This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Probing isovector scalar mesons in the charmless three-body BB decays

Jian Chai1    Shan Cheng1,2 [email protected]    Ai-Jun Ma3 1School of Physics and Electronics, Hunan University, Changsha 410082, China
2School for Theoretical Physics, Hunan University, Changsha 410082, China
3 Department of Mathematics and Physics, Nanjing Institute of Technology, Nanjing 211167, China
Abstract

We propose to study the multiparticle configurations of isovector scalar mesons, saying a0(980)a_{0}(980) and a0(1450)a_{0}(1450), in the charmless three-body BB decays by considering the width effects. Two scenarios of a0a_{0} configurations are assumed, in which the first one take a0(980)a_{0}(980) as the lowest-lying qq¯q{\bar{q}} state and a0(1450)a_{0}(1450) as the first radial excited state, the second one take a0(1450)a_{0}(1450) as the lowest-lying qq¯q{\bar{q}} state and a0(1950)a_{0}(1950) as the first radial excited state while a0(980)a_{0}(980) is not a qq¯q{\bar{q}} state. Within these two scenarios, we do the PQCD calculation for the quasi-two-body Ba0[KK¯/πη]hB\to a_{0}\left[\to K{\bar{K}}/\pi\eta\right]h decays and extract the corresponding branching fractions of two-body Ba0hB\to a_{0}h decays under the narrow width approximation. Our predictions show that the first scenario of a0(980)a_{0}(980) configuration can not be excluded by the available measurements in BB decays, the contributions from a0(1450)a_{0}(1450) to the branching fractions in most channels are comparable in the first and second scenarios. Several channels are suggested for the forthcoming experimental measurements to reveal the multiparticle configurations of a0a_{0}, such as the channel B0a0(980)[πη]π+B^{0}\to a_{0}^{-}(980)\left[\to\pi^{-}\eta\right]\pi^{+} with the largest predicted branching fraction, the channels B0a0±(1450)[K±K¯0,π±η]πB^{0}\to a_{0}^{\pm}(1450)\left[\to K^{\pm}{\bar{K}}^{0},\pi^{\pm}\eta\right]\pi^{\mp} whose branching fractions obtained in the second scenario is about three times larger in magnitude than that obtained in the first scenario, and also the channels B+a0+(1950)[K+K¯0/π+η]K0B^{+}\to a_{0}^{+}(1950)\left[K^{+}{\bar{K}}^{0}/\pi^{+}\eta\right]K^{0} whose branching fractions are linear dependent on the partial width Γa0(1950)KK/πη\Gamma_{a_{0}(1950)\to KK/\pi\eta}.

pacs:
13.20.He, 13.25.Hw, 13.30.Eg

I Introduction

It is known that the scalar mesons with the masses below and near 1GeV1\,\mathrm{GeV}, saying the isoscalar mesons σ/f0(500)\sigma/f_{0}(500) and f0(980)f_{0}(980), the isovector a0(980)a_{0}(980) and the isodoublet κ\kappa, form a SU(3)SU(3) flavor nonet, meanwhile, the mesons heavier than 1GeV1\,\mathrm{GeV} with including f0(1370),f0(1500)f_{0}(1370),f_{0}(1500), a0(1450)a_{0}(1450) and K0(1430)K^{\ast}_{0}(1430) make up another nonet. The underlying assignment of the heavier nonet is almost accepted as the quark-antiquark configuration replenished with some possible gluon content JaffeIG ; CloseZU ; AchasovHM ; AchasovFH , while the inner nature of scalar mesons in the lighter nonet is still not clear WeinsteinGC ; WeinsteinGD ; Agaev:2017cfz , even though the compact tetraquark state Alford:2000mm ; Maiani:2004uc ; Maiani:2007iw and the KK¯K\bar{K} bound state Weinstein:1990gu are the most favorite two candidates nowadays. This is easy to understand from the views of spectral analysis at low energy because the scalar meson in qq¯q\bar{q} configuration has a unit of orbital angular momentum which increases their masses, in contrast, it is not necessary to introduce the orbital angular momentum when the scalar meson is being in q2q¯2q^{2}\bar{q}^{2} configuration ChengNB . The case becomes different in the weak decays like Bf0(980)lνB\to f_{0}(980)l\nu with large recoiling, where the conventional qq¯q\bar{q} assignment can be expected to be dominated in the energetic f0(980)f_{0}(980) since the possibility to form a tetra-quark state is power suppressed with comparing to the state of quark pair Cheng:2019tgh , meanwhile, the final state interaction (FSI) is weak too. But this argument encounters challenge from the perturbative QCD (PQCD) calculation of Ba0(980)KB\to a_{0}(980)K decays Shen:2006ms , where the theoretical predictions of branching fractions are much larger than that of the measured upper limits. We would like to comment that their calculation is carried out in the static a0(980)a_{0}(980) approximation while the experiment measurement is actually fulfilled by the πη\pi\eta invariant mass spectral. It is apparent that the salient property of scalar mesons, say, the large decay width which cause a strong overlap between resonances and background, and subsequently influence the PQCD prediction.

The width effect of intermediate resonant states have been studied in three-body BB decays with a large number of channels by variable theoretical approaches based on QCD, due to the significant physics to understand the hadron structures and also the matter-antimatter asymmetry. We here highlight some developments in this research filed in the order of different theoretical approaches.

PQCD

A global analysis of three-body charmless decays in the type of BV[P1P2]P3B\to V\left[\to P_{1}P_{2}\right]P_{3}111Here V,PV,P denote the vector and pseudoscalar meson, respectively, and SS indicates the scalar meson in the following. In the fit, only the P1P2=ππ,πK,KK¯P_{1}P_{2}=\pi\pi,\pi K,K\bar{K} channels are considered due to the experiment precision. is performed Li:2021cnd to determine the lowest several gegenbauer moments of two-meson system, which are the nonperturbative inputs describing the non-asymptotic QCD correction effect in the light-cone distribution amplitudes (LCDAs). In Ref.Rui:2021kbn , the factorization formulas of PQCD is expanded in the four-body BB decay to two [Kπ]S,P\left[K\pi\right]_{S,P} pairs with the invariant mass around the K(892)K^{\ast}(892) resonance, some further observations like the triple-product asymmetries and the SS-wave induced direct CP asymmetries are presented with the interference between different helicity amplitudes. Motivated by the measurement of significant derivations from the simple phase-space model in the channels BKK¯P1B\to K\bar{K}P_{1} and B(s)D(s)P1P2B_{(s)}\to D_{(s)}P_{1}P_{2} at B factories and LHC, the virtual contribution clarified by the experiment collaborations is understood theoretically by the Breit-Wigner-tail (BWT) effects from the corresponding intermediate resonant states, say ρ,ω\rho,\omega and D(s)D_{(s)}^{\ast}, respectively Wang:2020nel ; Chai:2021kie .

QCDF

The QCD factorization (QCDF) formula of amplitudes in three-body BB decays Klein:2017xti is parameterised in a new way where the contributions from valence uu and cc quark are separated, and a new source of CP violation can be generated via the strong phase with the opening of DD¯D\bar{D} threshold in the high invariant mass region Mannel:2020abt . Motived by the NNLO αs(mb)\alpha_{s}(m_{b}) correction and the finite width effect, three-body BB decay is studied from the point of view of factorisation for the heavy-to-heavy BDρ[ππ],DK[Kπ]B\to D\rho\left[\to\pi\pi\right],DK^{\ast}\left[\to K\pi\right] decays in the kinematics with small invariant mass of dimeson system Huber:2020pqb . Very recently, a novel observation named the forward-backward asymmetry induced CPCP asymmetry (FBI-CPA) is introduced in the three-body heavy meson decays, the estimation based on the generalized factorization approach implies that the FBI-CPA in the channel D±K+Kπ±D^{\pm}\to K^{+}K^{-}\pi^{\pm} is about a milli, which is at the same order of current experiment measurement capability Zhang:2021zhr . In Refs. Cheng:2020iwk ; Cheng:2022vbw , the finite-width effects of intermediate resonant states in three-body B/DB/D decays is expressed by a correlation parameter ηR\eta_{R} and the evaluation is carried out in QCDF.

LCSRs

The width effect of intermediate resonant ρ\rho and its radial excited states is discussed in detail in the PP-wave BππB\to\pi\pi transition form factors from the BB meson light-cone sum rules (LCSRs) approach Cheng:2017smj , revealing the sizeable effects from width and background (20%30%20\%-30\%) to the conventional treatment in the single narrow-width approximation for the LCSRs prediction of the BρB\to\rho transition form factors. This result is confirmed by the other independent LCSRs with dipion distribution amplitudes (DAs) where the hadronic dipion state has a small invariant mass and simultaneously a large recoil Hambrock:2015aor ; Cheng:2017sfk . The further studies are carried out for the PP-wave BKπB\to K\pi form factors with the isodouble intermediate resonances K0K_{0}^{\ast} Descotes-Genon:2019bud and the BsKK¯B_{s}\to K\bar{K} form factors with the isoscalar scalar intermediate resonances f0(980)f_{0}(980) and f0(1450)f_{0}(1450) Cheng:2019tgh .

The above considerations mainly focus on the PP-wave and isoscalar SS-wave contributions from the intermediate resonant states, while the study of isovector scalar intermediate resonance is still missing. In this paper we will demonstrate this issue in the framework of PQCD approach. The motivations of this study is twofold. Firstly, we perform the PQCD prediction of Ba0(980)[ηπ]KB\to a_{0}(980)\left[\to\eta\pi\right]K decays go beyond the single pole approximation, trying to explain the measurement status. Secondly, we consider the roles of a0(1450)a_{0}(1450) and a0(1950)a_{0}(1950) in the BK¯KKB\to{\bar{K}}KK decays inspired by the recent measurements of charm meson decays where a0(1450)a_{0}(1450) and a0(1950)a_{0}(1950) are observed in the KK¯K\bar{K} invariant mass spectral CLEO:2008msk ; LHCb:2015lnk ; BaBar:2015kii , supplementing to the BηπKB\to\eta\pi K decays observed firstly at Crystal Barrel Collaboration long time ago CrystalBarrel:1994arw ; CrystalBarrel:1995dzq . The study would be executed in parallel by taking two different scenarios of a0a_{0} states, where the first one says that a0(980)a_{0}(980) is the lowest lying qq¯q\bar{q} state and a0(1450)a_{0}(1450) is the first excited state, and the second one states that a0(1450)a_{0}(1450) and a0(1950)a_{0}(1950) are the lowest lying qq¯q\bar{q} state and the first excited state, respectively. Our calculations show that the qq¯q{\bar{q}} configuration of a0(980)a_{0}(980) is not be excluded by the available measurements in BB decays, which confirms the statements we made above. Predictions in this work would help us to probe the inner structure of energetic isovector scalar mesons. For examples, (a) the channel B0a0(980)[πη]π+B^{0}\to a_{0}^{-}(980)\left[\to\pi^{-}\eta\right]\pi^{+} has the largest branching fraction under the qq¯q{\bar{q}} configuration of a0(980)a_{0}(980), (b) the branching fractions of channels B0a0±(1450)[K±K¯0,π±η]πB^{0}\to a_{0}^{\pm}(1450)\left[\to K^{\pm}{\bar{K}}^{0},\pi^{\pm}\eta\right]\pi^{\mp} obtained in the second scenario is about three times larger in magnitude than that obtained in the first scenario, even though the result obtained from two scenarios are close to each other in the most channels with the intermediate state a0(1450)a_{0}(1450), (c) the branching fractions of channels B+a0+(1950)[K+K¯0/π+η]K0B^{+}\to a_{0}^{+}(1950)\left[K^{+}{\bar{K}}^{0}/\pi^{+}\eta\right]K^{0} are linear dependent on the partial width Γa0(1950)KK/πη\Gamma_{a_{0}(1950)\to KK/\pi\eta} in the second scenario.

This article is organized as follows. In section II, the framework of PQCD approach to deal with the resonance contribution in three-body BB decays is briefly described in turns of kinematics and dynamics. Section III presents the PQCD predictions of the Ba0[KK¯,ηπ]hB\to a_{0}\left[\to K\bar{K},\eta\pi\right]h decays with some discussions. We summary in section IV. The PQCD predictions on BsB_{s} decays are presented in appendix A, and the factorization formulas of the related quasi-two-body decay amplitudes are listed in appendix B.

II Kinematics and Dynamics

Concerning three-body BB decays, there are three typical kinematical configurations in the physical Dalitz plot of two independent invariant mass by considering the four-momentum conservation, in which only the kinematical region with collinear decay products can be calculated reliably from the perturbative theory based on the factorization hypothesis Chai:2021kie . The other two kinematical regions with the three energetic decay products and a soft decay product configurations are either in lack of the rigorous factorization proof or beyond the available perturbative picture of heavy meson decays. Collinear decay products means that two energetic hadrons move ahead with collinear momenta while the rest one recoiling back222EimB/2E_{i}\sim m_{B}/2 and Ej+EkmB/2E_{j}+E_{k}\sim m_{B}/2 in the massless approximation of final mesons., corresponding to the intermediate parts of three edges in the Dalitz plot.

The matrix element from vacuum to collinear two meson system sandwiched with certain two quark operators is defined by the dimeson DAs, the chirally even two quark dimeson DA is quoted for example as Polyakov:1998ze

M1a(p1)M2b(p2)|q¯f(xn)τqf(0)|0=κab𝑑zeizx(pRn)ΦM1M2ab,ff(z,ζ,s),\displaystyle\langle M_{1}^{a}(p_{1})M_{2}^{b}(p_{2})|\,\bar{q}_{f}(xn)\,\tau\,q_{f^{\prime}}(0)\,|0\rangle=\kappa_{ab}\int dz\,e^{izx(p_{R}\cdot n)}\,\Phi_{M_{1}M_{2}}^{ab,ff^{\prime}}(z,\zeta,s)\,, (1)

where the indexes f,ff,f^{\prime} respect the (anti-)quark flavor; a,ba,b indicate the electric charge of each meson, κab\kappa_{ab} is the isospin symmetry coefficient which in the case of dipion system reads κ+/00=1\kappa_{+-/00}=1 and κ+0=2\kappa_{+0}=\sqrt{2}, pR=k1+k2p_{R}=k_{1}+k_{2} is the total momentum of dimeson state, τ=1/2,τ3/2\tau=1/2,\tau_{3}/2 correspond to the isoscalar and isovector dimeson DAs, respectively. The generalized dimeson DA Φab,ff\Phi_{\parallel}^{ab,ff^{\prime}} is characterised by three independent kinematical variables, saying the momentum fraction zz carried by the antiquark, the longitudinal momentum fraction carried by one of the mesons ζ=p1+/pR+\zeta=p_{1}^{+}/p_{R}^{+} and the invariant mass squared s=pR2s=p_{R}^{2}. Besides the conventional Gegenbauer expansion stemmed from the eigenfunction of QCD evolution equation, the partial wave expansion considered in the dimeson system contributes the other Legendre polynomial Cl1/2C_{l}^{1/2}. The double expansion of two quark dimeson DA is written as

ΦM1M2I=1(z,ζ,s,μ)=6z(1z)n=0,evenl=1,oddn+1BnlI=1(s,μ)Cn3/2(2z1)Cl1/2(2ζ1),\displaystyle\Phi_{M_{1}M_{2}}^{I=1}(z,\zeta,s,\mu)=6z(1-z)\sum_{n=0,{\rm even}}^{\infty}\,\sum_{l=1,{\rm odd}}^{n+1}B_{nl}^{I=1}(s,\mu)\,C_{n}^{3/2}(2z-1)\,C_{l}^{1/2}(2\zeta-1)\,, (2)

here the even Gegenbauer index nn and the odd partial-wave index ll are guaranteed by the CC parity. For the expansion coefficients BnlB_{nl}, they have the similar scale dependence as the Gegenbauer moments of single pion and rho mesons. In the narrow width approximation in the vicinity of the resonance, dimenson DAs reduce to the DAs of the relative resonance, indicating that the Gegenbuer moments of the intermediate resonance is actually proportional to the expansion coefficient at zero point with the lowest partial wave, says anR(μ)Bn1(s=0,μ)a_{n}^{R}(\mu)\propto B_{n1}(s=0,\mu). In this way, the decay constant of intermediate resonance is proportional to the product of its decay width with the imaginary part of first expansion coefficient at the resonant pole, that is fRΓRIm[B01(mR2)]f_{R}\propto\Gamma_{R}\,{\rm Im}[B_{01}(m_{R}^{2})] Cheng:2019hpq .

With this definition, the dimeson DAs are the most general objects to describe the dimeson mass spectrum in hard production processes whose asymptotic formula indicates the information of the deviation from the unstable intermediate resonant meson DAs. After integrating over the momentum fraction of antiquark, the isovector scalar dimeson DA in our interest is normalised to timelike meson form factor as

01𝑑zΦM1M2I=1(z,ζ,s)=(2ζ1)ΓM1M2I=1(s),\displaystyle\int_{0}^{1}dz\,\Phi_{M_{1}M_{2}}^{I=1}(z,\zeta,s)=\left(2\zeta-1\right){\it\Gamma}_{M_{1}M_{2}}^{I=1}(s)\,, (3)

where the timelike form factor at zero energy point is normalised to unit as ΓM1M2I=1(0)=1{\it\Gamma}_{M_{1}M_{2}}^{I=1}(0)=1. When the invariant mass of dimeson system is small, the higher 𝒪(s)\mathcal{O}(s) terms in the expansion of coefficient Bnl(s,μ)B_{nl}(s,\mu) around the resonance pole can be safely neglected due to the large suppression 𝒪(s/mb2)\mathcal{O}(s/m_{b}^{2}) in contrast to the energetic dimeson system in BB decay, so the relation Bn1(s,μ)an(μ)ΓM1M2I=1(s)B_{n1}(s,\mu)\to a_{n}(\mu)\,{\it\Gamma}_{M_{1}M_{2}}^{I=1}(s) can be obtained in the lowest partial wave approximation. This argument induces the basic assumption in PQCD that the energetic dimeson DAs can be deduced from the DAs of resonant meson by replacing the decay constant by the timelike form factor.

The isovector scalar form factor of KK¯K\bar{K} and πη\pi\eta systems are defined by the local matrix elements sandwiched by two quark operator Donoghue:1990xh ; Albaladejo:2015aca

KK0(πη)|u¯(0)τ32d(0)|0=mπ2mu+mdΓKK¯(πη)I=1(s)B0ΓKK¯(πη)I=1(s)\displaystyle\langle K^{-}K^{0}(\pi^{-}\eta)|\bar{u}(0)\frac{\tau_{3}}{2}d(0)|0\rangle=\frac{m_{\pi}^{2}}{m_{u}+m_{d}}{\it\Gamma}^{I=1}_{K\bar{K}(\pi\eta)}(s)\equiv B_{0}{\it\Gamma}^{I=1}_{K\bar{K}(\pi\eta)}(s)\, (4)

with the normalization conditions ΓKK¯I=1(0)=1{\it\Gamma}^{I=1}_{K\bar{K}}(0)=1 and ΓπηI=1(0)=6/3{\it\Gamma}^{I=1}_{\pi\eta}(0)=\sqrt{6}/3. In the single resonance approximation, we insert a a0a_{0} state in the matrix elements

KK0(π+η)|u¯(0)τ32d(0)|0\displaystyle\langle K^{-}K^{0}(\pi^{+}\eta)|\bar{u}(0)\frac{\tau_{3}}{2}d(0)|0\rangle \displaystyle\approx KK0(π+η)|a0a0|u¯(0)τ32d(0)|0𝒟a0\displaystyle\frac{\langle K^{-}K^{0}(\pi^{+}\eta)|a_{0}^{-}\rangle\langle a_{0}^{-}|\bar{u}(0)\frac{\tau_{3}}{2}d(0)|0\rangle}{\mathcal{D}_{a_{0}}} (5)
=\displaystyle= ga0KK¯(πη)ma0f¯a0𝒟a0,\displaystyle\frac{g_{a_{0}K\bar{K}(\pi\eta)}m_{a_{0}}\bar{f}_{a_{0}}}{\mathcal{D}_{a_{0}}}\,,

and ultimately arrive at

ΓKK¯(πη)I=1(s)=ga0KK¯(πη)ma0f¯a0B0𝒟a0.\displaystyle{\it\Gamma}^{I=1}_{K\bar{K}(\pi\eta)}(s)=\frac{g_{a_{0}K\bar{K}(\pi\eta)}m_{a_{0}}\bar{f}_{a_{0}}}{B_{0}\mathcal{D}_{a_{0}}}\,. (6)

Several comments are supplemented in turns to demonstrate this expression.

