This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Production of hidden-charm and hidden-bottom pentaquark states in electron-proton collisions

Ya-Ping Xie [email protected] Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China University of Chinese Academy of Sciences, Beijing 100049, China    Xu Cao [email protected] Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China University of Chinese Academy of Sciences, Beijing 100049, China    Yu-Tie Liang [email protected] Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China University of Chinese Academy of Sciences, Beijing 100049, China    Xurong Chen [email protected] Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China University of Chinese Academy of Sciences, Beijing 100049, China Institute of Quantum Matter, South China Normal University, Guangzhou 510006, China
Abstract

Electro-production of several pentaquark states is investigated in this paper. eSTARlight package is adapted to study the electro-production of J/ψJ/\psi and Υ(1S)\Upsilon(1S) via pentaquark PcP_{c} and PbP_{b} resonance channels in epeJ/ψpep\to eJ/\psi p and epeΥ(1S)pep\to e\Upsilon(1S)p scattering processes at proposed electron-ion colliders (EICs). The results in this paper are compared to the non-resonance tt-channels, which is described in pomeron exchange model in our studies. Some pseudo-rapidity distributions rapidity distributions of J/ψJ/\psi and Υ(1S)\Upsilon(1S) are presented for proposed EICs including EicC and EIC-US. It is found that EicC is a good platform to identify PbP_{b} states in the future.

pacs:
24.85.+p, 12.38.Bx, 12.39.St, 13.88.+e

I introduction

Up to now a rich spectrum of the exotic mesons, including charmonium-like and bottomonium-like states, are emerging, and more new states are expected for the continuing experimental effort Chen:2016qju ; Diehl:2003qa ; Guo:2017jvc ; Lebed:2016hpi ; Esposito:2016noz ; Olsen:2017bmm ; Liu:2019zoy ; Wang:2019got ; Brambilla:2019esw ; Ali:2017jda . However, in the baryon sector only three narrow pentaquark states, Pc(4312)P_{c}(4312), Pc(4440)P_{c}(4440) and Pc(4457)P_{c}(4457), are discovered by the LHCb collaboration in ΛbJ/ψpK\Lambda_{b}\to J/\psi pK^{-} decay Aaij:2015tga ; Aaij:2019vzc . It is essential to study these known states and search for new states by other decay and reaction channels in order to disentangle different models. Just recently, D0 and GlueX collaborations have searched for these states in inclusive pp¯p\overline{p} collisions Abazov:2019kwn and photoproduction Ali:2019lzf , recpectively. The D0 collaboration found an enhancement from joint contribution of Pc(4440)P_{c}(4440) and Pc(4457)P_{c}(4457) in J/ψpJ/\psi p invariance mass spectrum with low significance Abazov:2019kwn , serving as the first and only confirmatory evidence for these pentaquark states.

Various interpretations were proposed for the nature of hidden charm pentaquark states before and after their observation, e.g. molecular states Wu:2010jy ; Wu:2010vk , compact diquark-diquark-antiquark states Cheng:2019obk ; Ali:2019npk ; Ali:2019clg , and hadro-charmonium states Eides:2019tgv . In addition, it is pointed out that the peaks of pentaquark in the decay and reaction with multi-particle final states could be induced by triangle singularity considering that their masses locate close to the ΣcD¯\Sigma_{c}\bar{D} and ΣcD¯\Sigma_{c}\bar{D}^{*} threshold Guo:2015umn ; Liu:2015fea ; Liu:2016dli ; Guo:2016bkl ; Bayar:2016ftu ; Liu:2019dqc ; Guo:2019twa . In order to survey this non-resonance explanation, the reactions with two-body final states induced by beams of photon, electron Wang:2015jsa ; Karliner:2015voa ; Kubarovsky:2015aaa ; Huang:2016tcr ; Blin:2016dlf ; Wu:2019adv ; Wang:2019krd and pion Lu:2015fva ; Liu:2016dli ; Wang:2019dsi ; Kim:2016cxr are suggested to be decisive. At present and in the near future, the high energy pion beam seems to be unavailable, so photo- and electroproduction reactions would play the central role and attract much interest. These reactions are also useful to search for other PcP_{c}, for instance those among seven states in spin multiplets anticipated by heavy-quark spin symmetry Liu:2019tjn ; Xiao:2019aya ; Du:2019pij , and also PbP_{b}, the bottom analogs of PcP_{c}, expected by heavy quark flavor symmetry in many models Wu:2010rv ; Xiao:2013jla ; Karliner:2015voa ; Karliner:2015ina .

