This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Probing tqZtqZ anomalous couplings in the trilepton signal at the HL-LHC, HE-LHC and FCC-hh

Yao-Bei Liu1111E-mail: [email protected]    Stefano Moretti2222E-mail: [email protected] 1. Henan Institute of Science and Technology, Xinxiang 453003, P. R. China
2. School of Physics & Astronomy, University of Southampton, Highfield, Southampton SO17 1BJ, UK
Abstract

We investigate the prospects for discovering the Flavour Changing Neutral Current (FCNC) tqZtqZ couplings via two production processes yielding trilepton signals: top quark pair production pptt¯pp\to t\bar{t} with one top decaying to the ZZ boson and one light jet and the anomalous single top plus ZZ boson production process pptZpp\to tZ. We study these channels at various successors of the Large Hadron Collider (LHC), i.e., the approved High-Luminosity LHC (HL-LHC) as well as the proposed High-Energy LHC (HE-LHC) and Future Circular Collider in hadron-hadron mode (FCC-hh). We perform a full simulation for the signals and the relevant Standard Model (SM) backgrounds and obtain limits on the Branching Ratios (BRs) of tqZ(q=u,c)t\to qZ~{}(q=u,c), eventually yielding a trilepton final state through the decay modes tbW+b+νt\to bW^{+}\to b\ell^{+}\nu_{\ell} and Z+Z\to\ell^{+}\ell^{-}. The upper limits on these FCNC BRs at 95% Confidence Level (CL) are obtained at the HL-LHC with s=14\sqrt{s}=14 TeV and 3 ab-1, at the HE-LHC with s=27\sqrt{s}=27 TeV and 15 ab-1 as well as at the FCC-hh with s=100\sqrt{s}=100 TeV and 30 ab-1.

I Introduction

Being the most massive elementary particle in the Standard Model (SM), the top quark is generally considered to be an excellent probe for New Physics (NP) Beyond the SM (BSM) Tait:2000sh . In particular, its Flavour Changing Neutral Current (FCNC) interactions are forbidden in the SM at tree-level and are strongly suppressed at loop-level by the Glashow-Iliopoulos-Maiani (GIM) mechanism AguilarSaavedra:2004wm ; AguilarSaavedra:2009mx . For instance, the Branching Ratios (BRs) of tqZt\to qZ (q=u,cq=u,c) are predicted to be at the level of 101410^{-14} in the SM Agashe:2013hma , which is far out of range of the current Large Hadron Collider (LHC) sensitivities. In contrast, several NP scenarios predict the maximum values for BR(tqZ){\rm BR}(t\to qZ) (q=u,c)(q=u,c) to be at the level of 10710410^{-7}-10^{-4}, such as the quark-singlet model AguilarSaavedra:2002kr , the 2-Higgs Doublet Model (2HDM) with or without flavour conservation Atwood:1996vj , the Minimal Supersymmetric Standard Model (MSSM) Cao:2007dk , the MSSM with RR-parity violation Yang:1997dk , models with warped extra dimensions Agashe:2006wa or extended mirror fermion models Hung:2017tts . Thus, searches for such FCNC processes are very important and would be considered as a clear signal for BSM physics AguilarSaavedra:2000aj .

Using data collected at the center-of-mass (c.m.) energy of 13 TeV, the latest experimental limits on the top quark FCNC BR(tqZ){\rm BR}(t\to qZ) were established by the CMS and ATLAS collaborations by using Run 2 data CMS:2017twu ; Aaboud:2018nyl . The 95% Confidence Level (CL) upper limits are summarised in Tab. 1. As a more promising prospect, it is also worth mentioning here the scope of the the approved High-Luminosity LHC (HL-LHC), which is expected to reach the level of 4 to 5×1055\times 10^{-5} with an integrated luminosity LintL_{\rm int} = 3 ab-1 at s=14\sqrt{s}=14 TeV, using a full simulation of the upgraded ATLAS detector, where the three charged lepton (trilepton) final state of top quark pair events are considered, i.e., pptt¯bW+qZbνqpp\to t\bar{t}\to bW^{+}qZ\to b\ell\nu q\ell\ell, where =e,μ\ell=e,\mu ATLAS:2019pcn .

Table 1: The current experimental upper limits on BR(tqZ)(t\rightarrow qZ) at 95% CL.
Detector BR(tuZ)(t\rightarrow uZ) BR(tcZ)(t\rightarrow cZ) Ref.
CMS, 13 TeV, 35.9 fb-1 2.4×1042.4\times 10^{-4} 4.5×1044.5\times 10^{-4}  CMS:2017twu
ATLAS, 13 Tev, 36.1 fb-1 1.7×1041.7\times 10^{-4} 2.4×1042.4\times 10^{-4}  Aaboud:2018nyl

At present, therefore, there is no experimental evidence of such top quark FCNC anomalous couplings. One can however improve these limits, or indeed achieve discovery, at future higher luminosity and/or higher energy hadron colliders Mandrik:2018yhe , such as the aforementioned HL-LHC and/or the proposed High-Energy LHC (HE-LHC), with 27 TeV of c.m. energy and 15 ab-1 of integrated luminosity Benedikt:2018ofy as well as the Future Circular Collider in hadron-hadron mode (FCC-hh), with 100 TeV of c.m. energy and 30 ab-1 of integrated luminosity  Arkani-Hamed:2015vfh .

Figure 1: Representative Feynman diagrams for tt¯tq¯Zt\bar{t}\to t\bar{q}Z production and decay (a–b) and tZtZ associated production (c–d), both of which proceed via FCNC tZqtZq anomalous couplings (q=u,cq=u,c).

The aim of this work is to investigate the limits on the discussed tqZtqZ anomalous couplings that can be placed at these future hadron colliders using a trilepton signature. In fact, in addition to the latter being generated via tt¯t\bar{t} production followed by the FCNC tqZt\to qZ decay mode (hereafter, tt¯t\bar{t}-FCNC), also single top quark production in association with a ZZ boson (hereafter, tZtZ-FCNC) leads to a trilepton signature Agram:2013koa ; Shen:2018mlj , albeit with no hard jets stemming from the hard scattering, as shown in Fig. 1. Following the approach of Ref. Liu:2020kxt for the case of FCNC tqhtqh (q=u,cq=u,c) anomalous couplings (wherein hh is the SM-like Higgs boson discovered at the LHC in 2012), also in this paper, the search for FCNC tqZtqZ anomalous couplings is performed by combining the above two processes in the trilepton final state, where both the W±W^{\pm} boson from the top quark and the ZZ boson decay into either electrons or muons. Thus, we consider two different trilepton signal selections, one where at least two jets with at least one bb-tag are required (corresponding to the tt¯t\bar{t}-FCNC channel) and the other where exactly one bb-tagged jet is required (corresponding to the tZtZ-FCNC channel). Realistic detector effects are included in both signal and background processes, so that the emerging results can be compared to experimental predictions.

This paper is arranged as follows. In Sec. II, the cross sections of the the two signal processes are calculated at the discussed hadron colliders. Then Sec. III includes estimates for the signal and background event rates alongside 95% CL limits on the advocated trilepton signals. Finally, we summarise our main results and conclude in Sec. IV.

