This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

\Received

04 June 2024\Accepted17 July 2024\jyear2024 \DeclareAbbreviationJ. Cosmology Astropart. PhysJournal of Cosmology and Astroparticle Phys.

\KeyWords

supernova: general — supernova: individual (SN 2023ixf) — stars: massive

Progenitor and explosion properties of SN 2023ixf estimated based on a light-curve model grid of Type II supernovae

Takashi J. Moriya11affiliation: National Astronomical Observatory of Japan, National Institutes of Natural Sciences, 2-21-1 Osawa, Mitaka, Tokyo 181-8588, Japan 22affiliation: Graduate Institute for Advanced Studies, SOKENDAI, 2-21-1 Osawa, Mitaka, Tokyo 181-8588, Japan 33affiliation: School of Physics and Astronomy, Monash University, Clayton, VIC 3800, Australia [email protected]    Avinash Singh44affiliation: Hiroshima Astrophysical Science Center, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526, Japan 55affiliation: Department of Astronomy, The Oskar Klein Center, Stockholm University, AlbaNova University Center, SE 106 91 Stockholm, Sweden [email protected]
Abstract

We estimate the progenitor and explosion properties of the nearby Type II SN 2023ixf using a synthetic model grid of Type II supernova light curves. By comparing the light curves of SN 2023ixf with the pre-existing grid of Type II supernovae containing about 228,000 models with different combinations of the progenitor and explosion properties, we obtain the χ2\chi^{2} value for every model and evaluate the properties of the models providing small values of χ2\chi^{2}. We found that the light-curve models with the progenitor zero-age main-sequence mass of 10 M\mathrm{M}_{\odot}, the explosion energy of (23)×1051erg(2-3)\times 10^{51}~{}\mathrm{erg}, the Ni56{}^{56}\mathrm{Ni} mass of 0.040.06M0.04-0.06~{}\mathrm{M}_{\odot}, the mass-loss rate of 103102Myr110^{-3}-10^{-2}~{}\mathrm{M}_{\odot}~{}\mathrm{yr^{-1}} with a wind velocity of 10 kms1\mathrm{km~{}s^{-1}}, and the dense, confined circumstellar matter radius of (610)×1014cm(6-10)\times 10^{14}~{}\mathrm{cm} match well to the observed light curves of SN 2023ixf. The photospheric velocity evolution of these models is also consistent with the observed velocity evolution. We note that the progenitor mass estimate could be affected by the adopted progenitor models. Although our parameter estimation is based on a pre-existing model grid and we do not perform any additional computations, the estimated parameters are consistent with those obtained by the detailed modeling of SN 2023ixf previously reported. This result shows that comparing the pre-existing model grid is a reasonable way to obtain a rough estimate for the properties of Type II supernovae. This simple way to estimate the properties of Type II supernovae will be essential in the Vera C. Rubin Observatory’s Legacy Survey of Space and Time (LSST) era when thousands of Type II supernovae are expected to be discovered yearly.

1 Introduction

Type II supernovae (SNe) are explosions of massive stars that retain hydrogen-rich envelopes until the time of their explosion. Type II SNe are the most frequently observed type of core-collapse SNe (e.g., [Perley et al. (2020)]), and they provide vital information to understand the standard explosion mechanism of core-collapse SNe (e.g., [Burrows & Vartanyan (2021)]). However, many mysteries related to Type II SNe remain unsolved. For example, photometric and spectroscopic observations of Type II SNe shortly after their explosion indicate the existence of confined circumstellar matter (CSM) around red supergiants (RSGs) that are about to explode (e.g., [Yaron et al. (2017), Förster et al. (2018)]). Concretely, optical light curves of Type II SNe rise much faster than those predicted without considering the existence of a CSM (González-Gaitán et al., 2015), and the fast rise can be explained by the existence of a dense, confined CSM around the progenitors of Type II SNe (e.g., Moriya et al. (2011); Nagy & Vinkó (2016); Morozova et al. (2017)). In addition, SN 2020tlf showed a bright precursor lasting for 130 days, during which the dense, confined CSM could have likely formed (Jacobson-Galán et al., 2022). However, the physical mechanisms forming the dense, confined CSM have not been revealed.

