This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Processes γγϕiϕj\gamma\gamma\rightarrow\phi_{i}\phi_{j} in Inert Higgs Doublet Models and Two Higgs Doublet Models

Khiem Hong Phan [email protected] Dzung Tri Tran Thanh Huy Nguyen Institute of Fundamental and Applied Sciences, Duy Tan University, Ho Chi Minh City 7000070000, Vietnam Faculty of Natural Sciences, Duy Tan University, Da Nang City 5000050000, Vietnam VNUHCM-University of Science, 227227 Nguyen Van Cu, District 55, Ho Chi Minh City 7000070000, Vietnam
Abstract

In this paper, we present the results for one-loop induced processes γγϕiϕj\gamma\gamma\rightarrow\phi_{i}\phi_{j} with CP-even Higgses ϕi,jh,H\phi_{i,j}\equiv h,\leavevmode\nobreak\ H at high energy photon-photon collision, within the frameworks of Inert Higgs Doublet Models and Two Higgs Doublet Models. Total cross-sections are shown as functions of center-of-mass energies. We find that the cross-sections for the computed processes in all the models under investigations are enhanced at around the threshold of singly charged Higgs pair (2MH±\sim 2M_{H^{\pm}}). Furthermore, the enhancement factors defined as the ratio of cross-sections of γγϕiϕj\gamma\gamma\rightarrow\phi_{i}\phi_{j} in the investigated models over the corresponding ones for γγhh\gamma\gamma\rightarrow hh in the Standard Model, are examined in the model’s parameter space. In the Inert Higgs Doublet Models, the factors are studied in the parameter space of (MH±,μ22)(M_{H^{\pm}},\leavevmode\nobreak\ \mu^{2}_{2}) and (MH±,λ2)(M_{H^{\pm}},\leavevmode\nobreak\ \lambda_{2}). In the Two Higgs Doublet Models, the factors are examined in the planes of (MH±,tβ)(M_{H^{\pm}},\leavevmode\nobreak\ t_{\beta}) as well as in the space of charged Higgs mass MH±M_{H^{\pm}} and the soft-breaking Z2Z_{2} parameter m122m_{12}^{2}. Two scenarios of cβα>0c_{\beta-\alpha}>0 and cβα<0c_{\beta-\alpha}<0 are studied in further detail. The factors give a different behavior from considering these scenarios. As a result, discriminations for the above-mentioned scenarios can be performed at future colliders.

keywords:
Higgs phenomenology, one-loop corrections, analytic methods for quantum field theory, dimensional regularization.

1 Introduction

Measuring for scalar Higgs self-couplings including Standard Model-like Higgs trilinear- and quadratic-couplings as well as the couplings between scalar Higgses in many physics beyond the Standard Models (BSM) plays a key role for determining the scalar potential. We can subsequently answer for the origin of the electroweak symmetry breaking (EWSB). In this scheme, Higgs boson pair productions and multi-scalar Higgs productions should be measured precisely at future colliders. Recently, search for Higgs boson pair productions in the two bottom quarks associated with two photons, four bottom quarks, etc in the final states in proton-proton collisions have been performed at the Large Hadron Colliders (LHC) as in [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]. It is well-known that the measurements for Higgs self-couplings are rather challenging at the LHC. The results from the study of [13, 14] show that the expected accuracy in the measurement of trilinear Higgs self-couplings would be about 20%30%20\%-30\% at the high luminosity of 30003000 fb-1. We know that physics the future lepton colliders (LC) will be complementary to the LHC in many aspects, as studied in [15]. Furthermore, the LC can significantly improve the LHC measurements in many cases and more important photon-photon collision is an option of the LC [16, 17] which the scalar Higgs pair productions (ϕiϕj\phi_{i}\phi_{j}) can be measured via the channels ff¯ff¯γγff¯ϕiϕjf\bar{f}\rightarrow f\bar{f}\gamma^{*}\gamma^{*}\rightarrow f\bar{f}\phi_{i}\phi_{j} for fe,μf\equiv e,\mu. In this aspect, the LC could open a window for probing new physics signals through multi-scalar Higgs productions.

From theoretical calculation side, one-loop corrections to double Higgs productions at the LHC have calculated in Standard Model (SM), the Higgs Extensions of the Standard Models (HESM), as well as other BSM frameworks by many groups. For examples, it is worth to mention typical works as in [18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78], for further reviews in [79] and the related-references therein. Additionally, one-loop induced for hhhh productions in the high-energy γγ\gamma\gamma collisions in the SM, the HESM and other BSMs have computed in Refs. [80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94]. Other computations for one-loop induced for Higgs boson pair productions in the linear lepton colliders including future multi-TeV muon colliders, have performed in Refs. [95, 96, 97, 98] and the additional references therein. Furthermore, double pseudo-scalar Higgs A0A0A^{0}A^{0} at a γγ\gamma\gamma collider in the Two Higgs Doublet Model have reported in Ref. [99].

In this paper, we present the results for one-loop induced processes γγϕiϕj\gamma\gamma\rightarrow\phi_{i}\phi_{j} with CP-even Higgses ϕi,jh,H\phi_{i,j}\equiv h,\leavevmode\nobreak\ H at high-energy γγ\gamma\gamma collision within the Higgs Extensions of the Standard Models (HESM) including the Inert Higgs Doublet Models the Two Higgs Doublet Models. A general analytic formulas for the process amplitudes derived in ’t Hooft-Feynman gauge (HF) are valid for a class of the above-mentioned HESM. Analytic results for the calculated processes are presented via the scalar Passarino-Veltman (PV) functions following the output of the packages LoopTools [100] and Collier [101]. The analytical expressions are tested by several numerical checks , e.g the ultraviolet finiteness, infrared finiteness of the one-loop amplitudes. Furthermore, the amplitudes also obey the ward identity which the indentity is also verified numerically in the works. Additionally, both the packages LoopTools and Collier are used for cross-checking for the final results before generating physical results. In phenomenological results, cross-sections are shown as functions of center-of-mass energies. Furthermore, the enhancement factors defined as the ratio of cross-sections of γγϕiϕj\gamma\gamma\rightarrow\phi_{i}\phi_{j} in the HESMs over the corresponding ones for γγhh\gamma\gamma\rightarrow hh in the Standard Model, are examined in parameter space of the models under consideration.

The paper is structured as follows. We review briefly the HESM in the next section. We then present calculations for γγϕiϕj\gamma\gamma\rightarrow\phi_{i}\phi_{j} with CP-even Higgses ϕi,jh,H\phi_{i,j}\equiv h,H in the HESM in the section 33. The phenomenological studies for the HESM are discussed in section 44. In section 55, conclusion and outlook for the paper are shown. In appendices A,BA,\leavevmode\nobreak\ B we derive the couplings appear in the calculations.

2 Higgs Extensions of the Standard Model

Two typical Higgs Extensions of the Standard Models are studied in this paper. The first model is to the Inert Higgs Doublet Models which are reviewed in next subsection 2.12.1. We then discuss the Two Higgs Doublet Models in subsection 2.22.2.

2.1 Inert Higgs Doublet Models

In the IHDM, an inert scalar SU(2)LSU(2)_{L} doublet is included into the potential of the SM. The inert scalar particles will respond for dark matter candidates. For reviewing the theory and phenomenological examinations for the IHDM in concrete, we cite to the following papers [104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116]. The scalar potential of the IHDM read the general expression as follows:

𝒱IHDM(ϕ1,ϕ2)\displaystyle\mathcal{V}_{\textrm{IHDM}}(\phi_{1},\phi_{2}) =\displaystyle= μ12|ϕ1|2+μ22|ϕ2|2+λ1|ϕ1|4+λ2|ϕ2|4+λ3|ϕ1|2|ϕ2|2+λ4|ϕ1ϕ2|2\displaystyle\mu_{1}^{2}|\phi_{1}|^{2}+\mu_{2}^{2}|\phi_{2}|^{2}+\lambda_{1}|\phi_{1}|^{4}+\lambda_{2}|\phi_{2}|^{4}+\lambda_{3}|\phi_{1}|^{2}|\phi_{2}|^{2}+\lambda_{4}|\phi_{1}^{\dagger}\phi_{2}|^{2} (1)
+λ52{(ϕ1ϕ2)2+h.c}.\displaystyle+\frac{\lambda_{5}}{2}\left\{(\phi_{1}^{\dagger}\phi_{2})^{2}+{\rm h.c}\right\}.

The potential is conserved with respect to the so-called the global Z2Z_{2}-symmetry, e.g. ϕ1+ϕ1\phi_{1}\leftrightarrow+\phi_{1}, ϕ2ϕ2\phi_{2}\leftrightarrow-\phi_{2}. In this case, the scalar ϕ2\phi_{2} is odd and ϕ1\phi_{1}, all particles in the SM are even under the Z2Z_{2}-transformation. As mentioned, the Z2Z_{2}-symmetry is unbroken after the EWSB, the field ϕ2\phi_{2} has the zero of vacuum expectation values (VEV). Otherwise, the field ϕ1\phi_{1} develops non-zero VEV (vv). Two scalar fields are then expanded around VEV for the EWSB as follows:

ϕ1\displaystyle\phi_{1} =\displaystyle= (G±12(v+h+iG0)),\displaystyle\left(\begin{array}[]{c}G^{\pm}\\ \frac{1}{\sqrt{2}}(v+h+iG^{0})\\ \end{array}\right), (4)
ϕ2\displaystyle\phi_{2} =\displaystyle= (H±12(H+iA0)).\displaystyle\left(\begin{array}[]{c}H^{\pm}\\ \frac{1}{\sqrt{2}}(H+iA^{0})\\ \end{array}\right). (7)

Where the VEV is fixed at v246v\sim 246 GeV (as the SM case). The Goldstone bosons G±,G0G^{\pm},\;G^{0} are giving the masses for W±W^{\pm} boson and ZZ boson, respectively. There is no mixing between hh and HH. The physical spectrum of the IHDM after the EWSB is consisted of three neutral scalar physical states, e.g two CP-even Higgses h,Hh,\leavevmode\nobreak\ H and a CP-odd Higgs A0A_{0}. In further, we have pair of singly charged Higgs bosons H±H^{\pm} in this model. In the spectrum, neutral scalar Higgs hh is identical to the SM-like Higgs boson discovered at the LHC. The masses of scalar bosons are calculated from the pare parameters as follows:

Mh2\displaystyle M_{h}^{2} =\displaystyle= 2μ12=2λ1v2,\displaystyle-2\mu_{1}^{2}=2\lambda_{1}v^{2}, (8)
MH2\displaystyle M_{H}^{2} =\displaystyle= μ22+v22λL,\displaystyle\mu_{2}^{2}+\frac{v^{2}}{2}\lambda_{L}, (9)
MA02\displaystyle M_{A^{0}}^{2} =\displaystyle= μ22+v22λR,\displaystyle\mu_{2}^{2}+\frac{v^{2}}{2}\lambda_{R}, (10)
MH±2\displaystyle M_{H^{\pm}}^{2} =\displaystyle= μ22+v22λ3.\displaystyle\mu_{2}^{2}+\frac{v^{2}}{2}\lambda_{3}. (11)

Where we have used λL/R=λ3+λ4±λ5\lambda_{L/R}=\lambda_{3}+\lambda_{4}\pm\lambda_{5}. As we mentioned in the above paragraphs, the global Z2Z_{2}-symmetry is unbroken after the EWSB, The "inert" Higgs bosons like H±H^{\pm}, A0A^{0} and HH have odd number under the Z2Z_{2}-transformation. Subsequently, the "inert" Higgs bosons don’t couple to the SM particles. Therefore, the lightest neutral scalar bosons may be considered as dark matter candidates.

As a consequent of the unbroken of the Z2Z_{2}-symmetry, the Yukawa Lagrangian of the IHDM must be the same as that of the SM. In detail, the Yukawa Lagrangian is expressed as follows:

YukawaIHDM=f=u,d,ghffhf¯f+,\displaystyle\mathcal{L}^{\textrm{IHDM}}_{\rm Yukawa}=-\sum_{f=u,d,\ell}g_{hff}\cdot h\bar{f}f+\cdots, (12)

where the Yukawa coupling is given ghff=mf/vg_{hff}=m_{f}/v for fermion ff. All the couplings involving to the computed processes γγϕiϕj\gamma\gamma\rightarrow\phi_{i}\phi_{j} in the IHDM are listed in Table 1 (for all physical couplings) and Table 2 (for unphysical particles). We emphasize that the processes γγhH\gamma\gamma\rightarrow hH are forbidden in the IHDM due to the Z2Z_{2}-symmetry. Therefore, we have only ϕiϕjhh,HH\phi_{i}\phi_{j}\equiv hh,\leavevmode\nobreak\ HH in this case. The detailed expressions for all the concerned-couplings are derived in the appendix AA.

Vertices Notations Coupling
hWμWνhW_{\mu}W_{\nu} ghWWgμνg_{hWW}\cdot g_{\mu\nu} i(2MW2v)gμνi\left(\dfrac{2M_{W}^{2}}{v}\right)\cdot g_{\mu\nu}
hZμZνhZ_{\mu}Z_{\nu} ghZZgμνg_{hZZ}\cdot g_{\mu\nu} i(MZ2v)gμνi\left(\dfrac{M_{Z}^{2}}{v}\right)\cdot g_{\mu\nu}
hH±HhH^{\pm}{H^{\mp}} ghH±Hg_{hH^{\pm}H^{\mp}} i2(μ22MH±2)vi\dfrac{2(\mu_{2}^{2}-M_{H^{\pm}}^{2})}{v}
ZμH±(p1)H(p2)Z_{\mu}H^{\pm}(p_{1})H^{\mp}(p_{2}) gZH±H(p1p2)μg_{ZH^{\pm}H^{\mp}}\cdot(p_{1}-p_{2})_{\mu} i(MZc2Wv)(p1p2)μi\left(\dfrac{M_{Z}c_{2W}}{v}\right)\cdot(p_{1}-p_{2})_{\mu}
AμH±(p1)H(p2)A_{\mu}H^{\pm}(p_{1})H^{\mp}(p_{2}) gAH±H(p1p2)μg_{AH^{\pm}H^{\mp}}\cdot(p_{1}-p_{2})_{\mu} i(MZs2Wv)(p1p2)μi\left(\dfrac{M_{Z}s_{2W}}{v}\right)\cdot(p_{1}-p_{2})_{\mu}
hhhhhh ghhhg_{hhh} i(3Mh2v)-i\left(\dfrac{3M_{h}^{2}}{v}\right)
hHHhHH ghHHg_{hHH} i2(μ22MH2)vi\dfrac{2(\mu_{2}^{2}-M_{H}^{2})}{v}
H(p2)H±(p1)WμH(p_{2})H^{\pm}(p_{1})W^{\mp}_{\mu} gHH±W(p1p2)μg_{HH^{\pm}W}\cdot(p_{1}-p_{2})_{\mu} ±i(MWv)(p1p2)μ\pm i\left(\dfrac{M_{W}}{v}\right)\cdot(p_{1}-p_{2})_{\mu}
H±HAμAνH^{\pm}H^{\mp}A_{\mu}A_{\nu} gAAH±Hgμνg_{AAH^{\pm}H^{\mp}}\cdot g_{\mu\nu} i(MZ2s2W2v2)gμνi\left(\dfrac{M_{Z}^{2}s_{2W}^{2}}{v^{2}}\right)\cdot g_{\mu\nu}
HH±WνAμHH^{\pm}W^{\mp}_{\nu}A_{\mu} gHH±WAgμνg_{HH^{\pm}WA}\cdot g_{\mu\nu} i(2MZ2cW2sWv2)gμνi\left(\dfrac{2M_{Z}^{2}c_{W}^{2}s_{W}}{v^{2}}\right)\cdot g_{\mu\nu}
hhH±HhhH^{\pm}H^{\mp} ghhH±Hg_{hhH^{\pm}H^{\mp}} i2(μ22MH±2)v2i\dfrac{2(\mu_{2}^{2}-M_{H^{\pm}}^{2})}{v^{2}}
HHH±HHHH^{\pm}H^{\mp} gHHH±Hg_{HHH^{\pm}H^{\mp}} 2iλ2-2i\lambda_{2}
hhWμ±WνhhW^{\pm}_{\mu}W^{\mp}_{\nu} ghhWWgμνg_{hhWW}\cdot g_{\mu\nu} i(2MZ2cW2v2)gμνi\left(\dfrac{2M_{Z}^{2}c_{W}^{2}}{v^{2}}\right)\cdot g_{\mu\nu}
HHWμ±WνHHW^{\pm}_{\mu}W^{\mp}_{\nu} gHHWWgμνg_{HHWW}\cdot g_{\mu\nu} i(2MZ2cW2v2)gμνi\left(\dfrac{2M_{Z}^{2}c_{W}^{2}}{v^{2}}\right)\cdot g_{\mu\nu}
Table 1: We list all couplings (physical couplings) contributing to γγϕiϕj\gamma\gamma\rightarrow\phi_{i}\phi_{j} for the IHDM.
Vertices Notations Coupling
AμWν±GA_{\mu}W^{\pm}_{\nu}G^{\mp} gAW±Ggμνg_{AW^{\pm}G^{\mp}}\cdot g_{\mu\nu} i(2MZ2cW2sWv)gμνi\left(\dfrac{2M_{Z}^{2}c_{W}^{2}s_{W}}{v}\right)\cdot g_{\mu\nu}
HH±GHH^{\pm}G^{\mp} gHH±Gg_{HH^{\pm}G^{\mp}} iMH±2MH2vi\dfrac{M_{H^{\pm}}^{2}-M_{H}^{2}}{v}
hhG±GhhG^{\pm}G^{\mp} ghhG±Gg_{hhG^{\pm}G^{\mp}} i(Mh2v2)-i\left(\dfrac{M_{h}^{2}}{v^{2}}\right)
HHG±GHHG^{\pm}G^{\mp} gHHG±Gg_{HHG^{\pm}G^{\mp}} i2(μ22MH±2)v2i\dfrac{2(\mu_{2}^{2}-M_{H^{\pm}}^{2})}{v^{2}}
AμAνG±GA_{\mu}A_{\nu}G^{\pm}G^{\mp} gAAG±Ggμνg_{AAG^{\pm}G^{\mp}}\cdot g_{\mu\nu} i(MZ2s2W2v2)gμνi\left(\dfrac{M_{Z}^{2}s_{2W}^{2}}{v^{2}}\right)\cdot g_{\mu\nu}
AμG±(p1)G(p2)A_{\mu}G^{\pm}(p_{1})G^{\mp}(p_{2}) gAG±G(p1p2)μg_{AG^{\pm}G^{\mp}}\cdot(p_{1}-p_{2})_{\mu} i(MZs2Wv)(p1p2)μi\left(\dfrac{M_{Z}s_{2W}}{v}\right)\cdot(p_{1}-p_{2})_{\mu}
Table 2: We list all vertices (unphysical couplings) in processes γγϕiϕj\gamma\gamma\rightarrow\phi_{i}\phi_{j} in the IHDM.

The parameter space of the IHDM for our analysis is included as follows:

𝒫IHDM={μ22,λ22,Mh2125.GeV,MH2,MA02,MH±2}.\displaystyle\mathcal{P}_{\rm IHDM}=\{\mu_{2}^{2},\lambda_{2}^{2},M_{h}^{2}\sim 125.\textrm{GeV},M_{H}^{2},M_{A^{0}}^{2},M^{2}_{H^{\pm}}\}. (13)

We are going to review the current constraints on the physical parameter space in the IHDM given in Eq. 13. The constraints for the physical parameter space can be obtained by including the theoretical conditions and the experimental data. In the perspective of the experimental data, we take into account the Electroweak Precision Tests (EWPT) of the IHDM, dark matter search at the LHC, as well as including the LEP data. The topics have studied in Refs. [104, 105, 106, 107]. Additionally, the implications for loop-induced decays of the SM-like Higgs (hh) to VγV\gamma with VZ,γV\equiv Z,\gamma in the IHDM framework, e.g. decay process hγγh\rightarrow\gamma\gamma have reported in [108, 115, 116], and decay chanels hZγh\rightarrow Z\gamma have examined in [115, 116]. Furthermore, searching signals of the IHDM at future colliders have performed in Refs. [109, 110, 111, 112, 113, 114]. In the theoretical side, the most important theoretical constraints are obtained from the conditions that the models follow the tree-level unitarity, the vacuum stability, the perturbative regime. The theoretical constraints give the limitations on the Higgs self-couplings λi\lambda_{i} for i=1,2,,5i=1,2,\cdots,5 and μ2\mu_{2}. Taking theoretical and experimental constraints in the above-mentioned papers, one can select the parameter space for the IHDM as follows: we can take 55 GeV MH150\leq M_{H}\leq 150 GeV, 7070 GeV MH±,MA01000\leq M_{H^{\pm}},M_{A^{0}}\leq 1000 GeV, |μ2|500|\mu_{2}|\leq 500 GeV, and 0λ28π0\leq\lambda_{2}\leq 8\pi.

