This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Proof Theory of Partially Normal Skew Monoidal Categories

Tarmo Uustalu Reykjavik University, Reykjavik, IcelandTallinn University of Technology, Tallinn, Estonia [email protected] Tallinn University of Technology, Tallinn, EstoniaÉcole Polytechnique, Palaiseau, France    Niccolò Veltri Tallinn University of Technology, Tallinn, Estonia [email protected] École Polytechnique, Palaiseau, France    Noam Zeilberger École Polytechnique, Palaiseau, France [email protected]
Abstract

The skew monoidal categories of Szlachányi are a weakening of monoidal categories where the three structural laws of left and right unitality and associativity are not required to be isomorphisms but merely transformations in a particular direction. In previous work, we showed that the free skew monoidal category on a set of generating objects can be concretely presented as a sequent calculus. This calculus enjoys cut elimination and admits focusing, i.e. a subsystem of canonical derivations, which solves the coherence problem for skew monoidal categories.

In this paper, we develop sequent calculi for partially normal skew monoidal categories, which are skew monoidal categories with one or more structural laws invertible. Each normality condition leads to additional inference rules and equations on them. We prove cut elimination and we show that the calculi admit focusing. The result is a family of sequent calculi between those of skew monoidal categories and (fully normal) monoidal categories. On the level of derivability, these define 8 weakenings of the 𝖨\mathsf{I},\otimes fragment of intuitionistic non-commutative linear logic.

1 Introduction

Substructural logics are logical systems in which one or more structural rules are not allowed. Structural rules typically include exchange, weakening and contraction. More generally, in a sequent calculus with sequents of the form ΓC\Gamma\longrightarrow C, with the antecedent Γ\Gamma some type of a collection of formulae, a rule is structural if it manipulates the antecedent and does not mention any connectives. Affine logics are substructural wrt. intuitionistic logics since contraction is disallowed. Linear logics are substructural wrt. affine logics since weakening is also disallowed. By dropping the exchange rule as well, we obtain ordered variants of (intuitionistic) linear logics [1], which include logical systems such as Lambek’s syntactic calculus [16]. One can even identify more rudimentary structural rules, such as associativity, which is dropped in some variants of Lambek’s calculus [17].

Given a sequent of the form ΓC\Gamma\longrightarrow C in a certain logical system, it is natural to think of formulae in Γ\Gamma as types of resources at our disposal, while the formula CC is a task that needs to be fulfilled with the resources at hand. Under this interpretation, the structural rules tell us how resources can be manipulated and consumed. In intuitionistic logics, resources can be permuted, deleted and copied. In linear logics, they can be neither deleted nor copied, but they can be permuted. In non-commutative linear logics resources cannot be permuted, so they must be consumed in the order they occur in the antecedent.

In previous work [24], we started investigating the proof theory of (left-)skew monoidal categories, a weakening of monoidal categories introduced by Szlachányi [22] where the unitors and associator are not required to be isomorphisms but merely transformations in a particular direction. Extending Zeilberger’s [27] analysis of the Tamari order (which is the free (left-)skew semigroup category) as a sequent calculus, we introduced a sequent calculus corresponding in a precise sense to the free skew monoidal category on a set 𝖠𝗍\mathsf{At} of generating objects. This sequent calculus weakens the 𝖨\mathsf{I},\otimes-fragment of intuitionistic non-commutative linear logic [1] by replacing unitality and associativity with semi-unitality and semi-associativity. This means that it is possible to derive sequents corresponding to the two unitors λ\lambda and ρ\rho and the associator α\alpha of skew monoidal categories, but not sequents corresponding to the inverses of these structural laws. Sequents have the form SΓCS\mid\Gamma\longrightarrow C, where the antecedent is split into an optional formula SS, called the stoup, and a list of formulae Γ\Gamma, the context. The left rules apply only to the formula in the special stoup position. The tensor right rule forces the formula in the stoup of the conclusion to be the formula in the stoup of the first premise. Under the resource-as-formulae interpretation, resources are required to be consumed in the order they appear in the antecedent, with the formula in the stoup being the first. At any moment, only the formula then occupying the stoup can be decomposed on the left.

This sequent calculus enjoys cut elimination and a focused subsystem, defining a root-first proof search strategy attempting to build a derivation of a sequent. The focused calculus finds exactly one representative of each equivalence class of derivations and is thus a concrete presentation of the free skew monoidal category, as such solving the coherence problem for skew monoidal categories.

Skew monoidal categories differ from normal (i.e., ordinary) monoidal categories in that the two unitors and the associator are not invertible. Requiring one or more of the structural laws to be invertible, we obtain a less skew structure more like a normal monoidal category. In this paper, we perform a proof-theoretic analysis of each of the three normality conditions. The result is a family of sequent calculi between those describing the free skew monoidal category and the free monoidal category, defining altogether 8 weakenings of the 𝖨\mathsf{I},\otimes fragment of non-commutative intuitionistic linear logic.

For each of these sequent calculi, we prove cut elimination and identify a focused subsystem of canonical derivations as a concrete presentation of the free skew monoidal category of the corresponding degree of normality. We conclude by presenting a single parameterized focused sequent calculus that can handle any combination of the three normality aspects.

We fully formalized the new results presented in Section 3 in the dependently typed programming language Agda. The formalization uses Agda version 2.6.0. and it is available at https://github.com/niccoloveltri/skewmoncats-normal.

2 Skew Monoidal Categories

A category \mathbb{C} is said to be (left-)skew monoidal [22] if it comes together with a distinguished object 𝖨\mathsf{I}, a functor :×\otimes:\mathbb{C}\times\mathbb{C}\to\mathbb{C} and three natural transformations λ\lambda, ρ\rho, α\alpha typed

λ_A:𝖨AAρ_A:AA𝖨α_A,B,C:(AB)CA(BC)\lambda_{\_}{A}:\mathsf{I}\otimes A\to A\qquad\rho_{\_}{A}:A\to A\otimes\mathsf{I}\qquad\alpha_{\_}{A,B,C}:(A\otimes B)\otimes C\to A\otimes(B\otimes C)

satisfying the equations

(m1)𝖨𝖨λ_𝖨𝖨ρ_𝖨𝖨(m2)(A𝖨)Bα_A,𝖨,BA(𝖨B)Aλ_BABρ_ABAB\small\mathrm{(m1)}\lx@xy@svg{\hbox{\raise 0.0pt\hbox{\kern 4.625pt\hbox{\ignorespaces\ignorespaces\ignorespaces\hbox{\vtop{\kern 0.0pt\offinterlineskip\halign{\entry@#!@&&\entry@@#!@\cr&&\\&&\crcr}}}\ignorespaces{\hbox{\kern-3.0pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{}$}}}}}}}{\hbox{\kern 7.02496pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\mathsf{I}\otimes\mathsf{I}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces{}\ignorespaces\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 23.879pt\raise-9.53008pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.19751pt\hbox{$\scriptstyle{\lambda_{\_}\mathsf{I}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 28.92493pt\raise-22.11505pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}\ignorespaces\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces{\hbox{\lx@xy@drawline@}}{\hbox{\kern 30.54993pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{}$}}}}}}}{\hbox{\kern-4.625pt\raise-30.52496pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\mathsf{I}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces{}\ignorespaces\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern-4.56308pt\raise-9.5471pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.1625pt\hbox{$\scriptstyle{\rho_{\_}\mathsf{I}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 14.7132pt\raise-3.75pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}\ignorespaces\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\hbox{\kern 0.0pt\raise 1.0pt\hbox{\lx@xy@droprule}}\hbox{\kern 0.0pt\raise-1.0pt\hbox{\lx@xy@droprule}}}}\ignorespaces{}{\hbox{\hbox{\kern 0.0pt\raise 1.0pt\hbox{\lx@xy@droprule}}\hbox{\kern 0.0pt\raise-1.0pt\hbox{\lx@xy@droprule}}}}{\hbox{\hbox{\kern 0.0pt\raise 1.0pt\hbox{\lx@xy@droprule}}\hbox{\kern 0.0pt\raise-1.0pt\hbox{\lx@xy@droprule}}}}{\hbox{\kern 13.77496pt\raise-30.52496pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{}$}}}}}}}{\hbox{\kern 28.92493pt\raise-30.52496pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\mathsf{I}}$}}}}}}}\ignorespaces}}}}\ignorespaces\qquad\mathrm{(m2)}\ \lx@xy@svg{\hbox{\raise 0.0pt\hbox{\kern 26.6769pt\hbox{\ignorespaces\ignorespaces\ignorespaces\hbox{\vtop{\kern 0.0pt\offinterlineskip\halign{\entry@#!@&&\entry@@#!@\cr&\\&\crcr}}}\ignorespaces{\hbox{\kern-25.13908pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{(A\otimes\mathsf{I})\otimes B\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 22.97668pt\raise 6.1425pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.1625pt\hbox{$\scriptstyle{\alpha_{\_}{A,\mathsf{I},B}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 49.13908pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 49.13908pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{A\otimes(\mathsf{I}\otimes B)\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 74.27817pt\raise-14.77501pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.19751pt\hbox{$\scriptstyle{A\otimes\lambda_{\_}{B}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 74.27817pt\raise-20.40004pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern-15.51408pt\raise-29.55002pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{A\otimes B\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\hbox{\kern 0.0pt\raise 1.0pt\hbox{\lx@xy@droprule}}\hbox{\kern 0.0pt\raise-1.0pt\hbox{\lx@xy@droprule}}}}\ignorespaces{}{\hbox{\hbox{\kern 0.0pt\raise 1.0pt\hbox{\lx@xy@droprule}}\hbox{\kern 0.0pt\raise-1.0pt\hbox{\lx@xy@droprule}}}}{\hbox{\hbox{\kern 0.0pt\raise 1.0pt\hbox{\lx@xy@droprule}}\hbox{\kern 0.0pt\raise-1.0pt\hbox{\lx@xy@droprule}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern-26.6769pt\raise-14.77501pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.1625pt\hbox{$\scriptstyle{\rho_{\_}{A}\otimes B}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 0.0pt\raise-5.25pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 58.76408pt\raise-29.55002pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{A\otimes B}$}}}}}}}\ignorespaces}}}}\ignorespaces
(m3)(𝖨A)Bα_𝖨,A,Bλ_AB𝖨(AB)λ_ABAB(m4)(AB)𝖨α_A,B,𝖨A(B𝖨)ABρ_ABAρ_B\small\mathrm{(m3)}\ \lx@xy@svg{\hbox{\raise 0.0pt\hbox{\kern 25.13908pt\hbox{\ignorespaces\ignorespaces\ignorespaces\hbox{\vtop{\kern 0.0pt\offinterlineskip\halign{\entry@#!@&&\entry@@#!@\cr&&\\&&\crcr}}}\ignorespaces{\hbox{\kern-25.13908pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{(\mathsf{I}\otimes A)\otimes B\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 28.89073pt\raise 6.1425pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.1625pt\hbox{$\scriptstyle{\alpha_{\_}{\mathsf{I},A,B}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 60.96718pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{}\ignorespaces\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces{\hbox{\kern 30.73105pt\raise-22.8pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}\ignorespaces\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}\ignorespaces{\hbox{\kern-10.54735pt\raise-17.09999pt\hbox{\hbox{\kern 0.0pt\raise-1.19751pt\hbox{$\scriptstyle{\lambda_{\_}{A}\otimes B}$}}}}}\ignorespaces{}{\hbox{\kern 40.05313pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{}$}}}}}}}{\hbox{\kern 60.96718pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\mathsf{I}\otimes(A\otimes B)\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces{}\ignorespaces\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 61.08702pt\raise-22.15248pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.19751pt\hbox{$\scriptstyle{\lambda_{\_}{A\otimes B}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 55.38416pt\raise-22.8pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}\ignorespaces\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces{\hbox{\lx@xy@drawline@}}{\hbox{\kern-3.0pt\raise-31.94998pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{}$}}}}}}}{\hbox{\kern 27.53905pt\raise-31.94998pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{A\otimes B}$}}}}}}}{\hbox{\kern 83.10626pt\raise-31.94998pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{}$}}}}}}}\ignorespaces}}}}\ignorespaces\qquad\mathrm{(m4)}\ \lx@xy@svg{\hbox{\raise 0.0pt\hbox{\kern 25.13908pt\hbox{\ignorespaces\ignorespaces\ignorespaces\hbox{\vtop{\kern 0.0pt\offinterlineskip\halign{\entry@#!@&&\entry@@#!@\cr&&\\&&\crcr}}}\ignorespaces{\hbox{\kern-25.13908pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{(A\otimes B)\otimes\mathsf{I}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 28.89073pt\raise 6.1425pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.1625pt\hbox{$\scriptstyle{\alpha_{\_}{A,B,\mathsf{I}}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 60.96718pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 40.05313pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{}$}}}}}}}{\hbox{\kern 60.96718pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{A\otimes(B\otimes\mathsf{I})}$}}}}}}}{\hbox{\kern-3.0pt\raise-31.94998pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{}$}}}}}}}{\hbox{\kern 27.53905pt\raise-31.94998pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{A\otimes B\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces{}\ignorespaces\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern-1.7115pt\raise-22.11748pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.1625pt\hbox{$\scriptstyle{\rho_{\_}{A\otimes B}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 7.07007pt\raise-5.25pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}\ignorespaces\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces\ignorespaces\ignorespaces{}\ignorespaces\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces{\hbox{\kern 79.03107pt\raise-5.25pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}\ignorespaces\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces{\hbox{\lx@xy@drawline@}}{\hbox{\kern 83.10626pt\raise-31.94998pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}\ignorespaces{\hbox{\kern 75.76782pt\raise-17.09999pt\hbox{\hbox{\kern 0.0pt\raise-1.1625pt\hbox{$\scriptstyle{A\otimes\rho_{\_}B}$}}}}}\ignorespaces{}\ignorespaces}}}}\ignorespaces
(m5)(A(BC))Dα_A,BC,DA((BC)D)Aα_B,C,D((AB)C)Dα_A,B,CDα_AB,C,D(AB)(CD)α_A,B,CDA(B(CD))\small\mathrm{(m5)}\ \lx@xy@svg{\hbox{\raise 0.0pt\hbox{\kern 41.29407pt\hbox{\ignorespaces\ignorespaces\ignorespaces\hbox{\vtop{\kern 0.0pt\offinterlineskip\halign{\entry@#!@&&\entry@@#!@\cr&&\\&&\crcr}}}\ignorespaces{\hbox{\kern-40.90283pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{(A\otimes(B\otimes C))\otimes D\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 97.33363pt\raise 6.1425pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.1625pt\hbox{$\scriptstyle{\alpha_{\_}{A,B\otimes C,D}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 194.7085pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 114.80566pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{}$}}}}}}}{\hbox{\kern 194.7085pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{A\otimes((B\otimes C)\otimes D)\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 235.61133pt\raise-16.5pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.1625pt\hbox{$\scriptstyle{A\otimes\alpha_{\_}{B,C,D}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 235.61133pt\raise-23.25pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern-40.90283pt\raise-33.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{((A\otimes B)\otimes C)\otimes D\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern-41.29407pt\raise-16.5pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.1625pt\hbox{$\scriptstyle{\alpha_{\_}{A,B,C}\otimes D}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 0.0pt\raise-5.25pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 38.4308pt\raise-26.8575pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.1625pt\hbox{$\scriptstyle{\alpha_{\_}{A\otimes B,C,D}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 76.90283pt\raise-33.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 76.90283pt\raise-33.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{(A\otimes B)\otimes(C\otimes D)\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 156.06146pt\raise-26.8575pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.1625pt\hbox{$\scriptstyle{\alpha_{\_}{A,B,C\otimes D}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 194.7085pt\raise-33.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 194.7085pt\raise-33.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{A\otimes(B\otimes(C\otimes D))}$}}}}}}}\ignorespaces}}}}\ignorespaces

If λ\lambda, ρ\rho or α\alpha is a natural isomorphism, we say that (,𝖨,)(\mathbb{C},\mathsf{I},\otimes) is left-normal, right-normal resp. associative-normal (or Hopf) [14]. A monoidal category [4] is a fully normal skew monoidal category.