  • The decay constants of scalar meson are defined with the scalar and vector currents,

    S|u¯(0)τ32d(0)|0=mSf¯S,\displaystyle\langle S|\bar{u}(0)\frac{\tau_{3}}{2}d(0)|0\rangle=m_{S}\bar{f}_{S}\,,
    S(p)|u¯(0)γμτ32d(0)|0=pμfS.\displaystyle\langle S(p)|\bar{u}(0)\gamma_{\mu}\frac{\tau_{3}}{2}d(0)|0\rangle=p_{\mu}f_{S}\,. (7)

    They are related by the equations of motion mSfSmumd=f¯S(μ)\frac{m_{S}f_{S}}{m_{u}-m_{d}}=\bar{f}_{S}(\mu), indicating that the neutral scalar meson can not be produced via the vector current because of the charge conjugation invariance or the conservation of vector current, but the constant f¯S\bar{f}_{S} is still finite.

  • Under the narrow a0a_{0} approximation, the matrix element of strong decay is defined by the coupling Wang:2020saq

    KK0(π+η)|a0=ga0KK¯(πη)=8πma02Γa0KK¯(πη)q0\displaystyle\langle K^{-}K^{0}(\pi^{+}\eta)|a_{0}^{-}\rangle=g_{a_{0}K\bar{K}(\pi\eta)}=\sqrt{\frac{8\pi m^{2}_{a_{0}}\Gamma_{{a_{0}}\to K\bar{K}(\pi\eta)}}{q_{0}}}\, (8)

    with the energy independent partial decay width333The partial widths of a00KK¯a_{0}^{0}\to K\bar{K} decays have the relations Γa00K+K=Γa00K0K¯0=Γa0KK¯/2\Gamma_{a_{0}^{0}\to K^{+}K^{-}}=\Gamma_{a_{0}^{0}\to K^{0}\bar{K}^{0}}=\Gamma_{a_{0}\to K\bar{K}}/2. Γa0KK¯(πη)\Gamma_{{a_{0}}\to K\bar{K}(\pi\eta)}. In the definition, q0=q(ma02)q_{0}=q(m^{2}_{a_{0}}) is the magnitude of daughter meson (K(π)K(\pi) or K¯(η)\bar{K}(\eta)) momentum

    q(s)=12[s(mK(π)+mK¯(η))2][s(mK(π)mK¯(η))2]/s\displaystyle q(s)=\frac{1}{2}\sqrt{\left[s-(m_{K(\pi)}+m_{\bar{K}(\eta)})^{2}\right]\left[s-(m_{K(\pi)}-m_{\bar{K}(\eta)})^{2}\right]/s}\, (9)

    at a0a_{0} mass. We take the renormalized mass of a0a_{0} rather than the pole mass obtained from TT-matrix analysis, since the mass and width parameter are strongly distorted with lying just below the opening of KK¯K{\bar{K}} channel and hence generating an important cusp-like behaviour in the resonant amplitude Abele:1998qd . Actually, q=sβ(s)q=\sqrt{s}\beta(s) with β(s)\beta(s) being the nondimensional phase space factor of KK¯(πη)K\bar{K}(\pi\eta) system, which reflects the information of momentum difference described by the variable ζ\zeta mentioned in the dimeson DAs.

  • We take the conventional energy-dependent Breit-Wigner denominator for a0a_{0}^{\prime} and a0′′a_{0}^{\prime\prime} mesons444Hereafter we use the abbreviations a0,a0a_{0},a_{0}^{\prime} and a0′′a_{0}^{\prime\prime} to denote a0(980),a0(1450)a_{0}(980),a_{0}(1450) and a0(1950)a_{0}(1950), respectively.,

    𝒟a0=ma02sima0Γa0totq(s)q0ma0s,\displaystyle\mathcal{D}_{a_{0}^{\prime}}=m_{a_{0}^{\prime}}^{2}-s-im_{a_{0}^{\prime}}\,\Gamma^{\rm tot}_{a_{0}^{\prime}}\,\frac{q(s)}{q_{0}}\frac{m_{a_{0}^{\prime}}}{\sqrt{s}}\,, (10)

    where Γa0tot\Gamma^{\rm tot}_{a_{0}^{\prime}} is the total decay widths of resonant state meson a0a_{0}^{\prime}. For the meson a0(980)a_{0}(980), we consider the Flatte´{\rm\acute{e}} model Flatte:1976xu

    𝒟a0=ma02si(gπη2βπη+gKK¯2βKK¯),\displaystyle\mathcal{D}_{a_{0}}=m_{a_{0}}^{2}-s-i(g_{\pi\eta}^{2}\beta_{\pi\eta}+g_{K{\bar{K}}}^{2}\beta_{K{\bar{K}}})\,, (11)

    the coupling constants gπη=0.324g_{\pi\eta}=0.324 GeV and gKK¯2/gπη2=1.03g_{K{\bar{K}}}^{2}/g_{\pi\eta}^{2}=1.03 is fixed by the isobar model fits Abele:1998qd . Furthermore, we can get ga0πη=2.297g_{a_{0}\pi\eta}=2.297 GeV and ga0KK¯=2.331g_{a_{0}K{\bar{K}}}=2.331 GeV with the relations gKK¯=ga0KK¯/(4π)g_{K{\bar{K}}}=g_{a_{0}K{\bar{K}}}/(4\sqrt{\pi}) and gπη=ga0πη/(4π)g_{\pi\eta}=g_{a_{0}\pi\eta}/(4\sqrt{\pi}). We mark that, in the a0πηa_{0}\to\pi\eta channel, the phase factor βKK¯\beta_{K{\bar{K}}} could also be pure imaginary number when the invariant mass of πη\pi\eta state is small than the threshold value of KK¯K{\bar{K}} state, the contribution from this region interacts destructively with that from the rest region of πη\pi\eta invariant mass.

With rearranging the kinematical variable ζ\zeta into the daughter meson momentum q(s)q(s) and considering the SU(3)SU(3) symmetry, the matrix element from vacuum to S-wave KK¯/πηK\bar{K}/\pi\eta state can be decomposed as  ChengNB

ΦKK¯(πη)(z,s)=12Nc[p/Rϕ(z,s)+sϕs(z,s)+s(v/n/1)ϕt(z,s)].\displaystyle\Phi_{K\bar{K}(\pi\eta)}(z,s)=\frac{1}{\sqrt{2N_{c}}}\left[{p/_{R}}\phi(z,s)+\sqrt{s}\phi^{s}(z,s)+\sqrt{s}(v/n/-1)\phi^{t}(z,s)\right]\,. (12)

In the lowest partial-wave accuracy, the twist 2 LCDA is written as Cheng:2013fba

ϕ(z,s)=ΓKK¯(πη)(s)22Nc6z(1z)[fSf¯S(μ)+m=1Bm(μ)Cm3/2(2z1)],\displaystyle\phi(z,s)=\frac{{\it\Gamma}_{K\bar{K}(\pi\eta)}(s)}{2\sqrt{2N_{c}}}6z(1-z)\left[\frac{f_{S}}{\bar{f}_{S}(\mu)}+\sum^{\infty}_{m=1}B_{m}(\mu)\,C^{3/2}_{m}(2z-1)\right]\,, (13)

with B0(μ)fS/f¯S(μ)1B_{0}(\mu)\equiv f_{S}/\bar{f}_{S}(\mu)\gg 1. It is clear that the even Gegenbauer coefficients BmB_{m} are suppressed and the odd Gegenabauer moments is dominated in the twist 2 LCDA of scalar meson, this is definitely different from the π\pi and ρ\rho mesons in which the odd moments vanish. The twist 3 LCDAs are

ϕs(z,s)=ΓKK¯(πη)(s)22Nc[1+m=1am(μ)Cm1/2(2z1)],\displaystyle\phi^{s}(z,s)=\frac{{\it\Gamma}_{K\bar{K}(\pi\eta)}(s)}{2\sqrt{2N_{c}}}\left[1+\sum^{\infty}_{m=1}a_{m}(\mu)\,C^{1/2}_{m}(2z-1)\right]\,,
ϕt(z,s)=ΓKK¯(πη)(s)22Nc(12z)[1+m=1bm(μ)Cm1/2(2z1)].\displaystyle\phi^{t}(z,s)=\frac{{\it\Gamma}_{K\bar{K}(\pi\eta)}(s)}{2\sqrt{2N_{c}}}(1-2z)\left[1+\sum^{\infty}_{m=1}b_{m}(\mu)\,C^{1/2}_{m}(2z-1)\right]\,. (14)

The definitions of BB meson and light meson wave functions and the models of their LCDAs, as well as the basic procedures of PQCD approach to deal with the so called quasi two-body BB decays as a marriage problem, can be found in detail in Ref. Chai:2021kie .

Refer to caption
Figure 1: Typical feynman diagrams for the Ba0[KK¯/πη]hB\to a_{0}\left[\to K\bar{K}/\pi\eta\right]h decays.

In figure 1, we depict the typical feynman diagrams of the Ba0[KK¯/πη]hB\to a_{0}\left[\to K\bar{K}/\pi\eta\right]h decays with h=π,Kh=\pi,K in the PQCD approach, in which the symbols \otimes and ×\times denotes the vertex of weak interaction and the possible attachments of hard gluons, respectively, the rectangle indicates the intermediate resonant states a0a_{0} and the subsequent strong decays a0KK¯/πηa_{0}\to K\bar{K}/\pi\eta. In the BB meson rest frame, the explicit definitions of kinematics in the B(pB)R(pR)[h1(p1)h2(p2)]h3(p3)B(p_{B})\to R(p_{R})\left[\to h_{1}(p_{1})h_{2}(p_{2})\right]\,h_{3}(p_{3}) decays are considered as follow,

pB=mB2(1,1,𝟎),kB=(0,mB2xB,𝐤𝐁𝐓),\displaystyle p_{B}=\frac{m_{B}}{\sqrt{2}}(1,1,{\bf 0})\,,\quad\quad\quad\;\;k_{B}=\left(0,\frac{m_{B}}{\sqrt{2}}x_{B},{\bf k_{BT}}\right)\,,
pR=mB2(1,ξ,𝟎),kR=(mB2z,0,𝐤𝐓),\displaystyle p_{R}=\frac{m_{B}}{\sqrt{2}}(1,\xi,{\bf 0})\,,\quad\quad\quad\;\;k_{R}=\left(\frac{m_{B}}{\sqrt{2}}z,0,{\bf k_{T}}\right)\,,\quad
p3=mB2(0,1ξ,𝟎),k3=(0,mB2(1ξ)x3,𝐤𝟑𝐓),\displaystyle p_{3}=\frac{m_{B}}{\sqrt{2}}(0,1-\xi,{\bf 0})\,,\quad\quad k_{3}=\left(0,\frac{m_{B}}{\sqrt{2}}(1-\xi)x_{3},{\bf k_{3T}}\right)\,, (15)

where kB,kRk_{B},k_{R} and k3k_{3} are the momenta carried by the antiquark in the meson states with the momentum fractions xB,zx_{B},z and x3x_{3}, respectively. The new variable ξs/mB2\xi\equiv s/m^{2}_{B} indicates the momentum transfer from BB meson to resonant state RR. The differential branching ratios for the quasi-two-body B(s)a0[KK¯/πη]hB_{(s)}\to a_{0}\left[\to K\bar{K}/\pi\eta\right]h decays is written as PDG-2020

ddζ=τBqh(s)q(s)64π3mB(s)|𝒜|2¯,\displaystyle\frac{d{\mathcal{B}}}{d\zeta}=\frac{\tau_{B}\,q_{h}(s)\,q(s)}{64\,\pi^{3}\,m_{B_{(s)}}}\,\overline{|{\mathcal{A}}|^{2}}\,, (16)

in which daughter meson momentum q(s)q(s) has been defined in Eq. (9), and qh(s)q_{h}(s) is the magnitude of momentum for the bachelor meson hh

qh(s)=12[(mB2mh2)22(mB2+mh2)s+s2]/s.\displaystyle q_{h}(s)=\frac{1}{2}\sqrt{\big{[}\left(m^{2}_{B}-m_{h}^{2}\right)^{2}-2\left(m^{2}_{B}+m_{h}^{2}\right)s+s^{2}\big{]}/s}\,. (17)

The decaying amplitudes is exactly written as a convolution of the hard kernel HH with the hadron distribution amplitudes (DAs) ϕB,ϕh\phi_{B},\phi_{h} and ϕKK¯,πη\phi_{K\bar{K},\pi\eta}

𝒜(B(s)a0[KK¯/πη]h)[KK¯/πη]a0h|eff|B(s)\displaystyle\mathcal{A}\left(B_{(s)}\to a_{0}\left[\to K\bar{K}/\pi\eta\right]h\right)\equiv\big{\langle}\left[K\bar{K}/\pi\eta\right]_{a_{0}}h\big{|}\,\mathcal{H}_{eff}\,\big{|}B_{(s)}\big{\rangle} (18)
=\displaystyle= ϕB(x1,b1,μ)H(xi,bi,μ)ϕKK¯/πη(x,b,μ)ϕh(x3,b3,μ),\displaystyle\phi_{B}(x_{1},b_{1},\mu)\otimes H(x_{i},b_{i},\mu)\otimes\phi_{K\bar{K}/\pi\eta}(x,b,\mu)\otimes\phi_{h}(x_{3},b_{3},\mu)\,,

in which [KK¯/πη]a0\left[K\bar{K}/\pi\eta\right]_{a_{0}} indicates the dimeson system in our interesting, μ\mu is the factorization scale, bib_{i} are the conjugate distances of transversal momenta. We present the expressions of amplitudes 𝒜{\mathcal{A}} for the considered decaying processes in the appendix B. Under the narrow width approximation

𝒜\displaystyle\mathcal{A} =\displaystyle= 𝑑sKK¯/πη|a0a0h|eff|B(s)[ma02sima0Γa0(s)]KK¯/πη|a0a0h|eff|B(s),\displaystyle\int ds\,\frac{\big{\langle}K{\bar{K}}/\pi\eta\big{|}a_{0}\big{\rangle}\big{\langle}a_{0}h\big{|}\,\mathcal{H}_{eff}\,\big{|}B_{(s)}\big{\rangle}}{[m_{a_{0}}^{2}-s-im_{a_{0}}\Gamma_{a_{0}}(s)]}\rightarrow\big{\langle}K{\bar{K}}/\pi\eta\big{|}a_{0}\big{\rangle}\big{\langle}a_{0}h\big{|}\,\mathcal{H}_{eff}\,\big{|}B_{(s)}\big{\rangle}\,, (19)

we can extract the branching fractions of two-body decays from the quasi-two-body decays by

(B(s)a0[KK¯/πη]h)(B(s)a0h)(a0KK¯/πη).\displaystyle{\mathcal{B}}\left(B_{(s)}\to a_{0}\left[\to K\bar{K}/\pi\eta\right]h\right)\approx{\mathcal{B}}\left(B_{(s)}\to a_{0}h\right)\cdot{\mathcal{B}}\left(a_{0}\to K\bar{K}/\pi\eta\right)\,. (20)

III Numerics and Discussions

Table 1: Inputs of the single mesons (in units of GeV) and the Wolfenstein parameters PDG-2020 .
mB0=5.280mB±=5.279mBs0=5.367fB=0.190fBs=0.230m_{B^{0}}=5.280\quad\;m_{B^{\pm}}=5.279\quad\;m_{B^{0}_{s}}=5.367\quad\;f_{B}=0.190\quad\;\;\;\;f_{B_{s}}=0.230\;
mπ±=0.140mπ0=0.135mK±=0.494mK0=0.498mη=0.548m_{\pi^{\pm}}=0.140\quad\;m_{\pi^{0}}=0.135\quad\;\,m_{K^{\pm}}=0.494\quad\,m_{K^{0}}=0.498\quad\;m_{\eta}=0.548\;
fπ±=0.130fπ0=0.156ma0=0.980ma0=1.474ma0′′=1.931f_{\pi^{\pm}}=0.130\quad\;\;f_{\pi^{0}}=0.156\quad\;\;\;m_{a_{0}}=0.980\quad\;\;m_{a_{0}^{\prime}}=1.474\quad\;\;m_{a_{0}^{\prime\prime}}=1.931\;
Γa0=0.075±0.025Γa0=0.265±0.013Γa0′′=0.271±0.036\Gamma_{a_{0}}=0.075\pm 0.025\quad\quad\;\;\Gamma_{a_{0}^{\prime}}=0.265\pm 0.013\quad\quad\;\;\Gamma_{a_{0}^{\prime\prime}}=0.271\pm 0.036 BaBar:2015kii
λ=0.22650±0.00048A=0.7900.012+0.017ρ¯=0.1410.017+0.016η¯=0.357±0.011\lambda=0.22650\pm 0.00048\;\;\;\,A=0.790^{+0.017}_{-0.012}\;\;\;\,\bar{\rho}=0.141^{+0.016}_{-0.017}\;\;\;\,\bar{\eta}=0.357\pm 0.011

In table 1, we present the PDG averaged value for the masses and total widths of single mesons, as well as the Wolfenstein parameters of CKM matrix. B(s)B_{(s)} meson wave function relies on the three independent parameters, saying the mass mBm_{B}, the decay constant fBf_{B} and the first inverse moment ωB\omega_{B}. For the inverse moment ωB\omega_{B}, we take the interval ωB(1GeV)=0.40±0.04GeV\omega_{B}(1\,{\rm GeV})=0.40\pm 0.04\,{\rm GeV} and ωBs(1GeV)=0.50±0.05GeV\omega_{B_{s}}(1\,{\rm GeV})=0.50\pm 0.05\,{\rm GeV} obtained by the QCD sum rules Braun:2003wx with considering smaller uncertainty. The mean lifes of BB mesons are also taken from PDG, they are τB±=1.638×1012s\tau_{B^{\pm}}=1.638\times 10^{-12}\,{\rm s}, τB0=1.520×1012s\tau_{B^{0}}=1.520\times 10^{-12}\,{\rm s} and τBs=1.509×1012s\tau_{B_{s}}=1.509\times 10^{-12}\,{\rm s}.