The observation of hidden-charm pentaquark states encourage people to investigate the hidden-bottom pentaquark state which contains a bottom quark pair and three light quarks. There are several papers about investigation for the nature of hidden-bottom pentaquark state in different modelsWu:2017weo ; Huang:2018wed ; Gutsche:2019mkg . Photoproduction of hidden-bottom pentaquark state has been investigated in Refs.Wang:2019zaw ; Cao:2019gqo . It is natural to predict the production of hidden-bottom pentaquark state in electron-proton scattering in future EICs.

Electron-Ions Collider (EIC) is an important platform to explore nuclear structure and exotic particle nature in next decade. In electron-proton scattering, the initial electron emits virtual photon which interacts with the initial proton to produce vector mesons. There are several proposed EICs, for instance, EicC (EIC in China) CAO:2020EicC ; Chen:2018wyz , EIC-US (EIC in US) Morozov:2017 and LHeC (EIC in LHC) AbelleiraFernandez:2012cc , ranging from intermediate to extremely high energies.

The simulation work of production in EICs is very important before EICs are built. The simulation work can help us to estimate the particles cross sections for the proposed EICs. eSTARlight is a Monte-Carlo package to simulate production of vector mesons in electron-proton scattering for EICs Lomnitz:2018juf . It can de describe the vector meson production well of HERA in the tt-channel. The production of exotic particles were also studied in eSTARlightKlein:2019avl . The cross sections of photon-proton to vector mesons is necessary to calculate the cross section of vector mesons in electron-proton scattering In eSTARlight package, the glauber model is employed to obtain the γAVA\gamma A\to VAKlein:1999qj . With the helps of eSTARlight, we can obtain the four momentum of final state particles.which are important for the detector systems. Then we can rebuild the four momentum of short-life particles. The simulation can provide some distributions of the physical process. In previous versions of eSTARlight, only the tt-channel is investigated. In this work, we are going to study the ss-channel vector meson production in electron-proton scattering using eSTARlight. We investigate the electroproduction of pentaquark PcP_{c} in epeJ/ψpep\to eJ/\psi p and PbP_{b} in epeΥ(1S)pep\to e\Upsilon(1S)p scattering with a great detail in this paper. Here we will concentrate on EicC and EIC-US by comparison of cross sections and the rapidity distributions of final particles.

The main aim of this paper is adopting eSTARlight to simulate the production of charm and bottom vector mesons in the ss-channel and tt-channel. eSTARlight can describe vector mesons cross sections of HERA well in the tt-channel. We extend the vector mesons production in the ss-channel in eSTARlight. This paper is organized as follows. The theoretical framework is given in Sec II. The numerical results are presented in Sec. III, closed with a summary in Sec. IV.

II Theoretical Framework

In electron-proton scattering, diffractive production of vector meson is important since the photon in electro-production is off-mass-shell. It is interesting to see how the internal structures of the particles involved influence the vector mesons production in electron-proton scattering. The diagrams for ss-channel and tt-channel of epeVpep\to eVp are depicted in Fig. 1. In the ss-channel (left graph), the virtual photon and initial proton produce resonances (e.g. PcP_{c} and PbP_{b} states), and then the pentaquark resonance states decay into vector mesons and proton. In the tt-channel(right graph), the virtual photon interacts with proton via exchanging pomerons or gluons and then converts into final vector mesons. In this paper we use the pomerons exchanging in the tt-channel. We treat the tt-channel contribution as a background of pentaquark states resonance contributions. We parameterize the cross section of γpVp\gamma p\to Vp, as the basic input to the simulation of epeVpep\to eVp reaction. This can be recognized by the eSTARlight package.

Refer to caption
Figure 1: Diagrams for J/ψJ/\psi and Υ(1S)\Upsilon(1S) production in electron-proton scattering via PcP_{c} and PbP_{b} pentaquark resonances exchange ss-channel (left graph) and pomeron exchange tt-channel (right graph).

In the electron proton scattering, the cross section of epeVpep\to eVp are in terms of the cross section of γpVp\gamma^{*}p\to Vp. It is written as Lomnitz:2018juf ,

σ(epeVp)=𝑑k𝑑Q2dN2(k,Q2)dkdQ2σγpVp(W,Q2).\displaystyle\sigma(ep\to eVp)=\int dkdQ^{2}\frac{dN^{2}(k,Q^{2})}{dkdQ^{2}}\sigma_{\gamma^{*}p\to Vp}(W,Q^{2}). (1)

where kk is the momentum of the photon emitted from initial electron in the target rest frame, W is the center of mass (c.m.) energy of the virtual photon and proton system, and Q2Q^{2} is the virtuality of the virtual photon. The photon flux is given as Budnev:1974de

d2N(k,Q2)dkdQ2=απkQ2[1kEe+k22Ee2(1kEe)|Qmin2Q2|].\displaystyle\frac{d^{2}N(k,Q^{2})}{dkdQ^{2}}=\frac{\alpha}{\pi kQ^{2}}\Big{[}1-\frac{k}{E_{e}}+\frac{k^{2}}{2E^{2}_{e}}-\Big{(}1-\frac{k}{E_{e}}\Big{)}\Big{|}\frac{Q^{2}_{min}}{Q^{2}}\Big{|}\Big{]}. (2)

where EeE_{e} is the energy of the incoming electron in the proton rest frame, and Qmin2Q^{2}_{min} is defined as

