This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Pro-isomorphic zeta functions of some DD^{\ast} Lie lattices of even rank

Yifat Moadim-Lesimcha Department of Mathematics, Bar-Ilan University, Ramat Gan 5290002, Israel  and  Michael M. Schein Department of Mathematics, Bar-Ilan University, Ramat Gan 5290002, Israel [email protected] [email protected]
Abstract.

We compute the local pro-isomorphic zeta functions at all but finitely many primes for a certain family of class-two-nilpotent Lie lattices of even rank, parametrized by irreducible monic non-linear polynomials f(x)[x]f(x)\in\mathbb{Z}[x]. These Lie lattices correspond to a family of groups introduced by Grunewald and Segal. The result is expressed in terms of a combinatorially defined family of rational functions.

1. Introduction

1.1. Pro-isomorphic zeta functions

Let GG be a finitely generated group. The pro-isomorphic zeta function of GG, which was originally introduced by Grunewald, Segal, and Smith [14], is the Dirichlet series ζG(s)=m=0am(G)ms\zeta^{\wedge}_{G}(s)=\sum_{m=0}^{\infty}a_{m}^{\wedge}(G)m^{-s}. Here ss is a complex variable and am(G)a_{m}^{\wedge}(G) is the (necessarily finite) number of subgroups HGH\leq G of index mm such that the profinite completion of HH is isomorphic to that of GG. In practice it is convenient to interpret this series as counting linear objects. Let \mathcal{L} be a \mathbb{Z}-algebra, which for our purposes is a free \mathbb{Z}-module of finite rank endowed with a \mathbb{Z}-bilinear multiplication. Its pro-isomorphic zeta function is the Dirichlet series ζ(s)=m=0bm()ms\zeta^{\wedge}_{\mathcal{L}}(s)=\sum_{m=0}^{\infty}b^{\wedge}_{m}(\mathcal{L})m^{-s}, where bm()b^{\wedge}_{m}(\mathcal{L}) is the number of subalgebras \mathcal{M}\leq\mathcal{L} of index nn such that pp\mathcal{M}\otimes\mathbb{Z}_{p}\simeq\mathcal{L}\otimes\mathbb{Z}_{p} for all primes pp. An elementary but fundamental result [14, Proposition 4] is the Euler decomposition ζ(s)=pζ,p(s)\zeta^{\wedge}_{\mathcal{L}}(s)=\prod_{p}\zeta^{\wedge}_{\mathcal{L},p}(s), where ζ,p(s)\zeta^{\wedge}_{\mathcal{L},p}(s) counts only subalgebras of pp-power index or, equivalently, p\mathbb{Z}_{p}-subalgebras of p\mathcal{L}\otimes\mathbb{Z}_{p} that are isomorphic to p\mathcal{L}\otimes\mathbb{Z}_{p}. An analogous decomposition holds for finitely generated torsion-free nilpotent groups. If GG is such a group, then there is a Lie lattice (G)\mathcal{L}(G), namely a \mathbb{Z}-algebra whose multiplication is a Lie bracket, such that ζ(G),p(s)=ζG,p(s)\zeta^{\wedge}_{\mathcal{L}(G),p}(s)=\zeta^{\wedge}_{G,p}(s) for all but finitely many pp. If GG is of class two, then this equality holds for all primes pp; see, for instance, [14, §4] and [3, §2.1].

The present work computes the pro-isomorphic zeta functions of many members of a certain family of class-two-nilpotent Lie lattices of even rank considered by Berman, Klopsch, and Onn [5]. This family corresponds to the representatives constructed by Grunewald and Segal [13] of commensurability classes of DD^{\ast}-groups of even Hirsch length; see Section 1.5.1 below.

1.2. Statement of results

We now present our main results more precisely. Let Δ(x)[x]\Delta(x)\in\mathbb{Z}[x] be a primary polynomial, i.e. Δ(x)=f(x)\Delta(x)=f(x)^{\ell} for an irreducible monic polynomial f(x)f(x) and \ell\in\mathbb{N}. If Δ(x)=xn+an1xn1++a1x+a0\Delta(x)=x^{n}+a_{n-1}x^{n-1}+\cdots+a_{1}x+a_{0} for aia_{i}\in\mathbb{Z}, recall its companion matrix

CΔ=(010000100001a0a1a2an1)Mn().C_{\Delta}=\left(\begin{array}[]{ccccc}0&1&0&\cdots&0\\ 0&0&1&\cdots&0\\ \vdots&\vdots&\vdots&\ddots&\vdots\\ 0&0&0&\cdots&1\\ -a_{0}&-a_{1}&-a_{2}&\cdots&-a_{n-1}\end{array}\right)\in\mathrm{M}_{n}(\mathbb{Z}).

Let Δ\mathcal{L}_{\Delta} be the Lie lattice of rank 2n+22n+2 with basis x1,,xn,y1,,yn,z1,z2x_{1},\dots,x_{n},y_{1},\dots,y_{n},z_{1},z_{2} and Lie bracket determined by the following:

  • [xi,xj]=[yi,yj]=0[x_{i},x_{j}]=[y_{i},y_{j}]=0 for all 1i,jn1\leq i,j\leq n;

  • [xi,yj]=δijz1+(CΔ)ijz2[x_{i},y_{j}]=\delta_{ij}z_{1}+(C_{\Delta})_{ij}z_{2} for all 1i,jn1\leq i,j\leq n, where δij\delta_{ij} is the Kronecker delta;

  • z1z_{1} and z2z_{2} lie in (and indeed span) the center of Δ\mathcal{L}_{\Delta}.

We consider the case where Δ(x)=f(x)\Delta(x)=f(x) is an irreducible polynomial of degree n2n\geq 2 and determine ζf,p(s)\zeta^{\wedge}_{\mathcal{L}_{f},p}(s) for all but finitely many pp. Indeed, let β\beta be a root of f(x)f(x) and consider the number field Kf=(β)K_{f}=\mathbb{Q}(\beta). Recall that the conductor f\mathcal{F}_{f} is the largest ideal of the ring of integers 𝒪Kf\mathcal{O}_{K_{f}} that is contained in [β]\mathbb{Z}[\beta]. For all primes pp coprime to f\mathcal{F}_{f}, we compute ζf,p(s)\zeta^{\wedge}_{\mathcal{L}_{f},p}(s) explicitly when n3n\geq 3. Theorem 1.4 treats the case n=2n=2, which was actually treated 35 years ago, under a different name, by Grunewald, Segal, and Smith.

Moreover, we prove the following finite uniformity statement. Suppose that KK is a number field, pp is a prime, and 𝐞=(e1,,er)\mathbf{e}=(e_{1},\dots,e_{r}) and 𝐟=(f1,,fr)\mathbf{f}=(f_{1},\dots,f_{r}) are vectors of natural numbers. We say that pp has decomposition type (𝐞,𝐟)(\mathbf{e},\mathbf{f}) in KK if p𝒪K=𝔭1e1𝔭rerp\mathcal{O}_{K}=\mathfrak{p}_{1}^{e_{1}}\cdots\mathfrak{p}_{r}^{e_{r}}, where the 𝔭i𝒪K\mathfrak{p}_{i}\triangleleft\mathcal{O}_{K} are distinct prime ideals with residue fields of cardinality |𝒪K/𝔭i|=pfi|\mathcal{O}_{K}/\mathfrak{p}_{i}|=p^{f_{i}} for every 1ir1\leq i\leq r. This implies that n=i=1reifin=\sum_{i=1}^{r}e_{i}f_{i}. Let 𝟏\mathbf{1} denote the vector (1,,1)(1,\dots,1).

Theorem 1.1.

