This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Probabilistic Caching for Small-Cell Networks with Terrestrial and Aerial Users

Fei Song, Jun Li,  Ming Ding, 
Long Shi,  Feng Shu,  Meixia Tao, 
Wen Chen,  H. Vincent Poor, 
Copyright (c) 2015 IEEE. Personal use of this material is permitted. However, permission to use this material for any other purposes must be obtained from the IEEE by sending a request to [email protected] received xxx xxx, xxx; revised xxx xxx, xxx; accepted xxx xxx, xxx. This work was supported in part by the National Key R&D Program under Grant 2018YFB1004800, by the National Natural Science Foundation of China under Grants 61872184, 61727802, 61571299 and 61671294, by the STCSM Key Fundamental Project under Grants 16JC1402900 and 17510740700, by the National Science and Technology Major Project under Grant 2018ZX03001009-002, by the U.S. National Science Foundation under Grants CCF-0939370 and CCF-1513915. (Corresponding authors: Long Shi, Jun Li.)F. Song, J. Li and F. Shu are with the School of Electronic and Optical Engineering, Nanjing University of Science Technology, Nanjing 210094, China (e-mail: {fei.song, jun.li, shufeng}@njust.edu.cn).M. Ding is with the Data61, CSIRO, Sydney, N.S.W. 2015, Australia (e-mail: [email protected]).L. Shi is with the Science and Math Cluster, Singapore University of Technology and Design, Singapore 487372 (e-mail: [email protected]).M. Tao and W. Chen are with Shanghai Institute of Advanced Communications and Data Sciences, Department of Electronic Engineering, Shanghai Jiao Tong University, Shanghai 200240, China (e-mail: {mxtao, wenchen}@sjtu.edu.cn).H. V. Poor is with Department of Electrical Engineering, Princeton University, NJ 08544, USA (e-mail: [email protected].)
Abstract

The support for aerial users has become the focus of recent 3GPP standardizations of 5G, due to their high maneuverability and flexibility for on-demand deployment. In this paper, probabilistic caching is studied for ultra-dense small-cell networks with terrestrial and aerial users, where a dynamic on-off architecture is adopted under a sophisticated path loss model incorporating both line-of-sight and non-line-of-sight transmissions. Generally, this paper focuses on the successful download probability (SDP) of user equipments (UEs) from small-cell base stations (SBSs) that cache the requested files under various caching strategies. To be more specific, the SDP is first analyzed using stochastic geometry theory, by considering the distribution of such two-tier UEs and SBSs as Homogeneous Poisson Point Processes. Second, an optimized caching strategy (OCS) is proposed to maximize the average SDP. Third, the performance limits of the average SDP are developed for the popular caching strategy (PCS) and the uniform caching strategy (UCS). Finally, the impacts of the key parameters, such as the SBS density, the cache size, the exponent of Zipf distribution and the height of aerial user, are investigated on the average SDP. The analytical results indicate that the UCS outperforms the PCS if the SBSs are sufficiently dense, while the PCS is better than the UCS if the exponent of Zipf distribution is large enough. Furthermore, the proposed OCS is superior to both the UCS and PCS.

Index Terms:
Small-cell caching, successful download probability, UAV, optimization, stochastic geometry

I Introduction

With the dramatic proliferation of smart mobile devices and various mobile applications, the global mobile data traffic has been increasing rapidly in recent years. Cisco forecasts that the traffic will increase sevenfold from 2016 to 2021, of which about 78 percent will be video streams by 2021 [1]. This deluge of data has driven vendors and operators to seek every possible tool at hand to improve network capacity [2]. Very recently, providing wireless connectivity for unmanned aerial vehicles (UAVs) has become an emerging research area [3]. The UAV becomes increasingly popular for various commercial, industrial, and public-safety applications [4]. Due to their high maneuverability and flexibility for on-demand deployment, UAVs equipped with advanced transceivers and batteries are gaining increasing popularity in information technology applications [5], and have been widely used in delivery, communications and surveillance. As the UAV applications proliferate, security issues in the UAV deployment have captured much attention in recent years. Hence, the academia and industry have expanded public safety communications from the ground [6] to the air [7][8]. Driven by the rising interest in aerial communications, the Third Generation Partnership Project (3GPP) has taken UAVs supported by Long Term Evolution (LTE) as a primary research focus [9].

I-A Background of Wireless Caching

Recent research has unveiled that some popular files are repeatedly requested by the user equipments (UEs), which takes a huge portion of the data traffic [10]. To reduce duplicated transmissions, wireless caching has been proposed to pre-download the popular files in cache devices at the wireless edges [11], [12]. Unlike the traditional communication resources, the storage resources are abundant, economical, and sustainable, making the caching technology even more promising in the modern communications [13]. For example, a scalable platform for implementing the caching technology is well-known as the small-cell caching in the ultra-dense (UD) small-cell networks (SCNs), which has attracted significant attention as one of the enticing approaches to meet the ever-increasing data traffic demands for the fifth generation (5G) communication systems [2], [14]. In the small-cell caching, popular files are pre-downloaded into local caches of small-cell base stations (SBSs) in the off-peak hours, and ready to be fetched by the UEs in the peak hours, alleviating the backhaul congestion in wireless networks. In addition, small-cell caching makes the data traffic much closer to the mobile users. Thus, the transmission latency can be reduced, and the quality of experience for users will be enhanced. However, each device has a finite amount of storage, popular content should be seeded into the network in a way that maximizes the successful download probability (SDP).

I-B Related Work

Existing works have shown that the file placement of small-cell caching largely follows two approaches: deterministic placement and probabilistic placement. For deterministic placement, files are placed and optimized for specific networks by a deterministic pattern [15, 16, 17]. In practice, the wireless channels and the geographic distribution of UEs are time-variant. This triggers the optimal file placement strategy to be frequently updated, which makes the file placement highly complicated. To cope with this problem, probabilistic file placement considers that each SBS randomly caches a subset of popular files with a certain caching probability in the stochastic networks. As a seminal work, [18] modelled the node locations as Homogeneous Poisson Point Processes (HPPPs) and analyzed the general performance of the small-cell caching. Compared with caching the same copy of certain files in all SBSs, probabilistic file placement in the small-cell caching is more flexible and robust.

However, the cache-aided ground SBSs may not be able to support the users in high rise building scenarios [19] and in emergency situations where the ground infrastructures fail or there is a sudden and temporary surge of traffic demand [20]. The UAVs with high maneuverability and flexibility can be used as flying relays [21] to dynamically cache the popular content files from the cache-aided ground BSs and then effectively disseminate them to the users [22]. Zhao etet alal[23] studied the cache-enabled UAVs that serve as flying BSs and refresh the cached content files from macro BSs (MBSs). However, it is time and energy consuming for UAVs with limited battery capacity to fly back to MBSs to update the cached content files. In view of this problem, the UD SCNs point out a promising UAV-aided wireless caching scenario where UAVs are connected to the nearby SBSs that are much denser than MBSs. In this scenario, the role of UAV can be either terminal UE served by static BSs or flying relays that forward files to other UEs, aiming at alleviating the peak backhaul traffic and assisting the SBSs. Recent works [20], [21] and [24] have extended conventional terrestrial cellular services to aerial users in the 5G networks. In addition, the 3GPP launched an investigation on enhanced LTE support for aerial users in 2017 and proposed a channel model for aerial UEs [25]. Therefore, in this paper, we focus on the small-cell cellular networks with terrestrial users (TUs) and aerial users (AUs), i.e., UAVs.

From the stochastic cellular network model, the BS locations are supposed to follow an HPPP distribution [26], [27]. Ref. [28] proposed an optimal geographic placement in wireless cellular networks modelled by HPPP. Furthermore, a trade-off between the SBS density and the storage size was presented in [18], where each SBS caches the most popular files. In [29], the library is divided into NN file groups and the probabilistic caching probability of each file group is optimized to maximize the SDP in SCNs. Utilizing stochastic geometry, [30] optimized probabilistic caching at helper stations in a two-tier heterogeneous network, where one tier of multi-antenna MBSs coexists with the other tier of helpers with caches. However, to our best knowledge, most existing works on small-cell caching considered the path loss models without differentiating line-of-sight (LoS) from non-line-of-sight (NLoS) transmissions. It is well known that LoS transmission may occur when the distance between a transmitter and a receiver is small and no shelter, and NLoS transmission is common in indoor environments and in central business districts. In our previous works [31][32], we considered both multi-slope piece-wise path loss function and probabilistic LoS or NLoS transmission in cellular networks. Furthermore, for ease of exposition, we ignored the antenna height difference between SBSs and UEs in the performance analysis due to the dominance of the horizontal distance. However, the antenna height difference becomes non-negligible as the distance between an UE and its serving SBS decreases. To verify this, [33] clarified that the height difference between UEs and BSs imposes a significant impact on coverage probability and area spectral efficiency.

Regarding the SBS activity, there are two network architectures in the SCNs, namely, the always-on architecture and the dynamic on-off architecture. The always-on architecture is commonly used in the current cellular networks, where all the SBSs are always active. By contrast, in the dynamic on-off architecture, the SBSs are only active when they are required to provide services to UEs [34]. To mitigate inter-cell interference, the dynamic on-off architecture will thrive as an important 5G technology in the UD SCNs, which is also investigated in 3GPP [2]. Therefore, in this paper, we focus on the dynamic on-off architecture.

I-C Contributions

In this work, we analyze the average SDP that UEs can successfully download files from the storage of SBSs and optimize the caching probability of each file. We consider an UD SCN with UEs including TUs and AUs under a general path loss model that incorporates both LoS and NLoS paths. Furthermore, we consider the dynamic on-off architecture. Our goal is to maximize the average SDP. To be concise, the contributions of this article are summarized as follows:

  • We investigate the average SDP by considering the 3GPP path loss models for TUs and UAVs respectively (see Section IV).

  • We propose the optimized caching strategy (OCS) to maximize the average SDP of UD SCNs by optimizing caching probability of each content (see Section V).

  • We analyze the performance limits of the SDP with the uniform caching strategy (UCS) and the popular caching strategy (PCS) under a single-slope path loss model, respectively (see Section VI). First, we show that the OCS is superior to both the UCS and PCS. Second, we reveal that the UCS outperforms the PCS if the SBS density is large enough, while the PCS is better than the UCS if the exponent of Zipf distribution grows sufficiently large.

The rest of the paper is organized as follows. We describe the system model in Section II and study the probabilistic caching strategy in Section III. Section IV presents our analytical results of SDP. Section V proposes the OCS. Section VI shows the impacts of network parameters under the UCS and PCS. Section VII provides simulations and numerical results. Finally, Section VIII concludes this paper. Table I lists main notations and symbols used in this paper.

II System Model

As illustrated in Fig. 1, we consider a small-cell cellular network where the SBSs serve two-tier UEs including TUs as ground users and UAVs as AUs over the same frequency spectrum. We assume that the SBSs, the TUs and the UAVs are deployed according to three independent HPPPs with the height of hBSh_{\rm{BS}}, hTUh_{\rm{TU}} and hAUh_{\rm{AU}}, respectively. With reference to [5] and [24], consider that all the UAVs are positioned at the same height111This paper considers that the locations of UAVs follow a 2D HPPP with the same height. As Fig. 7 will show, the change of the UAV height affects its average SDP but imposes no performance impact on TUs. We remark that the optimization of the caching probabilities (to be discussed in Section V) when the UAVs are deployed as a 3D HPPP is quite challenging and will be left as our future work.. Let λs\lambda_{\rm{s}} be the density of SBSs, λTU\lambda_{\rm{TU}} be the density of TUs, and λAU\lambda_{\rm{AU}} be the density of UAVs. Second, each UE222By the UE, we mean either the TU or the UAV. is associated with an SBS with the smallest path loss. The transmit power of each SBS is denoted by PP.

TABLE I: Main notations and their definitions
Notations Definitions
hBS,hTU,hAUh_{\rm{BS}},h_{\rm{TU}},h_{\rm{AU}} Height of SBSs, TUs, and AUs
λs,λu,λTU,λAU\lambda_{\rm{s}},\lambda_{\rm{u}},\lambda_{\rm{TU}},\lambda_{\rm{AU}} Density of SBSs, UEs, TUs, and AUs
PP Transmit power of each SBS
h,r,lh,r,l
Absolute antenna height difference, horizontal
distance, and distance between SBS and UE
lTU,lAUl_{\rm{TU}},l_{\rm{AU}}
Distance between TU and SBS,
distance between AU and SBS
Qn,SnQ_{n},S_{n}
Request probability of the nn-th file,
caching probability of the nn-th file
DnD_{n}
Event that the typical UE can successfully
receive its requested nn-th file
AnA_{n}
Event that the SBS in the nn-th tier is active
Pr(Dn)\rm{Pr}(D_{n}) Successful download probability
Pr¯{\overline{\Pr}} Average successful download probability
M,N,βM,N,\beta
Number of files, cache size,
and exponent of Zipf distribution
PrLk(){\rm{Pr}^{L}}_{k}(\cdot)
kk-th piece LoS probability function
ζk()\zeta_{k}(\cdot)
kk-th piece path loss function
fkL(),fkNL()f_{k}^{\rm{L}}(\cdot),f_{k}^{\rm{NL}}(\cdot) PDFs for LoS path and NLoS path

The horizontal distance between an SBS and an UE is denoted by rr. Moreover, the absolute antenna height difference between an UE and an SBS is denoted by hh, and the distance between an UE and an SBS is denoted by ll. Let lTUl_{\rm{TU}} be the distance between a TU and an SBS, and lAUl_{\rm{AU}} be the distance between an AU and an SBS. As such, the height differences are h1=hBShTUh_{1}=h_{\rm{BS}}-h_{\rm{TU}} for TUs and h2=hAUhBSh_{2}=h_{\rm{AU}}-h_{\rm{BS}} for UAVs respectively. Hence, the distance ll can be expressed as

l=r2+h2.l=\sqrt{{r^{2}}+{h^{2}}}. (1)

Regarding the UAV acting as the aerial UE, recent works such as [3], [20], [21] and [24] have studied a variety of communication scenarios where conventional terrestrial cellular services are extended to aerial UEs.

Considering the downlink transmission, the small-scale effect in the network is assumed to be Rayleigh fading, and the path loss model embraces both LoS and NLoS paths as large-scale fading. The link from any UE to the typical SBS has a LoS path with probability PrL(r,h){\Pr^{\rm{L}}}(r,h) or a NLoS path with probability 1PrL(r,h)1-{\Pr^{\rm{L}}}(r,h), respectively. According to [25] and [35], the piece-wise LoS probability function is given by

PrL(r,h)={Pr1L(r,h),Pr2L(r,h),PrKL(r,h),0<rd1(h)d1(h)<rd2(h)r>dK1(h),{\rm{Pr}^{{\rm{L}}}}\left(r,h\right)=\left\{{\begin{array}[]{*{20}{l}}{\Pr_{1}^{\rm{L}}\left(r,h\right),}\\ {\Pr_{2}^{\rm{L}}\left(r,h\right),}\\ \vdots\\ {\Pr_{K}^{\rm{L}}\left(r,h\right),}\end{array}}\right.\begin{array}[]{*{20}{l}}{0<r\leq{d_{1}(h)}}\\ {{d_{1}(h)}<r\leq{d_{2}(h)}}\\ \vdots\\ {r>{d_{K-1}(h)}}\end{array}, (2)

where PrkL(r,h)\Pr_{k}^{\rm{L}}\left(r,h\right), k{1,2,,K}k\in\{1,2,...,K\} is the kk-th piece probability function that an UE and an SBS separated by a horizontal distance dk1(h)<rdk(h){d_{k-1}(h)}<r\leq{d_{k}}(h) has a LoS path. In addition, dk(h){d_{k}}(h) varies as the height difference hh changes. The details of dk(h){d_{k}}(h) for TUs and UAVs are provided in Sections IV-C and IV-D, respectively.

ζ(r,h)={ζ1(r,h)={A1Llα1L,LoS withPr1L(r,h)A1NLlα1NL,NLoS with(1Pr1L(r,h)),0<rd1(h)ζ2(r,h)={A2Llα2L,LoS withPr2L(r,h)A2NLlα2NL,NLoS with(1Pr2L(r,h)),d1(h)<rd2(h)ζK(r,h)={AKLlαKL,LoS withPrKL(r,h)AKNLlαKNL,NLoS with(1PrKL(r,h)),r>dK1(h).\zeta\left(r,h\right)=\left\{{\begin{array}[]{*{20}{l}}{\zeta_{1}\left(r,h\right)=\left\{{\begin{array}[]{*{20}{l}}{A_{1}^{\rm{L}}{l^{{\rm{-\alpha}}_{\rm{1}}^{\rm{L}}}},\;{\text{LoS with}}\;\Pr_{1}^{\rm{L}}\left(r,h\right)}\\ {A_{1}^{{\rm{NL}}}{l^{{\rm{-\alpha}}_{\rm{1}}^{{\rm{NL}}}}},\;{\text{NLoS with}}\;\left({1-\Pr_{1}^{\rm{L}}\left(r,h\right)}\right)}\end{array},}\right.}&{0<r\leq{d_{1}(h)}}\\ {\zeta_{2}\left(r,h\right)=\left\{{\begin{array}[]{*{20}{l}}{A_{2}^{\rm{L}}{l^{{\rm{-\alpha}}_{\rm{2}}^{\rm{L}}}},\;{\text{LoS with}}\;\Pr_{2}^{\rm{L}}\left(r,h\right)}\\ {A_{2}^{{\rm{NL}}}{l^{{\rm{-\alpha}}_{\rm{2}}^{{\rm{NL}}}}},\;{\text{NLoS with}}\;\left({1-\Pr_{2}^{\rm{L}}\left(r,h\right)}\right)}\end{array},}\right.}&{{d_{1}(h)}<r\leq{d_{2}(h)}}\\ \vdots&\vdots\\ {\zeta_{K}\left(r,h\right)=\left\{{\begin{array}[]{*{20}{l}}{A_{K}^{\rm{L}}{l^{{\rm{-\alpha}}_{K}^{\rm{L}}}},\;{\text{LoS with}}\;\Pr_{K}^{\rm{L}}\left(r,h\right)}\\ {A_{K}^{{\rm{NL}}}{l^{{\rm{-\alpha}}_{K}^{{\rm{NL}}}}},\;{\text{NLoS with}}\;\left({1-\Pr_{K}^{\rm{L}}\left(r,h\right)}\right)}\end{array},}\right.}&{r>{d_{K-1}(h)}}\end{array}}\right.. (3)

Furthermore, with reference to [25] and [35], we adopt a general and practical path loss model in [31], where the path loss with respect to the distance ll is modeled as (3) (see the top of next page). In (3), AkLA_{k}^{\rm{L}} and AkNLA_{k}^{\rm{NL}} denote the path losses of the LoS path and NLoS path at a reference distance of l=1l=1 respectively. Moreover, αkL\alpha_{k}^{\rm{L}} and αkNL\alpha_{k}^{\rm{NL}} denote the path loss exponents of the LoS path and NLoS path respectively. It is worthwhile noting that the values of AkLA_{k}^{\rm{L}}, AkNLA_{k}^{\rm{NL}}, αkL\alpha_{k}^{\rm{L}} and αkNL\alpha_{k}^{\rm{NL}} for the TUs are different from those for the UAVs. For TUs, AkLA_{k}^{\rm{L}}, AkNLA_{k}^{\rm{NL}}, αkL\alpha_{k}^{\rm{L}} and αkNL\alpha_{k}^{\rm{NL}} are constants from field tests in [35]. For UAVs, AkLA_{k}^{\rm{L}} and AkNLA_{k}^{\rm{NL}} are constants, while αkL\alpha_{k}^{\rm{L}} and αkNL\alpha_{k}^{\rm{NL}} vary with different height ranges [25].