2.2 Two Higgs Doublet Models

We next to consider the second kind of the Higgs extension of the SM which is to the Two Higgs Doublet Models (THDM) in this paper. For reviewing the theory and the phenomenological studies for the THDM, we refer the paper Ref. [117] for further information. The model is summarized briefly in this section. An complex Higgs doublet possessing hypercharge Y=1/2Y=1/2 is added into the scalar sector of the SM. The scalar potential is read the form of

𝒱THDM(ϕ1,ϕ2)\displaystyle\mathcal{V}_{\textrm{THDM}}(\phi_{1},\phi_{2}) =\displaystyle= m112ϕ1ϕ1+m222ϕ2ϕ2[m122ϕ1ϕ2+h.c.]+λ12(ϕ1ϕ1)2+λ22(ϕ2ϕ2)2\displaystyle m_{11}^{2}\phi_{1}^{\dagger}\phi_{1}+m_{22}^{2}\phi_{2}^{\dagger}\phi_{2}-\Big{[}m_{12}^{2}\phi_{1}^{\dagger}\phi_{2}+{\rm h.c.}\Big{]}+\frac{\lambda_{1}}{2}(\phi_{1}^{\dagger}\phi_{1})^{2}+\frac{\lambda_{2}}{2}(\phi_{2}^{\dagger}\phi_{2})^{2} (14)
+λ3(ϕ1ϕ1)(ϕ2ϕ2)+λ4(ϕ1ϕ2)(ϕ2ϕ1)+12[λ5(ϕ1ϕ2)2+h.c].\displaystyle+\lambda_{3}(\phi_{1}^{\dagger}\phi_{1})(\phi_{2}^{\dagger}\phi_{2})+\lambda_{4}(\phi_{1}^{\dagger}\phi_{2})(\phi_{2}^{\dagger}\phi_{1})+\frac{1}{2}[\lambda_{5}\leavevmode\nobreak\ (\phi_{1}^{\dagger}\phi_{2})^{2}+\leavevmode\nobreak\ {\rm h.c}].

In the present work, the CP-conserving case of the THDM is examined. Subsequently, the pare parameters in the above potential are set to be real parameters in this version. Additionally, the potential of the THDM follows the Z2Z_{2}-symmetry, e.g. ϕ1ϕ1\phi_{1}\leftrightarrow\phi_{1} and ϕ2ϕ2\phi_{2}\leftrightarrow-\phi_{2}, up to the soft breaking terms as m122ϕ1ϕ2+h.c.m_{12}^{2}\phi_{1}^{\dagger}\phi_{2}+{\rm h.c.} are added into the potential. Where the parameter m122m_{12}^{2} is the breaking scale for the Z2Z_{2}-symmetry.

Two scalar doublets are exanded around their VEVs for the EWSB as

ϕk\displaystyle\phi_{k} =\displaystyle= [ρk+(vk+ηk+iξk)/2]fork=1,2.\displaystyle\begin{bmatrix}\rho_{k}^{+}\\ (v_{k}+\eta_{k}+i\xi_{k})/\sqrt{2}\end{bmatrix}\quad\textrm{for}\quad k=1,2. (15)

The vacuum expectation value is then fixed at v=v12+v22246v=\sqrt{v_{1}^{2}+v_{2}^{2}}\sim 246 GeV in agreement with the SM case. After the EWSB, the physical particles in the THDM include of two CP-even Higgs bosons hh and HH in which one of them hh being SM-like Higgs boson found at LHC, a CP-odd Higgs (A0A^{0}) boson, and a pair of charged Higgses (H±H^{\pm}). To obtain the physical masses for the new scalar bosons, we perform the following rotations

(η1η2)\displaystyle\begin{pmatrix}\eta_{1}\\ \eta_{2}\end{pmatrix} =\displaystyle= (cαsαsαcα)(Hh),\displaystyle\begin{pmatrix}c_{\alpha}&-s_{\alpha}\\ s_{\alpha}&c_{\alpha}\end{pmatrix}\begin{pmatrix}H\\ h\end{pmatrix}, (16)
(ρ1±ρ2±)\displaystyle\begin{pmatrix}\rho_{1}^{\pm}\\ \rho_{2}^{\pm}\end{pmatrix} =\displaystyle= (cβsβsβcβ)(G±H±),\displaystyle\begin{pmatrix}c_{\beta}&-s_{\beta}\\ s_{\beta}&c_{\beta}\end{pmatrix}\begin{pmatrix}G^{\pm}\\ H^{\pm}\end{pmatrix}, (17)
(ξ1ξ2)\displaystyle\begin{pmatrix}\xi_{1}\\ \xi_{2}\end{pmatrix} =\displaystyle= (cβsβsβcβ)(G0A0).\displaystyle\begin{pmatrix}c_{\beta}&-s_{\beta}\\ s_{\beta}&c_{\beta}\end{pmatrix}\begin{pmatrix}G^{0}\\ A^{0}\end{pmatrix}. (18)

The mixing angle β\beta is given by tβtanβ=v2/v1t_{\beta}\equiv\tan\beta=v_{2}/v_{1}. The physical masses of Higgs bosons are then presented via the pare parameters as follows:

MH±2\displaystyle M_{H^{\pm}}^{2} =\displaystyle= M212λ45v2,\displaystyle M^{2}-\frac{1}{2}\lambda_{45}v^{2}, (19)
MA02\displaystyle M_{A^{0}}^{2} =\displaystyle= M2λ5v2,\displaystyle M^{2}-\lambda_{5}v^{2}, (20)
Mh2\displaystyle M_{h}^{2} =\displaystyle= M112sβα2+M222cβα2+M122s2(βα),\displaystyle M_{11}^{2}s_{\beta-\alpha}^{2}+M_{22}^{2}c_{\beta-\alpha}^{2}+M_{12}^{2}s_{2(\beta-\alpha)}, (21)
MH2\displaystyle M_{H}^{2} =\displaystyle= M112cβα2+M222sβα2M122s2(βα)\displaystyle M_{11}^{2}c_{\beta-\alpha}^{2}+M_{22}^{2}s_{\beta-\alpha}^{2}-M_{12}^{2}s_{2(\beta-\alpha)} (22)

where the parameter M2M^{2} is used as M2=m122/(sβcβ)M^{2}=m_{12}^{2}/(s_{\beta}c_{\beta}). The elements MijM_{ij} for i,j=1,2i,j=1,2 are given by

M112\displaystyle M_{11}^{2} =\displaystyle= (λ1cβ4+λ2sβ4)v2+v22λ345s2β2,\displaystyle(\lambda_{1}c_{\beta}^{4}+\lambda_{2}s_{\beta}^{4})v^{2}+\frac{v^{2}}{2}\;\lambda_{345}\;s_{2\beta}^{2}, (23)
M222\displaystyle M_{22}^{2} =\displaystyle= M2+v24[λ122λ345]s2β2,\displaystyle M^{2}+\frac{v^{2}}{4}\Big{[}\lambda_{12}-2\lambda_{345}\Big{]}s_{2\beta}^{2}, (24)
M122\displaystyle M_{12}^{2} =\displaystyle= M212=v22[λ1cβ2λ2sβ2λ345c2β]s2β.\displaystyle M_{21}^{2}=-\frac{v^{2}}{2}\Big{[}\lambda_{1}c_{\beta}^{2}-\lambda_{2}s_{\beta}^{2}-\lambda_{345}\;c_{2\beta}\Big{]}s_{2\beta}. (25)

Here, the shorten notation have used as λij=λi+λj+\lambda_{ij\cdots}=\lambda_{i}+\lambda_{j}+\cdots.

We show the couplings concerning in the amplitude computations for the processes γγϕiϕj\gamma\gamma\rightarrow\phi_{i}\phi_{j} in Tables 34 (for physical couplings) and in Table 5 (for unphysical couplings). The couplings are derived in the appendix BB.

Vertices Notations Couplings
hWμWνhW_{\mu}W_{\nu} ghWWgμνg_{hWW}\cdot g_{\mu\nu} i(2MW2vsβα)gμνi\left(\dfrac{2M_{W}^{2}}{v}\;s_{\beta-\alpha}\right)\cdot g_{\mu\nu}
HWμWνHW_{\mu}W_{\nu} gHWWgμνg_{HWW}\cdot g_{\mu\nu} i(2MW2vcβα)gμνi\left(\dfrac{2M_{W}^{2}}{v}\;c_{\beta-\alpha}\right)\cdot g_{\mu\nu}
hZμZνhZ_{\mu}Z_{\nu} ghZZgμνg_{hZZ}\cdot g_{\mu\nu} i(2MZ2vsβα)gμνi\left(\dfrac{2M_{Z}^{2}}{v}\;s_{\beta-\alpha}\right)\cdot g_{\mu\nu}
HZμZνHZ_{\mu}Z_{\nu} gHZZgμνg_{HZZ}\cdot g_{\mu\nu} i(2MZ2vcβα)gμνi\left(\dfrac{2M_{Z}^{2}}{v}\;c_{\beta-\alpha}\right)\cdot g_{\mu\nu}
hH±HhH^{\pm}H^{\mp} ghH±Hg_{hH^{\pm}H^{\mp}} i[cα+β(4M23Mh22MH±2)2vs2βi\Bigg{[}\dfrac{c_{\alpha+\beta}(4M^{2}-3M_{h}^{2}-2M_{H^{\pm}}^{2})}{2vs_{2\beta}}
                  +(2MH±2Mh2)c(α3β)2vs2β]+\dfrac{(2M_{H^{\pm}}^{2}-M_{h}^{2})c_{(\alpha-3\beta)}}{2vs_{2\beta}}\Bigg{]}
ZμH±(p1)H(p2)Z_{\mu}H^{\pm}(p_{1})H^{\mp}(p_{2}) gZH±H(p1p2)μg_{ZH^{\pm}H^{\mp}}\cdot(p_{1}-p_{2})_{\mu} i(MZc2Wv)(p1p2)μi\left(\dfrac{M_{Z}\;c_{2W}}{v}\right)\cdot(p_{1}-p_{2})_{\mu}
AμH±(p1)H(p2)A_{\mu}H^{\pm}(p_{1})H^{\mp}(p_{2}) gAH±H(p1p2)μg_{AH^{\pm}H^{\mp}}\cdot(p_{1}-p_{2})_{\mu} i(MZs2Wv)(p1p2)μi\left(\dfrac{M_{Z}\;s_{2W}}{v}\right)\cdot(p_{1}-p_{2})_{\mu}
hhhhhh ghhhg_{hhh} i3e4MWsWs2β[M2cα3β+(M2Mh2)c3αβi\dfrac{3e}{4M_{W}s_{W}s_{2\beta}}\Bigg{[}M^{2}c_{\alpha-3\beta}+(M^{2}-M_{h}^{2})c_{3\alpha-\beta}
                                    +(2M23Mh2)cα+β]+(2M^{2}-3M_{h}^{2})c_{\alpha+\beta}\Bigg{]}
HHHHHH gHHHg_{HHH} i3e4MWsWs2β[M2sα3β+(MH2M2)s3αβi\dfrac{3e}{4M_{W}s_{W}s_{2\beta}}\Bigg{[}M^{2}s_{\alpha-3\beta}+(M_{H}^{2}-M^{2})s_{3\alpha-\beta}
                                    +(2M23MH2)sα+β]+(2M^{2}-3M_{H}^{2})s_{\alpha+\beta}\Bigg{]}
hHHhHH ghHHg_{hHH} i[s2α(3M2Mh22MH2)+M2s2β]vs2βsαβi\dfrac{\Big{[}s_{2\alpha}(3M^{2}-M_{h}^{2}-2M_{H}^{2})+M^{2}s_{2\beta}\Big{]}}{v\;s_{2\beta}}s_{\alpha-\beta}
HhhHhh gHhhg_{Hhh} i[s2α(3M2MH22mh2)M2s2β]2vs2βcαβi\dfrac{\Big{[}s_{2\alpha}(3M^{2}-M_{H}^{2}-2m_{h}^{2})-M^{2}s_{2\beta}\Big{]}}{2vs_{2\beta}}c_{\alpha-\beta}
Table 3: The physical couplings contributing to the considered processes γγϕiϕj\gamma\gamma\rightarrow\phi_{i}\phi_{j} in the THDM.
Vertices Notations Couplings
HH±HHH^{\pm}H^{\mp} gHH±Hg_{HH^{\pm}H^{\mp}} i[sα+β(4M23MH22MH±2)2vs2βi\Bigg{[}\dfrac{s_{\alpha+\beta}(4M^{2}-3M_{H}^{2}-2M_{H^{\pm}}^{2})}{2v\;s_{2\beta}}
                  +(2MH±2MH2)sα3β2vs2β]+\dfrac{(2M_{H^{\pm}}^{2}-M_{H}^{2})s_{\alpha-3\beta}}{2v\;s_{2\beta}}\Bigg{]}
H(p1)H±(p2)WμH(p_{1})H^{\pm}(p_{2})W^{\mp}_{\mu} gHH±W(p1p2)μg_{HH^{\pm}W}\cdot(p_{1}-p_{2})_{\mu} ±i(MWvsβα)(p1p2)μ\pm i\left(\dfrac{M_{W}}{v}s_{\beta-\alpha}\right)\cdot(p_{1}-p_{2})_{\mu}
h(p1)H±(p2)Wμh(p_{1})H^{\pm}(p_{2})W^{\mp}_{\mu} ghH±W(p1p2)μg_{hH^{\pm}W}\cdot(p_{1}-p_{2})_{\mu} i(MWvcαβ)(p1p2)μ\mp i\left(\dfrac{M_{W}}{v}c_{\alpha-\beta}\right)\cdot(p_{1}-p_{2})_{\mu}
H±HAμAνH^{\pm}H^{\mp}A_{\mu}A_{\nu} gH±HAAgμνg_{H^{\pm}H^{\mp}AA}\cdot g_{\mu\nu} i(4MW2sW2v2)gμνi\left(\dfrac{4M_{W}^{2}s_{W}^{2}}{v^{2}}\right)\cdot g_{\mu\nu}
HH±WμAνHH^{\pm}W^{\mp}_{\mu}A_{\nu} gHH±WAgμνg_{HH^{\pm}WA}\cdot g_{\mu\nu} i(2MW2sWv2sαβ)gμνi\left(\dfrac{2M_{W}^{2}s_{W}}{v^{2}}s_{\alpha-\beta}\right)\cdot g_{\mu\nu}
hH±WμAνhH^{\pm}W^{\mp}_{\mu}A_{\nu} ghH±WAgμνg_{hH^{\pm}WA}\cdot g_{\mu\nu} i(2MW2sWv2cαβ)gμνi\left(\dfrac{2M_{W}^{2}s_{W}}{v^{2}}c_{\alpha-\beta}\right)\cdot g_{\mu\nu}
hHH±HhHH^{\pm}H^{\mp} gHhH±Hg_{HhH^{\pm}H^{\mp}} iλHhH±Hi\lambda_{HhH^{\pm}H^{\mp}} [in Eq. (56)]
HHH±HHHH^{\pm}H^{\mp} gHHH±Hg_{HHH^{\pm}H^{\mp}} iλHHH±Hi\lambda_{HHH^{\pm}H^{\mp}} [in Eq. (60)]
hhH±HhhH^{\pm}H^{\mp} ghhH±Hg_{hhH^{\pm}H^{\mp}} iλhhH±Hi\lambda_{hhH^{\pm}H^{\mp}} [in Eq. (61)]
hhWμ±WνhhW^{\pm}_{\mu}W^{\mp}_{\nu} ghhWWgμνg_{hhWW}\cdot g_{\mu\nu} i(4MW2v2)gμνi\left(\dfrac{4M_{W}^{2}}{v^{2}}\right)\cdot g_{\mu\nu}
HHWμ±WνHHW^{\pm}_{\mu}W^{\mp}_{\nu} gHHWWgμνg_{HHWW}\cdot g_{\mu\nu} i(4MW2v2)gμνi\left(\dfrac{4M_{W}^{2}}{v^{2}}\right)\cdot g_{\mu\nu}
Table 4: Additional, the physical couplings contributing to the considered processes γγϕiϕj\gamma\gamma\rightarrow\phi_{i}\phi_{j} in the THDM.
Vertices Notations Couplings
AμWν±GA_{\mu}W^{\pm}_{\nu}G^{\mp} gAW±Ggμνg_{AW^{\pm}G^{\mp}}\cdot g_{\mu\nu} i(2MW2sWv)gμνi\left(\dfrac{2M_{W}^{2}s_{W}}{v}\right)\cdot g_{\mu\nu}
HH±GHH^{\pm}G^{\mp} gHH±Gg_{HH^{\pm}G^{\mp}} i(e2MWsWsαβ)(MH±2MH2)i\left(\dfrac{e}{2M_{W}s_{W}}s_{\alpha-\beta}\right)(M_{H^{\pm}}^{2}-M_{H}^{2})
AμAνG±GA_{\mu}A_{\nu}G^{\pm}G^{\mp} gAAG±Ggμνg_{AAG^{\pm}G^{\mp}}\cdot g_{\mu\nu} i(4MW2sW2v2)gμνi\left(\dfrac{4M_{W}^{2}s_{W}^{2}}{v^{2}}\right)\cdot g_{\mu\nu}
AμG±(p1)G(p2)A_{\mu}G^{\pm}(p_{1})G^{\mp}(p_{2}) gAG±G(p1p2)μg_{AG^{\pm}G^{\mp}}\cdot(p_{1}-p_{2})_{\mu} i(2MWsWv)(p1p2)μi\left(\dfrac{2M_{W}s_{W}}{v}\right)\cdot(p_{1}-p_{2})_{\mu}
hHG±GhHG^{\pm}G^{\mp} ghHG±Gg_{hHG^{\pm}G^{\mp}} iλhHG±Gi\lambda_{hHG^{\pm}G^{\mp}} [in Eq. (57)]
hhG±GhhG^{\pm}G^{\mp} ghhG±Gg_{hhG^{\pm}G^{\mp}} iλhhG±Gi\lambda_{hhG^{\pm}G^{\mp}} [in Eq. (62) ]
HHG±GHHG^{\pm}G^{\mp} gHHG±Gg_{HHG^{\pm}G^{\mp}} iλHHG±Gi\lambda_{HHG^{\pm}G^{\mp}} [in Eq. (63)]
Table 5: Unphysical couplings involving to the processes under investigations are shown.

Finally, we pay attention to the Yukawa sector in the THDM. In order to avoid Tree-level Flavor-Changing Neutral Currents (FCNCs), the discrete Z2Z_{2}-symmetry may be proposed in the THDM as in [118]. The Z2Z_{2}-parity assignments for all fermions and the definition for four types of the THDM based on the couple of the scalar with fermions are shown in [128]. The Yukawa Lagrangian is then written in the mass eigenstates as in [117]

Yukawa=f=u,d,(ghfff¯fh+gHfff¯fHigA0fff¯γ5fA0)+,\displaystyle{\mathcal{L}}_{\rm Yukawa}=-\sum_{f=u,d,\ell}\left(g_{hff}\cdot\bar{f}fh+g_{Hff}\cdot\bar{f}fH-ig_{A^{0}ff}\cdot\bar{f}\gamma_{5}fA^{0}\right)+\cdots, (26)

We show the Yukawa couplings of CP-even with fermions for four types of the THDM in Table 6, see [117, 129] for further detail.

Type ghuug_{huu} ghddg_{hdd} ghg_{h\ell\ell} gHuug_{Huu} gHddg_{Hdd} gHg_{H\ell\ell}
I mu2vcαsβ\dfrac{m_{u}}{\sqrt{2}v}\dfrac{c_{\alpha}}{s_{\beta}} md2vcαsβ\dfrac{m_{d}}{\sqrt{2}v}\dfrac{c_{\alpha}}{s_{\beta}} m2vcαsβ\dfrac{m_{\ell}}{\sqrt{2}v}\dfrac{c_{\alpha}}{s_{\beta}} mu2vsαsβ\dfrac{m_{u}}{\sqrt{2}v}\dfrac{s_{\alpha}}{s_{\beta}} md2vsαsβ\dfrac{m_{d}}{\sqrt{2}v}\dfrac{s_{\alpha}}{s_{\beta}} m2vsαsβ\dfrac{m_{\ell}}{\sqrt{2}v}\dfrac{s_{\alpha}}{s_{\beta}}
II mu2vcαsβ\dfrac{m_{u}}{\sqrt{2}v}\dfrac{c_{\alpha}}{s_{\beta}} md2vsαcβ-\dfrac{m_{d}}{\sqrt{2}v}\dfrac{s_{\alpha}}{c_{\beta}} m2vsαcβ-\dfrac{m_{\ell}}{\sqrt{2}v}\dfrac{s_{\alpha}}{c_{\beta}} mu2vsαsβ\dfrac{m_{u}}{\sqrt{2}v}\dfrac{s_{\alpha}}{s_{\beta}} md2vcαcβ-\dfrac{m_{d}}{\sqrt{2}v}\dfrac{c_{\alpha}}{c_{\beta}} m2vcαcβ-\dfrac{m_{\ell}}{\sqrt{2}v}\dfrac{c_{\alpha}}{c_{\beta}}
X mu2vcαsβ\dfrac{m_{u}}{\sqrt{2}v}\dfrac{c_{\alpha}}{s_{\beta}} md2vcαsβ\dfrac{m_{d}}{\sqrt{2}v}\dfrac{c_{\alpha}}{s_{\beta}} m2vsαcβ-\dfrac{m_{\ell}}{\sqrt{2}v}\dfrac{s_{\alpha}}{c_{\beta}} mu2vsαsβ\dfrac{m_{u}}{\sqrt{2}v}\dfrac{s_{\alpha}}{s_{\beta}} md2vsαsβ\dfrac{m_{d}}{\sqrt{2}v}\dfrac{s_{\alpha}}{s_{\beta}} m2vcαcβ-\dfrac{m_{\ell}}{\sqrt{2}v}\dfrac{c_{\alpha}}{c_{\beta}}
Y mu2vcαsβ\dfrac{m_{u}}{\sqrt{2}v}\dfrac{c_{\alpha}}{s_{\beta}} md2vsαcβ-\dfrac{m_{d}}{\sqrt{2}v}\dfrac{s_{\alpha}}{c_{\beta}} m2vcαsβ\dfrac{m_{\ell}}{\sqrt{2}v}\dfrac{c_{\alpha}}{s_{\beta}} mu2vsαsβ\dfrac{m_{u}}{\sqrt{2}v}\dfrac{s_{\alpha}}{s_{\beta}} md2vcαcβ-\dfrac{m_{d}}{\sqrt{2}v}\dfrac{c_{\alpha}}{c_{\beta}} m2vsαsβ\dfrac{m_{\ell}}{\sqrt{2}v}\dfrac{s_{\alpha}}{s_{\beta}}
Table 6: We show all the Yukawa couplings of CP-even Higges to fermions for all types of THDMs.

