This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

11footnotetext: Corresponding author.aainstitutetext: Department of Physics, Chongqing University, Chongqing 401331, Chinabbinstitutetext: Chongqing Key Laboratory for Strongly Coupled Physics, Chongqing 401331, Chinaccinstitutetext: Department of Physics, Yantai University, Yantai 264005, Chinaddinstitutetext: Center for Theoretical Physics, Department of Physics and Astronomy, Seoul National University, Seoul 08826, Koreaeeinstitutetext: Department of Physics and Astronomy, University of Nebraska, Lincoln, NE 68588, USA

Probing superheavy dark matter with gravitational waves

Ligong Bian c    Xuewen Liu d,e,1    Ke-Pan Xie [email protected] [email protected] [email protected]
Abstract

We study the superheavy dark matter (DM) scenario in an extended BLB-L model, where one generation of right-handed neutrino νR\nu_{R} is the DM candidate. If there is a new lighter sterile neutrino that co-annihilate with the DM candidate, then the annihilation rate is exponentially enhanced, allowing a DM mass much heavier than the Griest-Kamionkowski bound (105\sim 10^{5} GeV). We demonstrate that a DM mass MνR1013M_{\nu_{R}}\gtrsim 10^{13} GeV can be achieved. Although beyond the scale of any traditional DM searching strategy, this scenario is testable via gravitational waves (GWs) emitted by the cosmic strings from the U(1)BLU(1)_{B-L} breaking. Quantitative calculations show that the DM mass 𝒪(1091013GeV)\mathcal{O}(10^{9}-10^{13}~{}{\rm GeV}) can be probed by future GW detectors.

1 Introduction

The freeze-out of weakly interacting massive particles (WIMPs) Lee:1977ua has been the most popular explanation for the particle origin of dark matter (DM) for decades. In this paradigm, the DM relic abundance is determined by Kolb:1990vq ; Bertone:2004pz ; Lisanti:2016jxe

ΩDMh20.1×1pbσann.v0.1×(0.01αDM)2(MDM100GeV)2,\Omega_{\rm DM}h^{2}\sim 0.1\times\frac{1~{}{\rm pb}}{\left\langle\sigma_{\rm ann.}v\right\rangle}\sim 0.1\times\left(\frac{0.01}{\alpha_{\rm DM}}\right)^{2}\left(\frac{M_{\rm DM}}{100~{}{\rm GeV}}\right)^{2}, (1)

with σann.\sigma_{\rm ann.} being the pair annihilation cross section of DM particles to the Standard Model (SM) particles, vv the relative velocity, and \left\langle...\right\rangle the thermal average. In the second approximate equality we have used σann.vαDM2/MDM2\left\langle\sigma_{\rm ann.}v\right\rangle\sim\alpha_{\rm DM}^{2}/M_{\rm DM}^{2} where αDM\alpha_{\rm DM} is the finite structure constant of the coupling between the dark and SM sectors. Eq. (1) shows that if the dark matter is at electroweak (EW) scale and its coupling is of the order of the EW coupling, then the freeze-out mechanism can explain the observed DM density ΩDMh20.12\Omega_{\rm DM}h^{2}\approx 0.12 Planck:2018vyg ; ParticleDataGroup:2020ssz . This is the so-called “WIMP miracle”, which has motivated enormous efforts to search for EW scale WIMPs via direct Schumann:2019eaa , indirect Gaskins:2016cha and collider Kitano:2010fa experiments.

However, WIMP mass deviating from EW scale is possible. For example if αDM0.01\alpha_{\rm DM}\gg 0.01, then MDM100M_{\rm DM}\gg 100 GeV can yield the correct DM abundance. Since αDM\alpha_{\rm DM} has an upper limit 4π\sim 4\pi set by the unitarity bound, MDMM_{\rm DM} also has an upper limit, which is 300\sim 300 TeV derived from the partial wave analysis, known as the Griest-Kamionkowski (GK) bound Griest:1989wd .111This bound applies to the elementary particle DM. If the DM is a composite object, another bound RDM7.5×107R_{\rm DM}\gtrsim 7.5\times 10^{-7} fm applies to the DM size Griest:1989wd . It is known that DM can be heavier than the GK bound in case of non-thermal dynamics, non-standard cosmological history Kolb:1998ki ; Hui:1998dc ; Chung:1998rq ; Chung:2001cb ; Harigaya:2014waa ; Davoudiasl:2015vba ; Randall:2015xza ; Harigaya:2016vda ; Berlin:2016vnh ; Berlin:2016gtr ; Bramante:2017obj ; Hamdan:2017psw ; Cirelli:2018iax ; Babichev:2018mtd ; Hashiba:2018tbu ; Hooper:2019gtx ; Davoudiasl:2019xeb ; Chanda:2019xyl or the first-order cosmic phase transition Baker:2019ndr ; Chway:2019kft ; Marfatia:2020bcs ; Baldes:2020kam ; Azatov:2021ifm . However, as proposed in Refs. Berlin:2017ife ; Kramer:2020sbb , DM mass beyond the GK bound is also possible within the thermal freeze-out framework, as long as there is a lighter unstable species that co-annihilates with the DM candidate (dubbed as the “zombie collision” Kramer:2020sbb ) and exponentially enhances the interaction rate. In other words, for the same coupling, such an annihilation allows an exponentially heavier DM mass compared to the normal DM pair annihilation scenario. The extra entropy produced from the late time decay of the lighter species further dilutes the DM density, leading to an even higher DM mass upper limit that can reach 101610^{16} GeV Berlin:2017ife .

While the above zombie annihilation mechanism is theoretically appealing, it is very challenging to probe such superheavy DM via the traditional direct, indirect or collider experiments. In this article, we propose a zombie annihilation mechanism that is associated with the breaking of a U(1)U(1) symmetry, which leads to the formation of cosmic strings that can be detected via the gravitational wave (GW) signals at current or future GW detectors. As a benchmark, we study an extended BLB-L model, where one generation of the right-handed neutrino (RHN) is the DM candidate, and a new Dirac sterile neutrino serves as the lighter species for co-annihilation. Section 2 introduces the model, while Section 3 is devoted to the calculation of thermal freeze-out and DM relic abundance. We then investigate the corresponding cosmic strings and GW signals in Section 4, where the correlation to the DM scenario is obtained, and the recent NANOGrav excess is also commented. The conclusion will be given in Section 5.

2 The extended BLB-L model

We begin with the BLB-L model Davidson:1978pm ; Marshak:1979fm ; Mohapatra:1980qe ; Davidson:1987mh , which gauges the U(1)BLU(1)_{B-L} group, with BB and LL being the baryon and lepton number, respectively. In the BLB-L model, three generations of Majorana RHNs νRi\nu_{R}^{i} (with BL=1B-L=-1) are introduced for gauge anomaly cancellation. The new gauge boson of U(1)BLU(1)_{B-L} is denoted as ZZ^{\prime}, and a complex scalar field Φ\Phi (with BL=2B-L=2) is introduced to break the U(1)BLU(1)_{B-L} and provide mass for ZZ^{\prime}. The relevant Lagrangian reads