The PDG value of light meson decay constant follows from the lattice QCD average fK+/fπ+=1.193f_{K^{+}}/f_{\pi^{+}}=1.193 Aoki:2016frl . We truncate to the second moments for the Gegenbauer expansion of leading twist LCDAs, and take a1π=0a^{\pi}_{1}=0 and a2π(1GeV)=0.270±0.047a^{\pi}_{2}(1\,{\rm GeV})=0.270\pm 0.047 obtained recently from the LCSR fit Cheng:2020vwr of the pion electromagnetic form factor555This result agrees with the previous LCSRs extractions from spacelike pion electromagnetic form factor Agaev:2005gu , BπB\to\pi form factor Ball:2005tb ; Duplancic:2008ix ; Khodjamirian:2011ub , and also the QCD sum rule prediction Ball:2006wn , but much larger than the recent lattice QCD evaluation (a2π(1GeV)=0.130a^{\pi}_{2}(1\,{\rm GeV})=0.130) with the new developed momentum smearing technique RQCD:2019osh .. For the kaon meson, we take the lattice result obtained by using Nf=2+1N_{f}=2+1 sea quarks and the domain-wall fermions Arthur:2010xf , say, a1K(1GeV)=0.060±0.004a^{K}_{1}(1\,{\rm GeV})=0.060\pm 0.004 and a2K(1GeV)=0.175±0.065a^{K}_{2}(1\,{\rm GeV})=0.175\pm 0.065, which is comparable with the QCD sum rules calculations Khodjamirian:2004ga ; Ball:2006wn and the result from Dyson-Schwinger equations with dynamical chiral spontaneously breaking (DCSB)-improved kernel Shi:2015esa . We takes the chiral masses at m0π=1.913GeV,m0K=1.892GeVm_{0}^{\pi}=1.913\,{\rm GeV},m_{0}^{K}=1.892\,{\rm GeV} with considering the well-known chiral perturbative theory (χPT\chi{\rm PT}) relations Leutwyler:1996qg

m0π=mπ22ms,m0K=mK2ms[1+1(1214𝒬2)],\displaystyle m_{0}^{\pi}=\frac{m_{\pi}^{2}{\cal R}}{2m_{s}}\,,\quad\quad\quad m_{0}^{K}=\frac{m_{K}^{2}}{m_{s}[1+\frac{1}{{\cal R}}(1-\frac{{\cal R}^{2}-1}{4{\cal Q}^{2}})]}\,, (21)

in which 2ms/(mu+md)=24.4±1.5{\cal R}\equiv 2m_{s}/(m_{u}+m_{d})=24.4\pm 1.5, 𝒬2[ms2(mu+md)2/4]/(md2mu2)=(22.7±0.8)2{\cal Q}^{2}\equiv[m_{s}^{2}-(m_{u}+m_{d})^{2}/4]/(m_{d}^{2}-m_{u}^{2})=(22.7\pm 0.8)^{2}, the current quark masses are m¯s(1GeV)=0.125GeV\overline{m}_{s}(1\,{\rm GeV})=0.125\,{\rm GeV}, m¯d(1GeV)=0.0065GeV\overline{m}_{d}(1\,{\rm GeV})=0.0065\,{\rm GeV} and m¯u(1GeV)=0.0035GeV\overline{m}_{u}(1\,{\rm GeV})=0.0035\,{\rm GeV}. For the twist 3 LCDA, we only take into account the asymptotic terms in the numerical analysis.

Concerning the intermediate resonant isovector scalar states a0a_{0}s, the main inputs are the timelike form factor entered in each LCDA and the Gegenbauer moments in the leading twist LCDA. To reveal the timelike form factor described in Eq. (6), we use the QCD sum rules predictions on the decay constants ChengNB , they are f¯a0(1GeV)=0.365±0.020GeV\bar{f}_{a_{0}}(1\,{\rm GeV})=0.365\pm 0.020\,{\rm GeV} and f¯a0(1GeV)=0.280±0.035GeV\bar{f}_{a_{0}^{\prime}}(1\,{\rm GeV})=-0.280\pm 0.035\,{\rm GeV} obtained in the first scenario where a0a_{0} is treated as the lowest lying qq¯q\bar{q} state and a0a_{0}^{\prime} as the first excited state, and f¯a0(1GeV)=0.460±0.050GeV\bar{f}_{a_{0}^{\prime}}(1\,{\rm GeV})=0.460\pm 0.050\,{\rm GeV} and f¯a0′′(1GeV)=0.390±0.040GeV\bar{f}_{a_{0}^{\prime\prime}}(1\,{\rm GeV})=0.390\pm 0.040\,{\rm GeV} obtained in the second scenario where a0a_{0}^{\prime} is the lowest lying qq¯q\bar{q} state and a0′′a_{0}^{\prime\prime} as the first excited state. As shown in Eq. (8), the strong coupling constants ga0KK¯g_{a_{0}K\bar{K}} and ga0πηg_{a_{0}\pi\eta} are decided by the partial decay width, which are fixed by the following considerations

  • With the measurements (Γa0πη×Γa0γγ)/Γtot=0.21keV\left(\Gamma_{a_{0}\to\pi\eta}\times\Gamma_{a_{0}\to\gamma\gamma}\right)/\Gamma^{\rm tot}=0.21\,{\rm keV} and Γa0γγ=0.30±0.10keV\Gamma_{a_{0}\to\gamma\gamma}=0.30\pm 0.10\,{\rm keV} Amsler:1997up , one get Γa0πη=0.053±0.018GeV\Gamma_{a_{0}\to\pi\eta}=0.053\pm 0.018\,{\rm GeV}. We do not use eq. (8) to determine the partial width since it is an approximation expression under the narrow width limit. Furthermore, one can get Γa0KK¯=0.009±0.003GeV\Gamma_{a_{0}\to K\bar{K}}=0.009\pm 0.003\,{\rm GeV} with the measurement Γa0KK¯/Γa0πη=0.177\Gamma_{a_{0}\to K\bar{K}}/\Gamma_{a_{0}\to\pi\eta}=0.177 PDG-2020 .

  • The partial decay widths of a0a_{0}^{\prime} to KK¯K\bar{K} and πη\pi\eta states are decided by the measured branching ratios Γa0KK¯/Γa0tot=0.082±0.028\Gamma_{{a_{0}^{\prime}}\to K\bar{K}}/\Gamma_{a_{0}^{\prime}}^{\rm tot}=0.082\pm 0.028 and Γa0πη/Γa0tot=0.093±0.020\Gamma_{{a_{0}^{\prime}}\to\pi\eta}/\Gamma_{a_{0}^{\prime}}^{\rm tot}=0.093\pm 0.020 PDG-2020 .

  • For the a0′′a_{0}^{\prime\prime} decays, there is no direct measurement and the predictions from different models vary widely. For example, the Extended Linear Sigma Model (eLSM) states that Γa0′′KK¯=94±54MeV\Gamma_{a_{0}^{\prime\prime}}\to K\bar{K}=94\pm 54\,{\rm MeV} and Γa0′′πη=94±16MeV\Gamma_{a_{0}^{\prime\prime}}\to\pi\eta=94\pm 16\,{\rm MeV} Parganlija:2016yxq , while the 33P03^{3}P_{0} quark model gives the result 0.74MeV0.74\,{\rm MeV} and 5.13MeV5.13\,{\rm MeV} correspondently Wang:2017pxm . So in our evaluation, we take the largest interval of this variable to account its uncertainty.

  • To close the descriptions, we summary the intervals of partial decay widths as

    Γa0KK¯=0.009±0.003GeV,Γa0πη=0.053±0.018GeV,\displaystyle\Gamma_{a_{0}\to K\bar{K}}=0.009\pm 0.003\,{\rm GeV}\,,\quad\quad\Gamma_{a_{0}\to\pi\eta}=0.053\pm 0.018\,{\rm GeV}\,,
    Γa0KK¯=0.022±0.008GeV,Γa0πη=0.025±0.006GeV,\displaystyle\Gamma_{a_{0}^{\prime}\to K\bar{K}}=0.022\pm 0.008\,{\rm GeV}\,,\quad\quad\Gamma_{a_{0}^{\prime}\to\pi\eta}=0.025\pm 0.006\,{\rm GeV}\,,
    Γa0′′KK¯[0,0.150]GeV,Γa0′′πη[0,0.110]GeV.\displaystyle\Gamma_{a_{0}^{\prime\prime}\to K\bar{K}}\in[0,0.150]\,{\rm GeV}\,,\hskip 48.36958pt\Gamma_{{a_{0}^{\prime\prime}}\to\pi\eta}\in[0,0.110]\,{\rm GeV}\,. (22)

Concerning the Gegenbauer expansion of scalar mesons, we take into account the first two odd moments B1B_{1} and B3B_{3} in the twist 2 LCDAs Cheng:2005nb and the asymptotic terms in the twist 3 LCDAs due to the large theoretical uncertainty of ama_{m} and bmb_{m} Lu:2006fr ; Han:2013zg ; Wang:2014vra . They are

B1a0=0.93±0.10,B3a0=0.14±0.08,\displaystyle B_{1}^{a_{0}}=-0.93\pm 0.10\,,\quad B_{3}^{a_{0}}=0.14\pm 0.08\,,
B1a0=0.89±0.20,B3a0=1.38±0.18\displaystyle B_{1}^{a_{0}^{\prime}}=0.89\pm 0.20\,,\quad\;\;\;B_{3}^{a_{0}^{\prime}}=-1.38\pm 0.18\, (23)

in the first scenario, and

B1a0=0.58±0.12,B3a0=0.49±0.15,\displaystyle B_{1}^{a_{0}^{\prime}}=-0.58\pm 0.12\,,\quad B_{3}^{a_{0}^{\prime}}=-0.49\pm 0.15\,,
B1a0′′=0.73±0.45,B3a0′′=0.17±0.20\displaystyle B_{1}^{a_{0}^{\prime\prime}}=0.73\pm 0.45\,,\quad\;\;\;B_{3}^{a_{0}^{\prime\prime}}=0.17\pm 0.20\, (24)

in the second scenario, where the default scale at 1GeV1\,{\rm GeV} is indicated.

Table 2: The PQCD predictions of branching fractions (in unit of 10610^{-6}) and 𝐶𝑃{\it CP} violations of Ba0[KK¯/πη]hB\to a_{0}\left[\to K\bar{K}/\pi\eta\right]h decays in the first scenario of multiparticle configurations of a0a_{0}.
Decay modes   Quasi-two-body   narrow approx.   two-body   data PDG-2020 CPV
B+a0+[K+K¯0]π0B^{+}\to a_{0}^{+}\left[\to K^{+}{\bar{K}}^{0}\right]\pi^{0} 0.080.030.00+0.03+0.000.08^{+0.03+0.00}_{-0.03-0.00} 0.410.23+0.000.41^{+0.00}_{-0.23} Zhang:2010fcy 38.21.47.7+3.5+3.538.2^{+3.5+3.5}_{-1.4-7.7}
a0+[π+η]π0\quad\;\;\,\to a_{0}^{+}\left[\to\pi^{+}\eta\right]\pi^{0} 0.370.080.04+0.14+0.040.37^{+0.14+0.04}_{-0.08-0.04} 0.520.110.05+0.20+0.060.52^{+0.20+0.06}_{-0.11-0.05} 0.700.23+0.320.70^{+0.32}_{-0.23} Cheng:2013fba <1.4<1.4 56.33.17.3+1.2+2.856.3^{+1.2+2.8}_{-3.1-7.3}
B+a00[KK+]π+B^{+}\to a_{0}^{0}\left[\to K^{-}K^{+}\right]\pi^{+} 0.330.080.04+0.12+0.040.33^{+0.12+0.04}_{-0.08-0.04} 2.81.3+0.02.8^{+0.0}_{-1.3} Zhang:2010fcy 24.12.46.6+2.6+6.524.1^{+2.6+6.5}_{-2.4-6.6}
a00[π0η]π+\quad\;\;\,\to a_{0}^{0}\left[\to\pi^{0}\eta\right]\pi^{+} 2.410.620.30+0.91+0.372.41^{+0.91+0.37}_{-0.62-0.30} 3.440.880.42+1.29+0.543.44^{+1.29+0.54}_{-0.88-0.42} 4.91.3+1.44.9^{+1.4}_{-1.3} Cheng:2013fba <5.8<5.8 26.52.76.1+0.1+5.426.5^{+0.1+5.4}_{-2.7-6.1}
B+a0+[K+K¯0]K0B^{+}\to a_{0}^{+}\left[\to K^{+}{\bar{K}}^{0}\right]K^{0} 0.260.010.10+0.03+0.160.26^{+0.03+0.16}_{-0.01-0.10} 6.92.1+2.46.9^{+2.4}_{-2.1} Shen:2006ms 6.14.96.2+5.5+5.46.1^{+5.5+5.4}_{-4.9-6.2}
a0+[π+η]K0\quad\;\;\,\to a_{0}^{+}\left[\to\pi^{+}\eta\right]K^{0} 0.940.020.51+0.04+0.850.94^{+0.04+0.85}_{-0.02-0.51} 1.350.030.72+0.06+1.211.35^{+0.06+1.21}_{-0.03-0.72} 0.080.11+2.200.08^{+2.20}_{-0.11} Cheng:2013fba <3.9<3.9 3.723.33.0+2.4+5.13.72^{+2.4+5.1}_{-3.3-3.0}
B+a00[KK+]K+B^{+}\to a_{0}^{0}\left[\to K^{-}K^{+}\right]K^{+} 0.110.00.04+0.0+0.060.11^{+0.0+0.06}_{-0.0-0.04} 3.51.2+1.13.5^{+1.1}_{-1.2} Shen:2006ms 26.44.26.7+4.8+4.9-26.4^{+4.8+4.9}_{-4.2-6.7}
a00[π0η]K+\quad\;\;\,\to a_{0}^{0}\left[\to\pi^{0}\eta\right]K^{+} 1.060.040.42+0.02+0.591.06^{+0.02+0.59}_{-0.04-0.42} 1.510.060.61+0.03+0.851.51^{+0.03+0.85}_{-0.06-0.61} 0.340.16+1.120.34^{+1.12}_{-0.16} Cheng:2013fba <2.5<2.5 21.34.69.5+4.0+7.4-21.3^{+4.0+7.4}_{-4.6-9.5}
B0a0+[K+K¯0]πB^{0}\to a_{0}^{+}\left[\to K^{+}{\bar{K}}^{0}\right]\pi^{-} 0.170.040.01+0.06+0.010.17^{+0.06+0.01}_{-0.04-0.01} 0.510.12+0.120.51^{+0.12}_{-0.12} Zhang:2010fcy 70.53.17.4+0.5+6.970.5^{+0.5+6.9}_{-3.1-7.4}
a0+[π+η]π\quad\;\,\to a_{0}^{+}\left[\to\pi^{+}\eta\right]\pi^{-} 0.670.150.07+0.24+0.060.67^{+0.24+0.06}_{-0.15-0.07} 0.950.220.10+0.34+0.080.95^{+0.34+0.08}_{-0.22-0.10} 0.580.25+0.650.58^{+0.65}_{-0.25} Cheng:2013fba 68.36.27.2+3.4+6.468.3^{+3.4+6.4}_{-6.2-7.2}
B0a00[KK+]π0B^{0}\to a_{0}^{0}\left[\to K^{-}K^{+}\right]\pi^{0} 0.040.010.00+0.02+0.010.04^{+0.02+0.01}_{-0.01-0.00} 0.510.11+0.120.51^{+0.12}_{-0.11} Zhang:2010fcy 79.46.69.6+0.4+7.979.4^{+0.4+7.9}_{-6.6-9.6}
a00[π0η]π0\quad\;\,\to a_{0}^{0}\left[\to\pi^{0}\eta\right]\pi^{0} 0.330.050.06+0.09+0.050.33^{+0.09+0.05}_{-0.05-0.06} 0.470.070.08+0.12+0.070.47^{+0.12+0.07}_{-0.07-0.08} 1.00.3+0.51.0^{+0.5}_{-0.3} Cheng:2013fba 84.15.65.9+7.2+1.984.1^{+7.2+1.9}_{-5.6-5.9}
B0a0[KK0]π+B^{0}\to a_{0}^{-}\left[\to K^{-}K^{0}\right]\pi^{+} 3.480.920.29+1.33+0.343.48^{+1.33+0.34}_{-0.92-0.29} 0.860.17+0.170.86^{+0.17}_{-0.17} Zhang:2010fcy 17.82.23.5+2.3+3.117.8^{+2.3+3.1}_{-2.2-3.5}
a0[πη]π+\quad\;\,\to a_{0}^{-}\left[\to\pi^{-}\eta\right]\pi^{+} 14.83.91.4+5.6+1.714.8^{+5.6+1.7}_{-3.9-1.4} 21.15.62.1+7.9+2.321.1^{+7.9+2.3}_{-5.6-2.1} 5.31.4+1.75.3^{+1.7}_{-1.4} Cheng:2013fba 20.62.73.6+2.6+2.720.6^{+2.6+2.7}_{-2.7-3.6}
B0a00[KK+]K0B^{0}\to a_{0}^{0}\left[\to K^{-}K^{+}\right]K^{0} 0.110.010.02+0.03+0.040.11^{+0.03+0.04}_{-0.01-0.02} 4.71.4+1.44.7^{+1.4}_{-1.4} Shen:2006ms 27.51.72.1+6.9+5.6-27.5^{+6.9+5.6}_{-1.7-2.1}
a00[π0η]K0\quad\;\,\to a_{0}^{0}\left[\to\pi^{0}\eta\right]K^{0} 1.360.230.51+0.21+0.431.36^{+0.21+0.43}_{-0.23-0.51} 1.950.320.72+0.30+0.611.95^{+0.30+0.61}_{-0.32-0.72} 0.050.05+0.910.05^{+0.91}_{-0.05} Cheng:2013fba <7.8<7.8 43.27.88.8+1.7+5.7-43.2^{+1.7+5.7}_{-7.8-8.8}
B0a0[KK0]K+B^{0}\to a_{0}^{-}\left[\to K^{-}K^{0}\right]K^{+} 0.990.090.33+0.14+0.380.99^{+0.14+0.38}_{-0.09-0.33} 9.72.8+3.39.7^{+3.3}_{-2.8} Shen:2006ms 69.74.12.6+1.2+1.7-69.7^{+1.2+1.7}_{-4.1-2.6}
a0[πη]K+\quad\;\,\to a_{0}^{-}\left[\to\pi^{-}\eta\right]K^{+} 4.510.611.60+0.60+1.724.51^{+0.60+1.72}_{-0.61-1.60} 6.440.872.33+0.85+2.536.44^{+0.85+2.53}_{-0.87-2.33} 0.340.14+2.350.34^{+2.35}_{-0.14} Cheng:2013fba <1.9<1.9 83.29.69.9+2.5+3.4-83.2^{+2.5+3.4}_{-9.6-9.9}

Our numerical evaluations are carried out in two scenarios. In the first scenario, we treat a0a_{0} as the lowest-lying qq¯q{\bar{q}} state and a0a_{0}^{\prime} as its first excited state, and study the contributions from a0a_{0} and a0a_{0}^{\prime} in the Ba0()[KK¯/πη]hB\to a_{0}^{(\prime)}\left[\to K\bar{K}/\pi\eta\right]h decays. The second scenario indicates that a0a_{0}^{\prime} is the lowest-lying qq¯q{\bar{q}} state and a0′′a_{0}^{\prime\prime} is the first excited state, with this ansatz we study their contributions in the Ba0/′′[KK¯/πη]hB\to a_{0}^{\prime/\prime\prime}\left[\to K\bar{K}/\pi\eta\right]h decays.