II Production and decay processes with top quark FCNC interactions

In this section, we describe the structure of the tqZtqZ interactions and quantify the cross sections of the production and decay processes of interest here involving these.

II.1 The FCNC tqZtqZ anomalous couplings

In the search for FCNC tqZtqZ anomalous interactions, the top quark FCNC coupling is explored in a model-independent way by considering the most general effective Lagrangian approach AguilarSaavedra:2008zc . The Lagrangian involving FCNC tqZtqZ interactions can be written as AguilarSaavedra:2008zc

eff\displaystyle\mathcal{L}_{\rm eff} =\displaystyle= q=u,c[g4cWmZκtqZq¯σμν(κLPL+κRPR)tZμν\displaystyle\sum_{q=u,c}[\frac{g}{4c_{W}m_{Z}}\kappa_{tqZ}\bar{q}\sigma^{\mu\nu}(\kappa_{L}P_{L}+\kappa_{R}P_{R})tZ_{\mu\nu} (1)
+\displaystyle+ g2cWλtqZq¯γμ(λLPL+λRPR)tZμ]+h.c.,\displaystyle\frac{g}{2c_{W}}\lambda_{tqZ}\bar{q}\gamma^{\mu}(\lambda_{L}P_{L}+\lambda_{R}P_{R})tZ_{\mu}]+h.c.,

where cW=cosθWc_{W}=\cos\theta_{W} and θW\theta_{W} is the Weinberg angle, PL,RP_{L,R} are the left- and right-handed chirality projector operators, κtqZ\kappa_{tqZ} and λtqZ\lambda_{tqZ} are effective couplings for the corresponding vertices. The Electro-Weak (EW) interaction is parameterised by the coupling constant gg and the mixing angle θW\theta_{W}. The complex chiral parameters κL,R\kappa_{L,R} and λL,R\lambda_{L,R} are normalised as |κL|2+|κR|2=|λL|2+|λR|2=1|\kappa_{L}|^{2}+|\kappa_{R}|^{2}=|\lambda_{L}|^{2}+|\lambda_{R}|^{2}=1.

The partial widths for the FCNC decays, wherein we separate the contributions of the two tensor structures entering the above equation, are given by

Γ(tqZ)(σμν)\displaystyle\Gamma(t\to qZ)~{}(\sigma^{\mu\nu}) =\displaystyle= α128sW2cW2|κtqZ|2mt3mZ2[1mZ2mt2]2[2+mZ2mt2],\displaystyle\frac{\alpha}{128s_{W}^{2}c_{W}^{2}}|\kappa_{tqZ}|^{2}\frac{m_{t}^{3}}{m_{Z}^{2}}\left[1-\frac{m_{Z}^{2}}{m_{t}^{2}}\right]^{2}\left[2+\frac{m_{Z}^{2}}{m_{t}^{2}}\right],
Γ(tqZ)(γμ)\displaystyle\Gamma(t\to qZ)~{}(\gamma^{\mu}) =\displaystyle= α32sW2cW2|λtqZ|2mt3mZ2[1mZ2mt2]2[1+2mZ2mt2].\displaystyle\frac{\alpha}{32s_{W}^{2}c_{W}^{2}}|\lambda_{tqZ}|^{2}\frac{m_{t}^{3}}{m_{Z}^{2}}\left[1-\frac{m_{Z}^{2}}{m_{t}^{2}}\right]^{2}\left[1+2\frac{m_{Z}^{2}}{m_{t}^{2}}\right]. (2)

After neglecting all the light quark masses and assuming the dominant top decay partial width to be that of tbWt\to bW Li:1990qf

Γ(tbW+)=α16sW2|Vtb|2mt3mW2[13mW4mt4+2mW6mt6],\displaystyle\Gamma(t\to bW^{+})=\frac{\alpha}{16s_{W}^{2}}|V_{tb}|^{2}\frac{m_{t}^{3}}{m_{W}^{2}}\left[1-3\frac{m_{W}^{4}}{m_{t}^{4}}+2\frac{m_{W}^{6}}{m_{t}^{6}}\right], (3)

then the BR(tqZt\to qZ) can be approximated by AguilarSaavedra:2004wm

BR(tqZ)(σμν)\displaystyle{\rm BR}(t\to qZ)~{}(\sigma^{\mu\nu}) =\displaystyle= 0.172|κtqZ|2,\displaystyle 0.172|\kappa_{tqZ}|^{2}, (4)
BR(tqZ)(γμ)\displaystyle{\rm BR}(t\to qZ)~{}(\gamma^{\mu}) =\displaystyle= 0.471|λtqZ|2.\displaystyle 0.471|\lambda_{tqZ}|^{2}.

Here, the Next-to-Leading Order (NLO) QCD corrections to the top quark decay via model-independent FCNC couplings are also included and the kk-factor is taken as 1.02 Zhang:2008yn ; Drobnak:2010wh .

II.2 Cross sections

For the simulations of the ensuing collider phenomenology, we first use the FeynRules package feynrules to generate the Universal FeynRules Output (UFO) files Degrande:2011ua . The LO cross sections are obtained by using MadGraph5-aMC@@NLO Alwall:2014hca with NNPDF23L01 Parton Distribution Functions (PDFs) Ball:2014uwa taking the renormalisation and factorisation scales to be μR=μF=μ0/2=(mt+mZ)/2\mu_{R}=\mu_{F}=\mu_{0}/2=(m_{t}+m_{Z})/2. The numerical values of the input parameters are taken as follows pdg :

mt\displaystyle m_{t} =173.1GeV,mZ=91.1876GeV,mW=80.379GeV,\displaystyle=173.1{\rm~{}GeV},\quad m_{Z}=91.1876{\rm~{}GeV},\quad m_{W}=80.379{\rm~{}GeV}, (5)
αs(mZ)\displaystyle\alpha_{s}(m_{Z}) =0.1181,GF=1.16637×105GeV2.\displaystyle=0.1181,\quad G_{F}=1.16637\times 10^{-5}\ {\rm GeV^{-2}}.

Figure 2: The dependence of the cross section σ\sigma on the FCNC coupling parameters κtqZ\kappa_{tqZ} (upper) and λtqZ\lambda_{tqZ} (lower) at the HL-LHC (left), HE-LHC (middle) and FCC-hh (right) with the basic cuts: pTj>40p_{T}^{j}>40 GeV and |ηj|<2.5|\eta_{j}|<2.5. Notice that the charge conjugated processes are also included in the calculation.

In Fig. 2, we show the total cross sections σ\sigma in pb versus the two kinds of coupling parameters, κtqZ\kappa_{tqZ} and λtqZ\lambda_{tqZ}, at LO. One can see that the dipole σμν\sigma^{\mu\nu} terms lead to larger cross sections with the same coupling values. For the two kinds of couplings, the cross sections of u¯gt¯Z\bar{u}g\to\bar{t}Z are overwhelmed by ugtZug\to tZ due to the difference between the uu-quark and u¯\bar{u}-quark PDF of the proton. Thus, if we consider the leptonic top decay modes, more leptons will be observed than anti-leptons for a given c.m. energy and integrated luminosity. Due to the similarly small PDFs of the cc-quark and c¯\bar{c}-quark, the cross section of c¯gt¯Z\bar{c}g\to\bar{t}Z is essentially the same as that of cgtZcg\to tZ and they are much smaller than the cross section of ugtZug\to tZ for the same values of the coupling parameter. This implies that the sensitivity to the FCNC coupling parameter κtuZ(λtuZ)\kappa_{tuZ}~{}(\lambda_{tuZ}) will be better than κtcZ(λtcZ)\kappa_{tcZ}~{}(\lambda_{tcZ}).