BL=iν¯RiiνRi12i,j(λRijν¯Ri,cΦνRj+h.c.)i,j(λDij¯LiH~νRj+h.c.)+DμΦDμΦλϕ(|Φ|2vϕ22)214ZμνZμν,\begin{split}\mathcal{L}_{B-L}=&~{}\sum_{i}\bar{\nu}_{R}^{i}i\not{D}\nu_{R}^{i}-\frac{1}{2}\sum_{i,j}\left(\lambda_{R}^{ij}\bar{\nu}_{R}^{i,c}\Phi\nu_{R}^{j}+\text{h.c.}\right)-\sum_{i,j}\left(\lambda_{D}^{ij}\bar{\ell}_{L}^{i}\tilde{H}\nu_{R}^{j}+\text{h.c.}\right)\\ &~{}+D_{\mu}\Phi^{\dagger}D^{\mu}\Phi-\lambda_{\phi}\left(|\Phi|^{2}-\frac{v_{\phi}^{2}}{2}\right)^{2}-\frac{1}{4}Z^{\prime}_{\mu\nu}Z^{\prime\mu\nu},\end{split} (2)

where ii, jj are generation indices and Dμ=μigBLXZμD_{\mu}=\partial_{\mu}-ig_{B-L}XZ_{\mu}^{\prime} is the gauge covariant derivative with XX being the corresponding BLB-L number. The scalar potential triggers a spontaneous symmetry breaking at |Φ|=vϕ/2\left\langle|\Phi|\right\rangle=v_{\phi}/\sqrt{2}. If we parametrize Φ\Phi as (ϕ+iη)/2(\phi+i\eta)/\sqrt{2}, then after the U(1)BLU(1)_{B-L} breaking η\eta is absorbed as the longitudinal mode of ZZ^{\prime}, and the particles obtain the following masses

MZ=2gBLvϕ,MνRij=λRijvϕ2,Mϕ=2λϕvϕ.M_{Z^{\prime}}=2g_{B-L}v_{\phi},\quad M_{\nu_{R}}^{ij}=\lambda_{R}^{ij}\frac{v_{\phi}}{\sqrt{2}},\quad M_{\phi}=\sqrt{2\lambda_{\phi}}v_{\phi}. (3)

The Lagrangian (2) can elegantly explain the extremely small mass of the SM neutrinos and the matter-antimatter asymmetry of the Universe via Type-I seesaw Minkowski:1977sc and leptogenesis Fukugita:1986hr , respectively. Especially, the explanation of neutrino mass 0.1\sim 0.1 eV Planck:2018vyg ; KATRIN:2019yun prefers superheavy RHNs, since the seesaw mechanism requires MνRλDλD×1014GeVM_{\nu_{R}}\sim\lambda_{D}\lambda_{D}^{\dagger}\times 10^{14}~{}{\rm GeV}.

νR1,2\nu_{R}^{1,2} νR3\nu_{R}^{3} Φ\Phi ψ\psi SS
BLB-L 1-1 1-1 2 1-1 0
2\mathbb{Z}_{2} 1 1-1 1 1-1 1
Table 1: Quantum numbers of the BSM particles. All particles listed here are singlets under the SM gauge group.

For the sake of a DM candidate, we adjust Eq. (2) by assigning a 2\mathbb{Z}_{2} symmetry, under which the third generation RHN is odd while all other particles are even. Consequently, λDi3=0\lambda_{D}^{i3}=0 for i=1i=1, 2, 3 and λRj3=0\lambda_{R}^{j3}=0 for j=1j=1, 2, making νR3\nu_{R}^{3} free from the νR3H\nu_{R}^{3}\to\ell H decay and hence can be a DM candidate. This setup is generally adopted in the νR\nu_{R}-DM scenarios Okada:2010wd ; Okada:2012sg ; Okada:2016tci ; Okada:2016gsh ; Okada:2018ktp ; Borah:2018smz .222Two generations of 2\mathbb{Z}_{2}-even RHNs are already sufficient to explain the neutrino oscillation data and realize leptogenesis, see the recent review Xing:2020ald and the references therein. To realize the zombie co-annihilation, we further extend the model by introducing a Dirac sterile neutrino ψ\psi (with BL=1B-L=-1) and a gauge singlet real scalar mediator SS.333See Ref. Bian:2019szo for the low-scale phase transition study in the complex singlet extended U(1)BLU(1)_{B-L} model. The quantum numbers of the particles beyond the SM (BSM) are summarized in Table 1. Since hereafter we only discuss the DM candidate νR3\nu_{R}^{3}, for simplicity we will denote νR3\nu_{R}^{3} as νR\nu_{R} and λR33\lambda_{R}^{33} as λR\lambda_{R}. The Lagrangian relevant for DM reads

DM=ψ¯(iMψ)ψ+12μSμS12MS2S2+(λ1Sψ¯νR+h.c.)+λ2Sψ¯ψ,\mathcal{L}_{\rm DM}=\bar{\psi}\left(i\not{D}-M_{\psi}\right)\psi+\frac{1}{2}\partial_{\mu}S\partial^{\mu}S-\frac{1}{2}M_{S}^{2}S^{2}+\left(\lambda_{1}S\bar{\psi}\nu_{R}+\text{h.c.}\right)+\lambda_{2}S\bar{\psi}\psi, (4)

which provides the zombie collisions

νR+ψψ+ψ,νR+ψψ+ψ¯,\nu_{R}+\psi\to\psi+\psi,\quad\nu_{R}+\psi\to\psi+\bar{\psi}, (5)

and their charge conjugations via the exchange of an SS mediator. If we name νR\nu_{R} as a “survivor” and ψ\psi as a “zombie”, then Eq. (5) is infecting a survivor to a zombie, and that is why it is called a zombie collison Kramer:2020sbb . As we will see in the next section, for Mψ<MνR=λRvϕ/2M_{\psi}<M_{\nu_{R}}=\lambda_{R}v_{\phi}/\sqrt{2}, the annihilation rate is exponentially enhanced and MνRM_{\nu_{R}} can reach 101310^{13} GeV while still generating the correct DM relic abundance.

We work in the parameter space

MνR+Mψ<MS,Mψ<MνR<3Mψ,M_{\nu_{R}}+M_{\psi}<M_{S},\quad M_{\psi}<M_{\nu_{R}}<3M_{\psi}, (6)

so that the DM decay channels νRψS/ψ¯S\nu_{R}\to\psi S/\bar{\psi}S or νRψψψ¯\nu_{R}\to\psi\psi\bar{\psi} are kinematically forbidden, while the mediator SS can decay to pairs of ψ¯νR,ψνR\bar{\psi}\nu_{R},\psi\nu_{R}, and ψψ¯\psi\bar{\psi}, with the width

ΓS=ΓSψ¯νR+ΓSψνR+ΓSψψ¯,\Gamma_{S}=\Gamma_{S\to\bar{\psi}\nu_{R}}+\Gamma_{S\to\psi\nu_{R}}+\Gamma_{S\to\psi\bar{\psi}}, (7)

where

ΓSψ¯νR=ΓSψ¯νR=λ1216πMS(1aRaψ)12(aR+aψ)+(aRaψ)2,ΓSψψ¯=λ228πMS(14aψ)3/2,\begin{split}\Gamma_{S\to\bar{\psi}\nu_{R}}=\Gamma_{S\to\bar{\psi}\nu_{R}}=&~{}\frac{\lambda_{1}^{2}}{16\pi}M_{S}\left(1-a_{R}-a_{\psi}\right)\sqrt{1-2\left(a_{R}+a_{\psi}\right)+\left(a_{R}-a_{\psi}\right)^{2}},\\ \Gamma_{S\to\psi\bar{\psi}}=&~{}\frac{\lambda_{2}^{2}}{8\pi}M_{S}\left(1-4a_{\psi}\right)^{3/2},\end{split} (8)

and aRMνR2/MS2a_{R}\equiv M_{\nu_{R}}^{2}/M_{S}^{2}, aψMψ2/MS2a_{\psi}\equiv M_{\psi}^{2}/M_{S}^{2}.