SN 2023ixf is one of the closest Type II SNe observed in the last decade, and their detailed observations provided us with valuable information on Type II SNe and their progenitors. SN 2023ixf was discovered immediately after the explosion (Itagaki, 2023), and its intensive follow-up observations were conducted in broad wavelengths (e.g., Berger et al. (2023); Grefenstette et al. (2023); Sgro et al. (2023); Hosseinzadeh et al. (2023); Koenig (2023); Teja et al. (2023); Jacobson-Galán et al. (2023); Hiramatsu et al. (2023); Zhang et al. (2023); Vasylyev et al. (2023); Smith et al. (2023); Bostroem et al. (2023); Yamanaka et al. (2023); Zimmerman et al. (2024); Chandra et al. (2024); Li et al. (2024); Singh et al. (2024)). These observations revealed the existence of a dense, confined CSM in SN 2023ixf. SN 2023ixf also demonstrated that the future multi-messenger observations of nearby SNe will also be interesting (e.g., Sarmah (2024); Guetta et al. (2023); Kheirandish & Murase (2023); Murase (2024); Ravensburg et al. (2024)). The progenitor of SN 2023ixf has been identified, but its nature is actively discussed (e.g., Kilpatrick et al. (2023); Jencson et al. (2023); Pledger & Shara (2023); Flinner et al. (2023); Van Dyk et al. (2024); Niu et al. (2023); Qin et al. (2023); Dong et al. (2023); Liu et al. (2023); Neustadt et al. (2024); Xiang et al. (2024)).

While nearby Type II SNe like SN 2023ixf can only appear once in a decade or so, thousands of distant Type II SNe are predicted to be discovered in a year in the era of the Vera C. Rubin Observatory’s Legacy Survey of Space and Time (LSST, LSST Science Collaboration et al. (2009)). It will be impossible to perform intensive follow-up observations of such a large number of Type II SNe individually as conducted for SN 2023ixf. A systematic approach is required to infer the properties of a large number of Type II SNe, for which only limited photometric information is expected to be available. To estimate the physical properties of a large number of Type II SNe, Moriya et al. (2023) constructed a model grid of Type II SNe containing about 228,000 explosion models with different combinations of progenitors, explosion properties, and CSM properties. This model grid has been used to estimate the properties of a large number of Type II SNe discovered by ongoing extensive transient surveys such as Zwickey Transient Facility (ZTF, e.g., Subrayan et al. (2023); Silva-Farfán et al. (2024)).

In this paper, we present our estimates of the progenitor and explosion properties of SN 2023ixf based on the model grid of Moriya et al. (2023). We discuss the distribution of the parameters estimated by the model grid and compare our parameter estimates with those estimated by other studies. This study allows us to test the ability of the model grid to estimate the properties of Type II SNe by using the well-observed Type II SN 2023ixf. We estimate the properties of SN 2023ixf by using only the pre-computed model grid in Moriya et al. (2023) without additional calculations. Using the pre-computed model grid, we can quickly identify the rough nature of SN 2023ixf, based on which more detailed modeling of its light curves and spectra can be performed.

The rest of this paper is organized as follows. We first present our methods to compare the model grid and the observations of SN 2023ixf in Section 2. We present the results of the model comparison and our parameter estimation in Section 3. We discuss our results in Section 4 and conclude this paper in Section 5.

Refer to caption
Refer to caption
Refer to caption
Refer to caption
Refer to caption
Refer to caption
Figure 1: Cumulative ranking distributions of the properties of SN 2023ixf. Only the g band photometry is used to obtain the ranking distribution in this figure.
Refer to caption
Refer to caption
Figure 2: The light-curve and photospheric velocity evolution of the model providing the least χ2\chi^{2} when we only use the g band photometry data to compare with the model grid.
Refer to caption
Figure 3: The g band light curves of the models providing the least χ2\chi^{2} for each progenitor model.
Refer to caption
Refer to caption
Refer to caption
Refer to caption
Refer to caption
Refer to caption
Figure 4: Cumulative ranking distributions of the properties of SN 2023ixf. The g and r band photometry are both used to obtain the ranking distribution in this figure.
Refer to caption
Refer to caption
Figure 5: The light-curve and photospheric velocity evolution of the model that provides the least χ2\chi^{2} when we use the g and r band photometry data to compare with the model grid.
Refer to caption
Refer to caption
Refer to caption
Refer to caption
Refer to caption
Refer to caption
Figure 6: Cumulative ranking distributions of the properties of SN 2023ixf. The pseudo-bolometric light curve is used to obtain the ranking distribution in this figure.
Refer to caption
Refer to caption
Figure 7: The light-curve and photospheric velocity evolution of the model which provides the least χ2\chi^{2} when we compare the pseudo-bolometric light curve with the model grid.

2 Methods

2.1 Model grid

In this study, we briefly introduce the model grid of Type II SNe used for the parameter estimation of SN 2023ixf. The full explanation of the model grid is available in Moriya et al. (2023), and the data of the model grid are available at https://doi.org/10.5061/dryad.pnvx0k6sj.