Let n3n\geq 3, and let 𝐞=(e1,,er)\mathbf{e}=(e_{1},\dots,e_{r}) and 𝐟=(f1,,fr)\mathbf{f}=(f_{1},\dots,f_{r}) satisfy n=i=1reifin=\sum_{i=1}^{r}e_{i}f_{i}. Consider the rational function

W𝐞,𝐟(X,Y)=i=1r(11Xfi)I{1,,r}(1)|I|XiIfi1X4n+iIeifiYn+2(X,Y).W_{\mathbf{e},\mathbf{f}}(X,Y)=\prod_{i=1}^{r}\left(\frac{1}{1-X^{f_{i}}}\right)\sum_{I\subseteq\{1,\dots,r\}}(-1)^{|I|}\frac{X^{\sum_{i\in I}f_{i}}}{1-X^{4n+\sum_{i\in I}e_{i}f_{i}}Y^{n+2}}\in\mathbb{Q}(X,Y).

If f(x)[x]f(x)\in\mathbb{Z}[x] is any irreducible monic polynomial of degree nn, and if the prime pp is coprime to f\mathcal{F}_{f} and has decomposition type (𝐞,𝐟)(\mathbf{e},\mathbf{f}) in KfK_{f}, then ζf,p(s)=W𝐞,𝐟(p,ps)\zeta^{\wedge}_{\mathcal{L}_{f},p}(s)=W_{\mathbf{e},\mathbf{f}}(p,p^{-s}).

Moreover, if 𝐞=𝟏\mathbf{e}=\mathbf{1}, i.e. pp is unramified in KfK_{f}, then W𝟏,𝐟(X,Y)W_{\mathbf{1},\mathbf{f}}(X,Y) satisfies the following functional equation:

(1.1) W𝟏,𝐟(X1,Y1)=(1)r+1p9n(2n+4)sW𝟏,𝐟(X,Y).W_{\mathbf{1},\mathbf{f}}(X^{-1},Y^{-1})=(-1)^{r+1}p^{9n-(2n+4)s}W_{\mathbf{1},\mathbf{f}}(X,Y).

In fact, in (3.4) below we realize the functions W𝟏,𝐟W_{\mathbf{1},\mathbf{f}} as specializations of combinatorially defined functions Φr\Phi_{r} in 2r2^{r} variables introduced for every rr\in\mathbb{N} in Definition 2.1. While these Φr\Phi_{r} are reminiscent of some functions that have appeared recently in the literature in the context of enumerative problems arising from algebra [21, 8, 20, 18], they do not seem to be special cases of them. Then (1.1) is immediate from Proposition 2.2, which proves a self-reciprocity of the functions Φr\Phi_{r} under inversion of the variables.

We illustrate the explicit formulas of Theorem 1.1 in a simple example:

Corollary 1.2.

Let f(x)=x32f(x)=x^{3}-2.

  1. (1)

    If p1mod 3p\equiv 1\,\mathrm{mod}\,3 and there exist a,ba,b\in\mathbb{Z} such that p=a2+27b2p=a^{2}+27b^{2} (equivalently, if pp is totally split in Kf=(23)K_{f}=\mathbb{Q}(\sqrt[3]{2})), then

    ζf,p(s)=1+2p135s+2p145s+p2710s(1p125s)(1p135s)(1p145s)(1p155s).\zeta^{\wedge}_{\mathcal{L}_{f},p}(s)=\frac{1+2p^{13-5s}+2p^{14-5s}+p^{27-10s}}{(1-p^{12-5s})(1-p^{13-5s})(1-p^{14-5s})(1-p^{15-5s})}.
  2. (2)

    If p1mod 3p\equiv 1\,\mathrm{mod}\,3 and there do not exist a,ba,b\in\mathbb{Z} such that p=a2+27b2p=a^{2}+27b^{2} (equivalently, if pp is inert in KfK_{f}), then

    ζf,p(s)=1(1p125s)(1p155s).\zeta^{\wedge}_{\mathcal{L}_{f},p}(s)=\frac{1}{(1-p^{12-5s})(1-p^{15-5s})}.
  3. (3)

    If p>2p>2 and p2mod 3p\equiv 2\,\mathrm{mod}\,3 (equivalently, if p𝒪Kf=𝔭1𝔭2p\mathcal{O}_{K_{f}}=\mathfrak{p}_{1}\mathfrak{p}_{2} with 𝒪Kf/𝔭1𝔽p\mathcal{O}_{K_{f}}/\mathfrak{p}_{1}\simeq\mathbb{F}_{p} and 𝒪Kf/𝔭2𝔽p2\mathcal{O}_{K_{f}}/\mathfrak{p}_{2}\simeq\mathbb{F}_{p^{2}}) then

    ζf,p(s)=1p2710s(1p125s)(1p135s)(1p145s)(1p155s).\zeta^{\wedge}_{\mathcal{L}_{f},p}(s)=\frac{1-p^{27-10s}}{(1-p^{12-5s})(1-p^{13-5s})(1-p^{14-5s})(1-p^{15-5s})}.
  4. (4)

    If p{2,3}p\in\{2,3\} (equivalently, if pp is totally ramified in KfK_{f}), then

    ζf,p(s)=1+p135s+p145s(1p125s)(1p155s).\zeta^{\wedge}_{\mathcal{L}_{f},p}(s)=\frac{1+p^{13-5s}+p^{14-5s}}{(1-p^{12-5s})(1-p^{15-5s})}.

Note that the rational function governing ζf,p(s)\zeta^{\wedge}_{\mathcal{L}_{f},p}(s) for the ramified primes p{2,3}p\in\{2,3\} does not satisfy a functional equation for any symmetry factor.

Remark 1.3.

Observe in passing that the functional equation (1.1) satisfies [5, Conjecture 1.5]. Unlike the situation for zeta functions counting subrings, ideals, and some related structures [25, 17], it is not known in general whether local pro-isomorphic zeta functions of nilpotent Lie lattices, even of class two, satisfy functional equations. See [4] for an example of a Lie lattice of class four none of whose local pro-isomorphic zeta functions satisfies a functional equation. However, Berman, Klopsch, and Onn have conjectured, based on a study of known examples, that if \mathcal{L} is graded and ζ,p(s)\zeta^{\wedge}_{\mathcal{L},p}(s) satisfies a functional equation at almost all primes pp, then the exponent of psp^{-s} in the symmetry factor at almost all primes should be the weight of a minimal grading of \mathcal{L}; see [5] for definitions and details. Indeed, the Lie lattices f\mathcal{L}_{f} considered above are naturally graded in the sense of [5], and hence the weight of a minimal grading is rkf+rk[f,f]=(2n+2)+2=2n+4\mathrm{rk}_{\mathbb{Z}}\mathcal{L}_{f}+\mathrm{rk}_{\mathbb{Z}}[\mathcal{L}_{f},\mathcal{L}_{f}]=(2n+2)+2=2n+4.

1.3. The quadratic case

For completeness, we state the pro-isomorphic zeta functions ζf,p(s)\zeta^{\wedge}_{\mathcal{L}_{f},p}(s) at all but finitely many primes when f(x)[x]f(x)\in\mathbb{Z}[x] is an irreducible monic quadratic polynomial. Note that there are only three decomposition types for a prime in a quadratic number field: inert ((𝐞,𝐟)=((1),(2))(\mathbf{e},\mathbf{f})=((1),(2))), totally split ((𝐞,𝐟)=((1,1),(1,1))(\mathbf{e},\mathbf{f})=((1,1),(1,1))) and totally ramified ((𝐞,𝐟)=((2),(1))(\mathbf{e},\mathbf{f})=((2),(1))). The following claim is essentially due to Grunewald, Segal, and Smith [14] and is analogous to Theorem 1.1.

Theorem 1.4.

