This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Probing |Vcs||V_{cs}| and lepton flavor universality through DK0(1430)νD\to K_{0}^{\ast}(1430)\ell\nu_{\ell} decays

Yin-Long Yang    Hai-Jiang Tian111Yin-Long Yang and Hai-Jiang Tian contributed equally to this work.    Ya-Xiong Wang Department of Physics, Guizhou Minzu University, Guiyang 550025, People’s Republic of China    Hai-Bing Fu [email protected] (corresponding author)    Tao Zhong [email protected]    Sheng-Quan Wang [email protected] Department of Physics, Guizhou Minzu University, Guiyang 550025, People’s Republic of China Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, P.R.China    Dong Huang Center of Experimental Training, Guiyang Institute of Information Science and Technology, Guiyang 550025, People’s Republic of China
Abstract

In this paper, we calculate the semileptonic decays DK0(1430)νD\to K_{0}^{\ast}(1430)\ell\nu_{\ell} with =(e,μ)\ell=(e,\mu) induced by csνc\to s\ell\nu_{\ell} transition. For the key component, DK0(1430)D\to K_{0}^{\ast}(1430) transition form factors (TFFs) f±(q2)f_{\pm}(q^{2}) are calculated within the framework of QCD light cone sum rule. Then, we consider two scenarios for K0(1430)K_{0}^{\ast}(1430)-meson twist-2 distribution amplitude. For the scenario 1 (S1), we take the truncated form based on Gegenbauer polynomial series. Meanwhile, we also consider the scenario 2 (S2) constructed by light cone harmonic oscillator model, where the model parameters are fixed by the K0(1430)K_{0}^{\ast}(1430)-meson twist-2 distribution amplitude tenth-order ξ\xi moments calculated by using the background field theory. For the TFFs at a large recoil point, we have f+(S1)(0)=0.5970.121+0.122f_{+}^{\rm(S1)}(0)=0.597^{+0.122}_{-0.121} and f(S1)(0)=0.1360.035+0.023f_{-}^{\rm(S1)}(0)=-0.136^{+0.023}_{-0.035}, f+(S2)(0)=0.6630.134+0.135f_{+}^{\rm(S2)}(0)=0.663^{+0.135}_{-0.134}, and f(S2)(0)=0.2020.046+0.026f_{-}^{\rm(S2)}(0)=-0.202^{+0.026}_{-0.046}. After extrapolating TFFs to the whole physical q2q^{2} region, we calculate the branching fractions of D0K0+(1430)ν¯D^{0}\to K_{0}^{\ast+}(1430)\ell^{-}\bar{\nu}_{\ell} and D+K00(1430)+νD^{+}\to K_{0}^{\ast 0}(1430)\ell^{+}\nu_{\ell}, which at 10410^{-4}-order level for the S1 and S2 cases. Meanwhile, we predict the CKM matrix |Vcs|(S1)=0.9730.183+0.259,|Vcs|(S2)=0.8800.165+0.234|V_{cs}|^{\rm(S1)}=0.973^{+0.259}_{-0.183},|V_{cs}|^{\rm(S2)}=0.880^{+0.234}_{-0.165}, and lepton flavor universality K0(S1)=0.7680.368+0.560,K0(S2)=0.7640.365+0.555\mathcal{R}^{\rm(S1)}_{K_{0}^{*}}=0.768^{+0.560}_{-0.368},\mathcal{R}_{K_{0}^{*}}^{\rm(S2)}=0.764^{+0.555}_{-0.365}. Finally, we discuss the angular observables of forward-backward asymmetries, lepton polarization asymmetries, and q2q^{2}-differential flat terms for this decay.

I Introduction

As the lightest particle containing the cc quark, the exclusive semileptonic decay processes of DD meson are highly valuable in enhancing our understanding of weak and strong interactions within the framework of the Standard Model (SM). The Cabibbo-Kobayashi-Maskawa (CKM) matrix elements describe the flavor-changing transitions involving quarks that can be determined by semileptonic decays. The binding effect of strong interaction is limited to a hadronic current, which can be parametrized by the form factors, which are viewed as one of the most important precision tests of the SM CLEO:2008bkh . From this point, the semileptonic decay of charm mesons plays an important role in the determination of CKM matrix elements Cabibbo-favored |Vcs||V_{cs}|, and Cabibbo-suppressed |Vcd||V_{cd}|.

Experimentally, the charmed DD-meson semileptonic decay processes have been measured by the BESIII Collaboration Liu:2019tsi ; Zhang:2019tcs ; Yang:2018qdx ; BESIII:2016gbw ; BESIII:2021mfl ; BESIII:2015tql ; BESIII:2021pvy ; BESIII:2015kin and the CLEO Collaboration CLEO:2011ab ; CLEO:2004arv ; CLEO:2009dyb ; CLEO:2009svp ; CLEO:2005rxg , etc. In which, for DP,V+νD\to P,V+\ell\nu_{\ell} (PP and VV stand for pseudoscalar and vector mesons, respectively), its discussion is quite mature now, and the experimental and theoretical groups are still trying to improve the accuracy of the relevant calculations. The precision of the measurement has been continuously improved in recent years. However, there are few experimental studies on scalar mesons. It is known that only BESIII BESIII:2018qmf ; BESIII:2018sjg ; BESIII:2023wgr ; BESIII:2021drk ; BESIII:2023opt ; BESIII:2021tfk and CLEO CLEO:2009ugx ; CLEO:2009dyb have studied the semileptonic decays of D(s)D_{(s)} to a0(980),f0(500)a_{0}(980),f_{0}(500) or f0(980)f_{0}(980), which all involve only a uu and dd quark, without considering scalar mesons containing an s quark. Particularly, for DD-meson semileptonic decays into one scalar meson, the BESIII Collaboration reported the D0(+)a0(980)(0)e+νeD^{0(+)}\to a_{0}(980)^{-(0)}e^{+}\nu_{e} decays with a significance of 6.4σ6.4\sigma and 2.9σ2.9\sigma, respectively, by utilizing the e+ee^{+}e^{-} collision data sample of 2.93fb12.93~{}\rm{fb}^{-1} collected at a center-of-mass energy of 3.773GeV3.773~{}\rm{GeV} with the order of the absolute branching fractions of 10410^{-4} BESIII:2018sjg . Recently, the BESIII Collaboration measured a branching ratio of 10310^{-3} for Ds+f0(980)e+νeD^{+}_{s}\to f_{0}(980)e^{+}\nu_{e} based on a data with integrated luminosity of 7.33fb17.33~{}\rm{fb}^{-1} at 4.1284.128 and 4.226GeV4.226~{}\rm{GeV} BESIII:2023wgr . Presently, for scalar mesons like a0(980)a_{0}(980) and f0(980)f_{0}(980), despite the remarkable progress made by the quark model in explaining the majority of hadronic states over the past decades, their internal structures have remained a subject of intense theoretical and experimental scrutiny and controversy. As for semileptonic decays DK0(1430)νD\to K_{0}^{*}(1430)\ell\nu_{\ell}, the FOCUS Collaboration presented the ratio Γ(D+K¯0(1430)0μ+ν)/Γ(D+Kπ+μ+ν)<0.64%\Gamma(D^{+}\to\bar{K}^{\ast}_{0}(1430)^{0}\mu^{+}\nu)/\Gamma(D^{+}\to K^{-}\pi^{+}\mu^{+}\nu)<0.64\%, which is from the discussion about the hadronic mass spectrum analysis of D+Kπ+μ+νD^{+}\to K^{-}\pi^{+}\mu^{+}\nu FOCUS:2005iqy . Till now, there is no experimental result for DK0(1430)νD\to K_{0}^{*}(1430)\ell\nu_{\ell} directly. But the observables for the decay processes with K0(1430)K_{0}^{\ast}(1430) finial state also can provide valuable insights for further understanding the internal nature of scalar meson. So, it is meaningful to have a deep look into the semileptonic DK0(1430)νD\to K_{0}^{\ast}(1430)\ell\nu_{\ell} with csνc\to s\ell\nu_{\ell} transition, which is the main purpose of this work.

The structures of light scalar mesons are a long standing puzzle. Currently, the internal structure of scalar mesons is considered to be in the form of qq¯q\bar{q} states Cheng:2005nb , qqq¯q¯qq\bar{q}\bar{q} states Jaffe:1976ig , molecular states Weinstein:1990gu , glueball states Weinstein:1982gc , or hybrid states Weinstein:1983gd . Among them, the view that scalar mesons above 1 GeV are dominantly composed of as qq¯q\bar{q} states is more widely accepted by the public Aliev:2007rq ; Du:2004ki ; Aslam:2009cv ; Sun:2010nv ; Wang:2014vra ; Wang:2014upa ; Khosravi:2022fzo ; Khosravi:2024zaj ; Yang:2005bv ; Agaev:2018fvz . The controversy surrounding the internal structure of scalar mesons below 1 GeV has always been relatively prominent. Recently, from a survey of the accumulated experimental data, two viable and publicly acceptable theoretical schemes for studying scalar mesons have been proposed Cheng:2005nb . For one picture (P1), the light scalar mesons f0(980),a0(980),K0(700)f_{0}(980),a_{0}(980),K_{0}^{*}(700), etc., are seen as the ground qq¯q\bar{q} states, and nonet mesons near 1.5GeV1.5~{}\rm{GeV} are interpreted as the first excited states. For another picture (P2), f0(1370),a0(1450),K0(1430)f_{0}(1370),a_{0}(1450),K_{0}^{\ast}(1430), etc., are treated as lowest-lying PP-wave qq¯q\bar{q} states and nonet mesons below 1GeV1~{}\rm{GeV} are viewed as four-quark bound states Lee:2022jjn ; Humanic:2022hpq ; Brito:2004tv ; Alexandrou:2017itd ; Klempt:2007cp . As early as 2002, the Ref. Dosch:2002rh studies the semileptonic decay DκνD\to\kappa\ell\nu_{\ell} in three point QCD sum rule (3PSR), where the κ\kappa (also known as K0(700)K_{0}^{*}(700)) is treated as qq¯q\bar{q} bound states. This falls under the first picture, and recently, the BESIII collaboration have study the charmed meson semileptonic decay into scalar states below 1 GeV BESIII:2024zvp ; BESIII:2024lnh ; BESIII:2023wgr , which give the result f+(0)f^{+}(0) at large recoil region. In this context, if we discuss the semi-leptonic decay of the DD meson into the first excited state K0(1430)K_{0}^{*}(1430) using the QCD sum rule method, we need to clearly understand that there will be interference between the light-cone distribution amplitudes (LCDA) of K0(700)K_{0}^{*}(700) and K0(1430)K_{0}^{*}(1430). Specifically, when calculating the ξ\xi-moment of the K0(1430)K_{0}^{*}(1430) LCDA, the contribution from the ground state K0(700)K_{0}^{*}(700) cannot be ignored. This point is evident from the hadronic expression. In addition, from another perspective, the recent review by the Particle Data Group (PDG) mentions that scalar mesons below 1 GeV are recognized as four-quark states dominantly ParticleDataGroup:2024cfk . Based on this view, some research groups can provide more reasonable explanations for its properties, corresponding quantum numbers, low masses and mass level inside the light nonets of these scalar mesons below 1 GeV Weinstein:1990gu ; Weinstein:1982gc . Meanwhile, if consider to study the scalar mesons mass spectrum and their strong decay and electromagnetic decays, the tetraquark picture is also reasonable Jaffe:1976ig ; Alford:2000mm . Within this case, due to the different internal structures of K0(700)K_{0}^{*}(700) and K0(1430)K_{0}^{*}(1430), the interference issue mentioned earlier regarding the LCDA will not occur. Thus, in this paper, we mainly focus on P2 scenario mentioned above for describing scalar mesons, and treat K0(1430)K_{0}^{*}(1430) as a sq¯s\bar{q} or qs¯q\bar{s} ground state for relevant calculations of DK0(1430)νD\to K_{0}^{\ast}(1430)\ell\nu_{\ell}. At the same time, we will also simply discuss the interference of the two state since K0(700)K_{0}^{*}(700) is taken as qq¯q\bar{q} state from P1 scenario.

