))^{*}\mathop{\mathrm{Op}}\nolimits_{\hbar}(a_{0}(\hbar^{-1}t))+t\mathop{\mathrm{Op}}\nolimits_{\hbar}(\tilde{a}(\hbar;t))

Then, by Theorem 5.3, we have

tA(t)i[A(t),H]\displaystyle\partial_{t}A_{\hbar}(t)-i[A_{\hbar}(t),H] =1(tFk(1t)i[Fk(1t),H])+OL2L2(k)\displaystyle=\hbar^{-1}(\partial_{t}F_{k}(\hbar^{-1}t)-i\hbar[F_{k}(\hbar^{-1}t),H])+O_{L^{2}\to L^{2}}(\hbar^{k})
OL2L2(k)\displaystyle\geq O_{L^{2}\to L^{2}}(\hbar^{k})

for all k0k\geq 0 uniformly in t[0,t0]t\in[0,t_{0}]. ∎

Appendix A Escape functions

In this appendix, we construct a diffeomorphism Ψ:E+×S\Psi:E\to\mathbb{R}_{+}\times S in Assumption 1.2 by employing an escape function. In this paper, we employ the terminology “escape function” in the following sense.

Definition A.1.

A continuous function rC(M;[0,))r\in C(M;[0,\infty)) on MM is an escape function if

  1. (i)

    r(M)=[0,)r(M)=[0,\infty);

  2. (ii)

    the preimage r1([0,R])r^{-1}([0,R]) is compact for all R0R\geq 0;

  3. (iii)

    r(x)r(x) is CC^{\infty} in r1(+)r^{-1}(\mathbb{R}_{+}) and dr(x)0\mathrm{d}r(x)\neq 0 for all xr1(+)x\in r^{-1}(\mathbb{R}_{+}). Here +:=(0,)\mathbb{R}_{+}:=(0,\infty).

We set E:=r1(+)E:=r^{-1}(\mathbb{R}_{+}) and S:=r1(1)S:=r^{-1}(1).

Let gg be a Riemannian metric on MM and rC(M;[0,))r\in C(M;[0,\infty)) be an escape function on MM. Then MM has a natural orthogonal decomposition into radial variable and angular variable:

Proposition A.2.

Let rC(M;[0,))r\in C(M;[0,\infty)) be an escape function and gg be a Riemannian metric on MM. We set S=r1(1)S=r^{-1}(1) and E=r1((0,))E=r^{-1}((0,\infty)) as in Definition A.1. Then the vector field gradr/|gradr|g2\mathop{\mathrm{grad}}r/|\mathop{\mathrm{grad}}r|_{g}^{2} generates the flow {ψt:EE}t0\{\psi_{t}:E\to E\}_{t\geq 0} on EE with the following properties.

  1. (i)

    r(ψt(x))=r(x)+tr(\psi_{t}(x))=r(x)+t for xEx\in E.

  2. (ii)

    The mapping

    Ψ:E+×S,Ψ(x):=(r(x),ψr(x)11(x))\Psi:E\longrightarrow\mathbb{R}_{+}\times S,\quad\Psi(x):=(r(x),\psi_{r(x)-1}^{-1}(x)) (A.1)

    is a diffeomorphism with the inverse function

    Ψ1(r,θ)=ψr1(θ).\Psi^{-1}(r,\theta)=\psi_{r-1}(\theta).
  3. (iii)

    The decomposition TET+TSTE\simeq T\mathbb{R}_{+}\oplus TS induced by (A.1) is orthogonal.

Proof.

If we prove that the vector field generates the flow {ψt:EE}t0\{\psi_{t}:E\to E\}_{t\geq 0}, then the properties from (i) to (iii) are proved easily.