Qmin2=me2k2Ee(Eek).\displaystyle Q^{2}_{min}=\frac{m_{e}^{2}k^{2}}{E_{e}(E_{e}-k)}. (3)

The maximum Q2Q^{2} is determined by the energy loss of the initial electron, it reads

Qmax2=4Ee(Eek).\displaystyle Q^{2}_{max}=4E_{e}(E_{e}-k). (4)

The Q2Q^{2} dependence of σγpVp(W,Q2)\sigma_{\gamma^{*}p\to Vp}(W,Q^{2}) is factorized as

σγpVp(W,Q2)\displaystyle\sigma_{\gamma^{*}p\to Vp}(W,Q^{2}) =\displaystyle= σγpVp(W,Q2=0)(MV2MV2+Q2)η.\displaystyle\sigma_{\gamma p\to Vp}(W,Q^{2}=0)\bigg{(}\frac{M_{V}^{2}}{M_{V}^{2}+Q^{2}}\bigg{)}^{\eta}. (5)

where η=c1+c2(MV2+Q2)\eta=c_{1}+c_{2}(M_{V}^{2}+Q^{2}) with the values of c1=2.36±0.20c_{1}=2.36\pm 0.20 and c2=0.0029±0.43GeV2c_{2}=0.0029\pm 0.43\!\!\!\!\!\quad\mathrm{GeV}^{2}, which are determined by the data of γpVp\gamma^{*}p\to Vp with Q20Q^{2}\neq 0 Lomnitz:2018juf . We use the same Q2Q^{2} dependence for pentaquark and pomeron channels, as these values are unknown for pentaquark resonance channel. Because of the very strong Q2Q^{2} dependence of photon flux in Eq. (2), the impact of this prescription is expected to be not big for the final results.

For the pentaquark states resonance channel, the cross sections of γpVp\gamma p{\to}Vp can be written in a compact Breit-Wigner formKubarovsky:2015aaa ; Karliner:2015voa

σγpVpPX(W)=2J+12(2s2+1)4πkin2ΓPX24(PXγp)(PXVp)(WMPX)2+ΓPX2/4.\displaystyle\sigma^{P_{X}}_{\gamma p{\to}Vp}(W)=\frac{2J+1}{2(2s_{2}+1)}\frac{4\pi}{k^{2}_{in}}\frac{\Gamma^{2}_{P_{X}}}{4}\frac{\mathcal{B}(P_{X}\to\gamma p)\mathcal{B}(P_{X}\to Vp)}{(W-M_{P_{X}})^{2}+\Gamma^{2}_{P_{X}}/4}. (6)

where PXP_{X} denotes pentaquark states, such PcP_{c} and PbP_{b}. s1s_{1} is the spin of initial proton and JJ is the total spin of PcP_{c} and PbP_{b} pentaquark states. Here MPXM_{P_{X}} and ΓPX\Gamma_{P_{X}} is the mass and total decay width of the PcP_{c} and PbP_{b} states, respectively. The kink_{in} is the magnitude of three momentum of initial state in the c.m. frame. The branching ratio of PXγpP_{X}\to\gamma p is calculated by the vector meson dominant model:

(PXγp)=3Γ(Ve+e)αMV(kinkout)2L+1(PXVp).\displaystyle\mathcal{B}(P_{X}\to\gamma p)=\frac{3\Gamma(V\to e^{+}e^{-})}{\alpha M_{V}}\Big{(}\frac{k_{in}}{k_{out}}\Big{)}^{2L+1}\mathcal{B}(P_{X}\to Vp). (7)

where α\alpha is the fine structure constants and Γ(Ve+e)\Gamma(V\to e^{+}e^{-}) is the dilepton decay width of vector mesons. The koutk_{out} is the magnitude of three momentum of final state in the c.m. frame. In this work, we use the lowest orbital excitation L=0L=0 for J/ψ+pJ/\psi+p system and J=1/2J=1/2. Other quantum numbers of PXP_{X} can be similarly calculated. We adopt (PcJ/ψp)=5%\mathcal{B}(P_{c}\to J/\psi p)=5\% and (PbΥ(1S)p)=5%\mathcal{B}(P_{b}\to\Upsilon(1S)p)=5\% for the calculations in this work, which are in the same level of the upper limits from GlueX group Ali:2019lzf . A comparison of our σγpJ/ψpPc(W)\sigma^{P_{c}}_{\gamma p{\to}J/\psi p}(W) to the GlueX data could be found in Ref. Cao:2019kst .