In the dynamic on-off architecture, an SBS is only active when it is required to serve the associated UEs. At any time, a typical UE only associates with an intended SBS, while other active SBSs are regarded as interferers. Since both TU and UAV can be regarded as the typical UE in this model, the two-tier UEs need to be projected onto the same plane for this architecture. As such, we can get the total density of two-tier UEs λu=λTU+λAU{\lambda_{\rm{u}}}={\lambda_{\rm{TU}}}+{\lambda_{\rm{AU}}}. Hence, the probability that an SBS is active is given by [36]

Pron1(1+λuqλs)q,{\rm{Pr}_{{\rm{on}}}}\approx 1-{\left({1+{\textstyle{{{\lambda_{\rm{u}}}}\over{{q}{\lambda_{\rm{s}}}}}}}\right)^{-{q}}}, (4)

where q=q= 3.5 is a tight lower bound of qq, especially for dense SCNs.

Refer to caption
Figure 1: System model of a small-cell network consisting of the SBS and two-tier UEs.

III Probabilistic UD SCNs Caching Strategy

Suppose that a library consists of NN popular files each with equal length. Note that NN represents the number of popular files that the UEs tend to access rather than the number of files available on the Internet. Furthermore, each file is requested according to its popularity, known as aa prioripriori information.

Let QnQ_{n} represents the probability that the nn-th file is requested by the UEs. 𝐐=[Q1,Q2,,QN]{\bf{Q}}=\left[{Q_{1}},{Q_{2}},\cdots,{Q_{N}}\right] collects the request probability mass functions (PMFs) of all NN files. Similar to existing works [13], [29] and [37], we model the PMF of each file request as Zipf distribution, and the request probability is given by

Qn=1nβi=1N1iβ,{Q_{n}}=\frac{{{\textstyle{1\over{{n^{\beta}}}}}}}{{\sum\nolimits_{i=1}^{N}{{\textstyle{1\over{{i^{\beta}}}}}}}}, (5)

where β\beta is the exponent of the Zipf distribution. A larger β\beta implies a more uneven popularity among those files.

Due to the limited storage, each SBS cannot cache the entire file library. In this context, we consider that the files are independently placed in different SBSs. Suppose that a cache memory of size MM is available on each SBS. In the file placement phase, each SBS store the nn-th file in its local cache with a caching probability SnS_{n}, yielding

n=1NSnM,\displaystyle\sum\limits_{n=1}^{N}{{S_{n}}\leq M,} (6)
0Sn1,n.\displaystyle 0\leq{S_{n}}\leq 1,\forall n. (7)

We emphasize that the nn-th tier of SBS is formed by a group of SBSs that cache the nn-th file. Given that each SBS independently caches the files, the distribution of SBSs that cache the nn-th file is viewed as a thinned HPPP with density of Snλs{S_{n}}{\lambda_{\rm{s}}}. In addition, given that each UE only requests a single content at each time slot, the distribution of UEs who request the nn-th file can also be modeled as a thinned HPPP with density of Qnλu{Q_{n}}{\lambda_{\rm{u}}}. In the following, we consider three types of caching strategies:

  1. 1.

    UCS: Each SBS caches each file randomly with equal probability [13].

  2. 2.

    PCS: Each SBS only caches the most popular files [13].

  3. 3.

    OCS: Each SBS caches each file with optimized probability for SDP maximization (see Section V).

IV Performance Analysis of Small-Cell Caching

In this section, we derive the SDP for the dynamic on-off architecture. Some cases adopted by the 3GPP are also considered.

IV-A Received SINR

The received signal power of a typical UE from its associated SBS can be written as

Prs=Pζ(r,h)g,{P_{{\rm{rs}}}}=P\zeta\left(r,h\right)g, (8)

where the channel gain of the Rayleigh fading gg follows an independent and identically distributed (i.i.d.i.i.d.) exponential distribution with unit mean.

Consequently, the signal-to-interference-and-noise-ratio (SINR) at the typical UE can be expressed as

SINR=Prsσ2+IZ,{\rm{SINR}}=\frac{{{P_{{\rm{rs}}}}}}{{{\sigma^{\rm{2}}}+{I_{Z}}}}, (9)

where σ2\sigma^{2} is noise power, and ZZ is the set of interfering SBSs with the total interference being

IZ=zZPζ(rz,h)gz,{I_{Z}}=\sum\limits_{z\in Z}{P\zeta\left({{r_{z}}},h\right)}{g_{z}}, (10)

where gzg_{z} denotes the channel gain between the typical user and the zz-th interfering SBS, also following an i.i.d.i.i.d. exponential distribution with unit mean.

IV-B Successful Download Probability

Let DnD_{n} be the event that the typical UE can successfully receive the requested nn-th file from the associated nn-th tier of SBS. In this paper, we consider that DnD_{n} occurs if the SINR of the UE is no less than a targeted value δ\delta. As such, the SDP of DnD_{n} can be formulated as

Pr(Dn)=Pr(SINR>δ).\Pr\left({{D_{n}}}\right)=\Pr\left({{\rm{SINR}}>\delta}\right). (11)

Recall that the SBSs in the nn-th tier and the UEs that request the nn-th file form two independent thinned HPPPs with densities Snλs{S_{n}}{\lambda_{\rm{s}}} and Qnλu{Q_{n}}{\lambda_{\rm{u}}} respectively. Let AnA_{n} be the event that the SBS in the nn-th tier is active, we rewrite the probability that an SBS in the nn-th tier is active as

Pr(An)1(1+QnλuqSnλs)q,{\Pr(A_{n})}\approx 1-{\left({1+{\textstyle{{{Q_{n}}{\lambda_{\rm{u}}}}\over{{q}{S_{n}}{\lambda_{\rm{s}}}}}}}\right)^{-{q}}}, (12)

where we replace λs\lambda_{\rm{s}} and λu\lambda_{\rm{u}} in (4) with Snλs{S_{n}}{\lambda_{\rm{s}}} and Qnλu{Q_{n}}{\lambda_{\rm{u}}} respectively.

TheoremTheorem 1: Given a particular value of Snλs{S_{n}}{\lambda_{\rm{s}}}, the SDP of DnD_{n} is given by

Pr(Dn)=k=1K(TkL+TkNL),\Pr\left({{D_{n}}}\right)=\sum\limits_{k=1}^{K}{\left({T_{k}^{\rm{L}}+T_{k}^{{\rm{NL}}}}\right)}, (13)

where

TkL=dk1(h)dk(h)Pr[PζkL(r,h)gσ2+IZ>δ]fkL(r,h)dr,\displaystyle T_{k}^{\rm{L}}=\int_{{d_{k-1}(h)}}^{{d_{k}}(h)}{\Pr\left[{\frac{{P\zeta_{k}^{\rm{L}}\left(r,h\right)g}}{{{\sigma^{\rm{2}}}+{I_{Z}}}}>\delta}\right]}f_{k}^{\rm{L}}(r,h){\rm{d}}r, (14)
TkNL=dk1(h)dk(h)Pr[PζkNL(r,h)gσ2+IZ>δ]fkNL(r,h)dr,\displaystyle T_{k}^{{\rm{NL}}}\!=\!\int_{{d_{k-1}}(h)}^{{d_{k}}(h)}\!{\Pr\!\left[{\frac{{P\zeta_{k}^{{\rm{NL}}}\left(r,h\right)g}}{{{\sigma^{\rm{2}}}+{I_{Z}}}}\!>\!\delta}\right]\!}f_{k}^{{\rm{NL}}}(r,h){\rm{d}}r, (15)

and fkL(r,h)f_{k}^{\rm{L}}\left(r,h\right) and fkNL(r,h)f_{k}^{{\rm{NL}}}\left(r,h\right) are the probability density functions (PDFs) of LoS path and NLoS path, respectively. Let d0=0d_{0}=0 and dK=d_{K}=\infty. Moreover, we have

fkL(r,h)=\displaystyle f_{k}^{\rm{L}}\!\left(r,h\right)= exp(0r12πSnλs(1PrkL(u,h))udu)\displaystyle\exp\!\left(\!{-\!\int_{0}^{{r_{1}}}{2\pi{S_{n}}{\lambda_{\rm{s}}}\!\left(\!{1\!-\!{\rm{Pr}}_{k}^{\rm{L}}\left(u,h\right)}\!\right)\!u{\rm{d}}u}}\!\right)\!
×\displaystyle\times exp(0r2πSnλsPrkL(u,h)udu)\displaystyle\exp\left({-\int_{0}^{r}{2\pi{S_{n}}{\lambda_{\rm{s}}}{\rm{Pr}}_{k}^{\rm{L}}\left(u,h\right)u{\rm{d}}u}}\!\right)\!
×\displaystyle\times PrkL(r,h)2πrSnλs,dk1(h)<rdk(h),\displaystyle{\rm{Pr}}_{k}^{\rm{L}}\!\left(r,h\right)\!2\pi r{S_{n}}{\lambda_{\rm{s}}},\;{{d_{k\!-\!1}(h)}\!<\!r\!\leq\!{d_{k}}(h)}, (16)
fkNL(r,h)\displaystyle f_{k}^{{\rm{NL}}}\!\left(\!r,h\!\right) =exp(0r22πSnλsPrkL(u,h)udu)\displaystyle=\exp\left({-\int_{0}^{{r_{2}}}{2\pi{S_{n}}{\lambda_{\rm{s}}}{\Pr}_{k}^{\rm{L}}\left(u,h\right)u{\rm{d}}u}}\right)
×exp(0r2πSnλs(1PrkL(u,h))udu)\displaystyle\times\exp\left({-\int_{0}^{r}{2\pi{S_{n}}{\lambda_{\rm{s}}}\left({1-{\Pr}_{k}^{\rm{L}}\left(u,h\right)}\right)u{\rm{d}}u}}\right)
×(1PrkL(r,h))2πrSnλs,dk1(h)<rdk(h),\displaystyle\times\left({1\!-\!{\Pr}_{k}^{\rm{L}}\left(r,h\right)}\right)2\pi r{S_{n}}{\lambda_{\rm{s}}},\;{{d_{k\!-\!1}(h)}\!<\!r\!\leq\!{d_{k}}(h)}, (17)

where r1=argr1{ζNL(r1,h)=ζkL(r,h)}{r_{1}}=\mathop{\arg}\limits_{{r_{1}}}\left\{{{\zeta^{{\rm{NL}}}}({r_{1},h})=\zeta_{k}^{\rm{L}}(r,h)}\right\} and r2=argr2{ζL(r2,h)=ζkNL(r,h)}{r_{2}}=\mathop{\arg}\limits_{{r_{2}}}\left\{{{\zeta^{\rm{L}}}({r_{2},h})=\zeta_{k}^{{\rm{NL}}}(r,h)}\right\}.

Proof:Proof: See Appendix A. \blacksquare

To specify (14) and (15), we further have

Pr[PζkL(r,h)gσ2+IZ>δ]=exp(δσ2PζkL(r,h))IZ(δPζkL(r,h)),\displaystyle\Pr\!\left[\!{\frac{{P\zeta_{k}^{\rm{L}}\left(\!r,h\!\right)g}}{{{\sigma^{\rm{2}}}+{I_{Z}}}}\!>\!\delta}\!\right]\!\!=\!\exp(-{\textstyle{{\delta{\sigma^{2}}}\over{P\zeta_{k}^{\rm{L}}\left(r,h\right)}}}){\mathscr{L}_{I_{Z}}}\!\left(\!{{\textstyle{\delta\over{P\zeta_{k}^{\rm{L}}\left(r,h\right)}}}}\!\right), (18)
Pr[PζkNL(r,h)gσ2+IZ>δ]=exp(δσ2PζkNL(r,h))IZ(δPζkNL(r,h)),\displaystyle\Pr\!\left[\!{\frac{{P\zeta_{k}^{{\rm{NL}}}\!\left(\!r,h\!\right)\!g}}{{{\sigma^{\rm{2}}}+{I_{Z}}}}\!>\!\delta}\!\right]\!\!=\!\exp(\!-\!{\textstyle{{\delta{\sigma^{2}}}\over{P\zeta_{k}^{{\rm{NL}}}\left(\!r,h\!\right)}}}){\mathscr{L}_{I_{Z}}}\!\!\left(\!{{\textstyle{\delta\over{P\zeta_{k}^{{\rm{NL}}}\left(\!r,h\!\right)}}}}\!\right)\!, (19)

where IZ()\mathscr{L}_{I_{Z}}(\cdot) is the Laplace transform of IZ{I_{Z}}. We note that IZI_{Z} at the typical UE that requests the nn-th file comes from two independently portions: 1) IZ1I_{Z1}, caused by the SBSs in other tiers which locate in the entire area of the network, and 2) IZ2I_{Z2}, caused by the SBSs in the nn-th tier whose distances with the typical UE are larger than ll. Based on the observation, IZ=IZ1+IZ2I_{Z}=I_{Z1}+I_{Z2}. Going forward, LemmaLemma 1 below computes IZ(δPζkL(r,h)){\mathscr{L}}_{I_{Z}}\left({{\textstyle{\delta\over{P\zeta_{k}^{\rm{L}}\left(r,h\right)}}}}\right) in (18) and IZ(δPζkNL(r,h)){\mathscr{L}}_{I_{Z}}\left({{\textstyle{\delta\over{P\zeta_{k}^{\rm{NL}}\left(r,h\right)}}}}\right) in (19).

LemmaLemma 1:

IZ(δPζk(r,h))=EIZ[exp(δIZPζk(r,h))]\displaystyle{\mathscr{L}_{I_{Z}}}\left({{\textstyle{\delta\over{P\zeta_{k}\left(r,h\right)}}}}\right)\!=\!{E_{I_{Z}}}\left[{\exp\left({-{\textstyle{{\delta I_{Z}}\over{P{\zeta_{k}}\left(r,h\right)}}}}\right)}\right]
=EIZ1[exp(δIZ1Pζk(r,h))]EIZ2[exp(δIZ2Pζk(r,h))].\displaystyle\!=\!{E_{{I_{Z1}}}}\left[{\exp\left({-{\textstyle{{\delta{I_{Z1}}}\over{P{\zeta_{k}}\left(r,h\right)}}}}\right)}\right]{E_{{I_{Z2}}}}\left[{\exp\left({-{\textstyle{{\delta{I_{Z2}}}\over{P{\zeta_{k}}\left(r,h\right)}}}}\right)}\right]\!.\! (20)

For LoS,

EIZ1[exp(δIZ1PζkL(r,h))]=exp{2πi=1,inNPr(Ai)Siλs\displaystyle{E_{{I_{Z1}}}}\left[{\exp\left({-{\textstyle{{\delta{I_{Z1}}}\over{P{\zeta_{k}^{\rm{L}}}\left(r,h\right)}}}}\right)}\right]=\exp\left\{{-2\pi\sum\limits_{i=1,i\neq n}^{N}{\Pr\left({{A_{i}}}\right){S_{i}}{\lambda_{\rm{s}}}}}\right.
×[0PrL(u,h)u1+ζkL(r,h)(δζL(u,h))1du\displaystyle\times\left[{\int_{0}^{\infty}{{\textstyle{{{{\Pr}^{\rm{L}}}\left({u},h\right)u}\over{1+{\zeta_{k}^{\rm{L}}}\left(r,h\right){{(\delta{\zeta^{\rm{L}}}\left(u,h\right))}^{-1}}}}}}{\rm{d}}u}\right.
+0[1PrL(u,h)]u1+ζkL(r,h)(δζNL(u,h))1du]},\displaystyle\left.{\left.{+\int_{0}^{\infty}{{\textstyle{{\left[{1-{{\Pr}^{\rm{L}}}\left({u},h\right)}\right]u}\over{1+{\zeta_{k}^{\rm{L}}}\left(r,h\right){{(\delta{\zeta^{\rm{NL}}}\left(u,h\right))}^{-1}}}}}{\rm{d}}u}}\right]}\right\}, (21)
EIZ2[exp(δIZ2PζkL(r,h))]\displaystyle{E_{{I_{Z2}}}}\left[{\exp\left({-{\textstyle{{\delta{I_{Z2}}}\over{P{\zeta_{k}^{\rm{L}}}\left(r,h\right)}}}}\right)}\right]
=exp{2πPr(An)Snλs[rPrL(u,h)u1+ζkL(r,h)(δζL(u,h))1du\displaystyle=\exp\left\{{-2\pi\Pr\left({{A_{n}}}\right){S_{n}}{\lambda_{\rm{s}}}\left[{\int_{r}^{\infty}{{\textstyle{{{{\Pr}^{\rm{L}}}\left({u},h\right)u}\over{1+{\zeta_{k}^{\rm{L}}}\left(r,h\right){{(\delta{\zeta^{\rm{L}}}\left(u,h\right))}^{-1}}}}}}{\rm{d}}u}\right.}\right.
+r1[1PrL(u,h)]u1+ζkL(r,h)(δζNL(u,h))1du]}.\displaystyle\left.{\left.{+\int_{{r_{1}}}^{\infty}{{\textstyle{{\left[{1-{{\Pr}^{\rm{L}}}\left({u},h\right)}\right]u}\over{1+{\zeta_{k}^{\rm{L}}}\left(r,h\right){{(\delta{\zeta^{\rm{NL}}}\left(u,h\right))}^{-1}}}}}}{\rm{d}}u}\right]}\right\}. (22)

