This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Projective Real Calculi and Levi-Civita connections

Axel Tiger Norkvist
Abstract.

Based on its central role in the framework of real calculi, the existence of the Levi-Civita connection for real calculi over projective modules is studied, with a special emphasis placed on the simple module M=β„‚NM=\mathbb{C}^{N} over π’œ=MatN​(β„‚)\mathcal{A}=\text{Mat}_{N}(\mathbb{C}). It is demonstrated that existence of the Levi-Civita connection in this case depends on the Lie algebra 𝔀\mathfrak{g} of hermitian derivations, and necessary and sufficient conditions for the possibility of constructing a real calculus for which there exists a Levi-Civita connection are given in this case. Furthermore, in the general case of real calculi over projective modules, necessary and sufficient conditions for the existence of the Levi-Civita connection are given in terms of explicit projection coefficients.

1. Introduction

In the rapidly advancing and conceptually rich field of noncommutative geometry, it is crucial to examine the subject matter from various angles to fully comprehend the strengths and weaknesses associated with different perspectives. In this article, we shall consider the derivation-based approach of real calculi, where a metric and the module on which it acts as a bilinear form are explicitly given, drawing direct inspiration from classical Riemannian geometry.

Inspired by the work in [Ros13], the framework of real calculi was introduced in [AW17b] and [AW17a] as a straightforward derivation-based approach to noncommutative geometry where an π’œ\mathcal{A}-module MM generated from a set of derivations on π’œ\mathcal{A} acts as a noncommutative analogue of a vector bundle, on which a metric can be given as an explicit biadditive map on MM. Since their inception, real calculi have been used to study various geometric aspects of classical noncommutative spaces using a noncommutative analogue of the Levi-Civita connection. For instance, the curvature was calculated for the noncommutative 3-sphere ([AW17b]) and the noncommutative cylinder ([AL20]), and in [ATN21] a minimal embedding of the noncommutative torus into the noncommutative 3-sphere was demonstrated. Moreover, a Gauss-Bonnet type theorem was proven for the noncommutative 4-sphere ([AW17a]). After the introduction of real calculus homomorphisms in [ATN21], real calculi were also studied as algebraic structures in [TN21] with a particular focus dedicated to projective modules and isomorphisms of real calculi over matrix algebras.

The work in the aforementioned articles has showcased some of the virtues of real calculi as a way to study noncommutative geometry by highlighting examples where it is straightforward to find a Levi-Civita connection, however (as has been mentioned previously in the articles cited above) existence of the Levi-Civita connection is not guaranteed in general. Considering the fundamental theorem of (pseudo-)Riemannian geometry, questions of existence and uniqueness of the Levi-Civita connection is important in any framework of noncommutative Riemannian geometry, and it has been studied in the past from various different perspectives (for instance, see [DVM96], [AC10], [BM11], [Ros13], [BGM20] and [AIL22]).

The current article initiates the study of these questions in earnest for real calculi, focusing on finitely generated projective modules. As a main class of examples we consider the simple projective module β„‚N\mathbb{C}^{N} over π’œ=MatN​(β„‚)\mathcal{A}=\text{Mat}_{N}(\mathbb{C}), and necessary and sufficient conditions are given for when there exists a Levi-Civita connection given a Lie algebra 𝔀\mathfrak{g} of derivations on π’œ\mathcal{A}. In particular it is shown that there exists no Levi-Civita connection in cases where 𝔀\mathfrak{g} is a semisimple Lie algebra. Beyond this, in the general case a set of equations is derived to determine whether the Levi-Civita connection exists for a given real calculus where the module is projective.

The paper is structured as follows. In Section 2 we recall basic preliminaries of real calculi, and go into detail on the construction of real calculi over π’œ=MatN​(β„‚)\mathcal{A}=\text{Mat}_{N}(\mathbb{C}). Then, in Section 3 we consider the concept of a Levi-Civita connection, and introduce the notion of a pre-calculus as a collection of given data from which we wish to construct a real calculus. In Section 4 we consider the simple projective module β„‚N\mathbb{C}^{N} over π’œ=MatN​(β„‚)\mathcal{A}=\text{Mat}_{N}(\mathbb{C}), and investigate general pre-calculi of this form. It is worked out in some detail when a real calculus can be constructed from this data such that the Levi-Civita connection exists, and in Section 4.2 the discussion is generalized to β„‚N\mathbb{C}^{N} as a simple projective module over a general βˆ—-algebra π’œ\mathcal{A}. Finally, in Section 5 the existence of the Levi-Civita connection given a real calculus where the module is projective is discussed in some detail, and it is outlined how this question can be answered by considering projections of a free module of rank equal to the dimension of the Lie algebra of derivations.

2. Preliminaries

We begin by recalling the basic definitions and results regarding real calculi (see [AW17b]) which make out the framework used throughout this article. Real calculi as a concept is a derivation-based approach to noncommutative geometry, where a module over an algebra is viewed as an analogue of a vector bundle over a manifold.

If π’œ=Cβˆžβ€‹(Ξ£)\mathcal{A}=C^{\infty}(\Sigma) is the algebra of smooth functions on a differential manifold Ξ£\Sigma, one may consider the set Der⁑(π’œ)\operatorname{Der}(\mathcal{A}) of derivations on π’œ\mathcal{A} as the module 𝔛​(Ξ£)\mathfrak{X}(\Sigma) of smooth sections of the tangent bundle T​ΣT\Sigma, and use this to study various geometric aspects of Ξ£\Sigma.

However, when considering a noncommutative algebra π’œ\mathcal{A}, the set Der⁑(π’œ)\operatorname{Der}(\mathcal{A}) does not possess the structure of an π’œ\mathcal{A}-module in general. Therefore, in contrast to the classical scenario it is important to note that the relationship between derivations on π’œ\mathcal{A} and elements of an π’œ\mathcal{A}-module cannot be expected to follow a straightforward one-to-one correspondence. Additionally, unlike the classical case, the set Der⁑(π’œ)\operatorname{Der}(\mathcal{A}) in the context of a noncommutative algebra π’œ\mathcal{A} includes nontrivial inner derivations. Thus, when considering derivations on π’œ\mathcal{A} as an analog to tangent vector fields on a manifold, it might be advisable to selectively examine a subset of Der⁑(π’œ)\operatorname{Der}(\mathcal{A}) rather than considering the entire set. With this in mind, we make the following definition (for a more in-depth discussion of the challenges with viewing derivations as a noncommutative analogue of vector fields mentioned above, see [DVM96]).

Definition 2.1 (Real calculus).

Let π’œ\mathcal{A} be a unital βˆ—-algebra over β„‚\mathbb{C}, and let 𝔀π\mathfrak{g}_{\pi} denote a real Lie algebra together with a faithful representation Ο€:𝔀→Der​(π’œ)\pi:\mathfrak{g}\rightarrow\text{Der}(\mathcal{A}) such that π​(βˆ‚)\pi(\partial) is a hermitian derivation for all βˆ‚βˆˆπ”€\partial\in\mathfrak{g}. Moreover, let MM be a right π’œ\mathcal{A}-module and let Ο†:𝔀→M\varphi:\mathfrak{g}\rightarrow M be a ℝ\mathbb{R}-linear map such that MM is generated by φ​(𝔀)\varphi(\mathfrak{g}). Then Cπ’œ=(π’œ,𝔀π,M,Ο†)C_{\mathcal{A}}=(\mathcal{A},\mathfrak{g}_{\pi},M,\varphi) is called a real calculus over π’œ\mathcal{A}.

In the following we will write βˆ‚(a)\partial(a) to denote the action of 𝔀\mathfrak{g} on π’œ\mathcal{A} as derivations instead of the more cumbersome π​(βˆ‚)⁑(a)\pi(\partial)(a) for an element βˆ‚βˆˆπ”€\partial\in\mathfrak{g} and aβˆˆπ’œa\in\mathcal{A}. Moreover, if π”€βŠ†Der⁑(π’œ)\mathfrak{g}\subseteq\operatorname{Der}(\mathcal{A}) and the representation Ο€\pi is left unspecified this is to be interpreted as Ο€\pi being the identity map.

One should note that the framework of real calculi only considers real Lie algebras, and the concept of hermitian derivations corresponds to the notion of real tangent vector fields. In the context of a complex βˆ—-algebra π’œ\mathcal{A}, a hermitian derivation βˆ‚βˆˆDer⁑(π’œ)\partial\in\operatorname{Der}(\mathcal{A}) is a derivation such that

βˆ‚(a)=βˆ‚βˆ—(a)=(βˆ‚(aβˆ—))βˆ—,aβˆˆπ’œ.\partial(a)=\partial^{*}(a)=(\partial(a^{*}))^{*},\quad a\in\mathcal{A}.

Finally, in the context of real calculi all modules are right modules, and this is the case for all modules mentioned in this article.

Using the π’œ\mathcal{A}-module MM it is possible to define metrics as invertible biadditive maps MΓ—Mβ†’π’œM\times M\rightarrow\mathcal{A} which take the π’œ\mathcal{A}-module structure of MM into account as well as the βˆ—-structure of π’œ\mathcal{A}. Formally, the definition is as follows.

Definition 2.2.

Let π’œ\mathcal{A} be a βˆ—-algebra and let MM be a right π’œ\mathcal{A}-module. A hermitian form on MM is a map h:MΓ—Mβ†’π’œh:M\times M\rightarrow\mathcal{A} with the following properties:

  • (h​1)(h1).

    h​(m1,m2+m3)=h​(m1,m2)+h​(m1,m3)h(m_{1},m_{2}+m_{3})=h(m_{1},m_{2})+h(m_{1},m_{3})

  • (h​2)(h2).

    h​(m1,m2​a)=h​(m1,m2)​ah(m_{1},m_{2}a)=h(m_{1},m_{2})a

  • (h​3)(h3).

    h​(m1,m2)=h​(m2,m1)βˆ—h(m_{1},m_{2})=h(m_{2},m_{1})^{*}

Moreover, if the map h^:Mβ†’Mβˆ—\hat{h}:M\rightarrow M^{*} (where Mβˆ—M^{*} denotes the dual of MM), defined by

h^​(m)​(n)=h​(m,n),\hat{h}(m)(n)=h(m,n),

is a bijection then hh is said to be an (invertible) metric.

It is worth noting condition (h​3)(h3) in the above definition in particular. In classical Riemannian geometry one would usually require the metric to be fully symmetric (i.e., that g​(x,y)=g​(y,x)g(x,y)=g(y,x) for all x,y∈Mx,y\in M) but this condition is generally too restrictive in the context of noncommutative algebras. Moreover, as MM is a conceptual analogue of a complex vector bundle over a smooth manifold it is reasonable to let a metric hh in the context of real calculi be the noncommutative analogue of a hermitian metric, hence condition (h​3)(h3). However, we can use the map Ο†\varphi of a real calculus (π’œ,𝔀π,M,Ο†)(\mathcal{A},\mathfrak{g}_{\pi},M,\varphi) to consider elements of the form φ​(βˆ‚)∈M\varphi(\partial)\in M for βˆ‚βˆˆπ”€\partial\in\mathfrak{g} as representatives in MM of real tangent vector fields. This inspires a symmetry condition for the metric that only applies to elements of this form.

Definition 2.3 (Real metric calculus).

Let Cπ’œ=(π’œ,𝔀π,M,Ο†)C_{\mathcal{A}}=(\mathcal{A},\mathfrak{g}_{\pi},M,\varphi) be a real calculus over π’œ\mathcal{A} and let hh be a metric on MM. If

h​(φ​(βˆ‚1),φ​(βˆ‚2))βˆ—=h​(φ​(βˆ‚1),φ​(βˆ‚2))h(\varphi(\partial_{1}),\varphi(\partial_{2}))^{*}=h(\varphi(\partial_{1}),\varphi(\partial_{2}))

for every βˆ‚1,βˆ‚2βˆˆπ”€\partial_{1},\partial_{2}\in\mathfrak{g} then the pair (Cπ’œ,h)(C_{\mathcal{A}},h) is called a real metric calculus.

Next we consider affine connections. These are among the most basic objects in classical geometry and their noncommutative counterparts play an essential role in the noncommutative geometry of real calculi.

Definition 2.4.

Let Cπ’œ=(π’œ,𝔀π,M,Ο†)C_{\mathcal{A}}=(\mathcal{A},\mathfrak{g}_{\pi},M,\varphi) be a real calculus over π’œ\mathcal{A}. An affine connection on 𝔀×M\mathfrak{g}\times M is a map βˆ‡:𝔀×Mβ†’M\nabla:\mathfrak{g}\times M\rightarrow M satisfying

  1. (1)

    βˆ‡βˆ‚(m+n)=βˆ‡βˆ‚m+βˆ‡βˆ‚n\nabla_{\partial}(m+n)=\nabla_{\partial}m+\nabla_{\partial}n

  2. (2)

    βˆ‡Ξ»β€‹βˆ‚+βˆ‚β€²m=Ξ»β€‹βˆ‡βˆ‚m+βˆ‡βˆ‚β€²m\nabla_{\lambda\partial+\partial^{\prime}}m=\lambda\nabla_{\partial}m+\nabla_{\partial^{\prime}}m

  3. (3)

    βˆ‡βˆ‚(m​a)=(βˆ‡βˆ‚m)​a+mβ€‹βˆ‚(a)\nabla_{\partial}(ma)=(\nabla_{\partial}m)a+m\partial(a)

for m,n∈Mm,n\in M, βˆ‚,βˆ‚β€²βˆˆπ”€\partial,\partial^{\prime}\in\mathfrak{g}, aβˆˆπ’œa\in\mathcal{A} and Ξ»βˆˆβ„\lambda\in\mathbb{R}.

2.1. Real calculi over π’œ=MatN​(β„‚)\mathcal{A}=\text{Mat}_{N}(\mathbb{C})

Matrix algebras are important to study both from a theoretical and a practical perspective, and they provide a rich collection of interesting examples to consider. The investigation of real calculi over π’œ=MatN​(β„‚)\mathcal{A}=\text{Mat}_{N}(\mathbb{C}) was initiated in [TN21], where the effect that the map Ο†\varphi has on the algebraic structure of real calculi over π’œ\mathcal{A} was studied in some detail, and the current article aims to explore these structures further from a geometric perspective, with a special focus on Levi-Civita connections.

We begin by noting that all derivations on π’œ\mathcal{A} are inner, and hence they can be represented as the commutator of a matrix, and it is straightforward to verify that a hermitian derivation βˆ‚\partial corresponds to the commutator [D,β‹…][D,\cdot] of a unique trace-free and antihermitian matrix DD. Hence, let D1,…,DnD_{1},...,D_{n} form a basis of π”€βŠ†π”°β€‹π”²β€‹(N)\mathfrak{g}\subseteq\mathfrak{su}(N). We let Ο€:𝔀→Der⁑(π’œ)\pi:\mathfrak{g}\rightarrow\operatorname{Der}(\mathcal{A}) be the ℝ\mathbb{R}-linear map π​(Di)=[Di,β‹…]\pi(D_{i})=[D_{i},\cdot] for i=1,…,ni=1,...,n.

There are several choices of modules MM over π’œ\mathcal{A} that can be used when constructing real calculi, and in this article the main focus will be on the module M=β„‚NM=\mathbb{C}^{N}. Assuming that N>1N>1, this module is projective but not free. Moreover, any nonzero vector vβˆˆβ„‚Nv\in\mathbb{C}^{N} generates MM as a module over π’œ\mathcal{A}, since any nonzero vector in β„‚N\mathbb{C}^{N} can be linearly transformed into any other vector in β„‚N\mathbb{C}^{N}. Thus, if Ο†:𝔀→ℂN\varphi:\mathfrak{g}\rightarrow\mathbb{C}^{N} is any ℝ\mathbb{R}-linear map that is not the trivial map, it is clear that φ​(𝔀)\varphi(\mathfrak{g}) generates MM as an π’œ\mathcal{A}-module and hence Cπ’œ=(π’œ,𝔀π,β„‚N,Ο†)C_{\mathcal{A}}=(\mathcal{A},\mathfrak{g}_{\pi},\mathbb{C}^{N},\varphi) is a real calculus.

Expanding on this, let hh be a metric on M=β„‚NM=\mathbb{C}^{N}. As described in [TN21], the general metric hh on β„‚N\mathbb{C}^{N} is of the form

h​(u,v)=xβ‹…u†​v,u,vβˆˆβ„‚Nh(u,v)=x\cdot u^{\dagger}v,\quad u,v\in\mathbb{C}^{N}

for xβˆˆβ„βˆ–{0}x\in\mathbb{R}\setminus\{0\}. Hence, if (Cπ’œ,h)(C_{\mathcal{A}},h) is a real metric calculus, then the symmetry condition

h​(φ​(Di),φ​(Dj))=x⋅φ​(Di)†​φ​(Dj)=x⋅φ​(Dj)†​φ​(Di)=h​(φ​(Di),φ​(Dj))†h(\varphi(D_{i}),\varphi(D_{j}))=x\cdot\varphi(D_{i})^{\dagger}\varphi(D_{j})=x\cdot\varphi(D_{j})^{\dagger}\varphi(D_{i})=h(\varphi(D_{i}),\varphi(D_{j}))^{\dagger}

for i,j∈{1,…,n}i,j\in\{1,...,n\} implies that there is a nonzero vector v^0βˆˆβ„‚N\hat{v}_{0}\in\mathbb{C}^{N} and real constants ΞΌi\mu_{i} such that

(1) φ​(Di)=ΞΌi​v^0,i=1,…,n.\varphi(D_{i})=\mu_{i}\hat{v}_{0},\quad i=1,...,n.

To characterize connections on the module β„‚N\mathbb{C}^{N} we make use of the fact that βˆ‡i=βˆ‡Di\nabla_{i}=\nabla_{D_{i}} is a linear map for all ii, implying that there is a unique matrix XiX_{i} such that βˆ‡iv=v​Xi\nabla_{i}v=vX_{i} for all vβˆˆβ„‚Nv\in\mathbb{C}^{N}. Using the Leibniz condition

(v​A)​Xi=βˆ‡i(v​A)=(βˆ‡iv)​A+v​Di​(A)=(v​Xi)​A+v​[Di,A](vA)X_{i}=\nabla_{i}(vA)=(\nabla_{i}v)A+vD_{i}(A)=(vX_{i})A+v[D_{i},A]

it follows that the matrix XiX_{i} satisfies

v​A​Xi=v​Xi​A+v​[Di,A]⇔v​[Di+Xi,A]=0vAX_{i}=vX_{i}A+v[D_{i},A]\Leftrightarrow v[D_{i}+X_{i},A]=0

for all vβˆˆβ„‚Nv\in\mathbb{C}^{N} and A∈MatN​(β„‚)A\in\text{Mat}_{N}(\mathbb{C}), and thus we see that Xi=tiβ€‹πŸ™βˆ’DiX_{i}=t_{i}\mathbbm{1}-D_{i}, where tiβˆˆβ„‚t_{i}\in\mathbb{C} and πŸ™βˆˆπ’œ\mathbbm{1}\in\mathcal{A} denotes the identity matrix. Explicitly, we have that

(2) βˆ‡iv=v​(Xi)=ti​vβˆ’v​Di.\nabla_{i}v=v(X_{i})=t_{i}v-vD_{i}.

We shall return to real calculi of the form (MatN​(β„‚),𝔀π,β„‚N,Ο†)(\text{Mat}_{N}(\mathbb{C}),\mathfrak{g}_{\pi},\mathbb{C}^{N},\varphi) in Section 4, where necessary and sufficient conditions on 𝔀\mathfrak{g} and Ο†\varphi for the existence of a noncommutative analogue of the Levi-Civita connection from classical Riemannian geometry are given.

3. Metric pre-calculi and anchor maps

The fundamental theorem of Riemannian geometry states that there is a unique connection that is compatible with the Riemann metric as well as having vanishing torsion, and this connection is called the Levi-Civita connection. In the context of real metric calculi existence of such a connection is not always guaranteed, and as can be seen later in Section 4 existence of a Levi-Civita connection for a given real metric calculus ((π’œ,𝔀π,M,Ο†),h)\big{(}(\mathcal{A},\mathfrak{g}_{\pi},M,\varphi),h\big{)} may depend not only on the algebraic structure of 𝔀\mathfrak{g}, but also on how elements of 𝔀\mathfrak{g} act on π’œ\mathcal{A} as derivations.

Before considering the notions of metric compatibility and torsion for affine connections βˆ‡\nabla in the context of real calculi, we shall require an additional hermiticity condition for elements of the form βˆ‡βˆ‚Ο†β€‹(βˆ‚β€²)\nabla_{\partial}\varphi(\partial^{\prime}) which can be seen as a noncommutative version of taking the covariant derivative of a real vector field with respect to another real vector field.

Definition 3.1 (Real connection calculus).