The parameter space 𝒫THDM\mathcal{P}_{\rm THDM} for THDM is include as follows

𝒫THDM={Mh2125.GeV,MH2,MA02,MH±2,m122,tβ,sβα}.\displaystyle\mathcal{P}_{\rm THDM}=\{M_{h}^{2}\sim 125.\textrm{GeV},M_{H}^{2},M_{A^{0}}^{2},M^{2}_{H^{\pm}},m_{12}^{2},t_{\beta},s_{\beta-\alpha}\}. (27)

As same as the IHDM, we first summarize the current constraints the parameter space of the THDM given in Eq. 27. Both the theoretical conditions and experimental data are taken into consideration, we then obtain the current regions for the parameter space of the THDM. Theoretical conditions are from that the models follow the perturbative regime, the tree-level unitarity and the vacuum stability conditions of the scalar Higgs potential. The topics have advised in the following papers [119, 120, 121, 122, 124] and references therein. We also take into consideration the EWPT for the THDM in aspect of experimental data. The implications for these topics at LEP have reported in Refs. [125, 126]. The masses range for scalar particles in the THDM have performed at the LEP, the Tevaron as well as at the LHC as reviewed in the paper [123]. Moreover, one-loop induced for the SM-like Higgs decay channels like hγγh\rightarrow\gamma\gamma and hZγh\rightarrow Z\gamma in the THDM have implicated in Refs. [115, 116] and references therein. Combining all the above constraints, the physical paragraphs ca be selected as: 126126 GeV MH1000\leq M_{H}\leq 1000 GeV, 6060 GeV MA01000\leq M_{A^{0}}\leq 1000 GeV and 8080 GeV MH±1000\leq M_{H^{\pm}}\leq 1000 GeV in the type I and type X of the THDM. For the Type-II and Y of the THDM, the physical parameters can be scanned as: 500500 GeV MH1000\leq M_{H}\leq 1000 GeV, 500500 GeV MA01000\leq M_{A^{0}}\leq 1000 GeV and 580580 GeV MH±1500\leq M_{H^{\pm}}\leq 1500 GeV. The Z2Z_{2}-breaking parameter can be selected as m122=MH2sβcβm_{12}^{2}=M_{H}^{2}s_{\beta}c_{\beta}. Lasly, the further constraints on the plane of tβt_{\beta}MH±M_{H^{\pm}} have also examined with combining the flavor experimental data as shown in Ref. [127]. The results in Ref. [127] indicates that the small values of tβt_{\beta} are favoured for matching the flavor experimental data. For our complementary discussions, the small values of tβt_{\beta} are also scrutinized in this work.

3 One-loop corrections to γγϕiϕj\gamma\gamma\rightarrow\phi_{i}\phi_{j} with CP-even Higgses ϕi,jh,H\phi_{i,j}\equiv h,H in HESM

The calculations are performed with the help of FeynArts/FormCalc/LoopTools/Collider packages [102, 100, 101]. We first implement the above-mentioned HESMs into FeynArts [102] model. All one-loop diagrams for the computed processes are then generated automatically by using the program. In the frameworks of the HESM under investigations, all one-loop induced Feynman diagrams for γγϕiϕj\gamma\gamma\rightarrow\phi_{i}\phi_{j} are listed in the following paragraphs. The computations are performed in the ’t Hooft-Feynman gauge (HF), all Feynman diagrams can be categorized into several groups listed in next paragraphs. We first mention one-loop induced Feynman diagrams with ϕk\phi_{k}^{*}-poles for ϕk=h,H\phi_{k}^{*}=h^{*},H^{*}. These topologies are connected loop-induced processes ϕkγγ\phi_{k}^{*}\rightarrow\gamma\gamma with the vertices of ϕkϕiϕj\phi_{k}^{*}\phi_{i}\phi_{j}, as plotted in Fig. 1. In Fig. 1, all fermions exchanging in the loop are included in the group G1G_{1}. Feynman diagrams with vector WW-boson propagating in the loop are concerned. Within the HF gauges, all charged Goldstone G±G^{\pm} and Ghost particles exchanging in the loop are also taken into consideration this case. These diagrams are putted into the group G2G_{2}. We also have singly charged Higgs appear in the models under concern which they are also exchanged in the loop of diagrams, as noted as the group G3G_{3}.

Refer to caption
Refer to caption
Refer to caption
Figure 1: One-loop induced Feynman diagrams with ϕk\phi_{k}^{*}-poles for ϕk=h,H\phi_{k}^{*}=h^{*},H^{*}.

One-loop box diagrams contributing to the computed processes are next discussed. Depend on the kind of particles propagating in the loop, we list the box diagrams into several groups as follows. In the group G4G_{4}, as plotted in Fig. 2, all fermions in the loop are concerned.

Refer to caption
Figure 2: Box diagrams with fermions in the loop involving to the calculated processes in the HESM.

Additionally, conindering vector WW-boson, charged Goldstone bosons and Ghost particles propagating in the loop of one-loop box diagrams, as plotted in Figs. 34, are also contributed to the processes under consideration. We classify these diagrams into the group G5G_{5}.

Refer to caption
Refer to caption
Figure 3: Vector WW-boson, charged Goldstone bosons and Ghost particles propagating in the loop of one-loop box diagrams.
Refer to caption
Refer to caption
Figure 4: Vector WW-boson, charged Goldstone bosons and Ghost particles propagating in the loop of one-loop box diagrams.

Within the frameworks of the HESMs under investigations in the paper, we also have one-loop box diagrams with mixing of vector WW-boson and charged Higgs in the internal lines, seen Figs. 5,  6. We classify these diagrams into group G6G_{6}.

Refer to caption
Figure 5: One-loop box diagrams with both vector WW-boson, charged Goldstone bosons, Ghost particles and charged Higgs propagating in the loop.
Refer to caption
Refer to caption
Figure 6: Mixing of vector WW-boson and charged Higgs in the internal lines of one-loop box diagrams.

Finally, we consider all one-loop box diagrams with singly charged Higgs in the loop, as shown in Fig. 7. These diagrams are then putted into group G7G_{7}.

Refer to caption
Refer to caption
Figure 7: One-loop box diagrams with charged Higgs in the loop propagating in the loop.

In general, one-loop amplitude for scattering processes γμ(q1)γν(q2)ϕi(q3)ϕj(q4)\gamma_{\mu}(q_{1})\,\gamma_{\nu}(q_{2})\rightarrow\phi_{i}(q_{3})\,\phi_{j}(q_{4}) is expressed in terms of Lorentz structure as follows:

𝒜γγϕiϕj\displaystyle\mathcal{A}_{\gamma\gamma\rightarrow\phi_{i}\phi_{j}} =\displaystyle= [F00gμν+F12q1νq2μ+F13q1νq3μ+F23q2μq3ν+F33q3μq3ν]εμ(q1)εν(q2).\displaystyle\Big{[}F_{00}\,g^{\mu\nu}+F_{12}\,q_{1}^{\nu}q_{2}^{\mu}+F_{13}\,q_{1}^{\nu}q_{3}^{\mu}+F_{23}\,q_{2}^{\mu}q_{3}^{\nu}+F_{33}\,q_{3}^{\mu}q_{3}^{\nu}\Big{]}\varepsilon_{\mu}(q_{1})\varepsilon_{\nu}(q_{2}). (28)

In this formulas, the vector εμ(q)\varepsilon_{\mu}(q) is polarization vector of external photon with the 44-dimension momentum qq. The invariant masses are given: q12=q22=0,q32=Mϕi2,q42=Mϕj2q_{1}^{2}=q_{2}^{2}=0,\quad q_{3}^{2}=M_{\phi_{i}}^{2},\quad q_{4}^{2}=M_{\phi_{j}}^{2}. The factors FijF_{ij} for i,j=1,2,3i,j=1,2,3 are called as one-loop form factors hereafter. They are presented as functions of the following kinematic invariant variables:

s\displaystyle s =\displaystyle= (q1+q2)2=q12+2q1q2+q22=2q1q2,\displaystyle(q_{1}+q_{2})^{2}=q_{1}^{2}+2q_{1}\cdot q_{2}+q_{2}^{2}=2q_{1}\cdot q_{2}, (29)
t\displaystyle t =\displaystyle= (q1q3)2=q122q1q3+q32=Mϕi22q1q3,\displaystyle(q_{1}-q_{3})^{2}=q_{1}^{2}-2q_{1}\cdot q_{3}+q_{3}^{2}=M_{\phi_{i}}^{2}-2q_{1}\cdot q_{3}, (30)
u\displaystyle u =\displaystyle= (q2q3)2=q222q2q3+q32=Mϕi22q2q3.\displaystyle(q_{2}-q_{3})^{2}=q_{2}^{2}-2q_{2}\cdot q_{3}+q_{3}^{2}=M_{\phi_{i}}^{2}-2q_{2}\cdot q_{3}. (31)

The kinematic variables obey the below relation as: s+t+u=Mϕi2+Mϕj2s+t+u=M_{\phi_{i}}^{2}+M_{\phi_{j}}^{2}. Due to the on-shell photons in initial states, the amplitude follows the ward identity. Subsequently, the above-mentioned factors are related to each others as

F00\displaystyle F_{00} =\displaystyle= tMϕi22F13s2F12,\displaystyle\dfrac{t-M_{\phi_{i}}^{2}}{2}\,F_{13}-\dfrac{s}{2}\,F_{12}, (32)
F00\displaystyle F_{00} =\displaystyle= uMϕi22F23s2F12,\displaystyle\dfrac{u-M_{\phi_{i}}^{2}}{2}\,F_{23}-\dfrac{s}{2}\,F_{12}, (33)
F13\displaystyle F_{13} =\displaystyle= uMϕi2sF33,\displaystyle\dfrac{u-M_{\phi_{i}}^{2}}{s}\,F_{33}, (34)
F23\displaystyle F_{23} =\displaystyle= tMϕi2sF33.\displaystyle\dfrac{t-M_{\phi_{i}}^{2}}{s}\,F_{33}. (35)

With the help of the mentioned relations, one-loop amplitude is written by two independent one-loop form factors, e.g F12F_{12} and F33F_{33} as chosen in this work. The one-loop amplitude can be finally presented in form of:

𝒜γγϕiϕj\displaystyle\mathcal{A}_{\gamma\gamma\rightarrow\phi_{i}\phi_{j}} =\displaystyle= {[(Mϕi2t)(Mϕi2u)2sgμν+q3μq3ν+(tMϕi2)sq2μq3ν\displaystyle\Bigg{\{}\Bigg{[}\dfrac{(M_{\phi_{i}}^{2}-t)(M_{\phi_{i}}^{2}-u)}{2s}\cdot g^{\mu\nu}+q_{3}^{\mu}q_{3}^{\nu}+\dfrac{(t-M_{\phi_{i}}^{2})}{s}\cdot q_{2}^{\mu}q_{3}^{\nu}
+(uMϕi2)sq3μq1ν]F33+[q2μq1νs2gμν]F12}εμ(q1)εν(q2).\displaystyle\hskip 14.22636pt+\dfrac{(u-M_{\phi_{i}}^{2})}{s}\cdot q_{3}^{\mu}q_{1}^{\nu}\Bigg{]}\cdot F_{33}+\Big{[}q_{2}^{\mu}q_{1}^{\nu}-\dfrac{s}{2}\cdot g^{\mu\nu}\Big{]}\cdot F_{12}\Bigg{\}}\,\varepsilon_{\mu}(q_{1})\varepsilon_{\nu}(q_{2}).

From the FeynArts program, we can generate the amplitude automatically which is expressed in term of one-loop tensor integrals. The mentioned tensor integrals appear in the production amplitude can be reduced into the scalar PV-functions by using the FormCalc package [103]. Finally, we collect all factors F12F_{12} and F33F_{33} presenting via the scalar PV-functions following the output of the packages LoopTools [100] and Collier [101].

The form factors FabF_{ab} for ab=12,33ab={12,33} are divided into several parts which are corresponding to the contributions from one-loop triangle and one-loop box diagrams given in the above-paragraphs. In detail, the form factors are decomposed as follows:

F12\displaystyle F_{12} =\displaystyle= ϕk=h,Hgϕkϕiϕj[sMϕk2+iΓϕkMϕk]×\displaystyle\sum\limits_{\phi_{k}^{*}=h^{*},H^{*}}\dfrac{g_{\phi_{k}^{*}\phi_{i}\phi_{j}}}{\Big{[}s-M_{\phi_{k}}^{2}+i\Gamma_{\phi_{k}}M_{\phi_{k}}\Big{]}}\times
×{fgϕkffF12,fTrig+gϕkWWF12,WTrig+gϕkSSF12,STrig}\displaystyle\times\Bigg{\{}\sum\limits_{f}g_{\phi_{k}^{*}ff}\cdot F_{12,f}^{\text{Trig}}+g_{\phi_{k}^{*}WW}\cdot F_{12,W}^{\text{Trig}}+g_{\phi_{k}^{*}SS}\cdot F_{12,S}^{\text{Trig}}\Bigg{\}}
+fgϕiffgϕjffF12,fBox\displaystyle+\sum\limits_{f}g_{\phi_{i}ff}\cdot g_{\phi_{j}ff}\cdot F_{12,f}^{\text{Box}}
+{gϕiWWgϕjWWF12,WBox, 1+gϕiϕjWWF12,WBox, 2+gϕiϕjGGF12,WBox, 3}\displaystyle+\Big{\{}g_{\phi_{i}WW}\cdot g_{\phi_{j}WW}\cdot F_{12,W}^{\text{Box, 1}}+g_{\phi_{i}\phi_{j}WW}\cdot F_{12,W}^{\text{Box, 2}}+g_{\phi_{i}\phi_{j}GG}\cdot F_{12,W}^{\text{Box, 3}}\Big{\}}
+{gϕiSSgϕjSSF12,SBox,1+gϕiϕjSSF12,SBox,2}\displaystyle+\Big{\{}g_{\phi_{i}SS}\cdot g_{\phi_{j}SS}\cdot F_{12,S}^{\text{Box},1}+g_{\phi_{i}\phi_{j}SS}\cdot F_{12,S}^{\text{Box},2}\Big{\}}
+gϕiSWgϕjSWF12,WSBox,\displaystyle+g_{\phi_{i}SW}\cdot g_{\phi_{j}SW}\cdot F_{12,WS}^{\text{Box}},
F33\displaystyle F_{33} =\displaystyle= fgϕiffgϕjffF33,fBox+gϕiWWgϕjWWF33,WBox\displaystyle\sum\limits_{f}g_{\phi_{i}ff}\cdot g_{\phi_{j}ff}\cdot F_{33,f}^{\text{Box}}+g_{\phi_{i}WW}\cdot g_{\phi_{j}WW}\cdot F_{33,W}^{\text{Box}}
+gϕiSSgϕjSSF33,SBox+gϕiSWgϕjSWF33,WSBox,\displaystyle+g_{\phi_{i}SS}\cdot g_{\phi_{j}SS}\cdot F_{33,S}^{\text{Box}}+g_{\phi_{i}SW}\cdot g_{\phi_{j}SW}\cdot F_{33,WS}^{\text{Box}},

where SH±S\equiv H^{\pm} in this case. In further detail, the first part of form factors F12F_{12} are calculated from one-loop diagrams of ϕkγγ\phi_{k}^{*}\rightarrow\gamma\gamma in connecting with the vertices ϕkϕiϕj\phi_{k}^{*}\phi_{i}\phi_{j}. These factors are presented in terms of each factor in the bracket, e.g. F12,fTrigF_{12,f}^{\text{Trig}} (contributed from the group G1G_{1} in Fig. 1), F12,WTrigF_{12,W}^{\text{Trig}} (evaluated from G2G_{2} in Fig. 1), F12,STrigF_{12,S}^{\text{Trig}} (attributed from G3G_{3} in Fig. 1). While the factors F12,fBoxF_{12,f}^{\text{Box}} are calculated from the fermion box diagrams in Fig. 2. Another form factors computed from one-loop WW box diagrams as in Fig. 3, are divided into the following parts, e.g. F12,WBox, kF_{12,W}^{\text{Box, k}} for k=1,2,3k=1,2,3 which are corresponding to the factors factorized out by general trilinear-couplings of ϕiWW,ϕjWW\phi_{i}WW,\leavevmode\nobreak\ \phi_{j}WW, quadratic-couplings of ϕiϕjWW\phi_{i}\phi_{j}WW and ϕiϕjGG\phi_{i}\phi_{j}GG as in Eq. 3. We have also expressed the factors attributing from one-loop charged Higgs box diagrams into two sub-factors F12,SBox,kF_{12,S}^{\text{Box},k} for k=1,2k=1,2 which are factorized out by general trilinear-couplings of ϕiSS,ϕjSS\phi_{i}SS,\leavevmode\nobreak\ \phi_{j}SS, quadratic-couplings of ϕiϕjWW\phi_{i}\phi_{j}WW and ϕiϕjSS\phi_{i}\phi_{j}SS as in Eq. 3. Lastly, from diagrams with mixing WW boson and charged Higgs in internal lines, we have the factors F12,WSBoxF_{12,WS}^{\text{Box}} which can be factorized out in term of the trilinear-couplings ϕiSW,ϕjSW\phi_{i}SW,\leavevmode\nobreak\ \phi_{j}SW. Otherwise, the form factors F33F_{33} are only contributed from one-loop box diagrams. They can be factorized out in term of general couplings as in Eq. 3.

The factors F12F_{12} and F33F_{33} for the processes γγhh\gamma\gamma\rightarrow hh in the HESM can be reduced to the results in the SM. For this case, we set all general couplings related to the HESM as ϕkSS,ϕkWS,ϕiϕjSS\phi_{k}SS,\leavevmode\nobreak\ \phi_{k}WS,\leavevmode\nobreak\ \phi_{i}\phi_{j}SS being zero and all other couplings is set back to the SM cases. Due to the Z2Z_{2}-symmetry, the processes γγhH\gamma\gamma\rightarrow hH in the IHDM are forbidden in this case. Reduction for factors γγhh,HH\gamma\gamma\rightarrow hh,\leavevmode\nobreak\ HH in the IHDM can be performed by setting appropriately the general couplings to the IHDM case. We can apply the same strategies for getting all one-loop form factors in the THDM. Having all the necessary factors for the computed processes, the tests for the calculations are performed, e.g. the ultraviolet finiteness, infrared finiteness of the one-loop amplitudes. Furthermore, the amplitudes also obey the so-called ward identity. This identity can be verified as follows. We collect all form factors F00,F12,F_{00},\leavevmode\nobreak\ F_{12},\cdots independently and we then confirm the indentities from Eq. 32 to  35 numerically. Additionally, both the packages LoopTools and Collier are used for cross-checking for the final results. We skip showing the numerical results for the tests in this paper. For these topics, we refer our previous paper [129] for examples.

The cross-sections are then calculated as follows

σ^γγϕiϕj\displaystyle\hat{\sigma}_{\gamma\gamma\rightarrow\phi_{i}\phi_{j}} =\displaystyle= 1n116πs2tmintmax𝑑t14unpol.|𝒜γγϕiϕj|2\displaystyle\dfrac{1}{n}\dfrac{1}{16\pi s^{2}}\int\limits_{t_{\text{min}}}^{t_{\text{max}}}dt\;\frac{1}{4}\sum\limits_{\text{unpol.}}\big{|}\mathcal{A}_{\gamma\gamma\rightarrow\phi_{i}\phi_{j}}\big{|}^{2} (39)

with n=2n=2 if the final particles are identical such as γγhh,HH\gamma\gamma\rightarrow hh,\leavevmode\nobreak\ HH, and 1 otherwise like γγhH\gamma\gamma\rightarrow hH. The integration limits are

tmin(max)\displaystyle t_{\text{min}(\text{max})} =\displaystyle= s2{1Mϕi2+Mϕj2s±[12(Mϕi2+Mϕj2s)+(Mϕi2Mϕj2s)2]1/2}.\displaystyle-\dfrac{s}{2}\Bigg{\{}1-\dfrac{M_{\phi_{i}}^{2}+M_{\phi_{j}}^{2}}{s}\pm\Bigg{[}1-2\Bigg{(}\dfrac{M_{\phi_{i}}^{2}+M_{\phi_{j}}^{2}}{s}\Bigg{)}+\Bigg{(}\dfrac{M_{\phi_{i}}^{2}-M_{\phi_{j}}^{2}}{s}\Bigg{)}^{2}\Bigg{]}^{1/2}\Bigg{\}}. (40)

The unpolarized amplitude is given

14unpol.|𝒜γγϕiϕj|2\displaystyle\frac{1}{4}\sum\limits_{\text{unpol.}}\big{|}\mathcal{A}_{\gamma\gamma\rightarrow\phi_{i}\phi_{j}}\big{|}^{2} =\displaystyle= Mϕi4s2+(Mϕi2Mϕj2tu)28s2|F33|2\displaystyle\dfrac{M_{\phi_{i}}^{4}s^{2}+(M_{\phi_{i}}^{2}M_{\phi_{j}}^{2}-tu)^{2}}{8s^{2}}\,\big{|}F_{33}\big{|}^{2}
Mϕi2s4e[F33(F12)]\displaystyle-\dfrac{M_{\phi_{i}}^{2}s}{4}\,\mathcal{R}e\Big{[}F_{33}\cdot\big{(}F_{12}\big{)}^{*}\Big{]}
+s28|F12|2.\displaystyle+\dfrac{s^{2}}{8}\,\big{|}F_{12}\big{|}^{2}.