The final essential ingredient of the zombie mechanism is an appropriate decay channel for the Dirac sterile neutrino ψ\psi. After the freeze-out of νR\nu_{R}, ψ\psi needs to decay into the SM particles, otherwise itself is a WIMP DM candidate that satisfies the GK bound, and hence νR\nu_{R} cannot exceed the GK bound due to the MνR<3MψM_{\nu_{R}}<3M_{\psi} constraint. Since ψ\psi is odd under the 2\mathbb{Z}_{2} while the SM particles are even, such ψ\psi decay must involve some 2\mathbb{Z}_{2}-breaking interactions, which can also result in the decay of the DM candidate νR\nu_{R}. To make νR\nu_{R} sufficiently long-lived (with a lifetime longer than 102710^{27} s, as required by the diffuse gamma-ray spectrum Cirelli:2012ut ; Essig:2013goa ; Blanco:2018esa ), the breaking of 2\mathbb{Z}_{2} should be mediated by either extremely small couplings or extremely high scales with some level of fine-tuning.444The word “fine-tuning” is also in the sense that we assume only ψ\psi directly participates in the 2\mathbb{Z}_{2}-breaking interactions. For the former case, we can have an interacting vertex like yψ¯LHψRy_{\psi}\bar{\ell}_{L}H\psi_{R} with |yψ|1|y_{\psi}|\ll 1; while for the latter case, a dimension-6 operator can be induced by exchanging a new heavy color triplet scalar

6=1Λ2i,j,j(ψ¯cuRi)(d¯Rj,cdRj)+h.c.,\mathcal{L}_{6}=\frac{1}{\Lambda^{2}}\sum_{i,j,j^{\prime}}(\bar{\psi}^{c}u_{R}^{i})(\bar{d}_{R}^{j,c}d_{R}^{j^{\prime}})+\text{h.c.}, (9)

where ii, jj and jj^{\prime} are generation indices and jjj\neq j^{\prime}. The color indices of quarks are implicitly summed up in a completely asymmetric way via the Levi-Civita symbol to yield a color singlet. We will take Eq. (9) as an example for the further study, but keep in mind that the zombie DM mechanism holds as long as ψ\psi can decay via a tiny 2\mathbb{Z}_{2}-breaking interaction. According to Eq. (9), the decay width of ψ\psi is

Γψ=Γψ3j=11024π3Mψ5Λ4,\Gamma_{\psi}=\Gamma_{\psi\to 3j}=\frac{1}{1024\pi^{3}}\frac{M_{\psi}^{5}}{\Lambda^{4}}, (10)

assuming an exclusive udsuds-quark final state. Note that Eq. (9) also allows the decay νRψψ()ψ¯()9j\nu_{R}\to\psi\psi^{(*)}\bar{\psi}^{(*)}\to 9j via one or two off-shell ψ\psi’s, and hence a high Λ\Lambda is required to keep νR\nu_{R} sufficiently long-lived. On the other hand, the same high Λ\Lambda also results in the late time decay of ψ\psi, which can produce entropy to dilute the νR\nu_{R} abundance.

3 The superheavy νR\nu_{R} dark matter

3.1 Thermal freeze-out

Assume the reheating temperature after inflation is higher than MνRM_{\nu_{R}} and hence both νR\nu_{R} and ψ\psi are originally in thermal equilibrium with each other and the SM particles, and the number densities are described by

nαeq=2d3p(2π)3eEα/T=2×Mα2T2π2K2(MαT),n_{\alpha}^{\rm eq}=2\int\frac{d^{3}p}{(2\pi)^{3}}e^{-E_{\alpha}/T}=2\times\frac{M_{\alpha}^{2}T}{2\pi^{2}}K_{2}\left(\frac{M_{\alpha}}{T}\right), (11)

where α=νR\alpha=\nu_{R}, ψ\psi or ψ¯\bar{\psi}, K2K_{2} is the modified Bessel function of the second kind, and the factor 2 is for spin degeneracy. As the Universe expands and cools down, the reaction rate between νR\nu_{R} and ψ\psi (see Eq. (5)) drops. When the interaction rate is lower than the Universe expansion rate, νR\nu_{R} deviates from the chemical equilibrium and eventually freeze-out to be the DM candidate. The freeze-out process can be characterized by a set of Boltzmann equations, which are discussed in detail below.

Consider the radiation dominated era that the energy and entropy densities are respectively

ρ=π230gT4,s=2π245gT3,\rho=\frac{\pi^{2}}{30}g_{*}T^{4},\quad s=\frac{2\pi^{2}}{45}g_{*}T^{3}, (12)

with gg_{*} being the number of relativistic degrees of freedom which we take to be the SM value 106.75. The Hubble constant can be solved as

H=(8π3MPl2π230gT4)1/2=2ππg45T2MPl,H=\left(\frac{8\pi}{3M_{\rm Pl}^{2}}\frac{\pi^{2}}{30}g_{*}T^{4}\right)^{1/2}=2\pi\sqrt{\frac{\pi g_{*}}{45}}\frac{T^{2}}{M_{\rm Pl}}, (13)

with MPl=1.22×1019M_{\rm Pl}=1.22\times 10^{19} GeV the Planck scale. Define the dimensionless parameter z=MνR/Tz=M_{\nu_{R}}/T, then s=sνR/z3s=s_{\nu_{R}}/z^{3} and H=HνR/z2H=H_{\nu_{R}}/z^{2}, where

sνRs|T=MνR,HνRH|T=MνR.s_{\nu_{R}}\equiv s|_{T=M_{\nu_{R}}},\quad H_{\nu_{R}}\equiv H|_{T=M_{\nu_{R}}}. (14)

Finally, we define the particle abundance as Yα=nα/sY_{\alpha}=n_{\alpha}/s, i.e. the ratio of number density to the entropy density, and hence the abundances of the equilibrium distributions are

YνReq=45z22π4gK2(z),Yψeq=45z22π4g(MψMνR)2K2(MψMνRz).Y_{\nu_{R}}^{\rm eq}=\frac{45z^{2}}{2\pi^{4}g_{*}}K_{2}(z),\quad Y_{\psi}^{\rm eq}=\frac{45z^{2}}{2\pi^{4}g_{*}}\left(\frac{M_{\psi}}{M_{\nu_{R}}}\right)^{2}K_{2}\left(\frac{M_{\psi}}{M_{\nu_{R}}}z\right). (15)

Under above conventions, the Boltzmann equations of νR\nu_{R} and ψ\psi can be expressed as a set of ordinary differential equations,