For NLoS,

EIZ1[exp(δIZ1PζkNL(r,h))]=exp{2πi=1,inNPr(Ai)Siλs\displaystyle{E_{{I_{Z1}}}}\left[{\exp\left({-{\textstyle{{\delta{I_{Z1}}}\over{P{\zeta_{k}^{\rm{NL}}}\left(r,h\right)}}}}\right)}\right]=\exp\left\{{-2\pi\sum\limits_{i=1,i\neq n}^{N}{\Pr\left({{A_{i}}}\right){S_{i}}{\lambda_{\rm{s}}}}}\right.
×[0PrL(u,h)u1+ζkNL(r,h)(δζL(u,h))1du\displaystyle\times\left[{\int_{0}^{\infty}{{\textstyle{{{{\Pr}^{\rm{L}}}\left({u},h\right)u}\over{1+{\zeta_{k}^{\rm{NL}}}\left(r,h\right){{(\delta{\zeta^{\rm{L}}}\left(u,h\right))}^{-1}}}}}}{\rm{d}}u}\right.
+0[1PrL(u,h)]u1+ζkNL(r,h)(δζNL(u,h))1du]},\displaystyle\left.{\left.{+\int_{0}^{\infty}{{\textstyle{{\left[{1-{{\Pr}^{\rm{L}}}\left({u},h\right)}\right]u}\over{1+{\zeta_{k}^{\rm{NL}}}\left(r,h\right){{(\delta{\zeta^{\rm{NL}}}\left(u,h\right))}^{-1}}}}}{\rm{d}}u}}\right]}\right\}, (23)
EIZ2[exp(δIZ2PζkNL(r,h))]\displaystyle{E_{{I_{Z2}}}}\left[{\exp\left({-{\textstyle{{\delta{I_{Z2}}}\over{P{\zeta_{k}^{{\rm{NL}}}}\left(r,h\right)}}}}\right)}\right]
=exp{2πPr(An)Snλs[r2PrL(u,h)u1+ζkNL(r,h)(δζL(u,h))1du\displaystyle=\exp\left\{{-2\pi\Pr\left({{A_{n}}}\right){S_{n}}{\lambda_{\rm{s}}}\left[{\int_{{r_{2}}}^{\infty}{{\textstyle{{{{\Pr}^{\rm{L}}}\left({u},h\right)u}\over{1+{\zeta_{k}^{{\rm{NL}}}}\left(r,h\right){{(\delta{\zeta^{\rm{L}}}\left(u,h\right))}^{-1}}}}}}{\rm{d}}u}\right.}\right.
+r[1PrL(u,h)]u1+ζkNL(r,h)(δζNL(u,h))1du]}.\displaystyle\left.{\left.{+\int_{r}^{\infty}{{\textstyle{{\left[{1-{{\Pr}^{\rm{L}}}\left({u},h\right)}\right]u}\over{1+{\zeta_{k}^{{\rm{NL}}}}\left(r,h\right){{(\delta{\zeta^{\rm{NL}}}\left(u,h\right))}^{-1}}}}}{\rm{d}}u}}\right]}\right\}. (24)

Proof:Proof: See Appendix B. \blacksquare

Let Pr(An)Snλs\Pr\left({A_{n}}\right){S_{n}}{\lambda_{\rm{s}}} be the density of active SBSs in the nn-th tier. Eqn. (12) implies that the density of the active SBSs increases as the UE density goes up. From TheoremTheorem 1 and LemmaLemma 1, the increase of the UE density degrades its SDP.

Finally, considering the request probabilities of all NN files, we obtain the average SDP that the UEs can successfully download all possible files as

Pr¯=n=1NQnPr(Dn).\overline{\Pr}=\sum\limits_{n=1}^{N}{{Q_{n}}\Pr\left({{D_{n}}}\right)}. (25)

IV-C A 3GPP Path Loss Model for TUs

For the TUs, we show a path loss function adopted by 3GPP [35], i.e.,

ζt(r,h1)={AtLlαtL,withPrtL(r,h1)AtNLlαtNL,with(1PrtL(r,h1)),{\zeta_{\rm{t}}}\left(r,h_{1}\right)=\left\{{\begin{array}[]{*{20}{l}}{A_{\rm{t}}^{\rm{L}}{l^{{\rm{-\alpha}}_{\rm{t}}^{\rm{L}}}},\;\;\;\;\;{\text{with}}\;\Pr_{\rm{t}}^{\rm{L}}\left(r,h_{1}\right)}\\ {A_{\rm{t}}^{{\rm{NL}}}{l^{{\rm{-\alpha}}_{\rm{t}}^{{\rm{NL}}}}},\;{\text{with}}\;\left({1-\Pr_{\rm{t}}^{\rm{L}}\left(r,h_{1}\right)}\right)}\end{array}}\right., (26)

together with a linear LoS probability function also adopted by 3GPP, i.e.,

PrtL(r,h1)={1ll0,     0<rdT0,r>dT,{{\rm{Pr}}_{\rm{t}}^{\rm{L}}}\left(r,h_{1}\right)=\left\{{\begin{array}[]{*{20}{c}}{1-{\textstyle{l\over{{l_{0}}}}},}&\;\;\;\;\;{0<r\leq{d_{\rm{T}}}}\\ {0,}&{r>{d_{\rm{T}}}}\end{array}}\right., (27)

where l0l_{0} is the cut-off distance of the LoS link, and dTd1(h1)=l02h12{d_{\rm{T}}}\triangleq d_{1}(h_{1})=\sqrt{{l_{0}^{2}}-{h_{1}^{2}}}.

We remark that the path loss model in (26) and (27) is a special case of the general path loss model in (3) with the following substitutions: N=2N=2, ζt,1L(r,h1)=ζt,2L(r,h1)=AtLlαtL\zeta_{{\rm{t}},1}^{\rm{L}}\left(r,h_{1}\right)=\zeta_{{\rm{t}},2}^{\rm{L}}\left(r,h_{1}\right)=A_{\rm{t}}^{\rm{L}}{l^{{\rm{-\alpha}}_{\rm{t}}^{\rm{L}}}}, ζt,1NL(r,h1)=ζt,2NL(r,h1)=AtNLlαtNL\zeta_{{\rm{t}},1}^{{\rm{NL}}}\left(r,h_{1}\right)=\zeta_{{\rm{t}},2}^{{\rm{NL}}}\left(r,h_{1}\right)=A_{\rm{t}}^{{\rm{NL}}}{l^{{\rm{-\alpha}}_{\rm{t}}^{{\rm{NL}}}}}, Prt,1L(r,h1)=1ll0\Pr_{\rm{t},1}^{\rm{L}}\left(r,h_{1}\right)=1-{\textstyle{l\over{{l_{0}}}}} and Prt,2L(r,h1)=0\Pr_{{\rm{t}},2}^{\rm{L}}\left(r,h_{1}\right)=0.

For the 3GPP path loss model, by TheoremTheorem 1, the probability that the typical TU successfully receives the requested nn-th file from the associated nn-th tier SBS becomes

Prt(Dn)\displaystyle{{\Pr}_{\rm{t}}}\left({{D_{n}}}\right) =k=12(Tt,kL+Tt,kNL)\displaystyle\!=\!\sum\limits_{k=1}^{2}{\left({T_{{\rm{t}},k}^{\rm{L}}+T_{{\rm{t}},k}^{{\rm{NL}}}}\right)}
=0dTexp(δσ2lαtLPAtL)IZ(δlαtLPAtL)ft,1L(r,h1)dr+0\displaystyle\!=\!\int_{0}^{{d_{\rm{T}}}}{\exp(-{\textstyle{{\delta{\sigma^{2}}{l^{\alpha_{\rm{t}}^{\rm{L}}}}}\over{PA_{\rm{t}}^{\rm{L}}}}}){\mathscr{L}_{I_{Z}}}\left({{\textstyle{{\delta{l^{\alpha_{\rm{t}}^{\rm{L}}}}}\over{PA_{\rm{t}}^{\rm{L}}}}}}\right)}f_{{\rm{t}},1}^{\rm{L}}\left(r,h_{1}\right){\rm{d}}r\!+\!0
+0dTexp(δσ2lαtNLPAtNL)IZ(δlαtNLPAtNL)ft,1NL(r,h1)dr\displaystyle\!+\!\int_{0}^{{d_{\rm{T}}}}{\exp(-{\textstyle{{\delta{\sigma^{2}}{l^{\alpha_{\rm{t}}^{{\rm{NL}}}}}}\over{PA_{\rm{t}}^{{\rm{NL}}}}}}){\mathscr{L}_{I_{Z}}}\left({{\textstyle{{\delta{l^{\alpha_{\rm{t}}^{{\rm{NL}}}}}}\over{PA_{\rm{t}}^{{\rm{NL}}}}}}}\right)}f_{{\rm{t}},1}^{{\rm{NL}}}\left(r,h_{1}\right){\rm{d}}r
+dTexp(δσ2lαtNLPAtNL)IZ(δlαtNLPAtNL)ft,2NL(r,h1)dr\displaystyle\!+\!\int_{{d_{\rm{T}}}}^{\infty}{\exp(-{\textstyle{{\delta{\sigma^{2}}{l^{\alpha_{\rm{t}}^{{\rm{NL}}}}}}\over{PA_{\rm{t}}^{{\rm{NL}}}}}}){\mathscr{L}_{I_{Z}}}\left({{\textstyle{{\delta{l^{\alpha_{\rm{t}}^{{\rm{NL}}}}}}\over{PA_{\rm{t}}^{{\rm{NL}}}}}}}\right)}f_{{\rm{t}},2}^{{\rm{NL}}}\left(r,h_{1}\right){\rm{d}}r
=Tt,1L+Tt,1NL+Tt,2NL,\displaystyle\!=\!T_{{\rm{t}},1}^{\rm{L}}+T_{{\rm{t}},1}^{{\rm{NL}}}+T_{{\rm{t}},2}^{{\rm{NL}}}, (28)

where Tt,2L=0T_{{\rm{t}},2}^{{\rm{L}}}=0, because PrtL(r,h1)=0\Pr_{\rm{t}}^{\rm{L}}\left(r,h_{1}\right)=0 when r>dTr>{d_{\rm{T}}}. For LoS, ft,1L(r,h1)f_{{\rm{t}},1}^{\rm{L}}\left(r,h_{1}\right) and IZ(δlαtLPAtL){\mathscr{L}_{I_{Z}}}\left({{\textstyle{{\delta{l^{\alpha_{\rm{t}}^{\rm{L}}}}}\over{PA_{\rm{t}}^{\rm{L}}}}}}\right) are calculated by (IV-B), (IV-B) and (IV-B). For NLoS, ft,1NL(r,h1)f_{{\rm{t}},1}^{\rm{NL}}\left(r,h_{1}\right), ft,2NL(r,h1)f_{{\rm{t}},2}^{\rm{NL}}\left(r,h_{1}\right) and IZ(δlαtNLPAtNL){\mathscr{L}_{I_{Z}}}\left({{\textstyle{{\delta{l^{\alpha_{\rm{t}}^{\rm{NL}}}}}\over{PA_{\rm{t}}^{\rm{NL}}}}}}\right) are calculated by (IV-B), (IV-B) and (IV-B).

IV-D A 3GPP Path Loss Model for UAVs

For the UAVs, we consider a path loss function adopted by 3GPP [25], i.e.,

ζa(r,h2)={AaLlαaL,withPraL(r,h2)AaNLlαaNL,with(1PraL(r,h2)),{\zeta_{\rm{a}}}\left(r,h_{2}\right)=\left\{{\begin{array}[]{*{20}{l}}{A_{\rm{a}}^{\rm{L}}{l^{{\rm{-\alpha}}_{\rm{a}}^{\rm{L}}}},\;\;\;\;\;{\text{with}}\;\Pr_{\rm{a}}^{\rm{L}}\left(r,h_{2}\right)}\\ {A_{\rm{a}}^{{\rm{NL}}}{l^{{\rm{-\alpha}}_{\rm{a}}^{{\rm{NL}}}}},\;{\text{with}}\;\left({1-\Pr_{\rm{a}}^{\rm{L}}\left(r,h_{2}\right)}\right)}\end{array}}\right., (29)

together with a LoS probability function also adopted by 3GPP [25], i.e.,

PraL(r,h2)={1,0<rdAdAr+exp(rp1)(1dAr),r>dA,{{\Pr}_{\rm{a}}^{\rm{L}}}\left(r,h_{2}\right)\!=\!\!\left\{\!{\begin{array}[]{*{20}{c}}{1,}&{0\!<\!r\!\leq\!{d_{\rm{A}}}}\\ {{\textstyle{{{d_{\rm{A}}}}\over r}}\!+\!\exp\!\left(\!{{\textstyle{{-r}\over{{p_{1}}}}}}\!\right)\!\left({1\!-\!{\textstyle{{{d_{\rm{A}}}}\over r}}}\right)\!,\!}&{r\!>\!{d_{\rm{A}}}}\end{array}}\right.\!,\! (30)

where

p1=233.98log10(hAU)0.95,{p_{1}}=233.98{\log_{10}}\left({h_{\rm{AU}}}\right)-0.95, (31)
dAd1(h2)=max(294.05log10(hAU)432.94,18).{d_{\rm{A}}}\!\triangleq\!d_{1}(h_{2})\!=\!\max\left({294.05{{\log}_{10}}\left({h_{\rm{AU}}}\right)\!-\!432.94,{\kern 1.0pt}18}\right). (32)

From this 3GPP channel model, the applicability range in terms of UAV height is 22.5mhAU300m22.5{\rm{m}}\leq{h_{\rm{AU}}}\leq 300{\rm{m}} [25]. Note that the path loss model in (29) and (30) is also a special case of (3) with the following substitutions: N=2N=2, ζa,1L(r,h2)=ζa,2L(r,h2)=AaLlαaL\zeta_{{\rm{a}},1}^{\rm{L}}\left(r,h_{2}\right)=\zeta_{{\rm{a}},2}^{\rm{L}}\left(r,h_{2}\right)=A_{\rm{a}}^{\rm{L}}{l^{{\rm{-\alpha}}_{\rm{a}}^{\rm{L}}}}, ζa,1NL(r,h2)=ζa,2NL(r,h2)=AaNLlαaNL\zeta_{{\rm{a}},1}^{{\rm{NL}}}\left(r,h_{2}\right)=\zeta_{{\rm{a}},2}^{{\rm{NL}}}\left(r,h_{2}\right)=A_{\rm{a}}^{{\rm{NL}}}{l^{{\rm{-\alpha}}_{\rm{a}}^{{\rm{NL}}}}}, Pra,1L(r,h2)=1\Pr_{{\rm{a}},1}^{\rm{L}}\left(r,h_{2}\right)=1 and Pra,2L(r,h2)=dAr+exp(rp1)(1dAr)\Pr_{{\rm{a}},2}^{\rm{L}}\left(r,h_{2}\right)={\textstyle{{{d_{\rm{A}}}}\over r}}+\mathrm{exp}\left({{\textstyle{{-r}\over{{p_{1}}}}}}\right)\left({1-{\textstyle{{{d_{\rm{A}}}}\over r}}}\right).

From TheoremTheorem 1, the probability that the typical UAV successfully receives the requested nn-th file can be given by

Pra(Dn)\displaystyle{{\Pr}_{\rm{a}}}\left({{D_{n}}}\right) =0dAexp(δσ2lαaLPAaL)IZ(δlαaLPAaL)fa,1L(r,h2)dr\displaystyle\!=\!\int_{0}^{{d_{\rm{A}}}}{\exp(-{\textstyle{{\delta{\sigma^{2}}{l^{\alpha_{\rm{a}}^{\rm{L}}}}}\over{PA_{\rm{a}}^{\rm{L}}}}}){\mathscr{L}_{I_{Z}}}\left({{\textstyle{{\delta{l^{\alpha_{\rm{a}}^{\rm{L}}}}}\over{PA_{\rm{a}}^{\rm{L}}}}}}\right)}f_{{\rm{a}},1}^{\rm{L}}\left(r,h_{2}\right){\rm{d}}r
+dAexp(δσ2lαaLPAaL)IZ(δlαaLPAaL)fa,2L(r,h2)dr+0\displaystyle\!+\!\int_{{d_{\rm{A}}}}^{\infty}{\exp(-{\textstyle{{\delta{\sigma^{2}}{l^{\alpha_{\rm{a}}^{\rm{L}}}}}\over{PA_{\rm{a}}^{\rm{L}}}}}){\mathscr{L}_{I_{Z}}}\left({{\textstyle{{\delta{l^{\alpha_{\rm{a}}^{\rm{L}}}}}\over{PA_{\rm{a}}^{\rm{L}}}}}}\right)}f_{{\rm{a}},2}^{\rm{L}}\left(r,h_{2}\right){\rm{d}}r\!+\!0
+dAexp(δσ2lαaNLPAaNL)IZ(δlαaNLPAaNL)fa,2NL(r,h2)dr\displaystyle\!+\!\int_{{d_{\rm{A}}}}^{\infty}{\exp(-{\textstyle{{\delta{\sigma^{2}}{l^{\alpha_{\rm{a}}^{{\rm{NL}}}}}}\over{PA_{\rm{a}}^{{\rm{NL}}}}}}){\mathscr{L}_{I_{Z}}}\left({{\textstyle{{\delta{l^{\alpha_{\rm{a}}^{{\rm{NL}}}}}}\over{PA_{\rm{a}}^{{\rm{NL}}}}}}}\right)}f_{{\rm{a}},2}^{{\rm{NL}}}\left(r,h_{2}\right){\rm{d}}r
=Ta,1L+Ta,2L+Ta,2NL,\displaystyle\!=\!T_{{\rm{a}},1}^{\rm{L}}+T_{{\rm{a}},2}^{\rm{L}}+T_{{\rm{a}},2}^{{\rm{NL}}}, (33)

where Ta,1NL=0T_{{\rm{a}},1}^{{\rm{NL}}}=0, because PraNL(r,h2)=0\Pr_{\rm{a}}^{\rm{NL}}\left(r,h_{2}\right)=0 when 0<rdA0<r\leq{d_{\rm{A}}}. For LoS, fa,1L(r,h2)f_{{\rm{a}},1}^{\rm{L}}\left(r,h_{2}\right), fa,2L(r,h2)f_{{\rm{a}},2}^{\rm{L}}\left(r,h_{2}\right) and IZ(δlαaLPAaL){\mathscr{L}_{I_{Z}}}\left({{\textstyle{{\delta{l^{\alpha_{\rm{a}}^{\rm{L}}}}}\over{PA_{\rm{a}}^{\rm{L}}}}}}\right) are calculated by (IV-B), (IV-B) and (IV-B). For NLoS, fa,2NL(r,h2)f_{{\rm{a}},2}^{\rm{NL}}\left(r,h_{2}\right) and IZ(δlαaNLPAaNL){\mathscr{L}_{I_{Z}}}\left({{\textstyle{{\delta{l^{\alpha_{\rm{a}}^{\rm{NL}}}}}\over{PA_{\rm{a}}^{\rm{NL}}}}}}\right) are calculated by (IV-B), (IV-B) and (IV-B).