Equations (m1)–(m5) are directed versions of the original Mac Lane axioms [19] for monoidal categories. Kelly [13] observed that, in the monoidal case, equations (m1), (m3), and (m4) follow from (m2) and (m5). In the skew situation, this is not the case.

Skew monoidal categories arise naturally in many settings, for example in the study of relative monads [2] and of quantum categories [14], and have been thoroughly investigated by Street, Lack and colleagues [15, 8, 5, 6]. They, as well as Uustalu [23], present many examples. Here we show just one example where normalities also play a role.

Consider two categories 𝕁\mathbb{J} and \mathbb{C} and a functor J:𝕁J:\mathbb{J}\to\mathbb{C} such that the left Kan extension along JJ exists for every functor 𝕁\mathbb{J}\to\mathbb{C}. The functor category [𝕁,][\mathbb{J},\mathbb{C}] has a skew monoidal structure given by 𝖨=J\mathsf{I}=J, FG=Lan_JFGF\otimes G=\mathrm{Lan}_{\_}J~{}F\cdot G. The unitors and associator are the canonical natural transformations λ_F:Lan_JJFF\lambda_{\_}F:\mathrm{Lan}_{\_}J~{}J\cdot F\to F, ρ_F:FLan_JFJ\rho_{\_}F:F\to\mathrm{Lan}_{\_}J~{}F\cdot J, α_F,G,H:Lan_J(Lan_JFG)HLan_JFLan_JGH\alpha_{\_}{F,G,H}:\mathrm{Lan}_{\_}J~{}(\mathrm{Lan}_{\_}J~{}F\cdot G)\cdot H\to\mathrm{Lan}_{\_}J~{}F\cdot\mathrm{Lan}_{\_}J~{}G\cdot H. This category is right-normal if JJ is fully-faithful. It is left-normal if JJ is dense, which is to say that the nerve of JJ is fully-faithful. Finally, it is associative-normal if this nerve preserves left Kan extensions along JJ. This example is from the work of Altenkirch et al. [2] on relative monads. Relative monads on JJ are (skew) monoids in the skew monoidal category [𝕁,][\mathbb{J},\mathbb{C}].

2.1 The Free Skew Monoidal Category

The free skew monoidal category 𝐅𝐬𝐤(𝖠𝗍)\mathbf{Fsk}(\mathsf{At}) over a set 𝖠𝗍\mathsf{At} (of atoms) can be viewed as a deductive system, which we refer to as the skew monoidal categorical calculus.

Objects of 𝐅𝐬𝐤(𝖠𝗍)\mathbf{Fsk}(\mathsf{At}) are called formulae, and are inductively generated as follows: a formula is either an element XX of 𝖠𝗍\mathsf{At} (an atom); 𝖨\mathsf{I}; or ABA\otimes B where AA, BB are formulae. We write 𝖥𝗆𝖺\mathsf{Fma} for the set of formulae.

Maps between two formulae AA and CC are derivations of (singleton-antecedent, singleton-succedent) sequents ACA\Longrightarrow C, constructed using the following inference rules:

𝗂𝖽AAABBC𝖼𝗈𝗆𝗉ACACBDABCDλ𝖨AAρAA𝖨α(AB)CA(BC)\small\begin{array}[]{c}A\Longrightarrow A\qquad A\Longrightarrow C\lx@proof@logical@and A\Longrightarrow BB\Longrightarrow C\qquad A\otimes B\Longrightarrow C\otimes D\lx@proof@logical@and A\Longrightarrow CB\Longrightarrow D\\ \mathsf{I}\otimes A\Longrightarrow A\qquad A\Longrightarrow A\otimes\mathsf{I}\qquad(A\otimes B)\otimes C\Longrightarrow A\otimes(B\otimes C)\end{array} (1)

and identified up to the congruence \doteq induced by the equations:

(category laws)𝗂𝖽ffff𝗂𝖽(fg)hf(gh)( functorial)𝗂𝖽𝗂𝖽𝗂𝖽(hf)(kg)hkfgλ𝗂𝖽ffλ(λ,ρ,α nat. trans.)ρff𝗂𝖽ρα(fg)hf(gh)αλρ𝗂𝖽𝗂𝖽𝗂𝖽λαρ𝗂𝖽(m1-m5)λαλ𝗂𝖽αρ𝗂𝖽ραα𝗂𝖽ααα𝗂𝖽\begin{array}[]{lc}\text{(category laws)}&\mathsf{id}\circ f\doteq f\qquad f\doteq f\circ\mathsf{id}\qquad(f\circ g)\circ h\doteq f\circ(g\circ h)\\[6.0pt] \text{($\otimes$ functorial)}&\mathsf{id}\otimes\mathsf{id}\doteq\mathsf{id}\qquad(h\circ f)\otimes(k\circ g)\doteq h\otimes k\circ f\otimes g\\[6.0pt] &\lambda\circ\mathsf{id}\otimes f\doteq f\circ\lambda\\ \text{($\lambda,\rho,\alpha$ nat. trans.)}&\rho\circ f\doteq f\otimes\mathsf{id}\circ\rho\\ &\alpha\circ(f\otimes g)\otimes h\doteq f\otimes(g\otimes h)\circ\alpha\\[6.0pt] &\lambda\circ\rho\doteq\mathsf{id}\qquad\mathsf{id}\doteq\mathsf{id}\otimes\lambda\circ\alpha\circ\rho\otimes\mathsf{id}\\ (\textrm{m1-m5})&\lambda\circ\alpha\doteq\lambda\otimes\mathsf{id}\qquad\alpha\circ\rho\doteq\mathsf{id}\otimes\rho\\ &\alpha\circ\alpha\doteq\mathsf{id}\otimes\alpha\circ\alpha\circ\alpha\otimes\mathsf{id}\end{array} (2)

In the term notation for derivations, we write gfg\circ f for 𝖼𝗈𝗆𝗉fg\mathsf{comp}\,f\,g to agree with the standard categorical notation.

Mac Lane’s coherence theorem [19] says that, in the free monoidal category, there is exactly one map ABA\Longrightarrow B if the formulae AA and BB have the same frontier of atoms and no such map otherwise.

For the free skew monoidal category, this does not hold. We have pairs of formulae that have the same frontier of atoms but no maps between them or multiple maps. There are no maps X𝖨XX\Longrightarrow\mathsf{I}\otimes X, no maps X𝖨XX\otimes\mathsf{I}\Longrightarrow X and no maps X(YZ)(XY)ZX\otimes(Y\otimes Z)\Longrightarrow(X\otimes Y)\otimes Z. At the same time, we have two maps 𝗂𝖽≐̸αρλ:X(𝖨Y)X(𝖨Y)\mathsf{id}\not\doteq\alpha\circ\rho\otimes\lambda:X\otimes(\mathsf{I}\otimes Y)\Longrightarrow X\otimes(\mathsf{I}\otimes Y) and two maps 𝗂𝖽≐̸ρλα:(X𝖨)Y(X𝖨)Y\mathsf{id}\not\doteq\rho\otimes\lambda\circ\alpha:(X\otimes\mathsf{I})\otimes Y\Longrightarrow(X\otimes\mathsf{I})\otimes Y.

2.2 Skew Monoidal Sequent Calculus

In [24], we showed that the free skew monoidal category 𝐅𝐬𝐤(𝖠𝗍)\mathbf{Fsk}(\mathsf{At}) admits an equivalent presentation as a sequent calculus. In the latter, sequents are triples SΓCS\mid\Gamma\longrightarrow C. The antecedent is a pair of a stoup SS together with a context Γ\Gamma, while the succedent CC is a single formula. A stoup is an optional formula, meaning that it can either be empty (written {-}) or contain a single formula. A context is a list of formulae. For the empty list, we usually just leave a space, but where necessary for readability, we write ()(). Derivations in the sequent calculus are inductively generated by these inference rules:

AΓC𝗉𝖺𝗌𝗌A,ΓCΓC𝖨𝖫𝖨ΓCAB,ΓC𝖫ABΓC𝖺𝗑AA𝖨𝖱𝖨SΓAΔB𝖱SΓ,ΔAB\small\begin{array}[]{c@{\quad\quad}c@{\quad\quad}c}{-}\mid A,\Gamma\longrightarrow CA\mid\Gamma\longrightarrow C&\mathsf{I}\mid\Gamma\longrightarrow C{-}\mid\Gamma\longrightarrow C&A\otimes B\mid\Gamma\longrightarrow CA\mid B,\Gamma\longrightarrow C\\[6.0pt] A\mid~{}\longrightarrow A&{-}\mid~{}\longrightarrow\mathsf{I}&S\mid\Gamma,\Delta\longrightarrow A\otimes B\lx@proof@logical@and S\mid\Gamma\longrightarrow A{-}\mid\Delta\longrightarrow B\end{array} (3)

(𝗉𝖺𝗌𝗌\mathsf{pass} for ‘passivate’, 𝖫\mathsf{L}, 𝖱\mathsf{R} for introduction on the left (in the stoup) resp. right) and identified up to the congruence \circeq induced by the equations:

(η-conversions)𝖺𝗑_𝖨𝖨𝖫𝖨𝖱𝖺𝗑_AB𝖫(𝖱(𝖺𝗑_A,𝗉𝖺𝗌𝗌𝖺𝗑_B))(commutative conversions)𝖱(𝗉𝖺𝗌𝗌f,g)𝗉𝖺𝗌𝗌(𝖱(f,g))(for f:AΓA,g:ΔB)𝖱(𝖨𝖫f,g)𝖨𝖫(𝖱(f,g))(for f:ΓA,g:ΔB)𝖱(𝖫f,g)𝖫(𝖱(f,g))(for f:AB,ΓA,g:ΔB)\small\begin{array}[]{@{\qquad}c@{\qquad}l}\lx@intercol\textrm{($\eta$-conversions)}\hfil\lx@intercol\\[6.0pt] \lx@intercol\hfil\mathsf{ax}_{\_}{\mathsf{I}}\circeq\mathsf{I}\mathsf{L}\;\mathsf{I}\mathsf{R}\qquad\qquad\mathsf{ax}_{\_}{A\otimes B}\circeq\otimes\mathsf{L}\;(\otimes\mathsf{R}\;(\mathsf{ax}_{\_}A,\mathsf{pass}\;\mathsf{ax}_{\_}B))\hfil\lx@intercol\\[12.0pt] \lx@intercol\textrm{(commutative conversions)}\hfil\lx@intercol\\[6.0pt] \otimes\mathsf{R}\;(\mathsf{pass}\;f,g)\circeq\mathsf{pass}\;(\otimes\mathsf{R}\;(f,g))&(\text{for }f:A^{\prime}\mid\Gamma\longrightarrow A,\;g:{-}\mid\Delta\longrightarrow B)\\[6.0pt] \otimes\mathsf{R}\;(\mathsf{I}\mathsf{L}\;f,g)\circeq\mathsf{I}\mathsf{L}\;(\otimes\mathsf{R}\;(f,g))&(\text{for }f:{-}\mid\Gamma\longrightarrow A,\;g:{-}\mid\Delta\longrightarrow B)\\[6.0pt] \otimes\mathsf{R}\;(\otimes\mathsf{L}\;f,g)\circeq\otimes\mathsf{L}\;(\otimes\mathsf{R}\;(f,g))&(\text{for }f:A^{\prime}\mid B^{\prime},\Gamma\longrightarrow A,\;g:{-}\mid\Delta\longrightarrow B)\end{array} (4)

Although these rules look very similar to the rules of the 𝖨\mathsf{I}, \otimes fragment of intuitionistic non-commutative linear logic [1] (the sequent calculus describing the free monoidal category)—in particular, there is no left exchange rule, weakening or contraction—, there are two crucial differences.

  • The left rules 𝖨𝖫\mathsf{I}\mathsf{L} and 𝖫\otimes\mathsf{L} are restricted to apply only to the formula within the stoup (in the conclusion-first reading of these rules). This restriction was also present in Zeilberger’s sequent calculus for the Tamari order [27]. In this calculus, it is possible to derive sequents corresponding to the right unitor ρ:AA𝖨\rho:A\Longrightarrow A\otimes\mathsf{I} and the associator α:(AB)CA(BC)\alpha:(A\otimes B)\otimes C\Longrightarrow A\otimes(B\otimes C):

    𝖺𝗑AA𝖨𝖱𝖨𝖱AA𝖨𝖺𝗑AA𝖺𝗑BB𝖺𝗑CC𝗉𝖺𝗌𝗌CC𝖱BCBC𝗉𝖺𝗌𝗌B,CBC𝖱AB,CA(BC)𝖫ABCA(BC)𝖫(AB)CA(BC)\small A\mid~{}\longrightarrow A\otimes\mathsf{I}\lx@proof@logical@and A\mid~{}\longrightarrow A{-}\mid~{}\longrightarrow\mathsf{I}\qquad(A\otimes B)\otimes C\mid~{}\longrightarrow A\otimes(B\otimes C)A\otimes B\mid C\longrightarrow A\otimes(B\otimes C)A\mid B,C\longrightarrow A\otimes(B\otimes C)\lx@proof@logical@and A\mid~{}\longrightarrow A{-}\mid B,C\longrightarrow B\otimes CB\mid C\longrightarrow B\otimes C\lx@proof@logical@and B\mid~{}\longrightarrow B{-}\mid C\longrightarrow CC\mid~{}\longrightarrow C

    On the other hand, since 𝖨𝖫\mathsf{I}\mathsf{L} and 𝖫\otimes\mathsf{L} only act on the formula in the stoup, there is no way of deriving sequents corresponding to inverses of ρ\rho and α\alpha for atomic AA resp. AA, BB, CC.

  • The stoup is allowed to be empty, permitting a distinction between antecedents of the form AΓA\mid\Gamma (with AA inside the stoup) and antecedents of the form A,Γ{-}\mid A,\Gamma (with AA outside the stoup). This distinction plays an important role in the right rule 𝖱\otimes\mathsf{R}, which sends the formula in the stoup, when it is present, to the first premise. In this calculus, it is possible to derive a sequent corresponding to the left unitor λ:𝖨AA\lambda:\mathsf{I}\otimes A\Longrightarrow A:

    𝖺𝗑AA𝗉𝖺𝗌𝗌AA𝖨𝖫𝖨AA𝖫𝖨AA\small\mathsf{I}\otimes A\mid~{}\longrightarrow A\mathsf{I}\mid A\longrightarrow A{-}\mid A\longrightarrow AA\mid~{}\longrightarrow A

    On the other hand, since 𝖱\otimes\mathsf{R} always send the formula in the stoup to the first premise, it is not possible to derive a sequent corresponding to the inverse of λ\lambda for atomic AA.