III Simulation and analysis

In this section, we describe the numerical treatment of our signal and background events.

III.1 The signal and background analysis

The signal is produced through the processes (herein, all charge conjugated channels are included)

pp\displaystyle pp \displaystyle\to t(bW+b+ν)Z(+),\displaystyle t(\to bW^{+}\to b\ell^{+}\nu)Z(\to\ell^{+}\ell^{-}), (6)
pp\displaystyle pp \displaystyle\to t(bW+b+ν)t¯(q¯Z(+)),\displaystyle t(\to bW^{+}\to b\ell^{+}\nu)\bar{t}(\to\bar{q}Z(\to\ell^{+}\ell^{-})), (7)

where =e,μ\ell=e,\mu and q=u,cq=u,c, the latter eventually generating a jet jj.

As intimated, the final state for the signal is characterised by three leptons (electrons and/or muons), one bb-tagged jet plus missing transverse energy from the escaping undetected neutrino in the tZtZ-FCNC case. In the final state from the tt¯t\bar{t}-FCNC process, there is an additional jet arising from the hadronisation of the quark qq. Furthermore, notice that the interference between the tZtZ-FCNC (with an additional qq emission) and tt¯t\bar{t}-FCNC processes can be neglected Barros:2019wxe .

The main backgrounds which yield identical final states to the signal ones are W±ZW^{\pm}Z production in association with jets, tt¯Vt\bar{t}V (V=W±,ZV=W^{\pm},Z) and the irreducible tZjtZj process, where jj denotes a non-bb-quark jet. Besides, in the top pair production case (where the top quark pairs decay semi-leptonically), a third lepton can come from a semi-leptonic BB-hadron decay inside the bb-jet. Here, we do not consider multijet backgrounds where jets can fake electrons, since they are generally negligible in multilepton analyses Khachatryan:2014ewa . Other processes, such as the tt¯ht\bar{t}h, tri-boson events or W±W^{\pm} + jets are not included in the analysis due to the very small cross sections after applying the cuts.

The signal and background samples are generated at LO by interfacing MadGraph5-aMC@@NLO to the the Monte Carlo (MC) event generator Pythia 8.20 Sjostrand:2014zea for the parton showering. All produced jets are forced to be clustered using FASTJET 3.2 Cacciari:2011ma assuming the anti-ktk_{t} algorithm with a cone radius of R=0.4R=0.4 Cacciari:2008gp . All event samples are fed into the Delphes 3.4.2 package deFavereau:2013fsa with the default HL-LHC, HE-LHC and FCC-hh detector cards. Finally, the event analysis is performed by using MadAnalysis5 Conte:2012fm . To include inclusive QCD contributions, we generate the hard scatterings of signal and backgrounds with up to one additional jet in the final state, followed by matrix element and parton shower merging with the MLM matching scheme Frederix:2012ps . Furthermore, we renormalise the LO cross sections for the signals to the corresponding higher order QCD results of Refs. Li:2011ek ; Zhang:2010dr ; Degrande:2014tta . For the SM backgrounds, we generated LO samples renormalised to the NLO or next-NLO (NNLO) order cross sections, where available, taken from Refs. Lazopoulos:2008de ; Kardos:2011na ; Czakon:2013goa ; Mangano:2016jyj ; Campanario:2010hp ; Campbell:2012dh ; Frederix:2017wme ; Frixione:2015zaa ; Pagani:2020mov ; Azzi:2019yne . For instance, the LO cross section for the W±ZW^{\pm}Z + jets background (one of the most relevant ones overall) is renormalised to the NLO one through a kk-factor of 1.3 Campanario:2010hp at 14 TeV LHC and, as an estimate, we assume the same correction factor at the HE-LHC and FCC-hh. The LO cross section for the tt¯t\bar{t} process is renormalised to the NNLO one by a kk-factor of 1.6 Azzi:2019yne at the HL-LHC as well as HE-LHC and 1.43 Mangano:2016jyj at the FCC-hh.

In order to identify objects, we impose the following basic or generation (parton level) cuts for the signals and SM backgrounds:

pT>25GeV,pTj/b>30GeV,|ηi|<2.5,ΔRij>0.4(i,j=,b,j),\displaystyle p_{T}^{\ell}>25~{}\text{GeV},\quad p_{T}^{j/b}>30~{}\text{GeV},\quad|\eta_{i}|<2.5,\quad\Delta R_{ij}>0.4~{}~{}(i,j=\ell,b,j), (8)

where jj and bb denote light-flavour jets and a bb-tagged jet, respectively. Here, ΔR=ΔΦ2+Δη2\Delta R=\sqrt{\Delta\Phi^{2}+\Delta\eta^{2}} is the separation in the rapidity-azimuth plane. Next, we discuss the events selection by focusing on two cases: the pptt¯tZjpp\to t\bar{t}\to tZj (henceforth referred to as ‘Case A’) process and the pptZpp\to tZ (henceforth referred to as ‘Case B’) process, respectively. As mentioned, the main difference is whether there is a light jet in the final state. We first discuss the selection cuts for Case A and then for Case B.

III.2 The selection cuts for Case A

Figure 3: Normalised (to 1) distributions for the signals and SM backgrounds at the HL-LHC for Case A.

For case A, the trilepton analysis aims to select tt¯t\bar{t} events where one of the top quarks decays via the FCNC process (tqZq12t\to qZ\to q\ell_{1}\ell_{2}) while the other top quark decays leptonically (tWb3νbt\to Wb\to\ell_{3}\nu b). Here, the leptons 1\ell_{1} and 2\ell_{2} are the two Opposite-Sign and Same-Flavour (OSSF) leptons that are assumed to be the product of the ZZ-boson decay, whereas the third lepton, 3\ell_{3}, is assumed to originate from the leptonically decaying top quark, with the bb-tagged jet emerging from the tbW+t\to bW^{+} decay and the light jet jj is the non-bb-tagged one. Therefore, the following preselection is used for Case A (Cut 1):

  • exactly three isolated leptons with pT>30GeVp_{T}>30\rm~{}GeV, in which at least one OSSF lepton pair;

  • at least two jets with pT>40GeVp_{T}>40\rm~{}GeV, with exactly one of them bb-tagged;

  • the missing transverse energy ETmiss>30GeVE_{T}^{\rm miss}>30~{}\rm GeV.