Consider the rational function

W(X,Y)=1(1X4Y2)(1X5Y2).W(X,Y)=\frac{1}{(1-X^{4}Y^{2})(1-X^{5}Y^{2})}.

For each of the three decomposition types (𝐞,𝐟)(\mathbf{e},\mathbf{f}) above, set W𝐞,𝐟(X,Y)=i=1rW(Xfi,Yfi)W_{\mathbf{e},\mathbf{f}}(X,Y)=\prod_{i=1}^{r}W(X^{f_{i}},Y^{f_{i}}). If f[x][x]f[x]\in\mathbb{Z}[x] is an irreducible monic quadratic polynomial and pp is coprime to f\mathcal{F}_{f} and has decomposition type (𝐞,𝐟)(\mathbf{e},\mathbf{f}) in the quadratic number field KfK_{f}, then

ζf,p(s)=W𝐞,𝐟(p,ps).\zeta^{\wedge}_{\mathcal{L}_{f},p}(s)=W_{\mathbf{e},\mathbf{f}}(p,p^{-s}).

For all three decomposition types, the following functional equation holds:

W𝐞,𝐟(X1,Y1)=p(i=1rfi)(94s)W𝐞,𝐟(X,Y).W_{\mathbf{e},\mathbf{f}}(X^{-1},Y^{-1})=p^{(\sum_{i=1}^{r}f_{i})(9-4s)}W_{\mathbf{e},\mathbf{f}}(X,Y).
Proof.

Let β1\beta_{1} and β2\beta_{2} be the roots of f(x)f(x). They are both contained in the Galois extension Kf/K_{f}/\mathbb{Q}. Let \mathcal{H} be the Heisenberg Lie lattice =x,y,z\mathcal{H}=\langle x,y,z\rangle_{\mathbb{Z}} such that [x,y]=z[x,y]=z and the product of any other pair of generators vanishes. Consider 𝒪Kf\mathcal{H}\otimes_{\mathbb{Z}}\mathcal{O}_{K_{f}} as a Lie lattice by restriction of scalars. Since pp is coprime to f\mathcal{F}_{f}, we have p[β1]=𝒪Kfp\mathbb{Z}_{p}[\beta_{1}]=\mathcal{O}_{K_{f}}\otimes_{\mathbb{Z}}\mathbb{Z}_{p} and it is easy to verify that there is an isomorphism φ:fp(𝒪Kf)p\varphi:\mathcal{L}_{f}\otimes_{\mathbb{Z}}\mathbb{Z}_{p}\stackrel{{\scriptstyle\sim}}{{\to}}(\mathcal{H}\otimes_{\mathbb{Z}}\mathcal{O}_{K_{f}})\otimes_{\mathbb{Z}}\mathbb{Z}_{p} given by

(x1,x2,y1,y2,z1,z2)(x1,xβ1,y(β2),y1,z(β2),z1).(x_{1},x_{2},y_{1},y_{2},z_{1},z_{2})\mapsto(x\otimes 1,x\otimes\beta_{1},y\otimes(-\beta_{2}),y\otimes 1,z\otimes(-\beta_{2}),z\otimes 1).

Thus ζf,p(s)=ζ𝒪Kf,p(s)\zeta^{\wedge}_{\mathcal{L}_{f},p}(s)=\zeta^{\wedge}_{\mathcal{H}\otimes_{\mathbb{Z}}\mathcal{O}_{K_{f}},p}(s), and the right-hand side of this equality was computed by Grunewald, Segal, and Smith in Theorem 7.1 and Lemma 7.2 of [14]; see Theorem 5.10 and Remark 5.12 of [3] for an alternative derivation of the same explicit result. ∎

Observe that the local pro-isomorphic zeta functions ζf,p(s)\zeta^{\wedge}_{\mathcal{L}_{f},p}(s) appearing in Theorem 1.4 decompose as products of factors parametrized by primes of KfK_{f} dividing pp. This is a special case of a general phenomenon [3, Proposition 3.14]. The Lie algebras p\mathcal{H}\otimes_{\mathbb{Z}}\mathbb{Q}_{p} satisfy a rigidity property [3, Definition 3.8] originally introduced by Segal [22]; as a consequence, the pro-isomorphic zeta function ζ𝒪K,p(s)\zeta^{\wedge}_{\mathcal{H}\otimes\mathcal{O}_{K},p}(s) may be computed easily for any number field KK. Such rigidity does not hold for the Lie algebras fp\mathcal{L}_{f}\otimes_{\mathbb{Z}}\mathbb{Q}_{p} of Theorem 1.1; this is essentially a consequence of the arithmetic of the number field KfK_{f}, which is larger than \mathbb{Q}, controlling the local pro-isomorphic zeta functions ζf,p(s)\zeta^{\wedge}_{\mathcal{L}_{f},p}(s).

1.4. Overview

It is a simple but fundamental observation that computations of local factors of pro-isomorphic zeta functions can be reduced to pp-adic integrals of a certain form. Consider the \mathbb{Q}-Lie algebra LΔ=ΔL_{\Delta}=\mathcal{L}_{\Delta}\otimes_{\mathbb{Z}}\mathbb{Q}, and let 𝐆Δ\mathbf{G}_{\Delta} be its algebraic automorphism group. This is the algebraic group defined over \mathbb{Q} characterized by the property that 𝐆Δ(E)AutE(LΔE)\mathbf{G}_{\Delta}(E)\simeq\mathrm{Aut}_{E}(L_{\Delta}\otimes_{\mathbb{Q}}E) for every field EE of characteristic zero. Fixing the ordered basis (x1,,xn,y1,,yn,z1,z2)(x_{1},\dots,x_{n},y_{1},\dots,y_{n},z_{1},z_{2}) of Δ\mathcal{L}_{\Delta} gives an embedding 𝐆ΔGL2n+2\mathbf{G}_{\Delta}\hookrightarrow\mathrm{GL}_{2n+2}. Now set GΔ+(p)=𝐆Δ(p)M2n+2(p)G_{\Delta}^{+}(\mathbb{Q}_{p})=\mathbf{G}_{\Delta}(\mathbb{Q}_{p})\cap\mathrm{M}_{2n+2}(\mathbb{Z}_{p}), and let GΔ(p)=𝐆Δ(p)GL2n+2(p)G_{\Delta}(\mathbb{Z}_{p})=\mathbf{G}_{\Delta}(\mathbb{Q}_{p})\cap\mathrm{GL}_{2n+2}(\mathbb{Z}_{p}). Let μ\mu be the right Haar measure on the group 𝐆Δ(p)\mathbf{G}_{\Delta}(\mathbb{Q}_{p}), normalized so that μ(GΔ(p))=1\mu(G_{\Delta}(\mathbb{Z}_{p}))=1. Then by [14, Proposition 3.4] we have

(1.2) ζΔ,p(s)=GΔ+(p)|detg|ps𝑑μ,\zeta^{\wedge}_{\mathcal{L}_{\Delta},p}(s)=\int_{G_{\Delta}^{+}(\mathbb{Q}_{p})}|\det g|_{p}^{s}d\mu,

where ||p|\,\cdot\,|_{p} is the normalized valuation on p\mathbb{Q}_{p}. The structure of 𝐆Δ\mathbf{G}_{\Delta}, for all primary polynomials Δ(x)=f(x)\Delta(x)=f(x)^{\ell}, was determined by Berman, Klopsch, and Onn; see Proposition 3.1 below for the case degf(x)3\mathrm{deg}\,f(x)\geq 3. When Δ(x)=f(x)\Delta(x)=f(x) is irreducible, the domain of integration of (1.2) is sufficiently simple that the integral may be computed directly using the Cartan decomposition of SL2(F)\mathrm{SL}_{2}(F) for pp-adic fields F/pF/\mathbb{Q}_{p}. See Remark 3.5 for the reason for the restriction to the irreducible case. The earlier work cited in the proof of Theorem 1.4 also amounts to the computation of an integral (1.2). After establishing several preliminary results, we prove Theorem 1.1 and its corollary in Section 3 below.