There are no primitive cut rules in this sequent calculus, but two forms of cut are admissible:

SΓAAΔC𝗌𝖼𝗎𝗍SΓ,ΔCΓASΔ_0,A,Δ_1C𝖼𝖼𝗎𝗍SΔ_0,Γ,Δ_1C\small S\mid\Gamma,\Delta\longrightarrow C\lx@proof@logical@and S\mid\Gamma\longrightarrow AA\mid\Delta\longrightarrow C\qquad S\mid\Delta_{\_}0,\Gamma,\Delta_{\_}1\longrightarrow C\lx@proof@logical@and{-}\mid\Gamma\longrightarrow AS\mid\Delta_{\_}0,A,\Delta_{\_}1\longrightarrow C (5)

Sequent calculus derivations can be turned into categorical calculus derivations by means of a function 𝗌𝗈𝗎𝗇𝖽:SΓCSΓC\mathsf{sound}:S\mid\Gamma\longrightarrow C\to\llbracket S\mid\Gamma\rrbracket\Longrightarrow C, where the interpretation of an antecedent as a formula SΓ\llbracket S\mid\Gamma\rrbracket is defined as SΓ=SΓ\llbracket S\mid\Gamma\rrbracket=\llbracket S\langle\langle\,\,\langle\langle\Gamma\rrbracket with

=𝖨A=AA=AAB,Γ=(AB)Γ\llbracket{-}\langle\langle\,=\mathsf{I}\qquad\llbracket A\langle\langle\,=A\qquad\qquad A\,\langle\langle~{}\rrbracket=A\qquad A\,\langle\langle B,\Gamma\rrbracket=(A\otimes B)\,\langle\langle\Gamma\rrbracket

which means that AA_1,A_2,A_n=((AA_1)A_2))A_nA\,\langle\langle A_{\_}1,A_{\_}2\ldots,A_{\_}n\rrbracket=(\ldots(A\otimes A_{\_}1)\otimes A_{\_}2)\ldots)\otimes A_{\_}n. The interpretation of antecedents is functorial, i.e., we have the following inference rule:

ABΓAΓBΓ\small\llbracket A\mid\Gamma\rrbracket\Longrightarrow\llbracket B\mid\Gamma\rrbracket A\Longrightarrow B (6)

The function 𝗌𝗈𝗎𝗇𝖽\mathsf{sound} is well-defined on \circeq-equivalence classes: given related derivations fgf\circeq g, then 𝗌𝗈𝗎𝗇𝖽f𝗌𝗈𝗎𝗇𝖽g\mathsf{sound}\;f\doteq\mathsf{sound}\;g.

Categorical calculus derivations can be interpreted as sequent calculus derivations via a function 𝖼𝗆𝗉𝗅𝗍:SΓCSΓC\mathsf{cmplt}:\llbracket S\mid\Gamma\rrbracket\Longrightarrow C\to S\mid\Gamma\longrightarrow C, well-defined on \doteq-equivalence classes: given related derivations fgf\doteq g, then 𝖼𝗆𝗉𝗅𝗍f𝖼𝗆𝗉𝗅𝗍g\mathsf{cmplt}\;f\circeq\mathsf{cmplt}\;g. The cut rule 𝗌𝖼𝗎𝗍\mathsf{scut} is fundamental for modelling the composition operation 𝖼𝗈𝗆𝗉\mathsf{comp} of the categorical calculus.

The functions 𝗌𝗈𝗎𝗇𝖽\mathsf{sound} and 𝖼𝗆𝗉𝗅𝗍\mathsf{cmplt} establish a bijection between derivations in the categorical calculus and the sequent calculus: 𝗌𝗈𝗎𝗇𝖽(𝖼𝗆𝗉𝗅𝗍f)f\mathsf{sound}\;(\mathsf{cmplt}\;f)\doteq f and 𝖼𝗆𝗉𝗅𝗍(𝗌𝗈𝗎𝗇𝖽g)g\mathsf{cmplt}\;(\mathsf{sound}\;g)\circeq g, for all f:SΓCf:\llbracket S\mid\Gamma\rrbracket\Longrightarrow C and g:SΓCg:S\mid\Gamma\longrightarrow C.

2.3 A Focused Subsystem

The congruence relation \circeq can be considered as a term rewrite system, by directing every equation from left to right. The resulting rewrite system is weakly confluent and strongly normalizing, hence confluent with unique normal forms.

Normal-form derivations in our sequent calculus can be described as derivations in a focused subsystem. In the style of Andreoli [3], we present the focused subsystem as a sequent calculus with an additional phase annotation on sequents. In phase 𝖫\mathsf{L}, sequents are of the form SΓ𝖫CS\mid\Gamma\overset{}{\longrightarrow_{\mathsf{L}}}C, where SS is a general stoup. In phase 𝖱\mathsf{R}, sequents take the form TΓ𝖱CT\mid\Gamma\overset{}{\longrightarrow_{\mathsf{R}}}C, where TT is an irreducible stoup, that is an optional atom: either empty or an atomic formula. Derivations in the focused calculus are inductively generated by the following inference rules:

AΓ𝖫C𝗉𝖺𝗌𝗌A,Γ𝖫CΓ𝖫C𝖨𝖫𝖨Γ𝖫CAB,Γ𝖫C𝖫ABΓ𝖫CTΓ𝖱C𝗌𝗐𝗂𝗍𝖼𝗁TΓ𝖫C𝖺𝗑X𝖱X𝖨𝖱𝖱𝖨TΓ𝖱AΔ𝖫B𝖱TΓ,Δ𝖱AB\small\begin{array}[]{c}{-}\mid A,\Gamma\overset{}{\longrightarrow_{\mathsf{L}}}CA\mid\Gamma\overset{}{\longrightarrow_{\mathsf{L}}}C\qquad\mathsf{I}\mid\Gamma\overset{}{\longrightarrow_{\mathsf{L}}}C{-}\mid\Gamma\overset{}{\longrightarrow_{\mathsf{L}}}C\qquad A\otimes B\mid\Gamma\overset{}{\longrightarrow_{\mathsf{L}}}CA\mid B,\Gamma\overset{}{\longrightarrow_{\mathsf{L}}}C\qquad T\mid\Gamma\overset{}{\longrightarrow_{\mathsf{L}}}CT\mid\Gamma\overset{}{\longrightarrow_{\mathsf{R}}}C\\[6.0pt] X\mid~{}\overset{}{\longrightarrow_{\mathsf{R}}}X\qquad{-}\mid~{}\overset{}{\longrightarrow_{\mathsf{R}}}\mathsf{I}\qquad T\mid\Gamma,\Delta\overset{}{\longrightarrow_{\mathsf{R}}}A\otimes B\lx@proof@logical@and T\mid\Gamma\overset{}{\longrightarrow_{\mathsf{R}}}A{-}\mid\Delta\overset{}{\longrightarrow_{\mathsf{L}}}B\end{array} (7)

The focused rules define a sound and complete proof search strategy. The focused calculus is clearly sound: by erasing phase annotations, all of the rules are either rules of the original calculus or else (in the case of 𝗌𝗐𝗂𝗍𝖼𝗁\mathsf{switch}) have the conclusion equal to the premise. So focused calculus derivations can be embedded into sequent calculus derivations via a function 𝖾𝗆𝖻_P:SΓPCSΓC\mathsf{emb}_{\_}P:S\mid\Gamma\longrightarrow_{P}C\to S\mid\Gamma\longrightarrow C, where P{𝖫,𝖱}P\in\{\mathsf{L},\mathsf{R}\}.

The focused calculus is also complete: we can define a normalization procedure 𝖿𝗈𝖼𝗎𝗌:SΓCSΓ𝖫C\mathsf{focus}:S\mid\Gamma\longrightarrow C\to\linebreak S\mid\Gamma\overset{}{\longrightarrow_{\mathsf{L}}}C sending each derivation in the sequent calculus to a canonical representative of its \circeq-equivalence class in the focused calculus. This means in particular that 𝖿𝗈𝖼𝗎𝗌\mathsf{focus} maps \circeq-related derivations to equal focused derivations.

The functions 𝖿𝗈𝖼𝗎𝗌\mathsf{focus} and 𝖾𝗆𝖻_𝖫\mathsf{emb}_{\_}{\mathsf{L}} establish a bijection between derivations in the full sequent calculus (up to \circeq) and its focused subsystem: 𝖾𝗆𝖻_𝖫(𝖿𝗈𝖼𝗎𝗌f)f\mathsf{emb}_{\_}{\mathsf{L}}\;(\mathsf{focus}\;f)\circeq f and 𝖿𝗈𝖼𝗎𝗌(𝖾𝗆𝖻_𝖫g)=g\mathsf{focus}\;(\mathsf{emb}_{\_}{\mathsf{L}}\;g)=g, for all f:SΓCf:S\mid\Gamma\longrightarrow C and g:SΓ𝖫Cg:S\mid\Gamma\overset{}{\longrightarrow_{\mathsf{L}}}C.

Putting this together with the results discussed in Section 2.2, it follows that the focused calculus is a concrete presentation of the free skew monoidal category 𝐅𝐬𝐤(𝖠𝗍)\mathbf{Fsk}(\mathsf{At}). As such, the focused calculus solves the problem of characterizing the homsets of the free skew monoidal category, a.k.a. the coherence problem. Moreover, it solves two related algorithmic problems effectively:

  • Duplicate-free enumeration of all maps ACA\Longrightarrow C in the form of representatives of \doteq-equivalence classes of categorical calculus derivations: For this, find all focused derivations of A𝖫CA\mid~{}\overset{}{\longrightarrow_{\mathsf{L}}}C, which is solvable by exhaustive proof search, which terminates, and translate them to the categorical calculus derivations.

  • Finding whether two given maps of type ACA\Longrightarrow C, presented as categorical calculus derivations, are equal, i.e., \doteq-related as derivations: For this, translate them to focused derivations of A𝖫CA\mid~{}\overset{}{\longrightarrow_{\mathsf{L}}}C and check whether they are equal, which is decidable.

Different approaches to the coherence problem of skew monoidal categories have been considered before. Uustalu [23] identified a class of normal forms of objects in 𝐅𝐬𝐤(𝖠𝗍)\mathbf{Fsk}{(\mathsf{At})} and showed that there exists at most one map between an object and an object in normal form, and exactly one map between an object and that object’s normal form. In another direction, Lack and Street [15] addressed the problem of determining equality of maps by proving that there is a faithful, structure-preserving functor 𝐅𝐬𝐤(1)Δ_\mathbf{Fsk}{(1)}\to\Delta_{\_}\bot from the free skew monoidal category on one generating object to the category of finite non-empty ordinals and first-element-and-order-preserving functions (which is an associative-normal skew-monoidal category under the ordinal sum with unit 1). This approach was further elaborated by Bourke and Lack [5] with a more explicit description of the homsets of 𝐅𝐬𝐤(1)\mathbf{Fsk}{(1)}.

Let us use the focused calculus to analyze where multiple maps ACA\Longrightarrow C can come from. There are two sources of non-determinism in root-first proof search in the focused calculus: (i) in phase 𝖫\mathsf{L}, when the stoup is empty, whether to apply 𝗉𝖺𝗌𝗌\mathsf{pass} or 𝗌𝗐𝗂𝗍𝖼𝗁\mathsf{switch}, and (ii) in phase 𝖱\mathsf{R}, when the succedent formula is a tensor and the rule 𝖱\otimes\mathsf{R} is to be applied, how to split the context into Γ\Gamma and Δ\Delta. In the latter situation, only those choices where |T|,|Γ|=|A||T|,|\Gamma|=|A| and |Δ|=|B||\Delta|=|B| can possibly lead to a complete derivation; we write |||~{}| for the frontier of atoms in a formula, an optional formula or a list of formulae. But there can be multiple such choices if in the middle of the context there are closed formulae (i.e., formulae made of 𝖨\mathsf{I} and \otimes only): those can be freely split between Γ\Gamma and Δ\Delta.

The two maps 𝗂𝖽≐̸αρλ:X(𝖨Y)X(𝖨Y)\mathsf{id}\not\doteq\alpha\circ\rho\otimes\lambda:X\otimes(\mathsf{I}\otimes Y)\Longrightarrow X\otimes(\mathsf{I}\otimes Y) translate to two different focused derivations of the sequent X(𝖨Y)𝖫X(𝖨Y)X\otimes(\mathsf{I}\otimes Y)\mid~{}\overset{}{\longrightarrow_{\mathsf{L}}}X\otimes(\mathsf{I}\otimes Y) because of the non-determinism of type (i). Notice the choice between 𝗉𝖺𝗌𝗌\mathsf{pass} and 𝗌𝗐𝗂𝗍𝖼𝗁\mathsf{switch}.

𝖺𝗑X𝖱X𝖨𝖱𝖱𝖨𝖺𝗑Y𝖱Y𝗌𝗐𝗂𝗍𝖼𝗁Y𝖫Y𝗉𝖺𝗌𝗌Y𝖫Y𝖱Y𝖱𝖨Y𝗌𝗐𝗂𝗍𝖼𝗁Y𝖫𝖨Y𝖨𝖫𝖨Y𝖫𝖨Y𝖫𝖨Y𝖫𝖨Y𝗉𝖺𝗌𝗌𝖨Y𝖫𝖨Y𝖱X𝖨Y𝖱X(𝖨Y)𝗌𝗐𝗂𝗍𝖼𝗁X𝖨Y𝖫X(𝖨Y)𝖫X(𝖨Y)𝖫X(𝖨Y)𝖺𝗑X𝖱X𝖨𝖱𝖱𝖨𝖺𝗑Y𝖱Y𝗌𝗐𝗂𝗍𝖼𝗁Y𝖫Y𝗉𝖺𝗌𝗌Y𝖫Y𝖨𝖫𝖨Y𝖫Y𝖫𝖨Y𝖫Y𝗉𝖺𝗌𝗌𝖨Y𝖫Y𝖱𝖨Y𝖱𝖨Y𝗌𝗐𝗂𝗍𝖼𝗁𝖨Y𝖫𝖨Y𝖱X𝖨Y𝖱X(𝖨Y)𝗌𝗐𝗂𝗍𝖼𝗁X𝖨Y𝖫X(𝖨Y)𝖫X(𝖨Y)𝖫X(𝖨Y)\scriptsize\begin{array}[]{c}X\otimes(\mathsf{I}\otimes Y)\mid~{}\overset{}{\longrightarrow_{\mathsf{L}}}X\otimes(\mathsf{I}\otimes Y)X\mid\mathsf{I}\otimes Y\overset{}{\longrightarrow_{\mathsf{L}}}X\otimes(\mathsf{I}\otimes Y)X\mid\mathsf{I}\otimes Y\overset{}{\longrightarrow_{\mathsf{R}}}X\otimes(\mathsf{I}\otimes Y)\lx@proof@logical@and X\mid~{}\overset{}{\longrightarrow_{\mathsf{R}}}X{-}\mid\mathsf{I}\otimes Y\overset{}{\longrightarrow_{\mathsf{L}}}\mathsf{I}\otimes Y\mathsf{I}\otimes Y\mid~{}\overset{}{\longrightarrow_{\mathsf{L}}}\mathsf{I}\otimes Y\mathsf{I}\mid Y\overset{}{\longrightarrow_{\mathsf{L}}}\mathsf{I}\otimes Y{-}\mid Y\overset{}{\longrightarrow_{\mathsf{L}}}\mathsf{I}\otimes Y{-}\mid Y\overset{}{\longrightarrow_{\mathsf{R}}}\mathsf{I}\otimes Y\lx@proof@logical@and{-}\mid~{}\overset{}{\longrightarrow_{\mathsf{R}}}\mathsf{I}{-}\mid Y\overset{}{\longrightarrow_{\mathsf{L}}}YY\mid~{}\overset{}{\longrightarrow_{\mathsf{L}}}YY\mid~{}\overset{}{\longrightarrow_{\mathsf{R}}}Y\qquad X\otimes(\mathsf{I}\otimes Y)\mid~{}\overset{}{\longrightarrow_{\mathsf{L}}}X\otimes(\mathsf{I}\otimes Y)X\mid\mathsf{I}\otimes Y\overset{}{\longrightarrow_{\mathsf{L}}}X\otimes(\mathsf{I}\otimes Y)X\mid\mathsf{I}\otimes Y\overset{}{\longrightarrow_{\mathsf{R}}}X\otimes(\mathsf{I}\otimes Y)\lx@proof@logical@and X\mid~{}\overset{}{\longrightarrow_{\mathsf{R}}}X{-}\mid\mathsf{I}\otimes Y\overset{}{\longrightarrow_{\mathsf{L}}}\mathsf{I}\otimes Y{-}\mid\mathsf{I}\otimes Y\overset{}{\longrightarrow_{\mathsf{R}}}\mathsf{I}\otimes Y\lx@proof@logical@and{-}\mid~{}\overset{}{\longrightarrow_{\mathsf{R}}}\mathsf{I}{-}\mid\mathsf{I}\otimes Y\overset{}{\longrightarrow_{\mathsf{L}}}Y\mathsf{I}\otimes Y\mid~{}\overset{}{\longrightarrow_{\mathsf{L}}}Y\mathsf{I}\mid Y\overset{}{\longrightarrow_{\mathsf{L}}}Y{-}\mid Y\overset{}{\longrightarrow_{\mathsf{L}}}YY\mid~{}\overset{}{\longrightarrow_{\mathsf{L}}}YY\mid~{}\overset{}{\longrightarrow_{\mathsf{R}}}Y\end{array} (8)