Table 3: The same as table 2, but for the Ba0[KK¯/πη]hB\to a^{\prime}_{0}\left[\to K\bar{K}/\pi\eta\right]h decays.
Decay modes   Quasi-two-body   narrow approx.   two-body Cheng:2013fba  CPV
B+a0+[K+K¯0]π0B^{+}\to a_{0}^{\prime+}\left[\to K^{+}{\bar{K}}^{0}\right]\pi^{0} 0.080.020.01+0.01+0.000.08^{+0.01+0.00}_{-0.02-0.01} 0.940.200.19+0.12+0.030.94^{+0.12+0.03}_{-0.20-0.19} 4.69.29.1+1.9+4.5-4.6^{+1.9+4.5}_{-9.2-9.1}
a0+[π+η]π0\quad\;\;\,\to a_{0}^{\prime+}\left[\to\pi^{+}\eta\right]\pi^{0} 0.090.020.01+0.02+0.010.09^{+0.02+0.01}_{-0.02-0.01} 0.950.210.16+0.18+0.060.95^{+0.18+0.06}_{-0.21-0.16} 0.40.3+0.30.4^{+0.3}_{-0.3} 13.212.78.3+9.1+7.8-13.2^{+9.1+7.8}_{-12.7-8.3}
B+a00[KK+]π+B^{+}\to a_{0}^{\prime 0}\left[\to K^{-}K^{+}\right]\pi^{+} 0.120.030.02+0.04+0.030.12^{+0.04+0.03}_{-0.03-0.02} 2.810.610.54+1.09+0.732.81^{+1.09+0.73}_{-0.61-0.54} 26.619.917.0+23.7+13.326.6^{+23.7+13.3}_{-19.9-17.0}
a00[π0η]π+\quad\;\;\,\to a_{0}^{\prime 0}\left[\to\pi^{0}\eta\right]\pi^{+} 0.280.070.04+0.10+0.070.28^{+0.10+0.07}_{-0.07-0.04} 3.020.740.52+1.09+0.783.02^{+1.09+0.78}_{-0.74-0.52} 2.70.7+0.72.7^{+0.7}_{-0.7} 28.216.718.4+14.6+13.028.2^{+14.6+13.0}_{-16.7-18.4}
B+a0+[K+K¯0]K0B^{+}\to a_{0}^{\prime+}\left[\to K^{+}{\bar{K}}^{0}\right]K^{0} 1.280.050.40+0.03+0.451.28^{+0.03+0.45}_{-0.05-0.40} 15.60.62.2+0.4+2.715.6^{+0.4+2.7}_{-0.6-2.2} 4.80.53.1+1.5+2.94.8^{+1.5+2.9}_{-0.5-3.1}
a0+[π+η]K0\quad\;\;\,\to a_{0}^{\prime+}\left[\to\pi^{+}\eta\right]K^{0} 1.500.060.48+0.04+0.531.50^{+0.04+0.53}_{-0.06-0.48} 16.10.55.0+0.5+5.716.1^{+0.5+5.7}_{-0.5-5.0} 2.73.2+10.12.7^{+10.1}_{-3.2} 4.80.30.6+1.4+1.94.8^{+1.4+1.9}_{-0.3-0.6}
B+a00[KK+]K+B^{+}\to a_{0}^{\prime 0}\left[\to K^{-}K^{+}\right]K^{+} 0.440.010.14+0.01+0.160.44^{+0.01+0.16}_{-0.01-0.14} 10.80.42.6+0.3+2.910.8^{+0.3+2.9}_{-0.4-2.6} 1.00.83.2+0.1+5.91.0^{+0.1+5.9}_{-0.8-3.2}
a00[π0η]K+\quad\;\;\,\to a_{0}^{\prime 0}\left[\to\pi^{0}\eta\right]K^{+} 1.020.030.34+0.03+0.371.02^{+0.03+0.37}_{-0.03-0.34} 11.10.43.6+0.2+4.011.1^{+0.2+4.0}_{-0.4-3.6} 0.70.6+3.20.7^{+3.2}_{-0.6} 0.80.63.0+0.5+6.20.8^{+0.5+6.2}_{-0.6-3.0}
B0a0+[K+K¯0]πB^{0}\to a_{0}^{\prime+}\left[\to K^{+}{\bar{K}}^{0}\right]\pi^{-} 0.040.010.01+0.01+0.010.04^{+0.01+0.01}_{-0.01-0.01} 0.490.080.14+0.14+0.170.49^{+0.14+0.17}_{-0.08-0.14} 24.013.018.2+12.0+19.3-24.0^{+12.0+19.3}_{-13.0-18.2}
a0+[π+η]π\quad\;\,\to a_{0}^{\prime+}\left[\to\pi^{+}\eta\right]\pi^{-} 0.030.000.01+0.01+0.010.03^{+0.01+0.01}_{-0.00-0.01} 0.360.030.12+0.10+0.170.36^{+0.10+0.17}_{-0.03-0.12} 0.020.01+0.750.02^{+0.75}_{-0.01} 20.710.723.0+15.6+25.4-20.7^{+15.6+25.4}_{-10.7-23.0}
B0a00[KK+]π0B^{0}\to a_{0}^{\prime 0}\left[\to K^{-}K^{+}\right]\pi^{0} 0.030.010.01+0.01+0.010.03^{+0.01+0.01}_{-0.01-0.01} 0.670.120.15+0.16+0.210.67^{+0.16+0.21}_{-0.12-0.15} 22.013.119.6+19.1+18.0-22.0^{+19.1+18.0}_{-13.1-19.6}
a00[π0η]π0\quad\;\,\to a_{0}^{\prime 0}\left[\to\pi^{0}\eta\right]\pi^{0} 0.070.010.02+0.01+0.020.07^{+0.01+0.02}_{-0.01-0.02} 0.700.080.23+0.16+0.180.70^{+0.16+0.18}_{-0.08-0.23} 1.31.1+2.11.3^{+2.1}_{-1.1} 31.98.519.2+13.4+19.1-31.9^{+13.4+19.1}_{-8.5-19.2}
B0a0[KK0]π+B^{0}\to a_{0}^{\prime-}\left[\to K^{-}K^{0}\right]\pi^{+} 1.080.240.17+0.35+0.181.08^{+0.35+0.18}_{-0.24-0.17} 13.22.92.2+4.2+2.213.2^{+4.2+2.2}_{-2.9-2.2} 24.80.75.3+1.2+4.424.8^{+1.2+4.4}_{-0.7-5.3}
a0[πη]π+\quad\;\,\to a_{0}^{\prime-}\left[\to\pi^{-}\eta\right]\pi^{+} 1.240.270.21+0.39+0.211.24^{+0.39+0.21}_{-0.27-0.21} 13.32.92.2+4.3+2.413.3^{+4.3+2.4}_{-2.9-2.2} 11.25.7+5.211.2^{+5.2}_{-5.7} 25.60.85.9+2.9+4.325.6^{+2.9+4.3}_{-0.8-5.9}
B0a00[KK+]K0B^{0}\to a_{0}^{\prime 0}\left[\to K^{-}K^{+}\right]K^{0} 0.250.020.09+0.02+0.120.25^{+0.02+0.12}_{-0.02-0.09} 6.060.562.28+0.50+3.016.06^{+0.50+3.01}_{-0.56-2.28} 0.34.90.4+2.9+2.5-0.3^{+2.9+2.5}_{-4.9-0.4}
a00[π0η]K0\quad\;\,\to a_{0}^{\prime 0}\left[\to\pi^{0}\eta\right]K^{0} 0.580.050.22+0.05+0.290.58^{+0.05+0.29}_{-0.05-0.22} 6.270.522.39+0.52+3.146.27^{+0.52+3.14}_{-0.52-2.39} 0.91.1+3.80.9^{+3.8}_{-1.1} 0.66.50.8+3.4+2.1-0.6^{+3.4+2.1}_{-6.5-0.8}
B0a0[KK0]K+B^{0}\to a_{0}^{\prime-}\left[\to K^{-}K^{0}\right]K^{+} 2.620.290.62+0.31+0.712.62^{+0.31+0.71}_{-0.29-0.62} 32.03.44.7+3.8+6.732.0^{+3.8+6.7}_{-3.4-4.7} 18.92.33.8+2.7+1.1-18.9^{+2.7+1.1}_{-2.3-3.8}
a0[πη]K+\quad\;\,\to a_{0}^{\prime-}\left[\to\pi^{-}\eta\right]K^{+} 3.040.330.73+0.35+0.803.04^{+0.35+0.80}_{-0.33-0.73} 32.73.66.6+3.7+7.732.7^{+3.7+7.7}_{-3.6-6.6} 1.91.8+8.11.9^{+8.1}_{-1.8} 19.52.24.0+2.0+0.9-19.5^{+2.0+0.9}_{-2.2-4.0}

In table 2 and table 3, we present the PQCD predictions of of Ba0[KK¯/πη]hB\to a_{0}\left[\to K\bar{K}/\pi\eta\right]h and Ba0[KK¯/πη]hB\to a_{0}^{\prime}\left[\to K\bar{K}/\pi\eta\right]h decays in the first scenario of multiparticle configurations of a0a_{0}, respectively. Besides the result of quasi-two-body decays, saying the branching fractions (in the 2nd column) and the 𝐶𝑃{\it CP} violations (in the last column), we list the branching fractions of two-body Ba0hB\to a_{0}^{\prime}h decays666The narrow width approximation is not applicable to the modes involving a0hKKa_{0}h\to KK due to the threshold effect, so in table 2 we do not list the result of two-body Ba0hB\to a_{0}h decay obtained in the narrow width approximation (in the 3rd column), for the sake of comparison, the direct two-body calculations based on PQCD Shen:2006ms and QCDF approach Cheng:2013fba , and also the available data are list too (in the 4th and 5th columns). The theoretical uncertainties come from the inputs of LCDAs, mainly from the inverse moment ωB\omega_{B} which we put as the first error source, the uncertainties from Gegenbauer moments B1a0,B3a0B^{a_{0}}_{1},B^{a_{0}}_{3} of dimeson systems are add together as the second error, we do not consider the uncertainty from other parameters, like fa0,f¯a0f_{a_{0}},{\bar{f}}_{a_{0}} since their influences are small. We comment in orders,

  • (a)

    The branching fractions of quasi-two-body channels with strong decays a0πηa_{0}\to\pi\eta is about 5 times larger than that with the strong decay a0KK¯a_{0}\to K\bar{K}, which is understood by the suppressed phase space for KK¯K\bar{K} state.

  • (b)

    Under the narrow width approximation of the quasi-two-body decays, we extract the branching fractions of relevant two body decays Ba0()hB\to a_{0}^{(\prime)}h. The result obtained from the a0KK¯a_{0}^{\prime}\to K\bar{K} and a0πηa_{0}^{\prime}\to\pi\eta modes are consist with each other with in the uncertainties, more important is that this result have a large discrepancy with the direct two-body calculation from PQCD Shen:2006ms and QCDF Cheng:2013fba , revealing the important role of width effects of a0a_{0} and a0a_{0}^{\prime}.

  • (c)

    In the Ba0hB\to a_{0}^{\prime}h and the following Ba0′′hB\to a_{0}^{\prime\prime}h decays, only the partial width expression is used due to the lacking of direct measurements, that’s why the branching fractions of these decays extracted from KK¯K\bar{K} and πη\pi\eta modes are very close to each other.

  • (d)

    The PQCD predictions of branching fractions of the six Ba0(+,0)[πη]hB\to a_{0}^{(+,0)}\left[\to\pi\eta\right]h quasi-two-body decays do not excess the experimental upper limit, the predictions of two channels B0a0±[π±η]πB^{0}\to a_{0}^{\pm}\left[\to\pi^{\pm}\eta\right]\pi^{\mp} excess the experimental upper limit 3.1×1063.1\times 10^{-6} PDG-2020 at the first glance, but the large uncertainties would be more larger if we considering the uncertainty of ωB=440±110MeV\omega_{B}=440\pm 110\,{\rm MeV}. So with in acceptable limits, the qq¯q{\bar{q}} configuration of a0a_{0} is still survival in BB decays. It is shown that the decaying channel B0a0[πη]π+B^{0}\to a_{0}^{-}\left[\to\pi^{-}\eta\right]\pi^{+} has the largest branching fraction, and we suggest the measurement to examine the qq¯q{\bar{q}} configuration.