(i) The definition of ψt\psi_{t} implies

ddt(r(ψt(x)))=dr(ψt),dψtdt=1|gradr(ψt)|g2×dr(ψt),gradr(ψt)=|gradr(ψt)|g2=1.\frac{\mathrm{d}}{\mathrm{d}t}(r(\psi_{t}(x)))=\left\langle{\mathrm{d}r(\psi_{t}),\frac{\mathrm{d}\psi_{t}}{\mathrm{d}t}}\right\rangle=\frac{1}{|\mathop{\mathrm{grad}}r(\psi_{t})|_{g}^{2}}\times\underbrace{\left\langle{\mathrm{d}r(\psi_{t}),\mathop{\mathrm{grad}}r(\psi_{t})}\right\rangle}_{=|\mathop{\mathrm{grad}}r(\psi_{t})|_{g}^{2}}=1.

Thus

r(ψt(x))=r(x)+0tddt(r(ψt(x)))dt=r(x)+t.r(\psi_{t}(x))=r(x)+\int_{0}^{t}\frac{\mathrm{d}}{\mathrm{d}t}(r(\psi_{t}(x)))\,\mathrm{d}t=r(x)+t.

(ii) The smoothness and the form of inverse mapping are obvious from the definition of Ψ:E+×S\Psi:E\to\mathbb{R}_{+}\times S.

(iii) If γrad(t):=Ψ1(r+t,θ)\gamma_{\mathrm{rad}}(t):=\Psi^{-1}(r+t,\theta) and vangTθSv_{\mathrm{ang}}\in T_{\theta}S, then

g(dγraddt(0),vang)=g(gradr|gradr|2,vang)=0g\left(\frac{\mathrm{d}\gamma_{\mathrm{rad}}}{\mathrm{d}t}(0),v_{\mathrm{ang}}\right)=g\left(\frac{\mathop{\mathrm{grad}}r}{|\mathop{\mathrm{grad}}r|^{2}},v_{\mathrm{ang}}\right)=0

by the fact that gradient vectors intersect level sets orthogonally.

Thus the problem is that the integral curve tψt(x)t\mapsto\psi_{t}(x) is defined for all t0t\geq 0.

Fix xEx\in E and consider the set

B:={b(0,)|γC([0,b];E) s.t. γ is an integral curve of gradr/|gradr|g2 with initial point x}.B:=\left\{\,b\in(0,\infty)\,\middle|\,\begin{aligned} &\exists\gamma\in C^{\infty}([0,b];E)\text{ s.t. }\gamma\text{ is an integral curve of }\\ &\mathop{\mathrm{grad}}r/|\mathop{\mathrm{grad}}r|_{g}^{2}\text{ with initial point }x\end{aligned}\,\right\}.

If one prove

  1. (a)

    BB\neq\varnothing,

  2. (b)

    that BB is an open subset of (0,)(0,\infty) and

  3. (c)

    that BB is a closed subset of (0,)(0,\infty),

then B=(0,)B=(0,\infty) by the connectedness of (0,)(0,\infty).

(a) By the existence of the solutions to ordinary differential equations and dr0\mathrm{d}r\neq 0 near xx, there exists an integral curve γ:[ε,ε]E\gamma:[-\varepsilon,\varepsilon]\to E of gradr/|gradr|g2\mathop{\mathrm{grad}}r/|\mathop{\mathrm{grad}}r|_{g}^{2} with initial point xx. Thus BB\neq\varnothing.

(b) Let bBb\in B. Then there exists an integral curve γ:[0,b]E\gamma:[0,b]\to E of gradr/|gradr|g2\mathop{\mathrm{grad}}r/|\mathop{\mathrm{grad}}r|_{g}^{2} with the initial point xx. Since γ(b)E\gamma(b)\in E, the vector field gradr/|gradr|g2\mathop{\mathrm{grad}}r/|\mathop{\mathrm{grad}}r|_{g}^{2} can be defined near γ(b)\gamma(b). Thus there exists an integral curve β:[ε,ε]M\beta:[-\varepsilon,\varepsilon]\to M (0<ε10<\varepsilon\ll 1) of gradr/|gradr|g2\mathop{\mathrm{grad}}r/|\mathop{\mathrm{grad}}r|_{g}^{2} with the initial point γ(b)\gamma(b). Since γ(t)=β(tb)\gamma(t)=\beta(t-b) (bε<tbb-\varepsilon<t\leq b) by the uniqueness of solutions to ordinary differential equations, we can extend γ\gamma to