The model grid is constructed using the progenitor model from Sukhbold et al. (2016). The progenitor zero-age main-sequence (ZAMS) mass of the grid ranges from 10 M\mathrm{M}_{\odot} to 18 M\mathrm{M}_{\odot}. The dense CSM is attached artificially to the progenitor models. The mass-loss rates M˙\dot{M} in the model grid range from 105Myr110^{-5}~{}\mathrm{M}_{\odot}~{}\mathrm{yr^{-1}} to 101Myr110^{-1}~{}\mathrm{M}_{\odot}~{}\mathrm{yr^{-1}}, and the CSM radii in the model grid range from 1014cm10^{14}~{}\mathrm{cm} to 1015cm10^{15}~{}\mathrm{cm}. The CSM density ρCSM\rho_{\mathrm{CSM}} is assumed to follow

ρCSM=M˙4πvwind(r)r2,\rho_{\mathrm{CSM}}=\frac{\dot{M}}{4\pi v_{\mathrm{wind}}(r)}r^{-2}, (1)

from the mass conservation. The wind velocity vwind(r)v_{\mathrm{wind}}(r) is assumed to follow the β\beta-law wind velocity profile (e.g., Moriya et al. (2017, 2018))

vwind(r)=v0+(vv0)(1R0r)β,v_{\mathrm{wind}}(r)=v_{0}+(v_{\infty}-v_{0})\left(1-\frac{R_{0}}{r}\right)^{\beta}, (2)

where v0v_{0} is the initial wind velocity at the stellar surface, vv_{\infty} is the terminal wind velocity, and R0R_{0} is the progenitor radius. We set the terminal wind velocity to be 10kms110~{}\mathrm{km~{}s^{-1}}. We adopt β\beta of 0.550.5-5. v0v_{0} is chosen to connect the progenitor to the CSM smoothly.

The light-curve calculations to construct the model grid were performed by numerical one-dimensional radiation hydrodynamics code STELLA (Blinnikov et al., 1998, 2000, 2006). STELLA evaluates the time evolution of the spectral energy distribution (SED), and we obtain a SED in each time step. The SED can be convolved with any transmission functions, and we can obtain theoretical light-curve models for any filters in addition to bolometric luminosity. The progenitor models with CSM are put into STELLA as an initial condition. The explosions are triggered as a thermal bomb by inserting thermal energy just above the mass cut set at 1.4 M\mathrm{M}_{\odot}. The explosion energy ranges from 0.5 B (1B1051erg1~{}\mathrm{B}\equiv 10^{51}~{}\mathrm{erg}) to 5.0 B. Because STELLA does not treat explosive nucleosynthesis, the amount of Ni56{}^{56}\mathrm{Ni} is a free parameter. The Ni56{}^{56}\mathrm{Ni} mass is set from 0.001M0.001~{}\mathrm{M}_{\odot} to 0.3M0.3~{}\mathrm{M}_{\odot}. Ni56{}^{56}\mathrm{Ni} is assumed to be mixed up to the half mass of the hydrogen-rich envelope of the progenitors.

2.2 Observations

We compare the observational data of SN 2023ixf presented in Singh et al. (2024) with the model grid. The observational data presented in Singh et al. (2024) ranges from the Swift UVW2 band to the Kanata KSK_{S} band. In this work, we take the g and r bands for our analysis because SNe II have been best studied in these bands in recent years thanks to ZTF (Bellm et al., 2019). In addition, the CSM interaction strongly affects bluer bands, and the g band light curve would contain the information on both the CSM interaction and recombination in the ejecta.

We also compare the pseudo-bolometric light curves from the observation and theory. The pseudo-bolometric light curve of SN 2023ixf is constructed using the flux information between 3250 Å and 8900 Å based on the observations reported in Singh et al. (2024). Since we have SED evolution in each timestep in our model grid, we can calculate the pseudo-bolometric luminosity in the same wavelength range for the model grid and compare it directly to the observed luminosity.

We also use the information on the photospheric velocities from the model grid to compare with the observations. We compare the observed Fe ii λ5169\lambda 5169 velocities measured by Singh et al. (2024).

2.3 Comparison between the model grid and observations

In this study, we evaluate the following χ2\chi^{2} value for all the light-curve models in the model grid, and we estimate the properties of SN 2023ixf based on the χ2\chi^{2} distribution. In our previous studies, we adopted a Bayesian approach to estimate the explosion properties of Type II SNe (e.g., Förster et al. (2018); Subrayan et al. (2023); Silva-Farfán et al. (2024)). However, the previous studies used only a part of the model grid by, e.g., limiting the progenitor mass ranges because it has been challenging to incorporate all the models due to the demanding computational costs. Thus, we adopt a more straightforward approach to account for all the models in the grid.

The χ2\chi^{2} in this study is defined as

χ2=i(xobs.,ixmod.,i)2Δx2,\chi^{2}=\sum_{i}\frac{(x_{\mathrm{obs.},i}-x_{\mathrm{mod.},i})^{2}}{{\Delta x}^{2}}, (3)

where xobs.,ix_{\mathrm{obs.},i} is the iith observational data, xmod.,ix_{\mathrm{mod.},i} is the model prediction for the observational data, and Δx2{\Delta x}^{2} is an error. Although the errors in the observational data are small, we expect to have an unknown systematic error for the model predictions. Thus, we assign Δx=0.3mag\Delta x=0.3~{}\mathrm{mag} for photometry and Δx=0.1dex\Delta x=0.1~{}\mathrm{dex} for the pseudo-bolometric luminosity.