Table 4: The PQCD predictions of branching fractions (in unit of 10610^{-6}) and 𝐶𝑃{\it CP} violations of Ba0[KK¯/πη]hB\to a^{\prime}_{0}\left[\to K\bar{K}/\pi\eta\right]h decays in the second scenario of multiparticle configurations of a0a_{0}.
Decay modes   Quasi-two-body   narrow approx.   two-body Cheng:2013fba  CPV
B+a0+[K+K¯0]π0B^{+}\to a_{0}^{\prime+}\left[\to K^{+}{\bar{K}}^{0}\right]\pi^{0} 0.100.030.01+0.04+0.000.10^{+0.04+0.00}_{-0.03-0.01} 1.240.340.09+0.52+0.031.24^{+0.52+0.03}_{-0.34-0.09} 19.24.38.1+4.9+5.1-19.2^{+4.9+5.1}_{-4.3-8.1}
a0+[π+η]π0\quad\;\;\,\to a_{0}^{\prime+}\left[\to\pi^{+}\eta\right]\pi^{0} 0.120.030.01+0.05+0.010.12^{+0.05+0.01}_{-0.03-0.01} 1.240.310.10+0.53+0.081.24^{+0.53+0.08}_{-0.31-0.10} 2.10.8+1.12.1^{+1.1}_{-0.8} 15.23.16.8+2.4+5.3-15.2^{+2.4+5.3}_{-3.1-6.8}
B+a00[KK+]π+B^{+}\to a_{0}^{\prime 0}\left[\to K^{-}K^{+}\right]\pi^{+} 0.250.070.04+0.11+0.040.25^{+0.11+0.04}_{-0.07-0.04} 6.071.770.98+2.80+1.066.07^{+2.80+1.06}_{-1.77-0.98} 0.11.52.0+1.6+3.6-0.1^{+1.6+3.6}_{-1.5-2.0}
a00[π0η]π+\quad\;\;\,\to a_{0}^{\prime 0}\left[\to\pi^{0}\eta\right]\pi^{+} 0.560.160.09+0.27+0.090.56^{+0.27+0.09}_{-0.16-0.09} 6.011.720.99+2.91+1.086.01^{+2.91+1.08}_{-1.72-0.99} 5.11.7+1.85.1^{+1.8}_{-1.7} 1.02.63.7+0.8+3.41.0^{+0.8+3.4}_{-2.6-3.7}
B+a0+[K+K¯0]K0B^{+}\to a_{0}^{\prime+}\left[\to K^{+}{\bar{K}}^{0}\right]K^{0} 1.290.020.52+0.03+0.681.29^{+0.03+0.68}_{-0.02-0.52} 15.80.23.9+0.4+4.615.8^{+0.4+4.6}_{-0.2-3.9} 0.50.10.6+0.1+0.60.5^{+0.1+0.6}_{-0.1-0.6}
a0+[π+η]K0\quad\;\;\,\to a_{0}^{\prime+}\left[\to\pi^{+}\eta\right]K^{0} 1.510.030.62+0.04+0.791.51^{+0.04+0.79}_{-0.03-0.62} 16.30.36.5+0.5+8.416.3^{+0.5+8.4}_{-0.3-6.5} 4.24.8+18.84.2^{+18.8}_{-4.8} 0.30.30.9+0.2+0.80.3^{+0.2+0.8}_{-0.3-0.9}
B+a00[KK+]K+B^{+}\to a_{0}^{\prime 0}\left[\to K^{-}K^{+}\right]K^{+} 0.500.010.20+0.00+0.230.50^{+0.00+0.23}_{-0.01-0.20} 12.30.33.1+0.1+3.912.3^{+0.1+3.9}_{-0.3-3.1} 22.73.20.8+2.4+1.3-22.7^{+2.4+1.3}_{-3.2-0.8}
a00[π0η]K+\quad\;\;\,\to a_{0}^{\prime 0}\left[\to\pi^{0}\eta\right]K^{+} 1.130.020.43+0.00+0.561.13^{+0.00+0.56}_{-0.02-0.43} 12.20.14.7+0.1+5.912.2^{+0.1+5.9}_{-0.1-4.7} 2.22.2+8.12.2^{+8.1}_{-2.2} 23.62.01.8+3.0+3.8-23.6^{+3.0+3.8}_{-2.0-1.8}
B0a0+[K+K¯0]πB^{0}\to a_{0}^{\prime+}\left[\to K^{+}{\bar{K}}^{0}\right]\pi^{-} 0.130.030.01+0.05+0.010.13^{+0.05+0.01}_{-0.03-0.01} 1.560.370.13+0.57+0.181.56^{+0.57+0.18}_{-0.37-0.13} 24.80.66.8+0.5+6.524.8^{+0.5+6.5}_{-0.6-6.8}
a0+[π+η]π\quad\;\,\to a_{0}^{\prime+}\left[\to\pi^{+}\eta\right]\pi^{-} 0.140.030.01+0.05+0.010.14^{+0.05+0.01}_{-0.03-0.01} 1.510.370.12+0.57+0.161.51^{+0.57+0.16}_{-0.37-0.12} 0.740.6+2.90.74^{+2.9}_{-0.6} 28.50.54.6+0.4+6.728.5^{+0.4+6.7}_{-0.5-4.6}
B0a00[KK+]π0B^{0}\to a_{0}^{\prime 0}\left[\to K^{-}K^{+}\right]\pi^{0} 0.050.010.01+0.01+0.010.05^{+0.01+0.01}_{-0.01-0.01} 1.070.100.32+0.16+0.341.07^{+0.16+0.34}_{-0.10-0.32} 26.16.78.6+5.1+8.126.1^{+5.1+8.1}_{-6.7-8.6}
a00[π0η]π0\quad\;\,\to a_{0}^{\prime 0}\left[\to\pi^{0}\eta\right]\pi^{0} 0.100.010.03+0.01+0.040.10^{+0.01+0.04}_{-0.01-0.03} 1.100.110.34+0.15+0.341.10^{+0.15+0.34}_{-0.11-0.34} 3.31.7+3.13.3^{+3.1}_{-1.7} 24.36.412.3+6.5+17.224.3^{+6.5+17.2}_{-6.4-12.3}
B0a0[KK0]π+B^{0}\to a_{0}^{\prime-}\left[\to K^{-}K^{0}\right]\pi^{+} 3.610.920.36+1.32+0.383.61^{+1.32+0.38}_{-0.92-0.36} 44.011.24.4+16.2+4.744.0^{+16.2+4.7}_{-11.2-4.4} 25.83.03.6+3.3+4.025.8^{+3.3+4.0}_{-3.0-3.6}
a0[πη]π+\quad\;\,\to a_{0}^{\prime-}\left[\to\pi^{-}\eta\right]\pi^{+} 4.151.050.42+1.52+0.454.15^{+1.52+0.45}_{-1.05-0.42} 44.611.44.5+16.4+4.944.6^{+16.4+4.9}_{-11.4-4.5} 2.51.0+3.82.5^{+3.8}_{-1.0} 26.12.93.6+3.3+3.526.1^{+3.3+3.5}_{-2.9-3.6}
B0a00[KK+]K0B^{0}\to a_{0}^{\prime 0}\left[\to K^{-}K^{+}\right]K^{0} 0.330.000.13+0.01+0.170.33^{+0.01+0.17}_{-0.00-0.13} 8.100.023.01+0.16+4.058.10^{+0.16+4.05}_{-0.02-3.01} 6.32.53.1+0.1+0.8-6.3^{+0.1+0.8}_{-2.5-3.1}
a00[π0η]K0\quad\;\,\to a_{0}^{\prime 0}\left[\to\pi^{0}\eta\right]K^{0} 0.780.000.29+0.01+0.400.78^{+0.01+0.40}_{-0.00-0.29} 8.340.023.96+0.17+4.298.34^{+0.17+4.29}_{-0.02-3.96} 1.92.2+7.81.9^{+7.8}_{-2.2} 7.52.32.4+0.7+1.1-7.5^{+0.7+1.1}_{-2.3-2.4}
B0a0[KK0]K+B^{0}\to a_{0}^{\prime-}\left[\to K^{-}K^{0}\right]K^{+} 2.930.350.89+0.49+1.052.93^{+0.49+1.05}_{-0.35-0.89} 35.74.29.7+6.0+9.935.7^{+6.0+9.9}_{-4.2-9.7} 46.70.33.6+1.6+4.1-46.7^{+1.6+4.1}_{-0.3-3.6}
a0[πη]K+\quad\;\,\to a_{0}^{\prime-}\left[\to\pi^{-}\eta\right]K^{+} 3.390.391.02+0.52+1.023.39^{+0.52+1.02}_{-0.39-1.02} 36.54.210.0+5.6+13.036.5^{+5.6+13.0}_{-4.2-10.0} 3.53.9+17.53.5^{+17.5}_{-3.9} 46.01.54.1+3.3+4.0-46.0^{+3.3+4.0}_{-1.5-4.1}
Table 5: The same as table 4, but for the Ba0′′[KK¯/πη]hB\to a^{\prime\prime}_{0}\left[\to K\bar{K}/\pi\eta\right]h decays.
Decay modes   Quasi-two-body   narrow approx.  CPV
B+a0′′+[K+K¯0]π0B^{+}\to a_{0}^{\prime\prime+}\left[\to K^{+}{\bar{K}}^{0}\right]\pi^{0} 0.380.100.02+0.17+0.02±0.220.38^{+0.17+0.02}_{-0.10-0.02}\pm 0.22 1.140.300.04+0.50+0.061.14^{+0.50+0.06}_{-0.30-0.04} 17.64.10.8+1.9+0.817.6^{+1.9+0.8}_{-4.1-0.8}
a0′′+[π+η]π0\quad\;\;\,\to a_{0}^{\prime\prime+}\left[\to\pi^{+}\eta\right]\pi^{0} 0.390.100.01+0.16+0.01±0.070.39^{+0.16+0.01}_{-0.10-0.01}\pm 0.07 1.160.310.04+0.48+0.031.16^{+0.48+0.03}_{-0.31-0.04} 13.30.10.7+3.1+0.913.3^{+3.1+0.9}_{-0.1-0.7}
B+a0′′0[KK+]π+B^{+}\to a_{0}^{\prime\prime 0}\left[\to K^{-}K^{+}\right]\pi^{+} 3.040.810.48+1.22+0.59±1.753.04^{+1.22+0.59}_{-0.81-0.48}\pm 1.75 18.14.82.8+7.3+3.518.1^{+7.3+3.5}_{-4.8-2.8} 6.71.32.2+1.1+2.1-6.7^{+1.1+2.1}_{-1.3-2.2}
a0′′0[π0η]π+\quad\;\;\,\to a_{0}^{\prime\prime 0}\left[\to\pi^{0}\eta\right]\pi^{+} 6.310.711.07+2.48+1.20±1.076.31^{+2.48+1.20}_{-0.71-1.07}\pm 1.07 18.85.13.3+7.4+3.518.8^{+7.4+3.5}_{-5.1-3.3} 7.00.91.7+0.9+0.9-7.0^{+0.9+0.9}_{-0.9-1.7}
B+a0′′+[K+K¯0]K0B^{+}\to a_{0}^{\prime\prime+}\left[\to K^{+}{\bar{K}}^{0}\right]K^{0} 2.600.082.01+0.15+3.18±1.492.60^{+0.15+3.18}_{-0.08-2.01}\pm 1.49 7.730.256.01+0.37+9.497.73^{+0.37+9.49}_{-0.25-6.01} 0.60.70.6+0.0+1.40.6^{+0.0+1.4}_{-0.7-0.6}
a0′′+[π+η]K0\quad\;\;\,\to a_{0}^{\prime\prime+}\left[\to\pi^{+}\eta\right]K^{0} 2.620.092.04+0.15+3.21±0.442.62^{+0.15+3.21}_{-0.09-2.04}\pm 0.44 7.810.256.09+0.44+9.597.81^{+0.44+9.59}_{-0.25-6.09} 0.50.80.3+0.4+0.70.5^{+0.4+0.7}_{-0.8-0.3}
B+a0′′0[KK+]K+B^{+}\to a_{0}^{\prime\prime 0}\left[\to K^{-}K^{+}\right]K^{+} 0.580.000.52+0.00+0.83±0.330.58^{+0.00+0.83}_{-0.00-0.52}\pm 0.33 3.460.013.13+0.02+4.963.46^{+0.02+4.96}_{-0.01-3.13} 27.94.26.8+3.8+6.3-27.9^{+3.8+6.3}_{-4.2-6.8}
a0′′0[π0η]K+\quad\;\;\,\to a_{0}^{\prime\prime 0}\left[\to\pi^{0}\eta\right]K^{+} 1.190.001.07+0.01+1.66±0.201.19^{+0.01+1.66}_{-0.00-1.07}\pm 0.20 3.560.053.13+0.01+4.953.56^{+0.01+4.95}_{-0.05-3.13} 30.85.47.0+4.4+7.3-30.8^{+4.4+7.3}_{-5.4-7.0}
B0a0′′+[K+K¯0]πB^{0}\to a_{0}^{\prime\prime+}\left[\to K^{+}{\bar{K}}^{0}\right]\pi^{-} 1.020.230.21+0.35+0.27±0.591.02^{+0.35+0.27}_{-0.23-0.21}\pm 0.59 3.050.720.66+1.03+0.803.05^{+1.03+0.80}_{-0.72-0.66} 7.02.68.5+2.5+8.4-7.0^{+2.5+8.4}_{-2.6-8.5}
a0′′+[π+η]π\quad\;\,\to a_{0}^{\prime\prime+}\left[\to\pi^{+}\eta\right]\pi^{-} 1.010.230.20+0.35+0.27±0.171.01^{+0.35+0.27}_{-0.23-0.20}\pm 0.17 3.020.700.64+1.04+0.833.02^{+1.04+0.83}_{-0.70-0.64} 7.82.27.9+3.2+8.8-7.8^{+3.2+8.8}_{-2.2-7.9}
B0a0′′0[KK+]π0B^{0}\to a_{0}^{\prime\prime 0}\left[\to K^{-}K^{+}\right]\pi^{0} 0.220.050.10+0.06+0.11±0.130.22^{+0.06+0.11}_{-0.05-0.10}\pm 0.13 1.320.270.59+0.33+0.691.32^{+0.33+0.69}_{-0.27-0.59} 31.32.98.9+1.2+5.7-31.3^{+1.2+5.7}_{-2.9-8.9}
a0′′0[π0η]π0\quad\;\,\to a_{0}^{\prime\prime 0}\left[\to\pi^{0}\eta\right]\pi^{0} 0.440.080.19+0.12+0.24±0.070.44^{+0.12+0.24}_{-0.08-0.19}\pm 0.07 1.300.250.56+0.36+0.721.30^{+0.36+0.72}_{-0.25-0.56} 32.61.88.1+2.7+7.5-32.6^{+2.7+7.5}_{-1.8-8.1}
B0a0′′[KK0]π+B^{0}\to a_{0}^{\prime\prime-}\left[\to K^{-}K^{0}\right]\pi^{+} 4.761.341.19+2.03+1.45±2.734.76^{+2.03+1.45}_{-1.34-1.19}\pm 2.73 14.24.03.7+8.0+4.214.2^{+8.0+4.2}_{-4.0-3.7} 24.23.910.7+3.6+11.5-24.2^{+3.6+11.5}_{-3.9-10.7}
a0′′[πη]π+\quad\;\,\to a_{0}^{\prime\prime-}\left[\to\pi^{-}\eta\right]\pi^{+} 4.761.341.19+2.04+1.46±0.814.76^{+2.04+1.46}_{-1.34-1.19}\pm 0.81 14.24.13.7+8.0+4.214.2^{+8.0+4.2}_{-4.1-3.7} 24.34.010.1+3.5+9.7-24.3^{+3.5+9.7}_{-4.0-10.1}
B0a0′′0[KK+]K0B^{0}\to a_{0}^{\prime\prime 0}\left[\to K^{-}K^{+}\right]K^{0} 0.860.130.67+0.22+0.73±0.500.86^{+0.22+0.73}_{-0.13-0.67}\pm 0.50 5.150.803.05+1.33+4.405.15^{+1.33+4.40}_{-0.80-3.05} 1.80.61.8+1.4+0.9-1.8^{+1.4+0.9}_{-0.6-1.8}
a0′′0[π0η]K0\quad\;\,\to a_{0}^{\prime\prime 0}\left[\to\pi^{0}\eta\right]K^{0} 1.740.261.04+0.43+1.48±0.291.74^{+0.43+1.48}_{-0.26-1.04}\pm 0.29 5.200.793.12+1.29+4.425.20^{+1.29+4.42}_{-0.79-3.12} 2.10.21.1+1.2+0.2-2.1^{+1.2+0.2}_{-0.2-1.1}
B0a0′′[KK0]K+B^{0}\to a_{0}^{\prime\prime-}\left[\to K^{-}K^{0}\right]K^{+} 3.820.671.32+1.01+2.11±2.193.82^{+1.01+2.11}_{-0.67-1.32}\pm 2.19 11.42.03.9+2.9+6.211.4^{+2.9+6.2}_{-2.0-3.9} 24.90.44.0+0.7+5.524.9^{+0.7+5.5}_{-0.4-4.0}
a0′′[πη]K+\quad\;\,\to a_{0}^{\prime\prime-}\left[\to\pi^{-}\eta\right]K^{+} 3.800.641.31+1.02+2.18±0.653.80^{+1.02+2.18}_{-0.64-1.31}\pm 0.65 11.31.83.8+3.1+6.711.3^{+3.1+6.7}_{-1.8-3.8} 25.60.69.7+1.2+8.525.6^{+1.2+8.5}_{-0.6-9.7}

We list in table 4 and table 5 with the PQCD predictions of Ba0[KK¯/πη]hB\to a^{\prime}_{0}\left[\to K\bar{K}/\pi\eta\right]h and Ba0′′[KK¯/πη]hB\to a^{\prime\prime}_{0}\left[\to K\bar{K}/\pi\eta\right]h decays in the second scenario of multiparticle configurations of a0a_{0}, respectively. For the later one, we also present the uncertainty (as the third error) in the quasi-two-body decays from the partial decay width Γa0′′KK¯/πη\Gamma_{a_{0}^{\prime\prime}\to K\bar{K}/\pi\eta} as demonstrated in Eq. (22), this parameter would not bring additional uncertainty to the two-body decays under narrow approximation. Similar result is obtained with showing that the decaying channels B0a0[KK0/πη]hB^{0}\to a_{0}^{\prime-}\left[\to K^{-}K^{0}/\pi^{-}\eta\right]h have the largest branching fractions both for the quasi-two-body and the extracted two-body decays. We would like to mark that our predictions of the a0a^{\prime}_{0} contributions are comparable in the most of BKK¯h,πηhB\to K\bar{K}h,\pi\eta h decays no matter what’s the scenarios of a0a_{0} configurations are taken, while for the channels B0a0+[K+K¯0,π+η]πB^{0}\to a_{0}^{\prime+}\left[\to K^{+}{\bar{K}}^{0},\pi^{+}\eta\right]\pi^{-} and B0a0[KK0,πη]π+B^{0}\to a_{0}^{\prime-}\left[\to K^{-}K^{0},\pi^{-}\eta\right]\pi^{+}, the predictions of branching fractions in the second scenario are about three time larger in magnitude than that predicted in the first scenario777The PQCD predictions in the second scenario for these channels consist with the result from factorisation approach under SU(3)SU(3) symmetry Li:2014oca , and the predictions in both two scenarios are under the experiment upper limit., which provide another opportunity to check which one is the right with the future measurement. In these tables we also list 𝐶𝑃{\it CP} violations which provide another observables to study the interactions between different operators and/or topological amplitudes, especially the different sources of strong phases.

Refer to caption Refer to caption

Refer to caption Refer to caption

Refer to caption Refer to caption

Figure 2: Differential branching fractions of typical Ba0()[KK¯/πη]hB\to a_{0}^{(\prime)}\left[\to K\bar{K}/\pi\eta\right]h decays in the first scenario of multiparticle configurations of a0a_{0} mesons.

Refer to caption Refer to caption

Refer to caption Refer to caption

Refer to caption Refer to caption

Figure 3: Differential branching fractions of typical Ba0/′′[KK¯/πη]hB\to a_{0}^{\prime/\prime\prime}\left[\to K\bar{K}/\pi\eta\right]h decays in the second scenario of multiparticle configurations of a0a_{0} mesons.

The width effect of intermediate isovector scalar mesons is exhibited explicitly by the KK¯/πηK\bar{K}/\pi\eta invariant mass spectral. In the first scenario of multiparticle configurations of a0a_{0}, we plot in figure 2 for the differential branching fractions of the typical Ba0()[KK¯/πη]hB\to a_{0}^{(\prime)}\left[\to K\bar{K}/\pi\eta\right]h decaying channels on the invariant masses, in which the top panel shows the result of channels B+a00[K+K/π0η]π+B^{+}\to a_{0}^{0}[\to K^{+}K^{-}/\pi^{0}\eta]\pi^{+} (left) and B+a0+[K+K¯0/π+η]K0B^{+}\to a_{0}^{+}[\to K^{+}{\bar{K}}^{0}/\pi^{+}\eta]K^{0} (right) with varying the invariant mass from thresholds to 2.0GeV2.0\,{\rm GeV}, the medium panel is the result of B+a00[K+K/π0η]π+B^{+}\to a^{\prime 0}_{0}[\to K^{+}K^{-}/\pi^{0}\eta]\pi^{+} (left) and B+a0+[K+K¯0/π+η]K0B^{+}\to a^{\prime+}_{0}[\to K^{+}{\bar{K}}^{0}/\pi^{+}\eta]K^{0} (right) decays with varying the invariant mass from thresholds to 3.0GeV3.0\,{\rm GeV}, the comparison of a0a_{0} and a0a_{0}^{\prime} contributions in B+[π0η]π+B^{+}\to[\pi^{0}\eta]\pi^{+} (left) and B+[π+η]K0B^{+}\to[\pi^{+}\eta]K^{0} (right) decays is depicted in the bottom panel. We take these typical charged channels because they carry almost all the characteristics of the relevant quasi-two-body decays: (a) the a0a_{0} contribution from KK¯K\bar{K} mode is much smaller than it from πη\pi\eta modes as expected by the highly phase space suppression888We multiply the result of KK¯K\bar{K} mode by a factor of ten to show apparently for the curves., (b) the a0a_{0}^{\prime} contributions from these two modes are comparable, we comment that the lower curves in the left plot can be compensated by the channel B+a00[K0K¯0]π+B^{+}\to a^{\prime 0}_{0}[\to K^{0}{\bar{K}}^{0}]\pi^{+} which is not depicted here, (c) in contrast to the a0a_{0} contributions, the a0a_{0}^{\prime} contribution is negligible in the [π0η]π+\left[\pi^{0}\eta\right]\pi^{+} channel and small in the [π+η]K0\left[\pi^{+}\eta\right]K^{0} channel, while its contributions in the [K+K]π+\left[K^{+}K^{-}\right]\pi^{+} and [K+K¯0]K0\left[K^{+}{\bar{K}}^{0}\right]K^{0} channels are (much) larger than the contributions from a0a_{0}, this is mainly decided by the different phase spaces. We can also see the difference between the three plots in the left panel for the channels with h=πh=\pi and the other three plots on the right panel for the channels with h=Kh=K, this is determined by the weak decay of relevant two-body decays B+a0()πB^{+}\to a_{0}^{(\prime)}\pi and B+a0()KB^{+}\to a_{0}^{(\prime)}K whose invariant amplitudes are collected in the appendix B. These points support the corresponding result in tables 2 and 3 for the partial decay branching fractions obtained by integrating the differential branching fractions over the invariant masses.

Refer to caption
Figure 4: Evolutions of (B+a0′′+[K+K¯0/π+η]K0){\cal B}(B^{+}\to a_{0}^{\prime\prime+}\left[\to K^{+}{\bar{K}}^{0}/\pi^{+}\eta\right]K^{0}) on the partial widths Γa0′′KK¯/πη\Gamma_{a_{0}^{\prime\prime}\to K\bar{K}/\pi\eta} in the second scenario of multiparticle configurations of a0a_{0} mesons.

We similarly plot the a0a_{0}^{\prime} and a0′′a_{0}^{\prime\prime} contributions in the typical B[KK¯/πη]hB\to[K\bar{K}/\pi\eta]h decay in the second scenario of multiparticle configurations of a0a_{0}, as depicted in figure 3, where the top panel shows the result of channels B+a00[K+K/π0η]π+B^{+}\to a_{0}^{\prime 0}[\to K^{+}K^{-}/\pi^{0}\eta]\pi^{+} (left) and B+a0+[K+K¯0/π+η]K0B^{+}\to a_{0}^{\prime+}[\to K^{+}{\bar{K}}^{0}/\pi^{+}\eta]K^{0} (right) with the invariant mass starting from the thresholds and closing up at 3.0GeV3.0\,{\rm GeV}, the plots in medium panel is depicted for the channels B+a0′′0[K+K/π0η]π+B^{+}\to a^{\prime\prime 0}_{0}[\to K^{+}K^{-}/\pi^{0}\eta]\pi^{+} (left) and B+a0′′+[K+K¯0/π+η]K0B^{+}\to a^{\prime\prime+}_{0}[\to K^{+}{\bar{K}}^{0}/\pi^{+}\eta]K^{0} (right) with varying the invariant mass from thresholds to 4.0GeV4.0\,{\rm GeV}, and the Bottom panel presents the result of channels B+a0/′′+[K+K¯0]K0B^{+}\to a_{0}^{\prime/\prime\prime+}[\to K^{+}{\bar{K}}^{0}]K^{0} (left) and B+a0/′′+[π+η]K0B^{+}\to a_{0}^{\prime/\prime\prime+}[\to\pi^{+}\eta]K^{0} (right). We can easily get that (a) the contributions from a0a_{0}^{\prime} in the channels B+[π0η/K+K]π+B^{+}\to\left[\pi^{0}\eta/K^{+}K^{-}\right]\pi^{+} and B+[π+η/K+K¯0]K0B^{+}\to\left[\pi^{+}\eta/K^{+}{\bar{K}}^{0}\right]K^{0} in the second scenario of multiparticle configurations of a0a_{0} are very close to that obtained in the first scenario, we would like to mark again that the neutral BB meson decaying channels B0[K±K0/π±η]πB^{0}\to[K^{\pm}K^{0}/\pi^{\pm}\eta]\pi^{\mp}, even though have the similar shapes, have apparent different predictions in magnitude in these two scenarios, (b) the contributions from a0′′a_{0}^{\prime\prime} are larger than that from a0a_{0}^{\prime}, in the [π0η/K+K]π+\left[\pi^{0}\eta/K^{+}K^{-}\right]\pi^{+} channels even larger by about a order, this is an impressive result but not surprise if we look at the twist 2 LCDAs in Eq. (13) and the relevant parameters, and we looking forward for the experiment check, (c) the a0′′a_{0}^{\prime\prime} contributions in the channels [π+η]K0\left[\pi^{+}\eta\right]K^{0} and [K+K¯0]K0\left[K^{+}{\bar{K}}^{0}\right]K^{0} are almost overlap because the a0′′a_{0}^{\prime\prime} is far away from the KK¯K\bar{K} and πη\pi\eta thresholds, as we can also find in the channels [π0η]π+\left[\pi^{0}\eta\right]\pi^{+} and [KK¯]π+\left[K\bar{K}\right]\pi^{+} if we consider both the K+KK^{+}K^{-} and K0K¯0K^{0}{\bar{K}}^{0} contributions, (d) the partial widths of a0′′KK¯/πηa_{0}^{\prime\prime}\to K\bar{K}/\pi\eta effect significantly for the result of the quasi-two-body, we plot the varying band in the bottom panel by taking the result Γa0′′KK¯=94±54MeV\Gamma_{a_{0}^{\prime\prime}}\to K\bar{K}=94\pm 54\,{\rm MeV} and Γa0′′πη=94±16MeV\Gamma_{a_{0}^{\prime\prime}}\to\pi\eta=94\pm 16\,{\rm MeV} obtained from the eLSM model Parganlija:2016yxq . We depict in figure 4 the dependence of the branching fractions of B+a0′′+[K+K¯0/π+η]K0B^{+}\to a_{0}^{\prime\prime+}\left[\to K^{+}{\bar{K}}^{0}/\pi^{+}\eta\right]K^{0} on the partial widths Γa0′′KK¯/πη\Gamma_{a_{0}^{\prime\prime}\to K\bar{K}/\pi\eta} with considering the largest uncertainties in Eq. (22). It is shown that the width effect of a0′′a_{0}^{\prime\prime} in the relevant quasi-two-body BB decays is linear, so we suggest these channels in BB decays to determine the partial widths Γa0′′KK¯/πη\Gamma_{a_{0}^{\prime\prime}\to K\bar{K}/\pi\eta}.