In phenomenological analyses, we are interested in examining the enhancement factors μϕiϕjNP\mu_{\phi_{i}\phi_{j}}^{\textrm{NP}} with NP standing for the THDM and the IHDM, accordingly, defined as the ratio of cross-sections of γγϕiϕj\gamma\gamma\rightarrow\phi_{i}\phi_{j} in the HESM over the corresponding ones for γγhh\gamma\gamma\rightarrow hh in the SM. The factors are given explicitly by

μϕiϕjNP=σ^γγϕiϕjNPσ^γγhhSM(𝒫NP).\displaystyle\mu_{\phi_{i}\phi_{j}}^{\textrm{NP}}=\frac{\hat{\sigma}^{\textrm{NP}}_{\gamma\gamma\rightarrow\phi_{i}\phi_{j}}}{\hat{\sigma}^{\textrm{SM}}_{\gamma\gamma\rightarrow hh}}(\mathcal{P}_{\textrm{NP}}). (42)

In this work, the enhancement factors are examined in the parameter space of the THDM and the IHDM.

4 Phenomenological results

For phenomenological results, all physical input parameters in the SM are given the same as in [128, 129]. Scanning parameters for each HESM will be shown in the next subsections.

4.1 IHDM

Phenomenological studies for the processes γγϕiϕj\gamma\gamma\rightarrow\phi_{i}\phi_{j} in the IHDM are presented in this subsection. In the IHDM, the process γγhH\gamma\gamma\rightarrow hH is forbidden by the Z2Z_{2}-symmetry. For this reason, we only concern physical results for the processes γγhh,HH\gamma\gamma\rightarrow hh,\leavevmode\nobreak\ HH in the IHDM.

4.1.1 Production cross-sections

In Fig. 8, we show cross-sections for γγhh,HH\gamma\gamma\rightarrow hh,\leavevmode\nobreak\ HH in the IHDM, together with the ones for hhhh production in the SM, as functions of center-of-mass energy (CoM, or s^γγ\sqrt{\hat{s}_{\gamma\gamma}}). For the generated data, we select the following parameter space in the IHDM as MH±=200M_{H^{\pm}}=200 GeV, MH=150M_{H}=150 GeV and fix λ2=0.8\lambda_{2}=0.8 for all cases. We vary 350350 GeV s^γγ1500\leq\sqrt{\hat{s}_{\gamma\gamma}}\leq 1500 GeV in the plots. Cross-sections are presented for μ22=0\mu_{2}^{2}=0 GeV2 on the left panel and for 2002200^{2} GeV2 on the right panel, respectively. In the plots, the black line shows for cross-sections for γγhh\gamma\gamma\rightarrow hh in the SM and the blue (green) line presents for γγhh(HH)\gamma\gamma\rightarrow hh\leavevmode\nobreak\ (HH) in THDM, respectively.

We first comment on the results in the case of μ22=0\mu_{2}^{2}=0 GeV2. The cross-sections for hh,HHhh,\leavevmode\nobreak\ HH in the IHDM have peaks at s^γγ2MH±=400\sqrt{\hat{s}_{\gamma\gamma}}\sim 2M_{H^{\pm}}=400 GeV. In the regions s^γγ750\sqrt{\hat{s}_{\gamma\gamma}}\leq 750 GeV, σ^hh,HH\hat{\sigma}_{hh,HH} in the IHDM are larger than σ^hh\hat{\sigma}_{hh} in the SM. Beyond the regions of s^γγ750\sqrt{\hat{s}_{\gamma\gamma}}\geq 750 GeV, the cross-sections for HHHH in the IHDM are suppressed in comparison with hhhh productions in both the SM and the IHDM. It is interested in finding that the production cross-sections for γγhh,HH\gamma\gamma\rightarrow hh,\leavevmode\nobreak\ HH in the IHDM are dominant around the peaks compared with σ^hh\hat{\sigma}_{hh} in the SM. It indicates that the contributions from singly charged Higgs in the loop of γγhh,HH\gamma\gamma\rightarrow hh,\leavevmode\nobreak\ HH are massive attributions in the regions.

In the case of μ22=2002\mu_{2}^{2}=200^{2} GeV2, we only observe a peak of σ^HH\hat{\sigma}_{HH} in the IHDM around s^γγ2MH±=400\sqrt{\hat{s}_{\gamma\gamma}}\sim 2M_{H^{\pm}}=400 GeV. In further, the data shows that the cross-sections for HHHH production are dominant in the regions s^γγ750\sqrt{\hat{s}_{\gamma\gamma}}\leq 750 GeV in contrast with the corresponding ones for hhhh productions in both the SM and the IHDM. Beyond the regions s^γγ750\sqrt{\hat{s}_{\gamma\gamma}}\geq 750 GeV, σ^HH\hat{\sigma}_{HH} are suppressed. It is observed that the cross-sections for hhhh production in the IHDM are smaller than σ^hh\hat{\sigma}_{hh} in the SM when s^γγ550\sqrt{\hat{s}_{\gamma\gamma}}\leq 550 GeV. In the regions of s^γγ550\sqrt{\hat{s}_{\gamma\gamma}}\geq 550 GeV, σ^hh\hat{\sigma}_{hh} in the IHDM tend to the cross-sections for hhhh production in the SM. This can be explained as follows. Since the hhhh productions in the IHDM are different from the ones in the SM by the contributions of charged Higgs in the loop of triangle hh^{*}-pole and box diagrams. These contributions depend on MH±M_{H^{\pm}} and the vertices hH±HhH^{\pm}H^{\mp}, hhH±HhhH^{\pm}H^{\mp} expressing in terms of μ22\mu_{2}^{2}. At the large value of μ22\mu_{2}^{2} these contributions may be cancelled out. As a result, cross-sections for hhhh productions in the IHDM tend to the corresponding ones in the SM. Another case of HHHH production, we have no couplings of HH±HHH^{\pm}H^{\mp} due to the Z2Z_{2}-symmetry and the vertex HHH±HHHH^{\pm}H^{\mp} depend on λ2\lambda_{2}. Therefore, we have no such cancellations as mentioned. It is reasonable that the cross-sections for HHHH production in the IHDM are dominant in the regions s^γγ550\sqrt{\hat{s}_{\gamma\gamma}}\leq 550 GeV and they also have peak at s^γγ2MH±=400\sqrt{\hat{s}_{\gamma\gamma}}\sim 2M_{H^{\pm}}=400 GeV.

σ^ϕiϕj(μ22=0)\hat{\sigma}_{\phi_{i}\phi_{j}}(\mu_{2}^{2}=0) [pb] σ^ϕiϕj(μ22=2002)\hat{\sigma}_{\phi_{i}\phi_{j}}(\mu_{2}^{2}=200^{2}) [pb]
Refer to caption Refer to caption
                                                     s^γγ\sqrt{\hat{s}_{\gamma\gamma}} [GeV]                                                      s^γγ\sqrt{\hat{s}_{\gamma\gamma}} [GeV]
Figure 8: Total cross-sections for γγhh,HH\gamma\gamma\rightarrow hh,\leavevmode\nobreak\ HH in the SM and IHDM are presented as functions of s^γγ\sqrt{\hat{s}_{\gamma\gamma}}. For the generated data, we select MH±=200M_{H^{\pm}}=200 GeV, MH=150M_{H}=150 GeV in this case. We vary 350350 GeV s^γγ1500\leq\sqrt{\hat{s}_{\gamma\gamma}}\leq 1500 GeV. In the below plots, we fix μ22=0,2002\mu_{2}^{2}=0,200^{2} GeV2 and λ2=0.8\lambda_{2}=0.8 for all cases. In the plots, the black line shows for σ^hh\hat{\sigma}_{hh} in the SM. Additionally, the blue (green) line presents for γγhh(HH)\gamma\gamma\rightarrow hh\leavevmode\nobreak\ (HH) in THDM.

4.1.2 Enhancement factors

The enhancement factors given in Eq. 42 are examined in the IHDM. In Fig. 9, the factors for γγhh,HH\gamma\gamma\rightarrow hh,\leavevmode\nobreak\ HH are scanned in the parameter space of MH±,μ22M_{H^{\pm}},\leavevmode\nobreak\ \mu_{2}^{2}. In the following scatter plots, singly charged Higgs masses are varied from 7070 GeV MH±600\leq M_{H^{\pm}}\leq 600 GeV and 200-200 GeV μ2200\leq\mu_{2}\leq 200 GeV. Furthermore, we fix λ2=0.8\lambda_{2}=0.8 and MH=150M_{H}=150 GeV for all cases. The data is generated at s^γγ=500\sqrt{\hat{s}_{\gamma\gamma}}=500 (all left panel scatter-plots) GeV and at s^γγ=1000\sqrt{\hat{s}_{\gamma\gamma}}=1000 GeV (all right panel scatter-plots).

The factors for hhhh productions in the IHDM are first analyzed. Since the cross-sections for hhhh productions are enhanced around the peaks at s^γγ2MH±\sqrt{\hat{s}_{\gamma\gamma}}\sim 2M_{H^{\pm}}. Therefore, it is not surprised in finding that μhhIHDM\mu_{hh}^{\textrm{IHDM}} becomes largest at s^γγ2MH±=250\sqrt{\hat{s}_{\gamma\gamma}}\sim 2M_{H^{\pm}}=250 GeV (for the left plots) and at s^γγ2MH±=500\sqrt{\hat{s}_{\gamma\gamma}}\sim 2M_{H^{\pm}}=500 GeV (for the right plots). Around these peaks, the data indicates that the enhancement factors tend to about 1.5\sim 1.5 in the limit of μ22MH±2\mu_{2}^{2}\rightarrow M_{H^{\pm}}^{2}. Since the contributions of charged Higgs in the loop being small when μ22MH±2\mu_{2}^{2}\rightarrow M_{H^{\pm}}^{2} (due to the fact that the couplings of hH±HhH^{\pm}H^{\mp}, hhH±HhhH^{\pm}H^{\mp} tend to zero in this limit). It is found that the enhancement factors can reach to factor of 66 (for 500500 GeV of CoM) and factor of 1313 (for 10001000 GeV of CoM) around the peaks. Beyond the peaks, we observe that 1μhhIHDM21\leq\mu_{hh}^{\textrm{IHDM}}\leq 2.

For the enhancement factors of HHHH productions in the IHDM, we also find μHHIHDM\mu_{HH}^{\textrm{IHDM}} becomes largest contributions at s^γγ2MH±=250\sqrt{\hat{s}_{\gamma\gamma}}\sim 2M_{H^{\pm}}=250 GeV (for the left plots) and at s^γγ2MH±=500\sqrt{\hat{s}_{\gamma\gamma}}\sim 2M_{H^{\pm}}=500 GeV (for the right plots). It is attentive to realize that μHHIHDM\mu_{HH}^{\textrm{IHDM}} have different behavior in comparison with μhhIHDM\mu_{hh}^{\textrm{IHDM}}. At the 500500 GeV of CoM, the factors develop to the peak and then are decreased rapidly beyond the peak. However, they grow up with the charged Higgs masses in the above regions of MH±300M_{H^{\pm}}\geq\sim 300 GeV. Because there aren’t couplings HH±HHH^{\pm}H^{\mp} due to the Z2Z_{2}-symmetry and the vertex HHH±HHHH^{\pm}H^{\mp} only depends on λ2\lambda_{2}. Therefore, in the high regions of charged Higgs masses, the factors μHHIHDM\mu_{HH}^{\textrm{IHDM}} are increased with MH±M_{H^{\pm}}.

μhhIHDM\mu_{hh}^{\textrm{IHDM}} μhhIHDM\mu_{hh}^{\textrm{IHDM}}
Refer to caption Refer to caption
                                            MH±M_{H^{\pm}} [GeV]                                             MH±M_{H^{\pm}} [GeV]
μHHIHDM\mu_{HH}^{\textrm{IHDM}} μHHIHDM\mu_{HH}^{\textrm{IHDM}}
Refer to caption Refer to caption
                                            MH±M_{H^{\pm}} [GeV]                                             MH±M_{H^{\pm}} [GeV]
Figure 9: The enhancement factors are presented in the parameter space of MH±,μ22M_{H^{\pm}},\leavevmode\nobreak\ \mu_{2}^{2}. Charged Higgs masses are varied as 7070 GeV MH±1000\leq M_{H^{\pm}}\leq 1000 GeV and 200-200 GeV μ2200\leq\mu_{2}\leq 200 GeV. We fix λ2=0.8\lambda_{2}=0.8 and MH=150M_{H}=150 GeV for all cases. In the plots, we set s^γγ=500\sqrt{\hat{s}_{\gamma\gamma}}=500 GeV (for the left panel-plots) and s^γγ=1000\sqrt{\hat{s}_{\gamma\gamma}}=1000 GeV (for the right panel-plots).

In Fig. 10, the enhancement factors for γγhh,HH\gamma\gamma\rightarrow hh,\leavevmode\nobreak\ HH are generated in the space of MH±,λ2M_{H^{\pm}},\leavevmode\nobreak\ \lambda_{2}. The charged Higgs masses are varied as 7070 GeV MH±600\leq M_{H^{\pm}}\leq 600 GeV and 0λ240\leq\lambda_{2}\leq 4. We fix μ22=2002\mu_{2}^{2}=200^{2} GeV2 and MH=150M_{H}=150 GeV for all cases. In the scatter plots, we set s^γγ=500\sqrt{\hat{s}_{\gamma\gamma}}=500 (for all left panel plots) GeV and s^γγ=1000\sqrt{\hat{s}_{\gamma\gamma}}=1000 GeV (for all right panel plots). For the factors μhhIHDM\mu_{hh}^{\textrm{IHDM}} (as shown in all the above scatter plots), both the couplings hH±HhH^{\pm}H^{\mp} and hhH±HhhH^{\pm}H^{\mp} are independent of λ2\lambda_{2}. As a result, the factors only depend on MH±M_{H^{\pm}}. For the factors μHHIHDM\mu_{HH}^{\textrm{IHDM}} (as shown in all the below scatter plots), it is found that the quadratic-coupling HHH±HHHH^{\pm}H^{\mp} depend on λ2\lambda_{2}. As a result, the factors depend strongly on λ2\lambda_{2} and MH±M_{H^{\pm}}. These massive contributions are mainly from the charged Higgs exchanging in the box diagrams.

μhhIHDM\mu_{hh}^{\textrm{IHDM}} μhhIHDM\mu_{hh}^{\textrm{IHDM}}
Refer to caption Refer to caption
                                            MH±M_{H^{\pm}} [GeV]                                             MH±M_{H^{\pm}} [GeV]
μHHIHDM\mu_{HH}^{\textrm{IHDM}} μHHIHDM\mu_{HH}^{\textrm{IHDM}}
Refer to caption Refer to caption
                                            MH±M_{H^{\pm}} [GeV]                                             MH±M_{H^{\pm}} [GeV]
Figure 10: The enhancement factors are scanned over the parameter space of MH±,λ2M_{H^{\pm}},\lambda_{2}. Charged Higgs masses are in 7070 GeV MH±1000\leq M_{H^{\pm}}\leq 1000 GeV and 0λ240\leq\lambda_{2}\leq 4. We fix μ22=2002\mu_{2}^{2}=200^{2} GeV2 and MH=150M_{H}=150 GeV for all cases. In the plots, we set s^γγ=500\sqrt{\hat{s}_{\gamma\gamma}}=500 GeV (for the above-Figures) and s^γγ=1000\sqrt{\hat{s}_{\gamma\gamma}}=1000 GeV (for the below-Figures), correspondingly.

4.2 THDM

The phenomenological results for the production processes γγϕiϕj\gamma\gamma\rightarrow\phi_{i}\phi_{j} with CP-even Higgses ϕi,jh,H\phi_{i,j}\equiv h,H in the THDM are analysed in the following subsection.

4.2.1 Production cross-sections

Cross-sections for γγϕiϕj\gamma\gamma\rightarrow\phi_{i}\phi_{j} in the THDM are first investigated at several CoM energies. In Fig. 11, σ^γγϕiϕj\hat{\sigma}_{\gamma\gamma\rightarrow\phi_{i}\phi_{j}} in the THDM together with σ^γγhh\hat{\sigma}_{\gamma\gamma\rightarrow hh} in the SM, are presented as functions of s^γγ\sqrt{\hat{s}_{\gamma\gamma}}. The following data is generated at MH±=300M_{H^{\pm}}=300 GeV, MH=150M_{H}=150 GeV and tβ=5t_{\beta}=5. The CoM energies are varied as 350350 GeV s^γγ1500\leq\sqrt{\hat{s}_{\gamma\gamma}}\leq 1500 GeV in the selected-configurations. The Z2Z_{2}-breaking parameter m122=M2/sβcβm_{12}^{2}=M^{2}/s_{\beta}c_{\beta} is selected as follows: M2=0, 2002, 5002, 7002M^{2}=0,\leavevmode\nobreak\ 200^{2},\leavevmode\nobreak\ 500^{2},\leavevmode\nobreak\ 700^{2} GeV2. In further, the mixing angle α\alpha is taken as cβα=+0.2c_{\beta-\alpha}=+0.2 and sβα=+1cβα2s_{\beta-\alpha}=+\sqrt{1-c_{\beta-\alpha}^{2}}, accordingly. The notations for all lines appear in the presented plots are as follows: the black line shows for cross-sections of γγhh\gamma\gamma\rightarrow hh in the SM. While the blue line presents for γγhh\gamma\gamma\rightarrow hh in THDM. Additionally, the green (red) line presents for γγhH\gamma\gamma\rightarrow hH (γγHH\gamma\gamma\rightarrow HH) in THDM, respectively. Generally, we observe that σ^ϕiϕj\hat{\sigma}_{\phi_{i}\phi_{j}} are enhanced at s^γγ2MH±=600\sqrt{\hat{s}_{\gamma\gamma}}\sim 2M_{H^{\pm}}=600 GeV for all cases. Among the productions, the data shows that cross-sections for γγhH\gamma\gamma\rightarrow hH are suppressed compared with other productions, as the consequences of the softly breaking the Z2Z_{2}-symmetry. However, σ^hH\hat{\sigma}_{hH} become more and more significant once M2M^{2} being the large values.

We first inspect the data in the case of M2=0M^{2}=0. One notices that σ^HH\hat{\sigma}_{HH} become largest in the regions s^γγ450\sqrt{\hat{s}_{\gamma\gamma}}\leq\sim 450 GeV and they are decreased rapidly in the regions s^γγ450\sqrt{\hat{s}_{\gamma\gamma}}\geq 450 GeV. Moreover, σ^hh\hat{\sigma}_{hh} in the SM and the THDM are dominant in the regions of s^γγ450\sqrt{\hat{s}_{\gamma\gamma}}\geq 450 GeV contrasted to the ones for γγhH,HH\gamma\gamma\rightarrow hH,\leavevmode\nobreak\ HH in the THDM. Among the mentioned cross-sections, the hhhh production in the THDM is largest in this case.

When M2=2002M^{2}=200^{2} GeV2, the cross-sections for HHHH productions in THDM become largest in comparison with other ones. These massive contributions are attributed from charged Higgs in the loop. Due to the Z2Z_{2}-symmetry, the productions of hHhH in the THDM are still suppressed in this case. For high regions of M2M^{2}, taking M2=5002, 7002M^{2}=500^{2},\leavevmode\nobreak\ 700^{2} GeV2 as examples, the productions γγhH,HH\gamma\gamma\rightarrow hH,\leavevmode\nobreak\ HH are more and more dominant in comparison with hhhh production in the SM and in the THDM.

σ^ϕiϕj(M2=0)\hat{\sigma}_{\phi_{i}\phi_{j}}(M^{2}=0) [pb] σ^ϕiϕj(M2=2002)\hat{\sigma}_{\phi_{i}\phi_{j}}(M^{2}=200^{2}) [pb]
Refer to caption Refer to caption
                                                     s^γγ\sqrt{\hat{s}_{\gamma\gamma}} [GeV]                                                      s^γγ\sqrt{\hat{s}_{\gamma\gamma}} [GeV]
σ^ϕiϕj(M2=5002)\hat{\sigma}_{\phi_{i}\phi_{j}}(M^{2}=500^{2}) [pb] σ^ϕiϕj(M2=7002)\hat{\sigma}_{\phi_{i}\phi_{j}}(M^{2}=700^{2}) [pb]
Refer to caption Refer to caption
                                                     s^γγ\sqrt{\hat{s}_{\gamma\gamma}} [GeV]                                                      s^γγ\sqrt{\hat{s}_{\gamma\gamma}} [GeV]
Figure 11: Cross-sections for γγϕiϕj\gamma\gamma\rightarrow\phi_{i}\phi_{j} in the THDM, γγhh\gamma\gamma\rightarrow hh in the SM are shown as functions of s^γγ\sqrt{\hat{s}_{\gamma\gamma}}. In the plots, we vary 350350 GeV s^γγ1500\leq\sqrt{\hat{s}_{\gamma\gamma}}\leq 1500 GeV. We select MH±=300M_{H^{\pm}}=300 GeV, tβ=5t_{\beta}=5 in this case. Moreover, we fix MH=150M_{H}=150 GeV, M2=0,2002,5002,7002M^{2}=0,200^{2},500^{2},700^{2} GeV2 and take cβα=+0.2c_{\beta-\alpha}=+0.2 and sβα=+1cβα2s_{\beta-\alpha}=+\sqrt{1-c_{\beta-\alpha}^{2}}, accordingly.