sνRHνRz4dYνRdz\displaystyle\frac{s_{\nu_{R}}H_{\nu_{R}}}{z^{4}}\frac{dY_{\nu_{R}}}{dz} =\displaystyle= YψYψeq(YνRYνReqYψYψeq)(2γνRψψψ+2γνRψ¯ψψ¯)\displaystyle-\frac{Y_{\psi}}{Y_{\psi}^{\rm eq}}\left(\frac{Y_{\nu_{R}}}{Y_{\nu_{R}}^{\rm eq}}-\frac{Y_{\psi}}{Y_{\psi}^{\rm eq}}\right)\left(2\gamma_{\nu_{R}\psi\to\psi\psi}+2\gamma_{\nu_{R}\bar{\psi}\to\psi\bar{\psi}}\right)
(YνR2(YνReq)2Yψ2(Yψeq)2)2(γνRνRψψ¯+2γνRνRψψ)(YνR2(YνReq)21)2γνRνRff¯,\displaystyle-\left(\frac{Y_{\nu_{R}}^{2}}{(Y_{\nu_{R}}^{\rm eq})^{2}}-\frac{Y_{\psi}^{2}}{(Y_{\psi}^{\rm eq})^{2}}\right)2\left(\gamma_{\nu_{R}\nu_{R}\to\psi\bar{\psi}}+2\gamma_{\nu_{R}\nu_{R}\to\psi\psi}\right)-\left(\frac{Y_{\nu_{R}}^{2}}{(Y_{\nu_{R}}^{\rm eq})^{2}}-1\right)2\gamma_{\nu_{R}\nu_{R}\to f\bar{f}},
sνRHνRz4dYψdz\displaystyle\frac{s_{\nu_{R}}H_{\nu_{R}}}{z^{4}}\frac{dY_{\psi}}{dz} =\displaystyle= YψYψeq(YνRYνReqYψYψeq)(γνRψψψ+γνRψ¯ψψ¯)\displaystyle\frac{Y_{\psi}}{Y_{\psi}^{\rm eq}}\left(\frac{Y_{\nu_{R}}}{Y_{\nu_{R}}^{\rm eq}}-\frac{Y_{\psi}}{Y_{\psi}^{\rm eq}}\right)\left(\gamma_{\nu_{R}\psi\to\psi\psi}+\gamma_{\nu_{R}\bar{\psi}\to\psi\bar{\psi}}\right)
+(YνR2(YνReq)2Yψ2(Yψeq)2)(γνRνRψψ¯+2γνRνRψψ)(Yψ2(Yψeq)21)γψψ¯ff¯,\displaystyle+\left(\frac{Y_{\nu_{R}}^{2}}{(Y_{\nu_{R}}^{\rm eq})^{2}}-\frac{Y_{\psi}^{2}}{(Y_{\psi}^{\rm eq})^{2}}\right)\left(\gamma_{\nu_{R}\nu_{R}\to\psi\bar{\psi}}+2\gamma_{\nu_{R}\nu_{R}\to\psi\psi}\right)-\left(\frac{Y_{\psi}^{2}}{(Y_{\psi}^{\rm eq})^{2}}-1\right)\gamma_{\psi\bar{\psi}\to f\bar{f}},

and YνR=YνR(z)Y_{\nu_{R}}^{\infty}=Y_{\nu_{R}}(z\to\infty) is the freeze-out relic abundance of the DM candidate νR\nu_{R}. Here the γabcd\gamma_{ab\to cd}’s are the corresponding interaction rates,

γabcd=naeqnbeqσabcdv,\gamma_{ab\to cd}=n_{a}^{\rm eq}n_{b}^{\rm eq}\left\langle\sigma_{ab\to cd}v\right\rangle, (18)

and the detailed definitions can be found in Appendix A. Since MνR>MψM_{\nu_{R}}>M_{\psi}, the abundance of ψ\psi is higher than νR\nu_{R}, i.e. nψeq(nνReq)MνR/Mψn_{\psi}^{\rm eq}\sim\left(n_{\nu_{R}}^{\rm eq}\right)^{M_{\nu_{R}}/M_{\psi}}, leading to an exponentially enhanced annihilation rate compared with the WIMP scenario. The factor “2” in front of γνRψψψ\gamma_{\nu_{R}\psi\to\psi\psi}, γνRψ¯ψψ¯\gamma_{\nu_{R}\bar{\psi}\to\psi\bar{\psi}} and γνRνRψψ\gamma_{\nu_{R}\nu_{R}\to\psi\psi} comes from charge conjugation (e.g. γνRψ¯ψ¯ψ¯\gamma_{\nu_{R}\bar{\psi}\to\bar{\psi}\bar{\psi}}), and we have made use of YψYψ¯Y_{\psi}\equiv Y_{\bar{\psi}} due to CP conservation. For simplicity, we assume MϕM_{\phi}, MZMνRM_{Z^{\prime}}\gtrsim M_{\nu_{R}} so that the BLB-L scalar ϕ\phi and gauge boson ZZ^{\prime} do not participate in the Boltzmann equations explicitly, but ZZ^{\prime} contribute to γνRνRff¯\gamma_{\nu_{R}\nu_{R}\to f\bar{f}} and γψψ¯ff¯\gamma_{\psi\bar{\psi}\to f\bar{f}} (where ff denotes the SM fermions in equilibrium) via the off-shell ss-channel diagrams. In principle, the decay ψjjj\psi\to jjj and scattering ψjjj\psi j\to jj induced by the dimension-6 operator in Eq. (9) also affect the evolution of YψY_{\psi}, but the effect is completely negligible due to the large Λ\Lambda. Instead, the late time ψ\psi decay after νR\nu_{R} freeze-out plays an important role, as discussed in the next subsection.

3.2 Decay of ψ\psi and the dark matter relic abundance

Due to its long life time, ψ\psi can be treated as a stable particle during the freeze-out of νR\nu_{R}, and its “relic abundance” is given by Yψ=Yψ(z)Y_{\psi}^{\infty}=Y_{\psi}(z\to\infty). After freeze-out, the energy density of ψ\psi scales as a3a^{-3} where a(t)a(t) is the Friedmann-Lemaitre-Robertson-Walker (FLRW) scale factor, while the radiation energy density scales as a4a^{-4}. As a result, if ψ\psi is sufficiently long-lived, it dominates the Universe energy at the late time, and its decay would generate significant entropy that further suppresses the νR\nu_{R} relic abundance. The dilution factor can be estimated quickly by the following considerations: ψ\psi decays at T=TψT=T_{\psi} when ΓψH\Gamma_{\psi}\sim H, i.e.

Γψ2H2|T=Tψ8π3MPl2MψYψ(2π245gTψ3),\Gamma_{\psi}^{2}\sim H^{2}|_{T=T_{\psi}}\approx\frac{8\pi}{3M_{\rm Pl}^{2}}M_{\psi}Y_{\psi}^{\infty}\left(\frac{2\pi^{2}}{45}g_{*}T_{\psi}^{3}\right), (19)

If ψ\psi decays to jjjjjj very promptly at tψ=1/Γψt_{\psi}=1/\Gamma_{\psi} and reheats the Universe up to TψT^{\prime}_{\psi}, by energy conservation we have

π230gTψ4=MψYψ(2π245gTψ3).\frac{\pi^{2}}{30}g_{*}T_{\psi}^{\prime 4}=M_{\psi}Y_{\psi}^{\infty}\left(\frac{2\pi^{2}}{45}g_{*}T_{\psi}^{3}\right). (20)

Combining these two equations, one obtains the entropy enhancement factor (or equivalently, the DM density dilution factor)

Δψ=SafterSbefore(TψTψ)3g1/4MψYψMPlΓψ,\Delta_{\psi}=\frac{S_{\rm after}}{S_{\rm before}}\approx\left(\frac{T_{\psi}^{\prime}}{T_{\psi}}\right)^{3}\sim g_{*}^{1/4}\frac{M_{\psi}Y_{\psi}^{\infty}}{\sqrt{M_{\rm Pl}\Gamma_{\psi}}}, (21)

and the final DM relic abundance is YDM=YνR/ΔψY_{\rm DM}=Y_{\nu_{R}}^{\infty}/\Delta_{\psi}. A more detailed treatment in Ref. kolb1981early yields

Δψ1.83g1/33/4MψYψMPlΓψ,\Delta_{\psi}\approx 1.83\,\big{\langle}g_{*}^{1/3}\big{\rangle}^{3/4}\frac{M_{\psi}Y_{\psi}^{\infty}}{\sqrt{M_{\rm Pl}\Gamma_{\psi}}}, (22)

which will be adopted in our numerical study.