For each model, we evaluate χ2\chi^{2} by changing the explosion date of the model from 10 days to 0 day before the estimated explosion date of SN 2023ixf at JD=2460083.315\mathrm{JD}=2460083.315 (Teja et al., 2023) with the interval of 0.1 days. The smallest χ2\chi^{2} value among the different explosion dates is then assigned to each model.

After obtaining χ2\chi^{2} for all the models, we rank the models based on the χ2\chi^{2} values. The model with the smallest χ2\chi^{2} is ranked as the number one, and the rank becomes higher as χ2\chi^{2} becomes higher. In this work, we estimate the properties of SN 2023ixf based on this rank distribution.

3 Results

Figure 1 presents the cumulative rank distributions of the progenitor and explosion properties obtained using the g band light curves. The best fit model has the ZAMS mass of 10 M\mathrm{M}_{\odot}, explosion energy of 2.0B2.0~{}\mathrm{B}, Ni56{}^{56}\mathrm{Ni} mass of 0.06 M\mathrm{M}_{\odot}, mass-loss rate of 102.0Myr110^{-2.0}~{}\mathrm{M}_{\odot}~{}\mathrm{yr^{-1}}, β\beta of 3.5, and CSM radius of 6×1014cm6\times 10^{14}~{}\mathrm{cm}. The CSM mass of the model is 0.85 M\mathrm{M}_{\odot}. The best-fit model is presented in Figure 2. Although we do not consider velocity information when we compare the model grid, we can find that the photospheric velocity evolution also matches well in the best-fit model.

When we look into the cumulative ranking distribution, the smaller ZAMS mass progenitors are preferred, and most of the best-fit models have the ZAMS mass of 10 M\mathrm{M}_{\odot}. Figure 3 presents the best-fit models for each progenitor model. The higher mass models tend to have slow-declining light curves than those observed for SN 2023ixf. Although the best-fit model has the explosion energy of 2.0B2.0~{}\mathrm{B}, the models with 2.5B2.5~{}\mathrm{B} and 3.0B3.0~{}\mathrm{B} also tend to have small χ2\chi^{2} values. Thus, the explosion energy is estimated at 2.03.0B2.0-3.0~{}\mathrm{B}. The most preferred Ni56{}^{56}\mathrm{Ni} mass is 0.06 M\mathrm{M}_{\odot}. The mass-loss rate of the best matching models are 102.0Myr110^{-2.0}~{}\mathrm{M}_{\odot}~{}\mathrm{yr^{-1}}, but the models with 103.0Myr110^{-3.0}~{}\mathrm{M}_{\odot}~{}\mathrm{yr^{-1}} and 102.5Myr110^{-2.5}~{}\mathrm{M}_{\odot}~{}\mathrm{yr^{-1}} have relatively low ranks. Thus, the mass-loss rate can be estimated to be in the range of 102.0103.0Myr110^{-2.0}-10^{-3.0}~{}\mathrm{M}_{\odot}~{}\mathrm{yr^{-1}}. Although β=3.5\beta=\mathbf{3.5} gives the smallest χ2\chi^{2}, the models with the other β\beta also provide a relatively low ranking, and we conclude that it is difficult to constrain β\beta. Since β\beta determines the CSM density structure at the immediate vicinity of the progenitor, the CSM mass is affected by β\beta. If we fix the progenitor mass (10M10~{}\mathrm{M}_{\odot}), mass-loss rate (102.0Myr110^{-2.0}~{}\mathrm{M}_{\odot}~{}\mathrm{yr^{-1}}), and CSM radius (6×1014cm6\times 10^{14}~{}\mathrm{cm}), the CSM mass ranges from 0.21M0.21~{}\mathrm{M}_{\odot} (β=0.5\beta=0.5) to 1.3M1.3~{}\mathrm{M}_{\odot} (β=5.0\beta=5.0). Thus, the CSM mass with the order of 0.1M0.1~{}\mathrm{M}_{\odot} is preferred, but the exact CSM density structure is not well constrained. The models with the CSM radius of 6×1014cm6\times 10^{14}~{}\mathrm{cm} give the best-fit models, but the CSM radii of 8×1014cm8\times 10^{14}~{}\mathrm{cm} and 1015cm10^{15}~{}\mathrm{cm} provide the models with relatively low ranking.