In Fig. 3, we plot some differential distributions for signals and SM backgrounds at the HL-LHC, such as the invariant mass distributions of the two leptons, M12M_{\ell_{1}\ell_{2}}, the transverse mass distribution for MT(3)M_{T}(\ell_{3}) and MT(b3)M_{T}(b\ell_{3}) as well as the triple invariant mass, M12jM_{\ell_{1}\ell_{2}j}. Furthermore, the top quark transverse cluster mass can be defined as Conte:2014zja

MT2((p3+pb)2+|pT,3+pT,b|2+|T|)2|pT,3+pT,b+T|2,\displaystyle M_{T}^{2}\equiv(\sqrt{(p_{\ell_{3}}+p_{b})^{2}+|\vec{p}_{T,\ell_{3}}+\vec{p}_{T,b}|^{2}}+|\vec{\not{p}}_{T}|)^{2}-|\vec{p}_{T,\ell_{3}}+\vec{p}_{T,b}+\vec{\not{p}}_{T}|^{2}, (9)

where pT,3\vec{p}_{T,\ell_{3}} and pT,b\vec{p}_{T,b} are the transverse momenta of the third charged lepton and bb-quark, respectively, and T\vec{\not{p}}_{T} is the missing transverse momentum determined by the negative sum of the visible momenta in the transverse direction.

According to the above analysis, we can impose the following set of cuts.

  • (Cut 2) Two of the same-flavour leptons in each event are required to have opposite electric charge and have an invariant mass, M12M_{\ell_{1}\ell_{2}}, compatible with the ZZ boson mass, i.e., |M(12)mZ|<15GeV|M(\ell_{1}\ell_{2})-m_{Z}|<15\rm~{}GeV.

  • (Cut 3) The transverse mass of the W±W^{\pm} candidate is required to be 50GeV<MT3<100GeV50~{}{\rm GeV}<M_{T}^{\ell_{3}}<100~{}{\rm GeV} whereas the transverse mass of the top quark is required to be 100GeV<MTb3<200GeV100~{}{\rm GeV}<M_{T}^{b\ell_{3}}<200~{}{\rm GeV}.

  • (Cut 4) The triple invariant mass M12jM_{\ell_{1}\ell_{2}j} cut is such that 140GeV<M12j<200GeV140~{}{\rm GeV}<M_{\ell_{1}\ell_{2}j}<200~{}{\rm GeV}.

Table 2: The cut flow of the cross sections (in fb) for the signals and SM backgrounds at the HL-LHC with κtuZ=λtuZ=0.1\kappa_{tuZ}=\lambda_{tuZ}=0.1 and κtcZ=λtcZ=0.1\kappa_{tcZ}=\lambda_{tcZ}=0.1 (in the brackets) for Case A.
Cuts Signals Backgrounds
tt¯tZjt\bar{t}\to tZj pptZpp\to tZ WZWZ tt¯t\bar{t} tt¯Zt\bar{t}Z tt¯Wt\bar{t}W tZjtZj
tZq(σμν)tZq~{}(\sigma^{\mu\nu}) tZq(γμ)tZq~{}(\gamma^{\mu}) tZq(σμν)tZq~{}(\sigma^{\mu\nu}) tZq(γμ)tZq~{}(\gamma^{\mu})
Basic 31.8 (33.4) 23.1 (24.3) 44 (7.6) 10.1 (2.2) 5.22 24618 8.32 1.36 4.23
Cut 1 5.9 (5.6) 4.3 (4.2) 7.18 (1.15) 1.34 (0.28) 0.86 1.36 0.49 0.097 0.55
Cut 2 4.5 (4.3) 3.41 (3.25) 5.94 (0.95) 1.09 (0.23) 0.64 0.25 0.37 0.012 0.43
Cut 3 1.93 (1.8) 1.46 (1.36) 2.39 (0.41) 0.47 (0.1) 0.14 0.085 0.12 0.0034 0.18
Cut 4 0.91 (0.81) 0.68 (0.61) 0.2 (0.046) 0.077 (0.018) 0.031 0.027 0.028 0.0015 0.048
Table 3: The cut flow of the cross sections (in fb) for the signals and SM backgrounds at the HE-LHC with κtuZ=λtuZ=0.1\kappa_{tuZ}=\lambda_{tuZ}=0.1 and κtcZ=λtcZ=0.1\kappa_{tcZ}=\lambda_{tcZ}=0.1 (in the brackets) for Case A.
Cuts Signals Backgrounds
tt¯tZjt\bar{t}\to tZj pptZpp\to tZ WZWZ tt¯t\bar{t} tt¯Zt\bar{t}Z tt¯Wt\bar{t}W tZjtZj
tZq(σμν)tZq~{}(\sigma^{\mu\nu}) tZq(γμ)tZq~{}(\gamma^{\mu}) tZq(σμν)tZq~{}(\sigma^{\mu\nu}) tZq(γμ)tZq~{}(\gamma^{\mu})
Basic 179 (188) 129 (135) 170 (39) 35 (10) 13.5 71187 42 4.8 15.4
Cut 1 29 (28) 22 (21) 27 (5.8) 4.6 (1.26) 2.73 4.88 2.67 0.35 1.93
Cut 2 22 (21) 17 (16) 22.5 (4.8) 3.7 (1.0) 2.04 0.92 1.97 0.038 1.51
Cut 3 9.1 (8.64) 7.0 (6.5) 8.16 (1.86) 1.49 (0.42) 0.41 0.31 0.58 0.011 0.59
Cut 4 4.1 (3.9) 3.11 (2.75) 0.63 (0.18) 0.21 (0.072) 0.087 0.043 0.12 0.0048 0.144
Table 4: The cut flow of the cross sections (in fb) for the signals and SM backgrounds at the FCC-hh with κtuZ=λtuZ=0.1\kappa_{tuZ}=\lambda_{tuZ}=0.1 and κtcZ=λtcZ=0.1\kappa_{tcZ}=\lambda_{tcZ}=0.1 (in the brackets) for Case A.
Cuts Signals Backgrounds
tt¯tZjt\bar{t}\to tZj pptZpp\to tZ WZWZ tt¯t\bar{t} tt¯Zt\bar{t}Z tt¯Wt\bar{t}W tZjtZj
tZq(σμν)tZq~{}(\sigma^{\mu\nu}) tZq(γμ)tZq~{}(\gamma^{\mu}) tZq(σμν)tZq~{}(\sigma^{\mu\nu}) tZq(γμ)tZq~{}(\gamma^{\mu})
Basic 2135 (2315) 1532 (1662) 1122 (455) 290 (127) 267 764935 351 46 155
Cut 1 440 (377) 335 (279) 276 (98) 56 (21) 61 60 22 5.6 31
Cut 2 330 (280) 102 (86) 224 (80) 44 (17) 45 9.5 17 0.53 24
Cut 3 134 (109) 102 (86) 85.2 (31.2) 17.6 (7.3) 8.7 3.7 4.9 0.14 8.7
Cut 4 70 (57) 54.4 (43.5) 9.03 (4.01) 3.32 (1.53) 2.01 1.07 0.82 0.07 1.83

We use the same selection cuts for the HE-LHC and FCC-hh analysis because the distributions are very similar to the case of the HL-LHC. The effects of the described cuts on the signal and SM background processes are illustrated in Tabs. 24. Due to the different bb-tagging rates for uu- and cc-quarks, we give the events separately for q=u,cq=u,c for the signals. One can see that, at the end of the cut flow, the largest SM background is the pptZjpp\to tZj process, which is about 0.048 fb, 0.144 fb and 1.45 fb at the HL-LHC, HE-LHC and FCC-hh, respectively. Besides, the W±ZW^{\pm}Z + jets and tt¯Zt\bar{t}Z processes can also generate significant contributions to the SM background. Obviously, the dominant signal contribution comes from the tt¯t\bar{t}-FCNC process, but the contribution from the tZtZ-FCNC production process cannot be ignored, especially for the tuZtuZ couplings.