Furthermore, the DK0(1430)D\to K_{0}^{\ast}(1430) transition form factors (TFFs) are crucial components in this decay within the SM, which can be calculated by various nonperturbative methods, such as 3PSR Yang:2005bv , the covariant light-front approach (CLF) Cheng:2003sm , and generalized factorization model (GFM) Cheng:2002ai . As an transitional SVZSR, the 3PSR approach has been proved to be quite success, which have achieved good results in the TFFs for DD-meson semileptonic decays Colangelo:2001cv ; Du:2003ja ; Ball:1993tp ; Ball:1991bs . The light cone sum rules (LCSR) method was developed since 1980s Balitsky:1989ry ; Chernyak:1990ag , is an effective combination of SVZSR technique and hard exclusive process theory, and is regarded as an advanced tool for dealing with exclusive heavy-to-light processes Cheng:2017bzz ; Tian:2023vbh ; Gao:2019lta ; Duplancic:2008ix . Both methods have their respective advantages. For instance, in 3PSR, the non-perturbative dynamics are parameterized as vacuum condensates. These vacuum condensates of each dimension are the trivial and general parameters which are independence from the processes. By determining two Borel parameters M12M_{1}^{2} and M22M_{2}^{2}, as well as two threshold s10s_{1}^{0} and s20s_{2}^{0}, which are made by double Borel transformation and double dispersion relation in 3PSR, the good predictions for the TFFs can be obtained. On the other hand, the advantage of the LCSR lies in the less parameters in the hadronic expression that have single Borel parameter M2M^{2} and and one threshold s0s_{0}. The range of these two parameters can be obtained by standard criteria in LCSR Hu:2021zmy . With the LCDA of the final-state meson determined, reliable TFF results can also be achieved. Till now, 3PSR and LCSR still have some weakness in determine the parameters. Therefore, we should deeply study different processes and gradually reduce the error of parameters in the sum rule approach to obtain more accurate results. In our previous work, the DsK0(1430)D_{s}\to K_{0}^{\ast}(1430) with cdc\to d transition has been studied by the LCSR approach Huang:2022xny , which has provided us with positive feedback. So the Cabibbo-favored channel DK0(1430)D\to K_{0}^{\ast}(1430) with a csc\to s transition can also be researched by the LCSR approach.

As one of the most important nonperturbative parameters, K0(1430)K_{0}^{\ast}(1430)-meson LCDAs, including long-distance dynamics at a lower energy scale, are critical to the behavior of TFFs. Thus, a detailed investigation of LCDAs is conducive to enhancing the precision of the calculation of TFFs. Theoretically, the QCDSR Cheng:2005nb and CLF approach Chen:2021oul present the K0(1430)K_{0}^{\ast}(1430)-meson leading-twist LCDAs. As we know, the K0(1430)K_{0}^{\ast}(1430)-meson leading-twist LCDA can be expanded with a series of Gegenbauer coefficients (also called Gegenbauer moments), which can be calculated by the QCD sum rule approach. One often takes the first few order Gegenbauer moments, which lead to the truncated form (TF) to avoid false oscillation from the higher order moments, such as the pion and kaon twist-2 LCDA up to second order calculated by QCDSR LatticeParton:2022zqc , and ρ\rho, KK^{*}, ϕ\phi-meson longitudinal and transverse leading-twist LCDAs up to second order from QCDSR Ball:2007zt . Recently, the lattice QCD proved the effectiveness of the TF from LatticeParton:2022zqc ; Hua:2020gnw . Meanwhile, we have calculated the first ten-order ξ\xi-moments of K0(1430)K_{0}^{\ast}(1430)-meson leading-twist LCDA by using the QCDSRs within the framework of background field theory (BFT) Huang:2022xny . Thus, in this paper, we will take the first three order Gegenbauer moments to make the TF, which is called scenario 1 (S1). On the other hand, one will take the nature light cone harmonic oscillator (LCHO) model to describe the behavior of K0(1430)K_{0}^{\ast}(1430)-meson leading-twist LCDA, which is considered as scenario 2 (S2) of our study. The model-dependent parameters can be fixed by the first ten-order ξ\xi moments at scale μk=1.4GeV\mu_{k}=1.4~{}{\rm GeV}. By comparing the observables of semileptonic decay DK0(1430)νD\to K_{0}^{\ast}(1430)\ell\nu_{\ell} under the two different forms of K0(1430)K_{0}^{\ast}(1430) meson leading-twist LCDA, it is helpful to see which one has a better behavior in these semileptonic decays. This will not only test the SM but also test the accuracy of our determination of LCDA parameters. Particularly, in order to make the behavior of TFFs for DK0(1430)D\to K_{0}^{\ast}(1430) more precise, we need to consider the contribution of twist-3 LCDAs ϕ3;K0p,σ(x,μ)\phi_{3;K_{0}^{*}}^{p,\sigma}(x,\mu). The twist-3 LCDAs based on Gegenbauer series expansion are also calculated within the framework of the background field theory in our early previous work Han:2013zg , which will be reused here.

II Theoretical Framework

To express the full spectrum of DK0(1430)νD\to K_{0}^{\ast}(1430)\ell\nu_{\ell} decays, one can start with the simple form for differential decay width with respect to the squared momentum transfer q2q^{2} and the angle cosθ\cos\theta_{\ell} between the direction of flight of K0(1430)K_{0}^{*}(1430) and \ell in the center of mass frame of ν\ell\nu_{\ell}, which have the following form:

d2Γdq2dcosθ\displaystyle\frac{d^{2}\Gamma}{dq^{2}d\cos\theta_{\ell}} =132(2π)3mD2|𝐪|(1m2q2)\displaystyle=\frac{1}{32(2\pi)^{3}m_{D}^{2}}|{\bf q}|\left(1-\frac{m_{\ell}^{2}}{q^{2}}\right)
×|(DK0(1430)ν)|2,\displaystyle\times|{\cal M}(D\to K_{0}^{\ast}(1430)\ell\nu_{\ell})|^{2}, (1)

in which, the symbol 𝐪{\bf q} stands for the three-momentum of the ν\ell\nu_{\ell} pair in the DD-meson rest frame. To write the amplitude (DK0(1430)ν){\cal M}(D\to K_{0}^{\ast}(1430)\ell\nu_{\ell}) explicitly, we decompose the nonvanishing hadronic matrix elements of the quark operators in the effective Hamiltonian i.e. eff=GF2Vcsc¯γμ(1γ5)s¯γμ(1γ5)ν\mathcal{H}_{\rm{eff}}=\frac{G_{F}}{\sqrt{2}}V_{cs}\bar{c}\gamma_{\mu}(1-\gamma_{5})s\bar{\ell}\gamma^{\mu}(1-\gamma_{5})\nu_{\ell}, in terms of the Lorentz invariant hadronic form factors f+(q2)f_{+}(q^{2}) and f0(q2)f_{0}(q^{2}) with the definition,

K0(p)|s¯γμγ5c|D(p+q)=[(2p+q)μmD2mK02q2qμ]\displaystyle\langle K^{*}_{0}(p)|\bar{s}\gamma_{\mu}\gamma_{5}c|D(p+q)\rangle=\bigg{[}(2p+q)_{\mu}-\frac{m_{D}^{2}-m_{K_{0}^{*}}^{2}}{q^{2}}q_{\mu}\bigg{]}
×f+(q2)+mD2mK02q2qμf0(q2).\displaystyle\qquad\qquad\times f_{+}(q^{2})+\frac{m_{D}^{2}-m_{K_{0}^{*}}^{2}}{q^{2}}q_{\mu}f_{0}(q^{2}). (2)

The full differential decay rate for the DK0(1430)νD\to K_{0}^{\ast}(1430)\ell\nu_{\ell} semileptonic decay can be expressed as d2Γ/(dq2dcosθ)=aθ(q2)+bθ(q2)cosθ+cθ(q2)cos2θd^{2}\Gamma/(dq^{2}d\cos\theta_{\ell})=a_{\theta_{\ell}}(q^{2})+b_{\theta_{\ell}}(q^{2})\cos\theta_{\ell}+c_{\theta_{\ell}}(q^{2})\cos^{2}\theta_{\ell}, with the angular coefficient functions as Becirevic:2016hea

aθ(q2)\displaystyle a_{\theta_{\ell}}(q^{2}) =𝒩ewλ3/2(1m2q2)2[|f+(q2)|2+1λm2q2\displaystyle=\mathcal{N}_{\rm{ew}}\lambda^{3/2}\bigg{(}1-\frac{m_{\ell}^{2}}{q^{2}}\bigg{)}^{2}\bigg{[}|f_{+}(q^{2})|^{2}+\frac{1}{\lambda}\frac{m_{\ell}^{2}}{q^{2}}
×(1mK02mD2)2|f0(q2)|2],\displaystyle\times\bigg{(}1-\frac{m_{K_{0}^{*}}^{2}}{m_{D}^{2}}\Bigg{)}^{2}|f_{0}(q^{2})|^{2}\bigg{]},
bθ(q2)\displaystyle b_{\theta_{\ell}}(q^{2}) =2𝒩ewλ(1m2q2)2m2q2(1mK02mD2)\displaystyle=2\mathcal{N}_{\rm{ew}}\lambda\bigg{(}1-\frac{m_{\ell}^{2}}{q^{2}}\bigg{)}^{2}\frac{m_{\ell}^{2}}{q^{2}}\bigg{(}1-\frac{m_{K_{0}^{*}}^{2}}{m_{D}^{2}}\bigg{)}
×Re[f+(q2)f0(q2)],\displaystyle\times{\rm Re}[f_{+}(q^{2})f_{0}^{*}(q^{2})],
cθ(q2)\displaystyle c_{\theta_{\ell}}(q^{2}) =𝒩ewλ3/2(1m2q2)3|f+(q2)|2,\displaystyle=-\mathcal{N}_{\rm{ew}}\lambda^{3/2}\bigg{(}1-\frac{m_{\ell}^{2}}{q^{2}}\bigg{)}^{3}|f_{+}(q^{2})|^{2}, (3)

in which GFG_{F} is the Fermi constant, mm_{\ell} and θ\theta_{\ell} are lepton mass and helicity angle, 𝒩ew=GF2|Vcs|2mD3/256π3\mathcal{N}_{\rm{ew}}=G^{2}_{F}|V_{cs}|^{2}m_{D}^{3}/256\pi^{3} and λλ(1,mK02/mD2,q2/mD2)\lambda\equiv\lambda(1,m_{K_{0}^{*}}^{2}/m_{D}^{2},q^{2}/m_{D}^{2}) with λ(a,b,c)a2+b2+c22(ab+ac+bc)\lambda(a,b,c)\equiv a^{2}+b^{2}+c^{2}-2(ab+ac+bc). With f0(q2)=f+(q2)+q2/(mD2mK02)f(q2)f_{0}(q^{2})=f_{+}(q^{2})+q^{2}/(m_{D}^{2}-m_{K_{0}^{*}}^{2})f_{-}(q^{2}), f±(q2)f_{\pm}(q^{2}) are the DK0(1430)D\to K_{0}^{\ast}(1430) TFFs. After integrating over the helicity angle, θ[1,1]\theta_{\ell}\in[-1,1], the differential decay width of DK0(1430)νD\to K_{0}^{\ast}(1430)\ell\nu_{\ell} over q2q^{2} with respect to kinematic variables q2q^{2} can be written as

dΓdq2\displaystyle\frac{d\Gamma}{dq^{2}} =GF2|Vcs|2mD3192π3λ3/2(1m2q2)2{(1+m22q2)\displaystyle=\frac{G^{2}_{F}|V_{cs}|^{2}m_{D}^{3}}{192\pi^{3}}\lambda^{3/2}\bigg{(}1-\frac{m_{\ell}^{2}}{q^{2}}\bigg{)}^{2}\bigg{\{}\bigg{(}1+\frac{m_{\ell}^{2}}{2q^{2}}\bigg{)}
×|f+(q2)|2+1λ3m22q2(1mK02mD2)2|f0(q2)|2}.\displaystyle\times|f_{+}(q^{2})|^{2}+\frac{1}{\lambda}\frac{3m_{\ell}^{2}}{2q^{2}}\bigg{(}1-\frac{m^{2}_{K_{0}^{*}}}{m_{D}^{2}}\bigg{)}^{2}|f_{0}(q^{2})|^{2}\bigg{\}}. (4)