So far, we have only looked into the comparison results obtained using the g band light curve. Figure 4 shows the cumulative ranking distribution obtained by using the g and r band light curves. In this case, the best fit light-curve model has the ZAMS mass of 10 M\mathrm{M}_{\odot}, explosion energy of 2.5B2.5~{}\mathrm{B}, Ni56{}^{56}\mathrm{Ni} mass of 0.06 M\mathrm{M}_{\odot}, mass-loss rate of 103.0Myr110^{-3.0}~{}\mathrm{M}_{\odot}~{}\mathrm{yr^{-1}}, β\beta of 5.0, and CSM radius of 1015cm10^{15}~{}\mathrm{cm}. The CSM mass in this model is 0.52 M\mathrm{M}_{\odot}. The best-fit light-curve model and its photospheric velocity evolution are presented in Figure 5. We find that adding the r band information does not change the results of the parameter estimations much. The best-fit parameters for the explosion energy, mass-loss rate, and β\beta change slightly, but the overall ranking distributions remain unchanged.

Finally, we show the comparison results based on the pseudo-bolometric light curve. The cumulative ranking distribution is shown in Figure 6, and the best fit light-curve model is presented in Figure 7. The best fit model has the ZAMS mass of 10 M\mathrm{M}_{\odot}, explosion energy of 2.0B2.0~{}\mathrm{B}, Ni56{}^{56}\mathrm{Ni} mass of 0.04 M\mathrm{M}_{\odot}, mass-loss rate of 103.0Myr110^{-3.0}~{}\mathrm{M}_{\odot}~{}\mathrm{yr^{-1}}, β\beta of 4.5, and CSM radius of 1015cm10^{15}~{}\mathrm{cm}. This model has a CSM mass of 0.44 M\mathrm{M}_{\odot}. A large difference in the parameter estimations from those obtained by the g and r band light curves is in the Ni56{}^{56}\mathrm{Ni} mass. While most of the best-fit models based on the g and r band light curves have the Ni56{}^{56}\mathrm{Ni} mass of 0.06 M\mathrm{M}_{\odot}, the best-fit models based on the pseudo-bolometric light curve has the Ni56{}^{56}\mathrm{Ni} mass of 0.04 M\mathrm{M}_{\odot}. The ranking distribution of the other parameters is not significantly different from those obtained by the g and r band light curves.

4 Discussion

Based on the χ2\chi^{2} ranking distribution presented in the previous section, SN 2023ixf can be estimated to have the progenitor ZAMS mass of 10 M\mathrm{M}_{\odot}, the explosion energy of 2.03.0B2.0-3.0~{}\mathrm{B}, the Ni56{}^{56}\mathrm{Ni} mass of 0.040.06M0.04-0.06~{}\mathrm{M}_{\odot}, the mass-loss rate of 103.0102.0Myr110^{-3.0}-10^{-2.0}~{}\mathrm{M}_{\odot}~{}\mathrm{yr^{-1}}, and the dense CSM radius of (610)×1014cm(6-10)\times 10^{14}~{}\mathrm{cm}. The wind structure β\beta is not well constrained. These parameter estimations are obtained using the pre-computed model grid in Moriya et al. (2023) without additional computations. Still, the estimated parameters are close to those obtained by detailed numerical investigations. For example, Bersten et al. (2024) and Martinez et al. (2024) estimated the ZAMS mass of 12 M\mathrm{M}_{\odot}, the explosion energy of 1.2×1051erg1.2\times 10^{51}~{}\mathrm{erg}, the Ni56{}^{56}\mathrm{Ni} mass of 0.05 M\mathrm{M}_{\odot}, the mass-loss rate of 3×103Myr13\times 10^{-3}~{}\mathrm{M}_{\odot}~{}\mathrm{yr^{-1}} with the wind velocity of 115kms1115~{}\mathrm{km~{}s^{-1}}, the dense CSM radius of 8×1014cm8\times 10^{14}~{}\mathrm{cm}, and β=5\beta=5 through the detailed numerical modeling. The estimated parameters are close to those we estimated in this paper. Our approach gives us a better idea of the uncertainties in the parameter estimation thanks to the χ2\chi^{2} ranking provided by the large model grid.

The parameter estimation approach we took in this paper is based on the pre-existing model grid. Thus, this paper does not aim to perfectly fit the light curves. As we can find in the best-fit models (Figs. 2 and 5), our light-curve models tend to decline slower than the observed light-curves, especially in the r band. The light-curve decline rate is closely related to the progenitor structure, including the hydrogen-rich envelope mass (e.g., Dessart et al. (2013); Moriya et al. (2016)). The assumed progenitor models from Sukhbold et al. (2016) might not have been suitable for precisely reproducing the light-curve properties of SN 2023ixf. Still, the parameter estimation by the model grid can provide a good first guess for starting the detailed modeling of individual SNe.