Let (Cπ’œ,h)(C_{\mathcal{A}},h) be a real metric calculus and let βˆ‡\nabla be an affine connection on 𝔀×M\mathfrak{g}\times M. If βˆ‡\nabla satisfies

h​(βˆ‡βˆ‚Ο†β€‹(βˆ‚1),φ​(βˆ‚2))=h​(βˆ‡βˆ‚Ο†β€‹(βˆ‚1),φ​(βˆ‚2))βˆ—h(\nabla_{\partial}\varphi(\partial_{1}),\varphi(\partial_{2}))=h(\nabla_{\partial}\varphi(\partial_{1}),\varphi(\partial_{2}))^{*}

for every βˆ‚,βˆ‚1,βˆ‚2βˆˆπ”€\partial,\partial_{1},\partial_{2}\in\mathfrak{g}, then (Cπ’œ,h,βˆ‡)(C_{\mathcal{A}},h,\nabla) is a real connection calculus.

Using the map Ο†\varphi it is possible to define the torsion of a connection in analogy with the classical case.

Definition 3.2 (Torsion of a connection).

Let Cπ’œC_{\mathcal{A}} be a real calculus and let βˆ‡\nabla be an affine connection on 𝔀×M\mathfrak{g}\times M. The torsion TΟ†:𝔀×𝔀→MT_{\varphi}:\mathfrak{g}\times\mathfrak{g}\rightarrow M is defined as the ℝ\mathbb{R}-bilinear map satisfying

Tφ​(βˆ‚1,βˆ‚2)=βˆ‡βˆ‚1φ​(βˆ‚2)βˆ’βˆ‡βˆ‚2φ​(βˆ‚1)βˆ’Ο†β€‹([βˆ‚1,βˆ‚2]),βˆ‚1,βˆ‚2βˆˆπ”€.T_{\varphi}(\partial_{1},\partial_{2})=\nabla_{\partial_{1}}\varphi(\partial_{2})-\nabla_{\partial_{2}}\varphi(\partial_{1})-\varphi([\partial_{1},\partial_{2}]),\quad\partial_{1},\partial_{2}\in\mathfrak{g}.
Definition 3.3 (Levi-Civita connection).

Let (Cπ’œ,h,βˆ‡)(C_{\mathcal{A}},h,\nabla) be a real connection calculus. We say that βˆ‡\nabla is compatible with hh if

βˆ‚(h​(m,n))=h​(βˆ‡βˆ‚m,n)+h​(m,βˆ‡βˆ‚n)\partial(h(m,n))=h(\nabla_{\partial}m,n)+h(m,\nabla_{\partial}n)

for every βˆ‚βˆˆπ”€\partial\in\mathfrak{g} and m,n∈Mm,n\in M, and torsion-free if

Tφ​(βˆ‚1,βˆ‚2)=0,βˆ‚1,βˆ‚2βˆˆπ”€.T_{\varphi}(\partial_{1},\partial_{2})=0,\quad\partial_{1},\partial_{2}\in\mathfrak{g}.

A metric and torsion-free connection is called a Levi-Civita connection.

As has been previously stated, in the general setup of real connection calculi the existence of a Levi-Civita connection can not be guaranteed. However, it is unique if it exists.

Theorem 3.4 ([AW17b]).

Let (Cπ’œ,h)(C_{\mathcal{A}},h) be a real metric calculus. Then there exists at most one Levi-Civita connection βˆ‡\nabla such that (Cπ’œ,h,βˆ‡)(C_{\mathcal{A}},h,\nabla) is a real connection calculus.β–‘\hfill\square

Given a real connection calculus (Cπ’œ,h,βˆ‡)(C_{\mathcal{A}},h,\nabla) where βˆ‡\nabla is a Levi-Civita connection, the uniqueness result in Theorem 3.4 implies that βˆ‡\nabla can (in principle) be recovered from the real metric calculus (Cπ’œ,h)(C_{\mathcal{A}},h). Moreover, as shall be demonstrated later in this article, one cannot assume that there exists a Levi-Civita connection for a given real metric calculus (Cπ’œ,h)(C_{\mathcal{A}},h). Hence, we make the following definition.

Definition 3.5.

Let (Cπ’œ,h)(C_{\mathcal{A}},h) be a real metric calculus. If there exists a Levi-Civita connection βˆ‡\nabla such that (Cπ’œ,h,βˆ‡)(C_{\mathcal{A}},h,\nabla) is a real connection calculus, then (Cπ’œ,h)(C_{\mathcal{A}},h) is called a pseudo-Riemannian calculus.

A noncommutative version of the classical Koszul formula can be used to determine whether a given connection βˆ‡\nabla is the Levi-Civita connection satisfying the hermiticity condition in Definition 3.1. In the context of real connection calculi we state it as follows.

Proposition 3.6 ([AW17b]).

Let (Cπ’œ,h,βˆ‡)(C_{\mathcal{A}},h,\nabla) be a real connection calculus where βˆ‡\nabla is a Levi-Civita connection, and assume that βˆ‚1,βˆ‚2,βˆ‚3βˆˆπ”€\partial_{1},\partial_{2},\partial_{3}\in\mathfrak{g}. Then βˆ‡\nabla satisfies the equality

(3) 2​h​(βˆ‡βˆ‚1e2,e3)=βˆ‚1h​(e2,e3)+βˆ‚2h​(e1,e3)βˆ’βˆ‚3h​(e1,e2)βˆ’h​(e1,φ​([βˆ‚2,βˆ‚3]))+h​(e2,φ​([βˆ‚3,βˆ‚1]))+h​(e3,φ​([βˆ‚1,βˆ‚2])),2h(\nabla_{\partial_{1}}e_{2},e_{3})=\partial_{1}h(e_{2},e_{3})+\partial_{2}h(e_{1},e_{3})-\partial_{3}h(e_{1},e_{2})\\ -h(e_{1},\varphi([\partial_{2},\partial_{3}]))+h(e_{2},\varphi([\partial_{3},\partial_{1}]))+h(e_{3},\varphi([\partial_{1},\partial_{2}])),

where ei=φ​(βˆ‚i)e_{i}=\varphi(\partial_{i}) for i=1,2,3i=1,2,3. Conversely, if (Cπ’œ,h)(C_{\mathcal{A}},h) is a real metric calculus and βˆ‡\nabla is a connection satisfying Koszul’s formula (3) for every βˆ‚1,βˆ‚2,βˆ‚3βˆˆπ”€\partial_{1},\partial_{2},\partial_{3}\in\mathfrak{g}, then (Cπ’œ,h)(C_{\mathcal{A}},h) is a pseudo-Riemannian calculus and βˆ‡\nabla is the unique Levi-Civita connection such that (Cπ’œ,h,βˆ‡)(C_{\mathcal{A}},h,\nabla) is a real connection calculus.β–‘\hfill\square

Given a unital βˆ—-algebra π’œ\mathcal{A}, a Lie algebra π”€βŠ†Der⁑(π’œ)\mathfrak{g}\subseteq\operatorname{Der}(\mathcal{A}) and a right π’œ\mathcal{A}-module MM there are in general many maps Ο†:𝔀→M\varphi:\mathfrak{g}\rightarrow M such that Cπ’œ=(π’œ,𝔀π,M,Ο†)C_{\mathcal{A}}=(\mathcal{A},\mathfrak{g}_{\pi},M,\varphi) is a real calculus, and in [TN21] the notion of real calculus isomorphisms were used to demonstrate how the choice of Ο†\varphi could lead to nonisomorphic real calculi in cases where π’œ\mathcal{A}, 𝔀π\mathfrak{g}_{\pi} and MM were fixed. Generally, what constitutes a natural choice of map Ο†\varphi is not clear from the definitions and it is interesting to see in what ways the choice of Ο†\varphi affects the resulting real calculus. Hence, we make the following definition.

Definition 3.7.

Let π’œ\mathcal{A} be a unital βˆ—-algebra, let 𝔀\mathfrak{g} be a Lie algebra, let Ο€:𝔀→Der⁑(π’œ)\pi:\mathfrak{g}\rightarrow\operatorname{Der}(\mathcal{A}) be a faithful representation of 𝔀\mathfrak{g}, and let MM be a right module over π’œ\mathcal{A}. Then the structure Bπ’œ=(π’œ,𝔀π,M)B_{\mathcal{A}}=(\mathcal{A},\mathfrak{g}_{\pi},M) is called a pre-calculus. Moreover, if h:MΓ—Mβ†’π’œh:M\times M\rightarrow\mathcal{A} is a metric, then (Bπ’œ,h)(B_{\mathcal{A}},h) is called a metric pre-calculus.

If Ο†:𝔀→M\varphi:\mathfrak{g}\rightarrow M is a ℝ\mathbb{R}-linear map such that φ​(𝔀)\varphi(\mathfrak{g}) generates MM as a module, then Ο†\varphi is called an anchor map. Moreover, if h​(φ​(βˆ‚),φ​(βˆ‚β€²))h(\varphi(\partial),\varphi(\partial^{\prime})) is hermitian for every βˆ‚,βˆ‚β€²βˆˆπ”€\partial,\partial^{\prime}\in\mathfrak{g}, then Ο†\varphi is called a metric anchor map.

Given a metric pre-calculus (Bπ’œ,h)(B_{\mathcal{A}},h) it is possible to define affine connections βˆ‡\nabla and determine whether they are compatible with the metric hh without the need of a metric anchor map Ο†:𝔀→M\varphi:\mathfrak{g}\rightarrow M. However, as can be seen from Definition 3.2 the torsion of a connection directly depends on the choice of Ο†\varphi. This motivates the study of how the choice of anchor map affects the existence of a Levi-Civita connection given a fixed metric pre-calculus ((π’œ,𝔀,M),h)((\mathcal{A},\mathfrak{g},M),h) and, in particular, whether there exist metric pre-calculi for which no metric anchor map is such that the resulting real metric calculus is pseudo-Riemannian.

4. Finite-dimensional simple modules

We shall treat the question of existence of a metric anchor map given a fixed metric pre-calculus (Bπ’œ,h)(B_{\mathcal{A}},h) such that the resulting real metric calculus is pseudo-Riemannian in the special case where Bπ’œ=(MatN​(β„‚),𝔀π,β„‚N)B_{\mathcal{A}}=(\text{Mat}_{N}(\mathbb{C}),\mathfrak{g}_{\pi},\mathbb{C}^{N}). This scenario was considered in Section 2.1, and a brief summary of that discussion is given below. The general metric hh on MM is given by h​(u,v)=xβ‹…u†​vh(u,v)=x\cdot u^{\dagger}v, xβˆˆβ„βˆ–{0}x\in\mathbb{R}\setminus\{0\}, and we can assume that π”€βŠ†π”°β€‹π”²β€‹(N)\mathfrak{g}\subseteq\mathfrak{su}(N) without loss of generality. Given a basis D1,…,DnD_{1},...,D_{n} of 𝔀\mathfrak{g}, we let π​(Di)=[Di,β‹…]∈Der⁑(π’œ)\pi(D_{i})=[D_{i},\cdot]\in\operatorname{Der}(\mathcal{A}) for i=1,…,ni=1,...,n, making ((MatN​(β„‚),𝔀π,β„‚N),h)((\text{Mat}_{N}(\mathbb{C}),\mathfrak{g}_{\pi},\mathbb{C}^{N}),h) into a metric pre-calculus. A map Ο†:𝔀→ℂN\varphi:\mathfrak{g}\rightarrow\mathbb{C}^{N} is a metric anchor map if and only if there is a nonzero vector v^0βˆˆβ„‚N\hat{v}_{0}\in\mathbb{C}^{N} and constants ΞΌjβˆˆβ„\mu_{j}\in\mathbb{R} such that

φ​(Dj)=ΞΌj​v^0,j=1,…,n;\varphi(D_{j})=\mu_{j}\hat{v}_{0},\quad j=1,...,n;

since an anchor map cannot be the trivial map, there must be at least one j∈{1,…,n}j\in\{1,...,n\} such that ΞΌjβ‰ 0\mu_{j}\neq 0. As a final note before moving forward, connections on β„‚N\mathbb{C}^{N} can be parameterized by

βˆ‡Djv=v​Xj=βˆ’v​Dj+tj​v,vβˆˆβ„‚N,\nabla_{D_{j}}v=vX_{j}=-vD_{j}+t_{j}v,\quad v\in\mathbb{C}^{N},

where Xj=βˆ’Dj+tjβ€‹πŸ™NX_{j}=-D_{j}+t_{j}\mathbbm{1}_{N} and tjβˆˆβ„‚t_{j}\in\mathbb{C}.

Expanding on these preliminaries, we now describe metric compatibility of a connection βˆ‡\nabla. Calculating the sum h​(βˆ‡ju,v)+h​(u,βˆ‡jv)h(\nabla_{j}u,v)+h(u,\nabla_{j}v) explicitly (using the identity Dj†=βˆ’DjD_{j}^{\dagger}=-D_{j}), we get

h​(βˆ‡ju,v)+h​(u,βˆ‡jv)\displaystyle h(\nabla_{j}u,v)+h(u,\nabla_{j}v) =h​(tj​uβˆ’u​Dj,v)+h​(u,tj​vβˆ’v​Dj)\displaystyle=h(t_{j}u-uD_{j},v)+h(u,t_{j}v-vD_{j})
=x​[(tΒ―j+tj)​u†​v+Dj​u†​vβˆ’u†​v​Dj]\displaystyle=x\left[(\bar{t}_{j}+t_{j})u^{\dagger}v+D_{j}u^{\dagger}v-u^{\dagger}vD_{j}\right]
=x​[(tΒ―j+tj)​u†​v+[Dj,u†​v]]\displaystyle=x\left[(\bar{t}_{j}+t_{j})u^{\dagger}v+[D_{j},u^{\dagger}v]\right]
=x​(tΒ―j+tj)​u†​v+Dj​(h​(u,v)),\displaystyle=x(\bar{t}_{j}+t_{j})u^{\dagger}v+D_{j}(h(u,v)),

and hence

Dj​(h​(u,v))βˆ’(h​(βˆ‡ju,v)+h​(u,βˆ‡jv))=βˆ’x​(tΒ―j+tj)​u†​vD_{j}(h(u,v))-\big{(}h(\nabla_{j}u,v)+h(u,\nabla_{j}v)\big{)}=-x(\bar{t}_{j}+t_{j})u^{\dagger}v

is zero for all u,vβˆˆβ„‚Nu,v\in\mathbb{C}^{N} if and only if tj=i​λjt_{j}=i\lambda_{j} where Ξ»jβˆˆβ„\lambda_{j}\in\mathbb{R} for j=1,…,nj=1,...,n.

Example 4.1.

Below we give an example of a metric pre-calculus where there exists no metric connection βˆ‡\nabla and metric anchor map Ο†\varphi such that the torsion TΟ†T_{\varphi} vanishes everywhere. Let N=2N=2 and 𝔀=β„β€‹βŸ¨D1,D2,D3⟩=𝔰​𝔲​(2)\mathfrak{g}=\mathbb{R}\langle D_{1},D_{2},D_{3}\rangle=\mathfrak{su}(2), where D1,D2D_{1},D_{2} and D3D_{3} are given by

D1=(0ii0),D2=(01βˆ’10),D3=(i00βˆ’i).D_{1}=\begin{pmatrix}0&i\\ i&0\end{pmatrix},\quad D_{2}=\begin{pmatrix}0&1\\ -1&0\end{pmatrix},\quad D_{3}=\begin{pmatrix}i&0\\ 0&-i\end{pmatrix}.

In this basis of 𝔀\mathfrak{g}, the Lie bracket is described by the structure constants fi​jkf^{k}_{ij} (i.e., [Di,Dj]=fi​jk​Dk[D_{i},D_{j}]=f^{k}_{ij}D_{k}, where summation over the index kk is implied as per the Einstein summation convention), where

(f121,f122,f123)=(0,0,βˆ’2)\displaystyle(f^{1}_{12},f^{2}_{12},f^{3}_{12})=(0,0,-2)
(f131,f132,f133)=(0,2,0)\displaystyle(f^{1}_{13},f^{2}_{13},f^{3}_{13})=(0,2,0)
(f231,f232,f233)=(βˆ’2,0,0).\displaystyle(f^{1}_{23},f^{2}_{23},f^{3}_{23})=(-2,0,0).

As before, the metric hh is given by h​(u,v)=xβ‹…u†​vh(u,v)=x\cdot u^{\dagger}v, u,vβˆˆβ„‚2u,v\in\mathbb{C}^{2} and xβˆˆβ„βˆ–{0}x\in\mathbb{R}\setminus\{0\}, and setting Bπ’œ=(π’œ,𝔀π,β„‚2)B_{\mathcal{A}}=(\mathcal{A},\mathfrak{g}_{\pi},\mathbb{C}^{2}) we have that (Bπ’œ,h)(B_{\mathcal{A}},h) is a metric pre-calculus. We shall show that there is no metric anchor map Ο†:𝔀→ℂ2\varphi:\mathfrak{g}\rightarrow\mathbb{C}^{2} such that the resulting real metric calculus (Cπ’œ,h)(C_{\mathcal{A}},h) is pseudo-Riemannian by considering the metric compatibility and torsion of a connection βˆ‡\nabla on 𝔀×ℂ2\mathfrak{g}\times\mathbb{C}^{2}.

As before, βˆ‡jv=tj​vβˆ’v​Dj=v​(tjβ€‹πŸ™βˆ’Dj)=v​Xj\nabla_{j}v=t_{j}v-vD_{j}=v(t_{j}\mathbbm{1}-D_{j})=vX_{j} for tjβˆˆβ„‚t_{j}\in\mathbb{C} and since the metric compatibility of βˆ‡\nabla is equivalent to tj=i​λjt_{j}=i\lambda_{j} for some Ξ»jβˆˆβ„\lambda_{j}\in\mathbb{R} we only consider these choices of tit_{i} going forward. To consider the torsion of βˆ‡\nabla we need an anchor map Ο†\varphi, and for the sake of readability we write Ο†j=φ​(βˆ‚j)βˆˆβ„‚2\varphi_{j}=\varphi(\partial_{j})\in\mathbb{C}^{2} and hi​j=x​φi†​φjh_{ij}=x\varphi_{i}^{\dagger}\varphi_{j}; as noted earlier each Ο†j\varphi_{j} must satisfy

Ο†j=ΞΌj​v^0,ΞΌjβˆˆβ„,0β‰ v^0βˆˆβ„‚N\varphi_{j}=\mu_{j}\hat{v}_{0},\quad\mu_{j}\in\mathbb{R},\quad 0\neq\hat{v}_{0}\in\mathbb{C}^{N}

if ((Mat2​(β„‚),𝔀π,β„‚N,Ο†),h)\big{(}(\text{Mat}_{2}(\mathbb{C}),\mathfrak{g}_{\pi},\mathbb{C}^{N},\varphi),h\big{)} is to be a real metric calculus, and ΞΌjβ‰ 0\mu_{j}\neq 0 for at least one j∈{1,2,3}j\in\{1,2,3\}.

With this notation, we have that

βˆ‡jΟ†k=Ο†k​Xj=ΞΌk​v^0​Xj=v^0​(ΞΌk​Xj),\nabla_{j}\varphi_{k}=\varphi_{k}X_{j}=\mu_{k}\hat{v}_{0}X_{j}=\hat{v}_{0}(\mu_{k}X_{j}),

and the torsion becomes

Tφ​(Di,Dj)=βˆ‡iΟ†jβˆ’βˆ‡jΟ†iβˆ’Ο†β€‹([Di,Dj])=v^0​(ΞΌj​Xiβˆ’ΞΌi​Xjβˆ’fi​jk​μkβ€‹πŸ™).T_{\varphi}(D_{i},D_{j})=\nabla_{i}\varphi_{j}-\nabla_{j}\varphi_{i}-\varphi([D_{i},D_{j}])=\hat{v}_{0}(\mu_{j}X_{i}-\mu_{i}X_{j}-f^{k}_{ij}\mu_{k}\mathbbm{1}).

Let Ti​j=ΞΌj​Xiβˆ’ΞΌi​Xjβˆ’fi​jk​μkβ€‹πŸ™T_{ij}=\mu_{j}X_{i}-\mu_{i}X_{j}-f^{k}_{ij}\mu_{k}\mathbbm{1}, so that v^0​Ti​j=Tφ​(βˆ‚i,βˆ‚j)\hat{v}_{0}T_{ij}=T_{\varphi}(\partial_{i},\partial_{j}). Then the torsion vanishes if and only if v^0\hat{v}_{0} is an eigenvector of each Ti​jT_{ij} with eigenvalue Ξ»i​j=0\lambda_{ij}=0. Given this, we note that ΞΌj​Xiβˆ’ΞΌi​Xj=Ti​j+fi​jk​μkβ€‹πŸ™\mu_{j}X_{i}-\mu_{i}X_{j}=T_{ij}+f^{k}_{ij}\mu_{k}\mathbbm{1} implies that v^0\hat{v}_{0} is an eigenvector of ΞΌj​Xiβˆ’ΞΌi​Xj\mu_{j}X_{i}-\mu_{i}X_{j} with eigenvalue Ξ»i​j+fi​jk​μk=fi​jk​μkβˆˆβ„\lambda_{ij}+f^{k}_{ij}\mu_{k}=f^{k}_{ij}\mu_{k}\in\mathbb{R}. Moreover, since ΞΌj​Xiβˆ’ΞΌi​Xj\mu_{j}X_{i}-\mu_{i}X_{j} is antihermitian it follows that its spectrum consists of purely imaginary numbers, and hence it follows that fi​jk​μk=0f^{k}_{ij}\mu_{k}=0, i,j∈{1,2,3}i,j\in\{1,2,3\}.