The algebraic group 𝐆Δ\mathbf{G}_{\Delta} has a particularly complicated structure when Δ(x)\Delta(x) is a power of a linear polynomial. The pro-isomorphic zeta functions of Δ\mathcal{L}_{\Delta} are obtained in [5] for Δ(x)=x2\Delta(x)=x^{2} and Δ(x)=x3\Delta(x)=x^{3} after computations substantially more involved than the ones in Section 3; it is notable that the simplifying assumptions used in [11] to analyze the integrals (1.2) do not hold in these cases.

1.5. Related work and questions

This section mentions some results related to our work, as well as directions for future research.

1.5.1. DD^{\ast}-Lie lattices of odd rank

A DD^{\ast}-group is a radicable, finitely generated, class-two-nilpotent, and torsion free group with finite Hirsch length and with a derived subgroup of Hirsch length two. Grunewald and Segal [13, §6] classified DD^{\ast}-groups up to commensurability. They showed that every DD^{\ast}-group has a central decomposition into indecomposable constituents, which are unique up to isomorphism. The Lie lattices corresponding to indecomposable DD^{\ast}-groups of even Hirsch length are precisely the family Δ\mathcal{L}_{\Delta}, parametrized by primary polynomials Δ(x)[x]\Delta(x)\in\mathbb{Z}[x], that is considered in this article. The indecomposable DD^{\ast}-groups of odd Hirsch length were also determined in [13]. The pro-isomorphic zeta functions of the associated Lie lattices, and indeed of a family of Lie lattices generalizing them, were obtained by a lengthy calculation by Berman, Klopsch, and Onn [7, Theorem 1.4]; these have a somewhat different flavor from the functions of Theorem 1.1. The results of [7] were generalized in [3, Theorem 5.17] to the pro-isomorphic zeta functions of the restriction of scalars to \mathbb{Z} of the base extension of such Lie lattices to the ring of integers of an arbitrary number field.

1.5.2. Ideal zeta functions

We note that the ideal zeta functions ζ(s)\zeta^{\triangleleft}_{\mathcal{L}}(s), namely the Dirichlet series counting ideals of finite index in \mathcal{L}, were computed explicitly by Voll [24, Propositions 2 and 3] for Lie lattices \mathcal{L} corresponding to indecomposable DD^{\ast}-groups of arbitrary Hirsch length. He also computed [26, Theorem 1.1] the ideal zeta functions of the generalized family considered in [7].

1.5.3. General DD^{\ast}-groups

As mentioned above, Lie lattices corresponding to general DD^{\ast}-groups arise as central amalgamations of the lattices corresponding to indecomposable DD^{\ast}-groups. The pro-isomorphic zeta function of the central amalgamation of nn copies of the Heisenberg Lie lattice \mathcal{H} was computed in [3, Theorem 5.10]; see also [11, §3]. The complexity of the expression obtained grows factorially with nn, suggesting that computing the pro-isomorphic zeta functions of arbitrary DD^{\ast}-groups remains a significant challenge. By contrast, observe that an algorithm for computing the ideal zeta functions of arbitrary DD^{\ast} groups is given in [24, §3.3]; see also [2, Theorem 1.2], which shows that ideal zeta functions behave well, in a precise way, under central amalgamation of copies of the same Lie lattice.

1.5.4. Uniformity on Frobenius sets

A well-known consequence of Takagi’s existence theorem in global class field theory states that if the Galois closure of a finite extension K/K/\mathbb{Q} is non-abelian, then the set SplK\mathrm{Spl}_{K} of totally split primes in K/K/\mathbb{Q} is not characterized, among the unramified primes, by any finite collection of congruences. Precisely, there do not exist mm\in\mathbb{N} and S{0,,m1}S\subseteq\{0,\dots,m-1\} such that SplK={p:pamodm,aS}\mathrm{Spl}_{K}=\{p:p\equiv a\,\mathrm{mod}\,m,\,a\in S\}; see, for instance, [12, Theorem 7.21]. In particular, Theorem 1.1 shows that for any monic irreducible f(x)[x]f(x)\in\mathbb{Z}[x] such that Kf/K_{f}/\mathbb{Q} has non-abelian Galois closure, the function pζf,p(s)p\mapsto\zeta^{\wedge}_{\mathcal{L}_{f},p}(s) is not uniform on residue classes. Corollary 1.2 provides an example of this phenomenon; note that the Galois closure of (23)/\mathbb{Q}(\sqrt[3]{2})/\mathbb{Q} has Galois group S3S_{3}. By contrast, it is follows from the proof of [16, Theorem 1.2] that the set of primes of fixed decomposition type in Kf/K_{f}/\mathbb{Q} is a Frobenius set, namely that it is defined by the solvability of a fixed collection of polynomial congruences; see [16] for precise definitions. It was recently shown [23, Corollary 1.8] that the function assigning to a prime pp the order of the automorphism group of the group of 𝔽p\mathbb{F}_{p}-points of certain unipotent group schemes is polynomial on Frobenius sets, but not on residue classes. It would be interesting to describe classes of enumerative problems of algebraic structures whose solution is uniform on Frobenius sets.

2. Preliminaries

This section contains two results that will be used in the computation of pro-isomorphic zeta functions and their functional equations that comprise the core of the paper. We give their proofs here to avoid breaking the flow of the computation later.

2.1. A combinatorial function

We introduce a family of combinatorially defined functions in terms of which it will be convenient to express the local pro-isomorphic zeta functions ζf,p(s)\zeta^{\wedge}_{\mathcal{L}_{f},p}(s). For every rr\in\mathbb{N}, let [r][r] denote the set {1,2,,r}\{1,2,\dots,r\}.

Definition 2.1.

Let rr\in\mathbb{N}. Let {XI}I[r]\{X_{I}\}_{I\subseteq[r]} be a collection of 2r2^{r} variables, one for each subset I[r]I\subseteq[r]. We consider the following function in these variables:

Φr({XI}I[r])=I[r](1)|I|XI1XI.\Phi_{r}(\{X_{I}\}_{I\subseteq[r]})=\sum_{I\subseteq[r]}(-1)^{|I|}\frac{X_{I}}{1-X_{I}}.
Proposition 2.2.

The function Φr\Phi_{r} satisfies the following self-reciprocity upon inversion of the variables:

Φr({XI1})=Φr({XI}).\Phi_{r}(\{X_{I}^{-1}\})=-\Phi_{r}(\{X_{I}\}).
Proof.

Let 𝒫[r]\mathcal{P}[r] denote the power set of [r][r]. Writing the rational function over a common denominator, we find that

(2.1) Φr({XI1})=I𝒫[r](1)|I|XI11XI1=I𝒫[r](1)|I|+11XI=I𝒫[r](1)|I|+1J𝒫[r]JI(1XJ)J𝒫[r](1XJ).\Phi_{r}(\{X_{I}^{-1}\})=\\ \sum_{I\in\mathcal{P}[r]}(-1)^{|I|}\frac{X^{-1}_{I}}{1-X^{-1}_{I}}=\sum_{I\in\mathcal{P}[r]}\frac{(-1)^{|I|+1}}{1-X_{I}}=\frac{\sum_{I\in\mathcal{P}[r]}(-1)^{|I|+1}\prod_{J\in\mathcal{P}[r]\atop J\neq I}(1-X_{J})}{\prod_{J\in\mathcal{P}[r]}(1-X_{J})}.