The two maps 𝗂𝖽≐̸ρλα:(X𝖨)Y(X𝖨)Y\mathsf{id}\not\doteq\rho\otimes\lambda\circ\alpha:(X\otimes\mathsf{I})\otimes Y\Longrightarrow(X\otimes\mathsf{I})\otimes Y translate to distinct focused derivations of the sequent (X𝖨)Y𝖫(X𝖨)Y(X\otimes\mathsf{I})\otimes Y\mid~{}\overset{}{\longrightarrow_{\mathsf{L}}}(X\otimes\mathsf{I})\otimes Y due to type-(ii) non-determinism. Here the first (from the endsequent) application of the tensor right rule 𝖱\otimes\mathsf{R} splits the context in two different ways: in the first derivation the unit in the context is sent to the first premise, while in the second derivation it is sent to the second premise.

𝖺𝗑X𝖱X𝖨𝖱𝖱𝖨𝗌𝗐𝗂𝗍𝖼𝗁𝖫𝖨𝖨𝖫𝖨𝖫𝖨𝗉𝖺𝗌𝗌𝖨𝖫𝖨𝖱X𝖨𝖱X𝖨𝖺𝗑Y𝖱Y𝗌𝗐𝗂𝗍𝖼𝗁Y𝖫Y𝗉𝖺𝗌𝗌Y𝖫Y𝖱X𝖨,Y𝖱(X𝖨)Y𝗌𝗐𝗂𝗍𝖼𝗁X𝖨,Y𝖫(X𝖨)Y𝖫X𝖨Y𝖫(X𝖨)Y𝖫(X𝖨)Y𝖫(X𝖨)Y𝖺𝗑X𝖱X𝖨𝖱𝖱𝖨𝗌𝗐𝗂𝗍𝖼𝗁𝖫𝖨𝖱X𝖱X𝖨𝖺𝗑Y𝖱Y𝗌𝗐𝗂𝗍𝖼𝗁Y𝖫Y𝗉𝖺𝗌𝗌Y𝖫Y𝖨𝖫𝖨Y𝖫Y𝗉𝖺𝗌𝗌𝖨,Y𝖫Y𝖱X𝖨,Y𝖱(X𝖨)Y𝗌𝗐𝗂𝗍𝖼𝗁X𝖨,Y𝖫(X𝖨)Y𝖫X𝖨Y𝖫(X𝖨)Y𝖫(X𝖨)Y𝖫(X𝖨)Y\scriptsize\begin{array}[]{c}(X\otimes\mathsf{I})\otimes Y\mid~{}\overset{}{\longrightarrow_{\mathsf{L}}}(X\otimes\mathsf{I})\otimes YX\otimes\mathsf{I}\mid Y\overset{}{\longrightarrow_{\mathsf{L}}}(X\otimes\mathsf{I})\otimes YX\mid\mathsf{I},Y\overset{}{\longrightarrow_{\mathsf{L}}}(X\otimes\mathsf{I})\otimes YX\mid\mathsf{I},Y\overset{}{\longrightarrow_{\mathsf{R}}}(X\otimes\mathsf{I})\otimes Y\lx@proof@logical@and X\mid{\color[rgb]{0,0,1}\mathsf{I}}\overset{}{\longrightarrow_{\mathsf{R}}}X\otimes\mathsf{I}\lx@proof@logical@and X\mid~{}\overset{}{\longrightarrow_{\mathsf{R}}}X{-}\mid\mathsf{I}\overset{}{\longrightarrow_{\mathsf{L}}}\mathsf{I}\mathsf{I}\mid~{}\overset{}{\longrightarrow_{\mathsf{L}}}\mathsf{I}{-}\mid~{}\overset{}{\longrightarrow_{\mathsf{L}}}\mathsf{I}{-}\mid~{}\overset{}{\longrightarrow_{\mathsf{R}}}\mathsf{I}{-}\mid Y\overset{}{\longrightarrow_{\mathsf{L}}}YY\mid~{}\overset{}{\longrightarrow_{\mathsf{L}}}YY\mid~{}\overset{}{\longrightarrow_{\mathsf{R}}}Y\qquad(X\otimes\mathsf{I})\otimes Y\mid~{}\overset{}{\longrightarrow_{\mathsf{L}}}(X\otimes\mathsf{I})\otimes YX\otimes\mathsf{I}\mid Y\overset{}{\longrightarrow_{\mathsf{L}}}(X\otimes\mathsf{I})\otimes YX\mid\mathsf{I},Y\overset{}{\longrightarrow_{\mathsf{L}}}(X\otimes\mathsf{I})\otimes YX\mid\mathsf{I},Y\overset{}{\longrightarrow_{\mathsf{R}}}(X\otimes\mathsf{I})\otimes Y\lx@proof@logical@and X\mid~{}\overset{}{\longrightarrow_{\mathsf{R}}}X\otimes\mathsf{I}\lx@proof@logical@and X\mid~{}\overset{}{\longrightarrow_{\mathsf{R}}}X{-}\mid~{}\overset{}{\longrightarrow_{\mathsf{L}}}\mathsf{I}{-}\mid~{}\overset{}{\longrightarrow_{\mathsf{R}}}\mathsf{I}{-}\mid{\color[rgb]{0,0,1}\mathsf{I}},Y\overset{}{\longrightarrow_{\mathsf{L}}}Y\mathsf{I}\mid Y\overset{}{\longrightarrow_{\mathsf{L}}}Y{-}\mid Y\overset{}{\longrightarrow_{\mathsf{L}}}YY\mid~{}\overset{}{\longrightarrow_{\mathsf{L}}}YY\mid~{}\overset{}{\longrightarrow_{\mathsf{R}}}Y\end{array} (9)

3 Normality Conditions

3.1 Left-Normality

The free left-normal skew monoidal category 𝐅𝐬𝐤𝖫𝖭(𝖠𝗍)\mathbf{Fsk}_{\mathsf{LN}}(\mathsf{At}) on a set 𝖠𝗍\mathsf{At} is obtained by extending the grammar of derivations in the fully skew categorical calculus (1) with a new inference rule:

λ1A𝖨A\small A\Longrightarrow\mathsf{I}\otimes A

and extending the equivalence of derivations (2) with two new equations: λλ1𝗂𝖽\lambda\circ\lambda^{-1}\doteq\mathsf{id} and λ1λ𝗂𝖽\lambda^{-1}\circ\lambda\doteq\mathsf{id}.

An equivalent sequent calculus presentation of 𝐅𝐬𝐤𝖫𝖭(𝖠𝗍)\mathbf{Fsk}_{\mathsf{LN}}(\mathsf{At}) is obtained by adding another right rule for the tensor \otimes to the fully skew sequent calculus (3), which allows one to send the formula in the stoup to the second premise, provided that all of the context is also sent to the second premise (so the antecedent of the first premise is left completely empty).

AAΔB𝖱2AΔAB\small A^{\prime}\mid\Delta\longrightarrow A\otimes B\lx@proof@logical@and{-}\mid~{}\longrightarrow AA^{\prime}\mid\Delta\longrightarrow B

The introduction of 𝖱2\otimes\mathsf{R}_{2} makes it possible to derive a sequent corresponding to λ1:A𝖨A\lambda^{-1}:A\Longrightarrow\mathsf{I}\otimes A:

𝖨𝖱𝖨𝖺𝗑AA𝖱2A𝖨A\small A\mid~{}\longrightarrow\mathsf{I}\otimes A\lx@proof@logical@and{-}\mid~{}\longrightarrow\mathsf{I}A\mid~{}\longrightarrow A

In particular this allows us to interpret categorical derivations into sequent calculus derivations for the left-normal case, extending the definition of the function 𝖼𝗆𝗉𝗅𝗍\mathsf{cmplt} introduced in Section 2.2.

Equivalence of derivations in the sequent calculus is the least congruence \circeq induced by the equations in (4) together with the following equations:

𝖱(f,𝗉𝖺𝗌𝗌g)𝗉𝖺𝗌𝗌(𝖱2(f,g))(for f:A,g:AΔB)𝖱2(f,𝖨𝖫g)𝖨𝖫(𝖱(f,g))(for f:A,g:ΔB)𝖱2(f,𝖫g)𝖫(𝖱2(f,g))(for f:A,g:AB,ΔB)\small\begin{array}[]{c@{\qquad}l}\otimes\mathsf{R}\;(f,\mathsf{pass}\;g)\circeq\mathsf{pass}\;(\otimes\mathsf{R}_{2}\;(f,g))&(\text{for }f:{-}\mid~{}\longrightarrow A,\;g:A^{\prime}\mid\Delta\longrightarrow B)\\[6.0pt] \otimes\mathsf{R}_{2}\;(f,\mathsf{I}\mathsf{L}\;g)\circeq\mathsf{I}\mathsf{L}\;(\otimes\mathsf{R}\;(f,g))&(\text{for }f:{-}\mid~{}\longrightarrow A,\;g:{-}\mid\Delta\longrightarrow B)\\[6.0pt] \otimes\mathsf{R}_{2}\;(f,\otimes\mathsf{L}\;g)\circeq\otimes\mathsf{L}\;(\otimes\mathsf{R}_{2}\;(f,g))&(\text{for }f:{-}\mid~{}\longrightarrow A,\;g:A^{\prime}\mid B^{\prime},\Delta\longrightarrow B)\end{array}

The two cut rules in (5) are also admissible in the left-normal sequent calculus. The definition of 𝖼𝖼𝗎𝗍\mathsf{ccut} uses the following rule 𝖺𝖼𝗍\mathsf{act} (for ‘activate’), admissible in this sequent calculus (but not in the fully skew one) and inverting 𝗉𝖺𝗌𝗌\mathsf{pass} up to the congruence \circeq:

A,Γ𝖫C𝖺𝖼𝗍AΓ𝖫C\small A\mid\Gamma\overset{}{\longrightarrow_{\mathsf{L}}}C{-}\mid A,\Gamma\overset{}{\longrightarrow_{\mathsf{L}}}C

The transformation 𝗌𝗈𝗎𝗇𝖽\mathsf{sound} introduced in Section 2.2, interpreting the fully skew sequent calculus derivations as categorical calculus derivations, extends to the left-normal case. Given f:Af:{-}\mid~{}\longrightarrow A and g:AΔBg:A^{\prime}\mid\Delta\longrightarrow B, define 𝗌𝗈𝗎𝗇𝖽(𝖱2(f,g))\mathsf{sound}\;(\otimes\mathsf{R}_{2}(f,g)) as:

AΔ𝗌𝗈𝗎𝗇𝖽gBλ1B𝖨B𝖨B𝗌𝗈𝗎𝗇𝖽f𝗂𝖽AB𝖼𝗈𝗆𝗉BAB𝖼𝗈𝗆𝗉AΔAB\small\llbracket A^{\prime}\mid\Delta\rrbracket\Longrightarrow A\otimes B\lx@proof@logical@and\llbracket A^{\prime}\mid\Delta\rrbracket\overset{\mathsf{sound}\,g}{\Longrightarrow}BB\Longrightarrow A\otimes B\lx@proof@logical@and B\Longrightarrow\mathsf{I}\otimes B\mathsf{I}\otimes B\overset{\mathsf{sound}\,f\otimes\mathsf{id}}{\Longrightarrow}A\otimes B

Again, the congruence relation \circeq read as a term rewrite system is weakly confluent and strongly normalizing, and normal-form derivations in the sequent calculus can be described as derivations in a focused subsystem. Sequents in the left-normal focused calculus are annotated with two possible phase annotations, as in the fully skew focused calculus (7). The condition for switching phase is different: the formula in the stoup is still required to be irreducible, but if the stoup is empty we are allowed to switch phase only when the context is empty as well. In phase 𝖱\mathsf{R}, we also include the new tensor right rule 𝖱2\otimes\mathsf{R}_{2}, in which both premises are required to be 𝖱\mathsf{R}-phase derivations. Again TT is an irreducible stoup: either empty or an atomic formula.

AΓ𝖫C𝗉𝖺𝗌𝗌A,Γ𝖫CΓ𝖫C𝖨𝖫𝖨Γ𝖫CAB,Γ𝖫C𝖫ABΓ𝖫CTΓ𝖱CT=Γ=()𝗌𝗐𝗂𝗍𝖼𝗁TΓ𝖫C𝖺𝗑X𝖱X𝖨𝖱𝖱𝖨TΓ𝖱AΔ𝖫B𝖱TΓ,Δ𝖱AB𝖱AXΔ𝖱B𝖱2XΔ𝖱AB\small\begin{array}[]{c}{-}\mid A,\Gamma\overset{}{\longrightarrow_{\mathsf{L}}}CA\mid\Gamma\overset{}{\longrightarrow_{\mathsf{L}}}C\quad\mathsf{I}\mid\Gamma\overset{}{\longrightarrow_{\mathsf{L}}}C{-}\mid\Gamma\overset{}{\longrightarrow_{\mathsf{L}}}C\quad A\otimes B\mid\Gamma\overset{}{\longrightarrow_{\mathsf{L}}}CA\mid B,\Gamma\overset{}{\longrightarrow_{\mathsf{L}}}C\quad T\mid\Gamma\overset{}{\longrightarrow_{\mathsf{L}}}C\lx@proof@logical@and T\mid\Gamma\overset{}{\longrightarrow_{\mathsf{R}}}CT={-}\to\Gamma=()\\[6.0pt] X\mid~{}\overset{}{\longrightarrow_{\mathsf{R}}}X\quad{-}\mid~{}\overset{}{\longrightarrow_{\mathsf{R}}}\mathsf{I}\quad T\mid\Gamma,\Delta\overset{}{\longrightarrow_{\mathsf{R}}}A\otimes B\lx@proof@logical@and T\mid\Gamma\overset{}{\longrightarrow_{\mathsf{R}}}A{-}\mid\Delta\overset{}{\longrightarrow_{\mathsf{L}}}B\quad X\mid\Delta\overset{}{\longrightarrow_{\mathsf{R}}}A\otimes B\lx@proof@logical@and{-}\mid~{}\overset{}{\longrightarrow_{\mathsf{R}}}AX\mid\Delta\overset{}{\longrightarrow_{\mathsf{R}}}B\end{array}

All 𝖱\mathsf{R}-phase sequents in a derivation of a sequent SΓ𝖫CS\mid\Gamma\overset{}{\longrightarrow_{\mathsf{L}}}C have the context empty if the stoup is empty.