Fermionphobic limit

The fermionphobic limit is studied in which the mixing angle is taken as α=±π/2\alpha=\pm\pi/2. For a typical example, we select α=+π/2\alpha=+\pi/2 in the following plots. Since, we have already checked that top quark propagating in the loop is dominant contributions versus other fermions. It is enough to take into account top quark in the loop for the present calculations. It means that the cross-sections are only contributed from WW boson and scalar particles in the loop when we consider the fermionphobic limit. Subsequently, we can examine the comparative sizes among these contributions. In Fig. 12 (for hhhh production), Fig. 13 (for hHhH production), Fig. 14 (for HHHH production), the corresponding cross-sections for γγϕiϕj\gamma\gamma\rightarrow\phi_{i}\phi_{j} in the THDM together with σ^hh\hat{\sigma}_{hh} in the SM as functions of s^γγ\sqrt{\hat{s}_{\gamma\gamma}}, are analysed in the fermionphobic limit. The CoM energies are varied 350350 GeV s^γγ1500\leq\sqrt{\hat{s}_{\gamma\gamma}}\leq 1500 GeV. We select MH±=300M_{H^{\pm}}=300 GeV and apply tβ=3t_{\beta}=3 (blue line), tβ=5t_{\beta}=5 (green line), tβ=7t_{\beta}=7 (red line), respectively. Moreover, we fix MH=150M_{H}=150 GeV for all cases. In further, the results are presented at M2=0M^{2}=0 GeV2 (for all the left Figures) and at M2=+2002M^{2}=+200^{2} GeV2 (for all the right Figures).

The hhhh productions in the SM and the THDM at M2=0M^{2}=0 GeV2 are first analysed. We notice that the cross-sections depend slightly on tβt_{\beta} in the regions below the peak s^γγ2MH±=600\sqrt{\hat{s}_{\gamma\gamma}}\sim 2M_{H^{\pm}}=600 GeV. In the regions above the peak, it is found that the cross-sections are more sensitive to tβt_{\beta}. For the case of M2=2002M^{2}=200^{2} GeV2, the cross-sections are proportional to tβt_{\beta}. Around the peak regions, the cross-sections are enhanced by charged Higgs loop.

σ^hh(M2=0)\hat{\sigma}_{hh}(M^{2}=0) [pb] σ^hh(M2=2002)\hat{\sigma}_{hh}(M^{2}=200^{2}) [pb]
Refer to caption Refer to caption
                                                     s^γγ\sqrt{\hat{s}_{\gamma\gamma}} [GeV]                                                      s^γγ\sqrt{\hat{s}_{\gamma\gamma}} [GeV]
Figure 12: Cross-sections for γγhh\gamma\gamma\rightarrow hh in the SM and the THDM as functions s^γγ\sqrt{\hat{s}_{\gamma\gamma}} are shown in the fermionphobic limit. We show the data for M2=0M^{2}=0 GeV2 on the left panel and for M2=+2002M^{2}=+200^{2} GeV2 on the right panel.

As mentioned in above, the cross-sections for hHhH productions in the THDM are suppressed due to the softly breaking of the Z2Z_{2}-symmetry. It is explainable for cross-sections for hHhH productions are much smaller than the corresponding ones for hhhh productions in the SM. However, at the peak of s^γγ=2MH±=600\sqrt{\hat{s}_{\gamma\gamma}}=2M_{H^{\pm}}=600 GeV, the cross-sections are enhanced and can reach to order of σ^hh\hat{\sigma}_{hh} in the SM. At M2=0M^{2}=0, σ^γγhH\hat{\sigma}_{\gamma\gamma\rightarrow hH} are more sensitive to tβt_{\beta} in all range of CoM. Another case of M2=+2002M^{2}=+200^{2} GeV2, the cross-sections are also more sensitive to tβt_{\beta} in the regions below the peak 600\sim 600 GeV. But they are nearly proportional to tβt_{\beta} beyond the peak.

σ^hH(M2=0)\hat{\sigma}_{hH}(M^{2}=0) [pb] σ^hH(M2=2002)\hat{\sigma}_{hH}(M^{2}=200^{2}) [pb]
Refer to caption Refer to caption
                                                     s^γγ\sqrt{\hat{s}_{\gamma\gamma}} [GeV]                                                      s^γγ\sqrt{\hat{s}_{\gamma\gamma}} [GeV]
Figure 13: Cross-sections for γγhH\gamma\gamma\rightarrow hH in the SM and the THDM as functions of s^γγ\sqrt{\hat{s}_{\gamma\gamma}} in the fermionphobic limit. In the plots, we vary 350350 GeV s^γγ1500\leq\sqrt{\hat{s}_{\gamma\gamma}}\leq 1500 GeV. We present the data for M2=0M^{2}=0 GeV2 on the left panel and for M2=+2002M^{2}=+200^{2} GeV2 on the right panel.

For all cases of M2M^{2} in HHHH productions, it is interested in finding that the cross-sections are larger than σ^hh\hat{\sigma}_{hh} in the SM and they are proportional to 1/tβ1/t_{\beta} for all range of CoM. We also observe that cross-sections are enhanced around the peak 2MH±=600\sim 2M_{H^{\pm}}=600 GeV. The dominant contributions are from the singly charged Higgs exchanging in the loop.

σ^HH(M2=0)\hat{\sigma}_{HH}(M^{2}=0) [pb] σ^HH(M2=2002)\hat{\sigma}_{HH}(M^{2}=200^{2}) [pb]
Refer to caption Refer to caption
                                                     s^γγ\sqrt{\hat{s}_{\gamma\gamma}} [GeV]                                                      s^γγ\sqrt{\hat{s}_{\gamma\gamma}} [GeV]
Figure 14: Cross-sections for γγHH\gamma\gamma\rightarrow HH in the SM and THDM as functions of s^γγ\sqrt{\hat{s}_{\gamma\gamma}} in the fermionphobic limit. In the plots, we vary 350350 GeV s^γγ1500\leq\sqrt{\hat{s}_{\gamma\gamma}}\leq 1500 GeV. We show the data for M2=0M^{2}=0 GeV2 on the left panel and for M2=+2002M^{2}=+200^{2} GeV2 on the right panel.

Decoupling limit

We next study the decoupling limit in which the mixing angle is taken as βα=π/2\beta-\alpha=\pi/2. In Fig. 15 (hhhh production), Fig. 16 (hHhH production), Fig. 17 (HHHH production), cross-sections for γγϕiϕj\gamma\gamma\rightarrow\phi_{i}\phi_{j} in the THDM together with γγhh\gamma\gamma\rightarrow hh in the SM, as functions of s^γγ\sqrt{\hat{s}_{\gamma\gamma}} are examined in the decoupling limit. In the Figures 15, cross-sections for hhhh productions in the decoupling limit are investigated at M2=0M^{2}=0 GeV2 (on left panel) and at M2=200M^{2}=200 GeV2 (on right panel). The CoM energy is varied as 350350 GeV s^γγ1500\leq\sqrt{\hat{s}_{\gamma\gamma}}\leq 1500 GeV. We select Mϕ=MH=MA0=MH±=300M_{\phi}=M_{H}=M_{A^{0}}=M_{H^{\pm}}=300 GeV (blue line), 400400 GeV (green line), 500500 GeV (red line) and set tβ=5t_{\beta}=5 for all cases. In both cases, cross-sections σ^γγhh\hat{\sigma}_{\gamma\gamma\rightarrow hh} have the peaks at s^γγ=2MH±=600, 800, 1000\sqrt{\hat{s}_{\gamma\gamma}}=2M_{H^{\pm}}=600,\leavevmode\nobreak\ 800,\leavevmode\nobreak\ 1000 GeV, respectively. Furthermore, σ^hh\hat{\sigma}_{hh} in the THDM are larger than σ^hh\hat{\sigma}_{hh} in the SM. It is explained that the charged Higgs loop contributions being significant contributions once MϕM_{\phi} being large. At M2=0M^{2}=0 GeV2, it is seem that cross-sections depend on 1/Mϕ1/M_{\phi} in the regions below the peaks and are proportional to MϕM_{\phi} in the regions above the peak. When M2=200M^{2}=200 GeV2, we find clearly that cross-sections are proportional to MϕM_{\phi}.

σ^hh(M2=0)\hat{\sigma}_{hh}(M^{2}=0) [pb] σ^hh(M2=2002)\hat{\sigma}_{hh}(M^{2}=200^{2}) [pb]
Refer to caption Refer to caption
                                                     s^γγ\sqrt{\hat{s}_{\gamma\gamma}} [GeV]                                                      s^γγ\sqrt{\hat{s}_{\gamma\gamma}} [GeV]
Figure 15: Cross-sections for γγhh\gamma\gamma\rightarrow hh in the SM and THDM as functions of s^γγ\sqrt{\hat{s}_{\gamma\gamma}} are shown in the decoupling limit.

For the productions of hH,HHhH,\leavevmode\nobreak\ HH in the THDM in the decoupling limit, we emphasize that we take MH=150M_{H}=150 GeV and note Mϕ=MH±=300, 400, 500M_{\phi}=M_{H^{\pm}}=300,\leavevmode\nobreak\ 400,\leavevmode\nobreak\ 500 GeV in these cases. Other parameters are set as in the previous case. It is not surprised that the cross-sections for hHhH in the THDM are suppressed because of breaking of the Z2Z_{2}-symmetry. For the HHHH productions at M2=0M^{2}=0, the cross-sections are greater than the hhhh productions in the SM in the below of the peak regions. But they are decreased rapidly and become smaller than the ones for hhhh productions in the SM. For the HHHH productions at M2=200M^{2}=200 GeV2, the cross-sections are greater than σ^hh\hat{\sigma}_{hh} in the SM for most of CoM.

σ^hH(M2=0)\hat{\sigma}_{hH}(M^{2}=0) [pb] σ^hH(M2=2002)\hat{\sigma}_{hH}(M^{2}=200^{2}) [pb]
Refer to caption Refer to caption
                                                     s^γγ\sqrt{\hat{s}_{\gamma\gamma}} [GeV]                                                      s^γγ\sqrt{\hat{s}_{\gamma\gamma}} [GeV]
Figure 16: Cross-sections for γγhH\gamma\gamma\rightarrow hH in the THDM as functions of s^γγ\sqrt{\hat{s}_{\gamma\gamma}} are shown in the decoupling limit.
σ^HH(M2=0)\hat{\sigma}_{HH}(M^{2}=0) [pb] σ^HH(M2=2002)\hat{\sigma}_{HH}(M^{2}=200^{2}) [pb]
Refer to caption Refer to caption
                                                     s^γγ\sqrt{\hat{s}_{\gamma\gamma}} [GeV]                                                      s^γγ\sqrt{\hat{s}_{\gamma\gamma}} [GeV]
Figure 17: Cross-sections for γγHH\gamma\gamma\rightarrow HH in the THDM as functions of s^γγ\sqrt{\hat{s}_{\gamma\gamma}} are shown in the decoupling limit.

4.2.2 Enhancement factors

We pay attention to investigate the enhancement factors defined in Eq. 42 for γγϕiϕj\gamma\gamma\rightarrow\phi_{i}\phi_{j} in the THDM. The factors scanned over parameter space of MH±,tβM_{H^{\pm}},\leavevmode\nobreak\ t_{\beta} are first studied in this subsection. Two scenarios for cβα>0c_{\beta-\alpha}>0 and cβα<0c_{\beta-\alpha}<0 are examined in detail. In Figs. 18,  19, we fix M2=MH2=2002M^{2}=M_{H}^{2}=200^{2} GeV2. Moreover, we vary 100100 GeV MH±1000\leq M_{H^{\pm}}\leq 1000 GeV and set 2tβ102\leq t_{\beta}\leq 10 in the following plots. The factors μϕiϕjTHDM\mu_{\phi_{i}\phi_{j}}^{\textrm{THDM}} are generated at s^γγ=500\sqrt{\hat{s}_{\gamma\gamma}}=500 GeV (for all above scatter-plots) and examined at s^γγ=1000\sqrt{\hat{s}_{\gamma\gamma}}=1000 GeV (for all below scatter-plots). In the left panel, we show for the enhancement factors for hhhh productions. In the middle (right) panel, the enhancement factors for hH,(HH)hH,\leavevmode\nobreak\ (HH) productions are presented, respectively.

In Fig. 18, the first scenario for cβα>0c_{\beta-\alpha}>0 is explored. In this scenario, we take cβα=+0.2c_{\beta-\alpha}=+0.2 for an example and sβα=+1cβα2s_{\beta-\alpha}=+\sqrt{1-c_{\beta-\alpha}^{2}}, correspondingly. At s^γγ=500\sqrt{\hat{s}_{\gamma\gamma}}=500 GeV, μhhTHDM\mu_{hh}^{\textrm{THDM}} change from 11 to 1.51.5 for all range of MH±M_{H^{\pm}}. The values of μhhTHDM\mu_{hh}^{\textrm{THDM}} are enhanced around the peak at MH±=s^γγ/2=250M_{H^{\pm}}=\sqrt{\hat{s}_{\gamma\gamma}}/2=250 GeV. Predominantly, the factors are proportional to tβ1t_{\beta}^{-1} in this case. Interestingly, we observe that the factors μhHTHDM\mu_{hH}^{\textrm{THDM}} change from 0 to 0.50.5 for all range of MH±M_{H^{\pm}}. The suppressed values of μhHTHDM\mu_{hH}^{\textrm{THDM}} are expected as explained in previous paragraphs due to the Z2Z_{2}-symmetry. The μhHTHDM\mu_{hH}^{\textrm{THDM}} are the same behavior as μhhTHDM\mu_{hh}^{\textrm{THDM}} which they are inversely proportional to tβt_{\beta}. In the other hand, the enhancement factors for HHHH productions in the THDM are strongly dependent of the charged Higgs mass but change slightly with tβt_{\beta}. In all range of MH±M_{H^{\pm}}, the factors μHHTHDM\mu_{HH}^{\textrm{THDM}} are from 0.30.3 to 1.21.2.

At s^γγ=1000\sqrt{\hat{s}_{\gamma\gamma}}=1000 GeV, the factors μhhTHDM\mu_{hh}^{\textrm{THDM}} become biggest at the peak at MH±=s^γγ/2=500M_{H}^{\pm}=\sqrt{\hat{s}_{\gamma\gamma}}/2=500 GeV. Around the peak, μhhTHDM\mu_{hh}^{\textrm{THDM}} change from 1.21.2 to 1.81.8. Beyond the peak, the factors are changed from 1.01.0 to 1.21.2 in all range of MH±M_{H^{\pm}}. It is stress that μhhTHDM\mu_{hh}^{\textrm{THDM}} slightly change with tβt_{\beta}. For HHHH productions, μHHTHDM\mu_{HH}^{\textrm{THDM}} are varied from 0.40.4 to 2.52.5 around the peak (at MH±=500M_{H^{\pm}}=500 GeV) regions. It is realized that μHHTHDM\mu_{HH}^{\textrm{THDM}} slightly change with tβt_{\beta}. Otherwise, μhHTHDM\mu_{hH}^{\textrm{THDM}} are much smaller than 11 and are inversely proportional to tβt_{\beta}.

μhhTHDM\mu_{hh}^{\textrm{THDM}} μhHTHDM\mu_{hH}^{\textrm{THDM}} μHHTHDM\mu_{HH}^{\textrm{THDM}}
Refer to caption Refer to caption Refer to caption
                           MH±M_{H^{\pm}} [GeV]                            MH±M_{H^{\pm}} [GeV]                            MH±M_{H^{\pm}} [GeV]
μhhTHDM\mu_{hh}^{\textrm{THDM}} μhHTHDM\mu_{hH}^{\textrm{THDM}} μHHTHDM\mu_{HH}^{\textrm{THDM}}
Refer to caption Refer to caption Refer to caption
                           MH±M_{H^{\pm}} [GeV]                            MH±M_{H^{\pm}} [GeV]                            MH±M_{H^{\pm}} [GeV]
Figure 18: The enhancement factors are presented in the parameter space of MH±,tβM_{H^{\pm}},\leavevmode\nobreak\ t_{\beta}. In the plots, we fix M2=MH2=2002M^{2}=M_{H}^{2}=200^{2} GeV2 and we take cβα=+0.2c_{\beta-\alpha}=+0.2 and sβα=+1cβα2s_{\beta-\alpha}=+\sqrt{1-c_{\beta-\alpha}^{2}}, accordingly. In these plots we set s^γγ=500\sqrt{\hat{s}_{\gamma\gamma}}=500 (for the above-plots) GeV and s^γγ=1000\sqrt{\hat{s}_{\gamma\gamma}}=1000 GeV (for the below plots), respectively.

Another scenario for cβα<0c_{\beta-\alpha}<0 is considered for examining how are the factors effect by setting different sign of cβαc_{\beta-\alpha} in this work. In Fig. 19, we take cβα=0.2c_{\beta-\alpha}=-0.2 for an example and sβα=+1cβα2s_{\beta-\alpha}=+\sqrt{1-c_{\beta-\alpha}^{2}}, accordingly. At s^γγ=500\sqrt{\hat{s}_{\gamma\gamma}}=500 GeV, it is excited in observing that μhhTHDM\mu_{hh}^{\textrm{THDM}} are different behavior in comparison with previous scenario. At this CoM energy, the factors μhhTHDM\mu_{hh}^{\textrm{THDM}} can reach to 1.51.5 in the low region of MH±<200M_{H^{\pm}}<200 GeV. They then are decreased to around 0.90.9 when MH±>200M_{H^{\pm}}>200 GeV. There isn’t peak of the factors observed in this scenario. Because the contributions of singly charged Higgs exchanging in the one-loop triangle diagrams may cancel out with the ones one-loop box diagrams in this scenario. Surprisingly, we find that the factors μhhTHDM\mu_{hh}^{\textrm{THDM}} are proportional to tβt_{\beta} in this scenario. For the hHhH productions, the factors are suppressed and they are in the range of [0.025,0.3][\sim 0.025,\sim 0.3]. They are sensitive with tβ1t_{\beta}^{-1} in all range of charged Higgs mass. In HHHH productions, it is found that the factors develop to the peak around MH±=500M_{H^{\pm}}=500 GeV. They reach to factor 2.52.5 around the peak and they are in the ranges of [0.5,1.7][\sim 0.5,\sim 1.7] beyond the peak regions. In all range of MH±M_{H^{\pm}}, the factors μHHTHDM\mu_{HH}^{\textrm{THDM}} are proportional to tβ1t_{\beta}^{-1} in this scenario.

The survey for all the enhancement factors at s^γγ=1000\sqrt{\hat{s}_{\gamma\gamma}}=1000 GeV are concerned in the next paragraphs. The factors μhhTHDM\mu_{hh}^{\textrm{THDM}} are large in the regions (MH±200M_{H^{\pm}}\leq 200 GeV) and they can reach to 1.51.5. They then are decreased rapidly to the regions around MH±300M_{H^{\pm}}\sim 300 GeV and develop to the peak at MH±=s^γγ/2=500M_{H^{\pm}}=\sqrt{\hat{s}_{\gamma\gamma}}/2=500 GeV. Around the peak, the enhancement factor is about 1.21.2. In other ranges of charged Higgs mass, μhhTHDM0.9\mu_{hh}^{\textrm{THDM}}\sim 0.9. One also finds that μhhTHDM\mu_{hh}^{\textrm{THDM}} is inversely proportional to tβt_{\beta} in this scenario. In hHhH productions, the factors are increased to the peak MH±=s^γγ/2=500M_{H^{\pm}}=\sqrt{\hat{s}_{\gamma\gamma}}/2=500 GeV and they are about 0.30.3 around the peak. In all regions of MH±M_{H^{\pm}}, the mentioned factors are in the ranges of [0.025,0.3][\sim 0.025,\sim 0.3] and they are inversely proportional to tβt_{\beta}. In the last case, it is found that the factors μHHTHDM\mu_{HH}^{\textrm{THDM}} are same behavior as previous scenario. They are in the ranges of [0.5,4][\sim 0.5,\sim 4] in all regions of MH±M_{H^{\pm}}. However, the factors μHHTHDM\mu_{HH}^{\textrm{THDM}} depend slightly on tβt_{\beta} in this scenario.

μhhTHDM\mu_{hh}^{\textrm{THDM}} μhHTHDM\mu_{hH}^{\textrm{THDM}} μHHTHDM\mu_{HH}^{\textrm{THDM}}
Refer to caption Refer to caption Refer to caption
                           MH±M_{H^{\pm}} [GeV]                            MH±M_{H^{\pm}} [GeV]                            MH±M_{H^{\pm}} [GeV]
μhhTHDM\mu_{hh}^{\textrm{THDM}} μhHTHDM\mu_{hH}^{\textrm{THDM}} μHHTHDM\mu_{HH}^{\textrm{THDM}}
Refer to caption Refer to caption Refer to caption
                           MH±M_{H^{\pm}} [GeV]                            MH±M_{H^{\pm}} [GeV]                            MH±M_{H^{\pm}} [GeV]
Figure 19: The enhancement factors are presented in the parameter space MH±,tβM_{H^{\pm}},\leavevmode\nobreak\ t_{\beta}. In the plots, we consider the scenario for cβα=0.2<0c_{\beta-\alpha}=-0.2<0 and sβα=+1cβα2s_{\beta-\alpha}=+\sqrt{1-c_{\beta-\alpha}^{2}}, correspondingly. We also fix M2=MH2=2002M^{2}=M_{H}^{2}=200^{2} GeV2 and set s^γγ=500\sqrt{\hat{s}_{\gamma\gamma}}=500 (for all the above-plots) GeV and s^γγ=1000\sqrt{\hat{s}_{\gamma\gamma}}=1000 GeV (for all the below-plots).