V Optimized Caching Probabilities

In dynamic on-off architecture, (12) shows that Pr(AnA_{n}) is a function of the ratio Qnλu/Snλs{{{Q_{n}}{\lambda_{\rm{u}}}}/{{S_{n}}{\lambda_{\rm{s}}}}}. Since the SBS density is much higher than the UE density in this architecture, i.e., λs>>λu{\lambda_{\rm{s}}}>>{\lambda_{\rm{u}}}, Pr(AnA_{n}) can be approximated as [29]

Pr(An)QnλuSnλs.\Pr\left({{A_{n}}}\right)\approx{\textstyle{\frac{{{Q_{n}}{\lambda_{\rm{u}}}}}{{{S_{n}}{\lambda_{\rm{s}}}}}}}. (34)

Since both TU and UAV can be regarded as the typical user, the average SDP is given by

Pr¯=n=1NQn(λTUλuPrt(Dn)+λAUλuPra(Dn)).{\overline{\Pr}}=\sum\limits_{n=1}^{N}Q_{n}{\left({\textstyle{\frac{{{\lambda_{{\rm{TU}}}}}}{{{\lambda_{\rm{u}}}}}}{{\Pr}_{\rm{t}}}\left({{D_{n}}}\right)+\frac{{{\lambda_{\rm{AU}}}}}{{{\lambda_{\rm{u}}}}}{{\Pr}_{\rm{a}}}\left({{D_{n}}}\right)}\right)}. (35)

Consider that the SBS density approaches infinity. In this scenario, the downlink transmission from the typical SBS to the typical UE is dominantly characterized by the LoS path loss. In this context, we derive the asymptotic performance of Pr¯\overline{\Pr} as follows.

TheoremTheorem 2: In a noise-free case where the SBS density goes to infinity, i.e., λs+\lambda_{\rm{s}}\to+\infty and σ2=0{\sigma^{2}}=0, the average SDP is given by

Pr¯\displaystyle\overline{\Pr} =n=1NQnSn[0dTGnexp(πSnλsr2)dr\displaystyle=\sum\limits_{n=1}^{N}{{Q_{n}}{S_{n}}\left[{\int_{0}^{{d_{\rm{T}}}}{{G_{n}}\exp\left({-\pi{S_{n}}{\lambda_{\rm{s}}}{r^{2}}}\right)}{\rm{d}}r}\right.}
+0dAHnexp(πSnλsr2)dr],\displaystyle\left.{+\int_{0}^{{d_{\rm{A}}}}{{H_{n}}\exp\left({-\pi{S_{n}}{\lambda_{\rm{s}}}{r^{2}}}\right)}{\rm{d}}r}\right], (36)

where

Gn=λTU2πλsrλuexp(i=1,inNQiB(r,h1)+QnC(r,h1)),\displaystyle{G_{n}}\!=\!{{{{\lambda_{\rm{TU}}}2\pi{\lambda_{\rm{s}}}r}\over{{\lambda_{\rm{u}}}}}}\exp\!\left(\!{\sum\limits_{i\!=\!1,i\!\neq\!n}^{N}\!{{Q_{i}}}B\!\left(\!{r,h_{1}}\!\right)\!+\!{Q_{n}}C\left({r,h_{1}}\!\right)\!}\right), (37)
Hn=λAU2πλsrλuexp(i=1,inNQiE(r,h2)+QnF(r,h2)).\displaystyle{H_{n}}\!=\!{{{{\lambda_{\rm{AU}}}2\pi{\lambda_{\rm{s}}}r}\over{{\lambda_{\rm{u}}}}}}\exp\!\left(\!{\sum\limits_{i\!=\!1,i\!\neq\!n}^{N}\!{{Q_{i}}}E\!\left(\!{r,h_{2}}\!\right)\!+\!{Q_{n}}F\left({r,h_{2}}\!\right)\!}\right)\!.\! (38)

In (37) and (38), B(r,h1)B\left({r,h_{1}}\right), C(r,h1)C\left({r,h_{1}}\right), E(r,h2)E\left({r,h_{2}}\right) and F(r,h2)F\left({r,h_{2}}\right) are given by (C), (C), (C) and (C) respectively in Appendix C.

ProofProof: See Appendix C. \blacksquare

From TheoremTheorem 1, LemmaLemma 1 and TheoremTheorem 2, we show that the SDPs of TUs and UAVs are correlated , i.e., the increase of the TU (or UAV) density degrades the SDP performance of all UEs, including TUs and UAVs. As a result, we cannot separately maximize the average SDP for each type of UEs. Instead, we jointly maximize the average SDP of TUs and UAVs.

According to TheoremTheorem 2, we can formulate the optimization problem of maximizing Pr¯\overline{\Pr} as

P1:\displaystyle{\text{P1}}: maxSn|n=1NPr¯\displaystyle\mathop{\rm{max}}\limits_{{S_{n}}\left|{{}_{n=1}^{N}}\right.}\;\overline{\Pr}
=maxSn|n=1Nn=1NQnSn[0dTGnexp(πSnλsr2)dr\displaystyle={\mathop{\rm{max}}\limits_{{S_{n}}\left|{{}_{n=1}^{N}}\right.}\;\sum\limits_{n=1}^{N}{{Q_{n}}{S_{n}}\left[{\int_{0}^{{d_{\rm{T}}}}{{G_{n}}\exp\left({-\pi{S_{n}}{\lambda_{\rm{s}}}{r^{2}}}\right)}{\rm{d}}r}\right.}}
+0dAHnexp(πSnλsr2)dr]\displaystyle{\left.{+\int_{0}^{{d_{\rm{A}}}}{{H_{n}}\exp\left({-\pi{S_{n}}{\lambda_{\rm{s}}}{r^{2}}}\right)}{\rm{d}}r}\right]}
s.t.n=1NSnM\displaystyle{\rm{s}}{\rm{.t}}{\rm{.}}\;\;\sum\limits_{n=1}^{N}{{S_{n}}\leq}M
       0Sn1,n=1,,N.\displaystyle\;\;\;\;\;\;\;0\leq{S_{n}}\leq 1,\;n=1,\cdots,N. (39)

Note that P1 is a non-convex optimization problem. To cope with this problem, we transform P1 into NN sub-problems and solve it in parallel. Adopting the partial Lagrangian, we have

L(S1,S2,,SN,γ)\displaystyle L(S_{1},S_{2},\cdots,S_{N},\gamma)
=n=1NQnSn[0dTGnexp(πSnλsr2)dr\displaystyle=\sum\limits_{n=1}^{N}{{Q_{n}}{S_{n}}\left[{\int_{0}^{{d_{\rm{T}}}}{{{G}_{n}}\exp\left({-\pi{S_{n}}{\lambda_{s}}{r^{2}}}\right)}{\rm{d}}r}\right.}
+0dAHnexp(πSnλsr2)dr]+γ(n=1NSnM),\displaystyle\left.{\!+\!\int_{0}^{{d_{\rm{A}}}}{{{H}_{n}}\exp\left({\!-\!\pi{S_{n}}{\lambda_{s}}{r^{2}}}\right)}{\rm{d}}r}\right]+\gamma\left({\sum\limits_{n=1}^{N}{{S_{n}}\!-\!}M}\!\right)\!,\! (40)

where γM\gamma M is constant and 0Sn1,n=1,,N{0\!\leq\!{S_{n}}\!\leq\!1,\;n=1,\cdots,N}. In the following, we opt to optimize each individual sub-problem.

First, the partial Lagrangian of the nn-th sub-problem with respect to SnS_{n} is given by

L(Sn,γ)\displaystyle L\left({{S_{n}},\gamma}\right) =0dTQnSnGnexp(πSnλsr2)dr\displaystyle\!=\!\int_{0}^{{d_{\rm{T}}}}{{Q_{n}}{S_{n}}{G_{n}}\exp\left({-\pi{S_{n}}{\lambda_{\rm{s}}}{r^{2}}}\right)}{\rm{d}}r
+0dAQnSnHnexp(πSnλsr2)dr+γSn.\displaystyle\!+\!\int_{0}^{{d_{\rm{A}}}}{{Q_{n}}{S_{n}}{H_{n}}\exp\left({-\pi{S_{n}}{\lambda_{\rm{s}}}{r^{2}}}\right)}{\rm{d}}r\!+\!\gamma{S_{n}}. (41)

Second, by some mathematical manipulation, we have

L(Sn,γ)Sn\displaystyle\textstyle{\frac{{\partial L\left({{S_{n}},\gamma}\right)}}{{\partial{S_{n}}}}} (42)
=0dTQnGnexp(WSn)WQnSnGnexp(WSn)dr\displaystyle\!=\!\int_{0}^{{d_{\rm{T}}}}\textstyle{{{Q_{n}}{G_{n}}\exp\left({\!-\!W{S_{n}}}\right)\!-\!}W{Q_{n}}{S_{n}}{G_{n}}\exp\left({\!-\!W{S_{n}}}\right)}{\rm{d}}r
+0dAQnHnexp(WSn)WQnSnHnexp(WSn)dr+γ,\displaystyle\!+\!\int_{0}^{{d_{\rm{A}}}}\textstyle{\!{{Q_{n}}{H_{n}}\exp\left({\!-\!W{S_{n}}}\right)}\!-\!W{Q_{n}}{S_{n}}{H_{n}}\exp\left({\!-\!W{S_{n}}}\right)}{\rm{d}}r\!+\!\gamma\!,\!

where W=πλsr2W=\pi{\lambda_{\rm{s}}}{r^{2}}.

Here, we discuss the key steps of optimizing the caching probabilities in Algorithm 1. With L(Sn,γ)Sn=0\frac{{\partial L\left({{S_{n}},\gamma}\right)}}{{\partial{S_{n}}}}=0, we can get the extreme point SnS_{n}. Let 𝐒n=[Sn,0,1]{{\bf{S}}_{n}}=\left[{S_{n}},0,1\right] if 0Sn10\leq{S_{n}}\leq 1. Otherwise, let 𝐒n=[0,1]{{\bf{S}}_{n}}=\left[0,1\right]. Then, we identify the element in 𝐒n\mathbf{S}_{n} that maximizes the L(Sn,γ)L\left({{S_{n}},\gamma}\right) in (V) as the optimized caching probability Sn{S_{n}}. After NN iterations, we get i=1NSi\sum\limits_{i=1}^{N}{{{S}_{i}}}. If i=1NSi=M\sum\limits_{i=1}^{N}{{{S}_{i}}}=M, we obtain the optimized caching probability {S1,S2,,SN}\left\{{{S_{1}},{S_{2}},\cdots,{S_{N}}}\right\}. Otherwise, the dual variable γ\gamma in (42) is updated by γi+1=γi+(S1+S2++SNM)φ{\gamma_{i+1}}={{\gamma_{i}}+\left({{S_{1}}+{S_{2}}+\cdots+{S_{N}}-M}\right)\varphi}, where φ\varphi is the step size.

Algorithm 1 Optimized Caching Probabilities in the Dynamic On-Off Architecture
1:  Initial γ\gamma, φ\varphi, MM and NN
2:  repeat
3:     for n=1:1:Nn=1:1:N do
4:        Compute SnS_{n} from L(Sn,γ)Sn=0\frac{{\partial L\left({{S_{n}},\gamma}\right)}}{{\partial{S_{n}}}}=0 in (42)
5:        if 0Sn10\leq{S_{n}}\leq 1 then
6:           Set 𝐒n=[Sn,0,1]{{\bf{S}}_{n}}=\left[{S_{n}},0,1\right]
7:        else
8:           Set 𝐒n=[0,1]{{\bf{S}}_{n}}=\left[0,1\right]
9:        end if
10:        Plug Sn𝐒nS^{\prime}_{n}\in{{\bf{S}}_{n}} into (V)
11:        Choose Sn=argmaxSnL(Sn,γ){S_{n}}=\arg\mathop{\max}\limits_{S^{\prime}_{n}}L\left({{S^{\prime}_{n}},\gamma}\right)
12:     end for
13:     Get S=i=1NSiS=\sum\limits_{i=1}^{N}{{S_{i}}}, then update γ\gamma
14:  until S=MS=M

The analytical results in Section V build upon an assumption that both UAVs and TUs have the same content request probability. The following remark briefly discusses the case where the two tiers of UEs have different request probabilities.

RemarkRemark 1: Let QnTQ_{n}^{\rm{T}} and QnAQ_{n}^{\rm{A}} be the request probabilities of the nn-th file for TUs and UAVs respectively. From (34), the weighted sum request probability becomes Qn=λTUλuQnT+λAUλuQnA{Q_{n}}={\textstyle{{{\lambda_{{\rm{TU}}}}}\over{{\lambda_{\rm{u}}}}}}Q_{n}^{\rm{T}}+{\textstyle{{{\lambda_{{\rm{AU}}}}}\over{{\lambda_{\rm{u}}}}}}Q_{n}^{\rm{A}}, and Pr¯=n=1N(QnTλTUλuPrt(Dn)+QnAλAUλuPra(Dn))\overline{\Pr}=\sum\limits_{n=1}^{N}{\left({\frac{{Q_{n}^{\rm{T}}{\lambda_{{\rm{TU}}}}}}{{{\lambda_{\rm{u}}}}}{{\Pr}_{\rm{t}}}\left({{D_{n}}}\right)+\frac{{Q_{n}^{\rm{A}}{\lambda_{{\rm{AU}}}}}}{{{\lambda_{\rm{u}}}}}{{\Pr}_{\rm{a}}}\left({{D_{n}}}\right)}\right)}. It can be seen that the optimization of SDP in this case largely follows (36)-(42) in this Section. In addition, the SBSs are more likely to cache the file requested by the UEs with better channel quality, when the TUs and UAVs have the same request probability for different files.

VI Analysis on Network Parameters under UCS and PCS

In this section, we analyze the performance limits of the average SDP for the UCS and PCS under a single-slope path loss model [29], respectively, where the path loss of the channel from an SBS to an UE is modeled as lαl^{-\alpha} with α\alpha denoting the path loss exponent. In a noise-free case, the average SDP is given by (VI) (see the top of next page).

Pr¯=\displaystyle\overline{\Pr}= n=1NQn0IZ(δlαP)f(r)dr=n=1NQn0exp(2πi=1,inNPr(Ai)Siλs0u1+lαδ1(u2+h2)αdu)\displaystyle\sum\limits_{n=1}^{N}{{Q_{n}}\int_{0}^{\infty}{{\mathscr{L}_{I_{Z}}}\left({{\textstyle{{\delta{l^{\alpha}}}\over P}}}\right)}f\left(r\right){\rm{d}}r}=\sum\limits_{n=1}^{N}{{Q_{n}}\int_{0}^{\infty}{\exp\left({-2\pi\sum\limits_{i=1,i\neq n}^{N}{\Pr\left({{A_{i}}}\right){S_{i}}{\lambda_{\rm{s}}}}\int_{0}^{\infty}{{\textstyle{u\over{1+{l^{-\alpha}}{\delta^{-1}}{{\left({\sqrt{{u^{2}}+{h^{2}}}}\right)}^{\alpha}}}}}}{\rm{d}}u}\right)}}
×exp(2πPr(An)Snλsru1+lαδ1(u2+h2)αdu)2πSnλsrexp(πSnλsr2)dr.\displaystyle\times\exp\left({-2\pi\Pr\left({{A_{n}}}\right){S_{n}}{\lambda_{\rm{s}}}\int_{r}^{\infty}{{\textstyle{{{u}}\over{1+{l^{-\alpha}}{\delta^{-1}}{{\left({\sqrt{{u^{2}}+{h^{2}}}}\right)}^{\alpha}}}}}}{\rm{d}}u}\right)2\pi{S_{n}}{\lambda_{\rm{s}}}r\exp\left({-\pi{S_{n}}{\lambda_{\rm{s}}}{r^{2}}}\right){\rm{d}}r. (43)

TheoremTheorem 3: Consider a single-slope path loss model. When the SBS density λs\lambda_{\rm{s}} is large enough, the average SDP is given by

Pr¯=n=1NQnSnexp(πh2λu(δ,α))Sn+λuλs(δ,α).\begin{array}[]{l}\overline{\Pr}=\sum\limits_{n=1}^{N}{\frac{{{Q_{n}}{S_{n}}\exp\left({-\pi{h^{2}}{\lambda_{\rm{u}}}\mathcal{F}(\delta,\alpha)}\right)}}{{{S_{n}}+\frac{{{\lambda_{\rm{u}}}}}{{{\lambda_{\rm{s}}}}}\mathcal{F}(\delta,\alpha)}}}.\end{array} (44)

For the PCS, Pr¯=n=1MQnexp(πh2λu(δ,α))1+λuλs(δ,α)\overline{\Pr}=\sum\limits_{n=1}^{M}{\frac{{{Q_{n}}\exp\left({-\pi{h^{2}}{\lambda_{\rm{u}}}\mathcal{F}(\delta,\alpha)}\right)}}{{1+\frac{{{\lambda_{\rm{u}}}}}{{{\lambda_{\rm{s}}}}}\mathcal{F}(\delta,\alpha)}}}.