The functions 𝖾𝗆𝖻_𝖫\mathsf{emb}_{\_}{\mathsf{L}} and 𝖾𝗆𝖻_𝖱\mathsf{emb}_{\_}{\mathsf{R}} embedding fully skew focused calculus derivations in the unfocused sequent calculus, discussed in Section 2.3, can clearly be adapted to the left-normal case. The same holds for the 𝖿𝗈𝖼𝗎𝗌\mathsf{focus} function, sending a sequent calculus derivation to its \circeq-normal form in the focused calculus. In particular, this means that 𝖿𝗈𝖼𝗎𝗌\mathsf{focus} maps two \circeq-equivalent derivations to the same focused derivation. Similarly to the fully skew case, 𝖿𝗈𝖼𝗎𝗌\mathsf{focus} and 𝖾𝗆𝖻_𝖫\mathsf{emb}_{\_}\mathsf{L} establish a bijection between maps in the left-normal sequent calculus (up to \circeq) and its focused subsystem.

The left-normal focused calculus has less non-determinism than the fully skew focused calculus. The non-determinism of type (i) is not there: In phase 𝖫\mathsf{L}, 𝗌𝗐𝗂𝗍𝖼𝗁\mathsf{switch} cannot be applied unless the context is empty while 𝗉𝖺𝗌𝗌\mathsf{pass} only applies if it is non-empty. The non-determinism of type (ii) remains much like in the fully skew case except that there are two tensor right-rules, 𝖱\otimes\mathsf{R} and 𝖱2\otimes\mathsf{R}_{2}. In a choice that can lead to a completed derivation, we must be able to take |T|,|Γ|=|A||T|,|\Gamma|=|A| and |Δ|=|B||\Delta|=|B| in 𝖱\otimes\mathsf{R} or ()=|A|()=|A| and X,|Δ|=|B|X,|\Delta|=|B| in 𝖱2\otimes\mathsf{R}_{2}. There may be multiple such choices if in the middle of the context we have closed formulae.

In the free left-normal skew monoidal category, we have 𝗂𝖽αρλ:X(𝖨Y)X(𝖨Y)\mathsf{id}\doteq\alpha\circ\rho\otimes\lambda:X\otimes(\mathsf{I}\otimes Y)\Longrightarrow X\otimes(\mathsf{I}\otimes Y):

𝗂𝖽𝗂𝖽λ1𝗂𝖽λ𝗂𝖽λ1(𝗂𝖽λαρ𝗂𝖽)𝗂𝖽λαρλ\mathsf{id}\doteq\mathsf{id}\otimes\lambda^{-1}\circ\mathsf{id}\otimes\lambda\doteq\mathsf{id}\otimes\lambda^{-1}\circ(\mathsf{id}\otimes\lambda\circ\alpha\circ\rho\otimes\mathsf{id})\circ\mathsf{id}\otimes\lambda\doteq\alpha\circ\rho\otimes\lambda

This collapse is reflected by there being exactly one focused derivation of the sequent X(𝖨Y)𝖫X(𝖨Y)X\otimes(\mathsf{I}\otimes Y)\mid~{}\overset{}{\longrightarrow_{\mathsf{L}}}X\otimes(\mathsf{I}\otimes Y). Compare this with the two distinct derivations of the sequent in the fully skew focused calculus, displayed in (8). In the left-normal focused calculus, we are forced to use 𝗉𝖺𝗌𝗌\mathsf{pass}, we cannot apply 𝗌𝗐𝗂𝗍𝖼𝗁\mathsf{switch} since the stoup is empty but the context is not.

𝖺𝗑X𝖱X𝖨𝖱𝖱𝖨𝖺𝗑Y𝖱Y𝖱2Y𝖱𝖨Y𝗌𝗐𝗂𝗍𝖼𝗁Y𝖫𝖨Y𝗉𝖺𝗌𝗌Y𝖫𝖨Y𝖨𝖫𝖨Y𝖫𝖨Y𝖫𝖨Y𝖫𝖨Y𝗉𝖺𝗌𝗌𝖨Y𝖫𝖨Y𝖱X𝖨Y𝖱X(𝖨Y)𝗌𝗐𝗂𝗍𝖼𝗁X𝖨Y𝖫X(𝖨Y)𝖫X(𝖨Y)𝖫X(𝖨Y)\small X\otimes(\mathsf{I}\otimes Y)\mid~{}\overset{}{\longrightarrow_{\mathsf{L}}}X\otimes(\mathsf{I}\otimes Y)X\mid\mathsf{I}\otimes Y\overset{}{\longrightarrow_{\mathsf{L}}}X\otimes(\mathsf{I}\otimes Y)X\mid\mathsf{I}\otimes Y\overset{}{\longrightarrow_{\mathsf{R}}}X\otimes(\mathsf{I}\otimes Y)\lx@proof@logical@and X\mid~{}\overset{}{\longrightarrow_{\mathsf{R}}}X{-}\mid\mathsf{I}\otimes Y\overset{}{\longrightarrow_{\mathsf{L}}}\mathsf{I}\otimes Y\mathsf{I}\otimes Y\mid~{}\overset{}{\longrightarrow_{\mathsf{L}}}\mathsf{I}\otimes Y\mathsf{I}\mid Y\overset{}{\longrightarrow_{\mathsf{L}}}\mathsf{I}\otimes Y{-}\mid Y\overset{}{\longrightarrow_{\mathsf{L}}}\mathsf{I}\otimes YY\mid~{}\overset{}{\longrightarrow_{\mathsf{L}}}\mathsf{I}\otimes YY\mid~{}\overset{}{\longrightarrow_{\mathsf{R}}}\mathsf{I}\otimes Y\lx@proof@logical@and{-}\mid~{}\overset{}{\longrightarrow_{\mathsf{R}}}\mathsf{I}Y\mid~{}\overset{}{\longrightarrow_{\mathsf{R}}}Y

The left-normal sequent calculus admits also a stoup-free presentation. This is because the rule 𝗉𝖺𝗌𝗌\mathsf{pass} is invertible. Here we only show the focused subsystem of the stoup-free variant. In phase 𝖫\mathsf{L}, sequents are of the form Γ𝖫C\Gamma\longrightarrow_{\mathsf{L}}C, where Γ\Gamma is a general list of formulae. In phase 𝖱\mathsf{R}, sequents take the form Λ𝖱C\Lambda\longrightarrow_{\mathsf{R}}C, where Λ\Lambda is an irreducible list of formulae, meaning that it is either empty or the formula in its head is an atom.

Γ𝖫C𝖨𝖫𝖨,Γ𝖫CA,B,Γ𝖫C𝖫AB,Γ𝖫CΛ𝖱C𝗌𝗐𝗂𝗍𝖼𝗁Λ𝖫C𝖺𝗑X𝖱X𝖨𝖱𝖱𝖨Λ𝖱AΔ𝖫B𝖱Λ,Δ𝖱AB\small\begin{array}[]{c}\mathsf{I},\Gamma\longrightarrow_{\mathsf{L}}C\Gamma\longrightarrow_{\mathsf{L}}C\qquad A\otimes B,\Gamma\longrightarrow_{\mathsf{L}}CA,B,\Gamma\longrightarrow_{\mathsf{L}}C\qquad\Lambda\longrightarrow_{\mathsf{L}}C\Lambda\longrightarrow_{\mathsf{R}}C\\[6.0pt] X\longrightarrow_{\mathsf{R}}X\qquad~{}\longrightarrow_{\mathsf{R}}\mathsf{I}\qquad\Lambda,\Delta\longrightarrow_{\mathsf{R}}A\otimes B\lx@proof@logical@and\Lambda\longrightarrow_{\mathsf{R}}A\Delta\longrightarrow_{\mathsf{L}}B\end{array}

Derivations of a sequent SΓ𝖫CS\mid\Gamma\overset{}{\longrightarrow_{\mathsf{L}}}C are in a bijection with derivations of S,Γ𝖫C\llbracket S\langle\langle\,,\Gamma\longrightarrow_{\mathsf{L}}C where S\llbracket S\langle\langle\, is the interpretation of a stoup as a formula introduced in Section 2.2.

3.2 Right-Normality

The free right-normal skew monoidal category 𝐅𝐬𝐤𝖱𝖭(𝖠𝗍)\mathbf{Fsk}_{\mathsf{RN}}(\mathsf{At}) on a set 𝖠𝗍\mathsf{At} is obtained by extending the grammar of derivations in the fully skew categorical calculus (1) with a new inference rule:

ρ1A𝖨A\small A\otimes\mathsf{I}\Longrightarrow A

and extending the equivalence of derivations (2) with two new equations: ρρ1𝗂𝖽\rho\circ\rho^{-1}\doteq\mathsf{id} and ρ1ρ𝗂𝖽\rho^{-1}\circ\rho\doteq\mathsf{id}.

An equivalent sequent calculus presentation of 𝐅𝐬𝐤𝖱𝖭(𝖠𝗍)\mathbf{Fsk}_{\mathsf{RN}}(\mathsf{At}) is realized by adding additional left rules for 𝖨\mathsf{I} and \otimes to the fully skew sequent calculus (3), relaxing the condition for deleting the unit and decomposing tensors in the antecedent:

SΓ_0,Γ_1C𝖨𝖢Γ_0SΓ_0,𝖨,Γ_1CSΓ_0,J,J,Γ_1C𝖢Γ_0cSΓ_0,JJ,Γ_1C\small S\mid\Gamma_{\_}0,\mathsf{I},\Gamma_{\_}1\longrightarrow CS\mid\Gamma_{\_}0,\Gamma_{\_}1\longrightarrow C\qquad S\mid\Gamma_{\_}0,J\otimes J^{\prime},\Gamma_{\_}1\longrightarrow CS\mid\Gamma_{\_}0,J,J^{\prime},\Gamma_{\_}1\longrightarrow C

Here and later, JJ and JJ^{\prime} stand for closed formulae. The introduction of 𝖨𝖢\mathsf{IC} makes it possible to derive a sequent corresponding to ρ1:A𝖨A\rho^{-1}:A\otimes\mathsf{I}\Longrightarrow A for any AA, including A=XA=X:

𝖺𝗑AA𝖨𝖢()A𝖨A𝖫A𝖨A\small A\otimes\mathsf{I}\mid~{}\longrightarrow AA\mid\mathsf{I}\longrightarrow AA\mid~{}\longrightarrow A

The rule 𝖢c\otimes\mathsf{C}^{\mathrm{c}} is needed since it is important to allow deletion in the context of any closed formula and not just 𝖨\mathsf{I}: we need to be able to derive, e.g., the sequent X𝖨𝖨XX\mid\mathsf{I}\otimes\mathsf{I}\longrightarrow X. Analogously, in the left-normal sequent calculus of Section 3.1, it was important to be able to derive the sequent X(𝖨𝖨)XX\mid~{}\longrightarrow(\mathsf{I}\otimes\mathsf{I})\otimes X, which was possible since the first premise of the inference rule 𝖱2\otimes\mathsf{R}_{2} is a sequent A{-}\mid~{}\longrightarrow A, which is derivable precisely when AA is closed.

Equivalence of derivations in the sequent calculus is the least congruence \circeq induced by the equations in (4) together with the following equations:

𝗉𝖺𝗌𝗌(𝖨𝖫f)𝖨𝖢()f(for f:ΓC)𝖨𝖢Γ_0(𝖨𝖢Γ_0,Γ_1f)𝖨𝖢Γ_0,𝖨,Γ_1(𝖨𝖢Γ_0f)(for f:SΓ_0,Γ_1,Γ_2C)𝖢Γ_0c(𝖨𝖢Γ_0,J,J,Γ_1f)𝖨𝖢Γ_0,JJ,Γ_1(𝖢Γ_0cf)(for f:SΓ_0,J,J,Γ_1,Γ_2C)𝗉𝖺𝗌𝗌(𝖨𝖢Γ_0f)𝖨𝖢A,Γ_0(𝗉𝖺𝗌𝗌f)(for f:AΓ_0,Γ_1C)𝖨𝖫(𝖨𝖢Γ_0f)𝖨𝖢Γ_0(𝖨𝖫f)(for f:Γ_0,Γ_1C)𝖫(𝖨𝖢B,Γ_0f)𝖨𝖢Γ_0(𝖫f)(for f:AB,Γ_0,Γ_1C)𝖱(𝖨𝖢Γ_0f,g)𝖨𝖢Γ_0(𝖱(f,g))(for f:SΓ_0,Γ_1A,g:ΔB)𝖱(f,𝖨𝖢Δ_0g)𝖨𝖢Γ,Δ_0(𝖱(f,g))(for f:SΓA,g:Δ_0,Δ_1B)\small\begin{array}[]{c@{\qquad}l}\mathsf{pass}\;(\mathsf{I}\mathsf{L}\;f)\circeq\mathsf{IC}_{()}\;f&(\text{for }f:{-}\mid\Gamma\longrightarrow C)\\[12.0pt] \mathsf{IC}_{\Gamma_{\_}0}\;(\mathsf{IC}_{\Gamma_{\_}0,\Gamma_{\_}1}\;f)\circeq\mathsf{IC}_{\Gamma_{\_}0,\mathsf{I},\Gamma_{\_}1}\;(\mathsf{IC}_{\Gamma_{\_}0}\;f)&(\text{for }f:S\mid\Gamma_{\_}0,\Gamma_{\_}1,\Gamma_{\_}2\longrightarrow C)\\[6.0pt] \otimes\mathsf{C}^{\mathrm{c}}_{\Gamma_{\_}0}\;(\mathsf{IC}_{\Gamma_{\_}0,J,J^{\prime},\Gamma_{\_}1}\;f)\circeq\mathsf{IC}_{\Gamma_{\_}0,J\otimes J^{\prime},\Gamma_{\_}1}\;(\otimes\mathsf{C}^{\mathrm{c}}_{\Gamma_{\_}0}\;f)&(\text{for }f:S\mid\Gamma_{\_}0,J,J^{\prime},\Gamma_{\_}1,\Gamma_{\_}2\longrightarrow C)\\[6.0pt] \mathsf{pass}\;(\mathsf{IC}_{\Gamma_{\_}0}\;f)\circeq\mathsf{IC}_{A,\Gamma_{\_}0}\;(\mathsf{pass}\;f)&(\text{for }f:A\mid\Gamma_{\_}0,\Gamma_{\_}1\longrightarrow C)\\[6.0pt] \mathsf{I}\mathsf{L}\;(\mathsf{IC}_{\Gamma_{\_}0}\;f)\circeq\mathsf{IC}_{\Gamma_{\_}0}\;(\mathsf{I}\mathsf{L}\;f)&(\text{for }f:{-}\mid\Gamma_{\_}0,\Gamma_{\_}1\longrightarrow C)\\[6.0pt] \otimes\mathsf{L}\;(\mathsf{IC}_{B,\Gamma_{\_}0}\;f)\circeq\mathsf{IC}_{\Gamma_{\_}0}\;(\otimes\mathsf{L}\;f)&(\text{for }f:A\mid B,\Gamma_{\_}0,\Gamma_{\_}1\longrightarrow C)\\[6.0pt] \otimes\mathsf{R}\;(\mathsf{IC}_{\Gamma_{\_}0}\;f,g)\circeq\mathsf{IC}_{\Gamma_{\_}0}\;(\otimes\mathsf{R}\;(f,g))&(\text{for }f:S\mid\Gamma_{\_}0,\Gamma_{\_}1\longrightarrow A,\;g:{-}\mid\Delta\longrightarrow B)\\[6.0pt] \otimes\mathsf{R}\;(f,\mathsf{IC}_{\Delta_{\_}0}\;g)\circeq\mathsf{IC}_{\Gamma,\Delta_{\_}0}\;(\otimes\mathsf{R}\;(f,g))&(\text{for }f:S\mid\Gamma\longrightarrow A,\;g:{-}\mid\Delta_{\_}0,\Delta_{\_}1\longrightarrow B)\end{array} (10)

plus the same number of similar equations for 𝖢c\otimes\mathsf{C}^{\mathrm{c}}. The only difference is in the 1st equation, with 𝖫\otimes\mathsf{L} instead of 𝖨𝖫\mathsf{I}\mathsf{L} in the left-hand side, in which an extra application of 𝗉𝖺𝗌𝗌\mathsf{pass} in the right-hand side is required for the equation to be well-typed:

𝗉𝖺𝗌𝗌(𝖫f)𝖢()c(𝗉𝖺𝗌𝗌f)(for f:JJ,ΓC)\small\mathsf{pass}\;(\otimes\mathsf{L}\;f)\circeq\otimes\mathsf{C}^{\mathrm{c}}_{()}\;(\mathsf{pass}\;f)\qquad\qquad(\text{for }f:J\mid J^{\prime},\Gamma\longrightarrow C) (11)

The two cut rules in (5) are admissible in the right-normal sequent calculus. In this case, they need to be defined by mutual induction with another cut rule

AΓASΔ_0,A,Δ_1C𝖼𝖼𝗎𝗍𝖥𝗆𝖺SΔ_0,A,Γ,Δ_1C\small S\mid\Delta_{\_}0,A^{\prime},\Gamma,\Delta_{\_}1\longrightarrow C\lx@proof@logical@and A^{\prime}\mid\Gamma\longrightarrow AS\mid\Delta_{\_}0,A,\Delta_{\_}1\longrightarrow C

In the fully skew sequent calculus of Section 2.2, the rule 𝖼𝖼𝗎𝗍𝖥𝗆𝖺\mathsf{ccut}_{\mathsf{Fma}} is definable by first applying 𝗉𝖺𝗌𝗌\mathsf{pass} to the first premise and then using 𝖼𝖼𝗎𝗍\mathsf{ccut}. In the right-normal case, we have to define it simultaneously with 𝗌𝖼𝗎𝗍\mathsf{scut} and 𝖼𝖼𝗎𝗍\mathsf{ccut} because of the added cases for the added primitive rules. The definition of 𝖼𝖼𝗎𝗍𝖥𝗆𝖺\mathsf{ccut}_{\mathsf{Fma}} relies on a lemma, stating that, if a sequent AΓJA\mid\Gamma\longrightarrow J is derivable, with JJ a closed formula, then both AA and all the formulae in Γ\Gamma are also closed.

The interpretation 𝗌𝗈𝗎𝗇𝖽\mathsf{sound} of fully skew sequent calculus derivations as categorical calculus derivations extends to the right-normal case. Given f:SΓ_0,Γ_1Cf:S\mid\Gamma_{\_}0,\Gamma_{\_}1\longrightarrow C, define 𝗌𝗈𝗎𝗇𝖽(𝖨𝖢Γ_0f)\mathsf{sound}\;(\mathsf{IC}_{\Gamma_{\_}0}\;f) as:

ρ1SΓ_0𝖨SΓ_0Γ_1SΓ_0𝖨Γ_1SΓ_0Γ_1SΓ_0,Γ_1𝗌𝗈𝗎𝗇𝖽fCSΓ_0Γ_1C𝖼𝗈𝗆𝗉SΓ_0𝖨Γ_1CSΓ_0,𝖨,Γ_1C\small\llbracket S\mid\Gamma_{\_}0,\mathsf{I},\Gamma_{\_}1\rrbracket\Longrightarrow C\llbracket\llbracket S\mid\Gamma_{\_}0\rrbracket\otimes\mathsf{I}\mid\Gamma_{\_}1\rrbracket\Longrightarrow C\lx@proof@logical@and\llbracket\llbracket S\mid\Gamma_{\_}0\rrbracket\otimes\mathsf{I}\mid\Gamma_{\_}1\rrbracket\Longrightarrow\llbracket\llbracket S\mid\Gamma_{\_}0\rrbracket\mid\Gamma_{\_}1\rrbracket\llbracket S\mid\Gamma_{\_}0\rrbracket\otimes\mathsf{I}\Longrightarrow\llbracket S\mid\Gamma_{\_}0\rrbracket\llbracket\llbracket S\mid\Gamma_{\_}0\rrbracket\mid\Gamma_{\_}1\rrbracket\Longrightarrow C\llbracket S\mid\Gamma_{\_}0,\Gamma_{\_}1\rrbracket\overset{\mathsf{sound}\,f}{\Longrightarrow}C

The double-line rules correspond to applications of the provable equality SΓ,Δ=SΓΔ\llbracket S\mid\Gamma,\Delta\rrbracket=\llbracket\llbracket S\mid\Gamma\rrbracket\mid\Delta\rrbracket, while \llbracket~{}\mid~{}\rrbracket is the inference rule introduced in (6).

Given f:SΓ_0,J,J,Γ_1Cf:S\mid\Gamma_{\_}0,J,J^{\prime},\Gamma_{\_}1\longrightarrow C, define 𝗌𝗈𝗎𝗇𝖽(𝖢Γ_0cf)\mathsf{sound}\;(\otimes\mathsf{C}^{\mathrm{c}}_{\Gamma_{\_}0}\;f) as:

αc1SΓ_0(JJ)(SΓ_0J)JΓ_1SΓ_0(JJ)Γ_1(SΓ_0J)JΓ_1SΓ_0,J,J,Γ_1𝗌𝗈𝗎𝗇𝖽fC(SΓ_0J)JΓ_1C𝖼𝗈𝗆𝗉SΓ_0(JJ)Γ_1CSΓ_0,JJ,Γ_1C\small\llbracket S\mid\Gamma_{\_}0,J\otimes J^{\prime},\Gamma_{\_}1\rrbracket\Longrightarrow C\llbracket\llbracket S\mid\Gamma_{\_}0\rrbracket\otimes(J\otimes J^{\prime})\mid\Gamma_{\_}1\rrbracket\Longrightarrow C\lx@proof@logical@and\llbracket\llbracket S\mid\Gamma_{\_}0\rrbracket\otimes(J\otimes J^{\prime})\mid\Gamma_{\_}1\rrbracket\Longrightarrow\llbracket(\llbracket S\mid\Gamma_{\_}0\rrbracket\otimes J)\otimes J^{\prime}\mid\Gamma_{\_}1\rrbracket\llbracket S\mid\Gamma_{\_}0\rrbracket\otimes(J\otimes J^{\prime})\Longrightarrow(\llbracket S\mid\Gamma_{\_}0\rrbracket\otimes J)\otimes J^{\prime}\llbracket(\llbracket S\mid\Gamma_{\_}0\rrbracket\otimes J)\otimes J^{\prime}\mid\Gamma_{\_}1\rrbracket\Longrightarrow C\llbracket S\mid\Gamma_{\_}0,J,J^{\prime},\Gamma_{\_}1\rrbracket\overset{\mathsf{sound}\,f}{\Longrightarrow}C (12)

The derivation αc1:A(JJ)(AJ)J\alpha^{-1}_{\mathrm{c}}:A\otimes(J\otimes J^{\prime})\Longrightarrow(A\otimes J)\otimes J^{\prime} is the inverse of a restricted form of the associator α\alpha in which the second and third formula are closed. It is defined and shown to invert α\alpha by induction on JJ^{\prime} (distinguishing the two cases of JJ^{\prime} being 𝖨\mathsf{I} and the tensor of two closed formulae).

Let us mention that, instead of 𝖨𝖢\mathsf{IC} and 𝖢c\otimes\mathsf{C}^{\mathrm{c}}, one could of course choose to work with one “big-step” inference rule

SΓ_0,Γ_1C𝖨_Γ_0SΓ_0,J,Γ_1C\small S\mid\Gamma_{\_}0,J,\Gamma_{\_}1\longrightarrow CS\mid\Gamma_{\_}0,\Gamma_{\_}1\longrightarrow C

but we prefer the “small-step” 𝖨𝖢\mathsf{IC} and 𝖢c\otimes\mathsf{C}^{\mathrm{c}} especially because, in the situation of simultaneous right- and associative-normality, 𝖢c\otimes\mathsf{C}^{\mathrm{c}} is subsumed by the 𝖢\otimes\mathsf{C} rule that we will introduce in the next section.

Again, the congruence relation \circeq read as a term rewrite system is weakly confluent and strongly normalizing, and normal-form derivations in the sequent calculus can be described as derivations in a focused subsystem. Sequents in the focused calculus are annotated by three possible phase annotations. Phases 𝖫\mathsf{L} and 𝖱\mathsf{R} are as in the fully skew focused calculus (7). In the new phase 𝖢\mathsf{C}, sequents are of the form SΩ ⋮ Γ𝖢CS\mid\Omega\mathbin{\raisebox{-1.5pt}[0.5pt]{\hskip 1.0pt\vdots\hskip 1.0pt}}\Gamma\overset{}{\longrightarrow_{\mathsf{C}}}C, where the context is split in two parts: an anteroom Ω\Omega and a passive context Γ\Gamma. In phase 𝖢\mathsf{C}, each formula DD in the anteroom is inspected, starting from the right end of the anteroom. In case DD is the unit, then it is removed from the anteroom. If DD is a tensor JJJ\otimes J^{\prime}, with JJ and JJ^{\prime} closed formulae, then it is decomposed and JJ^{\prime} is inspected next. Otherwise, DD is moved to the left end of the passive context.

SΩ ⋮ Γ𝖢C𝖨𝖢SΩ,𝖨 ⋮ Γ𝖢CSΩ,J,J ⋮ Γ𝖢C𝖢cSΩ,JJ ⋮ Γ𝖢CSΩ ⋮ D,Γ𝖢CDJ𝗆𝗈𝗏𝖾SΩ,D ⋮ Γ𝖢CSΓ𝖫C𝗌𝗐𝗂𝗍𝖼𝗁𝖫𝖢S ⋮ Γ𝖢CAΓ𝖫C𝗉𝖺𝗌𝗌A,Γ𝖫CΓ𝖫C𝖨𝖫𝖨Γ𝖫CAB ⋮ Γ𝖢C𝖫ABΓ𝖫CTΓ𝖱C𝗌𝗐𝗂𝗍𝖼𝗁𝖱𝖫TΓ𝖫C𝖺𝗑X𝖱X𝖨𝖱𝖱𝖨TΓ𝖱AΔ𝖫B𝖱TΓ,Δ𝖱AB\small\begin{array}[]{c}S\mid\Omega,\mathsf{I}\mathbin{\raisebox{-1.5pt}[0.5pt]{\hskip 1.0pt\vdots\hskip 1.0pt}}\Gamma\overset{}{\longrightarrow_{\mathsf{C}}}CS\mid\Omega\mathbin{\raisebox{-1.5pt}[0.5pt]{\hskip 1.0pt\vdots\hskip 1.0pt}}\Gamma\overset{}{\longrightarrow_{\mathsf{C}}}C\quad S\mid\Omega,J\otimes J^{\prime}\mathbin{\raisebox{-1.5pt}[0.5pt]{\hskip 1.0pt\vdots\hskip 1.0pt}}\Gamma\overset{}{\longrightarrow_{\mathsf{C}}}CS\mid\Omega,J,J^{\prime}\mathbin{\raisebox{-1.5pt}[0.5pt]{\hskip 1.0pt\vdots\hskip 1.0pt}}\Gamma\overset{}{\longrightarrow_{\mathsf{C}}}C\quad S\mid\Omega,D\mathbin{\raisebox{-1.5pt}[0.5pt]{\hskip 1.0pt\vdots\hskip 1.0pt}}\Gamma\overset{}{\longrightarrow_{\mathsf{C}}}C\lx@proof@logical@and S\mid\Omega\mathbin{\raisebox{-1.5pt}[0.5pt]{\hskip 1.0pt\vdots\hskip 1.0pt}}D,\Gamma\overset{}{\longrightarrow_{\mathsf{C}}}CD\not=J\quad S\mid~{}\mathbin{\raisebox{-1.5pt}[0.5pt]{\hskip 1.0pt\vdots\hskip 1.0pt}}\Gamma\overset{}{\longrightarrow_{\mathsf{C}}}CS\mid\Gamma\overset{}{\longrightarrow_{\mathsf{L}}}C\\[6.0pt] {-}\mid A,\Gamma\overset{}{\longrightarrow_{\mathsf{L}}}CA\mid\Gamma\overset{}{\longrightarrow_{\mathsf{L}}}C\quad\;\;\mathsf{I}\mid\Gamma\overset{}{\longrightarrow_{\mathsf{L}}}C{-}\mid\Gamma\overset{}{\longrightarrow_{\mathsf{L}}}C\quad\;\;A\otimes B\mid\Gamma\overset{}{\longrightarrow_{\mathsf{L}}}CA\mid B\mathbin{\raisebox{-1.5pt}[0.5pt]{\hskip 1.0pt\vdots\hskip 1.0pt}}\Gamma\overset{}{\longrightarrow_{\mathsf{C}}}C\quad\;\;T\mid\Gamma\overset{}{\longrightarrow_{\mathsf{L}}}CT\mid\Gamma\overset{}{\longrightarrow_{\mathsf{R}}}C\\[6.0pt] X\mid~{}\overset{}{\longrightarrow_{\mathsf{R}}}X\qquad{-}\mid~{}\overset{}{\longrightarrow_{\mathsf{R}}}\mathsf{I}\qquad T\mid\Gamma,\Delta\overset{}{\longrightarrow_{\mathsf{R}}}A\otimes B\lx@proof@logical@and T\mid\Gamma\overset{}{\longrightarrow_{\mathsf{R}}}A{-}\mid\Delta\overset{}{\longrightarrow_{\mathsf{L}}}B\end{array} (13)

All 𝖢\mathsf{C}-phase, 𝖫\mathsf{L}-phase and 𝖱\mathsf{R}-phase sequents in a derivation of a sequent SΩ ⋮ 𝖢CS\mid\Omega\mathbin{\raisebox{-1.5pt}[0.5pt]{\hskip 1.0pt\vdots\hskip 1.0pt}}~{}\overset{}{\longrightarrow_{\mathsf{C}}}C have the (passive) context free of closed formulae.