MνRM_{\nu_{R}} λ1\lambda_{1} Λ\Lambda TψT_{\psi} TψT^{\prime}_{\psi} Δψ\Delta_{\psi} τνR\tau_{\nu_{R}}
BP1 1.5×10131.5\times 10^{13} GeV 1.5 2×10182\times 10^{18} GeV 3.0 GeV 2.0×1032.0\times 10^{3} GeV 3.1×1083.1\times 10^{8} 1.0×10281.0\times 10^{28} s
BP2 1.0×10121.0\times 10^{12} GeV 0.74 1×10171\times 10^{17} GeV 2.7 GeV 9.4×1029.4\times 10^{2} GeV 4.1×1074.1\times 10^{7} 2.3×10292.3\times 10^{29} s
BP3 4.0×10104.0\times 10^{10} GeV 0.40 2×10152\times 10^{15} GeV 7.7 GeV 7.5×1027.5\times 10^{2} GeV 9.1×1059.1\times 10^{5} 2.5×10292.5\times 10^{29} s
BP4 3.0×1093.0\times 10^{9} GeV 0.30 1×10141\times 10^{14} GeV 16 GeV 4.6×1024.6\times 10^{2} GeV 2.4×1042.4\times 10^{4} 4.1×10294.1\times 10^{29} s
Table 2: The BPs for the superheavy RHN DM scenario. gBL=1g_{B-L}=1, λR=0.1\lambda_{R}=0.1, MνR=1.9MψM_{\nu_{R}}=1.9M_{\psi}, MS=2MνRM_{S}=2M_{\nu_{R}} and λ1=λ2\lambda_{1}=\lambda_{2} are fixed, and the first three columns MνRM_{\nu_{R}} (RHN mass), λ1\lambda_{1} (νR\nu_{R}-ψ\psi-SS coupling) and Λ\Lambda (2\mathbb{Z}_{2} breaking scale) are free parameters. The ψ\psi decay temperature TψT_{\psi} and reheating temperature TψT_{\psi}^{\prime}, dilution factor Δψ\Delta_{\psi} and the DM life time τνR\tau_{\nu_{R}} are derived, see the text.
Refer to caption
Refer to caption
Refer to caption
Refer to caption
Figure 1: Evolution of the νR\nu_{R} abundance for the four BPs in Table 2. YνRY_{\nu_{R}} and YνReqY_{\nu_{R}}^{\rm eq} are shown in blue and green curves, respectively. For comparison, we also show in orange curves the YνRY_{\nu_{R}} evolution without the zombie collision.

Now we are ready to calculate the DM relic abundance by solving the Boltzmann equations (3.1) and (3.1) to get YνRY_{\nu_{R}}^{\infty}, and combining the dilution factor Δψ\Delta_{\psi}. For the numerical study, we fix gBL=1g_{B-L}=1, λR=0.1\lambda_{R}=0.1, MνR=1.9MψM_{\nu_{R}}=1.9M_{\psi}, MS=2MνRM_{S}=2M_{\nu_{R}} and λ1=λ2\lambda_{1}=\lambda_{2}, and vary MνRM_{\nu_{R}}, λ1\lambda_{1} and Λ\Lambda to find four benchmark points (BPs) listed in Table 2. All BPs can yield the correct relic abundance

ΩDMh2=8πh23MPl2H02YνRs0ΔψMνR0.12,\Omega_{\rm DM}h^{2}=\frac{8\pi h^{2}}{3M_{\rm Pl}^{2}H_{0}^{2}}\frac{Y_{\nu_{R}}^{\infty}s_{0}}{\Delta_{\psi}}M_{\nu_{R}}\approx 0.12, (23)

where H0=100hkm/s/MpcH_{0}=100\,h~{}{\rm km/s/Mpc} (with h=0.674h=0.674) and s0=2891.2cm3s_{0}=2891.2~{}{\rm cm}^{-3} are current Hubble constant and entropy density, respectively ParticleDataGroup:2020ssz . As we can see, due to the enhanced cross section from the light sterile neutrino (i.e. zombie collision) and the dilution factor from ψ\psi decay, a 1.5×10131.5\times 10^{13} GeV RHN can still yield the correct DM abundance with a moderate coupling λ1=λ2=1.5\lambda_{1}=\lambda_{2}=1.5. Even for a small coupling λ1=λ2=0.30\lambda_{1}=\lambda_{2}=0.30, the RHN DM can be as heavy as 3.0×1093.0\times 10^{9} GeV, well above the GK bound. In our mass setup, νR\nu_{R} can decay to 9 jets via 2 off-shell ψ\psi’s, and the life time is calculated by the FeynRules Alloul:2013bka and MadGraph5_aMC@NLO Alwall:2014hca packages. τνR1027\tau_{\nu_{R}}\gtrsim 10^{27} s is satisfied in all BPs, as required by the diffuse gamma-ray spectrum Cirelli:2012ut ; Essig:2013goa ; Blanco:2018esa .

To distinguish and compare the contributions from “zombie collision” and “ψ\psi decay dilution” to the DM relic density, we plot the YνRY_{\nu_{R}} evolution as blue curves in the BPs in Fig. 1. The equilibrium distribution YνReqY_{\nu_{R}}^{\rm eq} is shown in green curves for reference, such that one can clearly see the νR\nu_{R} deviates from the thermal equilibrium and freeze-out to a constant abundance YνRY_{\nu_{R}}^{\infty}. The late time decay of ψ\psi will dilute the freeze-out abundance to YνR/ΔψY_{\nu_{R}}^{\infty}/\Delta_{\psi}, which is eventually YDM0.8eV/MνRY_{\rm DM}\approx 0.8~{}{\rm eV}/M_{\nu_{R}}, as shown in red dashed straight lines. To manifest the importance of the zombie collision, we also plot the YνRY_{\rm\nu_{R}} evolution assuming λ1=λ2=0\lambda_{1}=\lambda_{2}=0 in orange curves. In that case, νR\nu_{R} freeze-out in a very high abundance and hence cannot provide the correct DM density even with the help of the ψ\psi decay dilution. By comparing the curves of YνRY_{\nu_{R}}, YνRY_{\nu_{R}} (without zombie) and YDMY_{\rm DM}, one can see that the contributions from zombie collision and ψ\psi decay dilution are comparable.

4 Cosmic strings and the gravitational wave signals

The BPs obtained in the last section are for MνR109M_{\nu_{R}}\gtrsim 10^{9} GeV, much higher than the available energy scale of any traditional DM direct, indirect or collider searches, making it almost hopeless to test superheavy DM scenario. However, the recently developed GW astronomy offers an unique opportunity to probe this scenario: as the RHN mass MνRM_{\nu_{R}} is associated with a high-scale U(1)BLU(1)_{B-L} breaking, which forms cosmic strings that can generate detectable stochastic GW signals Buchmuller:2013lra ; Dror:2019syi ; Auclair:2019wcv ; Fornal:2020esl ; Samanta:2020cdk ; Masoud:2021prr ; Buchmuller:2021mbb .

Cosmic strings are one dimensional topological defects form during a spontaneous symmetry breaking if the topology of the vacuum is not simply connected Nielsen:1973cs . In our scenario, we consider Nambu-Goto cosmic strings that can form after the U(1)BLU(1)_{B-L} breaking, and the energy density per unit length μvϕ2\mu\sim v_{\phi}^{2}. A very important observable for the cosmic strings is the dimensionless combination

Gμvϕ2MPl21010×(MνR/λR1014GeV)2,G\mu\sim\frac{v_{\phi}^{2}}{M_{\rm Pl}^{2}}\sim 10^{-10}\times\left(\frac{M_{\nu_{R}}/\lambda_{R}}{10^{14}~{}{\rm GeV}}\right)^{2}, (24)

where GG is the Newton’s constant of gravitation. After formation, the collisions and self-interactions of strings produce sub-horizon, non-self-interacting string loops, which emit GWs via cusp, kink and kink-kink collisions, and they produce GWs throughout the Universe history. The incoherent superposition of such continuous emission results in today’s stochastic GW signals.