Furthermore, one can calculate three independent observables from three angular coefficient functions aθ(q2),bθ(q2),cθ(q2)a_{\theta_{\ell}}(q^{2}),b_{\theta_{\ell}}(q^{2}),c_{\theta_{\ell}}(q^{2}), i.e.i.e., forward-backward asymmetries, lepton polarization asymmetries, and flat terms. These observables are very sensitive to beyond the Standard Model (BSM) physics. So, one can extract results of three observables from DK0νD\to K_{0}^{*}\ell\nu_{\ell} through the relationship between these observables and TFF, i.e.i.e.Cui:2022zwm

𝒜FB(q2)=[12bθ(q2)]:[aθ(q2)+13cθ(q2)],\displaystyle\mathcal{A}_{\rm{FB}}(q^{2})=\Big{[}\frac{1}{2}b_{\theta_{\ell}}(q^{2})\Big{]}:\Big{[}a_{\theta_{\ell}}(q^{2})+\frac{1}{3}c_{\theta_{\ell}}(q^{2})\Big{]},
𝒜λ(q2)=123{[3(aθ(q2)+cθ(q2))\displaystyle\mathcal{A}_{\lambda_{\ell}}(q^{2})=1-\frac{2}{3}\Big{\{}\Big{[}3\Big{(}a_{\theta_{\ell}}(q^{2})+c_{\theta_{\ell}}(q^{2})\Big{)}
+2m2q2m2cθ(q2)]:[aθ(q2)+13cθ(q2)]},\displaystyle\hskip 34.14322pt+\frac{2m_{\ell}^{2}}{q^{2}-m_{\ell}^{2}}c_{\theta_{\ell}}(q^{2})\Big{]}:\Big{[}a_{\theta_{\ell}}(q^{2})+\frac{1}{3}c_{\theta_{\ell}}(q^{2})\Big{]}\Big{\}},
H(q2)=[aθ(q2)+cθ(q2)]:[aθ(q2)+13cθ(q2)].\displaystyle\mathcal{F}_{\rm{H}}(q^{2})=\Big{[}a_{\theta_{\ell}}(q^{2})+c_{\theta_{\ell}}(q^{2})\Big{]}:\Big{[}a_{\theta_{\ell}}(q^{2})+\frac{1}{3}c_{\theta_{\ell}}(q^{2})\Big{]}. (5)

The above observables are functions of the ratio of TFFs. So next step, we calculate the TFFs by using LCSR and star with the the following correlator:

Πμ(p,q)\displaystyle\Pi_{\mu}(p,q) =id4xeiqxK0(p)|T{j2μ(x),j1(0)}|0\displaystyle=i\int d^{4}xe^{iq\cdot x}\langle K_{0}^{*}(p)|{\rm T}\{j_{2\mu}(x),j_{1}(0)\}|0\rangle (6)

where j2μ(x)=q¯2(x)γμγ5c(x)j_{2\mu}(x)=\bar{q}_{2}(x)\gamma_{\mu}\gamma_{5}c(x) and j1(0)=c¯(0)iγ5q1(0)j_{1}(0)=\bar{c}(0)i\gamma_{5}q_{1}(0). q1,2q_{1,2} present the light quark, q2=sq_{2}=s, q1=dq_{1}=d is for D+K00D^{+}\to K_{0}^{\ast 0}, and q1=uq_{1}=u is for D0K0+D^{0}\to K_{0}^{\ast+}, where mdmu0m_{d}\sim m_{u}\sim 0; the results of TFFs are almost the same. In the timelike q2q^{2} region, we can insert a complete intermediate state with DD meson quantum numbers into the correlator (6) and separate the pole term of the lowest DD meson to obtain the hadronic representation. By using the hadronic dispersion relations, the DK0D\to K_{0}^{\ast} matrix element also can be derived. In the spacelike q2q^{2} region, we carry out the operator product expansion (OPE) near the light cone x20x^{2}\rightsquigarrow 0, where the light cone expansion of the cc-quark propagator retains only the two-particle, while twists higher than three are neglected, as the contributions from the remaining components are small and can reasonably be neglected. After separating all the continuum states and excited states by introducing a effective threshold parameter sDs_{D} and using the Borel transformation, the TFF can be obtained, which has a similar expression to Ref. Huang:2022xny , in which, we repeat the corresponding calculation process and get the same results. For the brevity of this short essay, we will not provide specific expressions here.

Then, K0(1430)K_{0}^{\ast}(1430)-meson twist-2 and twist-3 LCDAs are the main nonperturbative uncertainty for TFFs. For scalar meson LCDAs, under the premise of following to the principle of conformal symmetry hidden in the QCD Lagrangian, they can be systematically expanded into a series of Gegenbauer polynomials with increasing conformal spin Wang:2008da . The first twist-2 LCDA ϕ2;K0(S1)(x,μ)\phi_{2;K_{0}^{*}}^{\rm{(S1)}}(x,\mu) based on the TF model can be expressed in the following formulations:

ϕ2;K0(S1)(x,μ)\displaystyle\phi_{2;K_{0}^{*}}^{\rm{(S1)}}(x,\mu) =6xx¯n=0𝒩=3an2;K0(μ)Cn3/2(ξ).\displaystyle=6x\bar{x}\sum_{n=0}^{\mathcal{N}=3}a_{n}^{2;K_{0}^{\ast}}(\mu)C^{3/2}_{n}(\xi). (7)

Here, Cn3/2(ξ)C_{n}^{3/2}(\xi) is the Gegenbauer polynomial with ξ=2x1\xi=2x-1, and the zeroth order Gegenbauer moment a02;K0(μ)a_{0}^{2;K_{0}^{\ast}}(\mu) is equal to 0 for scalar mesons and the behavior of the LCDA is mainly determined by the odd Gegenbauer moment.

In addition, we constructed the twist-2 LCDA by using the LCHO model. The wave functions (WF) of the K0(1430)K_{0}^{\ast}(1430) are obtained based on the Brodsky-Huang-Lepage (BHL) description, which postulates that a correlation exists between the equal-time WF in the rest frame and the light cone WF. The leading-twist WF can be expressed as Ψ2;K0(x,𝐤)=χ2;K0(x,𝐤)Ψ2;K0R(x,𝐤)\Psi_{2;K_{0}^{*}}(x,\mathbf{k}_{\perp})=\chi_{2;K_{0}^{\ast}}(x,\mathbf{k}_{\perp})\Psi^{R}_{2;K_{0}^{\ast}}(x,\mathbf{k}_{\perp}). After determining the scalar meson K0(1430)K_{0}^{\ast}(1430) total spin-space WF χ2;K0(x,𝐤)\chi_{2;K_{0}^{\ast}}(x,\mathbf{k}_{\perp}) and spatial WF Ψ2;K0R(x,𝐤)\Psi^{R}_{2;K_{0}^{\ast}}(x,\mathbf{k}_{\perp}) Zhong:2022ecl , we have the following expression by using the relation between K0(1430)K_{0}^{\ast}(1430) leading-twist LCDA and WF, ϕ2;K0(x,μ)=|𝐤|2μ2d2𝐤16π3Ψ2;K0(x,𝐤)\phi_{2;K_{0}^{*}}(x,\mu)=\int_{|\mathbf{k}_{\perp}|^{2}\leq\mu^{2}}\frac{d^{2}\mathbf{k}_{\perp}}{16\pi^{3}}\Psi_{2;K_{0}^{*}}(x,\mathbf{k}_{\perp}), to integrate over the transverse momentum 𝐤\mathbf{k}_{\perp}, and get the following expression:

ϕ2;K0(S2)(x,μ)=A2;K0β2;K0m~42π3/2xx¯φ2;K0(x)\displaystyle\phi_{2;K_{0}^{*}}^{\rm{(S2)}}(x,\mu)=\frac{A_{2;K_{0}^{*}}\beta_{2;K_{0}^{*}}\tilde{m}}{4\sqrt{2}\pi^{3/2}}\sqrt{x\bar{x}}\varphi_{2;K_{0}^{*}}(x)
×exp[m^q2x+m^s2x¯m~28β2;K02xx¯]\displaystyle\qquad\times\exp\left[-\frac{\hat{m}_{q}^{2}x+\hat{m}_{s}^{2}\bar{x}-\tilde{m}^{2}}{8\beta^{2}_{2;K_{0}^{*}}x\bar{x}}\right]
×{Erf(m~2+μ28β2;K02xx¯)Erf(m~28β2;K02xx¯)},\displaystyle\qquad\times\left\{{\rm Erf}\left(\sqrt{\frac{\tilde{m}^{2}+\mu^{2}}{8\beta^{2}_{2;K_{0}^{*}}x\bar{x}}}\right)-{\rm Erf}\left(\sqrt{\frac{\tilde{m}^{2}}{8\beta^{2}_{2;K_{0}^{*}}x\bar{x}}}\right)\right\}, (8)

in which m~=m^qx+m^sx¯\tilde{m}=\hat{m}_{q}x+\hat{m}_{s}\bar{x} with m^s=370MeV\hat{m}_{s}=370~{}\rm{MeV} and m^q=250MeV\hat{m}_{q}=250~{}\rm{MeV} are constituent quark, x¯=(1x)\bar{x}=(1-x) and B^2;K00.025\hat{B}_{2;K_{0}^{\ast}}\simeq-0.025 which is determined by ξ2;K02/ξ2;K01\langle\xi^{2}_{2;K_{0}^{\ast}}\rangle/\langle\xi^{1}_{2;K_{0}^{\ast}}\rangle whose rationality can be judged by the goodness of fit. Obviously, the behavior of ϕ2;K0(S2)(x,μ)\phi_{2;K_{0}^{*}}^{\rm{(S2)}}(x,\mu) is determined by unknown model parameters A2;K0,α2;K0A_{2;K_{0}^{\ast}},\alpha_{2;K_{0}^{\ast}} and β2;K0\beta_{2;K_{0}^{\ast}}, and the function φ2;K0(x)=(xx¯)α2;K0[C13/2(ξ)+B^2;K0C23/2(ξ)]\varphi_{2;K_{0}^{*}}(x)=(x\bar{x})^{\alpha_{2;K_{0}^{*}}}\Big{[}C_{1}^{3/2}(\xi)+\hat{B}_{2;K_{0}^{*}}C_{2}^{3/2}(\xi)\Big{]}. φ2;K0(x)\varphi_{2;K_{0}^{*}}(x) determines the WF’s longitudinal distribution by a factor (xx¯)α2;K0(x\bar{x})^{\alpha_{2;K_{0}^{*}}}, which is close to the asymptotic form ϕ2;K0(S1)(x,μ)=6xx¯\phi_{2;K_{0}^{*}}^{\rm{(S1)}}(x,\mu\rightarrow\infty)=6x\bar{x}. Its rationality has been discussed in Ref. Zhong:2021epq . The unknown model parameters A2;K0,α2;K0A_{2;K_{0}^{\ast}},\alpha_{2;K_{0}^{\ast}}, and β2;K0\beta_{2;K_{0}^{\ast}} can be obtained by fitting the first ten ξ\xi moments of K0(1430)K_{0}^{\ast}(1430) through the least squares method and using the definition ξ2;K0n|μ=01𝑑xξnϕ2;K0(x,μ)\langle\xi^{n}_{2;K_{0}^{\ast}}\rangle|_{\mu}=\int^{1}_{0}dx\xi^{n}\phi_{2;K_{0}^{*}}(x,\mu), The specific fitting process can be found in Refs. Zhong:2022ecl ; Zhong:2021epq . Corresponding ξ2;K0n|μ\langle\xi^{n}_{2;K_{0}^{\ast}}\rangle|_{\mu} have been calculated based on BFT, which describes the nonperturbative effects through the vacuum expectation values of the background fields and the calculable perturbative effects by quantum fluctuations, the calculation also can be simplified through various gauge conditions. Compared to the traditional SVZ sum rules, the reliability of result an2;K0(μ)a_{n}^{2;K_{0}^{\ast}}(\mu) can be improved to a certain extent on this basis.