By dropping the phase annotations (also turning  ⋮  into a comma), we can define three functions 𝖾𝗆𝖻_𝖢\mathsf{emb}_{\_}{\mathsf{C}}, 𝖾𝗆𝖻_𝖫\mathsf{emb}_{\_}{\mathsf{L}} and 𝖾𝗆𝖻_𝖱\mathsf{emb}_{\_}{\mathsf{R}} embedding right-normal focused calculus derivations into the unfocused calculus. We can also define a normalization function 𝖿𝗈𝖼𝗎𝗌:SΩCSΩ ⋮ 𝖢C\mathsf{focus}:S\mid\Omega\longrightarrow C\to S\mid\Omega\mathbin{\raisebox{-1.5pt}[0.5pt]{\hskip 1.0pt\vdots\hskip 1.0pt}}~{}\overset{}{\longrightarrow_{\mathsf{C}}}C, which identifies \circeq-related derivations. The functions 𝖿𝗈𝖼𝗎𝗌\mathsf{focus} and 𝖾𝗆𝖻_𝖢\mathsf{emb}_{\_}\mathsf{C} (restricted to sequents whose passive context is empty) establish a bijection between the right-normal sequent calculus and its focused subsystem.

The central design element of this focused calculus, the anteroom, together with the associating organization of the phases, is due to Chaudhuri and Pfenning [9].

In the right-normal focused calculus, the type (i) non-determinism in phase 𝖫\mathsf{L} between the 𝗉𝖺𝗌𝗌\mathsf{pass} and 𝗌𝗐𝗂𝗍𝖼𝗁\mathsf{switch} rules is present. But the type (ii) non-determinism in phase 𝖱\mathsf{R} concerning the split of the context at 𝖱\otimes\mathsf{R} is inessential. Since the context cannot contain any closed formulae, at most one of the splits of the context into Γ\Gamma, Δ\Delta can lead to a complete derivation.

In the free right-normal skew monoidal category, we have 𝗂𝖽ρλα:(X𝖨)Y(X𝖨)Y\mathsf{id}\doteq\rho\otimes\lambda\circ\alpha:(X\otimes\mathsf{I})\otimes Y\Longrightarrow(X\otimes\mathsf{I})\otimes Y:

𝗂𝖽ρ𝗂𝖽ρ1𝗂𝖽ρ𝗂𝖽(𝗂𝖽λαρ𝗂𝖽)ρ1𝗂𝖽(ρλ)α\mathsf{id}\doteq\rho\otimes\mathsf{id}\circ\rho^{-1}\otimes\mathsf{id}\doteq\rho\otimes\mathsf{id}\circ(\mathsf{id}\otimes\lambda\circ\alpha\circ\rho\otimes\mathsf{id})\circ\rho^{-1}\otimes\mathsf{id}\doteq(\rho\otimes\lambda)\circ\alpha

There is accordingly a single focused derivation of the sequent (X𝖨)Y ⋮ 𝖢(X𝖨)Y(X\otimes\mathsf{I})\otimes Y\mid~{}\mathbin{\raisebox{-1.5pt}[0.5pt]{\hskip 1.0pt\vdots\hskip 1.0pt}}~{}\overset{}{\longrightarrow_{\mathsf{C}}}(X\otimes\mathsf{I})\otimes Y. Compare this with the two distinct derivations of the sequent in the fully skew focused calculus, displayed in (9). In the right-normal focused calculus, the unit is removed from the antecedent (more precisely, from the anteroom) with an application of the 𝖨𝖢\mathsf{IC} rule, so the 𝖱\otimes\mathsf{R} does not have to choose in which premise to send it.

𝖺𝗑X𝖱X𝖨𝖱𝖱𝖨𝗌𝗐𝗂𝗍𝖼𝗁𝖱𝖫𝖫𝖨𝖱X𝖱X𝖨𝖺𝗑Y𝖱Y𝗌𝗐𝗂𝗍𝖼𝗁𝖱𝖫Y𝖫Y𝗉𝖺𝗌𝗌Y𝖫Y𝖱XY𝖱(X𝖨)Y𝗌𝗐𝗂𝗍𝖼𝗁𝖱𝖫XY𝖫(X𝖨)Y𝗌𝗐𝗂𝗍𝖼𝗁𝖫𝖢X ⋮ Y𝖢(X𝖨)Y𝖨𝖢X𝖨 ⋮ Y𝖢(X𝖨)Y𝖫X𝖨Y𝖫(X𝖨)Y𝗌𝗐𝗂𝗍𝖼𝗁𝖫𝖢X𝖨 ⋮ Y𝖢(X𝖨)Y𝗆𝗈𝗏𝖾X𝖨Y ⋮ 𝖢(X𝖨)Y𝖫(X𝖨)Y𝖫(X𝖨)Y𝗌𝗐𝗂𝗍𝖼𝗁𝖫𝖢(X𝖨)Y ⋮ 𝖢(X𝖨)Y\small(X\otimes\mathsf{I})\otimes Y\mid~{}\mathbin{\raisebox{-1.5pt}[0.5pt]{\hskip 1.0pt\vdots\hskip 1.0pt}}~{}\overset{}{\longrightarrow_{\mathsf{C}}}(X\otimes\mathsf{I})\otimes Y(X\otimes\mathsf{I})\otimes Y\mid~{}\overset{}{\longrightarrow_{\mathsf{L}}}(X\otimes\mathsf{I})\otimes YX\otimes\mathsf{I}\mid Y\mathbin{\raisebox{-1.5pt}[0.5pt]{\hskip 1.0pt\vdots\hskip 1.0pt}}~{}\overset{}{\longrightarrow_{\mathsf{C}}}(X\otimes\mathsf{I})\otimes YX\otimes\mathsf{I}\mid~{}\mathbin{\raisebox{-1.5pt}[0.5pt]{\hskip 1.0pt\vdots\hskip 1.0pt}}Y\overset{}{\longrightarrow_{\mathsf{C}}}(X\otimes\mathsf{I})\otimes YX\otimes\mathsf{I}\mid Y\overset{}{\longrightarrow_{\mathsf{L}}}(X\otimes\mathsf{I})\otimes YX\mid\mathsf{I}\mathbin{\raisebox{-1.5pt}[0.5pt]{\hskip 1.0pt\vdots\hskip 1.0pt}}Y\overset{}{\longrightarrow_{\mathsf{C}}}(X\otimes\mathsf{I})\otimes YX\mid~{}\mathbin{\raisebox{-1.5pt}[0.5pt]{\hskip 1.0pt\vdots\hskip 1.0pt}}Y\overset{}{\longrightarrow_{\mathsf{C}}}(X\otimes\mathsf{I})\otimes YX\mid Y\overset{}{\longrightarrow_{\mathsf{L}}}(X\otimes\mathsf{I})\otimes YX\mid Y\overset{}{\longrightarrow_{\mathsf{R}}}(X\otimes\mathsf{I})\otimes Y\lx@proof@logical@and X\mid~{}\overset{}{\longrightarrow_{\mathsf{R}}}X\otimes\mathsf{I}\lx@proof@logical@and X\mid~{}\overset{}{\longrightarrow_{\mathsf{R}}}X{-}\mid~{}\overset{}{\longrightarrow_{\mathsf{L}}}\mathsf{I}{-}\mid~{}\overset{}{\longrightarrow_{\mathsf{R}}}\mathsf{I}{-}\mid Y\overset{}{\longrightarrow_{\mathsf{L}}}YY\mid~{}\overset{}{\longrightarrow_{\mathsf{L}}}YY\mid~{}\overset{}{\longrightarrow_{\mathsf{R}}}Y

3.3 Associative-Normality

The free associative-normal skew monoidal category 𝐅𝐬𝐤𝖠𝖭(𝖠𝗍)\mathbf{Fsk}_{\mathsf{AN}}(\mathsf{At}) on a set 𝖠𝗍\mathsf{At} is obtained by extending the grammar of derivations in the fully skew categorical calculus (1) with a new inference rule:

α1A(BC)(AB)C\small A\otimes(B\otimes C)\Longrightarrow(A\otimes B)\otimes C

and extending the equivalence of derivations (2) with two new equations: αα1𝗂𝖽\alpha\circ\alpha^{-1}\doteq\mathsf{id} and α1α𝗂𝖽\alpha^{-1}\circ\alpha\doteq\mathsf{id}.

The associative-normal sequent calculus is obtained by adding to (3) a new logical left rule for the tensor, relaxing the condition for decomposing a formula ABA\otimes B in the antecedent:

SΓ_0,A,B,Γ_1C𝖢Γ_0SΓ_0,AB,Γ_1C\small S\mid\Gamma_{\_}0,A\otimes B,\Gamma_{\_}1\longrightarrow CS\mid\Gamma_{\_}0,A,B,\Gamma_{\_}1\longrightarrow C

Including the rule 𝖢\otimes\mathsf{C} in the calculus makes it possible to derive the sequent corresponding to α1:A(BC)(AB)C\alpha^{-1}:A\otimes(B\otimes C)\Longrightarrow(A\otimes B)\otimes C:

𝖺𝗑AA𝖺𝗑BB𝗉𝖺𝗌𝗌BB𝖱ABAB𝖺𝗑CC𝗉𝖺𝗌𝗌CC𝖱AB,C(AB)C𝖢()ABC(AB)C𝖫A(BC)(AB)C\small A\otimes(B\otimes C)\mid~{}\longrightarrow(A\otimes B)\otimes CA\mid B\otimes C\longrightarrow(A\otimes B)\otimes CA\mid B,C\longrightarrow(A\otimes B)\otimes C\lx@proof@logical@and A\mid B\longrightarrow A\otimes B\lx@proof@logical@and A\mid~{}\longrightarrow A{-}\mid B\longrightarrow BB\mid~{}\longrightarrow B{-}\mid C\longrightarrow CC\mid~{}\longrightarrow C

We do not include here all the new equations that need to be added to the ones in (4) as generators of the least congruence \circeq. They are obtained from the equalities in (10) (except for the 1st and 2rd) by replacing 𝖨𝖢\mathsf{IC} and 𝖢c\otimes\mathsf{C}^{\mathrm{c}} with 𝖢\otimes\mathsf{C} and the equation (11) by replacing 𝖢c\otimes\mathsf{C}^{\mathrm{c}} with 𝖢\otimes\mathsf{C}.

The cut rules in (5) are also admissible in the associative-normal sequent calculus. In this case, they need to be defined by mutual induction with a third cut rule:

SΓASΔ_0,A,Δ_1C𝖼𝖼𝗎𝗍𝖲𝗍𝗉SΔ_0,S,Γ,Δ_1C\small S\mid\Delta_{\_}0,\llbracket S^{\prime}\langle\langle\,,\Gamma,\Delta_{\_}1\longrightarrow C\lx@proof@logical@and S^{\prime}\mid\Gamma\longrightarrow AS\mid\Delta_{\_}0,A,\Delta_{\_}1\longrightarrow C

The definition of 𝖼𝖼𝗎𝗍𝖲𝗍𝗉\mathsf{ccut}_{\mathsf{Stp}} relies on an additional admissible rule that is a restricted form of the 𝖨𝖢\mathsf{IC} rule in the right-normal sequent calculus: a unit in the context can be removed, provided that the part of the context on its right is non-empty.

SΓ_0,B,Γ_1C𝖨𝖢Γ_0cSΓ_0,𝖨,B,Γ_1C\small S\mid\Gamma_{\_}0,\mathsf{I},B,\Gamma_{\_}1\longrightarrow CS\mid\Gamma_{\_}0,B,\Gamma_{\_}1\longrightarrow C

The case of the function 𝗌𝗈𝗎𝗇𝖽\mathsf{sound} for the new inference rule 𝖢\otimes\mathsf{C} is defined as for the rule 𝖢c\otimes\mathsf{C}^{\mathrm{c}} in the right-normal sequent calculus, given in (12), with the closed formulae JJ and JJ^{\prime} replaced by arbitrary formulae, and the application αc1\alpha^{-1}_{\mathrm{c}} replaced by α1\alpha^{-1}.

We need not prove soundness for the rule 𝖨𝖢c\mathsf{IC}^{\mathrm{c}} since it is not primitive. But it is motivated by the presence in the fully skew categorical calculus already of a derivation (𝗂𝖽λ)α:(A𝖨)BAB(\mathsf{id}\otimes\lambda)\circ\alpha:(A\otimes\mathsf{I})\otimes B\Longrightarrow A\otimes B that, by (m2), post-inverts ρ𝗂𝖽\rho\otimes\mathsf{id}.

An equivalent focused subsystem is obtained similarly to the right-normal case. It is in fact the same as the focused calculus in (13) with the rule 𝖨𝖢\mathsf{IC} removed, the rule 𝖢c\otimes\mathsf{C}^{\mathrm{c}} replaced by 𝖢\otimes\mathsf{C} and the rule 𝗆𝗈𝗏𝖾\mathsf{move} modified accordingly. If the rightmost formula DD in the anteroom is a tensor ABA\otimes B, then it is decomposed and BB is inspected next. Otherwise, DD is moved to the left end of the passive context.

SΩ,A,B ⋮ Γ𝖢C𝖢SΩ,AB ⋮ Γ𝖢CSΩ ⋮ D,Γ𝖢CDAB𝗆𝗈𝗏𝖾SΩ,D ⋮ Γ𝖢C\small S\mid\Omega,A\otimes B\mathbin{\raisebox{-1.5pt}[0.5pt]{\hskip 1.0pt\vdots\hskip 1.0pt}}\Gamma\overset{}{\longrightarrow_{\mathsf{C}}}CS\mid\Omega,A,B\mathbin{\raisebox{-1.5pt}[0.5pt]{\hskip 1.0pt\vdots\hskip 1.0pt}}\Gamma\overset{}{\longrightarrow_{\mathsf{C}}}C\qquad S\mid\Omega,D\mathbin{\raisebox{-1.5pt}[0.5pt]{\hskip 1.0pt\vdots\hskip 1.0pt}}\Gamma\overset{}{\longrightarrow_{\mathsf{C}}}C\lx@proof@logical@and S\mid\Omega\mathbin{\raisebox{-1.5pt}[0.5pt]{\hskip 1.0pt\vdots\hskip 1.0pt}}D,\Gamma\overset{}{\longrightarrow_{\mathsf{C}}}CD\not=A\otimes B

All 𝖢\mathsf{C}-phase, 𝖫\mathsf{L}-phase and 𝖱\mathsf{R}-phase sequents in a derivation of a sequent SΩ ⋮ 𝖢CS\mid\Omega\mathbin{\raisebox{-1.5pt}[0.5pt]{\hskip 1.0pt\vdots\hskip 1.0pt}}~{}\overset{}{\longrightarrow_{\mathsf{C}}}C have the (passive) context free of formulae ABA\otimes B.

Similarly to the right-normal case discussed in Section 3.2, the associative-normal sequent calculus can be proved equivalent to its focused subsystem by means of two functions 𝖾𝗆𝖻_𝖢\mathsf{emb}_{\_}{\mathsf{C}} and 𝖿𝗈𝖼𝗎𝗌\mathsf{focus}.