For the UCS, Pr¯=exp(πh2λu(δ,α))1+NλuMλs(δ,α)\overline{\Pr}=\frac{{\exp\left({-\pi{h^{2}}{\lambda_{\rm{u}}}\mathcal{F}(\delta,\alpha)}\right)}}{{1+{\textstyle{{N{\lambda_{\rm{u}}}}\over{M{\lambda_{\rm{s}}}}}}\mathcal{F}(\delta,\alpha)}}.

ProofProof: See Appendix D. \blacksquare

From TheoremTheorem 3, CorollaryCorollary 1 and CorollaryCorollary 2 below show the performance limits of the average SDPs under the PCS and UCS respectively.

CorollaryCorollary 1: For λs+\lambda_{\rm{s}}\to+\infty, the performance limits of the average SDPs under the PCS and UCS are given by respectively,

Pr¯=n=1MQnexp(πh2λu(δ,α)),for the PCS,\displaystyle\overline{\Pr}=\sum\limits_{n=1}^{M}{{Q_{n}}\exp\left({-\pi{h^{2}}{\lambda_{\rm{u}}}\mathcal{F}(\delta,\alpha)}\right)},\;{\text{for the PCS}}, (45)
Pr¯=exp(πh2λu(δ,α)),for the UCS.\displaystyle\overline{\Pr}=\exp\left({-\pi{h^{2}}{\lambda_{\rm{u}}}\mathcal{F}(\delta,\alpha)}\right),\;{\text{for the UCS}}. (46)

CorollaryCorollary 2: As the exponent β+\beta\to+\infty, the performances limits of the average SDPs for the PCS and UCS are given by respectively,

Pr¯=exp(πh2λu(δ,α))1+λuλs(δ,α),for the PCS\displaystyle\overline{\Pr}=\textstyle\frac{{\exp\left({-\pi{h^{2}}{\lambda_{\rm{u}}}\mathcal{F}(\delta,\alpha)}\right)}}{{1+{\textstyle{{{\lambda_{\rm{u}}}}\over{{\lambda_{\rm{s}}}}}}\mathcal{F}(\delta,\alpha)}},\;{\text{for the PCS}} (47)
Pr¯=exp(πh2λu(δ,α))1+NλuMλs(δ,α),for the UCS.\displaystyle\overline{\Pr}=\textstyle\frac{{\exp\left({-\pi{h^{2}}{\lambda_{\rm{u}}}\mathcal{F}(\delta,\alpha)}\right)}}{{1+{\textstyle{{N{\lambda_{\rm{u}}}}\over{M{\lambda_{\rm{s}}}}}}\mathcal{F}(\delta,\alpha)}},\;{\text{for the UCS}}. (48)

Based on TheoremTheorem 3, CorollaryCorollary 1 and CorollaryCorollary 2, we have the following remarks.

RemarkRemark 2: From TheoremTheorem 3, the average SDPs of both PCS and UCS increase as the SBS density λs\lambda_{\rm{s}} increases. When λs+\lambda_{\rm{s}}\to+\infty, CorollaryCorollary 1 shows that the UCS achieves a better average SDP than the PCS. In particular, the SDP of the PCS is affected by β\beta and MM, while it is not the case for the UCS.

RemarkRemark 3: From TheoremTheorem 3, as the cache size MM increases, the average SDPs of both PCS and UCS increase, and the performance gap for the two strategies narrows down. In particular, both strategies achieve the same SDP when M=NM=N.

RemarkRemark 4: From TheoremTheorem 3, the average SDPs of both PCS and UCS increase as β\beta gradually increases. In particular, the SDP of the PCS grows more rapidly. Based on CorollaryCorollary 2, the PCS outperforms the UCS when β+\beta\to+\infty.

RemarkRemark 5: From TheoremTheorem 3, the average SDPs of both PCS and UCS become smaller as the height difference hh increases.

TABLE II: The network parameters for TUs and UAVs
TUs UAVs
AtLA_{\rm{t}}^{\rm{L}} 104.1110^{-4.11} AaLA_{\rm{a}}^{\rm{L}} 103.69210^{-3.692}
AtNLA_{\rm{t}}^{\rm{NL}} 103.2910^{-3.29} AaNLA_{\rm{a}}^{\rm{NL}} 103.84210^{-3.842}
αtL\alpha_{\rm{t}}^{\rm{L}} 2.09 αaL\alpha_{\rm{a}}^{\rm{L}} 2.2250.05log10(hAU)2.225-0.05{\log_{10}}\left({{h_{\rm{AU}}}}\right)
αtNL\alpha_{\rm{t}}^{\rm{NL}} 3.75 αaNL\alpha_{\rm{a}}^{\rm{NL}} 4.320.76log10(hAU)4.32-0.76{\log_{10}}\left({{h_{\rm{AU}}}}\right)
λTU\lambda_{\rm{TU}} 150 TUs/km2{\rm{TUs/km}^{2}} λAU\lambda_{\rm{AU}} 150 AUs/km2{\rm{AUs/km}^{2}}
hTUh_{\rm{TU}} 1.5m hAUh_{\rm{AU}} 30m

VII Numerical and Simulation Results

In this section, we use both numerical results and Monte Carlo simulation results to validate our analytical results. In the simulations, the performance is averaged over 10510^{5} network deployments, where in each deployment SBSs and UEs are randomly distributed according to HPPPs with different densities. According to the 3GPP recommendations [25], [31] and [35], we use hBS=10mh_{\rm{BS}}=10{\rm{m}}, P=24dBmP=24{\rm{dBm}}, δ=6dB\delta=-6{\rm{dB}}. Other parameters for TUs and UAVs are listed in Table II. According to the applicability range of UAV height in [25], the UAV height is set to 30m. More specifically, we first focus on the average SDPs of different caching strategies in the UD SCNs. Second, we further investigate the impacts of the key network parameters, i.e., the SBS density, the cache size of cache memory, the exponent of Zipf distribution and the height of UAVs on the average SDP.

VII-A Impact of SBS Density

Fig. 2 compares the average SDPs Pr¯\overline{\Pr} versus the SBS density λs\lambda_{\rm{s}} among the OCS, PCS and UCS for TUs and UAVs respectively. First, it can be seen that the numerical results match well with the simulation results in all scenarios. In the following, we focus on the analytical results only. Second, Fig. 2 shows that the OCS always outperforms the other two caching strategies. Third, in contrary to [32, Fig. 3] that uses the always-on architecture, we use a dynamic on-off architecture where an SBS is only active when it is required to serve the UEs. We show that the SDP increases with the increase of SBS density, while [32] showed that the SDP first increases and then drops down with the increase of SBS density. Fourth, we observe that the UCS can achieve a good performance as long as λs\lambda_{\rm{s}} is large enough, in spite of a small caching probability. In this sense, it advocates caching some other files to further improve the saturated performance. These observations in Fig. 2 are in line with RemarkRemark 2. The reasons are as follows:

  1. 1.

    when the SBS density is small, it is advisable to use the PCS because it smartly uses the limited number of SBSs to cache more popular files;

  2. 2.

    when the SBS density is large, the coverage probability becomes saturated [38]. To be specific, the coverage probabilities are the same when λs=105\lambda_{\rm{s}}=10^{5} SBSs/km2{\rm{SBSs/km}^{2}} or λs=106SBSs/km2\lambda_{\rm{s}}=10^{6}\;{\rm{SBSs/km}^{2}}. Hence, it is better to place the files randomly by the UCS than discarding less popular files by the PCS.

Refer to caption
(a) Pr¯\overline{\Pr} of TUs
Refer to caption
(b) Pr¯\overline{\Pr} of UAVs
Figure 2: The impacts of the SBS density λs\lambda_{\rm{s}} on the Pr¯\overline{\Pr} of TUs and the Pr¯\overline{\Pr} of UAVs with hAUh_{\rm{AU}} = 30m, NN = 100, MM = 10 and β\beta = 1.0.

Fig. 2(a) shows the Pr¯\overline{\Pr} of TUs versus λs\lambda_{\rm{s}}. As for the PCS, Pr¯\overline{\Pr} increases slowly with λs\lambda_{\rm{s}} and becomes saturated when λs>104\lambda_{\rm{s}}>10^{4} SBSs/km2{\rm{SBSs/km}^{2}}. As for the UCS, Pr¯\overline{\Pr} increases more rapidly than the PCS as λs\lambda_{\rm{s}} goes up and becomes saturated when λs>8×104\lambda_{\rm{s}}>8\times 10^{4} SBSs/km2{\rm{SBSs/km}^{2}}. In addition, the PCS outperforms the UCS when λs<3×103\lambda_{\rm{s}}<3\times 10^{3} SBSs/km2{\rm{SBSs/km}^{2}}, and the USC takes the lead when λs>3×103\lambda_{\rm{s}}>3\times 10^{3} SBSs/km2{\rm{SBSs/km}^{2}}. The performance of the PCS is comparable to that of the OCS only when λs<103\lambda_{\rm{s}}<10^{3} SBSs/km2{\rm{SBSs/km}^{2}}. The same observation applies to the UCS when λs>6×104\lambda_{\rm{s}}>6\times 10^{4} SBSs/km2{\rm{SBSs/km}^{2}}.

Fig. 2(b) shows the Pr¯\overline{\Pr} of UAVs versus λs\lambda_{\rm{s}}. This figure exhibits the similar observations to Fig. 2(a). As shown in Fig. 2(b), the PCS outperforms the UCS when λs<1.4×104\lambda_{\rm{s}}<1.4\times 10^{4} SBSs/km2{\rm{SBSs/km}^{2}}, and the USC takes the lead when λs>1.4×104\lambda_{\rm{s}}>1.4\times 10^{4} SBSs/km2{\rm{SBSs/km}^{2}}. The performance of the PCS is comparable to that of the OCS only when λs<2×103\lambda_{\rm{s}}<2\times 10^{3} SBSs/km2{\rm{SBSs/km}^{2}}. The same observation applies to the UCS when λs>6×104\lambda_{\rm{s}}>6\times 10^{4} SBSs/km2{\rm{SBSs/km}^{2}}. As compared to Fig. 2(a), it is observed that the average SDP of UAVs is shown to be worse than that of TUs. This is because the path loss of UAVs is severer than that of TUs according to (26), (29) and Table II.

VII-B Impact of Cache Size

Refer to caption
Figure 3: The impacts of the cache size MM on the average SDP with λs\lambda_{\rm{s}} = 10410^{4} SBSs/km2{\rm{SBSs/km}^{2}}, hAUh_{\rm{AU}} =30m, NN = 100 and β\beta = 1.0.

Fig. 3 compares the average SDPs Pr¯\overline{\Pr} among the three strategies with the cache size MM for TUs and UAVs respectively. Let λs\lambda_{\rm{s}} = 10410^{4} SBSs/km2{\rm{SBSs/km}^{2}}. First, we can see that the OCS exhibits a better average SDP for TUs and UAVs than both the UCS and PCS. Second, it is observed that Pr¯\overline{\Pr} increases monotonically with the cache size. When M=100M=100, the three strategies reach the same performance. These results are consistent with RemarkRemark 3.

Refer to caption
(a) Pr¯\overline{\Pr} of TUs.
Refer to caption
(b) Pr¯\overline{\Pr} of UAVs.
Figure 4: The impacts of the SBS density on the Pr¯\overline{\Pr} of TUs and the Pr¯\overline{\Pr} of UAVs with different cache sizes and hAUh_{\rm{AU}} =30m, NN = 100 and β\beta = 1.0.

Fig. 4 shows the average SDPs Pr¯\overline{\Pr} versus the SBS density λs\lambda_{\rm{s}} with various cache sizes for TUs and UAVs, respectively. First, it can be seen that the OCS always outperforms both the UCS and PCS. Second, Pr¯\overline{\Pr} of the PCS reaches the limit when λs104\lambda_{\rm{s}}\geq 10^{4} SBSs/km2{\rm{SBSs/km}^{2}}, and the performance limit becomes larger with the increase of MM. For TUs, the performance limit starts with 0.42 at M=5M=5 and goes up to 0.61 at M=15M=15. For UAVs, the performance limit increases from 0.37 at M=5M=5 to 0.50 at M=15M=15. Third, the Pr¯\overline{\Pr} of the UCS reaches the limit when λs5×105\lambda_{\rm{s}}\geq 5\times 10^{5} SBSs/km2{\rm{SBSs/km}^{2}}, the Pr¯\overline{\Pr} of the UCS for TUs and UAVs keeps invariant as MM increases when λs5×105\lambda_{\rm{s}}\geq 5\times 10^{5} SBSs/km2{\rm{SBSs/km}^{2}}. These observations are line with RemarkRemark 2 and RemarkRemark 3. For TUs and UAVs, the crossover point with the PCS and UCS achieving the same Pr¯\overline{\Pr} shifts to the left as MM increases. This is because an increase in the MM will boost the average SDP given a fixed λs\lambda_{\rm{s}}.

VII-C Impact of File Popularity Distribution

Refer to caption
Figure 5: The impacts of the exponent of Zipf distribution β\beta on the average SDP with λs=104\lambda_{\rm{s}}=10^{4} SBSs/km2{\rm{SBSs/km}^{2}}, hAUh_{\rm{AU}} =30m, NN = 100 and MM = 10.

Fig. 5 compares the average SDPs versus the exponent of Zipf distribution β\beta among the three strategies for TUs and UAVs respectively. We set λs\lambda_{\rm{s}} = 10410^{4} SBSs/km2{\rm{SBSs/km}^{2}}. First, it can be seen that Pr¯\overline{\Pr} increases as β\beta increases. Second, the average SDP of the UCS is independent of β\beta, since it caches each file with equal probability in the always-on architecture [13]. However, in the dynamic on-off architecture, the performance of the UCS is slowly growing with β\beta. According to (5) and (V), the change of β\beta leads to the change of QnQ_{n} and eventually causes the change of the average SDP. When the λs\lambda_{\rm{s}} is large enough, the changes of β\beta will not affect Pr¯\overline{\Pr} of the UCS. Third, it can be seen that the PCS is worse than the UCS when β<1.4\beta<1.4 for TUs and β<0.95\beta<0.95 for UAVs. As β\beta gradually grows, the PCS becomes better. The reason is that a few files dominate the requests and caching such popular files gives a large Pr¯\overline{\rm{Pr}} as β\beta becomes larger, since the request probabilities of files are more unevenly distributed. The average SDP of the PCS grows more rapidly with increasing β\beta, and the average SDP of the PCS is better than that of the UCS when β\beta is large enough. These observations agree with RemarkRemark 4.

Refer to caption
(a) Pr¯\overline{\Pr} of TUs.
Refer to caption
(b) Pr¯\overline{\Pr} of UAVs.
Figure 6: The impacts of the SBS density on the Pr¯\overline{\Pr} of TUs and the Pr¯\overline{\Pr} of UAVs with different β\beta and λs\lambda_{\rm{s}} with hAUh_{\rm{AU}} =30m, NN = 100 and MM = 10.

Fig. 6 shows the average SDPs versus λs\lambda_{\rm{s}} and β\beta for TUs and UAVs, respectively. First, the results with a fixed β\beta or a fixed λs\lambda_{\rm{s}} are consistent with that in Fig. 2 and Fig. 5 respectively. Second, as λs\lambda_{\rm{s}} increases, we need to increase value of β\beta to meet the same performance of both the PCS and UCS. For example, in Fig. 6(a), the value of β\beta is 1.5 when λs=104\lambda_{\rm{s}}=10^{4} and it becomes 2.2 when λs=105\lambda_{\rm{s}}=10^{5}. In Fig. 6(b), the value of β\beta is 0.9 when λs=104\lambda_{\rm{s}}=10^{4} and it becomes 1.5 when λs=105\lambda_{\rm{s}}=10^{5}.

VII-D Impact of UAV Height

Refer to caption
Figure 7: The impacts of the UAV height hAUh_{\rm{AU}} on the Pr¯\overline{\Pr} of TUs/UAVs with NN = 100, MM = 10 and β\beta = 1.0.

Fig. 7 depicts the impacts of the UAV height on the Pr¯\overline{\Pr} of TUs and the Pr¯\overline{\Pr} of UAVs among the three strategies. Consider that λs=104\lambda_{\rm{s}}=10^{4} SBSs/km2{\rm{SBSs/km}^{2}} and λs=105\lambda_{\rm{s}}=10^{5} SBSs/km2{\rm{SBSs/km}^{2}} respectively. First, we observe that the change of the UAV height affects the Pr¯\overline{\Pr} of UAVs but has no performance impact on TUs. Second, we can see that Pr¯\overline{\Pr} of UAVs decreases monotonically as the height of UAVs increases, which is consistent with RemarkRemark 5. Third, similar to Fig. 2, the average SDP of the PCS almost remains the same when λs\lambda_{\rm{s}} varies from 10410^{4} SBSs/km2{\rm{SBSs/km}^{2}} to 10510^{5} SBSs/km2{\rm{SBSs/km}^{2}}, while the average SDP of the UCS increases over the same range of λs\lambda_{s}. When λs=104\lambda_{\rm{s}}=10^{4} SBSs/km2{\rm{SBSs/km}^{2}}, the PCS is better than the UCS. When hAU<50mh_{\rm{AU}}<50\rm{m}, the UCS is better than the PCS when λs=105\lambda_{\rm{s}}=10^{5} SBSs/km2{\rm{SBSs/km}}^{2}. However, the PCS is better than the UCS when hAU>50mh_{\rm{AU}}>50\rm{m}. This is because the path loss of UAV is generally large such that λs\lambda_{\rm{s}} is not dense enough to support the average SDP of the UCS.