Finally, the twist-3 LCDAs ϕ3;K0p(x,μ)\phi_{3;K_{0}^{*}}^{p}(x,\mu) and ϕ3;K0σ(x,μ)\phi_{3;K_{0}^{*}}^{\sigma}(x,\mu) for scalar mesons also can be expanded into a series of Gegenbauer polynomials Sun:2010nv ; Lu:2006fr ,

ϕ3;K0p(x,μ)\displaystyle\phi_{3;K_{0}^{*}}^{p}(x,\mu) =1+n=1𝒩=2an,p3;K0(μ)Cn1/2(ξ),\displaystyle=1+\sum_{n=1}^{\mathcal{N}=2}a_{n,p}^{3;K_{0}^{*}}(\mu)C_{n}^{1/2}(\xi), (9)
ϕ3;K0σ(x,μ)\displaystyle\phi_{3;K_{0}^{*}}^{\sigma}(x,\mu) =6xx¯[1+n=1𝒩=2an,σ3;K0(μ)Cn3/2(ξ)].\displaystyle=6x\bar{x}\Big{[}1+\sum_{n=1}^{\mathcal{N}=2}a_{n,\sigma}^{3;K_{0}^{*}}(\mu)C_{n}^{3/2}(\xi)\Big{]}. (10)

where an,p/σ3;K0(μ)a_{n,p/\sigma}^{3;K_{0}^{*}}(\mu) are determined by the relationship with ξ3;K0p(σ);n\langle\xi^{p(\sigma);n}_{3;K_{0}^{*}}\rangle, which are also calculated by BFT method.

III Numerical Analysis

In order to carry out the next calculation, we adopt following basic input parameters: the quark masses mc(m¯c)=1.27±0.02GeVm_{c}(\bar{m}_{c})=1.27\pm 0.02~{}\rm{GeV}, md=4.670.17+0.48MeVm_{d}=4.67^{+0.48}_{-0.17}~{}\rm{MeV}, and mu=2.16±0.07MeVm_{u}=2.16\pm 0.07~{}\rm{MeV} at μ=2GeV\mu=2~{}\rm{GeV}, the meson masses mD0=1864.84±0.05MeVm_{D^{0}}=1864.84\pm 0.05~{}\rm{MeV}, mD+=1869.66±0.05MeVm_{D^{+}}=1869.66\pm 0.05~{}\rm{MeV}, and mK0=1425±50MeVm_{K_{0}^{\ast}}=1425\pm 50~{}\rm{MeV}, the decay constants fK0=427±85MeVf_{K_{0}^{\ast}}=427\pm 85~{}\rm{MeV} at μ0=1GeV\mu_{0}=1~{}\rm{GeV}, and fD=208.4±1.5MeVf_{D}=208.4\pm 1.5~{}\rm{MeV} Kuberski:2024pms .

Refer to caption
Figure 1: Two scenarios for the K0(1430)K_{0}^{\ast}(1430)-meson twist-2 LCDA at an initial scale μ0=1GeV\mu_{0}=1~{}\rm{GeV}. As a comparison, the QCDSRs Cheng:2005nb and CLF Chen:2021oul are also presented.

Next step, for this part of the undetermined parameters of two twist-2 LCDAs, we calculated the moments ξ2;K0n|μ\langle\xi^{n}_{2;K_{0}^{\ast}}\rangle|_{\mu} with n=(1,2,3,,10)n=(1,2,3,\cdots,10) in the framework of BFT, and nonperturbative vacuum condensates are up to dimension-six. Then, the Gegenbauer moments an2;K0(μ)a_{n}^{2;K_{0}^{\ast}}(\mu) of twist-2 LCDA ϕ2;K0(S1)(x,μ)\phi_{2;K_{0}^{*}}^{\rm(S1)}(x,\mu) based on truncated form can be determined by the relationship between with ξ2;K0n|μ\langle\xi^{n}_{2;K_{0}^{\ast}}\rangle|_{\mu}. Therefore, we have following results at μk=mD2mc21.4GeV\mu_{k}=\sqrt{m_{D}^{2}-m_{c}^{2}}\approx 1.4~{}\rm{GeV} Huang:2022xny :

a12;K0(μk)=0.4080.111+0.087,\displaystyle a_{1}^{2;K_{0}^{\ast}}(\mu_{k})=-0.408^{+0.087}_{-0.111},
a22;K0(μk)=0.0180.016+0.013,\displaystyle a_{2}^{2;K_{0}^{\ast}}(\mu_{k})=-0.018^{+0.013}_{-0.016},
a32;K0(μk)=0.3210.072+0.048.\displaystyle a_{3}^{2;K_{0}^{\ast}}(\mu_{k})=-0.321^{+0.048}_{-0.072}. (11)

In addition, the optimal model parameters A2;K0,α2;K0A_{2;K_{0}^{\ast}},\alpha_{2;K_{0}^{\ast}}, and β2;K0\beta_{2;K_{0}^{\ast}} of ϕ2;K0(S2)(x,μ)\phi_{2;K_{0}^{*}}^{\rm(S2)}(x,\mu) constructed by LCHO model are obtained by fitting the first tenth order ξ2;K0n|μk\langle\xi^{n}_{2;K_{0}^{\ast}}\rangle|_{\mu_{k}}-moments with the least squares method at μk=1.4GeV\mu_{k}=1.4~{}\rm{GeV} Huang:2022xny ,

A2;K0=147GeV1,\displaystyle A_{2;K_{0}^{\ast}}=-147~{}{\rm GeV}^{-1}, α2;K0=0.011,\displaystyle\alpha_{2;K_{0}^{\ast}}=0.011,
β2;K0=1.091GeV,\displaystyle\beta_{2;K_{0}^{\ast}}=1.091~{}{\rm GeV}, Pχmin2=0.923671.\displaystyle P_{\chi^{2}_{\rm min}}=0.923671. (12)

The behavior of twist-2 LCDAs in different scenarios at μ0=1GeV\mu_{0}=1~{}\rm{GeV} are also shown in Fig. 1. Meanwhile, QCDSRs Cheng:2005nb and CLF Chen:2021oul based on Gegenbauer polynomials and truncations with 𝒩=1(I)\mathcal{N}=1~{}\rm{(I)} and 𝒩=3(II)\mathcal{N}=3~{}\rm{(II)} are also presented in Fig. 1. As can be seen from the Fig. 1, the two scenarios twist-2 LCDAs of our predictions exhibit similar behaviors to the two truncated forms from QCDSRs Cheng:2005nb , respectively.

  • For the S1 case, the maximum value at x=0.096x=0.096 with ϕ2;K0(S1)(x=0.096)=1.147\phi_{2;K_{0}^{*}}^{\rm(S1)}(x=0.096)=1.147, the minimum value at x=0.908x=0.908 with ϕ2;K0(S1)(x=0.908)=1.081\phi_{2;K_{0}^{*}}^{\rm(S1)}(x=0.908)=-1.081, and zero point at x=0.270x=0.270, 0.5120.512, 0.7280.728, respectively.

  • For the S2 case, the maximum value at x=0.140x=0.140 with ϕ2;K0(S2)(x=0.140)=0.850\phi_{2;K_{0}^{*}}^{\rm(S2)}(x=0.140)=0.850, the minimum value at x=0.860x=0.860 with ϕ2;K0(S2)(x=0.86)=0.779\phi_{2;K_{0}^{*}}^{\rm(S2)}(x=0.86)=-0.779, and zero point at x=0.495x=0.495.

  • These points indicate that there exist SUf(3) breaking effect, but the effect is relatively weak in K0(1430)K_{0}^{\ast}(1430)-meson twist-2 LCDA.

As for the K0(1430)K_{0}^{\ast}(1430)-meson twist-3 LCDAs ϕ3;K0p,σ(x,μ)\phi_{3;K_{0}^{*}}^{p,\sigma}(x,\mu), we present the Gegenbauer moments at μk=1.4GeV\mu_{k}=1.4~{}\rm{GeV} as follows Han:2013zg :

a1,p3;K0(μk)=0.012±0.002,\displaystyle a_{1,p}^{3;K_{0}^{\ast}}(\mu_{k})=0.012\pm 0.002, a2,p3;K0(μk)=0.163±0.021,\displaystyle a_{2,p}^{3;K_{0}^{\ast}}(\mu_{k})=0.163\pm 0.021,
a1,σσ;K0(μk)=0.029±0.011,\displaystyle a_{1,\sigma}^{\sigma;K_{0}^{\ast}}(\mu_{k})=0.029\pm 0.011, a2,σ3;K0(μk)=0.019±0.004.\displaystyle a_{2,\sigma}^{3;K_{0}^{\ast}}(\mu_{k})=0.019\pm 0.004. (13)

At the same time, if we consider K0(700)K^{*}_{0}(700) as the ground state of qq¯q\bar{q}-state from P1, K0(1430)K_{0}^{*}(1430) will be the first excited qq¯q\bar{q}-states. Based on the standard procedure of QCD sum rule within background firld theory, we can get the following first three K0(700)K_{0}^{*}(700) meson twist-2 LCDA moments and Gegenbaure moments at initial scale μ0=1GeV\mu_{0}=1~{}{\rm GeV},

ξ12;κ=0.4540.064+0.065,\displaystyle\langle\xi^{1}\rangle_{2;\kappa}=-0.454^{+0.065}_{-0.064},
ξ22;κ=+0.0330.010+0.009,\displaystyle\langle\xi^{2}\rangle_{2;\kappa}=+0.033^{+0.009}_{-0.010},
ξ32;κ=0.3040.046+0.047.\displaystyle\langle\xi^{3}\rangle_{2;\kappa}=-0.304^{+0.047}_{-0.046}. (14)
a12;κ=0.7570.106+0.109,\displaystyle a_{1}^{2;\kappa}=-0.757^{+0.109}_{-0.106},
a22;κ=+0.0960.028+0.025,\displaystyle a_{2}^{2;\kappa}=+0.096^{+0.025}_{-0.028},
a32;κ=0.5750.100+0.102.\displaystyle a_{3}^{2;\kappa}=-0.575^{+0.102}_{-0.100}. (15)

Then the first three K0(1430)K_{0}^{*}(1430)-meson twist-2 LCDA moments and Gegenbaure moments at initial scale μ0=1GeV\mu_{0}=1~{}{\rm GeV} will be

ξ12;K0=0.0170.023+0.042,\displaystyle\langle\xi^{1}\rangle_{2;K_{0}^{*}}=-0.017^{+0.042}_{-0.023},
ξ22;K0=0.0170.010+0.008,\displaystyle\langle\xi^{2}\rangle_{2;K_{0}^{*}}=-0.017^{+0.008}_{-0.010},
ξ32;K0=0.0440.036+0.043.\displaystyle\langle\xi^{3}\rangle_{2;K_{0}^{*}}=-0.044^{+0.043}_{-0.036}. (16)
a12;K0=0.0280.038+0.070,\displaystyle a_{1}^{2;K_{0}^{*}}=-0.028^{+0.070}_{-0.038},
a22;K0=0.0500.029+0.023,\displaystyle a_{2}^{2;K_{0}^{*}}=-0.050^{+0.023}_{-0.029},
a32;K0=0.1920.139+0.132.\displaystyle a_{3}^{2;K_{0}^{*}}=-0.192^{+0.132}_{-0.139}. (17)

In calculating the above results, we take continuum threshold parameters sκ=2.4GeV2s_{\kappa}=2.4~{}{\rm GeV^{2}}, sK0=6GeV2s_{K_{0}^{*}}=6~{}{\rm GeV^{2}}. The Borel window is taken as M2[3,4]GeV2M^{2}\in[3,4]~{}{\rm GeV^{2}}. The results are agree with values from Ref. Cheng:2005nb . The calculation can also be found in our previous work Huang:2022xny . We can find that the K0(1430)K_{0}^{*}(1430)-meson twist-2 LCDA moments and Gegenbaure moments changed largely, which indicates the interference effect is very obvious.