Lack and Street [15] observed that the free associative-normal skew monoidal category on one generator 𝐅𝐬𝐤𝖠𝖭(1)\mathbf{Fsk}_{\mathsf{AN}}{(1)} is isomorphic to Δ_\Delta_{\_}\bot, the category of finite non-empty ordinals and first-element-and-order-preserving functions, and their main coherence theorem states that the canonical functor 𝐅𝐬𝐤(1)Δ_\mathbf{Fsk}{(1)}\to\Delta_{\_}\bot is faithful. This seems to imply that the embedding of the fully skew sequent calculus into the associative-normal sequent calculus is faithful, but we leave a direct proof of this fact to future work.

3.4 Multiple Normality Conditions

The additional inference rules and equations for the three normality aspects can be enabled simultaneously, to yield, e.g., a sequent calculus for the free simultaneous left-normal and right-normal skew monoidal category.

The following rules define a single focused sequent calculus that can handle any combination of the three normality aspects. It is parameterized in three flags lnln, rnrn and anan for left-, right- resp. associative normality. (Recall that JJ, JJ^{\prime} are metavariables for closed formulae.)

SΩ ⋮ Γ𝖢Crn𝖨𝖢SΩ,𝖨 ⋮ Γ𝖢CSΩ,A,B ⋮ Γ𝖢C(rnAB=JJ)an𝖢SΩ,AB ⋮ Γ𝖢CSΩ ⋮ D,Γ𝖢CrnDJanDAB𝗆𝗈𝗏𝖾SΩ,D ⋮ Γ𝖢CSΓ𝖫C𝗌𝗐𝗂𝗍𝖼𝗁𝖫𝖢S ⋮ Γ𝖢CAΓ𝖫C𝗉𝖺𝗌𝗌A,Γ𝖫CΓ𝖫C𝖨𝖫𝖨Γ𝖫CAB ⋮ Γ𝖢C𝖫ABΓ𝖫CTΓ𝖱ClnT=Γ=()𝗌𝗐𝗂𝗍𝖼𝗁𝖱𝖫TΓ𝖫C𝖺𝗑X𝖱X𝖨𝖱𝖱𝖨TΓ𝖱AΔ𝖫B𝖱TΓ,Δ𝖱AB𝖱AXΔ𝖱Bln𝖱2XΔ𝖱AB\small\begin{array}[]{c}S\mid\Omega,\mathsf{I}\mathbin{\raisebox{-1.5pt}[0.5pt]{\hskip 1.0pt\vdots\hskip 1.0pt}}\Gamma\overset{}{\longrightarrow_{\mathsf{C}}}C\lx@proof@logical@and S\mid\Omega\mathbin{\raisebox{-1.5pt}[0.5pt]{\hskip 1.0pt\vdots\hskip 1.0pt}}\Gamma\overset{}{\longrightarrow_{\mathsf{C}}}Crn\qquad S\mid\Omega,A\otimes B\mathbin{\raisebox{-1.5pt}[0.5pt]{\hskip 1.0pt\vdots\hskip 1.0pt}}\Gamma\overset{}{\longrightarrow_{\mathsf{C}}}C\lx@proof@logical@and S\mid\Omega,A,B\mathbin{\raisebox{-1.5pt}[0.5pt]{\hskip 1.0pt\vdots\hskip 1.0pt}}\Gamma\overset{}{\longrightarrow_{\mathsf{C}}}C(rn\wedge A\otimes B=J\otimes J^{\prime})\vee an\\[6.0pt] S\mid\Omega,D\mathbin{\raisebox{-1.5pt}[0.5pt]{\hskip 1.0pt\vdots\hskip 1.0pt}}\Gamma\overset{}{\longrightarrow_{\mathsf{C}}}C\lx@proof@logical@and S\mid\Omega\mathbin{\raisebox{-1.5pt}[0.5pt]{\hskip 1.0pt\vdots\hskip 1.0pt}}D,\Gamma\overset{}{\longrightarrow_{\mathsf{C}}}Crn\to D\not=Jan\to D\not=A\otimes B\qquad S\mid~{}\mathbin{\raisebox{-1.5pt}[0.5pt]{\hskip 1.0pt\vdots\hskip 1.0pt}}\Gamma\overset{}{\longrightarrow_{\mathsf{C}}}CS\mid\Gamma\overset{}{\longrightarrow_{\mathsf{L}}}C\\[6.0pt] {-}\mid A,\Gamma\overset{}{\longrightarrow_{\mathsf{L}}}CA\mid\Gamma\overset{}{\longrightarrow_{\mathsf{L}}}C\quad\mathsf{I}\mid\Gamma\overset{}{\longrightarrow_{\mathsf{L}}}C{-}\mid\Gamma\overset{}{\longrightarrow_{\mathsf{L}}}C\quad A\otimes B\mid\Gamma\overset{}{\longrightarrow_{\mathsf{L}}}CA\mid B\mathbin{\raisebox{-1.5pt}[0.5pt]{\hskip 1.0pt\vdots\hskip 1.0pt}}\Gamma\overset{}{\longrightarrow_{\mathsf{C}}}C\quad T\mid\Gamma\overset{}{\longrightarrow_{\mathsf{L}}}C\lx@proof@logical@and T\mid\Gamma\overset{}{\longrightarrow_{\mathsf{R}}}Cln\wedge T={-}\to\Gamma=()\\[6.0pt] X\mid~{}\overset{}{\longrightarrow_{\mathsf{R}}}X\quad{-}\mid~{}\overset{}{\longrightarrow_{\mathsf{R}}}\mathsf{I}\quad T\mid\Gamma,\Delta\overset{}{\longrightarrow_{\mathsf{R}}}A\otimes B\lx@proof@logical@and T\mid\Gamma\overset{}{\longrightarrow_{\mathsf{R}}}A{-}\mid\Delta\overset{}{\longrightarrow_{\mathsf{L}}}B\quad X\mid\Delta\overset{}{\longrightarrow_{\mathsf{R}}}A\otimes B\lx@proof@logical@and{-}\mid~{}\overset{}{\longrightarrow_{\mathsf{R}}}AX\mid\Delta\overset{}{\longrightarrow_{\mathsf{R}}}Bln\end{array}

In the case of simultaneous left- and right-normality (i.e., lnrnln\wedge rn), the non-determinism of type (i) in phase 𝖫\mathsf{L} is not present and the non-determinism of type (ii) in phase 𝖱\mathsf{R} is inessential as there cannot be any closed formulae in the context. Consequently, any sequent can have at most one focused derivation: the free simultaneously left- and right-normal skew-monoidal category is thin.

Laplaza [18] proved that the free skew semigroup category is thin (and this was reproved by Zeilberger [27]). We have now seen that this remains true also when a both left-normal and right-normal unit is freely added.

4 Conclusions and Future Work

We showed that, similarly to the free skew monoidal category and the free monoidal category, the free skew monoidal categories of different degrees of partial normality can be described as sequent calculi. These sequent calculi define logics weaker than the multiplicative fragment of the intuitionistic non-commutative linear logic. They enjoy cut elimination and they also admit focusing, a deductive description of a root-first proof search strategy that finds exactly one representative from each equivalence class of derivations.

We intend to continue this study by broadening its scope to fully skew and partially normal closed and monoidal closed categories and also prounital-closed categories (where the unit is present in a non-represented way). Skew closed categories (the skew variant of closed categories of Eilenberg and Kelly [10]) were first considered by Street [21], prounital-closed categories by Shulman [20, Rev. 49]. Zeilberger [26] used a thin variant of skew closed categories, which he called imploids, in his study of the relation between typing of linear lambda terms and flows on 3-valent graphs. In the recent work [25], we dissected the Eilenberg-Kelly theorem about adjoint monoidal and closed structures on a category, revisited by Street [21] for the skew situation, to establish it in the general partially normal case. Some surprising phenomena occur around skew closed categories, e.g., the free skew closed category on a set is left-normal, but this is lost when the tensor is added. We also want to study the proof theory of skew braided monoidal categories, as recently introduced by Bourke and Lack [7].

We have in this paper explained how the free skew monoidal category of each possible degree of partial normality can be described as a sequent calculus (a “logic”). This correspondence extends to non-free partially normal monoidal categories. But in this case, rather than inductively defining the maps and their equality, the inference rules and equations of the sequent calculus merely impose closure conditions on some homset predicate and some equality relation given upfront. One could compare a non-free category to a “theory” (a set of judgments closed under some inference rules) as opposed to a “logic” (the least set of judgments closed under them, i.e., the set of derivable judgments). Cut elimination (in the sense that a set of judgments closed under the inference rules adopted minus cut would necessarily be closed also under cut) cannot be expected, neither can focusing. Bourke and Lack [6] showed that skew monoidal categories are equivalent to representable skew multicategories, a weakening of representable multicategories [11]. In our previous work [24], we showed that the map constructors and equations of a (nullary-binary) representable skew multicategory are very close to and mutually definable with those of the sequent calculus for the corresponding skew monoidal category (viewed as a deductive calculus, the representable skew multicategory uses exactly the same sequent forms, but has the basic inference rules and equations chosen differently). We expect that partially normal skew monoidal categories can be analyzed in similar terms. Specifically, we hope that the correct variations of representable skew multicategories can be systematically derived in the framework of (op)fibrations of multicategories [12], adapted for skew multicategories.

Acknowledgments

T.U. was supported by the Icelandic Research Fund grant no. 196323-052 and the Estonian Ministry of Education and Research institutional research grant no. IUT33-13. N.V. was supported by the ESF funded Estonian IT Academy research measure (project 2014-2020.4.05.19-0001).

References

  • [1] V. M. Abrusci (1990): Non‐commutative intuitionistic linear logic. Math. Log. Quart. 36(4), pp. 297–318, 10.1002/malq.19900360405.
  • [2] T. Altenkirch, J. Chapman & T. Uustalu (2015): Monads need not be endofunctors. Log. Methods Comput. Sci. 11(1), article 3, 10.2168/lmcs-11(1:3).
  • [3] J.-M. Andreoli (1992): Logic programming with focusing proofs in linear logic. J. of Log. and Comput. 2(3), pp. 297–347, 10.1093/logcom/2.3.297.
  • [4] J. Bénabou (1963), Catégories avec multiplication. C. R. Acad. Sci. Paris 256, pp. 1887–1890. Available at http://gallica.bnf.fr/ark:/12148/bpt6k3208j/f1965.image.
  • [5] J. Bourke & S. Lack (2018): Free skew monoidal categories. J. Pure Appl. Alg. 222(10), pp. 3255–3281, 10.1016/j.jpaa.2017.12.006.
  • [6] J. Bourke & S. Lack (2018): Skew monoidal categories and skew multicategories. J. Alg. 506, pp. 237–266, 10.1016/j.jalgebra.2018.02.039.
  • [7] J. Bourke & S. Lack (2020): Braided skew monoidal categories. Theor. Appl. Categ., v. 35, n. 2, pp. 19–63. Available at http://www.tac.mta.ca/tac/volumes/35/2/35-02abs.html.
  • [8] M. Buckley, R. Garner, S. Lack & R. Street (2014): The Catalan simplicial set. Math. Proc. Cambridge Philos. Soc. 158(12), pp. 211–222, 10.1017/s0305004114000498.
  • [9] K. Chaudhuri & F. Pfenning (2005): Focusing the inverse method for linear logic. In L. Ong (ed.), Proc. of 19th Int. Wksh. on Computer Science Logic, CSL 2005, Lect. Notes in Comput. Sci. 3634, Springer, pp. 200–215, 10.1007/1153836315.
  • [10] S. Eilenberg & G. M. Kelly (1966): Closed categories. In S. Eilenberg, D. K. Harrison, S. Mac Lane & H. Röhl (eds.), Proc. of Conf. on Categorical Algebra (La Jolla, 1965), Springer, pp. 421–562, 10.1007/978-3-642-99902-4_22.
  • [11] C. Hermida (2000): Representable multicategories. Adv. Math. 151(2), pp. 164–225, 10.1006/aima.1999.1877.
  • [12] C. Hermida (2004): Fibrations for Abstract Multicategories. In G. Janelidze, B. Pareigis & W. Tholen, eds., Galois Theory, Hopf Algebras and Semiabelian Categories, Fields Inst. Commun. 43, Amer. Math. Soc., pp. 281–293.
  • [13] G. M. Kelly (1964): On MacLane’s conditions for coherence of natural associativities, commutativities, etc. J. Alg. 1(4), pp. 397–402, 10.1016/0021-8693(64)90018-3.
  • [14] S. Lack & R. Street (2012): Skew monoidales, skew warpings and quantum categories. Theor. Appl. Categ. 26, pp. 385–402. Available at http://www.tac.mta.ca/tac/volumes/26/15/26-15abs.html.
  • [15] S. Lack & R. Street (2014): Triangulations, orientals, and skew monoidal categories. Adv. Math. 258, pp. 351–396, 10.1016/j.aim.2014.03.003.
  • [16] J. Lambek (1958): The mathematics of sentence structure. Amer. Math. Monthly 65(3), pp. 154–170, 10.2307/2310058.
  • [17] J. Lambek (1961): On the calculus of syntactic types. In R. Jakobson (ed.), Structure of Language and its Mathematical Aspects 12, Amer. Math. Soc., pp. 166–178.
  • [18] M. L. Laplaza (1972): Coherence for associativity not an isomorphism. J. Pure Appl. Alg. 2(2), pp. 107–120, 10.1016/0022-4049(72)90016-3.
  • [19] S. Mac Lane (1963): Natural associativity and commutativity. Rice Univ. Stud. 49(4), pp. 28–46. Available at http://hdl.handle.net/1911/62865.
  • [20] U. Schreiber, M. Shulman et al. (2009): Closed categories. ncatlab article. (Rev. 49 was by M. Shulman, May 2018. Current version is rev. 61 from Jan. 2020) https://ncatlab.org/nlab/show/closed+category
  • [21] R. Street (2013): Skew-closed categories. J. Pure Appl. Alg. 217(6), pp. 973–988, 10.1016/j.jpaa.2012.09.020.
  • [22] K. Szlachányi (2012): Skew-monoidal categories and bialgebroids. Adv. Math. 231(3–4), pp. 1694–1730, 10.1016/j.aim.2012.06.027.
  • [23] T. Uustalu (2014): Coherence for skew-monoidal categories. In P. Levy, N. Krishnaswami (eds.), Proc. of 5th Wksh. on Mathematically Structured Programming, MSFP 2014, Electron. Proc. in Theor. Comput. Sci. 153, Open Publishing Assoc., pp. 68–77, 10.4204/eptcs.153.5.
  • [24] T. Uustalu, N. Veltri & N. Zeilberger (2018): The sequent calculus of skew monoidal categories. Electron. Notes Theor. Comput. Sci. 341, pp. 345–370. 10.1016/j.entcs.2018.11.017. (Extended version to appear in C. Casadio & P. Scott (eds.), Joachim Lambek: The Interplay of Mathematics, Logic, and Linguistics, Outstanding Contributions to Logic, Springer.)
  • [25] T. Uustalu, N. Veltri & N. Zeilberger (to appear): Eilenberg-Kelly reloaded. Electron. Notes Theor. Comput. Sci.
  • [26] N. Zeilberger (2018): A theory of linear typings as flows on 3-valent graphs. In Proc. of 33rd Ann. ACM/IEEE Symp. on Logic in Computer Science, LICS ’18, ACM, pp. 919–928, 10.1145/3209108.3209121.
  • [27] N. Zeilberger (2019): A sequent calculus for a semi-associative law. Log. Methods Comput. Sci. 15(1), article 9, 10.23638/lmcs-15(1:9)2019.