Similarly,

(2.2) Φr({XI})=I𝒫[r](1)|I|+1XIJ𝒫[r]JI(1XJ)J𝒫[r](1XJ).-\Phi_{r}(\{X_{I}\})=\frac{\sum_{I\in\mathcal{P}[r]}(-1)^{|I|+1}X_{I}\prod_{J\in\mathcal{P}[r]\atop J\neq I}(1-X_{J})}{\prod_{J\in\mathcal{P}[r]}(1-X_{J})}.

Thus it suffices to show that the numerators of the two expressions are the same. Multiplying out the parentheses and computing the coefficient of the monomial JTXJ\prod_{J\in T}X_{J} for each T𝒫[r]T\subseteq\mathcal{P}[r], we find that the numerator of (2.1) is

I𝒫[r](1)|I|+1J𝒫[r]JI(1XJ)=I𝒫[r](1)|I|+1T𝒫[r]IT(1)|T|JTXJ=T𝒫[r](1)|T|+1(I𝒫[r]T(1)|I|)JTXJ=T𝒫[r](1)|T|(IT(1)|I|)JTXJ,\sum_{I\in\mathcal{P}[r]}(-1)^{|I|+1}\prod_{J\in\mathcal{P}[r]\atop J\neq I}(1-X_{J})=\sum_{I\in\mathcal{P}[r]}(-1)^{|I|+1}\sum_{T^{\prime}\subseteq\mathcal{P}[r]\atop I\not\in T^{\prime}}(-1)^{|T^{\prime}|}\prod_{J\in T^{\prime}}X_{J}=\\ \sum_{T\subseteq\mathcal{P}[r]}(-1)^{|T|+1}\left(\sum_{I\in\mathcal{P}[r]\setminus T}(-1)^{|I|}\right)\prod_{J\in T}X_{J}=\sum_{T\subseteq\mathcal{P}[r]}(-1)^{|T|}\left(\sum_{I\in T}(-1)^{|I|}\right)\prod_{J\in T}X_{J},

where the last equality follows from the elementary observation that I𝒫[r](1)|I|=i=1r(11)=0\sum_{I\in\mathcal{P}[r]}(-1)^{|I|}=\prod_{i=1}^{r}(1-1)=0. Analogously, the numerator of (2.2) is

I𝒫[r](1)|I|+1XIT𝒫[r]IT(1)|T|JTXJ=I𝒫[r](1)|I|+1U𝒫[r]IU(1)|U|1JUXJ=T𝒫[r](IT(1)|T|+|I|)JTXJ,\sum_{I\in\mathcal{P}[r]}(-1)^{|I|+1}X_{I}\sum_{T^{\prime}\subseteq\mathcal{P}[r]\atop I\not\in T^{\prime}}(-1)^{|T^{\prime}|}\prod_{J\in T^{\prime}}X_{J}=\sum_{I\in\mathcal{P}[r]}(-1)^{|I|+1}\sum_{U\subseteq\mathcal{P}[r]\atop I\in U}(-1)^{|U|-1}\prod_{J\in U}X_{J}=\\ \sum_{T\subseteq\mathcal{P}[r]}\left(\sum_{I\in T}(-1)^{|T|+|I|}\right)\prod_{J\in T}X_{J},

where the first equality is obtained by setting U=T{I}U=T^{\prime}\cup\{I\}. This completes the proof of our claim. ∎

2.2. The Cartan decomposition of SL2(F)\mathrm{SL}_{2}(F), for a pp-adic field FF

Let pp be a prime, and let vpv_{p} be the normalized additive valuation on p\mathbb{Q}_{p}. Let F/pF/\mathbb{Q}_{p} be a finite extension with ring of integers 𝒪F\mathcal{O}_{F}. Fix a uniformizer π𝒪F\pi\in\mathcal{O}_{F}. Let kF=𝒪F/(π)k_{F}=\mathcal{O}_{F}/(\pi) be the residue field, and let qq denote its cardinality. Given λkF×\lambda\in k_{F}^{\times}, let [λ]𝒪F[\lambda]\in\mathcal{O}_{F} denote the (q1)(q-1)-st root of unity lifting λ\lambda, and set [0]=0[0]=0. Let I0={0}I_{0}=\{0\}, and for every mm\in\mathbb{N} define the set

Im={[λ0]+π[λ1]++πm1[λm1]:(λ0,,λm1)kFm}𝒪F.I_{m}=\left\{[\lambda_{0}]+\pi[\lambda_{1}]+\cdots+\pi^{m-1}[\lambda_{m-1}]:(\lambda_{0},\dots,\lambda_{m-1})\in k_{F}^{m}\right\}\subset\mathcal{O}_{F}.
Lemma 2.3.

Let F/pF/\mathbb{Q}_{p} be a finite extension, and let π𝒪F\pi\in\mathcal{O}_{F} be a uniformizer. A list of representatives of right cosets of SL2(𝒪F)\mathrm{SL}_{2}(\mathcal{O}_{F}) in SL2(F)\mathrm{SL}_{2}(F) is given by

m0{(πm0πmκπm):κI2m}m1{(0πmπmπm+1κ):κI2m1}.\coprod_{m\geq 0}\left\{\left(\begin{array}[]{cc}\pi^{m}&0\\ \pi^{-m}\kappa&\pi^{-m}\end{array}\right):\kappa\in I_{2m}\right\}\coprod\coprod_{m\geq 1}\left\{\left(\begin{array}[]{cc}0&-\pi^{m}\\ \pi^{-m}&-\pi^{-m+1}\kappa\end{array}\right):\kappa\in I_{2m-1}\right\}.
Proof.

Set δ=(π00π1)SL2(F)\delta=\left(\begin{array}[]{cc}\pi&0\\ 0&\pi^{-1}\end{array}\right)\in\mathrm{SL}_{2}(F). From the Cartan decomposition

SL2(F)=m0SL2(𝒪F)δmSL2(𝒪F),\mathrm{SL}_{2}(F)=\coprod_{m\geq 0}\mathrm{SL}_{2}(\mathcal{O}_{F})\delta^{m}\mathrm{SL}_{2}(\mathcal{O}_{F}),

setting Km=SL2(𝒪F)δmSL2(𝒪F)δmK_{m}=\mathrm{SL}_{2}(\mathcal{O}_{F})\cap\delta^{-m}\mathrm{SL}_{2}(\mathcal{O}_{F})\delta^{m} for m0m\geq 0, one deduces the decomposition

SL2(F)=m0KmkKm\SL2(𝒪F)SL2(𝒪F)δmk\mathrm{SL}_{2}(F)=\coprod_{m\geq 0}\coprod_{K_{m}k\in K_{m}\backslash\mathrm{SL}_{2}(\mathcal{O}_{F})}\mathrm{SL}_{2}(\mathcal{O}_{F})\delta^{m}k

of SL2(F)\mathrm{SL}_{2}(F) into right cosets of SL2(𝒪F)\mathrm{SL}_{2}(\mathcal{O}_{F}). The claim follows by a straightforward computation. An alternative list of coset representatives may be obtained from [1, Proposition 1.1], noting that left cosets of SL2(𝒪F)\mathrm{SL}_{2}(\mathcal{O}_{F}) correspond to vertices of the Bruhat-Tits tree of SL2(F)\mathrm{SL}_{2}(F) lying at an even distance from v0v_{0}, in the notation of [1]. ∎

Corollary 2.4.

Let ee denote the ramification degree of F/pF/\mathbb{Q}_{p}. Let νF\nu_{F} be the right Haar measure on SL2(F)\mathrm{SL}_{2}(F), with the normalization μ(SL2(𝒪F))=1\mu(\mathrm{SL}_{2}(\mathcal{O}_{F}))=1. For ap{0}a\in\mathbb{Z}_{p}\setminus\{0\}, set

SF(a)={(α11α12α21α22)SL2(F):(aα11α12aα21α22)M2(𝒪F)}.S_{F}(a)=\left\{\left(\begin{array}[]{cc}\alpha_{11}&\alpha_{12}\\ \alpha_{21}&\alpha_{22}\end{array}\right)\in\mathrm{SL}_{2}(F):\left(\begin{array}[]{cc}a\alpha_{11}&\alpha_{12}\\ a\alpha_{21}&\alpha_{22}\end{array}\right)\in\mathrm{M}_{2}(\mathcal{O}_{F})\right\}.