When treating DK0(1430)D\to K_{0}^{\ast}(1430) TFFs, the continuum threshold s0s_{0} is taken as 4±0.1GeV24\pm 0.1~{}\rm{GeV}^{2}, and the Borel window is taken as M2=17±1GeV2M^{2}=17\pm 1~{}{\rm GeV^{2}} under the criterion of LCSR. Based on above parameters, we can get the DK0(1430)D\to K_{0}^{\ast}(1430) TFFs at a large recoil point, which is presented in Table 1, and the results of 3PSR Yang:2005bv , CLF Cheng:2003sm , and GFM Cheng:2002ai are used for comparison. In different twist-2 LCDAs, the contribution of the LCHO model ϕ2;K0(S2)(x,μ)\phi_{2;K_{0}^{*}}^{\rm{(S2)}}(x,\mu) is greater than the truncated form ϕ2;K0(S1)(x,μ)\phi_{2;K_{0}^{*}}^{\rm{(S1)}}(x,\mu), which accounted for 21.0%21.0\% and 12.2%12.2\% of the f+(0)f_{+}(0) results, and 68.7%68.7\% and 53.5%53.5\% of f(0)f_{-}(0), respectively. Our results are in a agreement with 3PSR Yang:2005bv . If we consider P1 scenario, the DK0(700)D\to K_{0}^{*}(700) vector TFF at large recoil point will be f+(0)=0.4850.026+0.047f_{+}(0)=0.485^{+0.047}_{-0.026}. This value is agree with the 0.48f+(0)0.550.48\leq f_{+}(0)\leq 0.55 from Ref. Dosch:2002rh . With the same Borel parameter and threshold, the DK0(1430)D\to K_{0}^{*}(1430) vector TFF at large recoil point is f+(0)=0.0480.036+0.036f_{+}(0)=-0.048^{+0.036}_{-0.036}. The absolute value of this result is very small no more than 10% in comparing with DK0(700)D\to K_{0}^{*}(700). So in this case, the interference between two processes is very evident that need to be further researched deeply.

Table 1: DK0(1430)D\to K_{0}^{\ast}(1430) TFFs at large recoil point f±(0)f_{\pm}(0) with two different K0(1430)K_{0}^{\ast}(1430)-meson twist-2 LCDA scenarios. To make a comparison, we also listed other theoretical predictions.
f+(0)f_{+}(0) f(0)f_{-}(0)
This work (S1) 0.5970.121+0.1220.597^{+0.122}_{-0.121} 0.1360.035+0.023-0.136^{+0.023}_{-0.035}
This work (S2) 0.6630.134+0.1350.663^{+0.135}_{-0.134} 0.2020.046+0.026-0.202^{+0.026}_{-0.046}
3PSR Yang:2005bv 0.57±0.190.57\pm 0.19 \cdot\cdot\cdot
CLF Cheng:2003sm 0.480.48 \cdot\cdot\cdot
GFM Cheng:2002ai 1.20±0.071.20\pm 0.07 \cdot\cdot\cdot
Refer to caption
Refer to caption
Figure 2: The behavior of DK0(1430)D\to K_{0}^{\ast}(1430) TFFs (a) f+(q2)f_{+}(q^{2}) and (b) f(q2)f_{-}(q^{2}) in whole kinematical region for S1 and S2 cases, and other predictions are given for comparison.
Figure 3: The differential decay widths for (a) DK0(1430)eνeD\to K_{0}^{\ast}(1430)e\nu_{e} and (b) DK0(1430)μνμD\to K_{0}^{\ast}(1430)\mu\nu_{\mu} for S1 and S2 cases. The result of 3PSR Yang:2005bv is presented as a comparison.
Refer to caption
Refer to caption
Table 2: The predictions of the DK0(1430)νD\to K_{0}^{\ast}(1430)\ell\nu branching fractions within uncertainties (in unit: 10410^{-4}) for S1 and S2 cases. Meanwhile, the result of 3PSR Yang:2005bv , upper limits of PDG ParticleDataGroup:2024cfk , and combining with FOCUS FOCUS:2004uby and PDG ParticleDataGroup:2024cfk are used for comparison.
(D0K0(1430)+eν¯e)\mathcal{B}(D^{0}\to K_{0}^{\ast}(1430)^{+}e^{-}\bar{\nu}_{e}) (D+K0(1430)0e+νe)\mathcal{B}(D^{+}\to K_{0}^{\ast}(1430)^{0}e^{+}\nu_{e}) (D0K0(1430)+μν¯μ)\mathcal{B}(D^{0}\to K_{0}^{\ast}(1430)^{+}\mu^{-}\bar{\nu}_{\mu}) (D+K0(1430)0μ+νμ)\mathcal{B}(D^{+}\to K_{0}^{\ast}(1430)^{0}\mu^{+}\nu_{\mu})
This work (S1) 1.830.67+0.821.83^{+0.82}_{-0.67} 4.591.67+2.074.59^{+2.07}_{-1.67} 1.400.51+0.641.40^{+0.64}_{-0.51} 3.521.29+1.603.52^{+1.60}_{-1.29}
This work (S2) 2.240.81+1.012.24^{+1.01}_{-0.81} 5.632.04+2.525.63^{+2.52}_{-2.04} 1.710.63+0.781.71^{+0.78}_{-0.63} 4.311.58+1.954.31^{+1.95}_{-1.58}
PDG ParticleDataGroup:2024cfk \cdot\cdot\cdot \cdot\cdot\cdot \cdot\cdot\cdot <2.3<2.3
3PSR Yang:2005bv 1.81.5+1.01.8^{+1.0}_{-1.5} 4.62.6+3.74.6^{+3.7}_{-2.6} 1.81.5+1.01.8^{+1.0}_{-1.5} 4.62.6+3.74.6^{+3.7}_{-2.6}
FOCUS FOCUS:2004uby +PDG ParticleDataGroup:2024cfk \cdot\cdot\cdot \cdot\cdot\cdot \cdot\cdot\cdot <3.510.54+0.55<3.51^{+0.55}_{-0.54}

Due to the mass of K0(1430)K_{0}^{\ast}(1430), the physical allowable region in DK0(1430)νD\to K_{0}^{\ast}(1430)\ell\nu_{\ell} is not large, i.e.i.e., q2q^{2} is from 0 to (mDmK0)20.193GeV2(m_{D}-m_{K_{0}^{\ast}})^{2}\approx 0.193~{}\rm{GeV}^{2}, and the LCSR method is reliable in lower and intermediate region. So in the next step, we adopt the simplified series expansion (SSE) to extrapolate the f±(q2)f_{\pm}(q^{2}) in the whole kinematical region. The TFFs is expanded as

f±(q2)=11q2/mD2k=0,1,2βkzk(q2,t0).\displaystyle f_{\pm}(q^{2})=\frac{1}{1-q^{2}/m^{2}_{D}}\sum_{k=0,1,2}\beta_{k}z^{k}(q^{2},t_{0}). (18)

The βk\beta_{k} are real coefficients and the function zk(q2,t0)=(t+q2t+t0)/(t+q2+t+t0)z^{k}(q^{2},t_{0})=(\sqrt{t_{+}-q^{2}}-\sqrt{t_{+}-t_{0}})/(\sqrt{t_{+}-q^{2}}+\sqrt{t_{+}-t_{0}}) with t±=(mD±mK0)2t_{\pm}=(m_{D}\pm m_{K_{0}^{\ast}})^{2} and t0=t+(11t/t+)t_{0}=t_{+}(1-\sqrt{1-t_{-}/t_{+}}). Then, the behavior of TFF f±(q2)f_{\pm}(q^{2}) in the whole q2q^{2} region can be determined which are shown in Fig. 2. In which the solid line is our central value, the shadow band is our uncertainty. At the same time, the behavior of f+(q2)f_{+}(q^{2}) from 3PSR Yang:2005bv and CLF Cheng:2003sm are also used for comparison. Within the same QCD sum rule appproach, the 3PSR results Yang:2005bv is very important here to make a detailed discussion. From the Fig. 2 (a), we can see that the TFF f+(q2)f_{+}(q^{2}) behavior of our predictions within S1 and S2 are agree with the 3PSR within uncertainties for the whole physical q2q^{2}-region especially for the S1 scenario. The results for S1 in this paper are roughly consistent with 3PSR in the large recoil region, while there is some discrepancy in the small recoil region. The reason may lies in the different method will tend to some different behaviors. For the 3PSR, non-perturbative parts of f+(q2)f_{+}(q^{2}) are mainly factorized into different dimension discrete vacuum condensates and the double Borel transformations are also made. With the less uncertainties from vacuum condensates, the main errors may comes from the Borel parameters and threshold. The 3PSR is an conventional approach in the QCD sum rule which lead to an accuracy results. In the LCSR approach, the non-perturbative parameters for f+(q2)f_{+}(q^{2}) are factorized into different twist LCDAs instead of vacuum condensates. With reasonable LCDA results, we can also achieve good predictions. Therefore, the two methods are actually equivalent in principle. Although there exist some differences in the behavior of f+(q2)f_{+}(q^{2}) for the 3PSR and LCSR, the differential decay widths and branching fractions are highly consistent with each other in the following discussion. Additionally, the results of CLF Cheng:2003sm are very close to the lower bound of our f+(S1)(q2)f_{+}^{\rm(S1)}(q^{2}). Overall, the result of f+(S1)(q2)f_{+}^{\rm(S1)}(q^{2}) is in better agreement with other groups, and f+(S2)(q2)f_{+}^{\rm(S2)}(q^{2}) is larger than f+(S1)(q2)f_{+}^{\rm(S1)}(q^{2}) because of the greater contribution of twist-2 LCDA.

In a subsequent step, we can obtain the differential decay width of DK0(1430)νD\to K_{0}^{\ast}(1430)\ell\nu_{\ell} with =(e,μ)\ell=(e,\mu) through Eq. (4), in which the CKM matrix element |Vcs|=0.975|V_{cs}|=0.975 ParticleDataGroup:2024cfk and fermi coupling constant GF=1.166×105GeV2G_{F}=1.166\times 10^{-5}~{}\rm{GeV}^{-2}. And a special behavior is presented in Fig. 3, which show that our results are in good agreement with 3PSR Yang:2005bv . Normally, the mass of electron or muon is very small that can always be safely neglected in dealing with the differential decay widths of heavy meson semileptonic decay processes. Here in this paper, we take the lepton mass into consideration. Due to the physical q2q^{2}-region of DK0(1430)D\to K_{0}^{*}(1430) is much smaller in comparing with the BB to K0(1430)K_{0}^{*}(1430) transition, it is meaningful to consider the influence from the electron and muon that may have contributions to the branching ratios. In comparing with Fig. 3 (a) and Fig. 3 (b), there exist notable differences at the ending points especially in the large recoil region. This indicates that the subsequent branching ratios will have variations in some degree for the two decay channels. Then, the total decay width can be calculated by integrating over q2q^{2} in whole physical region m2q2(mDmK0)2m_{\ell}^{2}\leq q^{2}\leq(m_{D}-m_{K_{0}^{\ast}})^{2}. In different twist-2 LCDA cases, we have the following results:

Γ(S1)(DK0(1430)eνe)=(2.9341.068+1.323)×1016,\displaystyle\Gamma^{\rm(S1)}(D\to K_{0}^{\ast}(1430)e\nu_{e})=(2.934^{+1.323}_{-1.068})\times 10^{-16},
Γ(S1)(DK0(1430)μνμ)=(2.2520.823+1.019)×1016,\displaystyle\Gamma^{\rm(S1)}(D\to K_{0}^{\ast}(1430)\mu\nu_{\mu})=(2.252^{+1.019}_{-0.823})\times 10^{-16},
Γ(S2)(DK0(1430)eνe)=(3.5991.306+1.614)×1016,\displaystyle\Gamma^{\rm(S2)}(D\to K_{0}^{\ast}(1430)e\nu_{e})=(3.599^{+1.614}_{-1.306})\times 10^{-16},
Γ(S2)(DK0(1430)μνμ)=(2.7511.008+1.244)×1016.\displaystyle\Gamma^{\rm(S2)}(D\to K_{0}^{\ast}(1430)\mu\nu_{\mu})=(2.751^{+1.244}_{-1.008})\times 10^{-16}. (19)