IV Conclusion

Motivated by the discrepancy between the experimental measurements of three-body Ba0(980)[πη]KB\to a_{0}(980)\left[\to\pi\eta\right]K decays and the theoretical predictions of two-body Ba0(980)KB\to a_{0}(980)K decays, we study the contributions from a0a_{0} in the three-body B[πη]([KK¯])hB\to\left[\pi\eta\right](\left[K{\bar{K}}\right])h decays in the framework of PQCD approach, where the width effects of the intermediated isovector scalar mesons a0a_{0} are demonstrated in detail, this is also the first systematical study of the width effect in Ba0B\to a_{0} decays. In the face of controversy for the multipaticle configurations of a0(980)a_{0}(980), particularly in the BB decays, we consider two scenarios where the first one states that a0(980)a_{0}(980) is the lowest-lying qq¯q{\bar{q}} state, and the second one says that the lowest-lying qq¯q{\bar{q}} state is a0(1450)a_{0}(1450) while a0(980)a_{0}(980) is a compact tetraquark state or KK¯K{\bar{K}} bound state.

We find that the width effect from intermediate a0a_{0} states is significant in the relevant quasi-two-body decaying channels, with which we extract the branching fractions of corresponding two-body decays under narrow width approximation, showing a large difference to the previous direct two-body calculation under the static a0(980)a_{0}(980) assumption. Our calculations show that the a0(980)a_{0}(980) as the lowest-lying qq¯q{\bar{q}} state can not be ruled out in BB decays within acceptable limits with the current measurements. To examine the nature of a0a_{0} state in BB decays, we suggest several channels for the future experiments. The first candidate is the Ba0[πη]π+B\to a_{0}^{-}[\to\pi^{-}\eta]\pi^{+} mode with the largest branching fraction from the calculation under the first scenario, the second ones are the B0a0±(1450)[K±K¯0/π±π0]πB^{0}\to a_{0}^{\pm}(1450)\left[\to K^{\pm}{\bar{K}}^{0}/\pi^{\pm}\pi^{0}\right]\pi^{\mp} modes, whose branching fractions obtained in the first scenario is about three times smaller in magnitude than that obtained in the second scenario, the last, but not the least, is the partial widths (Γa0(1950)KK¯/πη\Gamma_{a_{0}(1950)\to K{\bar{K}}/\pi\eta}) dependence of the partial branching fractions of Ba0(1950)[KK¯/πη]hB\to a_{0}(1950)\left[K{\bar{K}}/\pi\eta\right]h modes, this dependence is shown in the linear behaviour and could be examined by the future data. As a byproduct, we present a0a_{0} mesons contributions in the CKM{\rm CKM} suppressed BsB_{s} decays, which seems more harder for the near future experiments.

V Acknowledgments

We would like to thank Wen-fei Wang for proposing this project to us, and to Hai-yang Cheng for the fruitful discussion. This work is supported by the National Science Foundation of China (NSFC) under the Nos. 11805060, 11975112,11947011 and the Joint Large Scale Scientific Facility Funds of the NSFC and CAS under Contract No. U1932110. SC is also supported by the Natural Science Foundation of Hunan Province, China (Grant No. 2020JJ4160), AJM is also supported by the Natural Science Foundation of Jiangsu Province, China (Grant No. BK20191010) and the Scientific Research Foundation of Nanjing Institute of Technology (Grant No. YKJ201854).

Appendix A Probing a0a_{0} mesons in the quasi-two-body BsB_{s} decays

We also predict the contributions from isovector scalar mesons in the CKM{\rm CKM} suppressed BsB_{s} decays under, as presented in table 6 and table 7 under scenario I and II, respectively, the channel (Bs0a0[πη]K+)(B_{s}^{0}\to a_{0}^{-}\left[\pi^{-}\eta\right]K^{+}) with the predicted branching fraction (0.750.140.12+0.22+0.13)×106(0.75^{+0.22+0.13}_{-0.14-0.12})\times 10^{-6} is the most possible available at the near future experiments.

Table 6: The same as table 2, but for the Bs0a0()[KK¯/πη]hB^{0}_{s}\to a^{(\prime)}_{0}\left[\to K\bar{K}/\pi\eta\right]h decays.
Decay modes   Quasi-two-body   narrow approx.  CPV
Bs0a0+[K+K¯0]πB^{0}_{s}\to a_{0}^{+}\left[\to K^{+}{\bar{K}}^{0}\right]\pi^{-} 0.030.000.01+0.00+0.010.03^{+0.00+0.01}_{-0.00-0.01} 8.12.77.1+6.0+4.8-8.1^{+6.0+4.8}_{-2.7-7.1}
a0+[π+η]π\quad\;\,\to a_{0}^{+}\left[\to\pi^{+}\eta\right]\pi^{-} 0.170.000.04+0.00+0.060.17^{+0.00+0.06}_{-0.00-0.04} 0.250.010.05+0.00+0.090.25^{+0.00+0.09}_{-0.01-0.05} 11.79.35.7+2.7+1.5-11.7^{+2.7+1.5}_{-9.3-5.7}
Bs0a00[KK+]π0B^{0}_{s}\to a_{0}^{0}\left[\to K^{-}K^{+}\right]\pi^{0} 0.040.010.01+0.00+0.010.04^{+0.00+0.01}_{-0.01-0.01} 16.50.33.5+2.5+8.016.5^{+2.5+8.0}_{-0.3-3.5}
a00[π0η]π0\quad\;\,\to a_{0}^{0}\left[\to\pi^{0}\eta\right]\pi^{0} 0.490.060.11+0.03+0.160.49^{+0.03+0.16}_{-0.06-0.11} 0.700.090.14+0.04+0.240.70^{+0.04+0.24}_{-0.09-0.14} 22.71.53.4+1.2+2.622.7^{+1.2+2.6}_{-1.5-3.4}
Bs0a0[KK0]π+B^{0}_{s}\to a_{0}^{-}\left[\to K^{-}K^{0}\right]\pi^{+} 0.030.010.00+0.01+0.000.03^{+0.01+0.00}_{-0.01-0.00} 22.13.110.8+6.5+12.922.1^{+6.5+12.9}_{-3.1-10.8}
a0[πη]π+\quad\;\,\to a_{0}^{-}\left[\to\pi^{-}\eta\right]\pi^{+} 0.140.020.02+0.05+0.090.14^{+0.05+0.09}_{-0.02-0.02} 0.200.030.03+0.08+0.040.20^{+0.08+0.04}_{-0.03-0.03} 44.49.58.4+4.2+2.944.4^{+4.2+2.9}_{-9.5-8.4}
Bs0a00[KK+]K0B^{0}_{s}\to a_{0}^{0}\left[\to K^{-}K^{+}\right]K^{0} 0.160.030.01+0.05+0.020.16^{+0.05+0.02}_{-0.03-0.01} 54.85.37.5+0.1+6.454.8^{+0.1+6.4}_{-5.3-7.5}
a00[π0η]K0\quad\;\,\to a_{0}^{0}\left[\to\pi^{0}\eta\right]K^{0} 0.740.150.07+0.19+0.090.74^{+0.19+0.09}_{-0.15-0.07} 1.050.210.10+0.28+0.121.05^{+0.28+0.12}_{-0.21-0.10} 61.41.67.5+1.3+5.961.4^{+1.3+5.9}_{-1.6-7.5}
Bs0a0[KK0]K+B^{0}_{s}\to a_{0}^{-}\left[\to K^{-}K^{0}\right]K^{+} 0.070.010.01+0.02+0.010.07^{+0.02+0.01}_{-0.01-0.01} 81.58.83.5+4.8+1.581.5^{+4.8+1.5}_{-8.8-3.5}
a0[πη]K+\quad\;\,\to a_{0}^{-}\left[\to\pi^{-}\eta\right]K^{+} 0.750.130.12+0.22+0.140.75^{+0.22+0.14}_{-0.13-0.12} 1.060.190.18+0.32+0.201.06^{+0.32+0.20}_{-0.19-0.18} 77.89.13.1+1.6+5.677.8^{+1.6+5.6}_{-9.1-3.1}
Bs0a0+[K+K¯0]πB^{0}_{s}\to a_{0}^{\prime+}\left[\to K^{+}{\bar{K}}^{0}\right]\pi^{-} 0.090.020.02+0.02+0.030.09^{+0.02+0.03}_{-0.02-0.02} 1.050.210.28+0.29+0.331.05^{+0.29+0.33}_{-0.21-0.28} 10.10.80.3+0.2+1.8-10.1^{+0.2+1.8}_{-0.8-0.3}
a0+[π+η]π\quad\;\,\to a_{0}^{\prime+}\left[\to\pi^{+}\eta\right]\pi^{-} 0.100.020.03+0.03+0.030.10^{+0.03+0.03}_{-0.02-0.03} 1.080.220.31+0.31+0.331.08^{+0.31+0.33}_{-0.22-0.31} 8.33.03.9+1.8+1.8-8.3^{+1.8+1.8}_{-3.0-3.9}
Bs0a00[KK+]π0B^{0}_{s}\to a_{0}^{\prime 0}\left[\to K^{-}K^{+}\right]\pi^{0} 0.130.020.03+0.03+0.030.13^{+0.03+0.03}_{-0.02-0.03} 3.070.560.71+0.61+0.843.07^{+0.61+0.84}_{-0.56-0.71} 19.70.43.8+1.9+2.019.7^{+1.9+2.0}_{-0.4-3.8}
a00[π0η]π0\quad\;\,\to a_{0}^{\prime 0}\left[\to\pi^{0}\eta\right]\pi^{0} 0.300.060.07+0.06+0.080.30^{+0.06+0.08}_{-0.06-0.07} 3.200.610.71+0.68+0.843.20^{+0.68+0.84}_{-0.61-0.71} 20.80.23.9+1.2+2.020.8^{+1.2+2.0}_{-0.2-3.9}
Bs0a0[KK0]π+B^{0}_{s}\to a_{0}^{\prime-}\left[\to K^{-}K^{0}\right]\pi^{+} 0.050.010.01+0.01+0.020.05^{+0.01+0.02}_{-0.01-0.01} 0.670.120.18+0.16+0.220.67^{+0.16+0.22}_{-0.12-0.18} 53.93.83.7+0.5+1.553.9^{+0.5+1.5}_{-3.8-3.7}
a0[πη]π+\quad\;\,\to a_{0}^{\prime-}\left[\to\pi^{-}\eta\right]\pi^{+} 0.060.010.02+0.02+0.020.06^{+0.02+0.02}_{-0.01-0.02} 0.690.130.18+0.18+0.210.69^{+0.18+0.21}_{-0.13-0.18} 55.42.02.5+0.5+2.755.4^{+0.5+2.7}_{-2.0-2.5}
Bs0a00[KK+]K0B^{0}_{s}\to a_{0}^{\prime 0}\left[\to K^{-}K^{+}\right]K^{0} 0.070.010.02+0.01+0.020.07^{+0.01+0.02}_{-0.01-0.02} 0.880.090.29+0.12+0.290.88^{+0.12+0.29}_{-0.09-0.29} 6.65.012.1+0.9+9.2-6.6^{+0.9+9.2}_{-5.0-12.1}
a00[π0η]K0\quad\;\,\to a_{0}^{\prime 0}\left[\to\pi^{0}\eta\right]K^{0} 0.080.010.02+0.01+0.030.08^{+0.01+0.03}_{-0.01-0.02} 0.890.080.28+0.13+0.300.89^{+0.13+0.30}_{-0.08-0.28} 8.85.912.1+2.2+10.4-8.8^{+2.2+10.4}_{-5.9-12.1}
Bs0a0[KK0]K+B^{0}_{s}\to a_{0}^{\prime-}\left[\to K^{-}K^{0}\right]K^{+} 0.030.000.01+0.01+0.010.03^{+0.01+0.01}_{-0.00-0.01} 0.640.040.12+0.11+0.250.64^{+0.11+0.25}_{-0.04-0.12} 28.39.18.6+2.7+10.1-28.3^{+2.7+10.1}_{-9.1-8.6}
a0[πη]K+\quad\;\,\to a_{0}^{\prime-}\left[\to\pi^{-}\eta\right]K^{+} 0.060.000.01+0.01+0.020.06^{+0.01+0.02}_{-0.00-0.01} 0.660.040.13+0.11+0.230.66^{+0.11+0.23}_{-0.04-0.13} 27.86.18.6+1.4+6.1-27.8^{+1.4+6.1}_{-6.1-8.6}
Table 7: The same as table 4, but for the Bs0a0/′′[KK¯/πη]hB^{0}_{s}\to a^{\prime/\prime\prime}_{0}\left[\to K\bar{K}/\pi\eta\right]h decays.
Decay modes   Quasi-two-body   narrow approx.  CPV
Bs0a0+[K+K¯0]πB^{0}_{s}\to a_{0}^{\prime+}\left[\to K^{+}{\bar{K}}^{0}\right]\pi^{-} 0.080.010.03+0.02+0.030.08^{+0.02+0.03}_{-0.01-0.03} 1.020.180.35+0.20+0.391.02^{+0.20+0.39}_{-0.18-0.35} 0.90.20.7+1.0+1.0-0.9^{+1.0+1.0}_{-0.2-0.7}
a0+[π+η]π\quad\;\,\to a_{0}^{\prime+}\left[\to\pi^{+}\eta\right]\pi^{-} 0.100.020.03+0.02+0.040.10^{+0.02+0.04}_{-0.02-0.03} 1.050.190.36+0.20+0.401.05^{+0.20+0.40}_{-0.19-0.36} 0.90.30.3+1.6+0.3-0.9^{+1.6+0.3}_{-0.3-0.3}
Bs0a00[KK+]π0B^{0}_{s}\to a_{0}^{\prime 0}\left[\to K^{-}K^{+}\right]\pi^{0} 0.110.020.04+0.02+0.040.11^{+0.02+0.04}_{-0.02-0.04} 2.730.490.92+0.58+1.112.73^{+0.58+1.11}_{-0.49-0.92} 17.91.32.3+0.3+1.517.9^{+0.3+1.5}_{-1.3-2.3}
a00[π0η]π0\quad\;\,\to a_{0}^{\prime 0}\left[\to\pi^{0}\eta\right]\pi^{0} 0.260.050.08+0.06+0.100.26^{+0.06+0.10}_{-0.05-0.08} 2.790.500.92+0.50+1.142.79^{+0.50+1.14}_{-0.50-0.92} 16.20.11.0+0.6+0.816.2^{+0.6+0.8}_{-0.1-1.0}
Bs0a0[KK0]π+B^{0}_{s}\to a_{0}^{\prime-}\left[\to K^{-}K^{0}\right]\pi^{+} 0.030.010.01+0.01+0.020.03^{+0.01+0.02}_{-0.01-0.01} 0.360.060.17+0.07+0.140.36^{+0.07+0.14}_{-0.06-0.17} 26.88.56.5+4.8+4.826.8^{+4.8+4.8}_{-8.5-6.5}
a0[πη]π+\quad\;\,\to a_{0}^{\prime-}\left[\to\pi^{-}\eta\right]\pi^{+} 0.030.010.02+0.01+0.020.03^{+0.01+0.02}_{-0.01-0.02} 0.360.050.16+0.09+0.250.36^{+0.09+0.25}_{-0.05-0.16} 22.42.22.2+6.7+1.522.4^{+6.7+1.5}_{-2.2-2.2}
Bs0a00[KK+]K0B^{0}_{s}\to a_{0}^{\prime 0}\left[\to K^{-}K^{+}\right]K^{0} 0.150.020.03+0.04+0.040.15^{+0.04+0.04}_{-0.02-0.03} 1.880.280.33+0.44+0.391.88^{+0.44+0.39}_{-0.28-0.33} 22.61.63.5+2.2+5.122.6^{+2.2+5.1}_{-1.6-3.5}
a00[π0η]K0\quad\;\,\to a_{0}^{\prime 0}\left[\to\pi^{0}\eta\right]K^{0} 0.170.030.03+0.04+0.040.17^{+0.04+0.04}_{-0.03-0.03} 1.880.270.31+0.44+0.401.88^{+0.44+0.40}_{-0.27-0.31} 23.41.94.2+2.2+4.423.4^{+2.2+4.4}_{-1.9-4.2}
Bs0a0[KK0]K+B^{0}_{s}\to a_{0}^{\prime-}\left[\to K^{-}K^{0}\right]K^{+} 0.040.010.01+0.01+0.010.04^{+0.01+0.01}_{-0.01-0.01} 1.070.160.19+0.27+0.231.07^{+0.27+0.23}_{-0.16-0.19} 57.11.45.4+0.1+6.157.1^{+0.1+6.1}_{-1.4-5.4}
a0[πη]K+\quad\;\,\to a_{0}^{\prime-}\left[\to\pi^{-}\eta\right]K^{+} 0.100.010.01+0.02+0.030.10^{+0.02+0.03}_{-0.01-0.01} 1.090.160.19+0.25+0.261.09^{+0.25+0.26}_{-0.16-0.19} 57.60.94.8+0.2+7.157.6^{+0.2+7.1}_{-0.9-4.8}
Bs0a0′′+[K+K¯0]πB^{0}_{s}\to a_{0}^{\prime\prime+}\left[\to K^{+}{\bar{K}}^{0}\right]\pi^{-} 0.020.010.02+0.01+0.06±0.010.02^{+0.01+0.06}_{-0.01-0.02}\pm 0.01 0.070.010.06+0.03+0.170.07^{+0.03+0.17}_{-0.01-0.06} 50.99.311.0+6.0+13.350.9^{+6.0+13.3}_{-9.3-11.0}
a0′′+[π+η]π\quad\;\,\to a_{0}^{\prime\prime+}\left[\to\pi^{+}\eta\right]\pi^{-} 0.030.010.03+0.01+0.06±0.010.03^{+0.01+0.06}_{-0.01-0.03}\pm 0.01 0.080.020.07+0.02+0.170.08^{+0.02+0.17}_{-0.02-0.07} 48.59.610.5+3.7+8.648.5^{+3.7+8.6}_{-9.6-10.5}
Bs0a0′′0[KK+]π0B^{0}_{s}\to a_{0}^{\prime\prime 0}\left[\to K^{-}K^{+}\right]\pi^{0} 0.030.00.04+0.01+0.08±0.020.03^{+0.01+0.08}_{-0.0-0.04}\pm 0.02 0.200.010.17+0.08+0.480.20^{+0.08+0.48}_{-0.01-0.17} 37.00.911.1+3.8+6.037.0^{+3.8+6.0}_{-0.9-11.1}
a0′′0[π0η]π0\quad\;\,\to a_{0}^{\prime\prime 0}\left[\to\pi^{0}\eta\right]\pi^{0} 0.070.010.07+0.02+0.16±0.010.07^{+0.02+0.16}_{-0.01-0.07}\pm 0.01 0.220.030.19+0.05+0.480.22^{+0.05+0.48}_{-0.03-0.19} 42.73.75.8+4.1+13.242.7^{+4.1+13.2}_{-3.7-5.8}
Bs0a0′′[KK0]π+B^{0}_{s}\to a_{0}^{\prime\prime-}\left[\to K^{-}K^{0}\right]\pi^{+} 0.100.010.05+0.01+0.08±0.060.10^{+0.01+0.08}_{-0.01-0.05}\pm 0.06 0.300.040.17+0.03+0.240.30^{+0.03+0.24}_{-0.04-0.17} 35.30.49.2+2.0+13.735.3^{+2.0+13.7}_{-0.4-9.2}
a0′′[πη]π+\quad\;\,\to a_{0}^{\prime\prime-}\left[\to\pi^{-}\eta\right]\pi^{+} 0.100.020.06+0.01+0.08±0.020.10^{+0.01+0.08}_{-0.02-0.06}\pm 0.02 0.310.050.18+0.03+0.230.31^{+0.03+0.23}_{-0.05-0.18} 31.00.57.5+3.4+8.731.0^{+3.4+8.7}_{-0.5-7.5}
Bs0a0′′0[KK+]K0B^{0}_{s}\to a_{0}^{\prime\prime 0}\left[\to K^{-}K^{+}\right]K^{0} 0.690.160.18+0.24+0.24±0.390.69^{+0.24+0.24}_{-0.16-0.18}\pm 0.39 2.060.480.56+0.71+0.742.06^{+0.71+0.74}_{-0.48-0.56} 3.63.58.8+3.4+7.5-3.6^{+3.4+7.5}_{-3.5-8.8}
a0′′0[π0η]K0\quad\;\,\to a_{0}^{\prime\prime 0}\left[\to\pi^{0}\eta\right]K^{0} 0.690.160.19+0.24+0.25±0.120.69^{+0.24+0.25}_{-0.16-0.19}\pm 0.12 2.060.480.57+0.71+0.742.06^{+0.71+0.74}_{-0.48-0.57} 3.83.69.3+3.4+7.5-3.8^{+3.4+7.5}_{-3.6-9.3}
Bs0a0′′[KK0]K+B^{0}_{s}\to a_{0}^{\prime\prime-}\left[\to K^{-}K^{0}\right]K^{+} 0.200.050.05+0.07+0.08±0.110.20^{+0.07+0.08}_{-0.05-0.05}\pm 0.11 1.190.280.33+0.41+0.471.19^{+0.41+0.47}_{-0.28-0.33} 6.68.910.9+8.8+10.6-6.6^{+8.8+10.6}_{-8.9-10.9}
a0′′[πη]K+\quad\;\,\to a_{0}^{\prime\prime-}\left[\to\pi^{-}\eta\right]K^{+} 0.400.090.10+0.14+0.16±0.070.40^{+0.14+0.16}_{-0.09-0.10}\pm 0.07 1.180.270.32+0.43+0.501.18^{+0.43+0.50}_{-0.27-0.32} 7.67.710.3+9.9+9.5-7.6^{+9.9+9.5}_{-7.7-10.3}