Γ(t):={γ(t)if 0tb,β(tb)if b<t<b+ε.\Gamma(t):=\begin{cases}\gamma(t)&\text{if }0\leq t\leq b,\\ \beta(t-b)&\text{if }b<t<b+\varepsilon.\end{cases}

This Γ\Gamma is an integral curve of gradr/|gradr|g2\mathop{\mathrm{grad}}r/|\mathop{\mathrm{grad}}r|_{g}^{2} defined for t[0,b+ε]t\in[0,b+\varepsilon] with the initial point xx. Hence (bε,b+ε)B(b-\varepsilon,b+\varepsilon)\subset B.

(c) It is enough to prove that if γ:[0,b)E\gamma:[0,b)\to E is an integral curve of gradr/|gradr|g2\mathop{\mathrm{grad}}r/|\mathop{\mathrm{grad}}r|_{g}^{2}, then the limit limtb0γ(t)E\lim_{t\to b-0}\gamma(t)\in E exists. We denote by d(x,y)d(x,y) the distance associated with the Riemannian metric gg. Since

d(γ(s),γ(t))st|dγdτ(τ)|gdτ|ts|maxyr1([0,1+b])|X(y)|gexists by compactness ofr1([0,b+1])d(\gamma(s),\gamma(t))\leq\int_{s}^{t}\left|\frac{\mathrm{d}\gamma}{\mathrm{d}\tau}(\tau)\right|_{g}\,\mathrm{d}\tau\leq|t-s|\underbrace{\max_{y\in r^{-1}([0,1+b])}|X(y)|_{g}}_{\begin{subarray}{c}\text{exists by compactness of}\\ r^{-1}([0,b+1])\end{subarray}}

for 0st<b0\leq s\leq t<b by the definition of the distance, the compactness of r1([0,1+b])r^{-1}([0,1+b]) implies the existence of the limit γ(b):=limtb0γ(t)\gamma(b):=\lim_{t\to b-0}\gamma(t). We have γ(b)E\gamma(b)\in E since

r(γ(t))=r(x)+0tdr,gradr|gradr|g2dt=r(x)+tr(x)r(\gamma(t))=r(x)+\int_{0}^{t}\left\langle{\mathrm{d}r,\frac{\mathop{\mathrm{grad}}r}{|\mathop{\mathrm{grad}}r|_{g}^{2}}}\right\rangle\,\mathrm{d}t=r(x)+t\geq r(x)

for 0t<b0\leq t<b and thus

r(γ(b))=limtb0r(γ(t))r(x)>0.r(\gamma(b))=\lim_{t\to b-0}r(\gamma(t))\geq r(x)>0.

Hence bBb\in B. ∎

Acknowledgements

The author thanks Professor Kenichi Ito, Professor Shu Nakamura and Professor Kouichi Taira for valuable discussion and advice.