By using the the lifetime of the initial state D0,+D^{0,+}-meson, τD0=0.41\tau_{D_{0}}=0.41 ps, and τD+=1.03\tau_{D_{+}}=1.03 ps, we can obtain the branching fractions for D(0,+)K0(1430)(+,0)νD^{(0,+)}\to K_{0}^{\ast}(1430)^{(+,0)}\ell\nu_{\ell}, which are presented in Table 2. The results from 3PSR Yang:2005bv and PDG ParticleDataGroup:2024cfk are also presented in it. In 2005, the FOCUS Collaboration FOCUS:2005iqy reported the upper limit for Γ(D+K¯0(1430)0μ+ν)\Gamma(D^{+}\to\bar{K}^{\ast}_{0}(1430)^{0}\mu^{+}\nu) by Γ(D+K¯0(1430)0μ+ν)/Γ(D+Kπ+μ+ν)<0.64%{\Gamma(D^{+}\to\bar{K}^{\ast}_{0}(1430)^{0}\mu^{+}\nu)}/{\Gamma(D^{+}\to K^{-}\pi^{+}\mu^{+}\nu)}<0.64\%. Based on this, PDG ParticleDataGroup:2024cfk gives the upper limit of the branching fraction (D+K¯0(1430)0μ+ν)<2.3×104\mathcal{B}(D^{+}\to\bar{K}_{0}^{\ast}(1430)^{0}\mu^{+}\nu)<2.3\times 10^{-4}. Our results are in good agreement with the theoretical values of 3PSR Yang:2005bv within the error range. But our results are larger than PDG ParticleDataGroup:2024cfk . At the same time, through literature research, we found that the upper limit of the branching ratio has another value. In 2004, the FOCUS Collaboration FOCUS:2004uby reported the ratio Γ(D+Kπμ+νμ)/Γ(D+K¯0μ+νμ)=0.625±0.045±0.034\Gamma(D^{+}\to K\pi\mu^{+}\nu_{\mu})/\Gamma(D^{+}\to\bar{K}^{0}\mu^{+}\nu_{\mu})=0.625\pm 0.045\pm 0.034, and PDG ParticleDataGroup:2024cfk gives the average value of (D+K¯0μ+νμ)=(8.76±0.07stat±0.18sys)%\mathcal{B}(D^{+}\to\bar{K}^{0}\mu^{+}\nu_{\mu})=(8.76\pm 0.07_{\rm{stat}}\pm 0.18_{\rm{sys}})\%. So, we can get the (D+Kπμ+νμ)=5.480.83+0.87%\mathcal{B}(D^{+}\to K\pi\mu^{+}\nu_{\mu})=5.48^{+0.87}_{-0.83}\% and further calculate (D+K¯0(1430)0μ+ν)<3.510.54+0.55×104\mathcal{B}(D^{+}\to\bar{K}^{\ast}_{0}(1430)^{0}\mu^{+}\nu)<3.51^{+0.55}_{-0.54}\times 10^{-4} by the ratio 0.64%0.64\%. Then, we can obviously see that the result of TF model ϕ2;K0(S1)(x,μ)\phi_{2;K_{0}^{*}}^{\rm(S1)}(x,\mu) is in a great agreement with it. At the same time, the branching fractions for the DK0(1430)νD\to K_{0}^{\ast}(1430)\ell\nu_{\ell} decay channel are about 10 times than that of DsK0(1430)νD_{s}\to K_{0}^{\ast}(1430)\ell\nu_{\ell} of our previous work Huang:2022xny . These results will make the DK0(1430)νD\to K_{0}^{\ast}(1430)\ell\nu_{\ell} decay channels more easily to be detected in the BESIII Collaboration.

Then, we decide to use the upper limit of the branching fractions max(D+K0(1430)0μ+νμ)=3.510.54+0.55×104\mathcal{B}_{\rm{max}}(D^{+}\to K_{0}^{\ast}(1430)^{0}\mu^{+}\nu_{\mu})=3.51^{+0.55}_{-0.54}\times 10^{-4} to extract the CKM matrix element |Vcs||V_{cs}|, which are presented in Table 3, and experimental predictions that originate from PDG ParticleDataGroup:2024cfk , BESIII BESIII:2015jmz ; BESIII:2017ylw ; BESIII:2023fhe ; BESIII:2024dvk ; Liu:2024aiz , CLEO’09 CLEO:2009svp , and HPQCD Donald:2013pea ; Chakraborty:2021qav are also given in it. The above experimental results are within our error range. But, the central result under ϕ2;K0(S1)(x,μ)\phi_{2;K_{0}^{*}}^{\rm(S1)}(x,\mu) is in good agreement with PDG ParticleDataGroup:2024cfk and BESIII’15 BESIII:2015jmz . The deviation of the central result under ϕ2;K0(S2)(x,μ)\phi_{2;K_{0}^{*}}^{\rm(S2)}(x,\mu) is relatively large. This motivates us to anticipate more precise measurements of the branching ratio in future experiments.

Table 3: The prediction of |Vcs||V_{cs}| from D+K0(1430)0μ+νμD^{+}\to K_{0}^{\ast}(1430)^{0}\mu^{+}\nu_{\mu} within uncertainties for S1 and S2 cases. Other experimental results are listed here for comparison.
|Vcs||V_{cs}|
This work (S1) 0.9730.183+0.2590.973^{+0.259}_{-0.183}
This work (S2) 0.8800.165+0.2340.880^{+0.234}_{-0.165}
PDG ParticleDataGroup:2024cfk 0.975±0.0060.975\pm 0.006
BESIII’15 BESIII:2015jmz 0.975±0.008±0.015±0.0250.975\pm 0.008\pm 0.015\pm 0.025
BESIII’17 BESIII:2017ylw 0.944±0.005±0.015±0.0240.944\pm 0.005\pm 0.015\pm 0.024
BESIII’23 BESIII:2023fhe 0.993±0.015±0.012±0.0040.993\pm 0.015\pm 0.012\pm 0.004
BESIII’24 BESIII:2024dvk 1.011±0.014±0.018±0.0031.011\pm 0.014\pm 0.018\pm 0.003
BESIII’24 Liu:2024aiz 0.968±0.010±0.0090.968\pm 0.010\pm 0.009
CLEO’09 CLEO:2009svp 0.985±0.009±0.006±0.1030.985\pm 0.009\pm 0.006\pm 0.103
HPQCD’13 Donald:2013pea 1.017(63)1.017(63)
HPQCD’21 Chakraborty:2021qav 0.9663(53)(39)(19)(40)0.9663(53)(39)(19)(40)
Refer to caption
Figure 4: The lepton flavor universality RK0R_{K_{0}^{*}} for DK0(1430)νD\to K_{0}^{\ast}(1430)\ell\nu_{\ell} as function of q2q^{2} for S1 and S2 cases.
Refer to caption
Refer to caption
Refer to caption
Figure 5: The three angular observables of DK0νD\to K_{0}^{*}\ell\nu_{\ell} (a) forward-backward asymmetries 𝒜FB(q2)\mathcal{A}_{\rm{FB}}(q^{2}), (b) lepton polarization asymmetries 𝒜λ(q2)\mathcal{A}_{\lambda\ell}(q^{2}), and (c) flat terms H(q2)\mathcal{F}_{\rm{H}}(q^{2}) for S1 and S2 cases.

Secondly, the lepton flavor universality K0\mathcal{R}_{K_{0}^{\ast}} plays an important role in testing SM and exploring new physics, which have the following definition related to the decay width is:

K0(q2)=qmin2qmax2𝑑Γ(DK0μνμ)/𝑑q2qmin2qmax2𝑑Γ(DK0eνe)/𝑑q2\mathcal{R}_{K_{0}^{*}}(q^{2})=\dfrac{\int_{q^{2}_{\rm{min}}}^{q^{2}_{\rm{max}}}d\Gamma(D\to K_{0}^{*}\mu\nu_{\mu})/dq^{2}}{\int_{q^{2}_{\rm{min}}}^{q^{2}_{\rm{max}}}d\Gamma(D\to K_{0}^{*}e\nu_{e})/dq^{2}} (20)

Then we presented its trend changing with q2q^{2} in Fig. 4. The results tend to infinity at the starting point and the end point, respectively. Meanwhile, we predicted the results of K0\mathcal{R}_{K_{0}^{\ast}},

K0(S1)=0.7680.368+0.560,K0(S2)=0.7640.365+0.555.\displaystyle\mathcal{R}_{K_{0}^{\ast}}^{\rm{(S1)}}=0.768^{+0.560}_{-0.368},~{}~{}~{}~{}~{}~{}~{}\mathcal{R}_{K_{0}^{\ast}}^{\rm{(S2)}}=0.764^{+0.555}_{-0.365}. (21)

The slight discrepancies in the numerical results under the two models may be attributed to the the fact that the extrapolation trend of the TFFs f±(q2)f_{\pm}(q^{2}) cannot be completely consistent.

Finally, we calculate three angular observables. The different forward-backward asymmetries, lepton polarization asymmetries, and flat terms of DK0νD\to K_{0}^{*}\ell\nu_{\ell} with =(e,μ)\ell=(e,\mu) are displayed in Fig. 5. One can see that the behaviors of three observables are highly consistent under the two twist-2 LCDA models, and only subtle differences can be seen in the curve of μνμ\mu\nu_{\mu} channel. This may be because these observables are the ratio function of TFFs. The trend of TFFs with q2q^{2} under the two LCDAs has a good consistency. There exists a ratio in terms of numerical values, where the contribution of f(q2)f_{-}(q^{2}) is very small. We can assume that the contribution of f(q2)f_{-}(q^{2}) is negligible. It can be seen from Eq. (5) that the ratio will be reduced. Therefore, the results of these angular observables under the two LCDAs have a certain consistency, and the contribution of f(q2)f_{-}(q^{2}) also leads to subtle differences in the final results. Moreover, due to the mass size of electron and muon, the results from the eνee\nu_{e} channel can be regarded as identical. In addition, there are significant differences in these differential observables when =e\ell=e and =μ\ell=\mu, respectively, suggesting that these observables are highly sensitive to the mass of the lepton. Then, the integrated results of the three angular observables are listed in Table 4. It is evident that 𝒜FB\mathcal{A}_{\rm{FB}} and H\mathcal{F}_{\rm{H}} are proportional to the square of the lepton mass, while 𝒜λ\mathcal{A}_{\lambda_{\ell}} is inversely proportional to the lepton mass. Additionally, the integral results of all these quantities are close to 0.

Table 4: The integrated results of the three angular observables for the S1 and S2 cases.
This work (S1) This work (S2)
𝒜FB(106)\mathcal{A}_{\rm{FB}}(10^{-6}) 5.392.58+3.935.39^{+3.93}_{-2.58} 5.382.57+3.915.38^{+3.91}_{-2.57}
𝒜FB(102)\mathcal{A}_{\rm{FB}}(10^{-2}) 3.751.80+2.753.75^{+2.75}_{-1.80} 3.751.80+2.753.75^{+2.75}_{-1.80}
𝒜λ(101)\mathcal{A}_{\lambda\ell}(10^{-1}) 1.940.00+0.001.94^{+0.00}_{-0.00} 1.940.00+0.001.94^{+0.00}_{-0.00}
𝒜λ(102)\mathcal{A}_{\lambda\ell}(10^{-2}) 3.9510.6+6.913.95^{+6.91}_{-10.6} 4.0310.5+6.874.03^{+6.87}_{-10.5}
H(105)\mathcal{F}_{\rm{H}}(10^{-5}) 1.470.71+1.081.47^{+1.08}_{-0.71} 1.460.71+1.061.46^{+1.06}_{-0.71}
H(102)\mathcal{F}_{\rm{H}}(10^{-2}) 8.954.32+6.598.95^{+6.59}_{-4.32} 8.924.30+6.558.92^{+6.55}_{-4.30}