According to above physical picture, the GW spectrum today can be expressed as

ΩGW(f)h2=8πh23MPl2H020t0𝑑t(a(t)a(t0))30𝑑nCS(,t)PGW(a(t0)a(t)f,),\Omega_{\rm GW}(f)h^{2}=\frac{8\pi h^{2}}{3M_{\rm Pl}^{2}H_{0}^{2}}\int_{0}^{t_{0}}dt\left(\frac{a(t)}{a(t_{0})}\right)^{3}\int_{0}^{\infty}d\ell\,n_{\rm CS}(\ell,t)P_{\rm GW}\left(\frac{a(t_{0})}{a(t)}f,\ell\right), (25)

where a(t)a(t) is the FLRW scale factor and t0t_{0} is the current cosmic time. nCS(,t)n_{\rm CS}(\ell,t) is the number density of sub-horizon string loops with invariant length \ell at cosmic time tt, while PGW(f,)P_{\rm GW}(f,\ell) is the loop power spectrum describing the power of GW with frequency ff emitted from a loop with length \ell. We follow the method described in Ref. Auclair:2019wcv to calculate the GWs from the Nambu-Goto string Vachaspati:1984gt by transforming Eq. (25) into Auclair:2019wcv ; Blanco-Pillado:2017oxo

ΩGW(f)h2=8πh23MPl2H02Gμ2fn=1Cn(f)Pn,\Omega_{\rm GW}(f)h^{2}=\frac{8\pi h^{2}}{3M_{\rm Pl}^{2}H_{0}^{2}}G\mu^{2}f\sum_{n=1}^{\infty}C_{n}(f)P_{n}, (26)

where n=1n=1, 2, …, labels the radiation frequencies ωn=2πn/(/2)\omega_{n}=2\pi n/(\ell/2), and PnP_{n} is the corresponding average loop power spectrum which we use the numerical results from Ref. Blanco-Pillado:2017oxo , and

Cn=2nf20dzH(z)(1+z)6nCS(2n(1+z)f,t(z)),C_{n}=\frac{2n}{f^{2}}\int_{0}^{\infty}\frac{dz}{H(z)(1+z)^{6}}n_{\rm CS}\left(\frac{2n}{(1+z)f},t(z)\right), (27)

where we have transformed the integral variable from time tt to the redshift zz.

To evaluate the integration in Eq. (27), the cosmic time and Hubble constant should be expressed as functions of redshift

t(z)=zdzH(z)(1+z);H(z)=H0Ωr𝒢(z)(1+z)4+Ωm(1+z)3+ΩΛ,t(z)=\int_{z}^{\infty}\frac{dz^{\prime}}{H(z^{\prime})(1+z^{\prime})};\quad H(z)=H_{0}\sqrt{\Omega_{r}\mathcal{G}(z)(1+z)^{4}+\Omega_{m}(1+z)^{3}+\Omega_{\Lambda}}, (28)

with the abundance Planck:2018vyg

Ωr=9.1476×105,Ωm=0.308,ΩΛ=1ΩrΩm,\Omega_{r}=9.1476\times 10^{-5},\quad\Omega_{m}=0.308,\quad\Omega_{\Lambda}=1-\Omega_{r}-\Omega_{m}, (29)

and the function

𝒢(z)=g(t)g(t0)(gS(t0)gS(t))4/3{1,z<109;0.83,109<z<2×1012;0.39,z>2×1012,\mathcal{G}(z)=\frac{g_{*}(t)}{g_{*}(t_{0})}\left(\frac{g_{S}(t_{0})}{g_{S}(t)}\right)^{4/3}\approx\begin{cases}~{}1,&z<10^{9};\\ ~{}0.83,&10^{9}<z<2\times 10^{12};\\ ~{}0.39,&z>2\times 10^{12},\end{cases} (30)

enfolds the change of relativistic degrees of freedom at e+ee^{+}e^{-} annihilation (200 keV, z=109z=10^{9}) and QCD phase transition (200 MeV, z=2×1012z=2\times 10^{12}Binetruy:2012ze . The cosmic string number density is Blanco-Pillado:2013qja

nCSr(,t)=0.18t3/2(+ΓGμt)5/2,(0.1t);n_{\rm CS}^{r}(\ell,t)=\frac{0.18}{t^{3/2}(\ell+\Gamma G\mu t)^{5/2}},\quad(\ell\leqslant 0.1\,t); (31)

for the loops in radiation dominated era, and

nCSr,m(,t)=0.18teq1/2t2(+ΓGμt)5/2,(0.09teqΓGμt);n_{\rm CS}^{r,m}(\ell,t)=\frac{0.18\,t_{\rm eq}^{1/2}}{t^{2}(\ell+\Gamma G\mu t)^{5/2}},\quad(\ell\leqslant 0.09\,t_{\rm eq}-\Gamma G\mu t); (32)

for the loops produced in radiation dominated era but survive until matter domination, where Γ=50\Gamma=50 Blanco-Pillado:2017oxo , and teq=2.25×1036GeV1t_{\rm eq}=2.25\times 10^{36}~{}{\rm GeV}^{-1} is the matter-radiation equality time. In the matter dominated era, the loop number density is

nCSm(,t)=0.270.45(/t)0.31t2(+ΓGμt)2,(0.18t).n_{\rm CS}^{m}(\ell,t)=\frac{0.27-0.45(\ell/t)^{0.31}}{t^{2}(\ell+\Gamma G\mu t)^{2}},\quad(\ell\leqslant 0.18\,t). (33)

Up to now, the GW spectrum is calculable for a given GμG\mu.

Refer to caption
Figure 2: The GW signals from the BPs in Table 2, and the relevant sensitivity curves of current or future GW detectors. The existing constraints and projected sensitivities are shown as shaded regions and dashed lines, respectively.

Using Eq. (24), we evaluate the GW signals for the four BPs in Table 2, and plot them as red, green, blue and purple lines in Fig. 2. Due to the continuous GW emission, the signal spectra are flat in a large frequency range. The sensitivity curves of current and future GW detectors are also plotted in the figure, including the pulsar timing arrays (PTAs) NANOGrav McLaughlin:2013ira ; NANOGRAV:2018hou ; Aggarwal:2018mgp ; Brazier:2019mmu , PPTA Manchester:2012za ; Shannon:2015ect , EPTA Kramer:2013kea ; Lentati:2015qwp ; Babak:2015lua , IPTA Hobbs:2009yy ; Manchester:2013ndt ; Verbiest:2016vem ; Hazboun:2018wpv and SKA Carilli:2004nx ; Janssen:2014dka ; Weltman:2018zrl , the space-based laser interferometers LISA LISA:2017pwj , BBO Crowder:2005nr , TianQin TianQin:2015yph ; Hu:2017yoc ; TianQin:2020hid and Taiji Hu:2017mde ; Ruan:2018tsw , and the ground-based interferometers LIGO LIGOScientific:2014qfs ; LIGOScientific:2019vic , CE Reitze:2019iox and ET Punturo:2010zz ; Hild:2010id ; Sathyaprakash:2012jk .555The sensitivity curves shown here are strain noise spectra. For the corresponding power-law-integrated sensitivity curves and peak-integrated sensitivity curves, see Ref. Schmitz:2020syl and the references therein. The existing constraints are shown as shaded regions, while the projected sensitivities are plotted as dashed lines.