III.3 The selection cuts for Case B

For this case, we will mainly concentrate on the signal from the ugtZug\to tZ process due to the relative large cross section and we will veto extra jets in the following analysis. However, the final signals for Case A could also be considered as a source for Case B if the light quark is missed by the detector. Hence, we combine these processes into the complete signal events.

The process ugtZug\to tZ should include two leptons with positive charge, one coming from the decay Z+Z\to\ell^{+}\ell^{-} and the other from the top quark decay tW+b+νbt\to W^{+}b\to\ell^{+}\nu b. Because the distributions for the signal and backgrounds are similar for the invariant mass M12M_{\ell_{1}\ell_{2}} as well as the transverse masses MT(3)M_{T}(\ell_{3}) and MT(b3)M_{T}(b\ell_{3}), we only plot the distributions for the distance of the OSSF lepton pair, ΔR(1,2)\Delta R(\ell_{1},\ell_{2}), and the rapidity of the OSSF lepton pair, y12y_{\ell_{1}\ell_{2}}, in Fig. 4. (Here, the distributions are obtained at the HL-LHC, but the pattern is very similar at the HE-LHC and FCC-hh.) One can see that, for Case B, the ZZ boson from the ugtZug\to tZ process concentrates in the forward and backward regions since the partonic c.m. frame is highly boosted along the direction of the uu-quark.

Figure 4: Normalised (to 1) distributions for the signals and SM backgrounds at the HL-LHC for Case B.

Thus, we can impose the following set of cuts for Case B.

  • (Cut 1) There are three leptons in which at least two with positive charge and pT>30GeVp_{T}>30\rm~{}GeV, exactly one bb-tagged jet with pT>40GeVp_{T}>40\rm~{}GeV and the event is rejected if the pTp_{T} of the subleading jet is greater than 25 GeV.

  • (Cut 2) The distance between the OSSF lepton pair should lie within ΔR(1,2)[0.4,1.2]\Delta R(\ell_{1},\ell_{2})\in[0.4,1.2] while the corresponding invariant mass is required to be |M(12)mZ|<15GeV|M(\ell_{1}\ell_{2})-m_{Z}|<15\rm~{}GeV.

  • (Cut 3) The transverse masses of the reconstructed W±W^{\pm} boson and top quark masses are required to satisfy 50GeV<MT3<100GeV50~{}{\rm GeV}<M_{T}^{\ell_{3}}<100~{}{\rm GeV} and 100GeV<MTb3<200GeV100~{}{\rm GeV}<M_{T}^{b\ell_{3}}<200~{}{\rm GeV}, respectively.

  • (Cut 4) The rapidity of the OSSF lepton pair is required to be |y12|>1.0|y_{\ell_{1}\ell_{2}}|>1.0.

The effects of these cuts on the signal and background processes for Case B are illustrated in Tabs. 57. One can see that all backgrounds can be suppressed efficiently after imposing such a selection. At the end of the cut flow, the W±ZW^{\pm}Z + jets and tt¯t\bar{t} production processes are the dominant SM backgrounds mainly due to the initially large cross sections.

Table 5: The cut flow of the cross sections (in ×102\times 10^{-2} fb) for the signals and SM backgrounds at the HL-LHC with κtuZ=0.1\kappa_{tuZ}=0.1 and λtuZ=0.1\lambda_{tuZ}=0.1 (in the brackets) for Case B.
Cuts Signals Backgrounds
ugtZug\to tZ tt¯tZjt\bar{t}\to tZj WZWZ tt¯t\bar{t} tt¯Zt\bar{t}Z tt¯Wt\bar{t}W tZjtZj
Basic 3365 (856) 2664 (1926) 474 2.2×1062.2\times 10^{6} 602 233 367
Cut 1 319 (61) 23 (18) 14 38 1.2 4.5 1.3
Cut 2 184 (23) 5.6 (4.3) 3.5 1.0 0.29 0.005 0.26
Cut 3 108 (13.2) 3 (2.66) 0.9 0.43 0.07 0.01 0.14
Cut 4 57 (7.2) 1.2 (1.1) 0.39 0.19 0.02 0.005 0.073
Table 6: The cut flow of the cross sections (in fb) for the signals and SM backgrounds at the HE-LHC with κtuZ=0.1\kappa_{tuZ}=0.1 and λtuZ=0.1\lambda_{tuZ}=0.1 (in the brackets) for Case B.
Cuts Signals Backgrounds
ugtZug\to tZ tt¯tZjt\bar{t}\to tZj WZWZ tt¯t\bar{t} tt¯Zt\bar{t}Z tt¯Wt\bar{t}W tZjtZj
Basic 123 (30) 153 (11) 14.2 64628 31.6 7.7 13.5
Cut 1 7.9 (1.38) 1.0 (0.075) 0.31 1.05 0.04 0.12 0.043
Cut 2 4.63 (0.54) 0.27 (0.018) 0.075 0.043 0.009 0.0014 0.0087
Cut 3 2.68 (0.32) 0.18 (0.01) 0.016 0.037 0.0021 0.0004 0.0046
Cut 4 1.68 (0.203) 0.07 (0.003) 0.0064 0.018 0.0007 0.0002 0.0024
Table 7: The cut flow of the cross sections (in fb) for the signals and SM backgrounds at the FCC-hh with κtuZ=0.1\kappa_{tuZ}=0.1 and λtuZ=0.1\lambda_{tuZ}=0.1 (in the brackets) for Case B.
Cuts Signals Backgrounds
ugtZug\to tZ tt¯tZjt\bar{t}\to tZj WZWZ tt¯t\bar{t} tt¯Zt\bar{t}Z tt¯Wt\bar{t}W tZjtZj
Basic 727 (224) 1518 (1219) 313 697297 242 43 132
Cut 1 24 (5.1) 2.4 (2.0) 4.1 4.3 0.035 0.33 0.144
Cut 2 13.5 (1.67) 0.66 (0.39) 0.85 0.098 0.007 0.003 0.025
Cut 3 8.12 (1.0) 0.35 (0.27) 0.12 0.049 0.0006 0.0007 0.011
Cut 4 5.94 (0.73) 0.23 (0.13) 0.071 0.025 0.0003 0.0004 0.0077

III.4 The 95%95\% CL exclusion limits

To estimate the exclusion significance, we use the following expression Cowan:2010js :

Zexcl=2[SBln(B+S+x2B)1δ2ln(BS+x2B)](B+Sx)(1+1δ2B),\displaystyle Z_{\text{excl}}=\sqrt{2\left[S-B\ln\left(\frac{B+S+x}{2B}\right)-\frac{1}{\delta^{2}}\ln\left(\frac{B-S+x}{2B}\right)\right]-\left(B+S-x\right)\left(1+\frac{1}{\delta^{2}B}\right)}, (10)

with

x=(S+B)24δ2SB2/(1+δ2B).\displaystyle x=\sqrt{(S+B)^{2}-4\delta^{2}SB^{2}/(1+\delta^{2}B)}. (11)

Here, SS and BB represent the total signal and SM background events, respectively. Furthermore, δ\delta is the percentage systematic error on the SM background estimate. Following Refs. Cowan:2010js ; Kling:2018xud , we define the regions with Zexcl1.645Z_{\text{excl}}\leq 1.645 as those that can be excluded at 95% CL. In the case of δ0\delta\to 0, the above expressions are simplified as

Zexcl=2[SBln(1+S/B)].\displaystyle Z_{\text{excl}}=\sqrt{2[S-B\ln(1+S/B)]}. (12)

Using the results from Case A and Case B, we combine the significance for Br(tuZ)Br(t\to uZ) with two kinds of couplings,

Zcomb=ZA+ZB\displaystyle Z_{\text{comb}}=\sqrt{Z_{\text{A}}+Z_{\text{B}}} (13)

while, for Br(tcZ)Br(t\to cZ), we only use the results from Case A.