Calculating these sums explicitly for i,j∈{1,2,3}i,j\in\{1,2,3\} yields

f12k​μk=2​μ3=0,f13k​μk=βˆ’2​μ2=0,f23k​μk=2​μ1=0.f^{k}_{12}\mu_{k}=2\mu_{3}=0,\quad f^{k}_{13}\mu_{k}=-2\mu_{2}=0,\quad f^{k}_{23}\mu_{k}=2\mu_{1}=0.

Thus, the torsion cannot vanish unless Ο†\varphi is the zero map, which is not an anchor map. Hence, there is no metric anchor map Ο†\varphi such that ((Mat2​(β„‚),𝔰​𝔲​(2)Ο€,β„‚N,Ο†),h)\big{(}(\text{Mat}_{2}(\mathbb{C}),\mathfrak{su}(2)_{\pi},\mathbb{C}^{N},\varphi),h\big{)} is a pseudo-Riemannian calculus.

4.1. The general case when π’œ=MatN​(β„‚)\mathcal{A}=\text{Mat}_{N}(\mathbb{C})

The above example can be generalized to arbitrary metric pre-calculi (Bπ’œ,h)(B_{\mathcal{A}},h), where Bπ’œ=(MatN​(β„‚),𝔀π,β„‚N)B_{\mathcal{A}}=(\text{Mat}_{N}(\mathbb{C}),\mathfrak{g}_{\pi},\mathbb{C}^{N}) and h​(u,v)=xβ‹…u†​vh(u,v)=x\cdot u^{\dagger}v for u,vβˆˆβ„‚Nu,v\in\mathbb{C}^{N} where xβˆˆβ„βˆ–{0}x\in\mathbb{R}\setminus\{0\}. As it turns out, the existence of a metric anchor map Ο†:gβ†’β„‚N\varphi:g\rightarrow\mathbb{C}^{N} such that the resulting real metric calculus (Cπ’œ,h)(C_{\mathcal{A}},h) is pseudo-Riemannian generally depends on the Lie algebra π”€βŠ‚π”°β€‹π”²β€‹(N)\mathfrak{g}\subset\mathfrak{su}(N), and thus it is necessary to understand precisely what Lie algebras 𝔀\mathfrak{g} that are possible.

Proposition 4.2.

Let π”€βŠ†π”°β€‹π”²β€‹(N)\mathfrak{g}\subseteq\mathfrak{su}(N) be a nonabelian Lie algebra for Nβ‰₯2N\geq 2. Then π”€β‰ƒπ”žβ€‹π”Ÿβ€‹(m)βŠ•π”€s​s\mathfrak{g}\simeq\mathfrak{ab}(m)\oplus\mathfrak{g}_{ss} is a direct sum, where 𝔀s​s\mathfrak{g}_{ss} is semisimple and π”žβ€‹π”Ÿβ€‹(m)\mathfrak{ab}(m) denotes the abelian Lie algebra of dimension mβ‰₯0m\geq 0.

Proof.

By the Levi decomposition theorem it is clear that if 𝔀\mathfrak{g} is nonabelian it can be decomposed as the semidirect sum of rad⁑(𝔀)\operatorname{rad}(\mathfrak{g}) and a semisimple Lie algebra 𝔀s​s\mathfrak{g}_{ss}. Since rad⁑(𝔀)\operatorname{rad}(\mathfrak{g}) is a solvable ideal of 𝔀\mathfrak{g} it is also a solvable Lie subalgebra of 𝔰​𝔲​(N)\mathfrak{su}(N). Now, since 𝔰​𝔲​(N)\mathfrak{su}(N) is a compact Lie algebra it follows that rad⁑(𝔀)\operatorname{rad}(\mathfrak{g}) is a compact solvable Lie algebra, and hence abelian, i.e., there exists an mβ‰₯0m\geq 0 such that rad⁑(𝔀)β‰ƒπ”žβ€‹π”Ÿβ€‹(m)\operatorname{rad}(\mathfrak{g})\simeq\mathfrak{ab}(m), and hence we may assume without loss of generality that it consists of purely diagonal matrices DD. Furthermore, since rad⁑(𝔀)\operatorname{rad}(\mathfrak{g}) is an ideal of 𝔀\mathfrak{g}, it follows that [X,D]∈rad⁑(𝔀)[X,D]\in\operatorname{rad}(\mathfrak{g}) for any Xβˆˆπ”€s​sX\in\mathfrak{g}_{ss} and any D∈rad⁑(𝔀)D\in\operatorname{rad}(\mathfrak{g}). Moreover, by direct computation, it is clear that the diagonal entries of any such matrix [X,D][X,D] are all zero, implying that [X,D]=0[X,D]=0 for Xβˆˆπ”€s​sX\in\mathfrak{g}_{ss} and D∈rad⁑(𝔀)β‰ƒπ”žβ€‹π”Ÿβ€‹(m)D\in\operatorname{rad}(\mathfrak{g})\simeq\mathfrak{ab}(m). Hence the Levi decomposition is a direct sum, finishing the proof. ∎

The result in Example 4.1, where it was not possible to find a metric anchor map such that the torsion TφT_{\varphi} vanishes, is ultimately due to a simple general fact about semisimple Lie algebras which we state below.

Lemma 4.3.

If 𝔀\mathfrak{g} is a semisimple real Lie algebra with basis βˆ‚1,…,βˆ‚n\partial_{1},...,\partial_{n} and Lie bracket given by [βˆ‚i,βˆ‚j]=fi​jkβ€‹βˆ‚k[\partial_{i},\partial_{j}]=f^{k}_{ij}\partial_{k}, fi​jkβˆˆβ„f^{k}_{ij}\in\mathbb{R} for i,j,k∈{1,…,n}i,j,k\in\{1,...,n\}, then the sum ck​fi​jk=0c_{k}f^{k}_{ij}=0 for all i,ji,j (where each ckβˆˆβ„c_{k}\in\mathbb{R}) if and only if ck=0c_{k}=0 for all kk.

Proof.

Let BB denote the Killing form on 𝔀\mathfrak{g}. Since 𝔀\mathfrak{g} is assumed to be semisimple, Cartan’s criterion implies that BB is nondegenerate. Given a basis βˆ‚1,…,βˆ‚n\partial_{1},...,\partial_{n} for 𝔀\mathfrak{g}, let Bi​j=B​(βˆ‚j,βˆ‚k)B_{ij}=B(\partial_{j},\partial_{k}) denote the components of BB in this basis and let Bi​jB^{ij} denote the components of the inverse of BB, i.e., Bi​j​Bj​k=Bk​j​Bj​i=Ξ΄ikB_{ij}B^{jk}=B^{kj}B_{ji}=\delta^{k}_{i}, where Ξ΄ik\delta^{k}_{i} denotes the Kronecker delta. It follows that

B​([βˆ‚i,βˆ‚j],βˆ‚k)=fi​jl​B​(βˆ‚l,βˆ‚k)=fi​jl​Bl​k,B([\partial_{i},\partial_{j}],\partial_{k})=f^{l}_{ij}B(\partial_{l},\partial_{k})=f^{l}_{ij}B_{lk},

and hence it follows that

fi​jk=B​([βˆ‚i,βˆ‚j],βˆ‚l)​Bl​k,f^{k}_{ij}=B([\partial_{i},\partial_{j}],\partial_{l})B^{lk},

implying that

fi​jk​ck=B​([βˆ‚i,βˆ‚j],βˆ‚l)​Bl​k​ck=B​([βˆ‚i,βˆ‚j],βˆ‚lBl​k​ck).f^{k}_{ij}c_{k}=B([\partial_{i},\partial_{j}],\partial_{l})B^{lk}c_{k}=B([\partial_{i},\partial_{j}],\partial_{l}B^{lk}c_{k}).

Since [𝔀,𝔀]=𝔀≠0[\mathfrak{g},\mathfrak{g}]=\mathfrak{g}\neq 0, this expression is zero for all i,j=1,…,ni,j=1,...,n if and only if

Bl​k​ck=0B^{lk}c_{k}=0

for all l=1,…,nl=1,...,n. Consequently,

0=Bi​l​Bl​k​ck=Ξ΄ik​ck=ci=00=B_{il}B^{lk}c_{k}=\delta_{i}^{k}c_{k}=c_{i}=0

for i=1,…,ni=1,...,n. The statement follows. ∎

Proposition 4.4.

Let ((MatN​(β„‚),𝔀π,β„‚N,Ο†),h)\big{(}(\text{Mat}_{N}(\mathbb{C}),\mathfrak{g}_{\pi},\mathbb{C}^{N},\varphi),h\big{)} be a real metric calculus such that π”€βŠ†π”°β€‹π”²β€‹(N)\mathfrak{g}\subseteq\mathfrak{su}(N) is a semisimple Lie algebra. Then every connection βˆ‡:𝔀×ℂNβ†’β„‚N\nabla:\mathfrak{g}\times\mathbb{C}^{N}\rightarrow\mathbb{C}^{N} that is compatible with hh has non-vanishing torsion TΟ†T_{\varphi}.

Proof.

Let D1,…,DnD_{1},...,D_{n} be a basis of 𝔀\mathfrak{g} and let βˆ‡\nabla be an affine connection on 𝔀×ℂN\mathfrak{g}\times\mathbb{C}^{N} that is compatible with hh. Then, as noted in the beginning of this section, there are Ξ»1,…,Ξ»nβˆˆβ„\lambda_{1},...,\lambda_{n}\in\mathbb{R} such that

βˆ‡jv=v​Xj=v​(i​λjβ€‹πŸ™βˆ’Dj),j=1,…,n.\nabla_{j}v=vX_{j}=v(i\lambda_{j}\mathbbm{1}-D_{j}),\quad j=1,...,n.

Since Ο†:𝔀→ℂN\varphi:\mathfrak{g}\rightarrow\mathbb{C}^{N} is a metric anchor map there is a nonzero vector v^0βˆˆβ„‚N\hat{v}_{0}\in\mathbb{C}^{N} and ΞΌjβˆˆβ„\mu_{j}\in\mathbb{R} such that ΞΌjβ‰ 0\mu_{j}\neq 0 for at least one j∈{1,…,n}j\in\{1,...,n\} and such that

φ​(Dj)=ΞΌj​v^0,j=1,…,n.\varphi(D_{j})=\mu_{j}\hat{v}_{0},\quad j=1,...,n.

Considering the torsion TφT_{\varphi} we find that

Tφ​(βˆ‚i,βˆ‚j)=v^0​(ΞΌj​Xiβˆ’ΞΌi​Xjβˆ’ΞΌk​fi​jkβ€‹πŸ™),T_{\varphi}(\partial_{i},\partial_{j})=\hat{v}_{0}(\mu_{j}X_{i}-\mu_{i}X_{j}-\mu_{k}f^{k}_{ij}\mathbbm{1}),

and we note that the torsion vanishes iff

v^0​(ΞΌj​Xiβˆ’ΞΌi​Xj)=v^0​(ΞΌk​fi​jk).\hat{v}_{0}(\mu_{j}X_{i}-\mu_{i}X_{j})=\hat{v}_{0}(\mu_{k}f^{k}_{ij}).

Assume now that the torsion vanishes everywhere. in particular we note that, since 𝔀\mathfrak{g} is a real Lie algebra and each ΞΌiβˆˆβ„\mu_{i}\in\mathbb{R}, the sum ΞΌk​fi​jkβˆˆβ„\mu_{k}f^{k}_{ij}\in\mathbb{R}, i.e., that v^0\hat{v}_{0} is an eigenvector with a real eigenvalue to the matrix ΞΌj​Xiβˆ’ΞΌi​Xj\mu_{j}X_{i}-\mu_{i}X_{j}. However, since each XjX_{j} is antihermitian it follows that ΞΌj​Xiβˆ’ΞΌi​Xj\mu_{j}X_{i}-\mu_{i}X_{j} is an antihermitian matrix for every i,ji,j, implying that all eigenvalues of ΞΌj​Xiβˆ’ΞΌi​Xj\mu_{j}X_{i}-\mu_{i}X_{j} are purely imaginary. Consequently, since the sum ΞΌk​fi​jk\mu_{k}f^{k}_{ij} is an eigenvalue to ΞΌj​Xiβˆ’ΞΌi​Xj\mu_{j}X_{i}-\mu_{i}X_{j}, it follows that ΞΌk​fi​jk=0\mu_{k}f^{k}_{ij}=0. And since 𝔀\mathfrak{g} is semisimple, Lemma 4.3 implies that ΞΌk=0\mu_{k}=0 for all kk. Hence Ο†\varphi is the zero map, which is a contradiction since Ο†\varphi was assumed to be a metric anchor map, and the result follows. ∎

So far we have only considered metric compatibility and torsion of a connection βˆ‡:𝔀×ℂNβ†’β„‚N\nabla:\mathfrak{g}\times\mathbb{C}^{N}\rightarrow\mathbb{C}^{N}. However, in the context of real calculi one also has to take into account the condition that (Cπ’œ,h,βˆ‡)(C_{\mathcal{A}},h,\nabla) is a real connection calculus, i.e., that h​(βˆ‡βˆ‚iφ​(βˆ‚j),φ​(βˆ‚k))h(\nabla_{\partial_{i}}\varphi(\partial_{j}),\varphi(\partial_{k})) is hermitian for all i,j,ki,j,k. This condition restricts the possibilities for the choice of anchor map Ο†\varphi, as the following lemma shows.

Lemma 4.5.

Let ((MatN​(β„‚),𝔀π,β„‚N,Ο†),h)\big{(}(\text{Mat}_{N}(\mathbb{C}),\mathfrak{g}_{\pi},\mathbb{C}^{N},\varphi),h\big{)} be a real metric calculus where D1,…,DnD_{1},...,D_{n} is a basis of 𝔀\mathfrak{g} and Ο†:Dj↦μj​v^0\varphi:D_{j}\mapsto\mu_{j}\hat{v}_{0}, ΞΌjβˆˆβ„\mu_{j}\in\mathbb{R}, j=1,…,nj=1,...,n. Given a metric connection βˆ‡:𝔀×ℂNβ†’β„‚N\nabla:\mathfrak{g}\times\mathbb{C}^{N}\rightarrow\mathbb{C}^{N}, (Cπ’œ,h,βˆ‡)(C_{\mathcal{A}},h,\nabla) is a real connection calculus iff βˆ‡Dv^0=0\nabla_{D}\hat{v}_{0}=0 for Dβˆˆπ”€D\in\mathfrak{g}.

Proof.

If βˆ‡kv^0=0\nabla_{k}\hat{v}_{0}=0 for all kk, then h​(βˆ‡iφ​(Dj),φ​(Dk))=h​(0,φ​(Dk))=0h(\nabla_{i}\varphi(D_{j}),\varphi(D_{k}))=h(0,\varphi(D_{k}))=0 is trivially hermitian for all i,j,ki,j,k, and hence sufficiency of the given condition immediately follows.

To prove necessity we assume that h​(βˆ‡iφ​(βˆ‚j),φ​(βˆ‚k))h(\nabla_{i}\varphi(\partial_{j}),\varphi(\partial_{k})) is hermitian for i,j,ki,j,k such that ΞΌj​μkβ‰ 0\mu_{j}\mu_{k}\neq 0; that such jj and kk exist follows from the fact that Ο†\varphi is not the zero map. Since βˆ‡βˆ‚i\nabla_{\partial_{i}} is a linear map there is, for i=1,…,ni=1,...,n, a unique matrix Xi∈MatN​(β„‚)X_{i}\in\text{Mat}_{N}(\mathbb{C}) such that βˆ‡iv^0=v^0​Xi\nabla_{i}\hat{v}_{0}=\hat{v}_{0}X_{i}, and by explicit calculation one gets:

0\displaystyle 0 =h​(βˆ‡iφ​(Dj),φ​(Dk))βˆ’h​(βˆ‡iφ​(Dj),φ​(Dk))†\displaystyle=h(\nabla_{i}\varphi(D_{j}),\varphi(D_{k}))-h(\nabla_{i}\varphi(D_{j}),\varphi(D_{k}))^{\dagger}
=h​(βˆ‡iΞΌj​v^0,ΞΌk​v^0)βˆ’h​(ΞΌk​v^0,βˆ‡iΞΌj​v^0)\displaystyle=h(\nabla_{i}\mu_{j}\hat{v}_{0},\mu_{k}\hat{v}_{0})-h(\mu_{k}\hat{v}_{0},\nabla_{i}\mu_{j}\hat{v}_{0})
=ΞΌj​μk​Xi†​v^0†​v^0βˆ’ΞΌj​μk​v^0†​v^0​Xi,\displaystyle=\mu_{j}\mu_{k}X_{i}^{\dagger}\hat{v}_{0}^{\dagger}\hat{v}_{0}-\mu_{j}\mu_{k}\hat{v}_{0}^{\dagger}\hat{v}_{0}X_{i},

i.e., it follows that Xi†​v^0†​v^0=v^0†​v^0​XiX_{i}^{\dagger}\hat{v}_{0}^{\dagger}\hat{v}_{0}=\hat{v}_{0}^{\dagger}\hat{v}_{0}X_{i}. Assuming, without loss of generality, that v^0​v^0†=β€–v^0β€–2=1\hat{v}_{0}\hat{v}_{0}^{\dagger}=||\hat{v}_{0}||^{2}=1, we get that

v^0​Xi=v^0​(v^0†​v^0​Xi)=v^0​(Xi†​v^0†​v^0)=(v^0​Xi†​v^0†)​v^0,\hat{v}_{0}X_{i}=\hat{v}_{0}(\hat{v}_{0}^{\dagger}\hat{v}_{0}X_{i})=\hat{v}_{0}(X_{i}^{\dagger}\hat{v}_{0}^{\dagger}\hat{v}_{0})=(\hat{v}_{0}X_{i}^{\dagger}\hat{v}_{0}^{\dagger})\hat{v}_{0},

i.e., v^0\hat{v}_{0} is an eigenvector of XiX_{i} with eigenvalue Ξ»i=v^0​Xi†​v^0†\lambda_{i}=\hat{v}_{0}X_{i}^{\dagger}\hat{v}_{0}^{\dagger}. Moreover, since Xi†=βˆ’XiX_{i}^{\dagger}=-X_{i}, this implies that

Ξ»i=v^0​Xi†​v^0†=v^0​(βˆ’Xi)​v^0†=βˆ’Ξ»i​v^0​v^0†=βˆ’Ξ»i,\lambda_{i}=\hat{v}_{0}X^{\dagger}_{i}\hat{v}_{0}^{\dagger}=\hat{v}_{0}(-X_{i})\hat{v}_{0}^{\dagger}=-\lambda_{i}\hat{v}_{0}\hat{v}_{0}^{\dagger}=-\lambda_{i},

i.e., that Ξ»i=0\lambda_{i}=0. Hence, βˆ‡iv^0=v^0​Xi=0\nabla_{i}\hat{v}_{0}=\hat{v}_{0}X_{i}=0 and the statement follows. ∎

Let ((MatN​(β„‚),𝔀π,β„‚N),h)\big{(}(\text{Mat}_{N}(\mathbb{C}),\mathfrak{g}_{\pi},\mathbb{C}^{N}),h\big{)} be a metric pre-calculus, where h​(u,v)=xβ‹…u†​vh(u,v)=x\cdot u^{\dagger}v, xβˆˆβ„βˆ–{0}x\in\mathbb{R}\setminus\{0\}. If 𝔀\mathfrak{g} is a semisimple Lie algebra, Proposition 4.4 implies that no metric connection βˆ‡\nabla on 𝔀×ℂN\mathfrak{g}\times\mathbb{C}^{N} has vanishing torsion with respect to a metric anchor map Ο†:𝔀→ℂN\varphi:\mathfrak{g}\rightarrow\mathbb{C}^{N}. However, if 𝔀\mathfrak{g} is not semisimple and Ο†:𝔀→ℂN\varphi:\mathfrak{g}\rightarrow\mathbb{C}^{N} is a metric anchor map, then Lemma 4.5 implies that there is at most one affine connection βˆ‡:𝔀×ℂNβ†’β„‚N\nabla:\mathfrak{g}\times\mathbb{C}^{N}\rightarrow\mathbb{C}^{N} such that ((MatN​(β„‚),𝔀π,β„‚N,Ο†),h,βˆ‡)\big{(}(\text{Mat}_{N}(\mathbb{C}),\mathfrak{g}_{\pi},\mathbb{C}^{N},\varphi),h,\nabla\big{)} is a real connection calculus, and if this is the case then

βˆ‡Dφ​(Dβ€²)=0,D,Dβ€²βˆˆπ”€.\nabla_{D}\varphi(D^{\prime})=0,\quad D,D^{\prime}\in\mathfrak{g}.