VIII Conclusion

In this paper, we have developed an optimized probabilistic small-cell caching strategy for small-cell networks with TUs and UAVs to maximize the average SDP. Our analytical results have shown that the OCS can achieve a better average SDP than the PCS and UCS. Moreover, we have further analyzed the impacts of key parameters on the average SDP of TUs and UAVs and obtained the following valuable insights verified by the extensive simulation results:

  1. 1.

    The average SDP increases as either of the SBS density, the cache size, or the exponent of Zipf distribution increases. With the increase of the UAV height, the average SDP of UAVs decreases.

  2. 2.

    When the SBS density λs\lambda_{\rm{s}} is relatively small, the PCS achieves a better average SDP than the UCS. As the density increases, the performance of the UCS gradually improves and outperforms that of the PCS.

  3. 3.

    When the exponent of Zipf distribution β\beta is relatively small, the UCS outperforms the PCS. As β\beta increases, the performance of the PCS gradually improves and surpasses that of UCS.

  4. 4.

    When the cache size MM is equal to the popular files NN, the average SDP of the PCS, UCS, and OCS converges, since each SBS caches all NN files with probability of 1.

Going forward, several directions deserve further investigation. First, the uplink performance of the UAVs in the proposed caching network is yet to be analyzed. As shown in this paper, establishing the analytical results of SBSs as interferers is already non-trivial for performance analysis, the introduction of terrestrial users and UAVs as interferers in the uplink will make the analysis even more challenging. Second, it is of interest to consider that each SBS uses the coded caching strategy to further enhance the performance of the OCS by exploring the advantages of prefetching coded files over the uncoded placement in this paper.

Appendix A Proof of Theorem 1

In order to evaluate Pr(Dn){\Pr}\left({{D_{n}}}\right) in Theorem 1, the first key step is to calculate the PDFs for the events that the typical UE is associated with an SBS under an LoS path or a NLoS path, and the second key step is to calculate Pr(SINR>δ){\Pr}\left({{\rm{SINR}}>\delta}\right) for the LoS and NLoS cases conditioned on distance rr. Given the piece-wise path loss model presented in (3), we have

Pr(Dn)\displaystyle{\Pr}\left({{D_{n}}}\right) =0Pr(SINR>δ)f(r,h)dr\displaystyle=\int_{0}^{\infty}{\Pr}\left({{\rm{SINR}}>\delta}\right)f\left(r,h\right){\rm{d}}r
=0Pr[Pζ(r,h)gσ2+IZ>δ]f(r,h)dr\displaystyle=\int_{0}^{\infty}{\Pr\left[{\textstyle{{{P\zeta\left({r,h}\right)g}}\over{{{\sigma^{\rm{2}}}+{I_{Z}}}}}>\delta}\right]}f\left({r,h}\right){\rm{d}}r
=0d1(h)Pr[Pζ1L(r,h)gσ2+IZ>δ]f1L(r,h)dr\displaystyle={\int_{0}^{{d_{1}}(h)}{\Pr\left[{{{\textstyle{{P\zeta_{1}^{\rm{L}}\left(r,h\right)g}\over{{\sigma^{\rm{2}}}+{I_{Z}}}}}}>\delta}\right]}f_{1}^{\rm{L}}\left(r,h\right){\rm{d}}r}
+0d1(h)Pr[Pζ1NL(r,h)gσ2+IZ>δ]f1NL(r,h)dr\displaystyle+{\int_{0}^{{d_{1}}(h)}{\Pr\left[{{{\textstyle{{P\zeta_{1}^{\rm{NL}}\left(r,h\right)g}\over{{\sigma^{\rm{2}}}+{I_{Z}}}}}}>\delta}\right]}f_{1}^{{\rm{NL}}}\left(r,h\right){\rm{d}}r}
+\displaystyle+\cdots
+dK1(h)Pr[PζKL(r,h)gσ2+IZ>δ]fKL(r,h)dr\displaystyle+{\int_{{d_{K-1}(h)}}^{\infty}{\Pr\left[{{{\textstyle{{P\zeta_{K}^{\rm{L}}\left(r,h\right)g}\over{{\sigma^{\rm{2}}}+{I_{Z}}}}}}>\delta}\right]}f_{K}^{\rm{L}}\left(r,h\right){\rm{d}}r}
+dK1(h)Pr[PζKNL(r,h)gσ2+IZ>δ]fKNL(r,h)dr\displaystyle+{\int_{{d_{K-1}(h)}}^{\infty}{\Pr\left[{{{\textstyle{{P\zeta_{K}^{\rm{NL}}\left(r,h\right)g}\over{{\sigma^{\rm{2}}}+{I_{Z}}}}}}>\delta}\right]}f_{K}^{{\rm{NL}}}\left(r,h\right){\rm{d}}r}
=k=1K(dk1(h)dk(h)Pr[PζkL(r,h)gσ2+IZ>δ]fkL(r,h)dr\displaystyle=\sum\limits_{k=1}^{K}{\left({\int_{{d_{k-1}}(h)}^{{d_{k}}(h)}{\Pr\left[{{\textstyle{{P\zeta_{k}^{\rm{L}}\left({r,h}\right)g}\over{{\sigma^{\rm{2}}}+{I_{Z}}}}}\!>\!\delta}\right]}f_{k}^{\rm{L}}\left({r,h}\right){\rm{d}}r}\right.}
+dk1(h)dk(h)Pr[PζkNL(r,h)gσ2+IZ>δ]fkNL(r,h)dr),\displaystyle\left.{+\int_{{d_{k-1}}(h)}^{{d_{k}}(h)}{\Pr\!\left[\!{{\textstyle{{P\zeta_{k}^{{\rm{NL}}}\left({r,h}\right)g}\over{{\sigma^{\rm{2}}}+{I_{Z}}}}}\!>\!\delta}\right]}f_{k}^{{\rm{NL}}}\!\left(\!{r,h}\right){\rm{d}}r}\!\right)\!, (49)

where fkL(r,h)f_{k}^{\rm{L}}\left(r,h\right) and fkNL(r,h)f_{k}^{{\rm{NL}}}\left(r,h\right) are the PDFs of LoS path and NLoS path respectively. Moreover, let TkL=dk1(h)dk(h)Pr[PζkL(r,h)gσ2+IZ>δ]fkL(r,h)drT_{k}^{\rm{L}}=\int_{{d_{k-1}(h)}}^{{d_{k}(h)}}{\Pr\left[{{{\textstyle{{P\zeta_{k}^{\rm{L}}\left(r,h\right)g}\over{{\sigma^{\rm{2}}}+{I_{Z}}}}}}>\delta}\right]}f_{k}^{\rm{L}}\left(r,h\right){\rm{d}}r and TkNL=dk1(h)dk(h)Pr[PζkNL(r,h)gσ2+IZ>δ]fkNL(r,h)drT_{k}^{\rm{NL}}\!=\!{\int_{{d_{k-1}(h)}}^{{d_{k}(h)}}{\Pr\left[\!{{{\textstyle{{P\zeta_{k}^{\rm{NL}}\left(r,h\right)g}\over{{\sigma^{\rm{2}}}+{I_{Z}}}}}}\!>\!\delta}\right]}f_{k}^{{\rm{NL}}}\left(r,h\right){\rm{d}}r} respectively. Therefore, we have Pr(Dn)=k=1K(TkL+TkNL)\Pr(D_{n})=\sum\limits_{k=1}^{K}{\left({T_{k}^{\rm{L}}+T_{k}^{{\rm{NL}}}}\right)}.

In the following, we discuss how to obtain fkL(r,h)f_{k}^{\rm{L}}\left(r,h\right) and fkNL(r,h)f_{k}^{{\rm{NL}}}\left(r,h\right).

Define BkLB_{k}^{\rm{L}} as the event that the signal comes from the kk-th piece LoS path. By definition, fkL(r,h)=fk|BkL(r,h|BkL)Pr[BkL]f_{k}^{\rm{L}}\left(r,h\right)={f_{{\kern 1.0pt}k\left|{B_{k}^{\rm{L}}}\right.}}\left({r,h\left|{B_{k}^{\rm{L}}}\right.}\right)\Pr\left[{B_{k}^{\rm{L}}}\right], where Pr[BkL]=PrkL(r,h)\Pr\left[{B_{k}^{\rm{L}}}\right]={\Pr}_{k}^{\rm{L}}\left({r,h}\right) according to (3) and fk|BkL(r,h|BkL){f_{{\kern 1.0pt}k\left|{B_{k}^{\rm{L}}}\right.}}\left({r,h\left|{B_{k}^{\rm{L}}}\right.}\right) jointly characterize the following independent sub-events:

1) For the typical UE, its serving SBS bob_{o} exists with the horizontal distance rr from the UE, and the corresponding unconditional PDF of rr is 2πrλ2{\pi}r{\lambda} [26].

2) The probability that the LoS SBS bob_{o} in event BkLB_{k}^{\rm{L}} has a better link to the typical UE than any other LoS SBSs is [31]

pkL(r,h)=exp(0rPrL(r,h) 2πλudu).p_{k}^{\rm{L}}\left(r,h\right)=\exp\left({-\int_{0}^{r}{{{\Pr}^{\rm{L}}}\left(r,h\right)\;2\pi\lambda u}{\rm{d}}u}\right). (50)

3) The probability that the LoS SBS bob_{o} in event BkLB_{k}^{\rm{L}} has a better link to the typical UE than any other NLoS SBSs is [31]

pkNL(r,h)=exp(0r1(1PrL(r,h)) 2πλudu),p_{k}^{{\rm{NL}}}\left(r,h\right)\!=\!\exp\left({-\int_{0}^{{r_{1}}}{\left({1\!-\!{{\Pr}^{\rm{L}}}\left(r,h\right)}\right)\;2\pi\lambda u}{\rm{d}}u}\right), (51)

where r1=argr1{ζNL(r1,h)=ζkL(r,h)}{r_{1}}=\mathop{\arg}\limits_{{r_{1}}}\left\{{{\zeta^{{\rm{NL}}}}({r_{1}},h)=\zeta_{k}^{\rm{L}}(r,h)}\right\}.

With reference to [31], we obtain

fk|BkL(r,h|BkL)=pkNL(r,h)pkL(r,h)2πrλ.{f_{k\left|{B_{k}^{\rm{L}}}\right.}}\left({r,h\left|{B_{k}^{\rm{L}}}\right.}\right)=p_{k}^{{\rm{NL}}}\left(r,h\right)p_{k}^{\rm{L}}\left(r,h\right)2\pi r\lambda.\! (52)

Thus, fkL(r,h)f_{k}^{\rm{L}}\left(r,h\right) for nn-th tier can be written as

fkL(r,h)=\displaystyle f_{k}^{\rm{L}}\!\left(r,h\right)= exp(0r12πSnλs(1PrkL(u,h))udu)\displaystyle\exp\!\left(\!{-\!\int_{0}^{{r_{1}}}{2\pi{S_{n}}{\lambda_{\rm{s}}}\!\left(\!{1\!-\!{\rm{Pr}}_{k}^{\rm{L}}\left(u,h\right)}\!\right)\!u{\rm{d}}u}}\!\right)\!
×\displaystyle\times exp(0r2πSnλsPrkL(u,h)udu)\displaystyle\exp\left({-\int_{0}^{r}{2\pi{S_{n}}{\lambda_{\rm{s}}}{\rm{Pr}}_{k}^{\rm{L}}\left(u,h\right)u{\rm{d}}u}}\!\right)\!
×\displaystyle\times PrkL(r,h)2πrSnλs,dk1(h)<rdk(h).\displaystyle{\rm{Pr}}_{k}^{\rm{L}}\left(r,h\right)2\pi r{S_{n}}{\lambda_{\rm{s}}},\;{{d_{k\!-\!1}(h)}\!<\!r\!\leq\!{d_{k}}(h)}. (53)

In a similar way, fkNL(r,h)f_{k}^{\rm{NL}}\left(r,h\right) for nn-th tier can be written as

fkNL(r,h)=\displaystyle f_{k}^{{\rm{NL}}}\!\left(\!r,h\!\right)\!=\! exp(0r22πSnλsPrkL(u,h)udu)\displaystyle\exp\left({-\int_{0}^{{r_{2}}}{2\pi{S_{n}}{\lambda_{\rm{s}}}{\Pr}_{k}^{\rm{L}}\left(u,h\right)u{\rm{d}}u}}\right)
×\displaystyle\!\times\! exp(0r2πSnλs(1PrkL(u,h))udu)\displaystyle\exp\left({-\int_{0}^{r}{2\pi{S_{n}}{\lambda_{\rm{s}}}\left({1-{\Pr}_{k}^{\rm{L}}\left(u,h\right)}\right)u{\rm{d}}u}}\right)
×\displaystyle\!\times\! (1PrkL(r,h))2πrSnλs,dk1(h)<rdk(h),\displaystyle\left({1\!-\!{\Pr}_{k}^{\rm{L}}\left(r,h\right)}\right)2\pi r{S_{n}}{\lambda_{\rm{s}}},{{d_{k\!-\!1}(h)}\!<\!r\!\leq\!{d_{k}}(h)}, (54)

where r2=argr2{ζL(r2,h)=ζkNL(r,h)}{r_{2}}=\mathop{\arg}\limits_{{r_{2}}}\left\{{{\zeta^{{\rm{L}}}}({r_{2}},h)=\zeta_{k}^{\rm{NL}}(r,h)}\right\}.

Appendix B Proof of Lemma 1

Given IZ=IZ1+IZ2I_{Z}=I_{Z1}+I_{Z2}, we have

IZ(δPζk(r,h))=EIZ[exp(δIZPζk(r,h))]\displaystyle{\mathscr{L}_{I_{Z}}}\left({{\textstyle{\delta\over{P\zeta_{k}{\rm{(}}r,h{\rm{)}}}}}}\right)={E_{I_{Z}}}\left[{\exp\left({-{\textstyle{{\delta{I_{Z}}}\over{P\zeta_{k}(r,h)}}}}\right)}\right]
=EIZ1[exp(δIZ1Pζk(r,h))]EIZ2[exp(δIZ2Pζk(r,h))].\displaystyle\!=\!{E_{{I_{Z1}}}}\left[{\exp\left({-{\textstyle{{\delta{I_{Z1}}}\over{P\zeta_{k}(r,h)}}}}\right)}\right]{E_{{I_{Z2}}}}\left[{\exp\left({-{\textstyle{{\delta{I_{Z2}}}\over{P\zeta_{k}(r,h)}}}}\right)}\right]. (55)

Since the distribution of the SBSs in the ii-th tier is viewed as a thinned HPPP ϕi\phi_{i} with density of SiλsS_{i}\lambda_{s}, for the interference from the ii-th tier, we have

EIZ1[exp(δIZ1Pζk(r,h))]\displaystyle{E_{{I_{Z1}}}}\left[{\exp\left({-{\textstyle{{\delta{I_{Z1}}}\over{P{\zeta_{k}}\left(r,h\right)}}}}\right)}\right]
=Egu,u[ui=1,inNϕiexp(ζk(r,h)1δguζ(u,h))]\displaystyle\!=\!{E_{{g_{{u}}},{u}}}\left[{\prod\limits_{{u}\in\sum\nolimits_{i=1,i\neq n}^{N}{\;{\phi_{i}}}}{\exp\left({-{\zeta_{k}}{{\left(r,h\right)}^{-1}}\delta{g_{{u}}}{\zeta}\left({u,h}\right)}\right)}}\right]
=exp(i=1,inN2πPr(Ai)Siλs0(111+ζk(r,h)1δζ(u,h))udu).\displaystyle\!=\!\exp\!\left({\!-\sum\limits_{i=1,i\neq n}^{N}\!{2\pi\Pr\!\left(\!{{A_{i}}}\right){S_{i}}{\lambda_{\rm{s}}}}\!\int_{0}^{\infty}\!{\!\left(\!{1\!-\!{\textstyle{1\over{1\!+\!{\zeta_{k}}{{\!\left(\!r,h\!\right)\!}^{-1}}\delta{\zeta}\!\left(\!{u},h\!\right)\!}}}}\!\right)\!}{u}{\rm{d}}{u}}\!\right)\!.\! (56)

For LoS or NLoS signal,

0(111+ζk{L,NL}(r,h)1δζ(u,h))udu\displaystyle\int_{0}^{\infty}{\left({1-{\textstyle{1\over{1+{\zeta_{k}^{\rm{{\left\{L,NL\right\}}}}}{{\left(r,h\right)}^{-1}}\delta\zeta\left({u},h\right)}}}}\right)}u{\rm{d}}u
=0PrL(u,h)u1+ζk{L,NL}(r,h)(δζL(u,h))1du\displaystyle=\int_{0}^{\infty}{{\textstyle{{{{\Pr}^{\rm{L}}}\left({u},h\right)u}\over{1+{\zeta_{k}^{\rm{{\left\{L,NL\right\}}}}}\left(r,h\right){{(\delta{\zeta^{\rm{L}}}\left(u,h\right))}^{-1}}}}}}{\rm{d}}u
+0[1PrL(u,h)]u1+ζk{L,NL}(r,h)(δζNL(u,h))1du.\displaystyle+\int_{0}^{\infty}{{\textstyle{{\left[{1-{{\Pr}^{\rm{L}}}\left({u},h\right)}\right]u}\over{1+{\zeta_{k}^{\rm{{\left\{L,NL\right\}}}}}\left(r,h\right){{(\delta{\zeta^{\rm{NL}}}\left(u,h\right))}^{-1}}}}}}{\rm{d}}u. (57)

Likewise, for the interference from the nn-th tier, we have

EI2[exp(δIZ2Pζk(r,h))]\displaystyle{E_{{I_{2}}}}\left[{\exp\left({-{\textstyle{{\delta{I_{Z2}}}\over{P{\zeta_{k}}\left(r,h\right)}}}}\right)}\right]
=exp(2πPr(An)Snλsr(111+ζk(r,h)1δζ(u,h))udu).\displaystyle\!=\!\exp\!\left(\!{\!-\!2\pi\Pr\left({{A_{n}}}\right){S_{n}}{\lambda_{\rm{s}}}\int_{r}^{\infty}{\!\left(\!{1\!-\!{\textstyle{1\over{1\!+\!{\zeta_{k}}{{\left(r,h\right)}^{\!-\!1}}\delta{\zeta}\!\left(\!{u},h\!\right)\!}}}}\right)}{u}{\rm{d}}{u}}\right). (58)