The enhancement factors scanned over the parameter space of MH±,M2M_{H^{\pm}},\leavevmode\nobreak\ M^{2} in the THDM are also interested greatly in this work. Two scenarios for cβα>0c_{\beta-\alpha}>0 and cβα<0c_{\beta-\alpha}<0 are studied in detail in the following paragraphs. In Fig. 20 (for cβα>0c_{\beta-\alpha}>0 scenario), Fig. 21 (for cβα<0c_{\beta-\alpha}<0 scenario), we consider s^γγ=500\sqrt{\hat{s}_{\gamma\gamma}}=500 GeV (for all the above scatter plots) and s^γγ=1000\sqrt{\hat{s}_{\gamma\gamma}}=1000 GeV (for all the below scatter plots). Moreover, we vary charged Higgs mass as 100100 GeV MH±1000\leq M_{H^{\pm}}\leq 1000 GeV, the soft-breaking parameter as 0 GeV2 M22002\leq M^{2}\leq 200^{2} GeV2 and take tβ=5t_{\beta}=5 for all cases.

In Fig. 20, the first scenario of cβα>0c_{\beta-\alpha}>0 is examined. For this case, we take cβα=+0.2c_{\beta-\alpha}=+0.2 as an example and sβα=+1cβα2s_{\beta-\alpha}=+\sqrt{1-c_{\beta-\alpha}^{2}}, accordingly. For hhhh production at s^γγ=500\sqrt{\hat{s}_{\gamma\gamma}}=500 GeV, we observe the peak of μhhTHDM\mu_{hh}^{\textrm{THDM}} at MH±=250M_{H^{\pm}}=250 GeV which is corresponding to the threshold of cross-sections hhhh in the THDM at the peak s^γγ=2MH±\sqrt{\hat{s}_{\gamma\gamma}}=2M_{H^{\pm}}. Around the peak, μhhTHDM\mu_{hh}^{\textrm{THDM}} are varied from 1.01.0 to 1.81.8. Above the peak regions, the enhancement factors tend to 1.21.2 and depend slightly on M2M^{2}. For hHhH productions, μhHTHDM\mu_{hH}^{\textrm{THDM}} are more sensitive with M2M^{2} in below the peak regions. The factors are in the ranges of [0.07,1.5][0.07,1.5] in above the peak regions. Around the peak, μhHTHDM\mu_{hH}^{\textrm{THDM}} can reach to 0.30.3. We also find the same behavior for μHHTHDM\mu_{HH}^{\textrm{THDM}}. The factors for HHHH productions are large in the low regions of MH±M_{H^{\pm}} and around the peak MH±=250M_{H^{\pm}}=250 GeV. They are in the ranges of [0.7,2.4][0.7,2.4] in the above the peak regions. Generally, we observe that μϕiϕjTHDM\mu_{\phi_{i}\phi_{j}}^{\textrm{THDM}} are proportional to 1/M1/M at this CoM energy.

At s^γγ=1000\sqrt{\hat{s}_{\gamma\gamma}}=1000 GeV, we also find that μhhTHDM\mu_{hh}^{\textrm{THDM}} develop to the peak at MH±=500M_{H^{\pm}}=500 GeV where the factors can reach to 2.22.2 and are decreased rapidly beyond the peak. The factors depend slightly on M2M^{2} and tend to 11 beyond the peak regions. For hHhH productions, μhHTHDM\mu_{hH}^{\textrm{THDM}} are sensitive with M2M^{2} in the peak regions. They tend to 0.050.05 and they are slightly dependent of M2M^{2} in the above the peak regions. For HHHH productions, the factors become large in the below the peak regions and they are inversely proportional to M1M^{-1}. Around the peak, the factors are enhanced by large values of M2M^{2}. Above the peak regions, μHHTHDM\mu_{HH}^{\textrm{THDM}} are varied around 1.01.0.

μhhTHDM\mu_{hh}^{\textrm{THDM}} μhHTHDM\mu_{hH}^{\textrm{THDM}} μHHTHDM\mu_{HH}^{\textrm{THDM}}
Refer to caption Refer to caption Refer to caption
                           MH±M_{H^{\pm}} [GeV]                            MH±M_{H^{\pm}} [GeV]                            MH±M_{H^{\pm}} [GeV]
μhhTHDM\mu_{hh}^{\textrm{THDM}} μhHTHDM\mu_{hH}^{\textrm{THDM}} μHHTHDM\mu_{HH}^{\textrm{THDM}}
Refer to caption Refer to caption Refer to caption
                           MH±M_{H^{\pm}} [GeV]                            MH±M_{H^{\pm}} [GeV]                            MH±M_{H^{\pm}} [GeV]
Figure 20: The enhancement factors are presented in the parameter space of MH±,M2M_{H^{\pm}},\leavevmode\nobreak\ M^{2}. In the plots, we take tβ=5t_{\beta}=5 and consider the first scenario of cβα=+0.2c_{\beta-\alpha}=+0.2 and sβα=+1cβα2s_{\beta-\alpha}=+\sqrt{1-c_{\beta-\alpha}^{2}}, accordingly. In these plots, we set s^γγ=500\sqrt{\hat{s}_{\gamma\gamma}}=500 GeV (for the above Figures) and s^γγ=1000\sqrt{\hat{s}_{\gamma\gamma}}=1000 GeV (for the below Figures).

Another scenario for cβα=0.2<0c_{\beta-\alpha}=-0.2<0 is also concerned interestingly in this work. In Fig. 21, sβα=+1cβα2s_{\beta-\alpha}=+\sqrt{1-c_{\beta-\alpha}^{2}} is obtained accordingly. We are going to comment on physical results at s^γγ=500\sqrt{\hat{s}_{\gamma\gamma}}=500 GeV. For hhhh productions, we observe different behavior of μhhTHDM\mu_{hh}^{\textrm{THDM}} in comparison with the cβα>0c_{\beta-\alpha}>0 scenario. In concrete, the factors are large in below the peak regions. Around the peak regions, they are enhanced by the small value of MM and can reach to 1.61.6. Above the peak regions, the factors are in the ranges of [0.9,1.1][0.9,1.1]. We also observe the different behavior for the factors in hHhH productions compared with the previous scenario. The factors μhHTHDM\mu_{hH}^{\textrm{THDM}} get the large values in the below and around the peak regions and they are proportional to MM. The factors μhHTHDM\mu_{hH}^{\textrm{THDM}} are in the ranges of [0.2,0.6][0.2,0.6] for MH±M_{H\pm} in above the peak regions. In the case of HHHH productions, μHHTHDM\mu_{HH}^{\textrm{THDM}} develop to the peak at MH±250M_{H^{\pm}}\sim 250 GeV. They are in the range of [1.0, 2.4][1.0,\leavevmode\nobreak\ 2.4] in above the peak regions. In general, the factors μHHTHDM\mu_{HH}^{\textrm{THDM}} depend slightly on charged Higgs mass and are proportional to 1/M1/M in above the peak regions.

We next comment on physical results at s^γγ=1000\sqrt{\hat{s}_{\gamma\gamma}}=1000 GeV. The factors μhhTHDM\mu_{hh}^{\textrm{THDM}} are enhanced by the small values of MM in low regions of charged Higgs mass and they can reach 1.21.2. They tend to 2.52.5 around the peak. The factors are then varied around 0.9\sim 0.9. In general, the factors depend on M1M^{-1}. In the productions hHhH, μhHTHDM\mu_{hH}^{\textrm{THDM}} are more sensitive to M1M^{-1} around the peak regions. They then tend to 0.20.2 in the high mass regions of singly charged Higgs. For HHHH productions, the factors μHHTHDM\mu_{HH}^{\textrm{THDM}} strongly depend on M1M^{-1}. At the peak, the factors are enhanced by the large value of MM. Above the peak regions, μHHTHDM\mu_{HH}^{\textrm{THDM}} tend to 1\sim 1.

μhhTHDM\mu_{hh}^{\textrm{THDM}} μhHTHDM\mu_{hH}^{\textrm{THDM}} μHHTHDM\mu_{HH}^{\textrm{THDM}}
Refer to caption Refer to caption Refer to caption
                           MH±M_{H^{\pm}} [GeV]                            MH±M_{H^{\pm}} [GeV]                            MH±M_{H^{\pm}} [GeV]
μhhTHDM\mu_{hh}^{\textrm{THDM}} μhHTHDM\mu_{hH}^{\textrm{THDM}} μHHTHDM\mu_{HH}^{\textrm{THDM}}
Refer to caption Refer to caption Refer to caption
                           MH±M_{H^{\pm}} [GeV]                            MH±M_{H^{\pm}} [GeV]                            MH±M_{H^{\pm}} [GeV]
Figure 21: The enhancement factors are presented in the parameter space of MH±,M2M_{H^{\pm}},\leavevmode\nobreak\ M^{2}. In the plots, we take tβ=5t_{\beta}=5 and cβα=0.2c_{\beta-\alpha}=-0.2 and sβα=+1cβα2s_{\beta-\alpha}=+\sqrt{1-c_{\beta-\alpha}^{2}}, accordingly. In these plots, we set s^γγ=500\sqrt{\hat{s}_{\gamma\gamma}}=500 GeV (the above Figures) and s^γγ=1000\sqrt{\hat{s}_{\gamma\gamma}}=1000 GeV (the below Figures).

5 Conclusions

In this paper, we have presented the results for one-loop induced processes γγϕiϕj\gamma\gamma\rightarrow\phi_{i}\phi_{j} with CP-even Higgses ϕi,jh,H\phi_{i,j}\equiv h,\leavevmode\nobreak\ H at high energy photon-photon collision in the IHDM and the THDM. In the phenomenological results, we have shown the cross-sections at several center-of-mass energies. The results show that cross-sections for the computed processes in the models under investigations are enhanced at around the threshold of charged Higgs pair (2MH±\sim 2M_{H^{\pm}}). Furthermore, the enhancement factors for the processes are examined in parameter space of the models under consideration. In the IHDM, the factors are studied in the parameter space of (MH±,μ22)(M_{H^{\pm}},\leavevmode\nobreak\ \mu^{2}_{2}) and (MH±,λ2)(M_{H^{\pm}},\leavevmode\nobreak\ \lambda_{2}). In the the THDM, the factors are analysed in the planes of (MH±,tβ)(M_{H^{\pm}},\leavevmode\nobreak\ t_{\beta}) and (MH±,M2)(M_{H^{\pm}},\leavevmode\nobreak\ M^{2}). Two scenarios of cβα>0c_{\beta-\alpha}>0 and cβα<0c_{\beta-\alpha}<0 have studied in further detail. The factors give a different behavior from considering these scenarios. As a result, discriminations for the above-mentioned scenarios can be performed at future colliders.

Acknowledgment:  This research is funded by Vietnam National Foundation for Science and Technology Development (NAFOSTED) under the grant number 103.01103.01-2023.162023.16.

Appendix A: Effective Lagrangian in the IHDM

The kinematic terms of Lagrangian in the IHDM can be expanded as follows:

KIHDM\displaystyle\mathcal{L}_{K}^{\text{IHDM}} \displaystyle\supset 2MW2vWμ±W,μh+MZ2vhZμZμ+iMZc2WvZμ(HμH±H±μH)\displaystyle\frac{2M_{W}^{2}}{v}W^{\pm}_{\mu}W^{\mp,\mu}h+\frac{M_{Z}^{2}}{v}hZ_{\mu}Z^{\mu}+i\frac{M_{Z}c_{2W}}{v}Z^{\mu}(H^{\mp}\partial_{\mu}H^{\pm}-H^{\pm}\partial_{\mu}H^{\mp}) (43)
+iMZs2WvAμ(HμH±H±μH)+i2MZ2cW2sWvAμWμ±G±\displaystyle+i\frac{M_{Z}s_{2W}}{v}A^{\mu}(H^{\mp}\partial_{\mu}H^{\pm}-H^{\pm}\partial_{\mu}H^{\mp})+i\frac{2M_{Z}^{2}c_{W}^{2}s_{W}}{v}A^{\mu}W_{\mu}^{\pm}G^{\pm}
+iMWv(HW,μμH±H±W,μμHHWμ±μH+HWμ±μH)\displaystyle+i\frac{M_{W}}{v}(HW^{\mp,\mu}\partial_{\mu}H^{\pm}-H^{\pm}W^{\mp,\mu}\partial_{\mu}H-HW^{\pm}_{\mu}\partial^{\mu}H^{\mp}+H^{\mp}W^{\pm}_{\mu}\partial^{\mu}H)
+MZ2s2W2v2AμAμH±H+2MZ2cW2sWv2HH±WμAμ+2MW2v2Wμ±W,μhh\displaystyle+\frac{M_{Z}^{2}s_{2W}^{2}}{v^{2}}A_{\mu}A^{\mu}H^{\pm}H^{\mp}+\frac{2M_{Z}^{2}c_{W}^{2}s_{W}}{v^{2}}HH^{\pm}W_{\mu}^{\mp}A^{\mu}+\frac{2M_{W}^{2}}{v^{2}}W^{\pm}_{\mu}W^{\mp,\mu}hh
+2MW2v2Wμ±W,μHH+MZ2s2W2v2AμAμG±G\displaystyle+\frac{2M_{W}^{2}}{v^{2}}W^{\pm}_{\mu}W^{\mp,\mu}HH+\frac{M_{Z}^{2}s_{2W}^{2}}{v^{2}}A_{\mu}A^{\mu}G^{\pm}G^{\mp}
+iMZs2WvAμ(GμG±G±μG)+.\displaystyle+i\frac{M_{Z}s_{2W}}{v}A^{\mu}(G^{\mp}\partial_{\mu}G^{\pm}-G^{\pm}\partial_{\mu}G^{\mp})+\cdots.

We also expand the scalar Higgs potential of the IHDM and collect the terms involving to Higgs self-coupling as follows:

𝒱IHDM(ϕ1,ϕ2)\displaystyle-\mathcal{V}_{\text{IHDM}}(\phi_{1},\phi_{2}) \displaystyle\supset 3Mh2vhhh+2(μ22MH2)vhHH+2(μ22MH±2)vhH±H\displaystyle-\frac{3M_{h}^{2}}{v}hhh+\frac{2(\mu_{2}^{2}-M_{H}^{2})}{v}hHH+\frac{2(\mu_{2}^{2}-M_{H^{\pm}}^{2})}{v}hH^{\pm}H^{\mp} (44)
+MH±2MH2vHH±G+2(μ22MH±2)v2hhH±H2λ2HHH±H\displaystyle+\frac{M_{H^{\pm}}^{2}-M_{H}^{2}}{v}HH^{\pm}{G^{\mp}}+\frac{2(\mu_{2}^{2}-M_{H^{\pm}}^{2})}{v^{2}}hhH^{\pm}H^{\mp}-2\lambda_{2}HHH^{\pm}H^{\mp}
Mh2v2hhG±G+2(μ22MH±2)v2HHG±G+.\displaystyle-\frac{M_{h}^{2}}{v^{2}}hhG^{\pm}G^{\mp}+\frac{2(\mu_{2}^{2}-M_{H^{\pm}}^{2})}{v^{2}}HHG^{\pm}G^{\mp}+\cdots.

Appendix B: Effective Lagrangian in the THDM

We expand the kinematic terms of Lagrangian in the THDM as follows:

KTHDM\displaystyle\mathcal{L}_{K}^{\text{THDM}} \displaystyle\supset 2MW2vsβαhWμ±W,μ+2MW2vcαβHWμ±W,μ+MZ2vsβαhZμZμ\displaystyle\frac{2M_{W}^{2}}{v}s_{\beta-\alpha}hW_{\mu}^{\pm}W^{\mp,\mu}+\frac{2M_{W}^{2}}{v}c_{\alpha-\beta}HW_{\mu}^{\pm}W^{\mp,\mu}+\frac{M_{Z}^{2}}{v}s_{\beta-\alpha}hZ_{\mu}Z^{\mu} (45)
+MZ2vcαβHZμZμ+iMZc2WvZμ(HμH±H±μH)\displaystyle+\frac{M_{Z}^{2}}{v}c_{\alpha-\beta}HZ_{\mu}Z^{\mu}+i\frac{M_{Z}c_{2W}}{v}Z^{\mu}(H^{\mp}\partial_{\mu}{H^{\pm}}-H^{\pm}\partial_{\mu}H^{\mp})
+iMZs2WvAμ(HμH±H±μH)+4MW2sW2v2H±HAμAμ\displaystyle+i\frac{M_{Z}s_{2W}}{v}A^{\mu}(H^{\mp}\partial_{\mu}{H^{\pm}}-H^{\pm}\partial_{\mu}H^{\mp})+\frac{4M_{W}^{2}s_{W}^{2}}{v^{2}}H^{\pm}H^{\mp}A_{\mu}{A^{\mu}}
iMWsβαv(HW,μμH±HW±,μμH+HW±,μμHH±W,μμH)\displaystyle-i\frac{M_{W}s_{\beta-\alpha}}{v}(HW^{\mp,\mu}\partial_{\mu}H^{\pm}-HW^{\pm,\mu}\partial_{\mu}H^{\mp}+H^{\mp}W^{\pm,\mu}\partial_{\mu}H-H^{\pm}W^{\mp,\mu}\partial_{\mu}H)
iMWcβαv(hW,μμH±+hW±,μμHHW±,μμh+H±W,μμh)\displaystyle-i\frac{M_{W}c_{\beta-\alpha}}{v}(-hW^{\mp,\mu}\partial_{\mu}H^{\pm}+hW^{\pm,\mu}\partial_{\mu}H^{\mp}-H^{\mp}W^{\pm,\mu}\partial_{\mu}h+H^{\pm}W^{\mp,\mu}\partial_{\mu}h)
+2MW2sWcβαv2hHWμ±Aμ2MW2sWsβαv2HHWμ±Aμ\displaystyle+\frac{2M_{W}^{2}s_{W}c_{\beta-\alpha}}{v^{2}}hH^{\mp}W_{\mu}^{\pm}A^{\mu}-\frac{2M_{W}^{2}s_{W}s_{\beta-\alpha}}{v^{2}}HH^{\mp}W^{\pm}_{\mu}A^{\mu}
+2MW2v2Wμ±W,μHH+2MW2v2Wμ±W,μhh+\displaystyle+\dfrac{2M_{W}^{2}}{v^{2}}W^{\pm}_{\mu}W^{\mp,\mu}HH+\frac{2M_{W}^{2}}{v^{2}}W^{\pm}_{\mu}W^{\mp,\mu}hh+\cdots

Expanding the scalar potential in the THDM, we then collect the terms involving to the Higgs self-couplings as

𝒱THDM(ϕ1,ϕ2)\displaystyle-\mathcal{V}_{\text{THDM}}(\phi_{1},\phi_{2}) \displaystyle\supset λhHHhHHλHhhHhhλhH±HhH±H\displaystyle-\lambda_{hHH}hHH-\lambda_{Hhh}Hhh-\lambda_{hH^{\pm}H^{\mp}}hH^{\pm}H^{\mp} (46)
λhH±HHH±HλHhH±HHhH±H+.\displaystyle-\lambda_{hH^{\pm}H^{\mp}}HH^{\pm}H^{\mp}-\lambda_{HhH^{\pm}H^{\mp}}HhH^{\pm}H^{\mp}+\cdots.