Then νF(SF(a))=1qevp(a)+11q\nu_{F}(S_{F}(a))=\frac{1-q^{ev_{p}(a)+1}}{1-q}.

Proof.

It is easy to see that SF(a)S_{F}(a) is invariant under left multiplication by any element of SL2(𝒪F)\mathrm{SL}_{2}(\mathcal{O}_{F}) and thus consists of a union of right cosets of SL2(𝒪F)\mathrm{SL}_{2}(\mathcal{O}_{F}). Observe that a𝒪F=πevp(a)𝒪Fa\mathcal{O}_{F}=\pi^{ev_{p}(a)}\mathcal{O}_{F}. Among the coset representatives listed in Lemma 2.3, the ones contained in SF(a)S_{F}(a) are precisely (1001)\left(\begin{array}[]{cc}1&0\\ 0&1\end{array}\right) and (0πmπmπm+1κ)\left(\begin{array}[]{cc}0&-\pi^{m}\\ \pi^{-m}&-\pi^{-m+1}\kappa\end{array}\right) for m[evp(a)]m\in[ev_{p}(a)] and κ=i=12m2πi[λi]\kappa=\sum_{i=1}^{2m-2}\pi^{i}[\lambda_{i}] divisible by πm1\pi^{m-1}, i.e. satisfying λ0==λm2=0\lambda_{0}=\cdots=\lambda_{m-2}=0. There are

1+m=1evp(a)qm=1qevp(a)+11q1+\sum_{m=1}^{ev_{p}(a)}q^{m}=\frac{1-q^{ev_{p}(a)+1}}{1-q}

of these. Since each right coset has measure 11, the claim follows. ∎

3. Computation

3.1. The algebraic automorphism group

Let f(x)[x]f(x)\in\mathbb{Z}[x] be an irreducible monic polynomial of degree n3n\geq 3. Consider the primary polynomial Δ(x)=f(x)\Delta(x)=f(x)^{\ell} for \ell\in\mathbb{N}, and set KΔ=[x]/(Δ(x))K_{\Delta}=\mathbb{Q}[x]/(\Delta(x)); this ring has dimension n\ell n as a \mathbb{Q}-vector space. To describe the algebraic automorphism group of LΔL_{\Delta} we define three algebraic subgroups of 𝐆𝐋2n+2\mathbf{GL}_{2\ell n+2}. There is a morphism of algebraic groups ρ2:ResKΔ/𝐒𝐋2𝐒𝐋2n+2\rho_{2}:\mathrm{Res}_{K_{\Delta}/\mathbb{Q}}\mathbf{SL}_{2}\to\mathbf{SL}_{2\ell n+2} given by

ρ2(α11α12α21α22)=(ι(α11)ι(α12)ι(α21)ι(α22)I2),\rho_{2}\left(\begin{array}[]{cc}\alpha_{11}&\alpha_{12}\\ \alpha_{21}&\alpha_{22}\end{array}\right)=\left(\begin{array}[]{ccc}\iota(\alpha_{11})&\iota(\alpha_{12})&\\ \iota(\alpha_{21})&\iota(\alpha_{22})&\\ &&I_{2}\end{array}\right),

where for any \mathbb{Q}-algebra RR the map ι:KΔRMn(R)\iota:K_{\Delta}\otimes_{\mathbb{Q}}R\to\mathrm{M}_{\ell n}(R) is determined by ι(βir)=rCΔi\iota(\beta^{i}\otimes r)=rC_{\Delta}^{i} for any i{0}i\in\mathbb{N}\cup\{0\} and rRr\in R, and β=x+(Δ(x))KΔ\beta=x+(\Delta(x))\in K_{\Delta}. Equivalently, ι(α)\iota(\alpha) is the matrix of the RR-linear endomorphism of KΔRK_{\Delta}\otimes_{\mathbb{Q}}R corresponding to multiplication by α\alpha, with respect to the basis (βi1)i=0n1(\beta^{i}\otimes 1)_{i=0}^{\ell n-1}. By a standard exercise in linear algebra, or [15, Theorem 1], the image of ρ2\rho_{2} is indeed contained in 𝐒𝐋2n+2\mathbf{SL}_{2\ell n+2}.

Consider the embedding of algebraic groups ρ1:𝐆m𝐆𝐋2n+2\rho_{1}:\mathbf{G}_{m}\to\mathbf{GL}_{2\ell n+2} given by

ρ1(a)=(aIn000In000aI2)\rho_{1}(a)=\left(\begin{array}[]{ccc}aI_{\ell n}&0&0\\ 0&I_{\ell n}&0\\ 0&0&aI_{2}\end{array}\right)

and the embedding ρ3:𝐆a4n𝐒𝐋2n+2\rho_{3}:\mathbf{G}_{a}^{4\ell n}\to\mathbf{SL}_{2\ell n+2} given by

ρ3(c1,,c4n)=(1c1c2n+11c2nc4n1001).\rho_{3}(c_{1},\dots,c_{4\ell n})=\left(\begin{array}[]{ccccc}1&&&c_{1}&c_{2\ell n+1}\\ &\ddots&&\vdots&\vdots\\ &&1&c_{2\ell n}&c_{4\ell n}\\ &&&1&0\\ &&&0&1\end{array}\right).

Recall that our chosen \mathbb{Z}-basis of Δ\mathcal{L}_{\Delta} allows us to identify the algebraic automorphism group 𝐆Δ\mathbf{G}_{\Delta} of LΔL_{\Delta} with an algebraic subgroup of 𝐆𝐋2n+2\mathbf{GL}_{2\ell n+2}. Its structure, which was determined by Berman, Klopsch, and Onn, consists essentially of an internal semi-direct product of the three subgroups of 𝐆𝐋2n+2\mathbf{GL}_{2\ell n+2} just defined. There exists a symmetric matrix σGLn()\sigma\in\mathrm{GL}_{\ell n}(\mathbb{Z}) such that σCΔσ1=CΔT\sigma C_{\Delta}\sigma^{-1}=C_{\Delta}^{T}; see [5, §2.1]. Set

Σ=(InσI2)GL2n+2().\Sigma=\left(\begin{array}[]{ccc}I_{\ell n}&&\\ &\sigma&\\ &&I_{2}\end{array}\right)\in\mathrm{GL}_{2\ell n+2}(\mathbb{Z}).
Proposition 3.1.

Let Δ(x)=f(x)\Delta(x)=f(x)^{\ell}, where f(x)[x]f(x)\in\mathbb{Z}[x] is an irreducible monic polynomial of degree n3n\geq 3. Then

𝐆Δ=(ρ3(𝐆a4n)Σ(ρ2(ResKΔ/𝐒𝐋2))Σ1)ρ1(𝐆m),\mathbf{G}_{\Delta}=(\rho_{3}(\mathbf{G}_{a}^{4\ell n})\rtimes\Sigma(\rho_{2}(\mathrm{Res}_{K_{\Delta}/\mathbb{Q}}\mathbf{SL}_{2}))\Sigma^{-1})\rtimes\rho_{1}(\mathbf{G}_{m}),

where the action in each internal semi-direct product is by conjugation.

Proof.