We give necessary and sufficient conditions for when there exists a metric anchor map Ο†\varphi such that the above equation defines a connection βˆ‡\nabla that has vanishing torsion with respect to Ο†\varphi.

Theorem 4.6.

Let ((MatN​(β„‚),𝔀π,β„‚N),h)\big{(}(\text{Mat}_{N}(\mathbb{C}),\mathfrak{g}_{\pi},\mathbb{C}^{N}),h\big{)} be a metric pre-calculus. Then there exists a metric anchor map Ο†:𝔀→ℂN\varphi:\mathfrak{g}\rightarrow\mathbb{C}^{N} such that the resulting real metric calculus ((MatN​(β„‚),𝔀π,β„‚N,Ο†),h)\big{(}(\text{Mat}_{N}(\mathbb{C}),\mathfrak{g}_{\pi},\mathbb{C}^{N},\varphi),h\big{)} is pseudo-Riemannian if and only if π”€βŠ†π”°β€‹π”²β€‹(N)\mathfrak{g}\subseteq\mathfrak{su}(N) is not semisimple and there exists a common eigenvector to all matrices in 𝔀\mathfrak{g}.

Proof.

We begin by proving sufficiency of the given condition. If 𝔀\mathfrak{g} is not semisimple, then Proposition 4.2 implies that 𝔀\mathfrak{g} can be written as a direct sum of an abelian and a semisimple Lie subalgebra, which we denote by 𝔀a​b\mathfrak{g}^{ab} and 𝔀s​s\mathfrak{g}^{ss}, respectively. Let D1a​b,…,Dpa​bβˆˆπ”€a​bD^{ab}_{1},...,D^{ab}_{p}\in\mathfrak{g}^{ab} be a basis of 𝔀a​b\mathfrak{g}^{ab} and let D1s​s,…,Dqs​sβˆˆπ”€s​sD^{ss}_{1},...,D_{q}^{ss}\in\mathfrak{g}^{ss} be a basis of 𝔀s​s\mathfrak{g}^{ss}, making D1a​b,…,Dpa​b,D1s​s,…,Dqs​sD^{ab}_{1},...,D_{p}^{ab},D_{1}^{ss},...,D^{ss}_{q} a basis of 𝔀\mathfrak{g}.

Let 0β‰ v^0βˆˆβ„‚N0\neq\hat{v}_{0}\in\mathbb{C}^{N} be a common eigenvector of D1a​b,…​Dpa​b,D1s​s,…,Dqs​sD^{ab}_{1},...D^{ab}_{p},D^{ss}_{1},...,D^{ss}_{q}, with corresponding eigenvalues i​λ1a​b,…,i​λpa​b,i​λ1s​s,…,i​λqs​si\lambda_{1}^{ab},...,i\lambda^{ab}_{p},i\lambda^{ss}_{1},...,i\lambda^{ss}_{q}. For j=1,…,pj=1,...,p, let ΞΌja​bβˆˆβ„\mu^{ab}_{j}\in\mathbb{R} be such that at least one ΞΌja​b\mu^{ab}_{j} is nonzero. Now let Ο†:𝔀→ℂN\varphi:\mathfrak{g}\rightarrow\mathbb{C}^{N} be defined by φ​(Dja​b)=ΞΌja​b​v^0\varphi(D^{ab}_{j})=\mu^{ab}_{j}\hat{v}_{0} and φ​(Dks​s)=0\varphi(D^{ss}_{k})=0 for j=1,…,pj=1,...,p and k=1,…,qk=1,...,q. Then Ο†\varphi is a metric anchor map, since φ​(𝔀)\varphi(\mathfrak{g}) generates β„‚N\mathbb{C}^{N} and h​(φ​(D),φ​(Dβ€²))=x​φ​(D)†​φ​(Dβ€²)h(\varphi(D),\varphi(D^{\prime}))=x\varphi(D)^{\dagger}\varphi(D^{\prime}) is hermitian for D,Dβ€²βˆˆπ”€D,D^{\prime}\in\mathfrak{g} regardless of the specific value of xβˆˆβ„βˆ–{0}x\in\mathbb{R}\setminus\{0\}. Let βˆ‡:𝔀×ℂNβ†’β„‚N\nabla:\mathfrak{g}\times\mathbb{C}^{N}\rightarrow\mathbb{C}^{N} be the affine connection given by

βˆ‡Dja​bv=v​(βˆ’Dja​b+i​λja​bβ€‹πŸ™N),βˆ‡Dks​sv=v​(βˆ’Dks​s+i​λks​sβ€‹πŸ™N).\nabla_{D^{ab}_{j}}v=v(-D^{ab}_{j}+i\lambda^{ab}_{j}\mathbbm{1}_{N}),\quad\nabla_{D^{ss}_{k}}v=v(-D^{ss}_{k}+i\lambda^{ss}_{k}\mathbbm{1}_{N}).

From this it is clear that βˆ‡Dv^0=0\nabla_{D}\hat{v}_{0}=0 for any Dβˆˆπ”€D\in\mathfrak{g}, implying that

((MatN​(β„‚),𝔀π,β„‚N,Ο†),h,βˆ‡)\big{(}(\text{Mat}_{N}(\mathbb{C}),\mathfrak{g}_{\pi},\mathbb{C}^{N},\varphi),h,\nabla\big{)}

is indeed a real connection calculus by Lemma 4.5. Moreover, βˆ‡\nabla is compatible with the metric, since each eigenvalue i​λja​bi\lambda^{ab}_{j} and i​λks​si\lambda^{ss}_{k} is purely imaginary. Left is to consider the torsion:

Tφ​(Dia​b,Dja​b)\displaystyle T_{\varphi}(D^{ab}_{i},D^{ab}_{j}) =βˆ‡Dia​bφ​(Dja​b)βˆ’βˆ‡Dia​bφ​(Dja​b)βˆ’Ο†β€‹([Dia​b,Dja​b])=0βˆ’0βˆ’Ο†β€‹(0)=0,\displaystyle=\nabla_{D^{ab}_{i}}\varphi(D^{ab}_{j})-\nabla_{D^{ab}_{i}}\varphi(D^{ab}_{j})-\varphi([D^{ab}_{i},D^{ab}_{j}])=0-0-\varphi(0)=0,
Tφ​(Dja​b,Dks​s)\displaystyle T_{\varphi}(D^{ab}_{j},D^{ss}_{k}) =βˆ‡Dja​bφ​(Dks​s)βˆ’βˆ‡Dks​sφ​(Dja​b)βˆ’Ο†β€‹([Dja​b,Dks​s])=0βˆ’0βˆ’Ο†β€‹(0)=0,\displaystyle=\nabla_{D^{ab}_{j}}\varphi(D^{ss}_{k})-\nabla_{D^{ss}_{k}}\varphi(D^{ab}_{j})-\varphi([D^{ab}_{j},D^{ss}_{k}])=0-0-\varphi(0)=0,
Tφ​(Dks​s,Dls​s)\displaystyle T_{\varphi}(D^{ss}_{k},D^{ss}_{l}) =βˆ‡Dks​sφ​(Dls​s)βˆ’βˆ‡Dls​sφ​(Dks​s)βˆ’Ο†β€‹([Dks​s,Dls​s])=0βˆ’0βˆ’0=0,\displaystyle=\nabla_{D^{ss}_{k}}\varphi(D^{ss}_{l})-\nabla_{D^{ss}_{l}}\varphi(D^{ss}_{k})-\varphi([D^{ss}_{k},D^{ss}_{l}])=0-0-0=0,

where the last equality follows from [Dks​s,Dls​s]βˆˆπ”€s​s[D^{ss}_{k},D^{ss}_{l}]\in\mathfrak{g}^{ss} implying that φ​([Dks​s,Dls​s])=0\varphi([D^{ss}_{k},D^{ss}_{l}])=0. Hence, βˆ‡\nabla is the Levi-Civita connection and ((MatN​(β„‚),𝔀π,β„‚N,Ο†),h)\big{(}(\text{Mat}_{N}(\mathbb{C}),\mathfrak{g}_{\pi},\mathbb{C}^{N},\varphi),h\big{)} is pseudo-Riemannian.

To prove necessity of the given condition, assume that ((MatN​(β„‚),𝔀π,β„‚N,Ο†),h)\big{(}(\text{Mat}_{N}(\mathbb{C}),\mathfrak{g}_{\pi},\mathbb{C}^{N},\varphi),h\big{)} is pseudo-Riemannian and that βˆ‡:𝔀×ℂNβ†’β„‚N\nabla:\mathfrak{g}\times\mathbb{C}^{N}\rightarrow\mathbb{C}^{N} is the Levi-Civita connection. Let D1,…,DnD_{1},...,D_{n} be a basis of 𝔀\mathfrak{g}. Since Ο†:𝔀→ℂN\varphi:\mathfrak{g}\rightarrow\mathbb{C}^{N} is a metric anchor map there are ΞΌjβˆˆβ„\mu_{j}\in\mathbb{R}, j=1,…,nj=1,...,n such that φ​(Dj)=ΞΌj​v^0\varphi(D_{j})=\mu_{j}\hat{v}_{0} for some for some 0β‰ v^0βˆˆβ„‚N0\neq\hat{v}_{0}\in\mathbb{C}^{N}. Since

((MatN​(β„‚),𝔀π,β„‚N,Ο†),h,βˆ‡)\big{(}(\text{Mat}_{N}(\mathbb{C}),\mathfrak{g}_{\pi},\mathbb{C}^{N},\varphi),h,\nabla\big{)}

is a real connection calculus, and since there exist Ξ»1,…,Ξ»nβˆˆβ„\lambda_{1},...,\lambda_{n}\in\mathbb{R} such that

βˆ‡jv=v​(βˆ’Dj+i​λjβ€‹πŸ™)=i​λj​vβˆ’v​Dj,\nabla_{j}v=v(-D_{j}+i\lambda_{j}\mathbbm{1})=i\lambda_{j}v-vD_{j},

Lemma 4.5 immediately implies that v^0\hat{v}_{0} is an eigenvector to DjD_{j} (with corresponding eigenvalue i​λji\lambda_{j}), j=1,…,nj=1,...,n. Moreover, since the torsion vanishes, Proposition 4.4 implies that 𝔀\mathfrak{g} is not semisimple. This finishes the proof. ∎

Corollary 4.7.

Let ((MatN​(β„‚),𝔀π,β„‚N),h)\big{(}(\text{Mat}_{N}(\mathbb{C}),\mathfrak{g}_{\pi},\mathbb{C}^{N}),h\big{)} be a metric pre-calculus. If 𝔀\mathfrak{g} is solvable, then there exists a metric anchor map Ο†:𝔀→ℂN\varphi:\mathfrak{g}\rightarrow\mathbb{C}^{N} such that the resulting real metric calculus ((MatN​(β„‚),𝔀π,β„‚N,Ο†),h)\big{(}(\text{Mat}_{N}(\mathbb{C}),\mathfrak{g}_{\pi},\mathbb{C}^{N},\varphi),h\big{)} is pseudo-Riemannian.

Proof.

If 𝔀\mathfrak{g} is solvable, then by Lie’s theorem the matrices in 𝔀\mathfrak{g} have a common eigenvector v^\hat{v}. And since solvable Lie algebras are not semisimple, 4.6 implies that there exists a metric anchor map Ο†:𝔀→ℂN\varphi:\mathfrak{g}\rightarrow\mathbb{C}^{N} such that ((MatN​(β„‚),𝔀π,β„‚N,Ο†),h)\big{(}(\text{Mat}_{N}(\mathbb{C}),\mathfrak{g}_{\pi},\mathbb{C}^{N},\varphi),h\big{)} is pseudo-Riemannian. ∎

Below we give a simple example highlighting that both of the conditions in Theorem 4.6 need to be checked separately when investigating whether a metric pre-calculus ((MatN​(β„‚),𝔀π,β„‚N),h)\big{(}(\text{Mat}_{N}(\mathbb{C}),\mathfrak{g}_{\pi},\mathbb{C}^{N}),h\big{)} can be made into a pseudo-Riemannian calculus, as there exist semisimple matrix Lie algebras whose elements share a common eigenvector, as well as matrix Lie algebras that are not semisimple and whose elements do not share a common eigenvector.

Example 4.8.

Let (Bπ’œ,h)=((MatN​(β„‚),𝔀π,β„‚N),h)(B_{\mathcal{A}},h)=\big{(}(\text{Mat}_{N}(\mathbb{C}),\mathfrak{g}_{\pi},\mathbb{C}^{N}),h\big{)} be a metric pre-calculus, let Οƒ1,Οƒ2,Οƒ2βˆˆπ”°β€‹π”²β€‹(2)\sigma_{1},\sigma_{2},\sigma_{2}\in\mathfrak{su}(2) be given by

Οƒ1=(0ii0),Οƒ2=(01βˆ’10),Οƒ3=(i00βˆ’i),\sigma_{1}=\begin{pmatrix}0&i\\ i&0\end{pmatrix},\quad\sigma_{2}=\begin{pmatrix}0&1\\ -1&0\end{pmatrix},\quad\sigma_{3}=\begin{pmatrix}i&0\\ 0&-i\end{pmatrix},

and let πŸ™2\mathbbm{1}_{2} denote the identity matrix in Mat2​(β„‚)\text{Mat}_{2}(\mathbb{C}). We know that β„β€‹βŸ¨Οƒ1,Οƒ2,Οƒ3⟩=𝔰​𝔲​(2)\mathbb{R}\langle\sigma_{1},\sigma_{2},\sigma_{3}\rangle=\mathfrak{su}(2) is semisimple, and it is straightforward to check that there is no common eigenvector for Οƒ1\sigma_{1}, Οƒ2\sigma_{2} and Οƒ3\sigma_{3}. These matrices enable us to construct a semisimple matrix Lie algebra whose elements have a common eigenvector, as well as a matrix Lie algebra that is not semisimple, but whose elements do not share a common eigenvector. We make the following choices:

D0\displaystyle D_{0} =(iβ‹…πŸ™200βˆ’iβ‹…πŸ™2)\displaystyle=\begin{pmatrix}i\cdot\mathbbm{1}_{2}&0\\ 0&-i\cdot\mathbbm{1}_{2}\end{pmatrix}
Dj\displaystyle D_{j} =(Οƒj00Οƒj),j=1,2,3,\displaystyle=\begin{pmatrix}\sigma_{j}&0\\ 0&\sigma_{j}\end{pmatrix},\quad j=1,2,3,
Djβ€²\displaystyle D^{\prime}_{j} =(000Οƒj),j=1,2,3,\displaystyle=\begin{pmatrix}0&0\\ 0&\sigma_{j}\end{pmatrix},\quad j=1,2,3,

and create three distinct Lie subalgebras of 𝔰​𝔲​(4)\mathfrak{su}(4):

𝔀a\displaystyle\mathfrak{g}^{a} =β„β€‹βŸ¨D1β€²,D2β€²,D3β€²βŸ©β‰ƒπ”°β€‹π”²β€‹(2),\displaystyle=\mathbb{R}\langle D^{\prime}_{1},D^{\prime}_{2},D^{\prime}_{3}\rangle\simeq\mathfrak{su}(2),
𝔀b\displaystyle\mathfrak{g}^{b} =β„β€‹βŸ¨D0,D1,D2,D3βŸ©β‰ƒπ”žβ€‹π”Ÿβ€‹(1)βŠ•π”°β€‹π”²β€‹(2),\displaystyle=\mathbb{R}\langle D_{0},D_{1},D_{2},D_{3}\rangle\simeq\mathfrak{ab}(1)\oplus\mathfrak{su}(2),
𝔀c\displaystyle\mathfrak{g}^{c} =β„β€‹βŸ¨D0,D1β€²,D2β€²,D3β€²βŸ©β‰ƒπ”žβ€‹π”Ÿβ€‹(1)βŠ•π”°β€‹π”²β€‹(2)≃𝔀b.\displaystyle=\mathbb{R}\langle D_{0},D^{\prime}_{1},D^{\prime}_{2},D^{\prime}_{3}\rangle\simeq\mathfrak{ab}(1)\oplus\mathfrak{su}(2)\simeq\mathfrak{g}^{b}.

The necessary and sufficient conditions listed in Theorem 4.6 on the matrix Lie algebra in question are that it is not semisimple and that all matrices have a common eigenvector. It is straightforward to check that 𝔀b≃𝔀c\mathfrak{g}^{b}\simeq\mathfrak{g}^{c} are not semisimple and that all matrices in 𝔀a\mathfrak{g}^{a} and in 𝔀c\mathfrak{g}^{c} share a common eigenvector v^0=(1,0,0,0)βˆˆβ„‚4\hat{v}_{0}=(1,0,0,0)\in\mathbb{C}^{4}. It is equally straightforward to check that 𝔀a\mathfrak{g}^{a} is semisimple and that there is no common eigenvector to all matrices in 𝔀b\mathfrak{g}^{b}. Hence, Theorem 4.6 tells us that there exists a metric anchor map Ο†c:𝔀cβ†’β„‚4\varphi^{c}:\mathfrak{g}^{c}\rightarrow\mathbb{C}^{4} such that the real metric calculus ((Mat4​(β„‚),𝔀πc,β„‚4,Ο†c),h)\big{(}(\text{Mat}_{4}(\mathbb{C}),\mathfrak{g}^{c}_{\pi},\mathbb{C}^{4},\varphi^{c}),h\big{)} is pseudo-Riemannian, and that no real metric calculus of the form ((Mat4​(β„‚),𝔀πa,β„‚4,Ο†),h)\big{(}(\text{Mat}_{4}(\mathbb{C}),\mathfrak{g}^{a}_{\pi},\mathbb{C}^{4},\varphi),h\big{)} or ((Mat4​(β„‚),𝔀πb,β„‚4,Ο†c),h)\big{(}(\text{Mat}_{4}(\mathbb{C}),\mathfrak{g}^{b}_{\pi},\mathbb{C}^{4},\varphi^{c}),h\big{)} is pseudo-Riemannian.

More explicitly, a pseudo-Riemannian calculus ((Mat4​(β„‚),𝔀πc,β„‚4,Ο†c),h)\big{(}(\text{Mat}_{4}(\mathbb{C}),\mathfrak{g}^{c}_{\pi},\mathbb{C}^{4},\varphi^{c}),h\big{)} is given by the anchor map Ο†c​(D1)=v^0=(1,0,0,0)\varphi^{c}(D_{1})=\hat{v}_{0}=(1,0,0,0), Ο†c​(Djβ€²)=0\varphi^{c}(D^{\prime}_{j})=0 for j=1,2,3j=1,2,3. Letting Ξ»D\lambda_{D} denote the eigenvalue of Dβˆˆπ”€cD\in\mathfrak{g}^{c} with respect to v^0\hat{v}_{0} (i.e., v^0​D=Ξ»D​v^0\hat{v}_{0}D=\lambda_{D}\hat{v}_{0}), the Levi-Civita connection βˆ‡\nabla on β„‚N\mathbb{C}^{N} is given by

βˆ‡Dv=Ξ»D​vβˆ’v​D,Dβˆˆπ”€c.\nabla_{D}v=\lambda_{D}v-vD,\quad D\in\mathfrak{g}^{c}.

4.2. Generalizing the matrix case

We now let π’œ\mathcal{A} be an arbitrary unital βˆ—-algebra such that β„‚N\mathbb{C}^{N} is a simple (right) π’œ\mathcal{A}-module. When considering metric pre-calculi (Bπ’œ,h)=((π’œ,𝔀π,β„‚N),h)(B_{\mathcal{A}},h)=\big{(}(\mathcal{A},\mathfrak{g}_{\pi},\mathbb{C}^{N}),h\big{)} where β„‚N\mathbb{C}^{N} is a simple and projective π’œ\mathcal{A}-module the discussion is similar to the case where π’œ=MatN​(β„‚)\mathcal{A}=\text{Mat}_{N}(\mathbb{C}), although certain care must be taken when considering the Lie algebra 𝔀\mathfrak{g}. We outline the details below.

For the sake of notational convenience in several of the proofs below, we let ρ:π’œβ†’MatN​(β„‚)\rho:\mathcal{A}\rightarrow\text{Mat}_{N}(\mathbb{C}) denote the βˆ—-homomorphism defined by

v​ρ​(a)=vβ‹…a,a∈A,vβˆˆβ„‚N.v\rho(a)=v\cdot a,\quad a\in A,v\in\mathbb{C}^{N}.

Since β„‚N\mathbb{C}^{N} is a simple π’œ\mathcal{A}-module, it immediately follows from the Jacobson density theorem that ρ\rho is a surjection.

We are mainly concerned with the case where β„‚N\mathbb{C}^{N} is simple and projective and where hh is an invertible metric. This case is greatly simplified by the following general lemma.

Lemma 4.9 (c.f. Proposition 2.6 in [Arn21]).