All coefficients of the mentioned couplings are shown explicitly in terms of physical parameters as follows:

λhHH\displaystyle-\lambda_{hHH} =\displaystyle= 3λ1v2sαcα2cβ3λ2v2sβsα2cαλ3452v[cβ(2sαcα2sα3)+sβ(cα32sα2cα)]\displaystyle\frac{3\lambda_{1}v}{2}s_{\alpha}c_{\alpha}^{2}c_{\beta}-\frac{3\lambda_{2}v}{2}s_{\beta}s_{\alpha}^{2}c_{\alpha}-\frac{\lambda_{345}}{2}v[c_{\beta}(2s_{\alpha}c_{\alpha}^{2}-s_{\alpha}^{3})+s_{\beta}(c_{\alpha}^{3}-2s_{\alpha}^{2}c_{\alpha})] (47)
=\displaystyle= sαβ[s2α(3M2Mh22MH2)+M2s2β]vs2β,\displaystyle\frac{s_{\alpha-\beta}[s_{2\alpha}(3M^{2}-M_{h}^{2}-2M_{H}^{2})+M^{2}s_{2\beta}]}{v\;s_{2\beta}}, (48)
λHhh\displaystyle-\lambda_{Hhh} =\displaystyle= 3λ1v2cβcαsα23λ2v2sβcα2sαλ3452v[sβ(sα32cα2sα)cβ(2cαsα2cα3)]\displaystyle-\frac{3\lambda_{1}v}{2}c_{\beta}c_{\alpha}s_{\alpha}^{2}-\frac{3\lambda_{2}v}{2}s_{\beta}c_{\alpha}^{2}s_{\alpha}-\frac{\lambda_{345}}{2}v[s_{\beta}(s_{\alpha}^{3}-2c_{\alpha}^{2}s_{\alpha})-c_{\beta}(2c_{\alpha}s_{\alpha}^{2}-c_{\alpha}^{3})] (49)
=\displaystyle= cαβ[s2α(3M2MH22mh2)M2s2β]vs2β,\displaystyle\frac{c_{\alpha-\beta}[s_{2\alpha}(3M^{2}-M_{H}^{2}-2m_{h}^{2})-M^{2}s_{2\beta}]}{v\;s_{2\beta}}, (50)
λHH±H\displaystyle-\lambda_{HH^{\pm}H^{\mp}} =\displaystyle= λ1vcβcαsβ2λ2vsβsαcβ2λ3v(sβsαsβ2+cβcαcβ2)+λ452vs(2β)sβ+α\displaystyle-\lambda_{1}vc_{\beta}c_{\alpha}s_{\beta}^{2}-\lambda_{2}vs_{\beta}s_{\alpha}c_{\beta}^{2}-\lambda_{3}v(s_{\beta}s_{\alpha}s_{\beta}^{2}+c_{\beta}c_{\alpha}c_{\beta}^{2})+\frac{\lambda_{45}}{2}vs_{(2\beta)}\;s_{\beta+\alpha} (51)
=\displaystyle= sα+β(4M23MH22MH±2)+(2MH±2MH2)sα3β2vs(2β),\displaystyle\frac{s_{\alpha+\beta}(4M^{2}-3M_{H}^{2}-2M_{H^{\pm}}^{2})+(2M_{H^{\pm}}^{2}-M_{H}^{2})s_{\alpha-3\beta}}{2vs_{(2\beta)}}, (52)
λhH±H\displaystyle-\lambda_{hH^{\pm}H^{\mp}} =\displaystyle= λ1vcβsαsβ2λ2vsβcαcβ2λ3v(sβcαsβ2cβsαcβ2)+λ452vs(2β)c(β+α)\displaystyle\lambda_{1}vc_{\beta}s_{\alpha}s_{\beta}^{2}-\lambda_{2}vs_{\beta}c_{\alpha}c_{\beta}^{2}-\lambda_{3}v(s_{\beta}c_{\alpha}s_{\beta}^{2}-c_{\beta}s_{\alpha}c_{\beta}^{2})+\frac{\lambda_{45}}{2}v\;s_{(2\beta)}\;c_{(\beta+\alpha)} (53)
=\displaystyle= cα+β(4M23Mh22MH±2)+(2MH±2Mh2)c(α3β)2vs2β,\displaystyle\frac{c_{\alpha+\beta}(4M^{2}-3M_{h}^{2}-2M_{H^{\pm}}^{2})+(2M_{H^{\pm}}^{2}-M_{h}^{2})c_{(\alpha-3\beta)}}{2vs_{2\beta}}, (54)

and

λHhH±H\displaystyle-\lambda_{HhH^{\pm}H^{\mp}} =\displaystyle= λ1sβ2sαcαλ2cβ2sαcα+λ3sαcαc2β+(λ4+λ5)sβcβc2α\displaystyle\lambda_{1}s_{\beta}^{2}s_{\alpha}c_{\alpha}-\lambda_{2}c_{\beta}^{2}s_{\alpha}c_{\alpha}+\lambda_{3}s_{\alpha}c_{\alpha}c_{2\beta}+(\lambda_{4}+\lambda_{5})s_{\beta}c_{\beta}c_{2\alpha} (56)
=\displaystyle= s2α(3c2α+c2(α2β)4c2β)4v2s2β2MH2s2α(3c2α+c2(α2β)+4c2β)4v2s2β2Mh2\displaystyle\frac{s_{2\alpha}(3c_{2\alpha}+c_{2(\alpha-2\beta)}-4c_{2\beta})}{4v^{2}s_{2\beta}^{2}}M_{H}^{2}-\frac{s_{2\alpha}(3c_{2\alpha}+c_{2(\alpha-2\beta)}+4c_{2\beta})}{4v^{2}s_{2\beta}^{2}}M_{h}^{2}
+s2(αβ)v2MH±2+(s2(α3β)+2s2(αβ)+5s2(α+β))4v2s2β2M2,\displaystyle+\frac{s_{2(\alpha-\beta)}}{v^{2}}M_{H^{\pm}}^{2}+\frac{(s_{2(\alpha-3\beta)}+2s_{2(\alpha-\beta)}+5s_{2(\alpha+\beta)})}{4v^{2}s_{2\beta}^{2}}M^{2},
λHhG±G\displaystyle-\lambda_{HhG^{\pm}G^{\mp}} =\displaystyle= λ1cβ2sαcαλ2sβ2sαcαλ3sαcαc2β(λ4+λ5)sβcβc2α\displaystyle\lambda_{1}c_{\beta}^{2}s_{\alpha}c_{\alpha}-\lambda_{2}s_{\beta}^{2}s_{\alpha}c_{\alpha}-\lambda_{3}s_{\alpha}c_{\alpha}c_{2\beta}-(\lambda_{4}+\lambda_{5})s_{\beta}c_{\beta}c_{2\alpha}
=\displaystyle= 12v2s2βs2(αβ)[(Mh2MH2)s2α+2(M2MH±2)s2β].\displaystyle\frac{1}{2v^{2}s_{2\beta}}s_{2(\alpha-\beta)}[(M_{h}^{2}-M_{H}^{2})s_{2\alpha}+2(M^{2}-M_{H^{\pm}}^{2})s_{2\beta}]. (57)

Furthermore, we have the following couplings:

λhhh\displaystyle-\lambda_{hhh} =\displaystyle= 3v[λ1sα3cβλ2cα3sβ+(λ3+λ4+λ5)(sαcβcα2cαsβsα2)]\displaystyle 3v\Big{[}\lambda_{1}s_{\alpha}^{3}c_{\beta}-\lambda_{2}c_{\alpha}^{3}s_{\beta}+(\lambda_{3}+\lambda_{4}+\lambda_{5})(s_{\alpha}c_{\beta}c_{\alpha}^{2}-c_{\alpha}s_{\beta}s_{\alpha}^{2})\Big{]} (58)
=\displaystyle= 3e4MWsWs2β[M2cα3β+(M2Mh2)c3αβ+(2M23Mh2)cα+β],\displaystyle\dfrac{3e}{4M_{W}s_{W}s_{2\beta}}\Big{[}M^{2}c_{\alpha-3\beta}+(M^{2}-M_{h}^{2})c_{3\alpha-\beta}+(2M^{2}-3M_{h}^{2})c_{\alpha+\beta}\Big{]},
λHHH\displaystyle-\lambda_{HHH} =\displaystyle= 3v[λ1cα3cβ+λ2sα3sβ+(λ3+λ4+λ5)(cαcβsα2+sαsβcα2)]\displaystyle-3v\Big{[}\lambda_{1}c_{\alpha}^{3}c_{\beta}+\lambda_{2}s_{\alpha}^{3}s_{\beta}+(\lambda_{3}+\lambda_{4}+\lambda_{5})(c_{\alpha}c_{\beta}s_{\alpha}^{2}+s_{\alpha}s_{\beta}c_{\alpha}^{2})\Big{]} (59)
=\displaystyle= 3e4MWsWs2β[M2sα3β+(MH2M2)s3αβ+(2M23MH2)sα+β],\displaystyle\dfrac{3e}{4M_{W}s_{W}s_{2\beta}}\Big{[}M^{2}s_{\alpha-3\beta}+(M_{H}^{2}-M^{2})s_{3\alpha-\beta}+(2M^{2}-3M_{H}^{2})s_{\alpha+\beta}\Big{]},
λHHH±H\displaystyle-\lambda_{HHH^{\pm}{H^{\mp}}} =\displaystyle= λ1cα2sβ2λ2sα2cβ2λ3(cα2cβ2+sα2sβ2)+(λ4+λ5)cαsαs2β\displaystyle-\lambda_{1}c_{\alpha}^{2}s_{\beta}^{2}-\lambda_{2}s_{\alpha}^{2}c_{\beta}^{2}-\lambda_{3}(c_{\alpha}^{2}c_{\beta}^{2}+s_{\alpha}^{2}s_{\beta}^{2})+(\lambda_{4}+\lambda_{5})c_{\alpha}s_{\alpha}s_{2\beta} (60)
=\displaystyle= 2cαβ2v2MH±2s2α[3s2α+s2(α2β)2s2β]4v2s2β2Mh2\displaystyle-\dfrac{2c_{\alpha-\beta}^{2}}{v^{2}}M_{H^{\pm}}^{2}-\frac{s_{2\alpha}[3s_{2\alpha}+s_{2(\alpha-2\beta)}-2s_{2\beta}]}{4v^{2}s_{2\beta}^{2}}M_{h}^{2}
[cα4+cα3sαcot3β+cαsα3cotβ+sα4cot4β]tan2βv2MH2\displaystyle-\dfrac{[c_{\alpha}^{4}+c_{\alpha}^{3}s_{\alpha}\cot^{3}\beta+c_{\alpha}s_{\alpha}^{3}\cot\beta+s_{\alpha}^{4}\cot^{4}\beta]\tan^{2}\beta}{v^{2}}M_{H}^{2}
+sβ[4cαcβsα+(1+cot4β)sα2sβ+cα2(1+cot4β)sβtan2β]v2M2,\displaystyle+\dfrac{s_{\beta}[4c_{\alpha}c_{\beta}s_{\alpha}+(1+\cot^{4}\beta)s_{\alpha}^{2}s_{\beta}+c_{\alpha}^{2}(1+\cot^{4}\beta)s_{\beta}\tan^{2}\beta]}{v^{2}}M^{2},
λhhH±H\displaystyle-\lambda_{hhH^{\pm}H^{\mp}} =\displaystyle= λ1sα2sβ2λ2cα2cβ2λ3(sα2cβ2+cα2sβ2)(λ4+λ5)cαsαs2β\displaystyle-\lambda_{1}s_{\alpha}^{2}s_{\beta}^{2}-\lambda_{2}c_{\alpha}^{2}c_{\beta}^{2}-\lambda_{3}(s_{\alpha}^{2}c_{\beta}^{2}+c_{\alpha}^{2}s_{\beta}^{2})-(\lambda_{4}+\lambda_{5})c_{\alpha}s_{\alpha}s_{2\beta} (61)
=\displaystyle= 2sαβ2v2MH±2s2α[3s2α+s2(α2β)+2s2β]4v2s2β2MH2\displaystyle-\dfrac{2s_{\alpha-\beta}^{2}}{v^{2}}M_{H^{\pm}}^{2}-\dfrac{s_{2\alpha}[3s_{2\alpha}+s_{2(\alpha-2\beta)}+2s_{2\beta}]}{4v^{2}s_{2\beta}^{2}}M_{H}^{2}
+(cα4cot2β+cαsα3cotβ+cα3sαtanβsα4tan2β)v2Mh2\displaystyle+\dfrac{(-c_{\alpha}^{4}\cot^{2}{\beta}+c_{\alpha}s_{\alpha}^{3}\cot\beta+c_{\alpha}^{3}s_{\alpha}\tan\beta-s_{\alpha}^{4}\tan^{2}\beta)}{v^{2}}M_{h}^{2}
+sβcβ[4cαsα+(1+cot4β)sα2tan3β+cα2(cot3β+tanβ)]v2M2,\displaystyle+\dfrac{s_{\beta}c_{\beta}[-4c_{\alpha}s_{\alpha}+(1+\cot^{4}\beta)s_{\alpha}^{2}\tan^{3}{\beta}+c_{\alpha}^{2}(\cot^{3}\beta+\tan\beta)]}{v^{2}}M^{2},
λhhG±G\displaystyle-\lambda_{hhG^{\pm}G^{\mp}} =\displaystyle= λ1sα2cβ2λ2cα2sβ2λ3(cα2cβ2+sα2sβ2)+(λ4+λ5)cαsαs2β\displaystyle-\lambda_{1}s_{\alpha}^{2}c_{\beta}^{2}-\lambda_{2}c_{\alpha}^{2}s_{\beta}^{2}-\lambda_{3}(c_{\alpha}^{2}c_{\beta}^{2}+s_{\alpha}^{2}s_{\beta}^{2})+(\lambda_{4}+\lambda_{5})c_{\alpha}s_{\alpha}s_{2\beta} (62)
=\displaystyle= 2cαβ2v2(M2MH±2)cαβ2s2αv2s2βMH2+3s2β+2s2α+s4α2β4v2s2βMh2,\displaystyle\dfrac{2c_{\alpha-\beta}^{2}}{v^{2}}(M^{2}-M_{H^{\pm}}^{2})-\dfrac{c_{\alpha-\beta}^{2}s_{2\alpha}}{v^{2}s_{2\beta}}M_{H}^{2}+\dfrac{-3s_{2\beta}+2s_{2\alpha}+s_{4\alpha-2\beta}}{4v^{2}s_{2\beta}}M_{h}^{2},
λHHG±G\displaystyle-\lambda_{HHG^{\pm}G^{\mp}} =\displaystyle= λ1cα2cβ2λ2sα2sβ2λ3(sα2cβ2+cα2sβ2)(λ4+λ5)cαsαs2β\displaystyle-\lambda_{1}c_{\alpha}^{2}c_{\beta}^{2}-\lambda_{2}s_{\alpha}^{2}s_{\beta}^{2}-\lambda_{3}(s_{\alpha}^{2}c_{\beta}^{2}+c_{\alpha}^{2}s_{\beta}^{2})-(\lambda_{4}+\lambda_{5})c_{\alpha}s_{\alpha}s_{2\beta} (63)
=\displaystyle= 2sαβ2v2(M2MH±2)+sαβ2s2αv2s2βMh2+3s2β2s2α+s4α2β4v2s2βMH2.\displaystyle\dfrac{2s_{\alpha-\beta}^{2}}{v^{2}}(M^{2}-M_{H^{\pm}}^{2})+\dfrac{s_{\alpha-\beta}^{2}s_{2\alpha}}{v^{2}s_{2\beta}}M_{h}^{2}+\dfrac{-3s_{2\beta}-2s_{2\alpha}+s_{4\alpha-2\beta}}{4v^{2}s_{2\beta}}M_{H}^{2}.

Additionally, we also derive the couplings relating to Goldstone bosons as follows:

KTHDM\displaystyle\mathcal{L}_{K}^{\text{THDM}} \displaystyle\supset 2MW2sWvAμW±,μG+4MW2sW2v2AμAμG±G\displaystyle\frac{2M_{W}^{2}s_{W}}{v}A_{\mu}W^{\pm,\mu}G^{\mp}+\frac{4M_{W}^{2}s_{W}^{2}}{v^{2}}A_{\mu}A^{\mu}G^{\pm}{G^{\mp}} (64)
+i2MWsWvAμ(GμG±G±μG)+\displaystyle+i\frac{2M_{W}s_{W}}{v}A^{\mu}(G^{\mp}\partial_{\mu}G^{\pm}-G^{\pm}\partial_{\mu}G^{\mp})+\cdots

From scalar potential, we have

𝒱(ϕ1,ϕ2)\displaystyle-\mathcal{V}(\phi_{1},\phi_{2}) \displaystyle\supset λhH±GhH±GλHH±GHH±G+\displaystyle-\lambda_{hH^{\pm}G^{\mp}}hH^{\pm}G^{\mp}-\lambda_{HH^{\pm}G^{\mp}}HH^{\pm}G^{\mp}+\cdots (65)

where the coefficients of the couplings are given by

λhH±G\displaystyle-\lambda_{hH^{\pm}G^{\mp}} =\displaystyle= ecαβ2MWsW(MH±2Mh2),\displaystyle\frac{ec_{\alpha-\beta}}{2M_{W}s_{W}}(M_{H^{\pm}}^{2}-M_{h}^{2}), (66)
λHH±G\displaystyle-\lambda_{HH^{\pm}G^{\mp}} =\displaystyle= esαβ2MWsW(MH±2MH2).\displaystyle\frac{es_{\alpha-\beta}}{2M_{W}s_{W}}(M_{H^{\pm}}^{2}-M_{H}^{2}). (67)