Appendix B Decay amplitudes

In this section, we list the Lorentz invariant decay amplitude 𝒜{\mathcal{A}} for the considered quasi-two-body decay in the PQCD approach.

𝒜(B+a0+π0)\displaystyle{\cal A}(B^{+}\to a_{0}^{+}\pi^{0}) =\displaystyle= GF2{VubVud[(a1(FThLL+FAhLLFAa0LL)+a2FTa0LL+C1(MThLL+MAhLLMAa0LL)\displaystyle\frac{G_{F}}{2}\big{\{}V_{ub}^{*}V_{ud}[(a_{1}(F^{LL}_{Th}+F^{LL}_{Ah}-F^{LL}_{Aa_{0}})+a_{2}F^{LL}_{Ta_{0}}+C_{1}(M^{LL}_{Th}+M^{LL}_{Ah}-M^{LL}_{Aa_{0}}) (25)
+\displaystyle+ C2MTa0LL]VtbVtd[(a4+5C93+C103a72)FTa0LL(a6a82)FTa0SP\displaystyle C_{2}M^{LL}_{Ta_{0}}]-V_{tb}^{*}V_{td}[(-a_{4}+\frac{5C_{9}}{3}+C_{10}-\frac{3a_{7}}{2})F^{LL}_{Ta_{0}}-(a_{6}-\frac{a_{8}}{2})F^{SP}_{Ta_{0}}
+\displaystyle+ (C9+3C102C3)MTa0LL(C5C72)MTa0LR+3C82MTa0SP\displaystyle(\frac{C_{9}+3C_{10}}{2}-C_{3})M^{LL}_{Ta_{0}}-(C_{5}-\frac{C_{7}}{2})M^{LR}_{Ta_{0}}+\frac{3C_{8}}{2}M^{SP}_{Ta_{0}}
+\displaystyle+ (a4+a10)(FThLL+FAhLLFAa0LL)+(a6+a8)(FThSP+FAhSPFAa0SP)\displaystyle(a_{4}+a_{10})(F^{LL}_{Th}+F^{LL}_{Ah}-F^{LL}_{Aa_{0}})+(a_{6}+a_{8})(F^{SP}_{Th}+F^{SP}_{Ah}-F^{SP}_{Aa_{0}})
+\displaystyle+ (C3+C9)(MThLL+MAhLLMAa0LL)+(C5+C7)(MThLR+MAhLRMAa0LR)]},\displaystyle(C_{3}+C_{9})(M^{LL}_{Th}+M^{LL}_{Ah}-M^{LL}_{Aa_{0}})+(C_{5}+C_{7})(M^{LR}_{Th}+M^{LR}_{Ah}-M^{LR}_{Aa_{0}})]\big{\}}\;,
𝒜(B+a00π+)\displaystyle{\cal A}(B^{+}\to a_{0}^{0}\pi^{+}) =\displaystyle= GF2{VubVud[a1(FTa0LL+FAa0LLFAhLL)+a2FThLL+C1(MTa0LL+MAa0LLMAhLL)\displaystyle\frac{G_{F}}{2}\big{\{}V_{ub}^{*}V_{ud}[a_{1}(F^{LL}_{Ta_{0}}+F^{LL}_{Aa_{0}}-F^{LL}_{Ah})+a_{2}F^{LL}_{Th}+C_{1}(M^{LL}_{Ta_{0}}+M^{LL}_{Aa_{0}}-M^{LL}_{Ah}) (26)
+\displaystyle+ C2MThLL]VtbVtd[(a4+a10)(FTa0LL+FAa0LLFAhLL)(a6a82)FThSP\displaystyle C_{2}M^{LL}_{Th}]-V_{tb}^{*}V_{td}[(a_{4}+a_{10})(F^{LL}_{Ta_{0}}+F^{LL}_{Aa_{0}}-F^{LL}_{Ah})-(a_{6}-\frac{a_{8}}{2})F^{SP}_{Th}
+\displaystyle+ (a6+a8)(FTa0SP+FAa0SPFAhSP)+(C3+C9)(MTa0LL+MAa0LLMAhLL)\displaystyle(a_{6}+a_{8})(F^{SP}_{Ta_{0}}+F^{SP}_{Aa_{0}}-F^{SP}_{Ah})+(C_{3}+C_{9})(M^{LL}_{Ta_{0}}+M^{LL}_{Aa_{0}}-M^{LL}_{Ah})
+\displaystyle+ (C5+C7)(MTa0LR+MAa0LRMThLR)+(53C9+C10+3a72a4)FThLL\displaystyle(C_{5}+C_{7})(M^{LR}_{Ta_{0}}+M^{LR}_{Aa_{0}}-M^{LR}_{Th})+(\frac{5}{3}C_{9}+C_{10}+\frac{3a_{7}}{2}-a_{4})F^{LL}_{Th}
+\displaystyle+ (C9+3C102C3)MThLL(C5C72)MThLR+3C82MThSP]},\displaystyle(\frac{C_{9}+3C_{10}}{2}-C_{3})M^{LL}_{Th}-(C_{5}-\frac{C_{7}}{2})M^{LR}_{Th}+\frac{3C_{8}}{2}M^{SP}_{Th}]\big{\}}\;,
𝒜(B+a0+K0)\displaystyle{\cal A}(B^{+}\to a_{0}^{+}K^{0}) =\displaystyle= GF2{VubVus[a1FAa0LL+C1MAa0LL]VtbVts[(a4a102)FTa0LL\displaystyle\frac{G_{F}}{\sqrt{2}}\big{\{}V_{ub}^{*}V_{us}[a_{1}F^{LL}_{Aa_{0}}+C_{1}M^{LL}_{Aa_{0}}]-V_{tb}^{*}V_{ts}[(a_{4}-\frac{a_{10}}{2})F^{LL}_{Ta_{0}} (27)
+\displaystyle+ (a6a82)FTa0SP+(C3C92)MTa0LL+(C5C72)MTa0LR+(a4+a10)FAa0LL\displaystyle(a_{6}-\frac{a_{8}}{2})F^{SP}_{Ta_{0}}+(C_{3}-\frac{C_{9}}{2})M^{LL}_{Ta_{0}}+(C_{5}-\frac{C_{7}}{2})M^{LR}_{Ta_{0}}+(a_{4}+a_{10})F^{LL}_{Aa_{0}}
+\displaystyle+ (C3+C9)MAa0LL+(a6+a8)FAa0SP+(C5+C7)MAa0LR]},\displaystyle(C_{3}+C_{9})M^{LL}_{Aa_{0}}+(a_{6}+a_{8})F^{SP}_{Aa_{0}}+(C_{5}+C_{7})M^{LR}_{Aa_{0}}]\big{\}}\;,
𝒜(B+a00K+)\displaystyle{\cal A}(B^{+}\to a_{0}^{0}K^{+}) =\displaystyle= GF2{VubVus[a1(FTa0LL+FAa0LL)+a2FThLL+C1(MTa0LL+MAa0LL)\displaystyle\frac{G_{F}}{2}\big{\{}V_{ub}^{*}V_{us}[a_{1}(F^{LL}_{Ta_{0}}+F^{LL}_{Aa_{0}})+a_{2}F^{LL}_{Th}+C_{1}(M^{LL}_{Ta_{0}}+M^{LL}_{Aa_{0}}) (28)
+\displaystyle+ C2MThLL]VtbVts[(a4+a10)(FTa0LL+FAa0LL)+(a6+a8)(FTa0SP+FAa0SP)\displaystyle C_{2}M^{LL}_{Th}]-V_{tb}^{*}V_{ts}[(a_{4}+a_{10})(F^{LL}_{Ta_{0}}+F^{LL}_{Aa_{0}})+(a_{6}+a_{8})(F^{SP}_{Ta_{0}}+F^{SP}_{Aa_{0}})
+\displaystyle+ (C3+C9)(MTa0LL+MAa0LL)+(C5+C7)(MTa0LR+MAa0LR)\displaystyle(C_{3}+C_{9})(M^{LL}_{Ta_{0}}+M^{LL}_{Aa_{0}})+(C_{5}+C_{7})(M^{LR}_{Ta_{0}}+M^{LR}_{Aa_{0}})
+\displaystyle+ 32(a7+a9)FThLL+3C102MThLL+3C82MThSP]},\displaystyle\frac{3}{2}(a_{7}+a_{9})F^{LL}_{Th}+\frac{3C_{10}}{2}M^{LL}_{Th}+\frac{3C_{8}}{2}M^{SP}_{Th}]\big{\}}\;,
𝒜(B0a0+π)\displaystyle{\cal A}(B^{0}\to a_{0}^{+}\pi^{-}) =\displaystyle= GF2{VubVud[a2FAa0LL+C2MAa0LL+a1FThLL+C1MThLL]\displaystyle\frac{G_{F}}{\sqrt{2}}\big{\{}V_{ub}^{*}V_{ud}[a_{2}F^{LL}_{Aa_{0}}+C_{2}M^{LL}_{Aa_{0}}+a_{1}F^{LL}_{Th}+C_{1}M^{LL}_{Th}] (29)
\displaystyle- VtbVtd[(a3+a9a5a7)FAa0LL+(C4+C10)MAa0LL\displaystyle V_{tb}^{*}V_{td}[(a_{3}+a_{9}-a_{5}-a_{7})F^{LL}_{Aa_{0}}+(C_{4}+C_{10})M^{LL}_{Aa_{0}}
+\displaystyle+ (C6+C8)MAa0SP+(a4+a10)FThLL+(a6+a8)FThSP\displaystyle(C_{6}+C_{8})M^{SP}_{Aa_{0}}+(a_{4}+a_{10})F^{LL}_{Th}+(a_{6}+a_{8})F^{SP}_{Th}
+\displaystyle+ (C3+C9)MThLL+(C5+C7)MThLR+(43(C3+C4C92C102)\displaystyle(C_{3}+C_{9})M^{LL}_{Th}+(C_{5}+C_{7})M^{LR}_{Th}+(\frac{4}{3}(C_{3}+C_{4}-\frac{C_{9}}{2}-\frac{C_{10}}{2})
\displaystyle- a5+a72)FLLAh+(a6a82)FSPAh+(C3+C4C92C102)MLLAh\displaystyle a_{5}+\frac{a_{7}}{2})F^{LL}_{Ah}+(a_{6}-\frac{a_{8}}{2})F^{SP}_{Ah}+(C_{3}+C_{4}-\frac{C_{9}}{2}-\frac{C_{10}}{2})M^{LL}_{Ah}
+\displaystyle+ (C5C72)MAhLR+(C6C82)MAhSP]},\displaystyle(C_{5}-\frac{C_{7}}{2})M^{LR}_{Ah}+(C_{6}-\frac{C_{8}}{2})M^{SP}_{Ah}]\big{\}}\;,
𝒜(B0a00π0)\displaystyle{\cal A}(B^{0}\to a_{0}^{0}\pi^{0}) =\displaystyle= GF22{VubVud[a2(FAa0LL+FAhLLFTa0LLFThLL)+C2(MAa0LL+MAhLL\displaystyle\frac{G_{F}}{2\sqrt{2}}\big{\{}V_{ub}^{*}V_{ud}[a_{2}(F^{LL}_{Aa_{0}}+F^{LL}_{Ah}-F^{LL}_{Ta_{0}}-F^{LL}_{Th})+C_{2}(M^{LL}_{Aa_{0}}+M^{LL}_{Ah} (30)
\displaystyle- MTa0LLMThLL)]VtbVtd[(a45C93C10+3a72)FTa0LL\displaystyle M^{LL}_{Ta_{0}}-M^{LL}_{Th})]-V_{tb}^{*}V_{td}[(a_{4}-\frac{5C_{9}}{3}-C_{10}+\frac{3a_{7}}{2})F^{LL}_{Ta_{0}}
+\displaystyle+ (a6a82)(FTa0SP+FAa0SP+FThSP+FAhSP)+(C3C9+3C102)(MTa0LL+MThLL)\displaystyle(a_{6}-\frac{a_{8}}{2})(F^{SP}_{Ta_{0}}+F^{SP}_{Aa_{0}}+F^{SP}_{Th}+F^{SP}_{Ah})+(C_{3}-\frac{C_{9}+3C_{10}}{2})(M^{LL}_{Ta_{0}}+M^{LL}_{Th})
+\displaystyle+ (C5C72)(MTa0LR+MAa0LR+MThLR+MAhLR)3C82(MTa0SP+MThSP)\displaystyle(C_{5}-\frac{C_{7}}{2})(M^{LR}_{Ta_{0}}+M^{LR}_{Aa_{0}}+M^{LR}_{Th}+M^{LR}_{Ah})-\frac{3C_{8}}{2}(M^{SP}_{Ta_{0}}+M^{SP}_{Th})
+\displaystyle+ (7C3+5C4+C9C1032a5a72)(FAa0LL+FAhLL)\displaystyle(\frac{7C_{3}+5C_{4}+C_{9}-C_{10}}{3}-2a_{5}-\frac{a_{7}}{2})(F^{LL}_{Aa_{0}}+F^{LL}_{Ah})
+\displaystyle+ (C3+2C4C9C102)(MAa0LL+MAhLL)+(2C6+C82)(MAa0SP+MAhSP)\displaystyle(C_{3}+2C_{4}-\frac{C_{9}-C_{10}}{2})(M^{LL}_{Aa_{0}}+M^{LL}_{Ah})+(2C_{6}+\frac{C_{8}}{2})(M^{SP}_{Aa_{0}}+M^{SP}_{Ah})
+\displaystyle+ (a45C93C103a72)FThLL],\displaystyle(a_{4}-\frac{5C_{9}}{3}-C_{10}-\frac{3a_{7}}{2})F^{LL}_{Th}]\;,
𝒜(B0a0π+)\displaystyle{\cal A}(B^{0}\to a_{0}^{-}\pi^{+}) =\displaystyle= GF2{VubVud[a1FTa0LL+a2FAhLL+C1MTa0LL+C2MAhLL]VtbVtd[(a4\displaystyle\frac{G_{F}}{\sqrt{2}}\big{\{}V_{ub}^{*}V_{ud}[a_{1}F^{LL}_{Ta_{0}}+a_{2}F^{LL}_{Ah}+C_{1}M^{LL}_{Ta_{0}}+C_{2}M^{LL}_{Ah}]-V_{tb}^{*}V_{td}[(a_{4} (31)
+\displaystyle+ a10)FLLTa0+(a6+a8)FSPTa0+(C3+C9)MLLTa0+(C5+C7)MLRTa0\displaystyle a_{10})F^{LL}_{Ta_{0}}+(a_{6}+a_{8})F^{SP}_{Ta_{0}}+(C_{3}+C_{9})M^{LL}_{Ta_{0}}+(C_{5}+C_{7})M^{LR}_{Ta_{0}}
+\displaystyle+ (43(C3+C4C9+C102)a5+a72)FAa0LL+(a6a82)FAa0SP\displaystyle(\frac{4}{3}(C_{3}+C_{4}-\frac{C_{9}+C_{10}}{2})-a_{5}+\frac{a_{7}}{2})F^{LL}_{Aa_{0}}+(a_{6}-\frac{a_{8}}{2})F^{SP}_{Aa_{0}}
+\displaystyle+ (C3+C4C9+C102)MAa0LL+(C5C72)MAa0LR+(C6C82)MAa0SP\displaystyle(C_{3}+C_{4}-\frac{C_{9}+C_{10}}{2})M^{LL}_{Aa_{0}}+(C_{5}-\frac{C_{7}}{2})M^{LR}_{Aa_{0}}+(C_{6}-\frac{C_{8}}{2})M^{SP}_{Aa_{0}}
+\displaystyle+ (a3+a9a5a7)FAhLL+(C4+C10)MAhLL+(C6+C8)MAhSP]},\displaystyle(a_{3}+a_{9}-a_{5}-a_{7})F^{LL}_{Ah}+(C_{4}+C_{10})M^{LL}_{Ah}+(C_{6}+C_{8})M^{SP}_{Ah}]\big{\}}\;,
𝒜(B0a00K0)\displaystyle{\cal A}(B^{0}\to a_{0}^{0}K^{0}) =\displaystyle= GF2{VubVus[a2FThLL+C2MThLL]VtbVts[(a4a102)(FTa0LL+FAa0LL)\displaystyle\frac{G_{F}}{2}\big{\{}V_{ub}^{*}V_{us}[a_{2}F^{LL}_{Th}+C_{2}M^{LL}_{Th}]-V_{tb}^{*}V_{ts}[-(a_{4}-\frac{a_{10}}{2})(F^{LL}_{Ta_{0}}+F^{LL}_{Aa_{0}}) (32)
\displaystyle- (a6a82)(FTa0SP+FAa0SP)(C3C92)(MTa0LL+MAa0LL)\displaystyle(a_{6}-\frac{a_{8}}{2})(F^{SP}_{Ta_{0}}+F^{SP}_{Aa_{0}})-(C_{3}-\frac{C_{9}}{2})(M^{LL}_{Ta_{0}}+M^{LL}_{Aa_{0}})
\displaystyle- (C5C72)(MTa0LR+MAa0LR)+32(a7+a9)FThLL+3C102MThLL\displaystyle(C_{5}-\frac{C_{7}}{2})(M^{LR}_{Ta_{0}}+M^{LR}_{Aa_{0}})+\frac{3}{2}(a_{7}+a_{9})F^{LL}_{Th}+\frac{3C_{10}}{2}M^{LL}_{Th}
+\displaystyle+ 3C82MThSP]},\displaystyle\frac{3C_{8}}{2}M^{SP}_{Th}]\big{\}}\;,
𝒜(B0a0K+)\displaystyle{\cal A}(B^{0}\to a_{0}^{-}K^{+}) =\displaystyle= GF2{VubVus[a1FTa0LL+C1MTa0LL]VtbVts[(a4+a10)FTa0LL\displaystyle\frac{G_{F}}{\sqrt{2}}\big{\{}V_{ub}^{*}V_{us}[a_{1}F^{LL}_{Ta_{0}}+C_{1}M^{LL}_{Ta_{0}}]-V_{tb}^{*}V_{ts}[(a_{4}+a_{10})F^{LL}_{Ta_{0}} (33)
+\displaystyle+ (a6+a8)FTa0SP+(C3+C9)MTa0LL+(C5+C7)MTa0LR\displaystyle(a_{6}+a_{8})F^{SP}_{Ta_{0}}+(C_{3}+C_{9})M^{LL}_{Ta_{0}}+(C_{5}+C_{7})M^{LR}_{Ta_{0}}
+\displaystyle+ (a4a102)FAa0LL+(a6a82)FAa0SP+(C3C92)MAa0LL\displaystyle(a_{4}-\frac{a_{10}}{2})F^{LL}_{Aa_{0}}+(a_{6}-\frac{a_{8}}{2})F^{SP}_{Aa_{0}}+(C_{3}-\frac{C_{9}}{2})M^{LL}_{Aa_{0}}
+\displaystyle+ (C5C72)MAa0LR]},\displaystyle(C_{5}-\frac{C_{7}}{2})M^{LR}_{Aa_{0}}]\big{\}}\;,
𝒜(Bs0a0+π)\displaystyle{\cal A}(B_{s}^{0}\to a_{0}^{+}\pi^{-}) =\displaystyle= GF2{VubVus[a2FAa0LL+C2MAa0LL]VtbVts[(a3+a9a5a7)FAa0LL\displaystyle\frac{G_{F}}{\sqrt{2}}\big{\{}V_{ub}^{*}V_{us}[a_{2}F^{LL}_{Aa_{0}}+C_{2}M^{LL}_{Aa_{0}}]-V_{tb}^{*}V_{ts}[(a_{3}+a_{9}-a_{5}-a_{7})F^{LL}_{Aa_{0}} (34)
+\displaystyle+ (C4+C10)MAa0LL+(C6+C8)MAa0SP+(a3a92a5+a72)FAhLL\displaystyle(C_{4}+C_{10})M^{LL}_{Aa_{0}}+(C_{6}+C_{8})M^{SP}_{Aa_{0}}+(a_{3}-\frac{a_{9}}{2}-a_{5}+\frac{a_{7}}{2})F^{LL}_{Ah}
+\displaystyle+ (C4C102)MAhLL+(C6C82)MAhSP]},\displaystyle(C_{4}-\frac{C_{10}}{2})M^{LL}_{Ah}+(C_{6}-\frac{C_{8}}{2})M^{SP}_{Ah}]\big{\}}\;,
𝒜(Bs0a00π0)\displaystyle{\cal A}(B_{s}^{0}\to a_{0}^{0}\pi^{0}) =\displaystyle= GF22{VubVus[a2(FAa0LL+FAhLL)+C2(MAa0LL+MAhLL)]\displaystyle\frac{G_{F}}{2\sqrt{2}}\big{\{}V_{ub}^{*}V_{us}[a_{2}(F^{LL}_{Aa_{0}}+F^{LL}_{Ah})+C_{2}(M^{LL}_{Aa_{0}}+M^{LL}_{Ah})] (35)
\displaystyle- VtbVts[(2a3+a922a5a72)(FAa0LL+FAhLL)\displaystyle V_{tb}^{*}V_{ts}[(2a_{3}+\frac{a_{9}}{2}-2a_{5}-\frac{a_{7}}{2})(F^{LL}_{Aa_{0}}+F^{LL}_{Ah})
+\displaystyle+ (2C4+C102)(MAa0LL+MAhLL)+(2C6+C82)(MAa0SP+MAhSP)]},\displaystyle(2C_{4}+\frac{C_{10}}{2})(M^{LL}_{Aa_{0}}+M^{LL}_{Ah})+(2C_{6}+\frac{C_{8}}{2})(M^{SP}_{Aa_{0}}+M^{SP}_{Ah})]\big{\}}\;,
𝒜(Bs0a0π+)\displaystyle{\cal A}(B_{s}^{0}\to a_{0}^{-}\pi^{+}) =\displaystyle= GF2{VubVus[a2FAhLL+C2MAhLL]VtbVts[(a3a92a5+a72)FAa0LL\displaystyle\frac{G_{F}}{\sqrt{2}}\big{\{}V_{ub}^{*}V_{us}[a_{2}F^{LL}_{Ah}+C_{2}M^{LL}_{Ah}]-V_{tb}^{*}V_{ts}[(a_{3}-\frac{a_{9}}{2}-a_{5}+\frac{a_{7}}{2})F^{LL}_{Aa_{0}} (36)
+\displaystyle+ (C4C102)MAa0LL+(C6C82)MAa0SP+(a3+a9a5a7)FAhLL\displaystyle(C_{4}-\frac{C_{10}}{2})M^{LL}_{Aa_{0}}+(C_{6}-\frac{C_{8}}{2})M^{SP}_{Aa_{0}}+(a_{3}+a_{9}-a_{5}-a_{7})F^{LL}_{Ah}
+\displaystyle+ (C4+C10)MAhLL+(C6+C8)MAhSP]},\displaystyle(C_{4}+C_{10})M^{LL}_{Ah}+(C_{6}+C_{8})M^{SP}_{Ah}]\big{\}}\;,
𝒜(Bs0a0+K)\displaystyle{\cal A}(B_{s}^{0}\to a_{0}^{+}K^{-}) =\displaystyle= GF2{VubVud[a1FThLL+C1MThLL]VtbVtd[(a4+a10)FThLL\displaystyle\frac{G_{F}}{\sqrt{2}}\big{\{}V_{ub}^{*}V_{ud}[a_{1}F^{LL}_{Th}+C_{1}M^{LL}_{Th}]-V_{tb}^{*}V_{td}[(a_{4}+a_{10})F^{LL}_{Th} (37)
+\displaystyle+ (a6+a8)FThSP+(C3+C9)MThLL+(C5+C7)MThLR+(a4a102)FAhLL\displaystyle(a_{6}+a_{8})F^{SP}_{Th}+(C_{3}+C_{9})M^{LL}_{Th}+(C_{5}+C_{7})M^{LR}_{Th}+(a_{4}-\frac{a_{10}}{2})F^{LL}_{Ah}
+\displaystyle+ (a6a82)FAhSP+(C3C92)MAhLL+(C5C72)MAhLR]},\displaystyle(a_{6}-\frac{a_{8}}{2})F^{SP}_{Ah}+(C_{3}-\frac{C_{9}}{2})M^{LL}_{Ah}+(C_{5}-\frac{C_{7}}{2})M^{LR}_{Ah}]\big{\}}\;,
𝒜(Bs0a00K¯0)\displaystyle{\cal A}(B_{s}^{0}\to a_{0}^{0}\bar{K}^{0}) =\displaystyle= GF2{VubVud[a2FThLL+C2MThLL]VtbVtd[(5C93+C10+3a72a4)FThLL\displaystyle\frac{G_{F}}{2}\big{\{}V_{ub}^{*}V_{ud}[a_{2}F^{LL}_{Th}+C_{2}M^{LL}_{Th}]-V_{tb}^{*}V_{td}[(\frac{5C_{9}}{3}+C_{10}+\frac{3a_{7}}{2}-a_{4})F^{LL}_{Th} (38)
\displaystyle- (a6a82)(FThSP+FAhSP)+(C92+3C102C3)MThLL(C5C72)(MThLR+MAhLR)\displaystyle(a_{6}-\frac{a_{8}}{2})(F^{SP}_{Th}+F^{SP}_{Ah})+(\frac{C_{9}}{2}+\frac{3C_{10}}{2}-C_{3})M^{LL}_{Th}-(C_{5}-\frac{C_{7}}{2})(M^{LR}_{Th}+M^{LR}_{Ah})
+\displaystyle+ 3C82MThSP(a4a102)FAhLL(C3C92)MAhLL]},\displaystyle\frac{3C_{8}}{2}M^{SP}_{Th}-(a_{4}-\frac{a_{10}}{2})F^{LL}_{Ah}-(C_{3}-\frac{C_{9}}{2})M^{LL}_{Ah}]\big{\}}\;,