In order to study the rapidity distributions and transverse momentum distributions of vector mesons and proton in final states, we need angular distributions of the decay process PXVpP_{X}\to Vp. In the process of PXVpP_{X}\to Vp, the angle distribution of PXVpP_{X}\to Vp has following general expression

dσdcosθ1+βcos2θ.\displaystyle\frac{d\sigma}{d\cos\theta}\propto 1+\beta\cos^{2}\theta. (8)

Here θ\theta is polar angle of vector meson or proton in the rest frame of PcP_{c} and PbP_{b} states and β\beta is dependent on the quantum number JpJ^{p} of PXP_{X} pentaquark, if only lowest partial wave is considered. But usually several partial waves are presented in this work, so the actual value of β\beta would deviate from these values. The relation of β\beta and JpJ^{p} are listed in Table.1. These results are employed in the calculation of J/ψJ/\psi and Υ(1S)\Upsilon(1S) rapidity distributions

JpJ^{p} 12\frac{1}{2}^{-} 12+\frac{1}{2}^{+} 32\frac{3}{2}^{-} 32+\frac{3}{2}^{+}
β\beta -1 0 0 1
Table 1: β\beta from different quantum number of PcP_{c} and PbP_{b} states.

For the contribution of Pomeron exchange tt-channel, the cross section of γpVp\gamma p\to Vp is given as Klein:2016yzr ,

σγpVpt(W)=σp(1(mp+mV)2W2)Wϵ,\displaystyle\sigma^{t}_{\gamma p\to Vp}(W)=\sigma_{p}\cdot\Big{(}1-\frac{(m_{p}+m_{V})^{2}}{W^{2}}\Big{)}\cdot W^{\epsilon}, (9)

with σp\sigma_{p} = 4.06 nb and ϵ\epsilon = 0.65 for J/ψJ/\psi and σp\sigma_{p} = 6.4 pb and ϵ\epsilon = 0.74 for Υ(1S)\Upsilon(1S), which are determined by the experimental data of γpVp\gamma p\to Vp with Q2=0Q^{2}=0 and applied successfully to previous studies of J/ψJ/\psi and Υ(1S)\Upsilon(1S) electroproduction Klein:2016yzr .

In this work, we employ eSTARlight to simulate pentaquark states resonance production processes via photon-proton interaction at first. Then, the decay process of PcJ/ψ+pP_{c}\to J/\psi+p and PbΥ(1S)+pP_{b}\to\Upsilon(1S)+p are implemented in eSTARlight. Finally, the vector mesons to dilepton is simulated. The resonance channel production in eSTARlight is newly studied and it can be applied to considered other resonance channel in the next step.

III Numerical result

In this work, two pentaquark states Pc(4312)P_{c}(4312) and Pb(11120)P_{b}(11120) are selected to study the vector mesons production. The properties of Pc(4312)P_{c}(4312) and Pb(11120)P_{b}(11120) are listed in Table. 2, where the decay width of Pb(11120)P_{b}(11120) is taken from Ref.Cao:2019gqo . Throughout this paper we use the central values of the masses of two pentaquark states. We investigate their production in proposed EICs, including EicC and EIC-US, whose collider energies are listed. A detailed comparison of the proposed EICs are presented in Ref. CAO:2020EicC ; Klein:2019avl .

First of all, we present the estimated J/ψJ/\psi and Υ(1S)\Upsilon(1S) cross sections of in the ss-channels and tt-channel in Table. 2. The cross sections of the tt-channel is viewed as the background of the tt-channel pentaquark production. For all the calculation in this paper, 0<Q2<50<Q^{2}<5 GeV2\mathrm{GeV}^{2} and β=1\beta=-1 are employed. From Table. 2, it implies that the J/ψJ/\psi cross section in the tt-channel is much larger than the ss-channel in both EicC and EIC-US. However, the cross sections of Υ(1S)\Upsilon(1S) in the tt-channel are not so much larger than the ss-channel as J/ψJ/\psi production. This conclusion is very important for the studying the pentaquark states because the tt-channel can be viewed as a background for identifying pentaquark states in experiments.