For LoS or NLoS signal,

r(111+ζk{L,NL}(r,h)1δζ(u,h))udu\displaystyle\int_{r}^{\infty}{\left({1-{\textstyle{1\over{1+{\zeta_{k}^{\rm{{\left\{L,NL\right\}}}}}{{\left(r,h\right)}^{-1}}\delta\zeta\left({u},h\right)}}}}\right)}u{\rm{d}}u
={r,r2}PrL(u,h)u1+ζk{L,NL}(r,h)(δζL(u,h))1du\displaystyle=\int_{{\left\{r,r_{2}\right\}}}^{\infty}{{\textstyle{{{{\Pr}^{\rm{L}}}\left({u},h\right)u}\over{1+{\zeta_{k}^{\rm{{\left\{L,NL\right\}}}}}\left(r,h\right){{(\delta{\zeta^{\rm{L}}}\left(u,h\right))}^{-1}}}}}}{\rm{d}}u
+{r1,r}[1PrL(u,h)]u1+ζk{L,NL}(r,h)(δζNL(u,h))1du.\displaystyle+\int_{{{\left\{r_{1},r\right\}}}}^{\infty}{{\textstyle{{\left[{1-{{\Pr}^{\rm{L}}}\left({u},h\right)}\right]u}\over{1+{\zeta_{k}^{\rm{{\left\{L,NL\right\}}}}}\left(r,h\right){{(\delta{\zeta^{\rm{NL}}}\left(u,h\right))}^{-1}}}}}}{\rm{d}}u. (59)

Appendix C Proof of Theorem 2

Consider that r0r\!\to\!0 and neglecting noise. When λs+\lambda_{\rm{s}}\!\to\!+\!\infty, the average SDP of TUs over all possible NN files is given by

Prt(D)=n=1NQnPrt(Dn)\displaystyle{{\Pr}_{\rm{t}}}\left(D\right)=\sum\limits_{n=1}^{N}{{Q_{n}}}{{\Pr}_{\rm{t}}}\left({{D_{n}}}\right)
=n=1NQn0dTIZ(δlαtLPAtL)ft(r,h1)dr\displaystyle=\sum\limits_{n=1}^{N}{{Q_{n}}\int_{0}^{{d_{\rm{T}}}}{{\mathscr{L}_{I_{Z}}}\left({{\textstyle{{\delta{l^{\alpha_{\rm{t}}^{\rm{L}}}}}\over{P{\rm{A}}_{\rm{t}}^{\rm{L}}}}}}\right)}{f_{\rm{t}}}\left(r,h_{1}\right){\rm{d}}r}
=n=1NQn{0dT2πSnλsrexp(πSnλsr2)\displaystyle=\sum\limits_{n=1}^{N}{{Q_{n}}}\left\{{\int_{0}^{{d_{\rm{T}}}}{2\pi{S_{n}}{\lambda_{\rm{s}}}r\exp\left({-\pi{S_{n}}{\lambda_{\rm{s}}}{r^{2}}}\right)}}\right.
×exp(i=1,inNQiB(r,h1)+QnC(r,h1))dr},\displaystyle\left.\times{\exp\left({\sum\limits_{i=1,i\neq n}^{N}{{Q_{i}}}B\left({r,{h_{1}}}\right)+{Q_{n}}C\left({r,{h_{1}}}\right)}\right){\rm{d}}r}\right\}, (60)

where

B(r,h1)=2πλu[0dTu1+ζtL(r,h1)(δAtL)1(u2+h12)αtL\displaystyle B\left({r,{h_{1}}}\right)\!=\!-\!2\pi{\lambda_{\rm{u}}}\left[{\int_{0}^{{d_{\rm{T}}}}\textstyle{{\frac{u}{{1+\zeta_{\rm{t}}^{\rm{L}}\left({r,{h_{1}}}\right){{(\delta A_{\rm{t}}^{\rm{L}})}^{-1}}{{\left({\sqrt{{u^{2}}+h_{1}^{2}}}\right)}^{\alpha_{\rm{t}}^{\rm{L}}}}}}}}}\right.
×(1u2+h12l0)du\displaystyle\!\times\!\textstyle\left({1-\frac{{\sqrt{{u^{2}}+h_{1}^{2}}}}{{{l_{0}}}}}\right){\rm{d}}u
+0dTu1+ζtL(r,h1)(δAtNL)1(u2+h12)αtNL×u2+h12l0du\displaystyle\!+\!\int_{0}^{{d_{\rm{T}}}}\textstyle{{\frac{u}{{1+\zeta_{\rm{t}}^{\rm{L}}\left({r,{h_{1}}}\right){{(\delta A_{\rm{t}}^{{\rm{NL}}})}^{-1}}{{\left({\sqrt{{u^{2}}+h_{1}^{2}}}\right)}^{\alpha_{\rm{t}}^{{\rm{NL}}}}}}}}}\!\times\!\frac{{\sqrt{{u^{2}}+h_{1}^{2}}}}{{{l_{0}}}}{\rm{d}}u
+dTu1+ζtL(r,h1)(δAtNL)1(u2+h12)αtNLdu],\displaystyle\left.{\!+\!\int_{{d_{\rm{T}}}}^{\infty}\textstyle{\frac{u}{{1\!+\!\zeta_{\rm{t}}^{\rm{L}}\left({r,{h_{1}}}\right){{(\delta A_{\rm{t}}^{{\rm{NL}}})}^{-1}}{{\left({\sqrt{{u^{2}}+h_{1}^{2}}}\right)}^{\alpha_{\rm{t}}^{{\rm{NL}}}}}}}}{\rm{d}}u}\right], (61)
C(r,h1)=2πλu[rdTu1+ζtL(r,h1)(δAtL)1(u2+h12)αtL\displaystyle C\left({r,{h_{1}}}\right)\!=\!-\!2\pi{\lambda_{\rm{u}}}\left[{\int_{r}^{{d_{\rm{T}}}}{{\textstyle{u\over{1+\zeta_{\rm{t}}^{\rm{L}}\left({r,{h_{1}}}\right){{(\delta A_{\rm{t}}^{\rm{L}})}^{-1}}{{\left({\sqrt{{u^{2}}+h_{1}^{2}}}\right)}^{\alpha_{\rm{t}}^{\rm{L}}}}}}}}}\right.
×(1u2+h12l0)du\displaystyle\!\times\!\textstyle{\left({1-{{{\sqrt{{u^{2}}+h_{1}^{2}}}}\over{{{l_{0}}}}}}\right)}{\rm{d}}u
+r1dTu1+ζtL(r,h1)(δAtNL)1(u2+h12)αtNL×u2+h12l0du\displaystyle\!+\!\int_{r_{1}}^{{d_{\rm{T}}}}{{\textstyle{u\over{1+\zeta_{\rm{t}}^{\rm{L}}\left({r,{h_{1}}}\right){{(\delta A_{\rm{t}}^{\rm{NL}})}^{-1}}{{\left({\sqrt{{u^{2}}+h_{1}^{2}}}\right)}^{\alpha_{\rm{t}}^{\rm{NL}}}}}}}}\!\times\!\textstyle\frac{{\sqrt{{u^{2}}+h_{1}^{2}}}}{{{l_{0}}}}{\rm{d}}u
+dTu1+ζtL(r,h1)(δAtNL)1(u2+h12)αtNLdu].\displaystyle\left.{\!+\!\int_{{d_{\rm{T}}}}^{\infty}\textstyle{\frac{u}{{1\!+\!\zeta_{\rm{t}}^{\rm{L}}\left({r,{h_{1}}}\right){{(\delta A_{\rm{t}}^{{\rm{NL}}})}^{-1}}{{\left({\sqrt{{u^{2}}+h_{1}^{2}}}\right)}^{\alpha_{\rm{t}}^{{\rm{NL}}}}}}}}{\rm{d}}u}\right]. (62)

Consider that r0r\!\to\!0 and neglecting noise. When λs+\lambda_{\rm{s}}\!\to\!+\!\infty, the average SDP of UAVs over all possible NN files is given by

Pra(D)=n=1NQnPra(Dn)\displaystyle{{\Pr}_{\rm{a}}}\left(D\right)=\sum\limits_{n=1}^{N}{{Q_{n}}}{{\Pr}_{\rm{a}}}\left({{D_{n}}}\right)
=n=1NQn{0dA2πSnλsrexp(πSnλsr2)\displaystyle=\sum\limits_{n=1}^{N}{{Q_{n}}}\left\{{\int_{0}^{{d_{\rm{A}}}}{2\pi{S_{n}}{\lambda_{\rm{s}}}r\exp\left({-\pi{S_{n}}{\lambda_{\rm{s}}}{r^{2}}}\right)}}\right.
×exp(i=1,inNQiE(r,h2)+QnF(r,h2))dr},\displaystyle\left.\times{\exp\left({\sum\limits_{i=1,i\neq n}^{N}{{Q_{i}}}E\left({r,{h_{2}}}\right)+{Q_{n}}F\left({r,{h_{2}}}\right)}\right){\rm{d}}r}\right\}, (63)

where

E(r,h2)=2πλu[0dA(11+ζaL(r,h2)(δAaL)1(u2+h22)αaL)udu\displaystyle E\left({r,h_{2}}\right)\!=\!-2\pi{\lambda_{\rm{u}}}\left[{\int_{0}^{{d_{\rm{A}}}}{\left({{\textstyle{1\over{1+\zeta_{\rm{a}}^{\rm{L}}\left(r,h_{2}\right){{(\delta A_{\rm{a}}^{\rm{L}})}^{-1}}{{\left({\sqrt{{u}^{2}+{h_{2}^{2}}}}\right)}^{\alpha_{\rm{a}}^{\rm{L}}}}}}}}\right)}{u}{\rm{d}}{u}}\right.
+dA(11+ζaL(r,h2)(δAaL)1(u2+h22)αaL)\displaystyle+\int_{{d_{\rm{A}}}}^{\infty}{\left({{\textstyle{1\over{1+\zeta_{\rm{a}}^{\rm{L}}\left(r,h_{2}\right){{(\delta A_{\rm{a}}^{\rm{L}})}^{-1}}{{\left({\sqrt{{u}^{2}+{h_{2}^{2}}}}\right)}^{\alpha_{\rm{a}}^{\rm{L}}}}}}}}\right)}
×(dAu+exp(up1)(1dAu))udu\displaystyle\times\left({{\textstyle{{{d_{\rm{A}}}}\over{{u}}}}+\exp\left({{\textstyle{{-{u}}\over{{p_{1}}}}}}\right)\left({1-{\textstyle{{{d_{\rm{A}}}}\over{{u}}}}}\right)}\right){u}{\rm{d}}{u}
+dA(11+ζaL(r,h2)(δAaNL)1(u2+h22)αaNL)\displaystyle+\int_{{d_{\rm{A}}}}^{\infty}{\left({{\textstyle{1\over{1+\zeta_{\rm{a}}^{\rm{L}}\left(r,h_{2}\right){{(\delta A_{\rm{a}}^{{\rm{NL}}})}^{-1}}{{\left({\sqrt{{u}^{2}+{h_{2}^{2}}}}\right)}^{\alpha_{\rm{a}}^{{\rm{NL}}}}}}}}}\right)}
×(1dAuexp(up1)(1dAu))udu],\displaystyle\left.{\times\left({1-{\textstyle{{{d_{\rm{A}}}}\over{{u}}}}-\exp\left({{\textstyle{{-{u}}\over{{p_{1}}}}}}\right)\left({1-{\textstyle{{{d_{\rm{A}}}}\over{{u}}}}}\right)}\right){u}{\rm{d}}{u}}\right], (64)
F(r,h2)=2πλu[rdA(11+ζaL(r,h2)(δAaL)1(u2+h22)αaL)udu\displaystyle F\left({r,h_{2}}\right)\!=\!-2\pi{\lambda_{\rm{u}}}\left[{\int_{r}^{{d_{\rm{A}}}}{\left({{\textstyle{1\over{1+\zeta_{\rm{a}}^{\rm{L}}\left(r,h_{2}\right){{(\delta A_{\rm{a}}^{\rm{L}})}^{-1}}{{\left({\sqrt{{u}^{2}+{h_{2}^{2}}}}\right)}^{\alpha_{\rm{a}}^{\rm{L}}}}}}}}\right)}{u}{\rm{d}}{u}}\right.
+dA(11+ζaL(r,h2)(δAaL)1(u2+h22)αaL)\displaystyle+\int_{{d_{\rm{A}}}}^{\infty}{\left({{\textstyle{1\over{1+\zeta_{\rm{a}}^{\rm{L}}\left(r,h_{2}\right){{(\delta A_{\rm{a}}^{\rm{L}})}^{-1}}{{\left({\sqrt{{u}^{2}+{h_{2}^{2}}}}\right)}^{\alpha_{\rm{a}}^{\rm{L}}}}}}}}\right)}
×(dAu+exp(up1)(1dAu))udu\displaystyle\times\left({{\textstyle{{{d_{\rm{A}}}}\over{{u}}}}+\exp\left({{\textstyle{{-{u}}\over{{p_{1}}}}}}\right)\left({1-{\textstyle{{{d_{\rm{A}}}}\over{{u}}}}}\right)}\right){u}{\rm{d}}{u}
+dA(11+ζaL(r,h2)(δAaNL)1(u2+h22)αaNL)\displaystyle+\int_{{d_{\rm{A}}}}^{\infty}{\left({{\textstyle{1\over{1+\zeta_{\rm{a}}^{\rm{L}}\left(r,h_{2}\right){{(\delta A_{\rm{a}}^{{\rm{NL}}})}^{-1}}{{\left({\sqrt{{u}^{2}+{h_{2}^{2}}}}\right)}^{\alpha_{\rm{a}}^{{\rm{NL}}}}}}}}}\right)}
×(1dAuexp(up1)(1dAu))udu].\displaystyle\left.{\times\left({1-{\textstyle{{{d_{\rm{A}}}}\over{{u}}}}-\exp\left({{\textstyle{{-{u}}\over{{p_{1}}}}}}\right)\left({1-{\textstyle{{{d_{\rm{A}}}}\over{{u}}}}}\right)}\right){u}{\rm{d}}{u}}\right]. (65)

Overall, the average SDP of TUs and UAVs is

Pr¯\displaystyle\overline{\Pr} =n=1NQn(λTUλuPrt(Dn)+λAUλuPra(Dn))\displaystyle=\sum\limits_{n=1}^{N}{{Q_{n}}}\left({{\textstyle{{{\lambda_{\rm{TU}}}}\over{{\lambda_{\rm{u}}}}}}{{\Pr}_{\rm{t}}}\left({{D_{n}}}\right)+{\textstyle{{{\lambda_{\rm{AU}}}}\over{{\lambda_{\rm{u}}}}}}{{\Pr}_{\rm{a}}}\left({{D_{n}}}\right)}\right)
=n=1NQnSn[0dTGnexp(πSnλsr2)dr\displaystyle=\sum\limits_{n=1}^{N}{{Q_{n}}{S_{n}}\left[{\int_{0}^{{d_{\rm{T}}}}{{G_{n}}\exp\left({-\pi{S_{n}}{\lambda_{\rm{s}}}{r^{2}}}\right)}{\rm{d}}r}\right.}
+0dAHnexp(πSnλsr2)dr],\displaystyle\left.{+\int_{0}^{{d_{\rm{A}}}}{{H_{n}}\exp\left({-\pi{S_{n}}{\lambda_{\rm{s}}}{r^{2}}}\right)}{\rm{d}}r}\right], (66)

where

Gn=λTU2πλsrλuexp(i=1,inNQiB(r,h1)+QnC(r,h1)),\displaystyle{G_{n}}\!=\!{\textstyle{{{\lambda_{\rm{TU}}}2\pi{\lambda_{\rm{s}}}r}\over{{\lambda_{\rm{u}}}}}}\textstyle\exp\!\left(\!{\sum\limits_{i\!=\!1,i\!\neq\!n}^{N}\!{{Q_{i}}}B\!\left(\!{r,h_{1}}\!\right)\!+\!{Q_{n}}C\left({r,h_{1}}\!\right)\!}\right)\!,\! (67)
Hn=λAU2πλsrλuexp(i=1,inNQiE(r,h2)+QnF(r,h2)).\displaystyle{H_{n}}\!=\!{\textstyle{{{\lambda_{\rm{AU}}}2\pi{\lambda_{\rm{s}}}r}\over{{\lambda_{\rm{u}}}}}}\textstyle\exp\!\left(\!{\sum\limits_{i\!=\!1,i\!\neq\!n}^{N}\!{{Q_{i}}}E\!\left(\!{r,h_{2}}\!\right)\!+\!{Q_{n}}F\left({r,h_{2}}\!\right)\!}\right)\!.\! (68)

Appendix D Proof of Theorem 3

According to (VI), when the interference come from the nn-th tier IZ2I_{Z2}, we have

exp(2πPr(An)Snλsru1+lαδ1(u2+h2)αdu)\displaystyle\exp\left({-2\pi\Pr\left({{A_{n}}}\right){S_{n}}{\lambda_{\rm{s}}}\int_{r}^{\infty}{{\textstyle{u\over{1+{l^{-\alpha}}{\delta^{-1}}{{\left({\sqrt{{u^{2}}+{h^{2}}}}\right)}^{\alpha}}}}}}{\rm{d}}u}\right)
=exp(πPr(An)Snλsδ2αl22αδ1z2α11+zdz)\displaystyle\!=\!\exp\left({-\pi\Pr\left({{A_{n}}}\right){S_{n}}{\lambda_{\rm{s}}}{\delta^{{}^{{\textstyle{2\over\alpha}}}}}{l^{2}}\frac{2}{\alpha}\int_{{\delta^{-1}}}^{\infty}{\frac{{{z^{{}^{{\textstyle{2\over\alpha}}}-1}}}}{{1+z}}}{\rm{d}}z}\right)
=exp(πPr(An)Snλsl22δα2F12(1,12α;22α;δ)),\displaystyle\!=\!\exp\left({\!-\!\pi\Pr\left({{A_{n}}}\right){S_{n}}{\lambda_{\rm{s}}}{l^{2}}\frac{{2\delta}}{{\alpha\!-\!2}}{}_{2}{F_{1}}\!\left(\!{1,1\!-\!\frac{2}{\alpha};2\!-\!\frac{2}{\alpha};\!-\!\delta}\!\right)\!}\right), (69)

where z=δ1lα(u2+h2)αz={\delta^{-1}}{l^{-\alpha}}{\left({\sqrt{{u^{2}}+{h^{2}}}}\right)^{\alpha}} and F12(){}_{2}{F_{1}}\left(\cdot\right) denotes the hyper-geometric function.