In these expressions, GFG_{F} is the fermi coupling constant, VV’s are the CKM matrix elements, the combined Wilson coefficients aia_{i} are defined as

a1=C2+C13,a2=C1+C23,\displaystyle a_{1}=C_{2}+\frac{C_{1}}{3},\quad\quad a_{2}=C_{1}+\frac{C_{2}}{3},
ai=Ci+Ci+13withi=310.\displaystyle a_{i}=C_{i}+\frac{C_{i+1}}{3}\quad\quad{\rm with}\,i=3-10\,. (39)

The factorizable and nonfactorizable amplitudes, saying FF and MM respectively, can be found in Refs. Wang:2020saq .

References

  • (1) R. L. Jaffe, Phys. Rev. D 15, 267 (1977).   Phys. Rev. D 15, 281 (1977).
  • (2) F. E. Close and N. A. Tornqvist, J. Phys. G 28, R249 (2002).
  • (3) N. N. Achasov and A. V. Kiselev, Phys. Rev. D 73, 054029 (2006), Erratum: [Phys. Rev. D 74, 059902 (2006)].
  • (4) N. N. Achasov and A. V. Kiselev, Phys. Rev. D 83, 054008 (2011).
  • (5) J. D. Weinstein and N. Isgur, Phys. Rev. Lett.  48, 659 (1982).
  • (6) J. D. Weinstein and N. Isgur, Phys. Rev. D 27, 588 (1983).
  • (7) S. Agaev, K. Azizi and H. Sundu, Phys. Lett. B 781, 279-282 (2018).
  • (8) M. G. Alford and R. L. Jaffe, Nucl. Phys. B 578, 367-382 (2000).
  • (9) L. Maiani, F. Piccinini, A. D. Polosa and V. Riquer, Phys. Rev. Lett. 93, 212002 (2004).
  • (10) L. Maiani, A. D. Polosa and V. Riquer, Phys. Lett. B 651, 129-134 (2007).
  • (11) J. D. Weinstein and N. Isgur, Phys. Rev. D 41, 2236 (1990).
  • (12) H. Y. Cheng, C. K. Chua and K. C. Yang, Phys. Rev. D 73, 014017 (2006).
  • (13) S. Cheng and J. M. Shen, Eur. Phys. J. C 80, 554 (2020).
  • (14) Y. L. Shen, W. Wang, J. Zhu and C. D. Lu, Eur. Phys. J. C 50, 877-887 (2007).
  • (15) Y. Li, D. C. Yan, J. Hua, Z. Rui and H. n. Li, [arXiv:2105.03899 [hep-ph]].
  • (16) Z. Rui, Y. Li and H. n. Li, JHEP 05, 082 (2021).
  • (17) W. F. Wang, Phys. Rev. D 103, 056021 (2021).
  • (18) J. Chai, S. Cheng and W. F. Wang, Phys. Rev. D 103, 096016 (2021).
  • (19) R. Klein, T. Mannel, J. Virto and K. K. Vos, JHEP 10, 117 (2017)
  • (20) T. Mannel, K. Olschewsky and K. K. Vos, JHEP 06, 073 (2020).
  • (21) T. Huber, J. Virto and K. K. Vos, JHEP 11, 103 (2020).
  • (22) Z. H. Zhang, Phys. Lett. B 820, 136537 (2021).
  • (23) H. Y. Cheng, C. W. Chiang and C. K. Chua, Phys. Rev. D 103, no.3, 036017 (2021).
  • (24) H. Y. Cheng, C. W. Chiang and Z. Q. Zhang, [arXiv:2201.00460 [hep-ph]].
  • (25) S. Cheng, A. Khodjamirian and J. Virto, JHEP 05, 157 (2017).
  • (26) C. Hambrock and A. Khodjamirian, Nucl. Phys. B 905, 373-390 (2016).
  • (27) S. Cheng, A. Khodjamirian and J. Virto, Phys. Rev. D 96, 051901 (2017).
  • (28) S. Descotes-Genon, A. Khodjamirian and J. Virto, JHEP 12, 083 (2019).
  • (29) J. P. Lees et al. [BaBar], Phys. Rev. D 93, 012005 (2016).
  • (30) P. Rubin et al. [CLEO], Phys. Rev. D 78, 072003 (2008).
  • (31) R. Aaij et al. [LHCb], Phys. Rev. D 93, 052018 (2016).
  • (32) C. Amsler et al. [Crystal Barrel], Phys. Lett. B 333, 277-282 (1994).
  • (33) C. Amsler et al. [Crystal Barrel], Phys. Lett. B 355, 425-432 (1995).
  • (34) M. V. Polyakov, Nucl. Phys. B 555, 231 (1999).
  • (35) S. Cheng, Phys. Rev. D 99, no.5, 053005 (2019).
  • (36) J. F. Donoghue, J. Gasser and H. Leutwyler, Nucl. Phys. B 343, 341-368 (1990).
  • (37) M. Albaladejo and B. Moussallam, Eur. Phys. J. C 75, no.10, 488 (2015).
  • (38) W. F. Wang, J. Chai and A. J. Ma, JHEP 03, 162 (2020).
  • (39) A. Abele, S. Bischoff, P. Blum, N. Djaoshvili, D. Engelhardt, A. Herbstrith, C. Holtzhaussen, M. Tischhauser, J. Adomeit and B. Kammle, et al. Phys. Rev. D 57, 3860-3872 (1998).
  • (40) S. M. Flatte, Phys. Lett. B 63 (1976), 224-227.
  • (41) H. Y. Cheng, C. K. Chua, K. C. Yang and Z. Q. Zhang, Phys. Rev. D 87, no.11, 114001 (2013).
  • (42) Particle Data Group, P. A. Zyla et al., PTEP 2020, 083C01(2020).
  • (43) V. M. Braun, D. Y. Ivanov and G. P. Korchemsky, Phys. Rev. D 69, 034014 (2004).
  • (44) S. Aoki, Y. Aoki, D. Becirevic, C. Bernard, T. Blum, G. Colangelo, M. Della Morte, P. Dimopoulos, S. Dürr and H. Fukaya, et al. Eur. Phys. J. C 77, no.2, 112 (2017).
  • (45) S. Cheng, A. Khodjamirian and A. V. Rusov, Phys. Rev. D 102, no.7, 074022 (2020).
  • (46) S. S. Agaev, Phys. Rev. D 72, 074020 (2005).
  • (47) P. Ball and R. Zwicky, Phys. Lett. B 625, 225-233 (2005).
  • (48) G. Duplancic, A. Khodjamirian, T. Mannel, B. Melic and N. Offen, JHEP 04, 014 (2008).
  • (49) A. Khodjamirian, T. Mannel, N. Offen and Y. M. Wang, Phys. Rev. D 83, 094031 (2011).
  • (50) P. Ball, V. M. Braun and A. Lenz, JHEP 05, 004 (2006).
  • (51) G. S. Bali et al. [RQCD], JHEP 08, 065 (2019).
  • (52) R. Arthur, P. A. Boyle, D. Brommel, M. A. Donnellan, J. M. Flynn, A. Juttner, T. D. Rae and C. T. C. Sachrajda, Phys. Rev. D 83, 074505 (2011).
  • (53) A. Khodjamirian, T. Mannel and M. Melcher, Phys. Rev. D 70, 094002 (2004).
  • (54) C. Shi, C. Chen, L. Chang, C. D. Roberts, S. M. Schmidt and H. S. Zong, Phys. Rev. D 92, 014035 (2015).
  • (55) H. Leutwyler, Phys. Lett. B 378, 313-318 (1996).
  • (56) C. Amsler, Rev. Mod. Phys. 70, 1293-1340 (1998).
  • (57) D. Parganlija and F. Giacosa, Eur. Phys. J. C 77, no.7, 450 (2017).
  • (58) G. Y. Wang, S. C. Xue, G. N. Li, E. Wang and D. M. Li, Phys. Rev. D 97, no.3, 034030 (2018).
  • (59) H. Y. Cheng, C. K. Chua and K. C. Yang, Phys. Rev. D 73, 014017 (2006).
  • (60) C. D. Lu, Y. M. Wang and H. Zou, Phys. Rev. D 75, 056001 (2007).
  • (61) H. Y. Han, X. G. Wu, H. B. Fu, Q. L. Zhang and T. Zhong, Eur. Phys. J. A 49, 78 (2013).
  • (62) Z. G. Wang, Eur. Phys. J. C 75, no.2, 50 (2015).
  • (63) Z. Q. Zhang and Z. J. Xiao, Chin. Phys. C 34, 528-534 (2010).
  • (64) Y. Li, Phys. Rev. D 89, no.9, 094007 (2014).