Let MM be a finitely generated projective (right) π’œ\mathcal{A}-module with generators e1,…,ene_{1},...,e_{n} and let h:MΓ—Mβ†’π’œh:M\times M\rightarrow\mathcal{A} be a (invertible) metric. Setting hi​j=h​(ei,ej)h_{ij}=h(e_{i},e_{j}), there exist hi​jβˆˆπ’œh^{ij}\in\mathcal{A} such that (hi​j)βˆ—=hj​i(h^{ij})^{*}=h^{ji} and ek​hk​l​hl​i=eie_{k}h^{kl}h_{li}=e_{i} for i,j=1,…,ni,j=1,...,n.

The above lemma enables us to give the following characterization of the metric hh.

Proposition 4.10.

Let β„‚N\mathbb{C}^{N} be a simple π’œ\mathcal{A}-module, and let hh be an invertible metric on β„‚N\mathbb{C}^{N}. Then β„‚N\mathbb{C}^{N} is a projective (right) π’œ\mathcal{A}-module if and only if there exists a cβˆˆβ„βˆ–{0}c\in\mathbb{R}\setminus\{0\} such that ρ​(h​(u,v))=c​u†​v\rho(h(u,v))=cu^{\dagger}v for all u,vβˆˆβ„‚Nu,v\in\mathbb{C}^{N}.

Proof.

We begin proving necessity of the given condition. Since the composition ρ∘h:β„‚NΓ—β„‚Nβ†’MatN​(β„‚)\rho\circ h:\mathbb{C}^{N}\times\mathbb{C}^{N}\rightarrow\text{Mat}_{N}(\mathbb{C}) must be a hermitian form, this immediately implies that there exists a cβˆˆβ„c\in\mathbb{R} such that ρ​(h​(u,v))=c​u†​v\rho(h(u,v))=cu^{\dagger}v. To prove that cβ‰ 0c\neq 0, let e1β‰ 0e_{1}\neq 0 be a generator of β„‚N\mathbb{C}^{N} as an π’œ\mathcal{A}-module. Then, setting h11=h​(e1,e1)h_{11}=h(e_{1},e_{1}), Lemma 4.9 implies that there exist h11βˆˆπ’œh^{11}\in\mathcal{A} such that e1β‹…h11​h11=e1e_{1}\cdot h^{11}h_{11}=e_{1}. Since

0β‰ e1=e1β‹…h11​h11=e1​ρ​(h11)​ρ​(h11),0\neq e_{1}=e_{1}\cdot h^{11}h_{11}=e_{1}\rho(h^{11})\rho(h_{11}),

it follows that ρ​(h11)=c​e1†​e1β‰ 0\rho(h_{11})=ce_{1}^{\dagger}e_{1}\neq 0, which in turn implies that cβ‰ 0c\neq 0.

Conversely, suppose that there is a cβˆˆβ„β‰ {0}c\in\mathbb{R}\neq\{0\} such that ρ​(h​(u,v))=c​u†​v\rho(h(u,v))=cu^{\dagger}v for all u,vβˆˆβ„‚Nu,v\in\mathbb{C}^{N}. Let e1=(1,0,…,0)βˆˆβ„‚Ne_{1}=(1,0,...,0)\in\mathbb{C}^{N}, and consider the (module) homomorphism ΞΉ:β„‚Nβ†’π’œ\iota:\mathbb{C}^{N}\rightarrow\mathcal{A} given by

ι​(v)=h​(e1,v),vβˆˆβ„‚N.\iota(v)=h(e_{1},v),\quad v\in\mathbb{C}^{N}.

Now, let ΞΊ:π’œβ†’β„‚N\kappa:\mathcal{A}\rightarrow\mathbb{C}^{N} be the (module) homomorphism given by κ​(a)=cβˆ’1​e1β‹…a\kappa(a)=c^{-1}e_{1}\cdot a. Then, for every vβˆˆβ„‚Nv\in\mathbb{C}^{N}, we get

ΞΊβˆ˜ΞΉβ€‹(v)=κ​(h​(e1,v))=cβˆ’1​e1β‹…h​(e1,v)=cβˆ’1​e1​c​e1†​v=v,\kappa\circ\iota(v)=\kappa(h(e_{1},v))=c^{-1}e_{1}\cdot h(e_{1},v)=c^{-1}e_{1}ce_{1}^{\dagger}v=v,

implying that κ∘ι=idβ„‚N\kappa\circ\iota=\operatorname{id}_{\mathbb{C}^{N}}. Hence, the exact sequence

0β†’ker⁑κβ†ͺπ’œβ†’πœ…β„‚Nβ†’00\rightarrow\ker\kappa\hookrightarrow\mathcal{A}\xrightarrow{\kappa}\mathbb{C}^{N}\rightarrow 0

splits and π’œ=kerβ‘ΞΊβŠ•im⁑ι\mathcal{A}=\ker\kappa\oplus\operatorname{im}\iota, where im⁑ι≃ℂN\operatorname{im}\iota\simeq\mathbb{C}^{N}. In other words, β„‚N\mathbb{C}^{N} is a direct summand of the free π’œ\mathcal{A}-module π’œ\mathcal{A} and is therefore projective. ∎

In light of Proposition 4.10 we shall assume that β„‚N\mathbb{C}^{N} is a simple projective π’œ\mathcal{A}-module and that h:β„‚NΓ—β„‚Nβ†’π’œh:\mathbb{C}^{N}\times\mathbb{C}^{N}\rightarrow\mathcal{A} is an invertible metric going forward. This ensures (among other things) the following useful result:

Lemma 4.11 (cf. [Arn21], Corollary 3.7).

Let β„‚N\mathbb{C}^{N} be a finitely generated projective π’œ\mathcal{A}-module and let hh be a metric on β„‚N\mathbb{C}^{N}. If 𝔀\mathfrak{g} is a real Lie algebra of hermitian derivations on π’œ\mathcal{A}, then there exists a connection βˆ‡:𝔀×ℂNβ†’β„‚N\nabla:\mathfrak{g}\times\mathbb{C}^{N}\rightarrow\mathbb{C}^{N} that is compatible with hh.

We use this fact to show that there is a unique representation ρ¯:𝔀→𝔰​𝔲​(N)\bar{\rho}:\mathfrak{g}\rightarrow\mathfrak{su}(N) that satisfies

ρ​(βˆ‚(a))=[ρ¯​(βˆ‚),ρ​(a)],aβˆˆπ’œ,βˆ‚βˆˆπ”€,\rho(\partial(a))=[\bar{\rho}(\partial),\rho(a)],\quad a\in\mathcal{A},\quad\partial\in\mathfrak{g},

which can be used to give a convenient parameterization of all affine connections that need to be considered.

Proposition 4.12.

Let β„‚N\mathbb{C}^{N} be a simple and projective π’œ\mathcal{A}-module, and let hh be an invertible metric on β„‚N\mathbb{C}^{N}. If π”€βŠ†Der⁑(π’œ)\mathfrak{g}\subseteq\operatorname{Der}(\mathcal{A}) is a finite-dimensional real Lie algebra of hermitian derivations with basis βˆ‚1,…,βˆ‚n\partial_{1},...,\partial_{n}, then there exists a unique representation ρ¯:𝔀→𝔰​𝔲​(N)\bar{\rho}:\mathfrak{g}\rightarrow\mathfrak{su}(N) such that ρ​(βˆ‚(a))=[ρ¯​(βˆ‚),ρ​(a)]\rho(\partial(a))=[\bar{\rho}(\partial),\rho(a)] for all aβˆˆπ’œa\in\mathcal{A} and βˆ‚βˆˆπ”€\partial\in\mathfrak{g}. Moreover, every affine connection βˆ‡:𝔀×ℂNβ†’β„‚N\nabla:\mathfrak{g}\times\mathbb{C}^{N}\rightarrow\mathbb{C}^{N} is of the form

βˆ‡βˆ‚jv=v​(βˆ’ΟΒ―β€‹(βˆ‚j)+tjβ€‹πŸ™N),vβˆˆβ„‚N,\nabla_{\partial_{j}}v=v(-\bar{\rho}(\partial_{j})+t_{j}\mathbbm{1}_{N}),\quad v\in\mathbb{C}^{N},

where tjβˆˆβ„‚t_{j}\in\mathbb{C} for j=1,…,nj=1,...,n. Furthermore, the connection βˆ‡\nabla is compatible with hh if and only if Re⁑(tj)=0\operatorname{Re}(t_{j})=0 for j=1,…,nj=1,...,n.

Proof.

Since hh is an invertible metric on the projective π’œ\mathcal{A}-module β„‚N\mathbb{C}^{N}, Lemma 4.11 implies that there exists at least one metric connection on 𝔀×ℂN\mathfrak{g}\times\mathbb{C}^{N}. Hence, let βˆ‡:𝔀×ℂNβ†’β„‚N\nabla:\mathfrak{g}\times\mathbb{C}^{N}\rightarrow\mathbb{C}^{N} denote an affine connection on β„‚N\mathbb{C}^{N}. Since βˆ‡j=βˆ‡βˆ‚j\nabla_{j}=\nabla_{\partial_{j}} is a linear map from β„‚N\mathbb{C}^{N} to itself, it follows that there are matrices X1,…​XnX_{1},...X_{n} such that

βˆ‡jv=v​Xj;\nabla_{j}v=vX_{j};

by the Leibniz condition for βˆ‡\nabla, it follows that

v​ρ​(a)​Xj=βˆ‡jv​ρ​(a)=βˆ‡j(vβ‹…a)=(βˆ‡jv)β‹…a+vβ‹…βˆ‚j(a)=v​Xi​ρ​(a)+v​ρ​(βˆ‚j(a))v\rho(a)X_{j}=\nabla_{j}v\rho(a)=\nabla_{j}(v\cdot a)=(\nabla_{j}v)\cdot a+v\cdot\partial_{j}(a)=vX_{i}\rho(a)+v\rho(\partial_{j}(a))

for all vβˆˆβ„‚mv\in\mathbb{C}^{m} and all aβˆˆπ’œa\in\mathcal{A}, which is equivalent to

(4) ρ​(βˆ‚j(a))=[ρ​(a),Xj]=[βˆ’Xj,ρ​(a)]\rho(\partial_{j}(a))=[\rho(a),X_{j}]=[-X_{j},\rho(a)]

for all aβˆˆπ’œa\in\mathcal{A}. This together with the Jacobi identity implies

[ρ​(a),[Xi,Xj]]\displaystyle[\rho(a),[X_{i},X_{j}]] =βˆ’[Xi,[Xj,ρ​(a)]]βˆ’[Xj,[ρ​(a),Xi]]\displaystyle=-[X_{i},[X_{j},\rho(a)]]-[X_{j},[\rho(a),X_{i}]]
=[Xi,ρ​(βˆ‚j(a))]βˆ’[Xj,ρ​(βˆ‚i(a))]=[ρ​(βˆ‚i(a)),Xj]βˆ’[ρ​(βˆ‚j(a)),Xi]\displaystyle=[X_{i},\rho(\partial_{j}(a))]-[X_{j},\rho(\partial_{i}(a))]=[\rho(\partial_{i}(a)),X_{j}]-[\rho(\partial_{j}(a)),X_{i}]
=ρ​((βˆ‚jβˆ‚iβˆ’βˆ‚iβˆ‚j)​(a))=ρ​([βˆ‚j,βˆ‚i]​(a))=ρ​(fj​ikβ€‹βˆ‚k(a))=[ρ​(a),fj​ik​Xk].\displaystyle=\rho((\partial_{j}\partial_{i}-\partial_{i}\partial_{j})(a))=\rho([\partial_{j},\partial_{i}](a))=\rho(f^{k}_{ji}\partial_{k}(a))=[\rho(a),f^{k}_{ji}X_{k}].

The matrices XjX_{j} enable us to construct a representation ρ¯:𝔀→𝔰​𝔲​(N)\bar{\rho}:\mathfrak{g}\rightarrow\mathfrak{su}(N) in the following way. For each j=1,…,nj=1,...,n, let Dj=βˆ’Xj+tjβ€‹πŸ™ND_{j}=-X_{j}+t_{j}\mathbbm{1}_{N}, where tj=tr⁑(Xj)Nt_{j}=\frac{\operatorname{tr}(X_{j})}{N} so that tr⁑(Dj)=0\operatorname{tr}(D_{j})=0. Then, by Equation (4), ρ​(βˆ‚j(a))=[Dj,ρ​(a)]\rho(\partial_{j}(a))=[D_{j},\rho(a)] for each jj, and moreover we have that

[[Di,Dj],ρ​(a)]=[[Xi,Xj],ρ​(a)]=[fj​ik​Xk,ρ​(a)]=[fi​jk​Dk,ρ​(a)],[[D_{i},D_{j}],\rho(a)]=[[X_{i},X_{j}],\rho(a)]=[f^{k}_{ji}X_{k},\rho(a)]=[f^{k}_{ij}D_{k},\rho(a)],

showing that [Di,Dj]=fi​jk​Dk[D_{i},D_{j}]=f^{k}_{ij}D_{k}, since ρ\rho is surjective and tr⁑(Dk)=0\operatorname{tr}(D_{k})=0 for k=1,…,nk=1,...,n. Since βˆ‚i=βˆ‚iβˆ—\partial_{i}=\partial_{i}^{*} (i.e., (βˆ‚i(aβˆ—))βˆ—=βˆ‚i(a)(\partial_{i}(a^{*}))^{*}=\partial_{i}(a) for all aβˆˆπ’œa\in\mathcal{A}), it follows that

[Di,ρ​(a)]\displaystyle[D_{i},\rho(a)] =ρ​(βˆ‚i(a))=ρ​(βˆ‚iβˆ—(a))=ρ​(βˆ‚i(aβˆ—)βˆ—)=[Di,ρ​(aβˆ—)]†\displaystyle=\rho(\partial_{i}(a))=\rho(\partial^{*}_{i}(a))=\rho(\partial_{i}(a^{*})^{*})=[D_{i},\rho(a^{*})]^{\dagger}
=[Di,ρ​(a)†]†=βˆ’[Di†,ρ​(a)]=[βˆ’Di†,ρ​(a)]\displaystyle=[D_{i},\rho(a)^{\dagger}]^{\dagger}=-[D_{i}^{\dagger},\rho(a)]=[-D_{i}^{\dagger},\rho(a)]

for all aβˆˆπ’œa\in\mathcal{A}, where †\dagger denotes the hermitian transpose of a matrix. This is equivalent to Di+Di†D_{i}+D_{i}^{\dagger} commuting with every element in ρ​(π’œ)\rho(\mathcal{A}). Since ρ\rho is surjective, this implies that Di+Di†=Ξ±iβ€‹πŸ™ND_{i}+D_{i}^{\dagger}=\alpha_{i}\mathbbm{1}_{N} for some Ξ±iβˆˆβ„\alpha_{i}\in\mathbb{R} for every i=1,…,ni=1,...,n. However, since the traces of both DiD_{i} and Di†D_{i}^{\dagger} vanish it follows that each Ξ±i=0\alpha_{i}=0, i.e., that Diβˆˆπ”°β€‹π”²β€‹(N)D_{i}\in\mathfrak{su}(N) for i=1,…,ni=1,...,n. Hence, by the above argument it follows that ρ¯:𝔀→𝔰​𝔲​(N)\bar{\rho}:\mathfrak{g}\rightarrow\mathfrak{su}(N) is defined by ρ¯​(βˆ‚i)=Di\bar{\rho}(\partial_{i})=D_{i}, i=1,…,ni=1,...,n.

To prove uniqueness of ρ¯\bar{\rho}, let ρ′:𝔀→𝔰​𝔲​(N)\rho^{\prime}:\mathfrak{g}\rightarrow\mathfrak{su}(N) be another representation such that ρ​(βˆ‚(a))=[ρ′​(βˆ‚),ρ​(a)]\rho(\partial(a))=[\rho^{\prime}(\partial),\rho(a)] for all aβˆˆπ’œa\in\mathcal{A} and βˆ‚βˆˆπ”€\partial\in\mathfrak{g}. Then it follows that

[ρ′​(βˆ‚),ρ​(a)]=[ρ¯​(βˆ‚),ρ​(a)]⇔[ρ′​(βˆ‚)βˆ’ΟΒ―β€‹(βˆ‚),ρ​(a)]=0,[\rho^{\prime}(\partial),\rho(a)]=[\bar{\rho}(\partial),\rho(a)]\Leftrightarrow[\rho^{\prime}(\partial)-\bar{\rho}(\partial),\rho(a)]=0,

implying that ρ′​(βˆ‚)βˆ’ΟΒ―β€‹(βˆ‚)\rho^{\prime}(\partial)-\bar{\rho}(\partial) is a multiple of the identity matrix. And since t​r​(ρ′​(βˆ‚))=t​r​(ρ¯​(βˆ‚))=0tr(\rho^{\prime}(\partial))=tr(\bar{\rho}(\partial))=0, it follows that ρ′​(βˆ‚)=ρ¯​(βˆ‚)\rho^{\prime}(\partial)=\bar{\rho}(\partial) for βˆ‚βˆˆπ”€\partial\in\mathfrak{g}.

Now, using ρ¯\bar{\rho} we find that

βˆ‡jv=v​Xj=v​(βˆ’Dj+tjβ€‹πŸ™N)=v​(βˆ’ΟΒ―β€‹(βˆ‚j)+tjβ€‹πŸ™N),vβˆˆβ„‚N,\nabla_{j}v=vX_{j}=v(-D_{j}+t_{j}\mathbbm{1}_{N})=v(-\bar{\rho}(\partial_{j})+t_{j}\mathbbm{1}_{N}),\quad v\in\mathbb{C}^{N},

and it is straightforward to see that the above formula defines an affine connection βˆ‡\nabla for every tjβˆˆβ„‚t_{j}\in\mathbb{C}.

Now, let βˆ‡\nabla be an affine connection that is compatible with hh. This implies that

ρ​(βˆ‚j(h​(u,v)))\displaystyle\rho(\partial_{j}(h(u,v))) =ρ​(h​(βˆ‡ju,v)+h​(u,βˆ‡jv))\displaystyle=\rho(h(\nabla_{j}u,v)+h(u,\nabla_{j}v))
=ρ​(h​(u​(βˆ’ΟΒ―β€‹(βˆ‚j)+tjβ€‹πŸ™N),v)+h​(u,v​(βˆ’ΟΒ―β€‹(βˆ‚j)+tjβ€‹πŸ™N)))\displaystyle=\rho(h(u(-\bar{\rho}(\partial_{j})+t_{j}\mathbbm{1}_{N}),v)+h(u,v(-\bar{\rho}(\partial_{j})+t_{j}\mathbbm{1}_{N})))
=ρ​(h​(u​(βˆ’ΟΒ―β€‹(βˆ‚j)+tjβ€‹πŸ™N),v))+ρ​(h​(u,v​(βˆ’ΟΒ―β€‹(βˆ‚j)+tjβ€‹πŸ™N)))\displaystyle=\rho(h(u(-\bar{\rho}(\partial_{j})+t_{j}\mathbbm{1}_{N}),v))+\rho(h(u,v(-\bar{\rho}(\partial_{j})+t_{j}\mathbbm{1}_{N})))
=c​((βˆ’ΟΒ―β€‹(βˆ‚j)+tjβ€‹πŸ™N)†​u†​v+u†​v​(βˆ’ΟΒ―β€‹(βˆ‚j)+tjβ€‹πŸ™N))\displaystyle=c\left((-\bar{\rho}(\partial_{j})+t_{j}\mathbbm{1}_{N})^{\dagger}u^{\dagger}v+u^{\dagger}v(-\bar{\rho}(\partial_{j})+t_{j}\mathbbm{1}_{N})\right)
=c​(ρ¯​(βˆ‚j)⁑u†​vβˆ’u†​v​ρ¯​(βˆ‚j))+c​(tΒ―j+tj)​u†​v\displaystyle=c\left(\bar{\rho}(\partial_{j})u^{\dagger}v-u^{\dagger}v\bar{\rho}(\partial_{j})\right)+c(\bar{t}_{j}+t_{j})u^{\dagger}v
=[ρ¯​(βˆ‚j),ρ​(h​(u,v))]+c​(tΒ―j+tj)​u†​v.\displaystyle=[\bar{\rho}(\partial_{j}),\rho(h(u,v))]+c(\bar{t}_{j}+t_{j})u^{\dagger}v.

On the other hand, since ρ​(βˆ‚(a))=[ρ¯​(βˆ‚),ρ​(a)]\rho(\partial(a))=[\bar{\rho}(\partial),\rho(a)] for all βˆ‚βˆˆπ”€\partial\in\mathfrak{g} and all aβˆˆπ’œa\in\mathcal{A},

ρ​(βˆ‚j(h​(u,v)))=[ρ¯​(βˆ‚j),ρ​(h​(u,v))],\displaystyle\rho(\partial_{j}(h(u,v)))=[\bar{\rho}(\partial_{j}),\rho(h(u,v))],

and hence c​(tΒ―j+tj)​u†​v=0c(\bar{t}_{j}+t_{j})u^{\dagger}v=0 for all u,vβˆˆβ„‚Nu,v\in\mathbb{C}^{N}, which is true if and only if tΒ―j=βˆ’tj\bar{t}_{j}=-t_{j} for j=1,…,nj=1,...,n.