IV Summary

In this paper, we investigated the semileptonic decay DK0(1430)νD\to K_{0}^{\ast}(1430)\ell\nu_{\ell} with =(e,μ)\ell=(e,\mu). Firstly, the TFFs for DK0(1430)D\to K_{0}^{\ast}(1430) are calculated by using LCSR approach. Considering that the LCDA is the main nonperturbative input in LCSR, we adopt two different twist-2 LCDAs for calculation and comparison, i.e.i.e., ϕ2;K0(S1)(x,μ)\phi_{2;K_{0}^{*}}^{\rm(S1)}(x,\mu) and ϕ2;K0(S2)(x,μ)\phi_{2;K_{0}^{*}}^{\rm(S2)}(x,\mu) based on truncated form and LCHO model, whose specific behavior are presented in Fig. 1, respectively. The relevant numerical results of f±(0)f_{\pm}(0) are listed in Table 1. Compared with ϕ2;K0(S2)(x,μ)\phi_{2;K_{0}^{*}}^{\rm(S2)}(x,\mu), the f+(0)f_{+}(0) by using ϕ2;K0(S1)(x,μ)\phi_{2;K_{0}^{*}}^{\rm(S1)}(x,\mu) is more consistent with 3PSR Yang:2005bv . In addition, we briefly addressing the issue of interference between the two decays DK0(700)D\to K_{0}^{*}(700) and DK0(1430)D\to K_{0}^{*}(1430) from the vector TFF f+(S1)(0)f_{+}^{\rm{(S1)}}(0) under P1 scenario. Then the TFFs are extrapolated to the high q2q^{2} region by using z(q2,t)z(q^{2},t) to converge the SSE, whose behavior is shown in Fig 2, which includes the results of other groups. After extrapolating the TFFs, the differential decay width of D(0,+)K0(1430)(+,0)νD^{(0,+)}\to K_{0}^{\ast}(1430)^{(+,0)}\ell\nu_{\ell} with =(e,μ)\ell=(e,\mu) is obtained and presented in Fig. 3. The corresponding branching fractions are also listed in Table 2. Our predictions are in good agreement with 3PSR Yang:2005bv , but for the value of (D+K0(1430)0μ+νμ)\mathcal{B}(D^{+}\to K_{0}^{\ast}(1430)^{0}\mu^{+}\nu_{\mu}), it is still different from PDG ParticleDataGroup:2024cfk . Meanwhile, we give a new upper limit of (D+K0(1430)0μ+ν)\mathcal{B}(D^{+}\to K_{0}^{\ast}(1430)^{0}\mu^{+}\nu) by using the proportional relationship of Γ(D+Kπμ+νμ)/Γ(D+K¯0μ+νμ){\Gamma(D^{+}\to K\pi\mu^{+}\nu_{\mu})}/{\Gamma(D^{+}\to\bar{K}^{0}\mu^{+}\nu_{\mu})}, Γ(D+K¯0(1430)0μ+ν)/Γ(D+Kπ+μ+ν){\Gamma(D^{+}\to\bar{K}^{\ast}_{0}(1430)^{0}\mu^{+}\nu)}/{\Gamma(D^{+}\to K^{-}\pi^{+}\mu^{+}\nu)}, and the world average result of (D+K¯0μ+νμ)\mathcal{B}(D^{+}\to\bar{K}^{0}\mu^{+}\nu_{\mu}), which is in good agreement with our result in first twist-2 LCDA scenario. Then, this branching fraction is used to calculate the CKM matrix |Vcs||V_{cs}|. The prediction under ϕ2;K0(S1)(x,μ)\phi_{2;K_{0}^{*}}^{\rm(S1)}(x,\mu) is in great agreement with PDG ParticleDataGroup:2024cfk and BESIII’15 BESIII:2015jmz . Furthermore, we predicted the ratio K0(S1)=0.7680.368+0.560\mathcal{R}_{K_{0}^{\ast}}^{\rm{(S1)}}=0.768^{+0.560}_{-0.368}, K0(S2)=0.7640.365+0.555\mathcal{R}_{K_{0}^{\ast}}^{\rm{(S2)}}=0.764^{+0.555}_{-0.365}.

Finally, the three angular observables, forward-backward asymmetries 𝒜FB\mathcal{A}_{\rm{FB}}, lepton polarization asymmetries 𝒜λ\mathcal{A}_{\lambda_{\ell}}, and q2q^{2}-differential flat terms H\mathcal{F}_{\rm{H}} are also calculated; whose differential results of these observables as a function of q2q^{2} are shown in Fig. 5. Simultaneously, the numerical results after integration are listed in Table 4. The semileptonic decays of DK0(1430)νD\to K_{0}^{*}(1430)\ell\nu_{\ell} with =(e,μ)\ell=(e,\mu) are a meaningful decay channel. These interesting observables can help us better understand the structure of scalar mesons and provide valuable information for testing the SM and finding BSM. According to the current experimental data, in this decay process, the predicted observable under ϕ2;K0(S1)(x,μ)\phi_{2;K_{0}^{*}}^{\rm(S1)}(x,\mu) are more accurate. Because of different decay processes, the application of different amplitude models will have different effects, so this is within our expected results. But we still eagerly anticipate that this decay channel will be detected by experimental collaborations and give more accurate results in the near future.

V Acknowledgments

H. B. Fu, T. Zhong, and S. Q. Wang would like to thank the Institute of High Energy Physics of Chinese Academy of Sciences for their warm and kind hospitality. This work was supported in part by the National Natural Science Foundation of China under Grants No.12265010, No.12265009, No.12265011, and No.12347101, the Project of Guizhou Provincial Department of Science and Technology under Grants No.ZK[2023]024, No.YQK[2023]016, and No.ZK[2023]141.