The subgroup 𝐆0,Δ𝐆Δ\mathbf{G}_{0,\Delta}\subset\mathbf{G}_{\Delta} of automorphisms acting trivially on the center z1,z2\langle z_{1},z_{2}\rangle is described by [5, Theorem 2.3] and its proof and is ρ3(𝐆a4n)Σ(ρ2(ResKΔ/𝐒𝐋2))Σ1\rho_{3}(\mathbf{G}_{a}^{4\ell n})\rtimes\Sigma(\rho_{2}(\mathrm{Res}_{K_{\Delta}/\mathbb{Q}}\mathbf{SL}_{2}))\Sigma^{-1}. Under the assumption n3n\geq 3, every automorphism acts on the center as a scalar by [6, Theorem 1.4]; this case is not treated in the final version of [5], which focuses on n=1n=1. It is easy to check that ρ1(𝐆m)𝐆Δ\rho_{1}(\mathbf{G}_{m})\subset\mathbf{G}_{\Delta}. Thus, for any field extension E/E/\mathbb{Q}, any element of 𝐆Δ(E)\mathbf{G}_{\Delta}(E) may be expressed uniquely as a product of an element of ρ1(E×)\rho_{1}(E^{\times}) and one of 𝐆0,Δ(E)\mathbf{G}_{0,\Delta}(E), and the claim follows. ∎

Remark 3.2.

Observe that when f(x)[x]f(x)\in\mathbb{Z}[x] is an irreducible monic quadratic polynomial, the expression of Theorem 1.1 coincides with the correct local factor ζf,p(s)\zeta^{\wedge}_{\mathcal{L}_{f},p}(s), as given in Theorem 1.4, when pp is inert in KfK_{f}, but not for the remaining two decomposition types. We showed in Section 1.3 that fp(𝒪Kf)p\mathcal{L}_{f}\otimes_{\mathbb{Z}}\mathbb{Z}_{p}\simeq(\mathcal{H}\otimes_{\mathbb{Z}}\mathcal{O}_{K_{f}})\otimes_{\mathbb{Z}}\mathbb{Z}_{p} when pp is coprime to f\mathcal{F}_{f}, and this gives rise to extra symmetries of f\mathcal{L}_{f}. Indeed, by [6, Theorem 1.4], the structure of 𝐆f(p)\mathbf{G}_{f}(\mathbb{Q}_{p}) in this case is described by Proposition 3.1, except that ρ1(𝐆m(p))\rho_{1}(\mathbf{G}_{m}(\mathbb{Q}_{p})) is replaced by a group isomorphic to Kf×K_{f}^{\times} rather than p×\mathbb{Q}_{p}^{\times}.

3.2. Notation

From now on we assume =1\ell=1, namely that Δ(x)=f(x)[x]\Delta(x)=f(x)\in\mathbb{Z}[x] is an irreducible monic polynomial of degree n3n\geq 3. To simplify the notation, write 𝐆𝐆𝐋2n+2\mathbf{G}\subset\mathbf{GL}_{2n+2} for 𝐆Δ\mathbf{G}_{\Delta}. Similarly, write KK for KΔK_{\Delta}; this is the number field (β)\mathbb{Q}(\beta), where β\beta is a root of f(x)f(x). Let 𝒪K\mathcal{O}_{K} denote the ring of integers of KK, and recall that the conductor f\mathcal{F}_{f} is the largest ideal of 𝒪K\mathcal{O}_{K} contained in [β]\mathbb{Z}[\beta].

Now let pp be a rational prime that decomposes in KK as p𝒪K=𝔭1e1𝔭rerp\mathcal{O}_{K}=\mathfrak{p}_{1}^{e_{1}}\cdots\mathfrak{p}_{r}^{e_{r}}, where the distinct prime ideals 𝔭i𝒪K\mathfrak{p}_{i}\triangleleft\mathcal{O}_{K} have residue fields 𝒪K/𝔭i\mathcal{O}_{K}/\mathfrak{p}_{i} of cardinality qi=pfiq_{i}=p^{f_{i}}. Then pKF1××Fr\mathbb{Q}_{p}\otimes_{\mathbb{Q}}K\simeq F_{1}\times\cdots\times F_{r}, where for every i[r]i\in[r] we write FiF_{i} for the localization K𝔭iK_{\mathfrak{p}_{i}}. Similarly, p𝒪K𝒪F1××𝒪Fr\mathbb{Z}_{p}\otimes_{\mathbb{Z}}\mathcal{O}_{K}\simeq\mathcal{O}_{F_{1}}\times\cdots\times\mathcal{O}_{F_{r}}.

Assume that pp is coprime to f\mathcal{F}_{f}. In this case p[x]/(f(x))=p[β]=p𝒪K\mathbb{Z}_{p}[x]/(f(x))=\mathbb{Z}_{p}\otimes_{\mathbb{Z}}\mathbb{Z}[\beta]=\mathbb{Z}_{p}\otimes_{\mathbb{Z}}\mathcal{O}_{K}.

3.3. Setup and evaluation of a pp-adic integral

It is immediate from Proposition 3.1 that

𝐆(p)=\displaystyle\mathbf{G}(\mathbb{Q}_{p})= ρ1(p×)(Σ(ρ2(SL2(pK)))Σ1ρ3(p4n))=\displaystyle\rho_{1}(\mathbb{Q}_{p}^{\times})\ltimes(\Sigma(\rho_{2}(\mathrm{SL}_{2}(\mathbb{Q}_{p}\otimes_{\mathbb{Q}}K)))\Sigma^{-1}\ltimes\rho_{3}(\mathbb{Q}_{p}^{4n}))=
ρ1(p×)(Σ(ρ2(i=1rSL2(Fi)))Σ1ρ3(p4n)).\displaystyle\rho_{1}(\mathbb{Q}_{p}^{\times})\ltimes\left(\Sigma\left(\rho_{2}\left(\prod_{i=1}^{r}\mathrm{SL}_{2}(F_{i})\right)\right)\Sigma^{-1}\ltimes\rho_{3}(\mathbb{Q}_{p}^{4n})\right).

We now explicitly determine the two subsets of 𝐆(p)\mathbf{G}(\mathbb{Q}_{p}) necessary for our calculation.

Lemma 3.3.

Suppose that pp is coprime to the conductor f\mathcal{F}_{f}. Suppose that ap×a\in\mathbb{Q}_{p}^{\times}, that A=(α11α12α21α22)SL2(pK)A=\left(\begin{array}[]{cc}\alpha_{11}&\alpha_{12}\\ \alpha_{21}&\alpha_{22}\end{array}\right)\in\mathrm{SL}_{2}(\mathbb{Q}_{p}\otimes_{\mathbb{Q}}K), and that 𝐜=(c1,,c4n)p4n\mathbf{c}=(c_{1},\dots,c_{4n})\in\mathbb{Q}_{p}^{4n}. Then ρ3(𝐜)Σρ2(A)Σ1ρ1(a)G(p)\rho_{3}(\mathbf{c})\Sigma\rho_{2}(A)\Sigma^{-1}\rho_{1}(a)\in G(\mathbb{Z}_{p}) if and only if ap×a\in\mathbb{Z}_{p}^{\times}, whereas ASL2(p𝒪K)A\in\mathrm{SL}_{2}(\mathbb{Z}_{p}\otimes_{\mathbb{Z}}\mathcal{O}_{K}) and 𝐜p4n\mathbf{c}\in\mathbb{Z}_{p}^{4n}. Given ap{0}a\in\mathbb{Z}_{p}\setminus\{0\}, define

G2+(a)\displaystyle G_{2}^{+}(a) =\displaystyle= {ASL2(pK):(aα11α12aα21α22)M2(p𝒪K)}\displaystyle\left\{A\in\mathrm{SL}_{2}(\mathbb{Q}_{p}\otimes_{\mathbb{Q}}K):\left(\begin{array}[]{cc}a\alpha_{11}&\alpha_{12}\\ a\alpha_{21}&\alpha_{22}\end{array}\right)\in\mathrm{M}_{2}(\mathbb{Z}_{p}\otimes_{\mathbb{Z}}\mathcal{O}_{K})\right\}
G3+(a)\displaystyle G_{3}^{+}(a) =\displaystyle= {𝐜p4n:(ac1,,ac4n)p4n}.\displaystyle\{\mathbf{c}\in\mathbb{Q}_{p}^{4n}:(ac_{1},\dots,ac_{4n})\in\mathbb{Z}_{p}^{4n}\}.