Finally, to prove that every connection on the form

βˆ‡jv=v​Xj=v​(βˆ’Dj+tjβ€‹πŸ™N)=v​(βˆ’ΟΒ―β€‹(βˆ‚j)+tjβ€‹πŸ™N),vβˆˆβ„‚N,\nabla_{j}v=vX_{j}=v(-D_{j}+t_{j}\mathbbm{1}_{N})=v(-\bar{\rho}(\partial_{j})+t_{j}\mathbbm{1}_{N}),\quad v\in\mathbb{C}^{N},

is metric if Re⁑(tj)=0\operatorname{Re}(t_{j})=0 for j=1,…,nj=1,...,n, note that Lemma 4.11 implies that there exists at least one choice t^1,…,t^nβˆˆβ„‚\hat{t}_{1},...,\hat{t}_{n}\in\mathbb{C} such that the connection

βˆ‡^j​v=v​(βˆ’ΟΒ―β€‹(βˆ‚j)+t^jβ€‹πŸ™N),vβˆˆβ„‚N,\hat{\nabla}_{j}v=v(-\bar{\rho}(\partial_{j})+\hat{t}_{j}\mathbbm{1}_{N}),\quad v\in\mathbb{C}^{N},

is compatible with hh. Moreover, by the above argument it follows that Re⁑(t^j)=0\operatorname{Re}(\hat{t}_{j})=0 for j=1,…,nj=1,...,n. Since ρ\rho is surjective and ρ​(βˆ‚j(a))=[ρ¯​(βˆ‚j),ρ​(a)]\rho(\partial_{j}(a))=[\bar{\rho}(\partial_{j}),\rho(a)] for all aβˆˆπ’œa\in\mathcal{A}, it follows that there are dj=βˆ’djβˆ—βˆˆπ’œd_{j}=-d_{j}^{*}\in\mathcal{A} such that ρ​(dj)=ρ¯​(βˆ‚j)\rho(d_{j})=\bar{\rho}(\partial_{j}). Hence,

h​(βˆ‡^j​u,v)+h​(u,βˆ‡^j​v)\displaystyle h(\hat{\nabla}_{j}u,v)+h(u,\hat{\nabla}_{j}v) =h​(u​(βˆ’ΟΒ―β€‹(βˆ‚j)+t^jβ€‹πŸ™),v)+h​(u,v​(βˆ’ΟΒ―β€‹(βˆ‚j)+t^jβ€‹πŸ™))\displaystyle=h(u(-\bar{\rho}(\partial_{j})+\hat{t}_{j}\mathbbm{1}),v)+h(u,v(-\bar{\rho}(\partial_{j})+\hat{t}_{j}\mathbbm{1}))
=βˆ’djβˆ—β€‹h​(u,v)βˆ’h​(u,v)​dj+(t^j+t^Β―j)​h​(u,v)\displaystyle=-d^{*}_{j}h(u,v)-h(u,v)d_{j}+(\hat{t}_{j}+\bar{\hat{t}}_{j})h(u,v)
=dj​h​(u,v)βˆ’h​(u,v)​dj+0=[dj,h​(u,v)].\displaystyle=d_{j}h(u,v)-h(u,v)d_{j}+0=[d_{j},h(u,v)].

Since βˆ‡^\hat{\nabla} is compatible with hh, it follows that

βˆ‚j(h​(u,v))=h​(βˆ‡^j​u,v)+h​(u,βˆ‡^j​v)=[dj,h​(u,v)].\partial_{j}(h(u,v))=h(\hat{\nabla}_{j}u,v)+h(u,\hat{\nabla}_{j}v)=[d_{j},h(u,v)].

Let βˆ‡:𝔀×ℂNβ†’β„‚N\nabla:\mathfrak{g}\times\mathbb{C}^{N}\rightarrow\mathbb{C}^{N} be a connection defined by

βˆ‡jv=v​(βˆ’ΟΒ―β€‹(βˆ‚j)+tjβ€‹πŸ™N),vβˆˆβ„‚N,\nabla_{j}v=v(-\bar{\rho}(\partial_{j})+t_{j}\mathbbm{1}_{N}),\quad v\in\mathbb{C}^{N},

such that Re⁑(tj)=0\operatorname{Re}(t_{j})=0, j=1,…,nj=1,...,n. As was done explicitly for βˆ‡^\hat{\nabla}, it is straightforward to show by direct computation that

h​(βˆ‡ju,v)+h​(u,βˆ‡jv)=[dj,h​(u,v)],h(\nabla_{j}u,v)+h(u,\nabla_{j}v)=[d_{j},h(u,v)],

and since this expression is equal to βˆ‚j(h​(u,v))\partial_{j}(h(u,v)) for all u,vβˆˆβ„‚Nu,v\in\mathbb{C}^{N} and j∈{1,…,n}j\in\{1,...,n\} it follows that βˆ‡\nabla is compatible with hh as well. The statement follows. ∎

Given a real Lie algebra of hermitian derivations, we need to consider the possible metric anchor maps Ο†:𝔀→ℂN\varphi:\mathfrak{g}\rightarrow\mathbb{C}^{N}. Since the metric h:MΓ—Mβ†’π’œh:M\times M\rightarrow\mathcal{A} is such that

uβ‹…h​(v,w)=c​u​(v†​w),cβˆˆβ„βˆ–{0},u\cdot h(v,w)=cu(v^{\dagger}w),\quad c\in\mathbb{R}\setminus\{0\},

and since v†​w=w†​v=(v†​w)†v^{\dagger}w=w^{\dagger}v=(v^{\dagger}w)^{\dagger} if and only if there are ΞΌv,ΞΌwβˆˆβ„\mu_{v},\mu_{w}\in\mathbb{R} and 0β‰ v^0βˆˆβ„‚N0\neq\hat{v}_{0}\in\mathbb{C}^{N} such that v=ΞΌv​v^0v=\mu_{v}\hat{v}_{0} and w=ΞΌw​v^0w=\mu_{w}\hat{v}_{0}, it follows by an argument analogous to the matrix case that Ο†:𝔀→ℂN\varphi:\mathfrak{g}\rightarrow\mathbb{C}^{N} is a metric anchor map if and only if φ​(βˆ‚i)=ΞΌi​v^0\varphi(\partial_{i})=\mu_{i}\hat{v}_{0} for a nonzero v^0\hat{v}_{0} and ΞΌiβˆˆβ„\mu_{i}\in\mathbb{R} that are not all zero (note that h​(ΞΌi​v^0,ΞΌj​v^0)=ΞΌi​μj​h​(v^0,v^0)h(\mu_{i}\hat{v}_{0},\mu_{j}\hat{v}_{0})=\mu_{i}\mu_{j}h(\hat{v}_{0},\hat{v}_{0}) is hermitian for all choices of ΞΌi,ΞΌjβˆˆβ„\mu_{i},\mu_{j}\in\mathbb{R}, ensuring sufficiency of the given condition).

Lemma 4.13.

Let (π’œ,𝔀π,β„‚N,h)(\mathcal{A},\mathfrak{g}_{\pi},\mathbb{C}^{N},h) be a metric pre-calculus such that β„‚N\mathbb{C}^{N} is a simple projective (right) π’œ\mathcal{A}-module, and let Ο†:βˆ‚i↦μi​v^0\varphi:\partial_{i}\mapsto\mu_{i}\hat{v}_{0} be a metric anchor map (i.e., all ΞΌi\mu_{i} are real), yielding a real metric calculus (Cπ’œ,h)(C_{\mathcal{A}},h). Given a metric connection βˆ‡\nabla, (Cπ’œ,h,βˆ‡)(C_{\mathcal{A}},h,\nabla) is a real connection calculus iff βˆ‡βˆ‚v^0=0\nabla_{\partial}\hat{v}_{0}=0, βˆ‚βˆˆπ”€\partial\in\mathfrak{g}.

Proof.

The argument is completely analogous to the proof of Lemma 4.5. ∎

Before stating the main result of this section, we give a brief description of the torsion TΟ†T_{\varphi} of a metric connection βˆ‡\nabla given a metric anchor map Ο†:βˆ‚j↦μj​v^0\varphi:\partial_{j}\mapsto\mu_{j}\hat{v}_{0}. As in the matrix case we get that

Tφ​(βˆ‚i,βˆ‚j)\displaystyle T_{\varphi}(\partial_{i},\partial_{j}) =βˆ‡iφ​(βˆ‚j)βˆ’βˆ‡jφ​(βˆ‚i)βˆ’Ο†β€‹([βˆ‚i,βˆ‚j])\displaystyle=\nabla_{i}\varphi(\partial_{j})-\nabla_{j}\varphi(\partial_{i})-\varphi([\partial_{i},\partial_{j}])
=v^0​(ΞΌj​(βˆ’ΟΒ―β€‹(βˆ‚i)+tiβ€‹πŸ™N)βˆ’ΞΌi​(βˆ’ΟΒ―β€‹(βˆ‚j)+tjβ€‹πŸ™N)βˆ’ΞΌk​fi​jkβ€‹πŸ™),\displaystyle=\hat{v}_{0}(\mu_{j}(-\bar{\rho}(\partial_{i})+t_{i}\mathbbm{1}_{N})-\mu_{i}(-\bar{\rho}(\partial_{j})+t_{j}\mathbbm{1}_{N})-\mu_{k}f^{k}_{ij}\mathbbm{1}),

where [βˆ‚i,βˆ‚j]=βˆ‚kfi​jk[\partial_{i},\partial_{j}]=\partial_{k}f^{k}_{ij}. Like in the matrix case, we have that the matrix

ΞΌj​(βˆ’ΟΒ―β€‹(βˆ‚i)+tiβ€‹πŸ™N)βˆ’ΞΌi​(βˆ’ΟΒ―β€‹(βˆ‚j)+tjβ€‹πŸ™N)\mu_{j}(-\bar{\rho}(\partial_{i})+t_{i}\mathbbm{1}_{N})-\mu_{i}(-\bar{\rho}(\partial_{j})+t_{j}\mathbbm{1}_{N})

is antihermitian, implying that the torsion cannot vanish unless ΞΌk​fi​jk=0\mu_{k}f^{k}_{ij}=0. Hence, if 𝔀\mathfrak{g} is semisimple, Lemma 4.3 immediately implies that the torsion does not vanish, in analogy with the matrix case.

However, the general case is not completely analogous to the matrix case since the Levi decomposition 𝔀=𝔀rβŠ•π”€s​s\mathfrak{g}=\mathfrak{g}^{r}\oplus\mathfrak{g}^{ss} can no longer be assumed to be a direct sum, and hence it is assumed to be a semidirect sum going forward. The consequence of this is that the generalization of Theorem 4.6 given below requires a consideration of a larger set of necessary and sufficient conditions compared to the matrix case.

Proposition 4.14.

Let ((π’œ,𝔀π,β„‚N),h)((\mathcal{A},\mathfrak{g}_{\pi},\mathbb{C}^{N}),h) be a metric pre-calculus where β„‚N\mathbb{C}^{N} is a simple projective (right) π’œ\mathcal{A}-module, and let βˆ‚1,…,βˆ‚nr\partial_{1},...,\partial_{n^{r}} and βˆ‚1β€²,…,βˆ‚ns​sβ€²\partial^{\prime}_{1},...,\partial^{\prime}_{n^{ss}} be bases for 𝔀r\mathfrak{g}^{r} and 𝔀s​s\mathfrak{g}^{ss}, respectively, where 𝔀=𝔀rβŠ•π”€s​s\mathfrak{g}=\mathfrak{g}^{r}\oplus\mathfrak{g}^{ss} is the Levi decomposition. Then there exists a metric anchor map Ο†\varphi such that ((π’œ,𝔀π,β„‚N,Ο†),h)((\mathcal{A},\mathfrak{g}_{\pi},\mathbb{C}^{N},\varphi),h) is pseudo-Riemannian if and only if there exists a common eigenvector v^0βˆˆβ„‚N\hat{v}_{0}\in\mathbb{C}^{N} to all D=ρ¯​(βˆ‚)D=\bar{\rho}(\partial) for βˆ‚βˆˆπ”€\partial\in\mathfrak{g} and if there exists a nontrivial solution ΞΌ1,…,ΞΌnrβˆˆβ„\mu_{1},...,\mu_{n^{r}}\in\mathbb{R} to the linear system of equations

ΞΌk​ri​jk=0,ΞΌk​sp​qk=0,i,j,p∈{1,…,nr},q∈{1,…,ns​s},\mu_{k}r^{k}_{ij}=0,\quad\mu_{k}s^{k}_{pq}=0,\qquad i,j,p\in\{1,...,n^{r}\},\quad q\in\{1,...,n^{ss}\},

where [βˆ‚i,βˆ‚j]=ri​jkβ€‹βˆ‚k[\partial_{i},\partial_{j}]=r^{k}_{ij}\partial_{k} and [βˆ‚p,βˆ‚qβ€²]=sp​qkβ€‹βˆ‚k[\partial_{p},\partial^{\prime}_{q}]=s^{k}_{pq}\partial_{k} and kk ranges from 11 to nrn^{r}.

Proof.

For sufficiency, assume that v^0\hat{v}_{0} is a common eigenvector to all D=ρ¯​(βˆ‚)D=\bar{\rho}(\partial), βˆ‚βˆˆπ”€\partial\in\mathfrak{g}, and that ΞΌ1,…,ΞΌnrβˆˆβ„\mu_{1},...,\mu_{n^{r}}\in\mathbb{R} is a nontrivial solution to the system ΞΌk​ri​jk=0\mu_{k}r^{k}_{ij}=0, i,j∈{1,…,nr}i,j\in\{1,...,n^{r}\} and ΞΌk​sp​qk=0\mu_{k}s^{k}_{pq}=0, p∈{1,…,nr}p\in\{1,...,n^{r}\}, q∈{1,…,ns​s}q\in\{1,...,n^{ss}\}. Letting Ξ»βˆ‚\lambda_{\partial} denote the eigenvalue of ρ¯​(βˆ‚)\bar{\rho}(\partial) for βˆ‚βˆˆπ”€\partial\in\mathfrak{g}, we define the connection βˆ‡\nabla given by the formula

βˆ‡βˆ‚jv=v​(βˆ’ΟΒ―β€‹(βˆ‚j)+Ξ»βˆ‚jβ€‹πŸ™N),βˆ‡βˆ‚kβ€²v=v​(βˆ’ΟΒ―β€‹(βˆ‚kβ€²)+Ξ»βˆ‚kβ€²β€‹πŸ™N),\nabla_{\partial_{j}}v=v(-\bar{\rho}(\partial_{j})+\lambda_{\partial_{j}}\mathbbm{1}_{N}),\quad\nabla_{\partial^{\prime}_{k}}v=v(-\bar{\rho}(\partial^{\prime}_{k})+\lambda_{\partial^{\prime}_{k}}\mathbbm{1}_{N}),

for j=1,…,nrj=1,...,n^{r} and k=1,…,ns​sk=1,...,n^{ss}. By Proposition 4.12, βˆ‡\nabla is an affine connection that is compatible with hh, and by construction it is clear that βˆ‡βˆ‚v^0=0\nabla_{\partial}\hat{v}_{0}=0 for all βˆ‚βˆˆπ”€\partial\in\mathfrak{g}. Define the metric anchor map Ο†:𝔀→ℂN\varphi:\mathfrak{g}\rightarrow\mathbb{C}^{N} by φ​(βˆ‚j)=ΞΌj​v^0\varphi(\partial_{j})=\mu_{j}\hat{v}_{0} for j=1,…,nrj=1,...,n^{r} and φ​(βˆ‚kβ€²)=0\varphi(\partial^{\prime}_{k})=0 for k=1,…,ns​sk=1,...,n^{ss}. It is straightforward to check that ((π’œ,𝔀π,β„‚N,Ο†),h,βˆ‡)\big{(}(\mathcal{A},\mathfrak{g}_{\pi},\mathbb{C}^{N},\varphi),h,\nabla\big{)} is a real connection calculus and that βˆ‡\nabla has vanishing torsion.

Next we prove necessity of the given conditions in the proposition statement. If Ο†:𝔀→ℂN\varphi:\mathfrak{g}\rightarrow\mathbb{C}^{N} is a metric anchor map and βˆ‡\nabla is a Levi-Civita connection such that ((π’œ,𝔀π,β„‚N,Ο†),h,βˆ‡)\big{(}(\mathcal{A},\mathfrak{g}_{\pi},\mathbb{C}^{N},\varphi),h,\nabla\big{)} is a real connection calculus, then by Proposition 4.12 there exist t1,…,tnr,t1β€²,…,tns​sβ€²βˆˆβ„t_{1},...,t_{n^{r}},t^{\prime}_{1},...,t^{\prime}_{n^{ss}}\in\mathbb{R} such that

βˆ‡βˆ‚jv=v​(βˆ’ΟΒ―β€‹(βˆ‚j)+i​tjβ€‹πŸ™N),βˆ‡βˆ‚kβ€²v=v​(βˆ’ΟΒ―β€‹(βˆ‚kβ€²)+i​tkβ€²β€‹πŸ™N).\nabla_{\partial_{j}}v=v(-\bar{\rho}(\partial_{j})+it_{j}\mathbbm{1}_{N}),\quad\nabla_{\partial^{\prime}_{k}}v=v(-\bar{\rho}(\partial^{\prime}_{k})+it^{\prime}_{k}\mathbbm{1}_{N}).

Moreover, there exist ΞΌj,ΞΌkβ€²βˆˆβ„\mu_{j},\mu^{\prime}_{k}\in\mathbb{R} and 0β‰ v^0βˆˆβ„‚N0\neq\hat{v}_{0}\in\mathbb{C}^{N} such that φ​(βˆ‚j)=ΞΌj​v^0\varphi(\partial_{j})=\mu_{j}\hat{v}_{0}, φ​(βˆ‚kβ€²)=ΞΌk′​v^0\varphi(\partial^{\prime}_{k})=\mu^{\prime}_{k}\hat{v}_{0}, j=1,…,nrj=1,...,n^{r} and k=1,…,ns​sk=1,...,n^{ss} such that

{ΞΌ1,…,ΞΌnr}βˆͺ{ΞΌ1β€²,…,ΞΌns​sβ€²}β‰ {0}.\{\mu_{1},...,\mu_{n^{r}}\}\cup\{\mu^{\prime}_{1},...,\mu^{\prime}_{n^{ss}}\}\neq\{0\}.

By Lemma 4.13 it follows that

0=βˆ‡βˆ‚jv^0=βˆ’v^0​ρ¯​(βˆ‚j)+i​tj​v^0,0=βˆ‡βˆ‚kβ€²v^0=βˆ’v^0​ρ¯​(βˆ‚kβ€²)+i​tk′​v^0,0=\nabla_{\partial_{j}}\hat{v}_{0}=-\hat{v}_{0}\bar{\rho}(\partial_{j})+it_{j}\hat{v}_{0},\quad 0=\nabla_{\partial^{\prime}_{k}}\hat{v}_{0}=-\hat{v}_{0}\bar{\rho}(\partial^{\prime}_{k})+it^{\prime}_{k}\hat{v}_{0},

implying that v^0\hat{v}_{0} is an eigenvector of all matrices of the form ρ¯​(βˆ‚)\bar{\rho}(\partial), βˆ‚βˆˆπ”€\partial\in\mathfrak{g}.

Checking the torsion TφT_{\varphi}, Lemma 4.13 implies that

Tφ​(βˆ‚,βˆ‚β€²)\displaystyle T_{\varphi}(\partial,\partial^{\prime}) =βˆ‡βˆ‚Ο†β€‹(βˆ‚β€²)βˆ’βˆ‡βˆ‚β€²Ο†β€‹(βˆ‚)βˆ’Ο†β€‹([βˆ‚,βˆ‚β€²])\displaystyle=\nabla_{\partial}\varphi(\partial^{\prime})-\nabla_{\partial^{\prime}}\varphi(\partial)-\varphi([\partial,\partial^{\prime}])
=0βˆ’0βˆ’Ο†β€‹([βˆ‚,βˆ‚β€²])=βˆ’Ο†β€‹([βˆ‚,βˆ‚β€²])=0,βˆ‚,βˆ‚β€²βˆˆπ”€.\displaystyle=0-0-\varphi([\partial,\partial^{\prime}])=-\varphi([\partial,\partial^{\prime}])=0,\quad\partial,\partial^{\prime}\in\mathfrak{g}.