Figure 5: The combined 95%95\% CL contour plots in LintBR(tuZ)L_{\rm int}-{\rm BR}(t\to uZ) planes for the tensor terms (upper) and the vector terms (below) at the HL-LHC (left), HE-LHC (middle) and FCC-hh (right). Three typical values for the systematic uncertainties, δ=0,5%,10%\delta=0,5\%,10\%, are taken.

Figure 6: For Case A, the 95%95\% CL contour plots in LintBR(tcZ)L_{\rm int}-{\rm BR}(t\to cZ) planes for the tensor terms (upper) and the vector terms (below) at the HL-LHC (left), HE-LHC (middle) and FCC-hh (right). Three typical values for the systematic uncertainties, δ=0,5%,10%\delta=0,5\%,10\%, are taken.

In Figs. 56, we plot the 95%95\% CL lines as a function of the integrated luminosity and BR(tqZ)(t\to qZ) for the two kinds of couplings with three typical values of systematic uncertainties: δ=0,5%\delta=0,5\% and 10%10\%. One can see from Fig. 5 that, for the tensor (vector) terms, the combined 95%95\% CL limits without systematic error on BR(tuZ){\rm BR}(t\to uZ) are 2.3(5.3)×1062.3~{}(5.3)\times 10^{-6} and 0.76(1.2)×1060.76~{}(1.2)\times 10^{-6} at the HE-LHC and FCC-hh with an integrated luminosity of 10 ab-1, respectively. For this value of integrated luminosity, by taking into account a 5%5\% systematic error, the obtained limits are about 0.34(1.47)×1050.34~{}(1.47)\times 10^{-5} and 0.27(1.21)×1050.27~{}(1.21)\times 10^{-5}, respectively, while, for the case δ=10%\delta=10\%, the 95%95\% CL limits on BR(tuZ){\rm BR}(t\to uZ) change to 0.51(2.53)×1050.51~{}(2.53)\times 10^{-5} and 0.48(2.2)×1050.48~{}(2.2)\times 10^{-5}, respectively. From Fig. 6, one can see that for the Case A, the 95%95\% CL limits without systematic error on BR(tcZ){\rm BR}(t\to cZ) are 0.45(0.64)×1050.45~{}(0.64)\times 10^{-5} and 1.13(1.54)×1061.13~{}(1.54)\times 10^{-6} at the HE-LHC and FCC-hh with an integrated luminosity of 10 ab-1, respectively. By taking into account a 5%5\% systematic error, the obtained limits are about 1.43(2.06)×1051.43~{}(2.06)\times 10^{-5} and 1.35(1.82)×1051.35~{}(1.82)\times 10^{-5}, respectively.

Table 8: The upper limits on BR(tu(c)Z)(t\to u(c)Z) at 95% CL obtained at the HL-LHC, HE-LHC and FCC-hh. We consider systematic errors of 0% and 10% on the SM background events.
Branching fraction HL-LHC, 3 ab-1 HE-LHC, 15 ab-1 FCC-hh, 30 ab-1
δ=0\delta=0 δ=10%\delta=10\% δ=0\delta=0 δ=10%\delta=10\% δ=0\delta=0 δ=10%\delta=10\%
BR(tuZ)(σμν)(t\to uZ)~{}(\sigma^{\mu\nu}) 0.73×1050.73\times 10^{-5} 0.85×1050.85\times 10^{-5} 1.83×1061.83\times 10^{-6} 4.8×1064.8\times 10^{-6} 4.35×1074.35\times 10^{-7} 4.6×1064.6\times 10^{-6}
BR(tcZ)(σμν)(t\to cZ)~{}(\sigma^{\mu\nu}) 2.3×1052.3\times 10^{-5} 4.9×1054.9\times 10^{-5} 3.64×1063.64\times 10^{-6} 2.67×1052.67\times 10^{-5} 6.54×1076.54\times 10^{-7} 2.61×1052.61\times 10^{-5}
BR(tuZ)(γμ)(t\to uZ)~{}(\gamma^{\mu}) 2.34×1052.34\times 10^{-5} 4.08×1054.08\times 10^{-5} 4.28×1064.28\times 10^{-6} 2.47×1052.47\times 10^{-5} 6.86×1076.86\times 10^{-7} 2.17×1052.17\times 10^{-5}
BR(tcZ)(γμ)(t\to cZ)~{}(\gamma^{\mu}) 3.13×1053.13\times 10^{-5} 6.65×1056.65\times 10^{-5} 5.22×1065.22\times 10^{-6} 3.84×1053.84\times 10^{-5} 8.87×1078.87\times 10^{-7} 3.54×1053.54\times 10^{-5}

In Tab. 8, we list the exclusion limits at 95% CL at the future HL-LHC with 3 ab-1, at the HE-LHC with 15 ab-1 and at the FCC-hh with 30 ab-1, respectively, with two systematic error: δ=0%\delta=0\% and δ=10%\delta=10\%. From Tab. 8, we have the following observations to make,

  • More stringent limits are obtained on the tuZtuZ coupling compared to the tcZtcZ coupling due to the larger cross section in the corresponding signal.

  • For the tuZtuZ coupling, the sensitivities for the tensor couplings are smaller than those for the vector terms, being of the order of 10610^{-6} at the 95% CL by considering a 10%10\% systematic uncertainty.

  • For both channels, the sensitivities are weaker than those without any systematic error. This means that those searches will be dominated by systematic uncertainties and will not benefit further from the energy and luminosity upgrades.

Very recently, many phenomenological studies available in literature have extensively investigated the top FCNC anomalous couplings at various future high energy colliders, including e+ee^{+}e^{-} and epe^{-}p machines: see, e.g. Refs. Basso:2014apa ; Aguilar-Saavedra:2017vka ; Khanpour:2019qnw ; Behera:2018ryv ; Cakir:2018ruj ; Khanpour:2014xla ; AguilarSaavedra:2001ab ; deBlas:2018mhx for the most recent reviews. Besides, the expected limits of the four-fermion coefficients at the LHeC and CEPC are obtained in Refs. Shi:2019epw ; Liu:2019wmi . It is then worth comparing the limits on BR(tqZ){\rm BR}(t\to qZ) obtained in this study with those obtained by other groups, which are summarised in Tab. 9. One can see that the limits on the BRs are expected to be of 𝒪(104106)\mathcal{O}(10^{-4}-10^{-6}). Therefore, we expect our advocated signatures to provide competitive complementary information to that from the above studies in detecting tqZtqZ (q=u,cq=u,c) anomalous couplings at future hadronic colliders.