The current searches for the SGWB of PTAs constrains Gμ<1011G\mu<10^{-11} Ringeval:2017eww ; Blanco-Pillado:2017rnf which requires the MνR/λR<3.2×1013M_{\nu_{R}}/\lambda_{R}<3.2\times 10^{13} GeV according to Eq. (24). In Fig. 2, we can see that BP1 (with MνR=1.5×1013M_{\nu_{R}}=1.5\times 10^{13} GeV) is already within the reach of the PPTA and NANOGrav experiments, and the null results of these observations suggest that the BP1 is excluded; but a DM with mass slightly lower than BP1 is still allowed and can be tested in the near future. Interestingly, recently the NANOGrav collaboration reported a common-spectrum process based on the 12.5-yr data set NANOGrav:2020bcs , which might be a hint for the stochastic GW background from cosmic string Ellis:2020ena ; Bian:2020urb ; Blasi:2020mfx . However, there is some discrepancy between the results of the NANOGrav and PPTA collaborations, and we still have to wait for the future data of the PTA experiments or even the crosscheck from the space- and ground-based detectors to reveal the origin of the excess. The GW signals from BP2 and BP3 can be accessed by a few future detectors, while the GWs from BP4 (with MνR=3.0×109M_{\nu_{R}}=3.0\times 10^{9} GeV) can be reached only by BBO and CE. Therefore, the cosmic strings induced GWs can probe our scenario for RHN DM mass between 109\sim 10^{9} GeV and 1013\sim 10^{13} GeV. We also note that there are still considerable uncertainties in calculating the cosmic string GWs, and the expected reach for DM mass range might vary when more accurate treatments are available.666For example, the LIGO-Virgo O3 data can exclude Gμ4×1015G\mu\gtrsim 4\times 10^{-15} for some specific string network models LIGOScientific:2021nrg , much stronger than the results presented in Fig. 2.

5 Conclusion

In this article, we have realized the zombie collision DM mechanism in an extended U(1)BLU(1)_{B-L} model, showing it allows RHN DM mass up to 101310^{13} GeV with a moderate interaction coupling. Such a superheavy DM scenario benefits from both the exponentially annihilation rate due to the lighter sterile neutrino, and the late time entropy production from the sterile neutrino decay.

As the DM mass significantly exceeds the sensitivity regions of the traditional DM detection experiments, we propose to probe the zombie collision DM scenario via GW astronomy by detecting the GW signals from the cosmic strings formed when the U(1)BLU(1)_{B-L} breaking. Calculations show that RHN DM mass between 𝒪(109GeV)\mathcal{O}(10^{9}~{}{\rm GeV}) and 𝒪(1013GeV)\mathcal{O}(10^{13}~{}{\rm GeV}) can be probed by future GW experiments; especially, for DM with mass 1013\sim 10^{13} GeV, the signal might already be reached by the recent NANOGrav results, but more data are needed to clarify this.

Acknowledgements.
We would like to thank Xucheng Gan, Huai-Ke Guo, Yi-Lei Tang, Daniele Teresi, Shao-Jiang Wang and Bin Zhu for useful discussions. Ligong Bian was supported by the National Natural Science Foundation of China under the grants Nos.12075041, 12047564, and the Fundamental Research Funds for the Central Universities of China (No. 2021CDJQY-011 and No. 2020CDJQY-Z003), and Chongqing Natural Science Foundation (Grants No.cstc2020jcyj-msxmX0814). Xuewen Liu was supported by the National Natural Science Foundation of China under the Grants No. 12005180, and by the Natural Science Foundation of Shandong Province under the Grant No. ZR2020QA083. KPX is supported by Grant Korea NRF-2019R1C1C1010050.

Appendix A The interaction rates

The interaction rates in Section 3 are defined as

γabcdσabcdvnaeqnbeq=MνR64π4zsmin𝑑sσ^abcd(s)sK1(sMνRz)=MνR464π4zxmin𝑑xσ^abcd(MνR2x)xK1(zx),\begin{split}\gamma_{ab\to cd}\equiv\left\langle\sigma_{ab\to cd}v\right\rangle n_{a}^{\rm eq}n_{b}^{\rm eq}=&~{}\frac{M_{\nu_{R}}}{64\pi^{4}z}\int_{s_{\rm min}}^{\infty}ds\,\hat{\sigma}_{ab\to cd}(s)\sqrt{s}K_{1}\left(\frac{\sqrt{s}}{M_{\nu_{R}}}z\right)\\ =&~{}\frac{M_{\nu_{R}}^{4}}{64\pi^{4}z}\int_{x_{\rm min}}^{\infty}dx\,\hat{\sigma}_{ab\to cd}(M_{\nu_{R}}^{2}x)\sqrt{x}K_{1}(z\sqrt{x}),\end{split} (34)

where K1K_{1} is the modified Bessel function of the first kind, smin=max{(Ma+Mb)2,(Mc+Md)2}s_{\rm min}=\max\{(M_{a}+M_{b})^{2},~{}(M_{c}+M_{d})^{2}\}, x=s/MνR2x=s/M_{\nu_{R}}^{2}, and the reduced cross section is

σ^abcd(s)2σabcd(s)s[12(Ma2s+Mb2s)+(Ma2sMb2s)2],\hat{\sigma}_{ab\to cd}(s)\equiv 2\,\sigma_{ab\to cd}(s)\cdot s\cdot\left[1-2\left(\frac{M_{a}^{2}}{s}+\frac{M_{b}^{2}}{s}\right)+\left(\frac{M_{a}^{2}}{s}-\frac{M_{b}^{2}}{s}\right)^{2}\right], (35)

where σabcd\sigma_{ab\to cd} is the Lorentz invariant cross section, which is a function of ss. All initial and final state spin and internal degrees of freedom have been summed up. Our convention of γabcd\gamma_{ab\to cd} is the same as Ref. Giudice:2003jh .

Since the explicit expressions for the interaction rates in Section 3 are too tedious to be shown in the article, below we only list the amplitude squares for the corresponding processes in our mechanism. With the amplitude squares in hand, one can easily derives the cross sections and interaction rates. Assume the collision to be a(p1)b(p2)c(p3)d(p4)a(p_{1})b(p_{2})\to c(p_{3})d(p_{4}), and define the Mandelstam variables as s=(p1+p2)2s=(p_{1}+p_{2})^{2} and t=(p3p1)2t=(p_{3}-p_{1})^{2}, for the zombie collisions we have

spins|iνRψψψ|2=λ12λ22(MS2t)2(s+t3Mψ2+MS2MνR2)2×{(MS2t)(2Mψ2st)(Mψ2MνR2+s+t)(s+3t3Mψ2MS2MνR2)+[(4Mψ2t)(Mψ2+MνR2t)(2s+3t6Mψ2+MS22MνR2)+(4Mψ2s)(MS2t)(Mψ2+MνR2s)](s+t3Mψ2+MS2MνR2)},\sum_{\rm spins}|i\mathcal{M}_{\nu_{R}\psi\to\psi\psi}|^{2}=\lambda_{1}^{2}\lambda_{2}^{2}\left(M_{S}^{2}-t\right)^{-2}\left(s+t-3M_{\psi}^{2}+M_{S}^{2}-M_{\nu_{R}}^{2}\right)^{-2}\times\\ \Big{\{}\left(M_{S}^{2}-t\right)\left(2M_{\psi}^{2}-s-t\right)\left(M_{\psi}^{2}-M_{\nu_{R}}^{2}+s+t\right)\left(s+3t-3M_{\psi}^{2}-M_{S}^{2}-M_{\nu_{R}}^{2}\right)\\ +\Big{[}\left(4M_{\psi}^{2}-t\right)\left(M_{\psi}^{2}+M_{\nu_{R}}^{2}-t\right)\left(2s+3t-6M_{\psi}^{2}+M_{S}^{2}-2M_{\nu_{R}}^{2}\right)\\ +\left(4M_{\psi}^{2}-s\right)\left(M_{S}^{2}-t\right)\left(M_{\psi}^{2}+M_{\nu_{R}}^{2}-s\right)\Big{]}\left(s+t-3M_{\psi}^{2}+M_{S}^{2}-M_{\nu_{R}}^{2}\right)\Big{\}}, (36)