If βˆ‚,βˆ‚β€²βˆˆπ”€s​s\partial,\partial^{\prime}\in\mathfrak{g}^{ss}, then since 𝔀s​s\mathfrak{g}^{ss} is semisimple the bracket [βˆ‚,βˆ‚β€²][\partial,\partial^{\prime}] could be any element of 𝔀s​s\mathfrak{g}^{ss}, implying that φ​(βˆ‚)=0\varphi(\partial)=0 for βˆ‚βˆˆπ”€s​s\partial\in\mathfrak{g}^{ss}. This implies that {ΞΌ1β€²,…,ΞΌns​sβ€²}={0}\{\mu^{\prime}_{1},...,\mu^{\prime}_{n^{ss}}\}=\{0\}, which in turn implies that {ΞΌ1,…,ΞΌnr}β‰ {0}\{\mu_{1},...,\mu_{n^{r}}\}\neq\{0\}. By considering the vanishing torsion, we get that

0\displaystyle 0 =Tφ​(βˆ‚i,βˆ‚j)=βˆ’Ο†β€‹([βˆ‚i,βˆ‚k])=βˆ’v^0​(ΞΌk​ri​jk),i,j∈{1,…,nr},\displaystyle=T_{\varphi}(\partial_{i},\partial_{j})=-\varphi([\partial_{i},\partial_{k}])=-\hat{v}_{0}(\mu_{k}r^{k}_{ij}),\quad i,j\in\{1,...,n^{r}\},
0\displaystyle 0 =Tφ​(βˆ‚p,βˆ‚qβ€²)=βˆ’Ο†β€‹([βˆ‚p,βˆ‚qβ€²])=βˆ’v^0​(ΞΌk​sp​qk),p∈{1,…,nr},q∈{1,…,ns​s}.\displaystyle=T_{\varphi}(\partial_{p},\partial^{\prime}_{q})=-\varphi([\partial_{p},\partial^{\prime}_{q}])=-\hat{v}_{0}(\mu_{k}s^{k}_{pq}),\quad p\in\{1,...,n^{r}\},q\in\{1,...,n^{ss}\}.

Hence, ΞΌ1,…,ΞΌnr\mu_{1},...,\mu_{n^{r}} is a nontrivial solution to the system

ΞΌk​ri​jk=0,ΞΌk​sp​qk=0,i,j,p∈{1,…,nr},q∈{1,…,ns​s},\mu_{k}r^{k}_{ij}=0,\quad\mu_{k}s^{k}_{pq}=0,\qquad i,j,p\in\{1,...,n^{r}\},\quad q\in\{1,...,n^{ss}\},

where [βˆ‚i,βˆ‚j]=ri​jkβ€‹βˆ‚k[\partial_{i},\partial_{j}]=r^{k}_{ij}\partial_{k} and [βˆ‚p,βˆ‚qβ€²]=sp​qkβ€‹βˆ‚k[\partial_{p},\partial^{\prime}_{q}]=s^{k}_{pq}\partial_{k} and kk ranges from 11 to nrn^{r}. This completes the proof. ∎

5. General conditions for the existence of a Levi-Civita connection

As was showcased in the last section, for a general metric pre-calculus (Bπ’œ,h)(B_{\mathcal{A}},h) it is not guaranteed that there exists a metric anchor map Ο†\varphi such that the resulting real metric calculus (Cπ’œ,h)(C_{\mathcal{A}},h) is pseudo-Riemannian. In this section we shall derive necessary and sufficient criteria for the existence of a Levi-Civita connection for a given real metric calculus ((π’œ,𝔀π,M,Ο†),h)\big{(}(\mathcal{A},\mathfrak{g}_{\pi},M,\varphi),h\big{)} in the case where the module MM is finitely generated and projective.

In order to state the main result of this section we utilize the characterization of real calculi where the module MM is projective used in [TN21] to consider MM as a projection of a free π’œ\mathcal{A}-module of suitable rank. We go over the details of this characterization below. Given a real calculus Cπ’œ=(π’œ,𝔀π​M,Ο†)C_{\mathcal{A}}=(\mathcal{A},\mathfrak{g}_{\pi}\,M,\varphi) where dim𝔀=n\dim\mathfrak{g}=n and MM is projective, together with an invertible metric hh on MM, we wish to investigate whether (Cπ’œ,h)(C_{\mathcal{A}},h) is pseudo-Riemannian, assuming that it is a real metric calculus. To do this, we note that if βˆ‚1,…,βˆ‚n\partial_{1},...,\partial_{n} is a basis of 𝔀\mathfrak{g}, then φ​(βˆ‚1),…,φ​(βˆ‚n)\varphi(\partial_{1}),...,\varphi(\partial_{n}) generate MM as an π’œ\mathcal{A}-module. We conclude that Ο†\varphi can be viewed as a choice of generators e1,…,ene_{1},...,e_{n} of MM, corresponding to the specific assignment βˆ‚i↦ei=φ​(βˆ‚i)\partial_{i}\mapsto e_{i}=\varphi(\partial_{i}). Hence we may set hi​j=h​(ei,ej)h_{ij}=h(e_{i},e_{j}) and use Lemma 4.9 to guarantee that there exist hi​jβˆˆπ’œh^{ij}\in\mathcal{A} such that ek​hk​l​hl​i=eie_{k}h^{kl}h_{li}=e_{i}.

Choosing an arbitrary basis e^1,…,e^n\hat{e}_{1},...,\hat{e}_{n} of π’œn\mathcal{A}^{n}, we may create the module homomorphism Ο•:π’œnβ†’M\phi:\mathcal{A}^{n}\rightarrow M, defined by the formula

ϕ​(e^i​ai)=ei​ai.\phi(\hat{e}_{i}a^{i})=e_{i}a^{i}.

Since MM is projective and Ο•\phi is surjective, there exists a module homomorphism Ξ½:Mβ†’π’œn\nu:M\rightarrow\mathcal{A}^{n} such that Ο•βˆ˜Ξ½=idM\phi\circ\nu=\operatorname{id}_{M}. Defining p=Ξ½βˆ˜Ο•p=\nu\circ\phi, it is a standard fact that p2=pp^{2}=p and that p​(π’œn)≃Mp(\mathcal{A}^{n})\simeq M. From this discussion it becomes apparent that once a metric anchor map Ο†:βˆ‚i↦ei\varphi:\partial_{i}\mapsto e_{i} is given then it is always possible to give a projection p:π’œnβ†’π’œnp:\mathcal{A}^{n}\rightarrow\mathcal{A}^{n} and a basis e^1,…,e^n\hat{e}_{1},...,\hat{e}_{n} of π’œn\mathcal{A}^{n} such that eie_{i} can be identified with p​(e^i)=e^k​pikp(\hat{e}_{i})=\hat{e}_{k}p^{k}_{i} for i=1,…,ni=1,...,n. We note, in particular, that this identification means that the elements hk​lβˆˆπ’œh^{kl}\in\mathcal{A} can be assumed to satisfy the relationship hk​l=pmk​hm​lh^{kl}=p^{k}_{m}h^{ml} for all m,l∈{1,…,n}m,l\in\{1,...,n\}. Because, if ek​hk​l​hl​i=eie_{k}h^{kl}h_{li}=e_{i} for i=1,…,ni=1,...,n one may set h~k​l=pmk​hm​l\tilde{h}^{kl}=p^{k}_{m}h^{ml}, and then the identity el​pil=eie_{l}p^{l}_{i}=e_{i} implies that

ek​h~k​l​hl​i=ek​pmk​hm​l​hl​i=em​hm​l​hl​i=ei;e_{k}\tilde{h}^{kl}h_{li}=e_{k}p^{k}_{m}h^{ml}h_{li}=e_{m}h^{ml}h_{li}=e_{i};

we shall make this implicit assumption going forward.

Example 5.1.

As a concrete example of the above procedure, let π’œ=Mat2​(β„‚)\mathcal{A}=\text{Mat}_{2}(\mathbb{C}) and let 𝔀=β„β€‹βŸ¨D1,D2,D3⟩=𝔰​𝔲​(2)\mathfrak{g}=\mathbb{R}\langle D_{1},D_{2},D_{3}\rangle=\mathfrak{su}(2), where D1,D2D_{1},D_{2} and D3D_{3} are given as in Example 4.1, i.e.,

D1=(0ii0),D2=(01βˆ’10),D3=(i00βˆ’i),D_{1}=\begin{pmatrix}0&i\\ i&0\end{pmatrix},\quad D_{2}=\begin{pmatrix}0&1\\ -1&0\end{pmatrix},\quad D_{3}=\begin{pmatrix}i&0\\ 0&-i\end{pmatrix},

with structure constants fi​jkf^{k}_{ij}, given by

(f121,f122,f123)=(0,0,βˆ’2)\displaystyle(f^{1}_{12},f^{2}_{12},f^{3}_{12})=(0,0,-2)
(f131,f132,f133)=(0,2,0)\displaystyle(f^{1}_{13},f^{2}_{13},f^{3}_{13})=(0,2,0)
(f231,f232,f233)=(βˆ’2,0,0).\displaystyle(f^{1}_{23},f^{2}_{23},f^{3}_{23})=(-2,0,0).

As before, we let Ο€:𝔀→Der⁑(π’œ)\pi:\mathfrak{g}\rightarrow\operatorname{Der}(\mathcal{A}) be the identification π​(Di)=[Di,β‹…]\pi(D_{i})=[D_{i},\cdot]. As an π’œ\mathcal{A}-module we pick M=π’œM=\mathcal{A}, with the obvious right action given by multiplication on the right. MM is clearly a free (and hence also projective) module, and as a metric we pick h:MΓ—Mβ†’π’œh:M\times M\rightarrow\mathcal{A} given by h​(X,Y)=X†​Yh(X,Y)=X^{\dagger}Y. We describe the anchor maps Ο†:𝔀→M\varphi:\mathfrak{g}\rightarrow M such that ((π’œ,𝔀π,M,Ο†),h)\big{(}(\mathcal{A},\mathfrak{g}_{\pi},M,\varphi),h\big{)} is a real metric calculus below, before characterizing M=π’œM=\mathcal{A} as a projection of π’œ3\mathcal{A}^{3}.

In general, if φ​(Dk)=Xk∈M\varphi(D_{k})=X_{k}\in M is to define an anchor map there have to exist matrices Y1,Y2,Y3Y^{1},Y^{2},Y^{3} such that Xk​Yk=πŸ™X_{k}Y^{k}=\mathbbm{1}, since otherwise the matrices X1,X2,X3X_{1},X_{2},X_{3} clearly do not generate π’œ\mathcal{A} as an π’œ\mathcal{A}-module; the matrices YkY^{k} are generally not uniquely determined by XkX_{k}, k=1,2,3k=1,2,3. Since we are mainly interested in metric anchor maps Ο†\varphi, this immediately implies that hi​j=h​(Xi,Xj)=Xi†​Xj=Xj†​Xi=hj​ih_{ij}=h(X_{i},X_{j})=X_{i}^{\dagger}X_{j}=X_{j}^{\dagger}X_{i}=h_{ji} for i,j=1,2,3i,j=1,2,3. It is straightforward to find the components of the inverse metric to be hi​j=Yi​(Yj)†h^{ij}=Y^{i}(Y^{j})^{\dagger}, as this yields

Xk​hk​l​hl​i=Xk​Yk​(Yl)†​Xl†​Xi=(Xk​Yk)​(Xl​Yl)†​Xi=πŸ™β‹…πŸ™β‹…Xi=Xi,X_{k}h^{kl}h_{li}=X_{k}Y^{k}(Y^{l})^{\dagger}X_{l}^{\dagger}X_{i}=(X_{k}Y^{k})(X_{l}Y^{l})^{\dagger}X_{i}=\mathbbm{1}\cdot\mathbbm{1}\cdot X_{i}=X_{i},

as desired. We now construct a projection p:π’œ3β†’π’œ3p:\mathcal{A}^{3}\rightarrow\mathcal{A}^{3} such that M=π’œβ‰ƒp​(π’œ3)M=\mathcal{A}\simeq p(\mathcal{A}^{3}).

Let e^1=(πŸ™,0,0)\hat{e}_{1}=(\mathbbm{1},0,0), e^2=(0,πŸ™,0)\hat{e}_{2}=(0,\mathbbm{1},0) and e^3=(0,0,πŸ™)\hat{e}_{3}=(0,0,\mathbbm{1}), making out a basis of π’œ3\mathcal{A}^{3}. Let ρ:π’œ3β†’M\rho:\mathcal{A}^{3}\rightarrow M denote the module homomorphism given by ρ​(e^k​Ak)=Xk​Ak\rho(\hat{e}_{k}A^{k})=X_{k}A^{k}, which is an epimorphism since the matrices XkX_{k} generate π’œ\mathcal{A} as an π’œ\mathcal{A}-module. Next, we let Ξ½:Mβ†’π’œ3\nu:M\rightarrow\mathcal{A}^{3} be given by ν​(X)=(Y1,Y2,Y3)​X\nu(X)=(Y^{1},Y^{2},Y^{3})X; it is straightforward to verify that ρ∘ν=idM\rho\circ\nu=\operatorname{id}_{M} due to the identity Xk​Yk=πŸ™X_{k}Y^{k}=\mathbbm{1}, and hence we get that our desired projection pp is given by p=ν∘ρp=\nu\circ\rho. More explicitly we find that

p​(e^i)=Ξ½βˆ˜Οβ€‹(e^i)=ν​(Xi)=(Y1,Y2,Y3)​Xi=e^k​Yk​Xi=e^k​pik,p(\hat{e}_{i})=\nu\circ\rho(\hat{e}_{i})=\nu(X_{i})=(Y^{1},Y^{2},Y^{3})X_{i}=\hat{e}_{k}Y^{k}X_{i}=\hat{e}_{k}p^{k}_{i},

implying that the projection coefficients are given by pik=Yk​Xip^{k}_{i}=Y^{k}X_{i}. It is straightforward to verify that that pmk​hm​l=hk​lp^{k}_{m}h^{ml}=h^{kl}.

Given the above discussion, the following result can be used to determine whether a real metric calculus ((π’œ,𝔀π,M,Ο†),h)\big{(}(\mathcal{A},\mathfrak{g}_{\pi},M,\varphi),h\big{)} is pseudo-Riemannian whenever MM is a finitely generated projective module.

Proposition 5.2.

Let ((π’œ,𝔀π,p​(π’œn),Ο†),h)\big{(}(\mathcal{A},\mathfrak{g}_{\pi},p(\mathcal{A}^{n}),\varphi),h\big{)} be a real metric calculus where dim𝔀=n\dim\mathfrak{g}=n and where p:π’œnβ†’π’œnp:\mathcal{A}^{n}\rightarrow\mathcal{A}^{n} is a projection. Let βˆ‚1,…,βˆ‚n\partial_{1},...,\partial_{n} be a basis of 𝔀\mathfrak{g}, and let e^1,…​e^n\hat{e}_{1},...\hat{e}_{n} be a basis of π’œn\mathcal{A}^{n} such that φ​(βˆ‚i)=ei=p​(e^i)\varphi(\partial_{i})=e_{i}=p(\hat{e}_{i}) for i=1,…,ni=1,...,n. Writing hi​j=h​(ei,ej)h_{ij}=h(e_{i},e_{j}) and p​(e^i​ai)=e^k​pik​aip(\hat{e}_{i}a^{i})=\hat{e}_{k}p^{k}_{i}a^{i}, then ((π’œ,𝔀π,p​(π’œn),Ο†),h)\big{(}(\mathcal{A},\mathfrak{g}_{\pi},p(\mathcal{A}^{n}),\varphi),h\big{)} is a pseudo-Riemannian calculus if and only if

(5) plkβ€‹βˆ‚i(pjl)=Ξ›i​lk​(Ξ΄jlβ€‹πŸ™βˆ’pjl),i,j,k=1,…,n,p^{k}_{l}\partial_{i}(p^{l}_{j})=\Lambda^{k}_{il}(\delta^{l}_{j}\mathbbm{1}-p^{l}_{j}),\quad i,j,k=1,...,n,

where

Ξ›i​jk=12​hk​l​(βˆ‚i(hj​l)+βˆ‚j(hi​l)βˆ’βˆ‚l(hi​j)βˆ’hj​q​fi​lqβˆ’hi​q​fj​lq+hl​q​fi​jq)\Lambda^{k}_{ij}=\frac{1}{2}h^{kl}\left(\partial_{i}(h_{jl})+\partial_{j}(h_{il})-\partial_{l}(h_{ij})-h_{jq}f_{il}^{q}-h_{iq}f_{jl}^{q}+h_{lq}f_{ij}^{q}\right)

and [βˆ‚i,βˆ‚j]=fi​jkβ€‹βˆ‚k[\partial_{i},\partial_{j}]=f^{k}_{ij}\partial_{k}.

Proof.

We begin by proving necessity of (5) for there to exist a Levi-Civita connection. Let βˆ‡~\tilde{\nabla} be an arbitrary connection on the free module π’œn\mathcal{A}^{n} defined by

βˆ‡~i​e^j=e^k​Γ~i​jk.\tilde{\nabla}_{i}\hat{e}_{j}=\hat{e}_{k}\tilde{\Gamma}^{k}_{ij}.

Then βˆ‡:=pβˆ˜βˆ‡~|p​(π’œn)\nabla:=p\circ\tilde{\nabla}|_{p(\mathcal{A}^{n})} is an affine connection on 𝔀×p​(π’œn)\mathfrak{g}\times p(\mathcal{A}^{n}) given by

βˆ‡iej=p​(βˆ‡~i​e^k​pjk)=p​(e^l​Γ~i​kl​pjk+e^kβ€‹βˆ‚i(pjk))=el​(Ξ“~i​kl​pjk+βˆ‚i(pjl)).\nabla_{i}e_{j}=p(\tilde{\nabla}_{i}\hat{e}_{k}p^{k}_{j})=p(\hat{e}_{l}\tilde{\Gamma}^{l}_{ik}p^{k}_{j}+\hat{e}_{k}\partial_{i}(p^{k}_{j}))=e_{l}(\tilde{\Gamma}^{l}_{ik}p^{k}_{j}+\partial_{i}(p^{l}_{j})).

Using the notation Ξ›i​jk\Lambda^{k}_{ij} as in the proposition statement to simplify expressions going forward, it is straightforward to verify that Koszul’s formula (3) from Proposition 3.6 implies that

h​(em,βˆ‡iej)\displaystyle h(e_{m},\nabla_{i}e_{j}) =12​(βˆ‚ihj​k+βˆ‚jhi​kβˆ’βˆ‚khi​jβˆ’hi​l​fj​kl+hj​l​fk​il+hk​l​fi​jl)=h​(em,el​Λi​jl)\displaystyle=\frac{1}{2}\left(\partial_{i}h_{jk}+\partial_{j}h_{ik}-\partial_{k}h_{ij}-h_{il}f^{l}_{jk}+h_{jl}f^{l}_{ki}+h_{kl}f^{l}_{ij}\right)=h(e_{m},e_{l}\Lambda^{l}_{ij})

which is equivalent to stating that

el​(Ξ“~i​kl​pjk+βˆ‚i(pjl)βˆ’Ξ›i​jl)=e^q​plq​(Ξ“~i​kl​pjk+βˆ‚i(pjl)βˆ’Ξ›i​jl)=0.e_{l}(\tilde{\Gamma}^{l}_{ik}p^{k}_{j}+\partial_{i}(p^{l}_{j})-\Lambda^{l}_{ij})=\hat{e}_{q}p^{q}_{l}(\tilde{\Gamma}^{l}_{ik}p^{k}_{j}+\partial_{i}(p^{l}_{j})-\Lambda^{l}_{ij})=0.

In other words,

(6) plq​Γ~i​kl​pjk+plqβ€‹βˆ‚i(pjl)=plq​Λi​jl=Ξ›i​jq,p^{q}_{l}\tilde{\Gamma}^{l}_{ik}p^{k}_{j}+p^{q}_{l}\partial_{i}(p^{l}_{j})=p^{q}_{l}\Lambda^{l}_{ij}=\Lambda^{q}_{ij},

since hq​r=plq​hl​rh^{qr}=p^{q}_{l}h^{lr}. Multiplying this equation by pmjp^{j}_{m} from the right, we find that

plq​Γ~i​kl​pmk=Ξ›i​jq​pmj,p^{q}_{l}\tilde{\Gamma}^{l}_{ik}p^{k}_{m}=\Lambda^{q}_{ij}p^{j}_{m},

since plqβ€‹βˆ‚i(pjl)​pmj=0p^{q}_{l}\partial_{i}(p^{l}_{j})p^{j}_{m}=0 for any projection pp. If we use this in equation (6) we see that

Ξ›i​kq​pjk+plqβ€‹βˆ‚i(pjl)=Ξ›i​jq,\Lambda^{q}_{ik}p^{k}_{j}+p^{q}_{l}\partial_{i}(p^{l}_{j})=\Lambda^{q}_{ij},

which is equivalent to

plqβ€‹βˆ‚i(pjl)=Ξ›i​kq​(Ξ΄jkβ€‹πŸ™βˆ’pjk),p^{q}_{l}\partial_{i}(p^{l}_{j})=\Lambda^{q}_{ik}(\delta^{k}_{j}\mathbbm{1}-p^{k}_{j}),

i.e., Equation (5).