States Properties Aaij:2019vzc ; Cao:2019gqo Collider EicC EIC-US
Energy ( e.vs. p) 3.5 GeV vs 20 GeV 18 GeV vs 275 GeV
Pc(4312)P_{c}(4312) Mass 4.311±0.70.6+6.84.311\pm 0.7^{+6.8}_{-0.6} GeV σt(epeJ/ψp)\sigma_{t}(ep\to eJ/\psi p) 0.69 nb 9.1 nb
Width 9.8±2.74.5+3.79.8\pm 2.7^{+3.7}_{-4.5} MeV σs(epeJ/ψp)\sigma_{s}(ep\to eJ/\psi p) 0.89 pb 1.3 pb
Pb(11120)P_{b}(11120) Mass 11.120 GeV σt(epeΥp)\sigma_{t}(ep\to e\Upsilon p) 0.13 pb 15 pb
Width 30 – 300 MeV σs(epeΥp)\sigma_{s}(ep\to e\Upsilon p) 9.3 – 82 fb 0.022 –0.19 pb
Table 2: Cross sections J/ψJ/\psi and Υ(1S)\Upsilon(1S) vector mesons in two channel for proposed EicC and EIC-US. The ss-channel is the pentaquark states resonance channels.

Secondly, We present the pseudo-rapidity distributions of J/ψJ/\psi in two channels for proposed EicC and EIC-US in Fig. 2. Since the cross section of the tt-channel of J/ψJ/\psi is much larger than the ss-channel, it can be seen that the ss-channel cross section is smaller than the tt-channel. Consequently, we can neglect the interference between the tt-channel and the ss-channel because the amplitude in the ss-channel is much small than the tt-channel.

Refer to caption
Refer to caption
Figure 2: (Color online) Pseudo-rapidity distributions of J/psiJ/psi in two channels for EicC (left graph) and EIC-US (right graph).

The rapidity distributions of J/ψJ/\psi in the two channels for proposed EicC and EIC-US are depicted in Fig. 3. It indicates that ss-channel is too weak to identify the pentaquark states in rapidity distributions. From Fig. 2 and Fig. 3, it can be seen that it is difficult to distinguish the contributions from pentaquark resonance channel as the background. It is difficult to identify the pentaquark states in J/ψJ/\psi +pp production.
Moreover, the distributions of Υ(1S)\Upsilon(1S) are shown in Fig. 4 to Fig. 7. Because the width of Pb(11120)P_{b}(11120) are not determined now, we use 30 – 300 MeV for the range of width for it Cao:2019gqo . In Fig. 4, the pseudo-rapidity distributions of Υ(1S)\Upsilon(1S) are shown in two channels with lower limit of width. The upper limit of Pb(11120)P_{b}(11120) are applied for the calculations and the results are depicted in Fig.5. From FIg. 4 and Fig. 5, it can be seen that the peak of Υ(1S)\Upsilon(1S) in pentaquark resonance exchange channel is remarkable comparing to the background of the pomeron exchange channel, especially in EicC. The reason is that the cross section of Υ(1S)\Upsilon(1S) in the tt-channel in EicC is much smaller than the cross section in EIC-US as listed in Table. 2.

Refer to caption
Refer to caption
Figure 3: (Color online) Rapidity distributions of J/ψJ/\psi produced in two channels for proposed EicC (left graph) and EIC-US (right graph).
Refer to caption
Refer to caption
Figure 4: (Color online) pseudo-rapidity distributions of Υ(1S)\Upsilon(1S) in two channels for proposed EicC (left graph) and EIC-US (right graph). The width of Pb(11120)P_{b}(11120) 30 MeV is taken in the calculations.
Refer to caption
Refer to caption
Figure 5: (Color online) pseudo-rapidity distributions of Υ(1S)\Upsilon(1S) in two channels for proposed EicC (left graph) and EIC-US (right graph). The width of Pb(11120)P_{b}(11120) 300 MeV is taken in the calculations.
Refer to caption
Refer to caption
Figure 6: (Color online) Rapidity distributions of Υ(1S)\Upsilon(1S) in two channels for proposed EicC (left graph) and EIC-US (right graph). The width of Pb(11120)P_{b}(11120) 30 MeV is taken in the calculations.
Refer to caption
Refer to caption
Figure 7: (Color online) Rapidity distributions of Υ(1S)\Upsilon(1S) in two channels for proposed EicC (left graph) and EIC-US (right graph). The width of Pb(11120)P_{b}(11120) 300 MeV is taken in the calculations.