Our models prefer a low-mass progenitor for SN 2023ixf. The progenitor mass of SN 2023ixf has been debated because the progenitor mass estimates from the pre-explosion images range from low mass (around 10M10~{}\mathrm{M}_{\odot}, e.g., Kilpatrick et al. (2023); Pledger & Shara (2023); Van Dyk et al. (2024); Xiang et al. (2024)) to high mass (around 20M20~{}\mathrm{M}_{\odot}, e.g., Jencson et al. (2023); Niu et al. (2023); Qin et al. (2023); Soraisam et al. (2023); Liu et al. (2023)). Our mass estimate aligns with the low-mass progenitor estimates consistent with the results from the other light-curve modeling efforts (e.g., Bersten et al. (2024)). Our progenitor mass estimates are based on the progenitor model grid of Sukhbold et al. (2016). Adopting different progenitor models with different stellar evolution parameters can lead to different progenitor mass estimates due to inherent degeneracies with the parameters especially in the progenitor mass and radius (e.g., Goldberg et al. (2019); Goldberg & Bildsten (2020)).

The properties of the dense, confined CSM estimated with our method are consistent with those obtained by other studies. The previous estimates based on the early-phase light-curve properties are around 103102Myr110^{-3}-10^{-2}~{}\mathrm{M}_{\odot}~{}\mathrm{yr^{-1}} if we adopt the wind velocity of 10 kms1\mathrm{km~{}s^{-1}} as assumed in our model grid (e.g., Teja et al. (2023); Hiramatsu et al. (2023); Jacobson-Galán et al. (2023); Zhang et al. (2023); Zimmerman et al. (2024); Soker (2023)). The estimated mass-loss rate is also consistent with that estimated by comparing spectroscopic observations and models (e.g., Jacobson-Galán et al. (2023); Bostroem et al. (2023)). The CSM density scales as ρCSMM˙/vwind\rho_{\mathrm{CSM}}\propto\dot{M}/v_{\mathrm{wind}} (Eq. 1). In our model, we assume the terminal wind velocity of 10 kms1\mathrm{km~{}s^{-1}}. If we adopt the terminal wind velocity of 100 kms1\mathrm{km~{}s^{-1}} as observed in the high-resolution spectra of SN 2023ixf (Smith et al., 2023), the mass-loss estimate increases by a factor of 10. However, the observed velocity of 115 kms1\mathrm{km~{}s^{-1}}might be affected by the radiative acceleration of the unshocked CSM (e.g., Tsuna et al. (2023)). The radius of the dense, confined CSM we estimated, (610)×1014cm(6-10)\times 10^{14}~{}\mathrm{cm}, is also consistent with other estimates (e.g., Teja et al. (2023); Jacobson-Galán et al. (2023); Hiramatsu et al. (2023); Zhang et al. (2023); Bostroem et al. (2023)), although the early-phase ultraviolet observations provide a smaller estimate of the CSM radius (Zimmerman et al., 2024).

The mass-loss rate estimates based on the pre-explosion progenitor properties as well as X-ray observations are around 104Myr110^{-4}~{}\mathrm{M}_{\odot}~{}\mathrm{yr^{-1}} (e.g., Grefenstette et al. (2023); Chandra et al. (2024); Jencson et al. (2023); Niu et al. (2023); Qin et al. (2023); Soraisam et al. (2023)). This discrepancy likely originates from the aspherical nature of the dense, confined CSM identified by spectroscopic and polarimetric observations of SN 2023ixf (e.g., Vasylyev et al. (2023); Smith et al. (2023); Singh et al. (2024)). Early light curves and spectra in the optical wavelengths are affected mainly by the dense part of the CSM.

5 Conclusions

We have presented our results comparing the observed light curve of SN 2023ixf and the pre-existing synthetic light-curve model grid from Moriya et al. (2023). By simply evaluating the χ2\chi^{2} value for every model and rank the models based on the χ2\chi^{2} value, we estimated that SN 2023ixf have the progenitor ZAMS mass of 10 M\mathrm{M}_{\odot} (adopting the progenitor models from Sukhbold et al. (2016)), the explosion energy of 2.03.0B2.0-3.0~{}\mathrm{B}, the 56Ni mass of 0.040.06M0.04-0.06~{}\mathrm{M}_{\odot}, the mass-loss rate of 103.0102.0Myr110^{-3.0}-10^{-2.0}~{}\mathrm{M}_{\odot}~{}\mathrm{yr^{-1}}, and the dense, confined CSM radius of (610)×1014cm(6-10)\times 10^{14}~{}\mathrm{cm}. The wind structure parameter β\beta is not constrained well. The estimated parameters match those estimated by the previous detailed modeling of SN 2023ixf.

Our parameter estimation is based on the pre-existing model grid, and we did not perform any additional calculations to estimate the properties of SN 2023ixf. Thus, we can find some discrepancies between the best-matching models and observations, but our approach provides a reasonable parameter estimation. Our simple approach is sufficient to obtain a rough parameter estimation of Type II SNe, building upon which we can perform more detailed modeling. In particular, such a simple, quick parameter estimation will be essential to characterize thousands of Type II SNe discovered each year in the era of LSST. This study demonstrated that we can have a reasonable quick parameter estimation for them by using the pre-existing model grid and extracting information on the explosion and mass-loss mechanisms of RSGs.