Table 9: Projected 95% CL limits on BR(tqZ){\rm BR}(t\to qZ) (q=u,cq=u,c) from different channels at varoius future colliders.
Channels Data Set Limits
tZW(ν)bZ(+)tZ\to W(\to\ell\nu)bZ(\to\ell^{+}\ell^{-}) Basso:2014apa HL-LHC, 100 fb-1 BR(tuZ)<1.6×104{\rm BR}(t\to uZ)<1.6\times 10^{-4} (σμν\sigma^{\mu\nu})
@ 14 TeV BR(tcZ)<1.0×103{\rm BR}(t\to cZ)<1.0\times 10^{-3} (σμν\sigma^{\mu\nu})
Ultra-boosted tZtZ production Aguilar-Saavedra:2017vka HL-LHC, 3 ab-1 BR(tuZ)<4.1×105{\rm BR}(t\to uZ)<4.1\times 10^{-5} (σμν\sigma^{\mu\nu})
@ 14 TeV BR(tcZ)<1.6×103{\rm BR}(t\to cZ)<1.6\times 10^{-3} (σμν\sigma^{\mu\nu})
FCC-hh, 10 ab-1 BR(tuZ)<2.7×106{\rm BR}(t\to uZ)<2.7\times 10^{-6} (σμν\sigma^{\mu\nu})
@ 100 TeV BR(tcZ)<5.0×105{\rm BR}(t\to cZ)<5.0\times 10^{-5} (σμν\sigma^{\mu\nu})
ppttt¯(t¯t¯t)pp\to tt\bar{t}(\bar{t}\bar{t}t) Khanpour:2019qnw HE-LHC, 15 ab-1 BR(tuZ)<2.4×104{\rm BR}(t\to uZ)<2.4\times 10^{-4} (σμν\sigma^{\mu\nu})
@ 27 TeV BR(tcZ)<1.56×103{\rm BR}(t\to cZ)<1.56\times 10^{-3} (σμν\sigma^{\mu\nu})
BR(tuZ)<8.36×104{\rm BR}(t\to uZ)<8.36\times 10^{-4} (γμ\gamma^{\mu})
BR(tcZ)<4.19×103{\rm BR}(t\to cZ)<4.19\times 10^{-3} (γμ\gamma^{\mu})
FCC-hh, 10 ab-1 BR(tuZ)<8.65×105{\rm BR}(t\to uZ)<8.65\times 10^{-5} (σμν\sigma^{\mu\nu})
@ 100 TeV BR(tcZ)<2.33×104{\rm BR}(t\to cZ)<2.33\times 10^{-4} (σμν\sigma^{\mu\nu})
BR(tuZ)<2.76×104{\rm BR}(t\to uZ)<2.76\times 10^{-4} (γμ\gamma^{\mu})
BR(tcZ)<6.52×104{\rm BR}(t\to cZ)<6.52\times 10^{-4} (γμ\gamma^{\mu})
epete^{-}p\to e^{-}t Behera:2018ryv LHeC, 2 ab-1 BR(tuZ)<4×105{\rm BR}(t\to uZ)<4\times 10^{-5} (σμν\sigma^{\mu\nu})
@ 60 GeV\oplus 7 TeV BR(tcZ)<6.8×104{\rm BR}(t\to cZ)<6.8\times 10^{-4} (σμν\sigma^{\mu\nu})
BR(tuZ)<9×105{\rm BR}(t\to uZ)<9\times 10^{-5} (γμ\gamma^{\mu})
BR(tcZ)<9.5×104{\rm BR}(t\to cZ)<9.5\times 10^{-4} (γμ\gamma^{\mu})
epeWqe^{-}p\to e^{-}Wq + X Cakir:2018ruj LHeC, 3 ab-1, 2σ2\sigma BR(tqZ)<3.3×105{\rm BR}(t\to qZ)<3.3\times 10^{-5} (σμν\sigma^{\mu\nu})
FCC-he, 3 ab-1, 2σ2\sigma BR(tqZ)<4.5×106{\rm BR}(t\to qZ)<4.5\times 10^{-6} (σμν\sigma^{\mu\nu})
e+etqe^{+}e^{-}\to tq Khanpour:2014xla FCC-ee, 300 fb-1 BR(tqZ)<3.12×105{\rm BR}(t\to qZ)<3.12\times 10^{-5} (σμν\sigma^{\mu\nu})
@ 350 GeV BR(tqZ)<1.22×104{\rm BR}(t\to qZ)<1.22\times 10^{-4} (γμ\gamma^{\mu})
e+etqe^{+}e^{-}\to tq AguilarSaavedra:2001ab ILC, 300 fb-1 BR(tqZ)<1.9×103{\rm BR}(t\to qZ)<1.9\times 10^{-3} (σμν\sigma^{\mu\nu})
@ 500 GeV BR(tqZ)<1.8×103{\rm BR}(t\to qZ)<1.8\times 10^{-3} (γμ\gamma^{\mu})

IV Conclusions

In this work, we have studied FCNC tZqtZq anomalous couplings (q=u,cq=u,c) at the future HL-LHC, HE-LHC and FCC-hh by performing a full simulation via two processes yielding trilepton signals: top quark pair production pptt¯pp\to t\bar{t} with tqZt\to qZ and the associated tZtZ production process pptZpp\to tZ. We have performed a full simulation for the signals and the relevant SM backgrounds based on two separate cut selections and obtained 95% CL limits on BR(tqZ){\rm BR}(t\to qZ) (q=u,c)(q=u,c), by exploiting trilepton final states obtained via the decay modes tbW+b+νt\to bW^{+}\to b\ell^{+}\nu_{\ell} and Z+Z\to\ell^{+}\ell^{-}. Altogether, these limits are nearly one or two orders of magnitude better than the current experimental results obtained from LHC runs at 13 TeV. We therefore expect that the signatures studied here will provide competitive complementary information for detecting such FCNC tqZtqZ anomalous couplings at future hadronic colliders at CERN.

Acknowledgments

The work of Y.-B.L. is supported by the Foundation of the Henan Institute of Science and Technology (Grant no. 2016ZD01). S.M. is supported in part by the NExT Institute and the STFC CG Grant No. ST/L000296/1.