Furthermore, the rapidity distributions of Υ(1S)\Upsilon(1S) in two channels in lower and upper limit of width of Pb(11120)P_{b}(11120) are presented in Fig. 6 and Fig. 7. The same conclusions can be concluded from the rapidity distributions comparing to the pseudo-rapidity distributions. These results indicate that the PbP_{b} pentaquark states of EicC are produced near mid-rapidity region, however, the PbP_{b} pentaquark state are produced at large rapidity region at EIC-US because the collider energies of EIC-US is much higher than EicC. Hence, it is easy to identify PbP_{b} states in EicC platform since the detector system can be observe the PbP_{b} easily at mid-rapidity region.
Finally, from above discussions, it can be concluded that Pc(4312)P_{c}(4312) is difficult to identify in electron-proton scattering process in proposed EicC and EIC-US because the strong background of the tt-channel. On the other hand, the signals of Pb(11120)P_{b}(11120) are remarkable in electron-proton scattering, especially in proposed EicC. EicC will be a good platform to search PbP_{b} pentaquark states in the future according prediction in this paper.

IV conclusion

In this paper, the hidden-charm and hidden-bottom pentaquark states have been investigated via photoproduction in electron-proton scattering. The pseudo-rapidity distributions and rapidity distributions of two vector mesons for EicC and EIC-US are compared here under various energy configuration. The Pc(4312)P_{c}(4312) pentaquark resonance state is difficult to identify via pseudo-rapidity distributions in EicC and EIC-US. It can conclude that the Pb(11120)P_{b}(11120) resonance state can be identify via pseudo-rapidity distributions in EicC and EIC-US. EicC is a good platform to study the PbP_{b} pentaquark resonance states.

Generally speaking, we find that the production cross sections increase slowly with the growing c.m. energies of EIC machine. At high-energy colliders like the proposed EIC-US, the final states are produced at far forward rapidity region. For lower energy colliders like EicC, the systems are produced closer to mid-rapidity region, it is easy to detect the final states by the central detectors. Our study is a good start point to further detailed simulation of PcP_{c} and PbP_{b} electroproduction process, which will be helpful for the design of experimental method and detector system for future EICs.

As the EICs are expected to be in operation in near future and unavailable at present, alternative way at hand would be the ultra-peripheral pA collisions at STAR and ALICE Goncalves:2019vvo ; Xie:2020wfe . The vector meson production in heavy ions ultra-peripheral collisions can be simulated by STARlight package Klein:2016yzr and the production of pentaquark can be included by a similar extension of kinematic condition in this paper.

Acknowledgment

The authors thank gratefully to the discussions with Dr. J. J. Xie, Dr. Z. Yang, Dr. X.Y.Wang and Dr. J. J. Wu. The work is supported by the National Natural Science Foundation of China (Grant Nos. 11975278, 11405222), and by the Key Research Program of the Chinese Academy of Sciences (Grant NO. XDPB09).