{ack}

The authors thank Jared Goldberg and the anonymous referee for constructive comments that improved this paper. TJM is supported by the Grants-in-Aid for Scientific Research of the Japan Society for the Promotion of Science (JP24K00682, JP24H01824, JP21H04997, JP24H00002, JP24H00027, JP24K00668). This research was supported by the Australian Research Council (ARC) through the ARC’s Discovery Projects funding scheme (project DP240101786). This work was supported by the JSPS Core-to-Core Program (grant number: JPJSCCA20210003).

References

  • Bellm et al. (2019) Bellm, E. C., Kulkarni, S. R., Graham, M. J., et al. 2019, PASP, 131, 018002
  • Berger et al. (2023) Berger, E., Keating, G. K., Margutti, R., et al. 2023, ApJ, 951, L31
  • Bersten et al. (2024) Bersten, M. C., Orellana, M., Folatelli, G., et al. 2024, A&A, 681, L18
  • Blinnikov et al. (2000) Blinnikov, S., Lundqvist, P., Bartunov, O., Nomoto, K., & Iwamoto, K. 2000, ApJ, 532, 1132
  • Blinnikov et al. (1998) Blinnikov, S. I., Eastman, R., Bartunov, O. S., Popolitov, V. A., & Woosley, S. E. 1998, ApJ, 496, 454
  • Blinnikov et al. (2006) Blinnikov, S. I., Röpke, F. K., Sorokina, E. I., et al. 2006, A&A, 453, 229
  • Bostroem et al. (2023) Bostroem, K. A., Pearson, J., Shrestha, M., et al. 2023, ApJ, 956, L5
  • Burrows & Vartanyan (2021) Burrows, A., & Vartanyan, D. 2021, Nature, 589, 29
  • Chandra et al. (2024) Chandra, P., Chevalier, R. A., Maeda, K., Ray, A. K., & Nayana, A. J. 2024, ApJ, 963, L4
  • Dessart et al. (2013) Dessart, L., Hillier, D. J., Waldman, R., & Livne, E. 2013, MNRAS, 433, 1745
  • Dong et al. (2023) Dong, Y., Sand, D. J., Valenti, S., et al. 2023, ApJ, 957, 28
  • Flinner et al. (2023) Flinner, N., Tucker, M. A., Beacom, J. F., & Shappee, B. J. 2023, Research Notes of the American Astronomical Society, 7, 174
  • Förster et al. (2018) Förster, F., Moriya, T. J., Maureira, J. C., et al. 2018, Nature Astronomy, 2, 808
  • Goldberg & Bildsten (2020) Goldberg, J. A., & Bildsten, L. 2020, ApJ, 895, L45
  • Goldberg et al. (2019) Goldberg, J. A., Bildsten, L., & Paxton, B. 2019, ApJ, 879, 3
  • González-Gaitán et al. (2015) González-Gaitán, S., Tominaga, N., Molina, J., et al. 2015, MNRAS, 451, 2212
  • Grefenstette et al. (2023) Grefenstette, B. W., Brightman, M., Earnshaw, H. P., Harrison, F. A., & Margutti, R. 2023, ApJ, 952, L3
  • Guetta et al. (2023) Guetta, D., Langella, A., Gagliardini, S., & Della Valle, M. 2023, ApJ, 955, L9
  • Hiramatsu et al. (2023) Hiramatsu, D., Tsuna, D., Berger, E., et al. 2023, ApJ, 955, L8
  • Hosseinzadeh et al. (2023) Hosseinzadeh, G., Farah, J., Shrestha, M., et al. 2023, ApJ, 953, L16
  • Itagaki (2023) Itagaki, K. 2023, Transient Name Server Discovery Report, 2023-1158, 1
  • Jacobson-Galán et al. (2022) Jacobson-Galán, W. V., Dessart, L., Jones, D. O., et al. 2022, ApJ, 924, 15
  • Jacobson-Galán et al. (2023) Jacobson-Galán, W. V., Dessart, L., Margutti, R., et al. 2023, ApJ, 954, L42
  • Jencson et al. (2023) Jencson, J. E., Pearson, J., Beasor, E. R., et al. 2023, ApJ, 952, L30
  • Kheirandish & Murase (2023) Kheirandish, A., & Murase, K. 2023, ApJ, 956, L8
  • Kilpatrick et al. (2023) Kilpatrick, C. D., Foley, R. J., Jacobson-Galán, W. V., et al. 2023, ApJ, 952, L23
  • Koenig (2023) Koenig, M. 2023, Research Notes of the American Astronomical Society, 7, 169
  • Li et al. (2024) Li, G., Hu, M., Li, W., et al. 2024, Nature, 627, 754
  • Liu et al. (2023) Liu, C., Chen, X., Er, X., et al. 2023, ApJ, 958, L37