VI DATA AVAILABILITY

No data were created or analyzed in this study

References

  • (1) J. Y. Ge et al. (CLEO Collaboration), Study of D0πe+νe,D+π0e+νe,D0Ke+νeD^{0}\to\pi^{-}e^{+}\nu_{e},D^{+}\to\pi^{0}e^{+}\nu_{e},D^{0}\to K^{-}e^{+}\nu_{e}, and D+K¯0e+νeD^{+}\to\bar{K}^{0}e^{+}\nu_{e} in tagged decays of the ψ(3770)\psi(3770) resonance, Phys. Rev. D 79, 052010 (2009).
  • (2) K. Liu (BESIII Collaboration), Semileptonic and leptonic DD decays at BESIII, Proc. Sci. LeptonPhoton2019 (2019) 046.
  • (3) S. Zhang (BESIII Collaboration), Test lepton flavor universality with (semi)leptonic DD decays at BESIII, SciPost Phys. Proc. 1, 016 (2019).
  • (4) Y. H. Yang (BESIII Collaboration), (Semi-)leptonic decays of DD mesons at BESIII (2019), 10.5281/zenodo.2530407.
  • (5) M. Ablikim et al. (BESIII Collaboration), Improved measurement of the absolute branching fraction of D+K¯0μ+νμD^{+}\to\bar{K}^{0}\mu^{+}\nu_{\mu}, Eur. Phys. J. C 76, 369 (2016).
  • (6) M. Ablikim et al. (BESIII Collaboration), Determination of the absolute branching fractions of D0Ke+νeD^{0}\to K^{-}e^{+}\nu_{e} and D+K¯0e+νeD^{+}\to\bar{K}^{0}e^{+}\nu_{e}, Phys. Rev. D 104, 052008 (2021).
  • (7) M. Ablikim et al. (BESIII Collaboration), Study of dynamics of D0Ke+νeD^{0}\to K^{-}e^{+}\nu_{e} and D0πe+νeD^{0}\to\pi^{-}e^{+}\nu_{e} decays, Phys. Rev. D 92, 072012 (2015).
  • (8) M. Ablikim et al. (BESIII Collaboration), Observation of the decay D0ρμ+νμD^{0}\to\rho^{-}\mu^{+}\nu_{\mu}, Phys. Rev. D 104, L091103 (2021).
  • (9) M. Ablikim et al. (BESIII Collaboration), Measurement of the form factors in the decay D+ωe+νeD^{+}\to\omega e^{+}\nu_{e} and search for the decay D+ϕe+νeD^{+}\to\phi e^{+}\nu_{e}, Phys. Rev. D 92, 071101 (2015).
  • (10) S. Dobbs et al. (CLEO Collaboration), First measurement of the form factors in the decays D0ρe+νeD^{0}\to\rho^{-}e^{+}\nu_{e} and D+ρ0e+νeD^{+}\to\rho^{0}e^{+}\nu_{e}, Phys. Rev. Lett. 110, 131802 (2013).
  • (11) G. S. Huang et al. (CLEO Collaboration), Study of semileptonic charm decays D0π+νD^{0}\to\pi^{-}\ell^{+}\nu and D0K+νD^{0}\to K^{-}\ell^{+}\nu, Phys. Rev. Lett. 94, 011802 (2005).
  • (12) J. Yelton et al. (CLEO Collaboration), Absolute branching fraction measurements for exclusive DsD_{s} semileptonic decays, Phys. Rev. D 80, 052007 (2009).
  • (13) D. Besson et al. (CLEO Collaboration), Improved measurements of DD meson semileptonic decays to π\pi and KK mesons, Phys. Rev. D 80, 032005 (2009).
  • (14) G. S. Huang et al. (CLEO Collaboration), Absolute branching fraction measurements of exclusive D+D^{+} semileptonic decays, Phys. Rev. Lett. 95, 181801 (2005).
  • (15) M. Ablikim et al. (BESIII Collaboration), Observation of D+f0(500)e+νeD^{+}\to f_{0}(500)e^{+}\nu_{e} and improved measurements of Dρe+νeD\to\rho e^{+}\nu_{e}, Phys. Rev. Lett. 122, 062001 (2019).
  • (16) M. Ablikim et al. (BESIII Collaboration), Observation of the semileptonic decay D0a0(980)e+νeD^{0}\to a_{0}(980)^{-}e^{+}\nu_{e} and evidence for D+a0(980)0e+νeD^{+}\to a_{0}(980)^{0}e^{+}\nu_{e}, Phys. Rev. Lett. 121, 081802 (2018).
  • (17) M. Ablikim et al. (BESIII Collaboration), Study of light scalar mesons through Ds+π0π0e+νeD^{+}_{s}\to\pi^{0}\pi^{0}e^{+}\nu_{e} and KS0KS0e+νeK^{0}_{S}K^{0}_{S}e^{+}\nu_{e} decays, Phys. Rev. D 105, L031101 (2022).
  • (18) M. Ablikim et al. (BESIII Collaboration), Studies of the decay Ds+K+Kμ+νμD_{s}^{+}\to K^{+}K^{-}{\mu}^{+}{\nu}_{\mu}, J. High Energy Phys. 12, 072 (2023).
  • (19) M. Ablikim et al. (BESIII Collaboration), Search for the decay Ds+a0(980)0e+νeD_{s}^{+}\to a_{0}(980)^{0}e^{+}\nu_{e}, Phys. Rev. D 103, 092004 (2021).
  • (20) M. Ablikim et al. (BESIII Collaboration), Study of the f0(980)f_{0}(980) and f0(500)f_{0}(500) scalar mesons through the decay Ds+π+πe+νeD_{s}^{+}\to\pi^{+}\pi^{-}e^{+}\nu_{e}, Phys. Rev. Lett. 132, 141901 (2024).
  • (21) K. M. Ecklund et al. (CLEO Collaboration), Study of the semileptonic decay Ds+f0(980)e+νD_{s}^{+}\to f_{0}(980)e^{+}\nu and implications for Bs0J/ψf0B_{s}^{0}\to J/\psi f_{0}, Phys. Rev. D 80, 052009 (2009).
  • (22) J. M. Link et al. (FOCUS Collaboration), Hadronic mass spectrum analysis of D+Kπ+μ+νD^{+}\to K^{-}\pi^{+}\mu^{+}\nu decay and measurement of the K(892)0K^{*}(892)^{0} mass and width, Phys. Lett. B 621, 72 (2005).
  • (23) H. Y. Cheng, C. K. Chua, and K. C. Yang, Charmless hadronic BB decays involving scalar mesons: Implications to the nature of light scalar mesons, Phys. Rev. D 73, 014017 (2006).
  • (24) R. L. Jaffe, Multi-quark hadrons. 1. The phenomenology of (2 quark 2 anti-quark) mesons, Phys. Rev. D 15, 267 (1977).
  • (25) J. D. Weinstein and N. Isgur, KK¯K\bar{K} molecules, Phys. Rev. D 41, 2236 (1990).
  • (26) J. D. Weinstein and N. Isgur, Do multi-quark hadrons exist? Phys. Rev. Lett. 48, 659 (1982).
  • (27) J. D. Weinstein and N. Isgur, The qqqq¯qq\overline{qq} system in a potential model, Phys. Rev. D 27, 588 (1983).
  • (28) D. S. Du, J. W. Li and M. Z. Yang, Mass and decay constant of I=1/2I=1/2 scalar meson in QCD sum rule, Phys. Lett. B 619, 105 (2005).
  • (29) S. S. Agaev, K. Azizi and H. Sundu, The nonet of the light scalar tetraquarks: The mesons a0(980)a_{0}(980) and K0(800)K_{0}^{\ast}(800), Phys. Lett. B 789, 405 (2019).
  • (30) T. M. Aliev, K. Azizi and M. Savci, Analysis of rare BK0(1430)+B\to K^{*}_{0}(1430)\ell^{+}\ell^{-} decay within QCD sum rules, Phys. Rev. D 76, 074017 (2007).
  • (31) M. J. Aslam, C. D. Lu and Y. M. Wang, BK0(1430)+B\to K^{*}_{0}(1430)\ell^{+}\ell^{-} decays in supersymmetric theories, Phys. Rev. D 79, 074007 (2009).
  • (32) Y. J. Sun, Z. H. Li and T. Huang, B(s)SB_{(s)}\to S transitions in the light cone sum rules with the chiral current, Phys. Rev. D 83, 025024 (2011).
  • (33) Z. G. Wang, BSB-S transition form-factors with the light-cone QCD sum rules, Eur. Phys. J. C 75, 50 (2015).
  • (34) Z. G. Wang, Semi-leptonic BSB\to S decays in the standard model and in the universal extra dimension model, Nucl. Phys. B 898, 431 (2015).
  • (35) R. Khosravi, Semileptonic BsK0(1430)B_{s}\to K_{0}^{*}(1430) transitions with the light-cone sum rules, Phys. Rev. D 105, 116027 (2022).
  • (36) R. Khosravi, Form factors of B(s)B_{(s)} to light scalar mesons with the B-meson light-cone sum rules, Phys. Rev. D 109, 036003 (2024).
  • (37) M. Z. Yang, Semileptonic decay of BB and DK0(1430)¯νD\to K^{*}_{0}(1430)\bar{\ell}\nu from QCD sum rule, Phys. Rev. D 73, 034027 (2006).
  • (38) H. J. Lee, Discussion on scalar meson a0a_{0}(980) as a tetraquark state with the QCD sum rules including the contribution from instanton, New Phys. Sae Mulli 72, 887 (2022).
  • (39) T. Humanic (ALICE Collaboration), Studying the a0a_{0}(980) tetraquark candidate using Ks0K±K^{0}_{s}K^{\pm} interactions in the LHC ALICE collaboration, Rev. Mex. Fis. Suppl. 3, 0308039 (2022).
  • (40) T. V. Brito, F. S. Navarra, M. Nielsen, and M. E. Bracco, QCD sum rule approach for the light scalar mesons as four-quark states, Phys. Lett. B 608, 69 (2005).
  • (41) C. Alexandrou, J. Berlin, M. Dalla Brida, J. Finkenrath, T. Leontiou and M. Wagner, Lattice QCD investigation of the structure of the a0(980)a_{0}(980) meson, Phys. Rev. D 97, 034506 (2018).
  • (42) E. Klempt and A. Zaitsev, Glueballs, hybrids, multiquarks. Experimental facts versus QCD inspired concepts, Phys. Rept. 454, 1 (2007).
  • (43) H. G. Dosch, E. M. Ferreira, F. S. Navarra, and M. Nielsen, Semileptonic DD decay into scalar mesons: A QCD sum rule approach, Phys. Rev. D 65, 114002 (2002).
  • (44) M. Ablikim et al. (BESIII Collaboration), Study of the light scalar a0(980)a_{0}(980) through the decay D0a0(980)e+νeD^{0}\to a_{0}(980)^{-}e^{+}\nu_{e} with a0(980)ηπa_{0}(980)^{-}\to\eta\pi^{-}, arXiv:2411.07730.
  • (45) M. Ablikim et al. (BESIII Collaboration), Observation of D+f0(500)μ+νμD^{+}\to f_{0}(500)\mu^{+}\nu_{\mu} and study of D+π+π+νD^{+}\to\pi^{+}\pi^{-}\ell^{+}\nu_{\ell} decay dynamics, Phys. Rev. D 110, 092008 (2024).
  • (46) S. Navas et al. (Particle Data Group), Review of particle physics, Phys. Rev. D 110, 030001 (2024).
  • (47) M. G. Alford and R. L. Jaffe, Insight into the scalar mesons from a lattice calculation, Nucl. Phys. B 578, 367 (2000).
  • (48) H. Y. Cheng, C. K. Chua and C. W. Hwang, Covariant light front approach for ss wave and pp wave mesons: Its application to decay constants and form-factors, Phys. Rev. D 69, 074025 (2004).
  • (49) H. Y. Cheng, Hadronic DD decays involving scalar mesons, Phys. Rev. D 67, 034024 (2003).
  • (50) D. S. Du, J. W. Li and M. Z. Yang, Form-factors and semileptonic decay of Ds+ϕl¯νD^{+}_{s}\to\phi\bar{l}\nu from QCD sum rule, Eur. Phys. J. C 37, 173 (2004).
  • (51) P. Colangelo and F. De Fazio, D(s)D_{(s)} decays to η\eta and η\eta^{\prime} final states: A phenomenological analysis, Phys. Lett. B 520, 78 (2001).
  • (52) P. Ball, The semileptonic decays Dπ(ρ)eνD\to\pi(\rho)e\nu and Bπ(ρ)eνB\to\pi(\rho)e\nu from QCD sum rules, Phys. Rev. D 48, 3190 (1993).
  • (53) P. Ball, V. M. Braun and H. G. Dosch, Form-factors of semileptonic DD decays from QCD sum rules, Phys. Rev. D 44, 3567 (1991).
  • (54) I. I. Balitsky, V. M. Braun and A. V. Kolesnichenko, Radiative decay σ+pγ\sigma^{+}\to p\gamma in quantum chromodynamics, Nucl. Phys. B 312, 509 (1989).
  • (55) V. L. Chernyak and I. R. Zhitnitsky, BB meson exclusive decays into baryons, Nucl. Phys. B 345, 137 (1990).
  • (56) W. Cheng, X. G. Wu and H. B. Fu, Reconsideration of the BKB\to K^{*} transition form factors within the QCD light-cone sum rules, Phys. Rev. D 95, 094023 (2017).
  • (57) H. J. Tian, H. B. Fu, T. Zhong, X. Luo, D. D. Hu and Y. L. Yang, Investigating the Ds+π0+νD_{s}^{+}\to\pi^{0}\ell^{+}\nu_{\ell} decay process within the QCD sum rule approach, Phys. Rev. D 108, 076003 (2023).
  • (58) J. Gao, C. D. Lü, Y. L. Shen, Y. M. Wang and Y. B. Wei, Precision calculations of BVB\to V form factors from soft-collinear effective theory sum rules on the light-cone, Phys. Rev. D 101, 074035 (2020).
  • (59) G. Duplancic, A. Khodjamirian, T. Mannel, B. Melic and N. Offen, Light-cone sum rules for BπB\to\pi form factors revisited, J. High Energy Phys. 04, 014 (2008).
  • (60) D. D. Hu, H. B. Fu, T. Zhong, L. Zeng, W. Cheng and X. G. Wu, η()\eta^{(\prime)}-meson twist-2 distribution amplitude within QCD sum rule approach and its application to the semi-leptonic decay Ds+η()+νD_{s}^{+}\rightarrow\eta^{(\prime)}\ell^{+}\nu_{\ell}, Eur. Phys. J. C 82, 12 (2022).
  • (61) D. Huang, T. Zhong, H. B. Fu, Z. H. Wu, X. G. Wu and H. Tong, K0(1430)K_{0}^{*}(1430) twist-2 distribution amplitude and Bs,DsK0(1430)B_{s},D_{s}\to K_{0}^{*}(1430) transition form factors, Eur. Phys. J. C 83, 680 (2023).
  • (62) L. Chen, M. Zhao, Y. Zhang and Q. Chang, Study of Bu,d,sK0B_{u,d,s}\to K^{*}_{0} (1430)PP and K0(1430)VK^{*}_{0}(1430)V decays within QCD factorization, Phys. Rev. D 105, 016002 (2022).
  • (63) J. Hua et al. (Lattice Parton Collaboration), Pion and kaon distribution amplitudes from lattice QCD, Phys. Rev. Lett. 129, 132001 (2022).
  • (64) P. Ball, V. M. Braun and A. Lenz, Twist-4 distribution amplitudes of the KK^{*} and ϕ\phi mesons in QCD, J. High Energy Phys. 08, 090 (2007).
  • (65) J. Hua et al. (Lattice Parton Collaboration), Distribution amplitudes of KK^{*} and ϕ\phi at the physical pion mass from lattice QCD, Phys. Rev. Lett. 127, 062002 (2021).
  • (66) H. Y. Han, X. G. Wu, H. B. Fu, Q. L. Zhang and T. Zhong, Twist-3 distribution amplitudes of scalar mesons within the QCD sum rules and its application to the BSB\to S transition form factors, Eur. Phys. J. A 49, 78 (2013).
  • (67) D. Becirevic, S. Fajfer, I. Nisandzic and A. Tayduganov, Angular distributions of B¯D()ν¯\bar{B}\to D^{(\ast)}\ell\bar{\nu}_{\ell} decays and search of New Physics, Nucl. Phys. B 946, 114707 (2019).
  • (68) B. Y. Cui, Y. K. Huang, Y. L. Shen, C. Wang and Y. M. Wang, Precision calculations of Bd,sπ,KB_{d,s}\to\pi,K decay form factors in soft-collinear effective theory, J. High Energy Phys. 03, 140 (2023).
  • (69) Y. M. Wang, M. J. Aslam and C. D. Lu, Scalar mesons in weak semileptonic decays of B(s)B_{(s)}, Phys. Rev. D 78, 014006 (2008).
  • (70) T. Zhong, H. B. Fu and X. G. Wu, Investigating the ratio of CKM matrix elements |Vub|/|Vcb||V_{ub}|/|V_{cb}| from semileptonic decay Bs0Kμ+νμB_{s}^{0}\to K^{-}\mu^{+}\nu_{\mu} and kaon twist-2 distribution amplitude, Phys. Rev. D 105, 116020 (2022).
  • (71) T. Zhong, Z. H. Zhu, H. B. Fu, X. G. Wu and T. Huang, Improved light-cone harmonic oscillator model for the pionic leading-twist distribution amplitude, Phys. Rev. D 104, 016021 (2021).
  • (72) C. D. Lu, Y. M. Wang and H. Zou, Twist-3 distribution amplitudes of scalar mesons from QCD sum rules, Phys. Rev. D 75, 056001 (2007).
  • (73) S. Kuberski, F. Joswig, S. Collins, J. Heitger, and W. Söldner, DD and DsD_{s} decay constants in Nf=2+1N_{f}=2+1 QCD with Wilson fermions. J. High Energy Phys. 07 (2024) 090.
  • (74) J. M. Link et al. (FOCUS Collaboration), Measurement of the ratio of the vector to pseudoscalar charm semileptonic decay rate Γ(D+K¯0μ+νμ)/Γ(D+K¯0μ+νμ){\Gamma(D^{+}\to\bar{K}^{\ast 0}\mu^{+}\nu_{\mu})}/{\Gamma(D^{+}\to\bar{K}^{0}\mu^{+}\nu_{\mu})}, Phys. Lett. B 598, 33 (2004).
  • (75) M. Ablikim et al. (BESIII Collaboration), Study of decay dynamics and CPCP asymmetry in D+KL0e+νeD^{+}\to K^{0}_{L}e^{+}\nu_{e} decay, Phys. Rev. D 92, 112008 (2015).
  • (76) M. Ablikim et al. (BESIII Collaboration), Analysis of D+K¯0e+νeD^{+}\to\bar{K}^{0}e^{+}\nu_{e} and D+π0e+νeD^{+}\to\pi^{0}e^{+}\nu_{e} semileptonic decays, Phys. Rev. D 96, 012002 (2017).
  • (77) M. Ablikim et al. (BESIII Collaboration), Updated measurement of the branching fraction of Ds+τ+ντD_{s}^{+}\to\tau^{+}\nu_{\tau} via τ+π+ν¯τ\tau^{+}\to\pi^{+}\bar{\nu}_{\tau}, Phys. Rev. D 108, 092014 (2023).
  • (78) M. Ablikim et al. (BESIII Collaboration), Measurement of the branching fraction of Ds++νD^{+}_{s}\to\ell^{+}\nu_{\ell} via e+eDs+Dse^{+}e^{-}\to D^{*+}_{s}D^{*-}_{s}, Phys. Rev. D 110, 052002 (2024).
  • (79) P. L. Liu (BESIII Collaboration), |Vcs||V_{cs}| determination and LFU test in charm decays at BESIII, arXiv:2405.08376
  • (80) G. C. Donald et al. (HPQCD Collaboration), VcsV_{cs} from DsϕνD_{s}\to\phi\ell\nu semileptonic decay and full lattice QCD, Phys. Rev. D 90, 074506 (2014).
  • (81) B. Chakraborty et al. (HPQCD Collaboration), Improved VcsV_{cs} determination using precise lattice QCD form factors for DKνD\to K\ell\nu, Phys. Rev. D 104, 034505 (2021).