References

  • (1) H. X. Chen, W. Chen, X. Liu and S. L. Zhu, Phys. Rept.  639, 1 (2016) [arXiv:1601.02092 [hep-ph]].
  • (2) M. Diehl, B. Pire and L. Szymanowski, Phys. Lett. B 584 (2004) 58 [hep-ph/0312125].
  • (3) F. K. Guo, C. Hanhart, U. G. Meißner, Q. Wang, Q. Zhao and B. S. Zou, Rev. Mod. Phys.  90, no. 1, 015004 (2018) [arXiv:1705.00141 [hep-ph]].
  • (4) R. F. Lebed, R. E. Mitchell and E. S. Swanson, Prog. Part. Nucl. Phys.  93, 143 (2017) [arXiv:1610.04528 [hep-ph]].
  • (5) A. Esposito, A. Pilloni and A. D. Polosa, Phys. Rept.  668, 1 (2017) [arXiv:1611.07920 [hep-ph]].
  • (6) S. L. Olsen, T. Skwarnicki and D. Zieminska, Rev. Mod. Phys.  90, no. 1, 015003 (2018) [arXiv:1708.04012 [hep-ph]].
  • (7) Y. R. Liu, H. X. Chen, W. Chen, X. Liu and S. L. Zhu, Prog. Part. Nucl. Phys.  107, 237 (2019) [arXiv:1903.11976 [hep-ph]].
  • (8) Z. Wang, Int. J. Mod. Phys. A 35, no.01, 2050003 (2020) [arXiv:1905.02892 [hep-ph]].
  • (9) N. Brambilla, S. Eidelman, C. Hanhart, A. Nefediev, C. P. Shen, C. E. Thomas, A. Vairo and C. Z. Yuan, arXiv:1907.07583 [hep-ex].
  • (10) A. Ali, J. S. Lange and S. Stone, Prog. Part. Nucl. Phys.  97, 123 (2017) [arXiv:1706.00610 [hep-ph]].
  • (11) R. Aaij et al. [LHCb Collaboration], Phys. Rev. Lett.  115, 072001 (2015) [arXiv:1507.03414 [hep-ex]].
  • (12) R. Aaij et al. [LHCb Collaboration], Phys. Rev. Lett.  122, no. 22, 222001 (2019) [arXiv:1904.03947 [hep-ex]].
  • (13) V. M. Abazov et al. [D0 Collaboration], arXiv:1910.11767 [hep-ex].
  • (14) A. Ali et al. [GlueX Collaboration], Phys. Rev. Lett.  123, no. 7, 072001 (2019) [arXiv:1905.10811 [nucl-ex]].
  • (15) J. J. Wu, R. Molina, E. Oset and B. S. Zou, Phys. Rev. Lett.  105, 232001 (2010) [arXiv:1007.0573 [nucl-th]].
  • (16) X. Cao, F. K. Guo, Y. T. Liang, J. J. Wu, J. J. Xie, Y. P. Xie, Z. Yang and B. S. Zou, Phys. Rev. D 101, no. 7, 074010 (2020) [arXiv:1912.12054 [hep-ph]].
  • (17) J. J. Wu, R. Molina, E. Oset and B. S. Zou, Phys. Rev. C 84, 015202 (2011) [arXiv:1011.2399 [nucl-th]].
  • (18) J. B. Cheng and Y. R. Liu, Phys. Rev. D 100, no. 5, 054002 (2019) [arXiv:1905.08605 [hep-ph]].
  • (19) A. Ali and A. Y. Parkhomenko, Phys. Lett. B 793, 365 (2019) [arXiv:1904.00446 [hep-ph]].
  • (20) A. Ali, I. Ahmed, M. J. Aslam, A. Y. Parkhomenko and A. Rehman, JHEP 1910, 256 (2019) [arXiv:1907.06507 [hep-ph]].
  • (21) M. I. Eides, V. Y. Petrov and M. V. Polyakov, arXiv:1904.11616 [hep-ph].
  • (22) F. K. Guo, U. G. Meißner, W. Wang and Z. Yang, Phys. Rev. D 92, no. 7, 071502 (2015) [arXiv:1507.04950 [hep-ph]].
  • (23) X. H. Liu, Q. Wang and Q. Zhao, Phys. Lett. B 757, 231 (2016) [arXiv:1507.05359 [hep-ph]].
  • (24) X. H. Liu and M. Oka, Nucl. Phys. A 954, 352 (2016) [arXiv:1602.07069 [hep-ph]].
  • (25) F. K. Guo, U. G. Meißner, J. Nieves and Z. Yang, Eur. Phys. J. A 52, no. 10, 318 (2016) [arXiv:1605.05113 [hep-ph]].
  • (26) M. Bayar, F. Aceti, F. K. Guo and E. Oset, Phys. Rev. D 94, no. 7, 074039 (2016) [arXiv:1609.04133 [hep-ph]].
  • (27) X. H. Liu, G. Li, J. J. Xie and Q. Zhao, Phys. Rev. D 100, no. 5, 054006 (2019) [arXiv:1906.07942 [hep-ph]].
  • (28) F. K. Guo, X. H. Liu and S. Sakai, arXiv:1912.07030 [hep-ph].
  • (29) Q. Wang, X. H. Liu and Q. Zhao, Phys. Rev. D 92, 034022 (2015) [arXiv:1508.00339 [hep-ph]].
  • (30) M. Karliner and J. L. Rosner, Phys. Lett. B 752, 329 (2016) [arXiv:1508.01496 [hep-ph]].
  • (31) V. Kubarovsky and M. B. Voloshin, Phys. Rev. D 92, no. 3, 031502 (2015) [arXiv:1508.00888 [hep-ph]].
  • (32) Y. Huang, J. J. Xie, J. He, X. Chen and H. F. Zhang, Chin. Phys. C 40, no. 12, 124104 (2016) [arXiv:1604.05969 [nucl-th]].