References

  • [1] J.-M. Bouclet. Semi-classical functional calculus on manifolds with ends and weighted LpL^{p} estimates. Ann. Inst. Fourier (Grenoble), 61(3):1181–1223, 2011.
  • [2] J.-M. Bouclet. Strichartz estimates on asymptotically hyperbolic manifolds. Anal. PDE, 4(1):1–84, 2011.
  • [3] E. Cordero, F. Nicola, and L. Rodino. Propagation of the Gabor wave front set for Schrödinger equations with non-smooth potentials. Rev. Math. Phys., 27(1):1550001, 2015.
  • [4] W. Craig, T. Kappeler, and W. Strauss. Microlocal dispersive smoothing for the Schrödinger equation. Comm. Pure Appl. Math, 48:769–860, 1996.
  • [5] S. Doi. Smoothing effects of Schrödinger evolution groups on Riemannian manifolds. Duke Math. J., 82(3):679–706, 1996.
  • [6] S. Dyatlov and M. Zworski. Mathematical theory of scattering resonances, volume 200 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, 2019.
  • [7] A. Hassell and J. Wunsch. The Schrödinger propagator for scattering metrics. Ann. of Math. (2), 162(1):487–523, 2005.
  • [8] K. Ito. Propagation of singularities for Schrödinger equations on the Euclidean space with a scattering metric. Comm. Partial Differential Equations, 31(12):1735–1777, 2006.
  • [9] K. Ito and S. Nakamura. Singularities of solutions to the Schrödinger equation on scattering manifold. Amer. J. Math., 131(6):1835–1865, 2009.
  • [10] K. Kato, M. Kobayashi, and S. Ito. Wave front set defined by wave packet transform and its application. In Nonlinear dynamics in partial differential equations, volume 64 of Adv. Stud. Pure Math., pages 417–425. Math. Soc. Japan, Tokyo, 2015.
  • [11] K. Kato, M. Kobayashi, and S. Ito. Remark on characterization of wave front set by wave packet transform. Osaka J. Math., 54(2):209–228, 2017.
  • [12] A. Martinez. An Introduction to Semiclassical and Microlocal Analysis. Springer-Verlag Berlin, 2002.
  • [13] A. Martinez, S. Nakamura, and V. Sordoni. Analytic wave front set for solutions to Schrödinger equations. Adv. Math., 222(4):1277–1307, 2009.
  • [14] R. Melrose. Spectral and scattering theory for the Laplacian on asymptotically Euclidian spaces. In Spectral and scattering theory (Sanda, 1992), volume 161 of Lecture Notes in Pure and Appl. Math., pages 85–130. Dekker, New York, 1994.
  • [15] R. Melrose, A. Sá Barreto, and A. Vasy. Analytic continuation and semiclassical resolvent estimates on asymptotically hyperbolic spaces. Comm. Partial Differential Equations, 39(3):452–511, 2014.
  • [16] E. Mourre. Absence of singular continuous spectrum for certain selfadjoint operators. Comm. Math. Phys., 78(3):391–408, 1980/81.
  • [17] S. Nakamura. Propagation of the homogeneous wave front set for Schrödinger equations. Duke. Math. J., 126(2):349–367, 2005.
  • [18] S. Nakamura. Semiclassical singularity propagation property for Schrödinger equations. J. Math. Soc. Japan, 61(1):177–211, 2009.
  • [19] K. Pravda-Starov, L. Rodino, and P. Wahlberg. Propagation of Gabor singularities for Schrödinger equations with quadratic Hamiltonians. Math. Nachr., 291(1):128–159, 2018.
  • [20] L. Robbiano and C. Zuily. Microlocal analytic smoothing effect for the Schrödinger equation. Duke Math. J., 100(1):93–129, 1999.
  • [21] L. Robbiano and C. Zuily. Analytic theory for the quadratic scattering wave front set and application to the Schrödinger equation. Astérisque, (283):vi+128, 2002.
  • [22] A. Sá Barreto. Radiation fields, scattering, and inverse scattering on asymptotically hyperbolic manifolds. Duke Math. J., 129(3):407–480, 2005.
  • [23] R. Schulz and P. Wahlberg. Equality of the homogeneous and the Gabor wave front set. Comm. Partial Differential Equations, 42(5):703–730, 2017.
  • [24] J. Wunsch. Propagation of singularities and growth for Schrödinger operators. Duke Math. J., 98(1):137–186, 1999.
  • [25] M. Zworski. Semiclassical analysis, volume 138 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, 2012.