References

  • (1) T. M. P. Tait and C.-P. Yuan, Phys. Rev. D 63, 014018 (2000).
  • (2) J. A. Aguilar-Saavedra, Acta Phys. Polon. B 35, 2695 (2004).
  • (3) J. A. Aguilar-Saavedra, Nucl. Phys. B 821, 215 (2009).
  • (4) K. Agashe et al. [Top Quark Working Group], arXiv:1311.2028 [hep-ph].
  • (5) J. A. Aguilar-Saavedra, Phys. Rev. D 67, 035003 (2003) [Erratum: Phys. Rev. D 69, 099901 (2004)].
  • (6) D. Atwood, L. Reina and A. Soni, Phys. Rev. D 55, 3156 (1997).
  • (7) J. J. Cao, G. Eilam, M. Frank, K. Hikasa, G. L. Liu, I. Turan and J. M. Yang, Phys. Rev. D 75, 075021 (2007).
  • (8) J. M. Yang, B. L. Young and X. Zhang, Phys. Rev. D 58, 055001 (1998).
  • (9) K. Agashe, G. Perez and A. Soni, Phys. Rev. D 75, 015002 (2007).
  • (10) P. Q. Hung, Y. X. Lin, C. S. Nugroho and T. C. Yuan, Nucl. Phys. B 927, 166 (2018).
  • (11) J. A. Aguilar-Saavedra and G. C. Branco, Phys. Lett. B 495, 347 (2000).
  • (12) CMS Collaboration [CMS Collaboration], CMS-PAS-TOP-17-017.
  • (13) M. Aaboud et al. [ATLAS Collaboration], JHEP 1807, 176 (2018).
  • (14) The ATLAS collaboration [ATLAS Collaboration], ATL-PHYS-PUB-2019-001.
  • (15) P. Mandrik [FCC study Group], J. Phys. Conf. Ser.  1390, 012044 (2019).
  • (16) M. Benedikt and F. Zimmermann, Nucl. Instrum. Meth. A 907, 200 (2018).
  • (17) N. Arkani-Hamed, T. Han, M. Mangano and L. T. Wang, Phys. Rept.  652, 1 (2016).
  • (18) J. L. Agram, J. Andrea, E. Conte, B. Fuks, D. Gelé and P. Lansonneur, Phys. Lett. B 725, 123-126 (2013).
  • (19) J. F. Shen, Y. Q. Li and Y. B. Liu, Phys. Lett. B 776, 391 (2018).
  • (20) Y. B. Liu and S. Moretti, Phys. Rev. D 101, no. 7, 075029 (2020).
  • (21) J. A. Aguilar-Saavedra, Nucl. Phys. B 812 (2009) 181.
  • (22) C. S. Li, R. J. Oakes and T. C. Yuan, Phys. Rev. D 43, 3759 (1991).
  • (23) J. J. Zhang, C. S. Li, J. Gao, H. Zhang, Z. Li, C.-P. Yuan and T. C. Yuan, Phys. Rev. Lett.  102, 072001 (2009).
  • (24) J. Drobnak, S. Fajfer and J. F. Kamenik, Phys. Rev. Lett.  104, 252001 (2010).
  • (25) A. Alloul, N. D. Christensen, C. Degrande, C. Duhr and B. Fuks, Comput. Phys. Commun. 185, 2250 (2014).
  • (26) C. Degrande, C. Duhr, B. Fuks, D. Grellscheid, O. Mattelaer and T. Reiter, Comput. Phys. Commun.  183, 1201 (2012)
  • (27) J. Alwall, R. Frederix, S. Frixione, V. Hirschi, F. Maltoni, O. Mattelaer, H.-S. Shao, T. Stelzer, P. Torrielli and M. Zaro, JHEP 1407, 079 (2014).
  • (28) R. D. Ball et al. [NNPDF Collaboration], JHEP 1504, 040 (2015).
  • (29) M. Tanabashi et al., [Particle Data Group], Phys. Rev. D 98 030001 (2018).
  • (30) M. Barros, N. F. Castro, J. Erdmann, G. Geßner, K. Kröninger, S. La Cagnina and A. Peixoto, Eur. Phys. J. Plus 135 (2020) no.3, 339.
  • (31) V. Khachatryan et al. [CMS Collaboration], Eur. Phys. J. C 74, no. 9, 3060 (2014).
  • (32) T. Sjöstrand, S. Ask and J. R. Christiansen et al., Comput. Phys. Commun.  191, 159 (2015).
  • (33) M. Cacciari, G. P. Salam and G. Soyez, Eur. Phys. J. C 72, 1896 (2012).
  • (34) M. Cacciari, G. P. Salam and G. Soyez, JHEP 0804, 063 (2008).
  • (35) J. de Favereau et al. [DELPHES 3 Collaboration], JHEP 1402, 057 (2014).
  • (36) E. Conte, B. Fuks and G. Serret, Comput. Phys. Commun.  184, 222 (2013).
  • (37) R. Frederix and S. Frixione, JHEP 1212, 061 (2012).
  • (38) B. H. Li, Y. Zhang, C. S. Li, J. Gao and H. X. Zhu, Phys. Rev. D 83, 114049 (2011).
  • (39) C. Zhang and S. Willenbrock, Phys. Rev. D 83, 034006 (2011).
  • (40) C. Degrande, F. Maltoni, J. Wang and C. Zhang, Phys. Rev. D 91, 034024 (2015).
  • (41) A. Lazopoulos, T. McElmurry, K. Melnikov and F. Petriello, Phys. Lett. B 666, 62 (2008).
  • (42) A. Kardos, Z. Trocsanyi and C. Papadopoulos, Phys. Rev. D 85, 054015 (2012).
  • (43) M. Czakon, P. Fiedler and A. Mitov, Phys. Rev. Lett.  110, 252004 (2013).
  • (44) M. L. Mangano et al., arXiv:1607.01831 [hep-ph].
  • (45) F. Campanario, C. Englert, S. Kallweit, M. Spannowsky and D. Zeppenfeld, JHEP 1007, 076 (2010).
  • (46) J. M. Campbell and R. K. Ellis, JHEP 1207, 052 (2012).
  • (47) R. Frederix, D. Pagani and M. Zaro, JHEP 1802, 031 (2018).
  • (48) S. Frixione, V. Hirschi, D. Pagani, H.-S. Shao and M. Zaro, JHEP 1506, 184 (2015).
  • (49) D. Pagani, I. Tsinikos and E. Vryonidou, JHEP 2008, 082 (2020).
  • (50) P. Azzi et al., arXiv:1902.04070 [hep-ph].
  • (51) E. Conte, B. Dumont, B. Fuks and C. Wymant, Eur. Phys. J. C 74, no. 10, 3103 (2014).
  • (52) G. Cowan, K. Cranmer, E. Gross and O. Vitells, Eur. Phys. J. C 71, 1554 (2011) [Erratum: Eur. Phys. J. C 73, 2501 (2013)].
  • (53) F. Kling, H. Li, A. Pyarelal, H. Song and S. Su, JHEP 1906, 031 (2019).
  • (54) L. Basso and J. Andrea, JHEP 1502, 032 (2015).
  • (55) J. A. Aguilar-Saavedra, Eur. Phys. J. C 77, no.11, 769 (2017).
  • (56) H. Khanpour, Nucl. Phys. B 958, 115141 (2020).
  • (57) S. Behera, R. Islam, M. Kumar, P. Poulose and R. Rahaman, Phys. Rev. D 100, no.1, 015006 (2019).
  • (58) O. Cakir, A. Yilmaz, I. Turk Cakir, A. Senol and H. Denizli, Nucl. Phys. B 944, 114640 (2019).
  • (59) H. Khanpour, S. Khatibi, M. K. Yanehsari and M. M. Najafabadi, Phys. Lett. B 775, 25 (2017).
  • (60) J. A. Aguilar-Saavedra and T. Riemann, hep-ph/0102197.
  • (61) J. de Blas et al., CERN Yellow Rep. Monogr. Vol. 3 (2018).
  • (62) L. Shi and C. Zhang, Chin. Phys. C 43, no. 11, 113104 (2019).
  • (63) W. Liu and H. Sun, Phys. Rev. D 100, no. 1, 015011 (2019).