When the interference come from other tiers IZ1I_{Z1}, we have

exp(2πi=1,inNPr(Ai)Siλs0u1+lαδ1(u2+h2)αdu)\displaystyle\textstyle{\exp\left({-2\pi\sum\limits_{i=1,i\neq n}^{N}{\Pr\left({{A_{i}}}\right){S_{i}}{\lambda_{\rm{s}}}}\int_{0}^{\infty}{{\textstyle{u\over{1+{l^{-\alpha}}{\delta^{-1}}{{\left({\sqrt{{u^{2}}+{h^{2}}}}\right)}^{\alpha}}}}}}{\rm{d}}u}\right)}
=exp(πi=1,inNPr(Ai)Siλsl22δα2F12(1,12α;22α;δlαhα)).\displaystyle=\textstyle{\exp\!\left(\!{\!-\!\pi\!\sum\limits_{i=1,i\neq n}^{N}\!{\Pr\!\left(\!{{A_{i}}}\!\right)\!{S_{i}}{\lambda_{\rm{s}}}}{l^{2}}\frac{{2\delta}}{{\alpha-2}}}{{}_{2}{F_{1}}\left({1,1\!-\!\frac{2}{\alpha};2\!-\!\frac{2}{\alpha};\!-\!\frac{{\delta{l^{\alpha}}}}{{{h^{\alpha}}}}}\!\right)\!}\!\right)\!}. (70)

Overall, we have

Pr¯=n=1NQn0πSnλsexp(πλsr2Sn\displaystyle\overline{\Pr}=\textstyle{\sum\limits_{n=1}^{N}{{Q_{n}}\int_{0}^{\infty}{\pi{S_{n}}{\lambda_{\rm{s}}}\exp\left({-\pi{\lambda_{\rm{s}}}{r^{2}}{S_{n}}}\right.}}}
πi=1,inNPr(Ai)Siλsl22δα2F12(1,12α;22α;δlαhα)\displaystyle\textstyle{\!-\!\pi\sum\limits_{i=1,i\neq n}^{N}{{\Pr}\left({{A_{i}}}\right){S_{i}}{\lambda_{\rm{s}}}}{l^{2}}\frac{{2\delta}}{{\alpha\!-\!2}}{}_{2}{F_{1}}\left({1,1\!-\!\frac{2}{\alpha};2\!-\!\frac{2}{\alpha};\!-\!\frac{{\delta{l^{-\alpha}}}}{{{h^{\alpha}}}}}\right)}
πPr(An)Snλsl22δα2F12(1,12α;22α;δ))dr2.\displaystyle\textstyle{\left.{-\pi{\Pr}\left({{A_{n}}}\right){S_{n}}{\lambda_{\rm{s}}}{l^{2}}\frac{{2\delta}}{{\alpha-2}}{}_{2}{F_{1}}\left({1,1\!-\!\frac{2}{\alpha};2\!-\!\frac{2}{\alpha};\!-\!\delta}\right)}\right){\rm{d}}{r^{2}}}. (71)

When the SBS density is large enough, we rewrite (D) as

Pr¯=n=1NQn0πSnλsexp(πλsr2Sn\displaystyle\overline{\Pr}=\textstyle{\sum\limits_{n=1}^{N}{{Q_{n}}\int_{0}^{\infty}{\pi{S_{n}}{\lambda_{\rm{s}}}\exp\left({-\pi{\lambda_{\rm{s}}}{r^{2}}{S_{n}}}\right.}}}
πi=1NPr(Ai)Siλsl22δα2F12(1,12α;22α;δ))dr2\displaystyle\textstyle{\left.{\!-\!\pi\sum\limits_{i\!=\!1}^{N}{{\Pr}\left({{A_{i}}}\right){S_{i}}{\lambda_{\rm{s}}}}{l^{2}}\frac{{2\delta}}{{\alpha\!-\!2}}{}_{2}{F_{1}}\left({1,1\!-\!\frac{2}{\alpha};2\!-\!\frac{2}{\alpha};\!-\!\delta}\right)}\right){\rm{d}}{r^{2}}}
=n=1NQnSnexp(πλsh2i=1NPr(Ai)Si(δ,α))Sn+i=1NPr(Ai)Si(δ,α),\displaystyle\textstyle{\!=\!\sum\limits_{n=1}^{N}\frac{{{Q_{n}}{S_{n}}\exp\left({-\pi{\lambda_{\rm{s}}}{h^{2}}\sum\limits_{i=1}^{N}{\Pr\left({{A_{i}}}\right){S_{i}}}\mathcal{F}(\delta,\alpha)}\right)}}{{{S_{n}}+\sum\limits_{i=1}^{N}{\Pr\left({{A_{i}}}\right){S_{i}}}\mathcal{F}(\delta,\alpha)}}}, (72)

where (δ,α)=2δα2F12(1,12α;22α;δ)\mathcal{F}\left({\delta,\alpha}\right)=\frac{2\delta}{{\alpha-2}}{}_{2}{F_{1}}\left({1,1-\frac{2}{\alpha};2-\frac{2}{\alpha};-\delta}\right).

Substituting (34) into (D), we have

Pr¯\displaystyle\overline{\Pr} =n=1NQnSnexp(πλsh2i=1NQiλuSiλsSi(δ,α))Sn+i=1NQiλuSiλsSi(δ,α)\displaystyle=\sum\limits_{n=1}^{N}\textstyle{\frac{{{Q_{n}}{S_{n}}\exp\left({-\pi{\lambda_{\rm{s}}}{h^{2}}\sum\limits_{i=1}^{N}{\frac{{{Q_{i}}{\lambda_{\rm{u}}}}}{{{S_{i}}{\lambda_{\rm{s}}}}}{S_{i}}}\mathcal{F}(\delta,\alpha)}\right)}}{{{S_{n}}+\sum\limits_{i=1}^{N}{\frac{{{Q_{i}}{\lambda_{\rm{u}}}}}{{{S_{i}}{\lambda_{\rm{s}}}}}{S_{i}}}\mathcal{F}(\delta,\alpha)}}}
=n=1NQnSnexp(πh2λu(δ,α))Sn+λuλs(δ,α).\displaystyle=\sum\limits_{n=1}^{N}\textstyle{\frac{{{Q_{n}}{S_{n}}\exp\left({-\pi{h^{2}}{\lambda_{u}}\mathcal{F}(\delta,\alpha)}\right)}}{{{S_{n}}+\frac{{{\lambda_{\rm{u}}}}}{{{\lambda_{\rm{s}}}}}\mathcal{F}(\delta,\alpha)}}}. (73)

For the PCS, we have

Pr¯=n=1MQnexp(πh2λu(δ,α))1+λuλs(δ,α).\overline{\Pr}=\sum\limits_{n=1}^{M}\textstyle{{\frac{{{Q_{n}}\exp\left({-\pi{h^{2}}{\lambda_{\rm{u}}}\mathcal{F}(\delta,\alpha)}\right)}}{{1+\frac{{{\lambda_{\rm{u}}}}}{{{\lambda_{\rm{s}}}}}\mathcal{F}(\delta,\alpha)}}}}. (74)

For the UCS, we have

Pr¯\displaystyle\overline{\Pr} =n=1NQnMNexp(πh2λu(δ,α))MN+λuλs(δ,α)\displaystyle=\sum\limits_{n=1}^{N}\textstyle{\frac{{{Q_{n}}{M\over N}\exp\left({-\pi{h^{2}}{\lambda_{\rm{u}}}\mathcal{F}(\delta,\alpha)}\right)}}{{{M\over N}+\frac{{{\lambda_{\rm{u}}}}}{{{\lambda_{\rm{s}}}}}\mathcal{F}(\delta,\alpha)}}}
=exp(πh2λu(δ,α))1+NλuMλs(δ,α).\displaystyle=\textstyle\frac{{\exp\left({-\pi{h^{2}}{\lambda_{\rm{u}}}\mathcal{F}(\delta,\alpha)}\right)}}{{1+{\textstyle{{N{\lambda_{\rm{u}}}}\over{M{\lambda_{\rm{s}}}}}}\mathcal{F}(\delta,\alpha)}}. (75)

References

  • [1] Cisco, ``Cisco visual networking index: Global mobile data traffic forecast update 2016-2021,'' White Paper, Feb. 2017.
  • [2] D. López-Pérez, M. Ding, H. Claussen, and A. H. Jafari, ``Towards 1 Gbps/UE in cellular systems: Understanding ultra-dense small cell deployments,'' IEEE Commun. Surveys. Tuts., vol. 17, no. 4, pp. 2078–2101, Fourthquarter 2015.
  • [3] X. Lin, V. Yajnanarayana, S. D. Muruganathan, S. Gao, H. Asplund, H. L. Maattanen, M. Bergstrom, S. Euler, and Y. P. E. Wang, ``The sky is not the limit: LTE for unmanned aerial vehicles,'' IEEE Commun. Mag., vol. 56, no. 4, pp. 204–210, Apr. 2018.
  • [4] Z. Kaleem and M. H. Rehmani, ``Amateur drone monitoring: State-of-the-art architectures, key enabling technologies, and future research directions,'' IEEE Wireless Commun., vol. 25, no. 2, pp. 150–159, Apr. 2018.
  • [5] Q. Wu, Y. Zeng, and R. Zhang, ``Joint trajectory and communication design for multi-UAV enabled wireless networks,'' IEEE Trans. Wireless Commun., vol. 17, no. 3, pp. 2109–2121, Mar. 2018.
  • [6] Z. Kaleem, N. N. Qadri, T. Q. Duong, and G. K. Karagiannidis, ``Energy-efficient device discovery in D2D cellular networks for public safety scenario,'' IEEE Syst. J., pp. 1–4, 2019.
  • [7] Z. Kaleem, M. Yousaf, A. Qamar, A. Ahmad, T. Q. Duong, W. Choi, and A. Jamalipour, ``UAV-empowered disaster-resilient edge architecture for delay-sensitive communication,'' IEEE Network, pp. 1–9, 2019.
  • [8] M. Z. Anwar, Z. Kaleem, and A. Jamalipour, ``Machine learning inspired sound-based amateur drone detection for public safety applications,'' IEEE Trans. Veh. Technol., vol. 68, no. 3, pp. 2526–2534, Mar. 2019.
  • [9] 3GPP, ``RP-170779: Study on enhanced support for aerial vehicles.''
  • [10] J. Erman, A. Gerber, M. Hajiaghayi, D. Pei, S. Sen, and O. Spatscheck, ``To cache or not to cache: The 3G case,'' IEEE Internet Comput., vol. 15, no. 2, pp. 27–34, Mar. 2011.
  • [11] Q. Li, Y. Zhang, A. Pandharipande, X. Ge, and J. Zhang, ``D2D-assisted caching on truncated Zipf distribution,'' IEEE Access, vol. 7, pp. 13 411–13 421, 2019.
  • [12] D. Malak, M. Al-Shalash, and J. G. Andrews, ``Spatially correlated content caching for device-to-device communications,'' IEEE Trans. Wireless Commun., vol. 17, no. 1, pp. 56–70, Jan. 2018.
  • [13] K. Li, C. Yang, Z. Chen, and M. Tao, ``Optimization and analysis of probabilistic caching in NN-tier heterogeneous networks,'' IEEE Trans. Wireless Commun., vol. 17, no. 2, pp. 1283–1297, Feb. 2018.
  • [14] J. Li, S. Chu, F. Shu, J. Wu, and D. N. K. Jayakody, ``Contract-based small-cell caching for data disseminations in ultra-dense cellular networks,'' IEEE Trans. Mobile Comput., vol. 18, no. 5, pp. 1042–1053, May 2019.
  • [15] J. Li, Y. Chen, Z. Lin, W. Chen, B. Vucetic, and L. Hanzo, ``Distributed caching for data dissemination in the downlink of heterogeneous networks,'' IEEE Trans. Commun., vol. 63, no. 10, pp. 3553–3568, Oct. 2015.
  • [16] K. Poularakis, G. Iosifidis, and L. Tassiulas, ``Approximation algorithms for mobile data caching in small cell networks,'' IEEE Trans. Commun., vol. 62, no. 10, pp. 3665–3677, Oct. 2014.
  • [17] J. Li, H. Chen, Y. Chen, Z. Lin, B. Vucetic, and L. Hanzo, ``Pricing and resource allocation via game theory for a small-cell video caching system,'' IEEE J. Sel. Areas Commun., vol. 34, no. 8, pp. 2115–2129, Aug. 2016.
  • [18] E. Baştuğ, M. Bennis, and M. Debbah, ``Cache-enabled small cell networks: Modeling and tradeoffs,'' in EURASIP J. Wireless Commun. Netw., vol. 2015, no. 1, Aug. 2015, p. 41.
  • [19] M. Chen, M. Mozaffari, W. Saad, C. Yin, M. Debbah, and C. S. Hong, ``Caching in the sky: Proactive deployment of cache-enabled unmanned aerial vehicles for optimized quality-of-experience,'' IEEE J. Sel. Areas Commun., vol. 35, no. 5, pp. 1046–1061, May 2017.
  • [20] B. V. D. Bergh, A. Chiumento, and S. Pollin, ``LTE in the sky: Trading off propagation benefits with interference costs for aerial nodes,'' IEEE Commun. Mag., vol. 54, no. 5, pp. 44–50, May 2016.
  • [21] A. Al-Hourani and K. Gomez, ``Modeling cellular-to-UAV path-loss for suburban environments,'' IEEE Wireless Commun. Lett., vol. 7, no. 1, pp. 82–85, Feb. 2018.
  • [22] Z. Chang, L. Lei, Z. Zhou, S. Mao, and T. Ristaniemi, ``Learn to cache: Machine learning for network edge caching in the big data era,'' IEEE Wireless Commun., vol. 25, no. 3, pp. 28–35, Jun. 2018.
  • [23] N. Zhao, F. Cheng, F. R. Yu, J. Tang, Y. Chen, G. Gui, and H. Sari, ``Caching UAV assisted secure transmission in hyper-dense networks based on interference alignment,'' IEEE Trans. Commun., vol. 66, no. 5, pp. 2281–2294, May 2018.
  • [24] G. Geraci, A. G. Rodriguez, L. G. Giordano, D. López-Pérez, and E. Björnson, ``Understanding UAV cellular communications: From existing networks to massive MIMO,'' IEEE Access, vol. 6, pp. 67 853–67 865, 2018.
  • [25] 3GPP, ``TR 36.777: Enhanced LTE support for aerial vehicles,'' Dec. 2017.
  • [26] J. G. Andrews, F. Baccelli, and R. K. Ganti, ``A tractable approach to coverage and rate in cellular networks,'' IEEE Trans. Commun., vol. 59, no. 11, pp. 3122–3134, Nov. 2011.
  • [27] H. S. Dhillon, R. K. Ganti, F. Baccelli, and J. G. Andrews, ``Modeling and analysis of K-tier downlink heterogeneous cellular networks,'' IEEE J. Sel. Areas Commun., vol. 30, no. 3, pp. 550–560, Apr. 2012.
  • [28] B. Blaszczyszyn and A. Giovanidis, ``Optimal geographic caching in cellular networks,'' in Proc. IEEE ICC, Jun. 2015, pp. 3358–3363.
  • [29] Y. Chen, M. Ding, J. Li, Z. Lin, G. Mao, and L. Hanzo, ``Probabilistic small-cell caching: Performance analysis and optimization,'' IEEE Trans. Veh. Technol., vol. 66, no. 5, pp. 4341–4354, May 2017.
  • [30] Y. Cui and D. Jiang, ``Analysis and optimization of caching and multicasting in large-scale cache-enabled heterogeneous wireless networks,'' IEEE Trans. Wireless Commun., vol. 16, no. 1, pp. 250–264, Jan. 2017.
  • [31] M. Ding, P. Wang, D. López-Pérez, G. Mao, and Z. Lin, ``Performance impact of LoS and NLoS transmissions in dense cellular networks,'' IEEE Trans. Wireless Commun., vol. 15, no. 3, pp. 2365–2380, Mar. 2016.
  • [32] J. Li, Y. Chen, M. Ding, F. Shu, B. Vucetic, and X. You, ``A small-cell caching system in mobile cellular networks with LoS and NLoS channels,'' IEEE Access, vol. 5, pp. 1296–1305, 2017.
  • [33] M. Ding and D. López-Pérez, ``Performance impact of base station antenna heights in dense cellular networks,'' IEEE Trans. Wireless Commun., vol. 16, no. 12, pp. 8147–8161, Dec. 2017.
  • [34] I. Ashraf, L. T. W. Ho, and H. Claussen, ``Improving energy efficiency of femtocell base stations via user activity detection,'' in Proc. IEEE Wireless Commun. and Network. Conf., Apr. 2010, pp. 1–5.
  • [35] 3GPP, ``TR 36.828: Further enhancements to LTE time division duplex (TDD) for downlink-uplink (DL-UL) interference management and traffic adaptation,'' Jun. 2012.
  • [36] M. Ding, D. López-Pérez, G. Mao, and Z. Lin, ``Performance impact of idle mode capability on dense small cell networks,'' IEEE Trans. Veh. Technol., vol. 66, no. 11, pp. 10 446–10 460, Nov. 2017.
  • [37] Q. Li, W. Shi, X. Ge, and Z. Niu, ``Cooperative edge caching in software-defined hyper-cellular networks,'' IEEE J. Sel. Areas Commun., vol. 35, no. 11, pp. 2596–2605, Nov. 2017.
  • [38] M. Ding, D. López-Pérez, G. Mao, and Z. Lin, ``Ultra-dense networks: Is there a limit to spatial spectrum reuse?'' in 2018 IEEE International Conference on Communications (ICC), May 2018, pp. 1–6.