Proving sufficiency of the above condition, let

Ξ“~i​mq=Ξ›i​jq​pmj,\tilde{\Gamma}^{q}_{im}=\Lambda^{q}_{ij}p^{j}_{m},

and define the connection βˆ‡:𝔀×p​(π’œn)β†’p​(π’œn)\nabla:\mathfrak{g}\times p(\mathcal{A}^{n})\rightarrow p(\mathcal{A}^{n}) by

βˆ‡iej=p​(e^l​Γ~i​kl​pjk+e^kβ€‹βˆ‚i(pjk))=el​(Ξ“~i​kl​pjk+βˆ‚i(pjl)).\nabla_{i}e_{j}=p(\hat{e}_{l}\tilde{\Gamma}^{l}_{ik}p^{k}_{j}+\hat{e}_{k}\partial_{i}(p^{k}_{j}))=e_{l}(\tilde{\Gamma}^{l}_{ik}p^{k}_{j}+\partial_{i}(p^{l}_{j})).

Then

h​(em,βˆ‡iej)\displaystyle h(e_{m},\nabla_{i}e_{j}) =h​(em,el​(Ξ“~i​kl​pjk+βˆ‚i(pjl)))\displaystyle=h(e_{m},e_{l}(\tilde{\Gamma}^{l}_{ik}p^{k}_{j}+\partial_{i}(p^{l}_{j})))
=h​(em,e^q​prq​plr​(Ξ“~i​kl​pjk+βˆ‚i(pjl)))=h​(em,er​plr​(Ξ›i​kl​pjk+βˆ‚i(pjl)))\displaystyle=h(e_{m},\hat{e}_{q}p^{q}_{r}p^{r}_{l}(\tilde{\Gamma}^{l}_{ik}p^{k}_{j}+\partial_{i}(p^{l}_{j})))=h(e_{m},e_{r}p^{r}_{l}(\Lambda^{l}_{ik}p^{k}_{j}+\partial_{i}(p^{l}_{j})))
=h​(em,er​(Ξ›i​kr​pjk+plrβ€‹βˆ‚i(pjl)))=h​(em,er​(Ξ›i​kr​pjk+Ξ›i​kr​(Ξ΄jkβ€‹πŸ™βˆ’pjk)))\displaystyle=h(e_{m},e_{r}(\Lambda^{r}_{ik}p^{k}_{j}+p^{r}_{l}\partial_{i}(p^{l}_{j})))=h(e_{m},e_{r}(\Lambda^{r}_{ik}p^{k}_{j}+\Lambda^{r}_{ik}(\delta^{k}_{j}\mathbbm{1}-p^{k}_{j})))
=h​(em,er​Λi​kr),\displaystyle=h(e_{m},e_{r}\Lambda^{r}_{ik}),

and hence βˆ‡\nabla satisfies Koszul’s formula, implying that ((π’œ,𝔀π,M,Ο†),h)\big{(}(\mathcal{A},\mathfrak{g}_{\pi},M,\varphi),h\big{)} is pseudo-Riemannian by Proposition 3.6. The statement follows. ∎

Example 5.3.

Besides for checking whether a given real metric calculus over a projective module is pseudo-Riemannian, Proposition 5.2 can be useful when considering anchor maps that share specific properties. As an example of this, we consider the metric pre-calculus (Bπ’œ,h)=((π’œ,𝔀π,π’œn),h)(B_{\mathcal{A}},h)=\big{(}(\mathcal{A},\mathfrak{g}_{\pi},\mathcal{A}^{n}),h\big{)} where dim𝔀=n\dim\mathfrak{g}=n. Given a basis βˆ‚1,…,βˆ‚n\partial_{1},...,\partial_{n} of 𝔀\mathfrak{g}, let Ο†:π”€β†’π’œn\varphi:\mathfrak{g}\rightarrow\mathcal{A}^{n} be a metric anchor map such that φ​(βˆ‚1),…,φ​(βˆ‚n)\varphi(\partial_{1}),...,\varphi(\partial_{n}) is a basis of π’œn\mathcal{A}^{n}. π’œn\mathcal{A}^{n} can be considered as a projection of itself under the trivial projection p=idπ’œnp=\operatorname{id}_{\mathcal{A}^{n}}, with projection coefficients plk=Ξ΄lkβ€‹πŸ™p^{k}_{l}=\delta^{k}_{l}\mathbbm{1} in the basis φ​(βˆ‚1),…,φ​(βˆ‚n)\varphi(\partial_{1}),...,\varphi(\partial_{n}). Inserting these into Equation (5) of Proposition 5.2 one finds that equality holds, since

plkβ€‹βˆ‚i(pjl)=Ξ΄lkβ€‹βˆ‚i(Ξ΄jlβ€‹πŸ™)=0p^{k}_{l}\partial_{i}(p^{l}_{j})=\delta^{k}_{l}\partial_{i}(\delta^{l}_{j}\mathbbm{1})=0

and

Ξ›i​lk​(Ξ΄jlβ€‹πŸ™βˆ’pjl)=Ξ›i​lk​(Ξ΄jlβ€‹πŸ™βˆ’Ξ΄jlβ€‹πŸ™)=0\Lambda^{k}_{il}(\delta^{l}_{j}\mathbbm{1}-p^{l}_{j})=\Lambda^{k}_{il}(\delta^{l}_{j}\mathbbm{1}-\delta^{l}_{j}\mathbbm{1})=0

are trivially true for all i,j,k∈{1,…,n}i,j,k\in\{1,...,n\}. Hence ((π’œ,𝔀π,π’œn,Ο†),h)\big{(}(\mathcal{A},\mathfrak{g}_{\pi},\mathcal{A}^{n},\varphi),h\big{)} is pseudo-Riemannian whenever Ο†\varphi is a metric anchor map constructed as above.

Structures of the form ((π’œ,𝔀π,π’œn,Ο†),h)\big{(}(\mathcal{A},\mathfrak{g}_{\pi},\mathcal{A}^{n},\varphi),h\big{)} were studied in detail in [ATN21] and [TN21], where they are referred to as free real metric calculi, and the above argument using Proposition 5.2 is an alternative proof of Proposition 5.3 in [ATN21], which more clearly highlights that the result is a consequence of a general fact about real calculi where the module is projective.

Example 5.4.

We now expand on Example 5.1, where π’œ=M=Mat2​(β„‚)\mathcal{A}=M=\text{Mat}_{2}(\mathbb{C}), and 𝔀=𝔰​𝔲​(2)\mathfrak{g}=\mathfrak{su}(2) with structure constants fi​jkf^{k}_{ij}, given by

(f121,f122,f123)=(0,0,βˆ’2)\displaystyle(f^{1}_{12},f^{2}_{12},f^{3}_{12})=(0,0,-2)
(f131,f132,f133)=(0,2,0)\displaystyle(f^{1}_{13},f^{2}_{13},f^{3}_{13})=(0,2,0)
(f231,f232,f233)=(βˆ’2,0,0).\displaystyle(f^{1}_{23},f^{2}_{23},f^{3}_{23})=(-2,0,0).

As a metric we had h:MΓ—Mβ†’π’œh:M\times M\rightarrow\mathcal{A} given by h​(X,Y)=X†​Yh(X,Y)=X^{\dagger}Y. In Example 5.1 we considered general anchor maps Ο†:Di↦Xi\varphi:D_{i}\mapsto X_{i}, and here we make the specific choice X1=πŸ™2X_{1}=\mathbbm{1}_{2}, X2=X3=0X_{2}=X_{3}=0 and Y1=πŸ™2Y^{1}=\mathbbm{1}_{2}, Y2=Y3=0Y^{2}=Y^{3}=0. As outlined earlier, this implies that the coefficient pik=Yk​Xip^{k}_{i}=Y^{k}X_{i} is nonzero if and only if k=i=1k=i=1, and p11=πŸ™p^{1}_{1}=\mathbbm{1}. Moreover, setting hi​j=h​(φ​(Di),φ​(Dj))h_{ij}=h(\varphi(D_{i}),\varphi(D_{j})) for i,j∈{1,2,3}i,j\in\{1,2,3\}, it is straightforward to verify that h11=πŸ™2h_{11}=\mathbbm{1}_{2} and that hi​j=0h_{ij}=0 for all other choices of ii and jj. Plugging the projection coefficients into Equation (5), the left-hand side becomes plkβ€‹βˆ‚i(pjl)=0p^{k}_{l}\partial_{i}(p^{l}_{j})=0 for all i,j,ki,j,k. Moreover, we get that the right-hand side of Equation (5) reduces to

Ξ›i​jkβˆ’Ξ›i​lk​pjl=Ξ›i​jk​(πŸ™βˆ’Y1​Xj)=Ξ›i​jk\Lambda^{k}_{ij}-\Lambda^{k}_{il}p^{l}_{j}=\Lambda^{k}_{ij}(\mathbbm{1}-Y^{1}X_{j})=\Lambda^{k}_{ij}

if j≠1j\neq 1, and zero otherwise. Calculating Λ231\Lambda^{1}_{23} explicitly, we find that

Ξ›231\displaystyle\Lambda^{1}_{23} =12​h1​l​(βˆ‚2(h3​l)+βˆ‚3(h2​l)βˆ’βˆ‚l(h23)βˆ’h3​q​f2​lqβˆ’h2​q​f3​lq+hl​q​f23q)\displaystyle=\frac{1}{2}h^{1l}\left(\partial_{2}(h_{3l})+\partial_{3}(h_{2l})-\partial_{l}(h_{23})-h_{3q}f_{2l}^{q}-h_{2q}f_{3l}^{q}+h_{lq}f_{23}^{q}\right)
=12β€‹πŸ™β€‹(0+0βˆ’0βˆ’0βˆ’0+πŸ™β€‹f231)=βˆ’πŸ™β‰ 0.\displaystyle=\frac{1}{2}\mathbbm{1}\left(0+0-0-0-0+\mathbbm{1}f_{23}^{1}\right)=-\mathbbm{1}\neq 0.

Hence, with the specific choice of metric anchor map Ο†\varphi given by X1=πŸ™X_{1}=\mathbbm{1} and X2=X3=0X_{2}=X_{3}=0, we find that the resulting real metric calculus ((π’œ,𝔀π,π’œ,Ο†),h)\big{(}(\mathcal{A},\mathfrak{g}_{\pi},\mathcal{A},\varphi),h\big{)} is not pseudo-Riemannian.

The complications that arise in the above example, where it is difficult to determine whether there exists a metric anchor map that makes the given metric pre-calculus pseudo-Riemannian, are ultimately related to the structure of the Lie algebra 𝔀=𝔰​𝔲​(2)\mathfrak{g}=\mathfrak{su}(2). Some of these problems vanish in cases where 𝔀\mathfrak{g} is abelian, in part due to the fact that the expression for Ξ›i​jk\Lambda^{k}_{ij} is simplified by the fact that terms of the form fi​jk​hj​lf^{k}_{ij}h_{jl} vanish when the structure constants are zero.

Proposition 5.5.

Let π’œ\mathcal{A} be a unital βˆ—-algebra, π”€βŠ†Der⁑(π’œ)\mathfrak{g}\subseteq\operatorname{Der}(\mathcal{A}) be an abelian Lie algebra of hermitian derivations with basis {βˆ‚i}i=1n\{\partial_{i}\}_{i=1}^{n} and M=π’œmM=\mathcal{A}^{m} for m≀dim𝔀m\leq\dim\mathfrak{g}. If h:MΓ—Mβ†’π’œh:M\times M\rightarrow\mathcal{A} is an invertible metric such that there is a basis e^1,…​e^m\hat{e}_{1},...\hat{e}_{m} of π’œm\mathcal{A}^{m} satisfying

h​(e^i,e^j)=h​(e^i,e^j)βˆ—β€‹Β andΒ β€‹βˆ‚(h​(e^i,e^j))=0,i,j∈{1,…,m},βˆ‚βˆˆπ”€,h(\hat{e}_{i},\hat{e}_{j})=h(\hat{e}_{i},\hat{e}_{j})^{*}\text{ and }\partial(h(\hat{e}_{i},\hat{e}_{j}))=0,\quad i,j\in\{1,...,m\},\quad\partial\in\mathfrak{g},

then the metric anchor map Ο†:𝔀→M\varphi:\mathfrak{g}\rightarrow M given by φ​(βˆ‚i)=e^i\varphi(\partial_{i})=\hat{e}_{i} for i=1,…,mi=1,...,m and φ​(βˆ‚j)=0\varphi(\partial_{j})=0 for j=m+1,…,nj=m+1,...,n is such that ((π’œ,𝔀π​M,Ο†),h)\big{(}(\mathcal{A},\mathfrak{g}_{\pi}\,M,\varphi),h\big{)} is pseudo-Riemannian.

Proof.

Let n=dim𝔀n=\dim\mathfrak{g}. We begin by extending e^1,…,e^m\hat{e}_{1},...,\hat{e}_{m} to a basis {e~k}1n\{\tilde{e}_{k}\}_{1}^{n} of π’œn\mathcal{A}^{n} so that ι​(e^i)=e~i\iota(\hat{e}_{i})=\tilde{e}_{i} for i=1,…,mi=1,...,m, where ΞΉ:π’œmβ†’π’œn\iota:\mathcal{A}^{m}\rightarrow\mathcal{A}^{n} denotes the inclusion map. Next, let p:π’œnβ†’π’œnp:\mathcal{A}^{n}\rightarrow\mathcal{A}^{n} be the projection such that p​(e~i)=e~ip(\tilde{e}_{i})=\tilde{e}_{i} for i=1,…,mi=1,...,m and p​(e~j)=0p(\tilde{e}_{j})=0 for j=m+1,…,nj=m+1,...,n. By construction, p​(π’œn)β‰ƒπ’œmp(\mathcal{A}^{n})\simeq\mathcal{A}^{m} under the obvious isomorphism e~i↦e^i\tilde{e}_{i}\mapsto\hat{e}_{i} for i=1,…,mi=1,...,m, and if we write p​(e~i)=e~k​pikp(\tilde{e}_{i})=\tilde{e}_{k}p^{k}_{i}, then pik=Ξ΄ikβ€‹πŸ™p^{k}_{i}=\delta^{k}_{i}\mathbbm{1} if i≀mi\leq m and pjk=0p^{k}_{j}=0 if j>mj>m for k=1,…,nk=1,...,n.

Letting Ο†:π”€β†’π’œm\varphi:\mathfrak{g}\rightarrow\mathcal{A}^{m} be the given metric anchor map, it follows that

βˆ‚(hi​j)=βˆ‚(h​(φ​(βˆ‚i),φ​(βˆ‚j)))=βˆ‚(h​(e^i,e^j))=0\partial(h_{ij})=\partial(h(\varphi(\partial_{i}),\varphi(\partial_{j})))=\partial(h(\hat{e}_{i},\hat{e}_{j}))=0

for all βˆ‚βˆˆπ”€\partial\in\mathfrak{g}. Moreover, since pikp^{k}_{i} is also either 0 or πŸ™\mathbbm{1}, it follows that for all i,j,ki,j,k,

plkβ€‹βˆ‚i(pjl)\displaystyle p^{k}_{l}\partial_{i}(p^{l}_{j}) =0,\displaystyle=0,
Ξ›i​jk\displaystyle\Lambda^{k}_{ij} =12​hk​l​(βˆ‚i(hj​l)+βˆ‚j(hi​l)βˆ’βˆ‚l(hi​j)βˆ’hj​q​fi​lqβˆ’hi​q​fj​lq+hl​q​fi​jq)=0,\displaystyle=\frac{1}{2}h^{kl}\left(\partial_{i}(h_{jl})+\partial_{j}(h_{il})-\partial_{l}(h_{ij})-h_{jq}f_{il}^{q}-h_{iq}f_{jl}^{q}+h_{lq}f_{ij}^{q}\right)=0,

since 𝔀\mathfrak{g} being abelian implies that all structure constants fi​jk=0f^{k}_{ij}=0. Hence, Proposition 5.2 can be directly applied to verify that ((π’œ,𝔀π​M,Ο†),h)\big{(}(\mathcal{A},\mathfrak{g}_{\pi}\,M,\varphi),h\big{)} is indeed pseudo-Riemannian, as desired. ∎

6. Summary

The over-arching goal of this article has been to investigate the existence of Levi-Civita connections in the context of real calculi over projective modules and what effects the choice of anchor map may have in this regard. Given a metric pre-calculus, the general problem of determining whether there is a metric anchor map making the pre-calculus into a pseudo-Riemannian calculus is non-trivial. As an important step in the overall process of achieving a full understanding of the problem, the current article confirms that there are cases where no Levi-Civita connection exists for any metric anchor map (see Example 4.1), even if one only considers projective modules.

More broadly, the results in Section 4 (as well as Example 5.4) indicate that 𝔀\mathfrak{g} being semisimple acts as an obstruction to the existence of a Levi-Civita connection in several cases. In fact, in the case where 𝔀\mathfrak{g} is semisimple and of dimension nn, the only scenario where existence of a metric anchor map such that the resulting structure is a pseudo-Riemannian calculus has been verified is if Mβ‰ƒπ’œnM\simeq\mathcal{A}^{n}, as was shown in Example 5.3; at the time of writing, if dim𝔀=n\dim\mathfrak{g}=n and 𝔀\mathfrak{g} is semisimple we are not aware of any other example of a metric pre-calculus ((π’œ,𝔀π,M),h)\big{(}(\mathcal{A},\mathfrak{g}_{\pi},M),h\big{)} where MM is projective for which there exists a metric anchor map Ο†:𝔀→M\varphi:\mathfrak{g}\rightarrow M such that ((π’œ,𝔀π,M,Ο†),h)\big{(}(\mathcal{A},\mathfrak{g}_{\pi},M,\varphi),h\big{)} is pseudo-Riemannian.

In contrast to the case where 𝔀\mathfrak{g} is semisimple, in cases where 𝔀\mathfrak{g} is abelian all examples considered of metric pre-calculi ((π’œ,𝔀π,M),h)\big{(}(\mathcal{A},\mathfrak{g}_{\pi},M),h\big{)} where MM is projective are such that there exists a metric anchor map Ο†\varphi such that ((π’œ,𝔀π,M,Ο†),h)\big{(}(\mathcal{A},\mathfrak{g}_{\pi},M,\varphi),h\big{)} is pseudo-Riemannian (for instance, consider [AW17b], [AL20], [ATN21]). For the moment it is not clear whether there exists any counterexamples when 𝔀\mathfrak{g} is abelian.

In conclusion, several important steps have been taken in understanding of the question of existence of the Levi-Civita connection when given geometric data in the form of a metric pre-calculus. In particular it is worth noting the substantial progress that has been achieved in the case when π’œ=MatN​(β„‚)\mathcal{A}=\text{Mat}_{N}(\mathbb{C}), and in future work we hope to give a full characterization of metric pre-calculi for which a Levi-Civita connection exists.

References

  • [AC10] P.Β Aschieri and L.Β Castellani. Noncommutative gravity solutions. J. Geom. Phys., 60(3):375–393, 2010.
  • [AIL22] J.Β Arnlind, K.Β Ilwale, and G.Β Landi. Levi–civita connections on quantum spheres. Math. Phys. Anal. Geom., 25, 2022.
  • [AL20] J.Β Arnlind and G.Β Landi. Projections, modules and connections for the noncommutative cylinder. Adv. Theor. Math. Phys., 24(3):527–562, 2020.
  • [Arn21] J.Β Arnlind. Levi-civita connections for a class of noncommutative minimal surfaces. J. Geom. Phys., 18(12), 2021.
  • [ATN21] J.Β Arnlind and A.Β TigerΒ Norkvist. Noncommutative minimal embeddings and morphisms of pseudo-riemannian calculi. J. Geom. Phys., 159(1), 2021.
  • [AW17a] J.Β Arnlind and M.Β Wilson. On the Chern-Gauss-Bonnet theorem for the noncommutative 4-sphere. J. Geom. Phys., 111:126–141, 2017.
  • [AW17b] J.Β Arnlind and M.Β Wilson. Riemannian curvature of the noncommutative 3-sphere. J. Noncommut. Geom., 11(2):507–536, 2017.
  • [BGM20] JΒ Bhowmick, D.Β Goswami, and S.Β Mukhopadhyay. Levi-civita connections for a class of spectral triples. Lett. Math. Phys., 110(4):835–884, 2020.
  • [BM11] E.Β J. Beggs and S.Β Majid. βˆ—*-compatible connections in noncommutative Riemannian geometry. J. Geom. Phys., 61(1):95–124, 2011.
  • [DVM96] M.Β Dubois-Violette and P.W. Michor. Connections on central bimodules in noncommutative differential geometry. J. Geom. Phys., 20:218–232, 1996.
  • [Ros13] J.Β Rosenberg. Levi-Civita’s theorem for noncommutative tori. SIGMA, 9:071, 2013.
  • [TN21] A.Β TigerΒ Norkvist. Real calculi over finite noncommutative spaces. preprint, 2021.