  • (33) A. N. Hiller Blin, C. Fernandez-Ramirez, A. Jackura, V. Mathieu, V. I. Mokeev, A. Pilloni and A. P. Szczepaniak, Phys. Rev. D 94, no. 3, 034002 (2016) [arXiv:1606.08912 [hep-ph]].
  • (34) J. J. Wu, T.-S. H. Lee and B. S. Zou, Phys. Rev. C 100, no. 3, 035206 (2019) [arXiv:1906.05375 [nucl-th]].
  • (35) X. Y. Wang, X. R. Chen and J. He, Phys. Rev. D 99, no. 11, 114007 (2019) [arXiv:1904.11706 [hep-ph]].
  • (36) Q. F. Lu¨\mathrm{\ddot{u}}, X. Y. Wang, J. J. Xie, X. R. Chen and Y. B. Dong, Phys. Rev. D 93, no. 3, 034009 (2016) [arXiv:1510.06271 [hep-ph]].
  • (37) X. Y. Wang, J. He, X. R. Chen, Q. Wang and X. Zhu, Phys. Lett. B 797, 134862 (2019) [arXiv:1906.04044 [hep-ph]]. Kim:2016cxr
  • (38) S. H. Kim, H. C. Kim and A. Hosaka, Phys. Lett. B 763, 358 (2016) [arXiv:1605.02919 [hep-ph]].
  • (39) M. Z. Liu, Y. W. Pan, F. Z. Peng, M. Sanchez Sanchez, L. S. Geng, A. Hosaka and M. Pavon Valderrama, Phys. Rev. Lett.  122, no. 24, 242001 (2019) [arXiv:1903.11560 [hep-ph]].
  • (40) C. W. Xiao, J. Nieves and E. Oset, Phys. Rev. D 100, no. 1, 014021 (2019) [arXiv:1904.01296 [hep-ph]].
  • (41) M. L. Du, V. Baru, F. K. Guo, C. Hanhart, U. G. Mei?ner, J. A. Oller and Q. Wang, arXiv:1910.11846 [hep-ph].
  • (42) J. J. Wu and B. S. Zou, Phys. Lett. B 709, 70 (2012) [arXiv:1011.5743 [hep-ph]].
  • (43) C. W. Xiao and E. Oset, Eur. Phys. J. A 49, 139 (2013) [arXiv:1305.0786 [hep-ph]].
  • (44) M. Karliner and J. L. Rosner, Phys. Rev. Lett.  115, no. 12, 122001 (2015) doi:10.1103/PhysRevLett.115.122001 [arXiv:1506.06386 [hep-ph]].
  • (45) J. Wu, Y. R. Liu, K. Chen, X. Liu and S. L. Zhu, Phys. Rev. D 95, no. 3, 034002 (2017) [arXiv:1701.03873 [hep-ph]].
  • (46) H. Huang and J. Ping, Phys. Rev. D 99, no. 1, 014010 (2019) [arXiv:1811.04260 [hep-ph]].
  • (47) T. Gutsche and V. E. Lyubovitskij, Phys. Rev. D 100, no. 9, 094031 (2019) [arXiv:1910.03984 [hep-ph]].
  • (48) X. Y. Wang, J. He and X. Chen, Phys. Rev. D 101, no. 3, 034032 (2020) [arXiv:1912.07156 [hep-ph]].
  • (49) X. Cao, F. K. Guo, Y. T. Liang, J. J. Wu, J. J. Xie, Y. P. Xie, Z. Yang and B. S. Zou, Phys. Rev. D 101, no. 7, 074010 (2020) [arXiv:1912.12054 [hep-ph]].
  • (50) Xu Cao, Lei Chang, Ningbo Chang, et al., Electron Ion Collider in China (in Chinese), Nuclear Techniques, 2020, 43(2): 020001.
  • (51) X. Chen, PoS DIS 2018, 170 (2018) [arXiv:1809.00448 [nucl-ex]].
  • (52) V. Morozov, Presented at the EIC Users Group Meeting 2017, Trieste, Italy, (2017).
  • (53) J. L. Abelleira Fernandez et al. [LHeC Study Group], J. Phys. G 39, 075001 (2012) [arXiv:1206.2913 [physics.acc-ph]].
  • (54) M. Lomnitz and S. Klein, Phys. Rev. C 99, no. 1, 015203 (2019) [arXiv:1803.06420 [nucl-ex]].
  • (55) S. R. Klein and Y. P. Xie, Phys. Rev. C 100, no. 2, 024620 (2019) [arXiv:1903.02680 [nucl-th]].
  • (56) S. Klein and J. Nystrand, Phys. Rev. C 60, 014903 (1999) [hep-ph/9902259].
  • (57) V. M. Budnev, I. F. Ginzburg, G. V. Meledin and V. G. Serbo, Phys. Rept.  15, 181 (1975).
  • (58) X. Cao and J. p. Dai, Phys. Rev. D 100, no. 5, 054033 (2019) [arXiv:1904.06015 [hep-ph]].
  • (59) S. R. Klein, J. Nystrand, J. Seger, Y. Gorbunov and J. Butterworth, Comput. Phys. Commun.  212, 258 (2017) [arXiv:1607.03838 [hep-ph]].
  • (60) Z. Yang, X. Cao, Y. T. Liang and J. J. Wu, Chin. Phys. C 44, no. 8, 084102 (2020) [arXiv:2003.06774 [hep-ph]].
  • (61) V. P. Goncalves and M. M. Jaime, Phys. Lett. B 805, 135447 (2020) [arXiv:1911.10886 [hep-ph]].
  • (62) Y. P. Xie, X. Y. Wang and X. Chen, arXiv:2007.11414 [hep-ph].