References

  • [1] G. Aad et al. [ATLAS], Phys. Rev. D 106 (2022) no.5, 052001 doi:10.1103/PhysRevD.106.052001 [arXiv:2112.11876 [hep-ex]].
  • [2] G. Aad et al. [ATLAS], Phys. Rev. Lett. 114 (2015) no.8, 081802 doi:10.1103/PhysRevLett.114.081802 [arXiv:1406.5053 [hep-ex]].
  • [3] G. Aad et al. [ATLAS], Eur. Phys. J. C 75 (2015) no.9, 412 doi:10.1140/epjc/s10052-015-3628-x [arXiv:1506.00285 [hep-ex]].
  • [4] G. Aad et al. [ATLAS], Phys. Rev. D 92 (2015), 092004 doi:10.1103/PhysRevD.92.092004 [arXiv:1509.04670 [hep-ex]].
  • [5] A. M. Sirunyan et al. [CMS], JHEP 01 (2018), 054 doi:10.1007/JHEP01(2018)054 [arXiv:1708.04188 [hep-ex]].
  • [6] M. Aaboud et al. [ATLAS], JHEP 11 (2018), 040 doi:10.1007/JHEP11(2018)040 [arXiv:1807.04873 [hep-ex]].
  • [7] A. M. Sirunyan et al. [CMS], Phys. Lett. B 788 (2019), 7-36 doi:10.1016/j.physletb.2018.10.056 [arXiv:1806.00408 [hep-ex]].
  • [8] A. M. Sirunyan et al. [CMS], JHEP 03 (2021), 257 doi:10.1007/JHEP03(2021)257 [arXiv:2011.12373 [hep-ex]].
  • [9] A. Tumasyan et al. [CMS], Phys. Rev. Lett. 129 (2022) no.8, 081802 doi:10.1103/PhysRevLett.129.081802 [arXiv:2202.09617 [hep-ex]].
  • [10] G. Aad et al. [ATLAS], JHEP 07 (2023), 040 doi:10.1007/JHEP07(2023)040 [arXiv:2209.10910 [hep-ex]].
  • [11] G. Aad et al. [ATLAS], Phys. Rev. D 108 (2023) no.5, 052003 doi:10.1103/PhysRevD.108.052003 [arXiv:2301.03212 [hep-ex]].
  • [12] G. Aad et al. [ATLAS], [arXiv:2406.09971 [hep-ex]].
  • [13] U. Baur, T. Plehn and D. L. Rainwater, Phys. Rev. Lett. 89 (2002), 151801 doi:10.1103/PhysRevLett.89.151801 [arXiv:hep-ph/0206024 [hep-ph]].
  • [14] U. Baur, T. Plehn and D. L. Rainwater, Phys. Rev. D 67 (2003), 033003 doi:10.1103/PhysRevD.67.033003 [arXiv:hep-ph/0211224 [hep-ph]].
  • [15] G. Weiglein et al. [LHC/LC Study Group], Phys. Rept. 426 (2006), 47-358 doi:10.1016/j.physrep.2005.12.003 [arXiv:hep-ph/0410364 [hep-ph]].
  • [16] H. Baer et al. [ILC], [arXiv:1306.6352 [hep-ph]].
  • [17] V. Shiltsev and F. Zimmermann, Rev. Mod. Phys. 93 (2021), 015006 doi:10.1103/RevModPhys.93.015006 [arXiv:2003.09084 [physics.acc-ph]].
  • [18] A. Arhrib, R. Benbrik, C. H. Chen, R. Guedes and R. Santos, JHEP 08 (2009), 035 doi:10.1088/1126-6708/2009/08/035 [arXiv:0906.0387 [hep-ph]].
  • [19] J. Grigo, J. Hoff, K. Melnikov and M. Steinhauser, Nucl. Phys. B 875 (2013), 1-17 doi:10.1016/j.nuclphysb.2013.06.024 [arXiv:1305.7340 [hep-ph]].
  • [20] D. Y. Shao, C. S. Li, H. T. Li and J. Wang, JHEP 07 (2013), 169 doi:10.1007/JHEP07(2013)169 [arXiv:1301.1245 [hep-ph]].
  • [21] U. Ellwanger, JHEP 08 (2013), 077 doi:10.1007/JHEP08(2013)077 [arXiv:1306.5541 [hep-ph]].
  • [22] C. Han, X. Ji, L. Wu, P. Wu and J. M. Yang, JHEP 04 (2014), 003 doi:10.1007/JHEP04(2014)003 [arXiv:1307.3790 [hep-ph]].
  • [23] A. J. Barr, M. J. Dolan, C. Englert and M. Spannowsky, Phys. Lett. B 728 (2014), 308-313 doi:10.1016/j.physletb.2013.12.011 [arXiv:1309.6318 [hep-ph]].
  • [24] D. de Florian and J. Mazzitelli, Phys. Rev. Lett. 111 (2013), 201801 doi:10.1103/PhysRevLett.111.201801 [arXiv:1309.6594 [hep-ph]].
  • [25] N. Haba, K. Kaneta, Y. Mimura and E. Tsedenbaljir, Phys. Rev. D 89 (2014) no.1, 015018 doi:10.1103/PhysRevD.89.015018 [arXiv:1311.0067 [hep-ph]].
  • [26] J. Cao, D. Li, L. Shang, P. Wu and Y. Zhang, JHEP 12 (2014), 026 doi:10.1007/JHEP12(2014)026 [arXiv:1409.8431 [hep-ph]].
  • [27] T. Enkhbat, JHEP 01 (2014), 158 doi:10.1007/JHEP01(2014)158 [arXiv:1311.4445 [hep-ph]].
  • [28] Q. Li, Q. S. Yan and X. Zhao, Phys. Rev. D 89 (2014) no.3, 033015 doi:10.1103/PhysRevD.89.033015 [arXiv:1312.3830 [hep-ph]].
  • [29] R. Frederix, S. Frixione, V. Hirschi, F. Maltoni, O. Mattelaer, P. Torrielli, E. Vryonidou and M. Zaro, Phys. Lett. B 732 (2014), 142-149 doi:10.1016/j.physletb.2014.03.026 [arXiv:1401.7340 [hep-ph]].
  • [30] J. Baglio, O. Eberhardt, U. Nierste and M. Wiebusch, Phys. Rev. D 90 (2014) no.1, 015008 doi:10.1103/PhysRevD.90.015008 [arXiv:1403.1264 [hep-ph]].
  • [31] D. E. Ferreira de Lima, A. Papaefstathiou and M. Spannowsky, JHEP 08 (2014), 030 doi:10.1007/JHEP08(2014)030 [arXiv:1404.7139 [hep-ph]].
  • [32] B. Hespel, D. Lopez-Val and E. Vryonidou, JHEP 09 (2014), 124 doi:10.1007/JHEP09(2014)124 [arXiv:1407.0281 [hep-ph]].
  • [33] V. Barger, L. L. Everett, C. B. Jackson, A. D. Peterson and G. Shaughnessy, Phys. Rev. Lett. 114 (2015) no.1, 011801 doi:10.1103/PhysRevLett.114.011801 [arXiv:1408.0003 [hep-ph]].
  • [34] J. Grigo, K. Melnikov and M. Steinhauser, Nucl. Phys. B 888 (2014), 17-29 doi:10.1016/j.nuclphysb.2014.09.003 [arXiv:1408.2422 [hep-ph]].
  • [35] F. Maltoni, E. Vryonidou and M. Zaro, JHEP 11 (2014), 079 doi:10.1007/JHEP11(2014)079 [arXiv:1408.6542 [hep-ph]].
  • [36] F. Goertz, A. Papaefstathiou, L. L. Yang and J. Zurita, JHEP 04 (2015), 167 doi:10.1007/JHEP04(2015)167 [arXiv:1410.3471 [hep-ph]].
  • [37] A. Azatov, R. Contino, G. Panico and M. Son, Phys. Rev. D 92 (2015) no.3, 035001 doi:10.1103/PhysRevD.92.035001 [arXiv:1502.00539 [hep-ph]].
  • [38] A. Papaefstathiou, Phys. Rev. D 91 (2015) no.11, 113016 doi:10.1103/PhysRevD.91.113016 [arXiv:1504.04621 [hep-ph]].
  • [39] R. Grober, M. Muhlleitner, M. Spira and J. Streicher, JHEP 09 (2015), 092 doi:10.1007/JHEP09(2015)092 [arXiv:1504.06577 [hep-ph]].
  • [40] D. de Florian and J. Mazzitelli, JHEP 09 (2015), 053 doi:10.1007/JHEP09(2015)053 [arXiv:1505.07122 [hep-ph]].
  • [41] H. J. He, J. Ren and W. Yao, Phys. Rev. D 93 (2016) no.1, 015003 doi:10.1103/PhysRevD.93.015003 [arXiv:1506.03302 [hep-ph]].
  • [42] J. Grigo, J. Hoff and M. Steinhauser, Nucl. Phys. B 900 (2015), 412-430 doi:10.1016/j.nuclphysb.2015.09.012 [arXiv:1508.00909 [hep-ph]].
  • [43] W. J. Zhang, W. G. Ma, R. Y. Zhang, X. Z. Li, L. Guo and C. Chen, Phys. Rev. D 92 (2015), 116005 doi:10.1103/PhysRevD.92.116005 [arXiv:1512.01766 [hep-ph]].
  • [44] A. Agostini, G. Degrassi, R. Gröber and P. Slavich, JHEP 04 (2016), 106 doi:10.1007/JHEP04(2016)106 [arXiv:1601.03671 [hep-ph]].
  • [45] R. Grober, M. Muhlleitner and M. Spira, JHEP 06 (2016), 080 doi:10.1007/JHEP06(2016)080 [arXiv:1602.05851 [hep-ph]].
  • [46] G. Degrassi, P. P. Giardino and R. Gröber, Eur. Phys. J. C 76 (2016) no.7, 411 doi:10.1140/epjc/s10052-016-4256-9 [arXiv:1603.00385 [hep-ph]].
  • [47] S. Kanemura, K. Kaneta, N. Machida, S. Odori and T. Shindou, Phys. Rev. D 94 (2016) no.1, 015028 doi:10.1103/PhysRevD.94.015028 [arXiv:1603.05588 [hep-ph]].
  • [48] D. de Florian, M. Grazzini, C. Hanga, S. Kallweit, J. M. Lindert, P. Maierhöfer, J. Mazzitelli and D. Rathlev, JHEP 09 (2016), 151 doi:10.1007/JHEP09(2016)151 [arXiv:1606.09519 [hep-ph]].
  • [49] S. Borowka, N. Greiner, G. Heinrich, S. P. Jones, M. Kerner, J. Schlenk and T. Zirke, JHEP 10 (2016), 107 doi:10.1007/JHEP10(2016)107 [arXiv:1608.04798 [hep-ph]].
  • [50] F. Bishara, R. Contino and J. Rojo, Eur. Phys. J. C 77 (2017) no.7, 481 doi:10.1140/epjc/s10052-017-5037-9 [arXiv:1611.03860 [hep-ph]].
  • [51] Q. H. Cao, G. Li, B. Yan, D. M. Zhang and H. Zhang, Phys. Rev. D 96 (2017) no.9, 095031 doi:10.1103/PhysRevD.96.095031 [arXiv:1611.09336 [hep-ph]].
  • [52] K. Nakamura, K. Nishiwaki, K. y. Oda, S. C. Park and Y. Yamamoto, Eur. Phys. J. C 77 (2017) no.5, 273 doi:10.1140/epjc/s10052-017-4835-4 [arXiv:1701.06137 [hep-ph]].
  • [53] R. Grober, M. Muhlleitner and M. Spira, Nucl. Phys. B 925 (2017), 1-27 doi:10.1016/j.nuclphysb.2017.10.002 [arXiv:1705.05314 [hep-ph]].
  • [54] G. Heinrich, S. P. Jones, M. Kerner, G. Luisoni and E. Vryonidou, JHEP 08 (2017), 088 doi:10.1007/JHEP08(2017)088 [arXiv:1703.09252 [hep-ph]].
  • [55] S. Jones and S. Kuttimalai, JHEP 02 (2018), 176 doi:10.1007/JHEP02(2018)176 [arXiv:1711.03319 [hep-ph]].
  • [56] J. Davies, G. Mishima, M. Steinhauser and D. Wellmann, JHEP 03 (2018), 048 doi:10.1007/JHEP03(2018)048 [arXiv:1801.09696 [hep-ph]].
  • [57] D. Gonçalves, T. Han, F. Kling, T. Plehn and M. Takeuchi, Phys. Rev. D 97 (2018) no.11, 113004 doi:10.1103/PhysRevD.97.113004 [arXiv:1802.04319 [hep-ph]].
  • [58] J. Chang, K. Cheung, J. S. Lee, C. T. Lu and J. Park, Phys. Rev. D 100 (2019) no.9, 096001 doi:10.1103/PhysRevD.100.096001 [arXiv:1804.07130 [hep-ph]].
  • [59] G. Buchalla, M. Capozi, A. Celis, G. Heinrich and L. Scyboz, JHEP 09 (2018), 057 doi:10.1007/JHEP09(2018)057 [arXiv:1806.05162 [hep-ph]].
  • [60] R. Bonciani, G. Degrassi, P. P. Giardino and R. Gröber, Phys. Rev. Lett. 121 (2018) no.16, 162003 doi:10.1103/PhysRevLett.121.162003 [arXiv:1806.11564 [hep-ph]].
  • [61] P. Banerjee, S. Borowka, P. K. Dhani, T. Gehrmann and V. Ravindran, JHEP 11 (2018), 130 doi:10.1007/JHEP11(2018)130 [arXiv:1809.05388 [hep-ph]].
  • [62] A. A H, P. Banerjee, A. Chakraborty, P. K. Dhani, P. Mukherjee, N. Rana and V. Ravindran, JHEP 05 (2019), 030 doi:10.1007/JHEP05(2019)030 [arXiv:1811.01853 [hep-ph]].
  • [63] J. Baglio, F. Campanario, S. Glaus, M. Mühlleitner, M. Spira and J. Streicher, Eur. Phys. J. C 79 (2019) no.6, 459 doi:10.1140/epjc/s10052-019-6973-3 [arXiv:1811.05692 [hep-ph]].
  • [64] J. Davies, F. Herren, G. Mishima and M. Steinhauser, JHEP 05 (2019), 157 doi:10.1007/JHEP05(2019)157 [arXiv:1904.11998 [hep-ph]].
  • [65] J. Davies, G. Heinrich, S. P. Jones, M. Kerner, G. Mishima, M. Steinhauser and D. Wellmann, JHEP 11 (2019), 024 doi:10.1007/JHEP11(2019)024 [arXiv:1907.06408 [hep-ph]].
  • [66] L. B. Chen, H. T. Li, H. S. Shao and J. Wang, Phys. Lett. B 803 (2020), 135292 doi:10.1016/j.physletb.2020.135292 [arXiv:1909.06808 [hep-ph]].
  • [67] L. B. Chen, H. T. Li, H. S. Shao and J. Wang, JHEP 03 (2020), 072 doi:10.1007/JHEP03(2020)072 [arXiv:1912.13001 [hep-ph]].
  • [68] J. Baglio, F. Campanario, S. Glaus, M. Mühlleitner, J. Ronca, M. Spira and J. Streicher, JHEP 04 (2020), 181 doi:10.1007/JHEP04(2020)181 [arXiv:2003.03227 [hep-ph]].
  • [69] G. Wang, Y. Wang, X. Xu, Y. Xu and L. L. Yang, Phys. Rev. D 104 (2021) no.5, L051901 doi:10.1103/PhysRevD.104.L051901 [arXiv:2010.15649 [hep-ph]].
  • [70] H. Abouabid, A. Arhrib, D. Azevedo, J. E. Falaki, P. M. Ferreira, M. Mühlleitner and R. Santos, JHEP 09 (2022), 011 doi:10.1007/JHEP09(2022)011 [arXiv:2112.12515 [hep-ph]].
  • [71] J. Davies, G. Mishima, K. Schönwald, M. Steinhauser and H. Zhang, JHEP 08 (2022), 259 doi:10.1007/JHEP08(2022)259 [arXiv:2207.02587 [hep-ph]].
  • [72] D. He, T. F. Feng, J. L. Yang, G. Z. Ning, H. B. Zhang and X. X. Dong, J. Phys. G 49 (2022) no.8, 085002 doi:10.1088/1361-6471/ac77a8 [arXiv:2206.04450 [hep-ph]].
  • [73] A. A H and H. S. Shao, JHEP 02 (2023), 067 doi:10.1007/JHEP02(2023)067 [arXiv:2209.03914 [hep-ph]].
  • [74] S. Iguro, T. Kitahara, Y. Omura and H. Zhang, Phys. Rev. D 107 (2023) no.7, 075017 doi:10.1103/PhysRevD.107.075017 [arXiv:2211.00011 [hep-ph]].
  • [75] S. Alioli, G. Billis, A. Broggio, A. Gavardi, S. Kallweit, M. A. Lim, G. Marinelli, R. Nagar and D. Napoletano, JHEP 06 (2023), 205 doi:10.1007/JHEP06(2023)205 [arXiv:2212.10489 [hep-ph]].
  • [76] J. Davies, K. Schönwald, M. Steinhauser and H. Zhang, JHEP 10 (2023), 033 doi:10.1007/JHEP10(2023)033 [arXiv:2308.01355 [hep-ph]].
  • [77] E. Bagnaschi, G. Degrassi and R. Gröber, Eur. Phys. J. C 83 (2023) no.11, 1054 doi:10.1140/epjc/s10052-023-12238-8 [arXiv:2309.10525 [hep-ph]].
  • [78] J. Davies, K. Schönwald, M. Steinhauser and M. Vitti, [arXiv:2405.20372 [hep-ph]].
  • [79] V. Brigljevic, D. Ferencek, G. Landsberg, T. Robens, M. Stamenkovic, T. Susa, H. Abouabid, A. Arhrib, H. Arnold and D. Azevedo, et al. [arXiv:2407.03015 [hep-ph]].
  • [80] G. V. Jikia, Nucl. Phys. B 412 (1994), 57-78 doi:10.1016/0550-3213(94)90494-4.
  • [81] L. Z. Sun and Y. Y. Liu, Phys. Rev. D 54 (1996), 3563-3569 doi:10.1103/PhysRevD.54.3563.
  • [82] S. H. Zhu, C. S. Li and C. S. Gao, Phys. Rev. D 58 (1998), 015006 doi:10.1103/PhysRevD.58.015006 [arXiv:hep-ph/9710424 [hep-ph]].
  • [83] S. H. Zhu, J. Phys. G 24 (1998), 1703-1721 doi:10.1088/0954-3899/24/9/005.
  • [84] G. J. Gounaris and P. I. Porfyriadis, Eur. Phys. J. C 18 (2000), 181-193 doi:10.1007/s100520000520 [arXiv:hep-ph/0007110 [hep-ph]].
  • [85] Y. J. Zhou, W. G. Ma, H. S. Hou, R. Y. Zhang, P. J. Zhou and Y. B. Sun, Phys. Rev. D 68 (2003), 093004 doi:10.1103/PhysRevD.68.093004 [arXiv:hep-ph/0308226 [hep-ph]].
  • [86] F. Cornet and W. Hollik, Phys. Lett. B 669 (2008), 58-61 doi:10.1016/j.physletb.2008.09.035 [arXiv:0808.0719 [hep-ph]].
  • [87] E. Asakawa, D. Harada, S. Kanemura, Y. Okada and K. Tsumura, Phys. Lett. B 672 (2009), 354-360 doi:10.1016/j.physletb.2009.01.050 [arXiv:0809.0094 [hep-ph]].
  • [88] E. Asakawa, D. Harada, S. Kanemura, Y. Okada and K. Tsumura, [arXiv:0902.2458 [hep-ph]].
  • [89] T. Takahashi, N. Maeda, K. Ikematsu, K. Fujii, E. Asakawa, D. Harada, S. Kanemura, Y. Kurihara and Y. Okada, [arXiv:0902.3377 [hep-ex]].
  • [90] R. N. Hodgkinson, D. Lopez-Val and J. Sola, Phys. Lett. B 673 (2009), 47-56 doi:10.1016/j.physletb.2009.02.009 [arXiv:0901.2257 [hep-ph]].
  • [91] A. Arhrib, R. Benbrik, C. H. Chen and R. Santos, Phys. Rev. D 80 (2009), 015010 doi:10.1103/PhysRevD.80.015010 [arXiv:0901.3380 [hep-ph]].
  • [92] E. Asakawa, D. Harada, S. Kanemura, Y. Okada and K. Tsumura, Phys. Rev. D 82 (2010), 115002 doi:10.1103/PhysRevD.82.115002 [arXiv:1009.4670 [hep-ph]].
  • [93] J. Hernandez-Sanchez, C. G. Honorato, M. A. Perez and J. J. Toscano, Phys. Rev. D 85 (2012), 015020 doi:10.1103/PhysRevD.85.015020 [arXiv:1108.4074 [hep-ph]].
  • [94] W. Ma, C. X. Yue and T. T. Zhang, Chin. Phys. C 35 (2011), 333-338 doi:10.1088/1674-1137/35/4/003.
  • [95] J. Sola and D. Lopez-Val, Nuovo Cim. C 34S1 (2011), 57-67 doi:10.1393/ncc/i2011-11002-1 [arXiv:1107.1305 [hep-ph]].
  • [96] Z. Heng, L. Shang and P. Wan, JHEP 10 (2013), 047 doi:10.1007/JHEP10(2013)047 [arXiv:1306.0279 [hep-ph]].
  • [97] M. Chiesa, B. Mele and F. Piccinini, Eur. Phys. J. C 84 (2024) no.5, 543 doi:10.1140/epjc/s10052-024-12882-8 [arXiv:2109.10109 [hep-ph]].
  • [98] B. Samarakoon and T. M. Figy, Phys. Rev. D 109 (2024) no.7, 075015 doi:10.1103/PhysRevD.109.075015 [arXiv:2312.12594 [hep-ph]].
  • [99] M. Demirci, Turk. J. Phys. 43 (2019) no.5, 442-458 doi:10.3906/fiz-1903-15 [arXiv:1902.07236 [hep-ph]].
  • [100] T. Hahn and M. Perez-Victoria, Comput. Phys. Commun. 118 (1999), 153-165.
  • [101] A. Denner, S. Dittmaier and L. Hofer, Comput. Phys. Commun. 212 (2017), 220-238 doi:10.1016/j.cpc.2016.10.013 [arXiv:1604.06792 [hep-ph]].
  • [102] T. Hahn, Comput. Phys. Commun. 140 (2001), 418-431 doi:10.1016/S0010-4655(01)00290-9 [arXiv:hep-ph/0012260 [hep-ph]].
  • [103] T. Hahn, [arXiv:hep-ph/9905354 [hep-ph]].
  • [104] D. Borah and J. M. Cline, Phys. Rev. D 86 (2012), 055001 doi:10.1103/PhysRevD.86.055001 [arXiv:1204.4722 [hep-ph]].
  • [105] M. Gustafsson, S. Rydbeck, L. Lopez-Honorez and E. Lundstrom, Phys. Rev. D 86 (2012), 075019 doi:10.1103/PhysRevD.86.075019 [arXiv:1206.6316 [hep-ph]].
  • [106] A. Arhrib, R. Benbrik and N. Gaur, Phys. Rev. D 85 (2012), 095021 doi:10.1103/PhysRevD.85.095021 [arXiv:1201.2644 [hep-ph]].
  • [107] M. Klasen, C. E. Yaguna and J. D. Ruiz-Alvarez, Phys. Rev. D 87 (2013), 075025 doi:10.1103/PhysRevD.87.075025 [arXiv:1302.1657 [hep-ph]].
  • [108] M. Krawczyk, D. Sokolowska, P. Swaczyna and B. Swiezewska, JHEP 09 (2013), 055 doi:10.1007/JHEP09(2013)055 [arXiv:1305.6266 [hep-ph]].
  • [109] A. Arhrib, R. Benbrik and T. C. Yuan, Eur. Phys. J. C 74 (2014), 2892 doi:10.1140/epjc/s10052-014-2892-5 [arXiv:1401.6698 [hep-ph]].
  • [110] N. Chakrabarty, D. K. Ghosh, B. Mukhopadhyaya and I. Saha, Phys. Rev. D 92 (2015) no.1, 015002 doi:10.1103/PhysRevD.92.015002 [arXiv:1501.03700 [hep-ph]].
  • [111] A. Ilnicka, M. Krawczyk and T. Robens, Phys. Rev. D 93 (2016) no.5, 055026 doi:10.1103/PhysRevD.93.055026 [arXiv:1508.01671 [hep-ph]].
  • [112] A. Datta, N. Ganguly, N. Khan and S. Rakshit, Phys. Rev. D 95 (2017) no.1, 015017 doi:10.1103/PhysRevD.95.015017 [arXiv:1610.00648 [hep-ph]].
  • [113] J. Kalinowski, W. Kotlarski, T. Robens, D. Sokolowska and A. F. Zarnecki, JHEP 12 (2018), 081 doi:10.1007/JHEP12(2018)081 [arXiv:1809.07712 [hep-ph]].
  • [114] D. Dercks and T. Robens, Eur. Phys. J. C 79 (2019) no.11, 924 doi:10.1140/epjc/s10052-019-7436-6 [arXiv:1812.07913 [hep-ph]].
  • [115] C. W. Chiang and K. Yagyu, Phys. Rev. D 87 (2013) no.3, 033003 doi:10.1103/PhysRevD.87.033003 [arXiv:1207.1065 [hep-ph]].
  • [116] R. Benbrik, M. Boukidi, M. Ouchemhou, L. Rahili and O. Tibssirte, Nucl. Phys. B 990 (2023), 116154 doi:10.1016/j.nuclphysb.2023.116154 [arXiv:2211.12546 [hep-ph]].
  • [117] G. C. Branco, P. M. Ferreira, L. Lavoura, M. N. Rebelo, M. Sher and J. P. Silva, Phys. Rept. 516 (2012), 1-102 doi:10.1016/j.physrep.2012.02.002 [arXiv:1106.0034 [hep-ph]].
  • [118] M. Aoki, S. Kanemura, K. Tsumura and K. Yagyu, Phys. Rev. D 80 (2009), 015017 doi:10.1103/PhysRevD.80.015017 [arXiv:0902.4665 [hep-ph]].
  • [119] S. Nie and M. Sher, Phys. Lett. B 449 (1999), 89-92 doi:10.1016/S0370-2693(99)00019-2 [arXiv:hep-ph/9811234 [hep-ph]].
  • [120] S. Kanemura, T. Kasai and Y. Okada, Phys. Lett. B 471 (1999), 182-190 doi:10.1016/S0370-2693(99)01351-9 [arXiv:hep-ph/9903289 [hep-ph]].
  • [121] A. G. Akeroyd, A. Arhrib and E. M. Naimi, Phys. Lett. B 490 (2000), 119-124 doi:10.1016/S0370-2693(00)00962-X [arXiv:hep-ph/0006035 [hep-ph]].
  • [122] I. F. Ginzburg and I. P. Ivanov, Phys. Rev. D 72 (2005), 115010 doi:10.1103/PhysRevD.72.115010 [arXiv:hep-ph/0508020 [hep-ph]].
  • [123] S. Kanemura, Y. Okada, H. Taniguchi and K. Tsumura, Phys. Lett. B 704 (2011), 303-307 doi:10.1016/j.physletb.2011.09.035 [arXiv:1108.3297 [hep-ph]].
  • [124] S. Kanemura and K. Yagyu, Phys. Lett. B 751 (2015), 289-296 doi:10.1016/j.physletb.2015.10.047 [arXiv:1509.06060 [hep-ph]].
  • [125] L. Bian and N. Chen, JHEP 09 (2016), 069 doi:10.1007/JHEP09(2016)069 [arXiv:1607.02703 [hep-ph]].
  • [126] W. Xie, R. Benbrik, A. Habjia, S. Taj, B. Gong and Q. S. Yan, Phys. Rev. D 103 (2021) no.9, 095030 doi:10.1103/PhysRevD.103.095030 [arXiv:1812.02597 [hep-ph]].
  • [127] J. Haller, A. Hoecker, R. Kogler, K. Mönig, T. Peiffer and J. Stelzer, Eur. Phys. J. C 78 (2018) no.8, 675 doi:10.1140/epjc/s10052-018-6131-3 [arXiv:1803.01853 [hep-ph]].
  • [128] K. H. Phan, D. T. Tran and T. H. Nguyen, PTEP 2024 (2024) no.8, 083B02 doi:10.1093/ptep/ptae103 [arXiv:2404.02417 [hep-ph]].
  • [129] K. H. Phan, D. T. Tran and T. H. Nguyen, [arXiv:2406.15749 [hep-ph]].