and

spins|iνRψψψ¯|2=λ12λ22(MS2t)2[(sMS2)2+MS2ΓS2]1×{(4Mψ2t)(Mψ2+MνR2t)(2ΓS2MS2+(MS2s)(MS22s+t))+(tMS2)[(s4Mψ2)(Mψ2+MνR2s)(MS2+s2t)+(sMS2)(s+t2Mψ2)(s+t+Mψ2MνR2)]}.\sum_{\rm spins}|i\mathcal{M}_{\nu_{R}\psi\to\psi\bar{\psi}}|^{2}=\lambda_{1}^{2}\lambda_{2}^{2}\left(M_{S}^{2}-t\right)^{-2}\left[\left(s-M_{S}^{2}\right)^{2}+M_{S}^{2}\Gamma_{S}^{2}\right]^{-1}\times\\ \Big{\{}\left(4M_{\psi}^{2}-t\right)\left(M_{\psi}^{2}+M_{\nu_{R}}^{2}-t\right)\left(2\Gamma_{S}^{2}M_{S}^{2}+\left(M_{S}^{2}-s\right)\left(M_{S}^{2}-2s+t\right)\right)\\ +\left(t-M_{S}^{2}\right)\Big{[}\left(s-4M_{\psi}^{2}\right)\left(M_{\psi}^{2}+M_{\nu_{R}}^{2}-s\right)\left(M_{S}^{2}+s-2t\right)\\ +\left(s-M_{S}^{2}\right)\left(s+t-2M_{\psi}^{2}\right)\left(s+t+M_{\psi}^{2}-M_{\nu_{R}}^{2}\right)\Big{]}\Big{\}}. (37)

Note that in the process νRψψψ¯\nu_{R}\psi\to\psi\bar{\psi}, the mediator SS can be in the ss-channel, thus its width should be included to make the integral in Eq. (34) converge.

For the pair annihilation of νRνRψψ¯\nu_{R}\nu_{R}\to\psi\bar{\psi}, there are both contributions from the Yukawa interactions and U(1)BLU(1)_{B-L} gauge interactions,

spins|iνRνRψψ¯|2=λ14{2MνR2(s2Mψ2)(tMS2)(s+t2Mψ2+MS22MνR2)+(Mψ2+MνR2st)2(s+t2Mψ2+MS22MνR2)2+(Mψ2+MνR2t)2(MS2t)2}+8gBL42Mψ44Mψ2(MνR2+t)+2MνR44MνR2(s+t)+s2+2st+2t2(sMZ2)2+MZ2ΓZ2,\sum_{\rm spins}|i\mathcal{M}_{\nu_{R}\nu_{R}\to\psi\bar{\psi}}|^{2}=\lambda_{1}^{4}\Big{\{}\frac{2M_{\nu_{R}}^{2}(s-2M_{\psi}^{2})}{(t-M_{S}^{2})(s+t-2M_{\psi}^{2}+M_{S}^{2}-2M_{\nu_{R}}^{2})}\\ +\frac{(M_{\psi}^{2}+M_{\nu_{R}}^{2}-s-t)^{2}}{(s+t-2M_{\psi}^{2}+M_{S}^{2}-2M_{\nu_{R}}^{2})^{2}}+\frac{(M_{\psi}^{2}+M_{\nu_{R}}^{2}-t)^{2}}{(M_{S}^{2}-t)^{2}}\Big{\}}\\ +8g_{B-L}^{4}\frac{2M_{\psi}^{4}-4M_{\psi}^{2}(M_{\nu_{R}}^{2}+t)+2M_{\nu_{R}}^{4}-4M_{\nu_{R}}^{2}(s+t)+s^{2}+2st+2t^{2}}{(s-M_{Z^{\prime}}^{2})^{2}+M_{Z^{\prime}}^{2}\Gamma_{Z^{\prime}}^{2}}, (38)

while for νRνRψψ\nu_{R}\nu_{R}\to\psi\psi, only Yukawa interactions contribute,

spins|iνRνRψψ|2=λ14(MS2t)2(s+t2Mψ2+MS22MνR2)2×{(s+2t2Mψ22MνR2)2[t(s2(Mψ2+MνR2))+(Mψ2+MνR2)2sMS2+t2]+(s2Mψ2)(MS2t)(s2MνR2)(s+t2Mψ2+MS22MνR2)}.\sum_{\rm spins}|i\mathcal{M}_{\nu_{R}\nu_{R}\to\psi\psi}|^{2}=\lambda_{1}^{4}\left(M_{S}^{2}-t\right)^{-2}\left(s+t-2M_{\psi}^{2}+M_{S}^{2}-2M_{\nu_{R}}^{2}\right)^{-2}\times\\ \Big{\{}\left(s+2t-2M_{\psi}^{2}-2M_{\nu_{R}}^{2}\right)^{2}\left[t\left(s-2\left(M_{\psi}^{2}+M_{\nu_{R}}^{2}\right)\right)+\left(M_{\psi}^{2}+M_{\nu_{R}}^{2}\right)^{2}-sM_{S}^{2}+t^{2}\right]\\ +\left(s-2M_{\psi}^{2}\right)\left(M_{S}^{2}-t\right)\left(s-2M_{\nu_{R}}^{2}\right)\left(s+t-2M_{\psi}^{2}+M_{S}^{2}-2M_{\nu_{R}}^{2}\right)\Big{\}}. (39)

Finally, the ZZ^{\prime} mediated annihilation to the SM fermions reads

spins|iνRνRff¯|2=132×8gBL4(s+t2MνR2)2+t22MνR4(sMZ2)2+MZ2ΓZ2,spins|iψψ¯ff¯|2=132×8gBL4(s+t)2+(2Mψ2t)22Mψ4(sMZ2)2+MZ2ΓZ2.\begin{split}\sum_{\rm spins}|i\mathcal{M}_{\nu_{R}\nu_{R}\to f\bar{f}}|^{2}=&~{}\frac{13}{2}\times 8g_{B-L}^{4}\frac{(s+t-2M_{\nu_{R}}^{2})^{2}+t^{2}-2M_{\nu_{R}}^{4}}{(s-M_{Z^{\prime}}^{2})^{2}+M_{Z^{\prime}}^{2}\Gamma_{Z^{\prime}}^{2}},\\ \sum_{\rm spins}|i\mathcal{M}_{\psi\bar{\psi}\to f\bar{f}}|^{2}=&~{}\frac{13}{2}\times 8g_{B-L}^{4}\frac{(s+t)^{2}+(2M_{\psi}^{2}-t)^{2}-2M_{\psi}^{4}}{(s-M_{Z^{\prime}}^{2})^{2}+M_{Z^{\prime}}^{2}\Gamma_{Z^{\prime}}^{2}}.\end{split} (40)

Here the factor 13/213/2 comes from the summation of SM fermionic degrees of freedom.

References