  • LSST Science Collaboration et al. (2009) LSST Science Collaboration, Abell, P. A., Allison, J., et al. 2009, arXiv e-prints, arXiv:0912.0201
  • Martinez et al. (2024) Martinez, L., Bersten, M. C., Folatelli, G., Orellana, M., & Ertini, K. 2024, A&A, 683, A154
  • Moriya et al. (2011) Moriya, T., Tominaga, N., Blinnikov, S. I., Baklanov, P. V., & Sorokina, E. I. 2011, MNRAS, 415, 199
  • Moriya et al. (2018) Moriya, T. J., Förster, F., Yoon, S.-C., Gräfener, G., & Blinnikov, S. I. 2018, MNRAS, 476, 2840
  • Moriya et al. (2016) Moriya, T. J., Pruzhinskaya, M. V., Ergon, M., & Blinnikov, S. I. 2016, MNRAS, 455, 423
  • Moriya et al. (2023) Moriya, T. J., Subrayan, B. M., Milisavljevic, D., & Blinnikov, S. I. 2023, PASJ, 75, 634
  • Moriya et al. (2017) Moriya, T. J., Yoon, S.-C., Gräfener, G., & Blinnikov, S. I. 2017, MNRAS, 469, L108
  • Morozova et al. (2017) Morozova, V., Piro, A. L., & Valenti, S. 2017, ApJ, 838, 28
  • Murase (2024) Murase, K. 2024, Phys. Rev. D, 109, 103020
  • Nagy & Vinkó (2016) Nagy, A. P., & Vinkó, J. 2016, A&A, 589, A53
  • Neustadt et al. (2024) Neustadt, J. M. M., Kochanek, C. S., & Smith, M. R. 2024, MNRAS, 527, 5366
  • Niu et al. (2023) Niu, Z., Sun, N.-C., Maund, J. R., et al. 2023, ApJ, 955, L15
  • Perley et al. (2020) Perley, D. A., Fremling, C., Sollerman, J., et al. 2020, ApJ, 904, 35
  • Pledger & Shara (2023) Pledger, J. L., & Shara, M. M. 2023, ApJ, 953, L14
  • Qin et al. (2023) Qin, Y.-J., Zhang, K., Bloom, J., et al. 2023, arXiv e-prints, arXiv:2309.10022
  • Ravensburg et al. (2024) Ravensburg, E., Carenza, P., Eckner, C., & Goobar, A. 2024, Phys. Rev. D, 109, 023018
  • Sarmah (2024) Sarmah, P. 2024, J. Cosmology Astropart. Phys, 2024, 083
  • Sgro et al. (2023) Sgro, L. A., Esposito, T. M., Blaclard, G., et al. 2023, Research Notes of the American Astronomical Society, 7, 141
  • Silva-Farfán et al. (2024) Silva-Farfán, J., Förster, F., Moriya, T. J., et al. 2024, arXiv e-prints, arXiv:2404.12620
  • Singh et al. (2024) Singh, A., Teja, R. S., Moriya, T. J., et al. 2024, arXiv e-prints, arXiv:2405.20989
  • Smith et al. (2023) Smith, N., Pearson, J., Sand, D. J., et al. 2023, ApJ, 956, 46
  • Soker (2023) Soker, N. 2023, Research in Astronomy and Astrophysics, 23, 081002
  • Soraisam et al. (2023) Soraisam, M. D., Szalai, T., Van Dyk, S. D., et al. 2023, ApJ, 957, 64
  • Subrayan et al. (2023) Subrayan, B. M., Milisavljevic, D., Moriya, T. J., et al. 2023, ApJ, 945, 46
  • Sukhbold et al. (2016) Sukhbold, T., Ertl, T., Woosley, S. E., Brown, J. M., & Janka, H. T. 2016, ApJ, 821, 38
  • Teja et al. (2023) Teja, R. S., Singh, A., Basu, J., et al. 2023, ApJ, 954, L12
  • Tsuna et al. (2023) Tsuna, D., Murase, K., & Moriya, T. J. 2023, ApJ, 952, 115
  • Van Dyk et al. (2024) Van Dyk, S. D., Srinivasan, S., Andrews, J. E., et al. 2024, ApJ, 968, 27
  • Vasylyev et al. (2023) Vasylyev, S. S., Yang, Y., Filippenko, A. V., et al. 2023, ApJ, 955, L37
  • Xiang et al. (2024) Xiang, D., Mo, J., Wang, L., et al. 2024, Science China Physics, Mechanics, and Astronomy, 67, 219514
  • Yamanaka et al. (2023) Yamanaka, M., Fujii, M., & Nagayama, T. 2023, PASJ, 75, L27
  • Yaron et al. (2017) Yaron, O., Perley, D. A., Gal-Yam, A., et al. 2017, Nature Physics, 13, 510
  • Zhang et al. (2023) Zhang, J., Lin, H., Wang, X., et al. 2023, Science Bulletin, 68, 2548
  • Zimmerman et al. (2024) Zimmerman, E. A., Irani, I., Chen, P., et al. 2024, Nature, 627, 759