Then ρ3(𝐜)Σρ2(A)Σ1ρ1(a)G+(p)\rho_{3}(\mathbf{c})\Sigma\rho_{2}(A)\Sigma^{-1}\rho_{1}(a)\in G^{+}(\mathbb{Q}_{p}) if and only if ap{0}a\in\mathbb{Z}_{p}\setminus\{0\}, while AG2+(a)A\in G_{2}^{+}(a) and 𝐜G3+(a)\mathbf{c}\in G_{3}^{+}(a).

Proof.

A simple computation shows that

(3.1) ρ3(𝐜)Σρ2(A)Σ1ρ1(a)=(aι(α11)ι(α12)σ1aC1aσι(α21)σι(α22)σ1aC200aI2),\rho_{3}(\mathbf{c})\Sigma\rho_{2}(A)\Sigma^{-1}\rho_{1}(a)=\left(\begin{array}[]{ccc}a\iota(\alpha_{11})&\iota(\alpha_{12})\sigma^{-1}&aC_{1}\\ a\sigma\iota(\alpha_{21})&\sigma\iota(\alpha_{22})\sigma^{-1}&aC_{2}\\ 0&0&aI_{2}\end{array}\right),

where we use ρ1,ρ2,ρ3\rho_{1},\rho_{2},\rho_{3} to denote the corresponding morphisms on p\mathbb{Q}_{p}-points, and where

C1=(c1c2n+1cnc3n),C2=(cn+1c3n+1c2nc4n).\begin{array}[]{lr}C_{1}=\left(\begin{array}[]{cc}c_{1}&c_{2n+1}\\ \vdots&\vdots\\ c_{n}&c_{3n}\end{array}\right),&C_{2}=\left(\begin{array}[]{cc}c_{n+1}&c_{3n+1}\\ \vdots&\vdots\\ c_{2n}&c_{4n}\end{array}\right).\end{array}

Observe, given αpK\alpha\in\mathbb{Q}_{p}\otimes_{\mathbb{Q}}K, that ι(α)Mn(p)\iota(\alpha)\in\mathrm{M}_{n}(\mathbb{Z}_{p}) if and only if αp[β]\alpha\in\mathbb{Z}_{p}\otimes_{\mathbb{Z}}\mathbb{Z}[\beta], which is equivalent to αp𝒪K\alpha\in\mathbb{Z}_{p}\otimes_{\mathbb{Z}}\mathcal{O}_{K} by our hypothesis on pp. Since σGL2()GL2(p)\sigma\in\mathrm{GL}_{2}(\mathbb{Z})\subset\mathrm{GL}_{2}(\mathbb{Z}_{p}), the claim is now immediate from (3.1). ∎

The previous claim allows us to express the pro-isomorphic zeta function ζf,p(s)\zeta^{\wedge}_{\mathcal{L}_{f},p}(s) as an iterated integral. Indeed, let μ1\mu_{1} be the right Haar measure on p×\mathbb{Q}_{p}^{\times}, normalized so that μ1(p×)=1\mu_{1}(\mathbb{Z}_{p}^{\times})=1. Similarly, let μ2\mu_{2} and μ3\mu_{3} be the right Haar measures on SL2(pK)\mathrm{SL}_{2}(\mathbb{Q}_{p}\otimes_{\mathbb{Q}}K) and on p4n\mathbb{Q}_{p}^{4n}, respectively, normalized to μ2(SL2(p𝒪K))=1\mu_{2}(\mathrm{SL}_{2}(\mathbb{Z}_{p}\otimes_{\mathbb{Z}}\mathcal{O}_{K}))=1 and μ3(p4n)=1\mu_{3}(\mathbb{Z}_{p}^{4n})=1. By the first part of Lemma 3.3, these normalizations are compatible with that of the right Haar measure μ\mu on 𝐆(p)\mathbf{G}(\mathbb{Q}_{p}). Then

ζf,p(s)\displaystyle\zeta^{\wedge}_{\mathcal{L}_{f},p}(s) =\displaystyle= G+(p)|detg|ps𝑑μ(g)=\displaystyle\int_{G^{+}(\mathbb{Q}_{p})}|\det g|^{s}_{p}d\mu(g)=
p{0}G2+(a)G3+(a)|detρ3(𝐜)Σρ2(A)Σ1ρ1(a)|ps𝑑μ3(𝐜)𝑑μ2(A)𝑑μ1(a)=\displaystyle\int_{\mathbb{Z}_{p}\setminus\{0\}}\int_{G_{2}^{+}(a)}\int_{G_{3}^{+}(a)}|\det\rho_{3}(\mathbf{c})\Sigma\rho_{2}(A)\Sigma^{-1}\rho_{1}(a)|_{p}^{s}d\mu_{3}(\mathbf{c})d\mu_{2}(A)d\mu_{1}(a)=
p{0}G2+(a)G3+(a)|a|p(n+2)s𝑑μ3(𝐜)𝑑μ2(A)𝑑μ1(a)=\displaystyle\int_{\mathbb{Z}_{p}\setminus\{0\}}\int_{G_{2}^{+}(a)}\int_{G_{3}^{+}(a)}|a|_{p}^{(n+2)s}d\mu_{3}(\mathbf{c})d\mu_{2}(A)d\mu_{1}(a)=
p{0}G2+(a)|a|p(n+2)s4n𝑑μ2(A)𝑑μ1(a).\displaystyle\int_{\mathbb{Z}_{p}\setminus\{0\}}\int_{G_{2}^{+}(a)}|a|_{p}^{(n+2)s-4n}d\mu_{2}(A)d\mu_{1}(a).

Here the first equality is (1.2), the second follows from the second part of Lemma 3.3 and [19, Proposition 28], and the last equality holds because the integrand is constant on each set G3+(a)G_{3}^{+}(a) and μ3(G3+(a))=|a|p4n\mu_{3}(G_{3}^{+}(a))=|a|_{p}^{-4n} for every ap{0}a\in\mathbb{Z}_{p}\setminus\{0\}. Since the integrand is also constant on each G2+(a)G_{2}^{+}(a), we have

(3.2) ζf,p(s)=p{0}|a|p(n+2)s4nμ2(G2+(a))𝑑μ1(a).\zeta^{\wedge}_{\mathcal{L}_{f},p}(s)=\int_{\mathbb{Z}_{p}\setminus\{0\}}|a|_{p}^{(n+2)s-4n}\mu_{2}(G_{2}^{+}(a))d\mu_{1}(a).

Recall the notation defined in Section 3.2.

Lemma 3.4.

Suppose that pp is coprime to f\mathcal{F}_{f}. Then μ2(G2+(a))=i=1r1qieivp(a)+11qi\mu_{2}(G_{2}^{+}(a))=\prod_{i=1}^{r}\frac{1-q_{i}^{e_{i}v_{p}(a)+1}}{1-q_{i}} for all ap{0}a\in\mathbb{Z}_{p}\setminus\{0\}.

Proof.

The decomposition SL2(pK)=i=1rSL2(Fi)\mathrm{SL}_{2}(\mathbb{Q}_{p}\otimes_{\mathbb{Q}}K)=\prod_{i=1}^{r}\mathrm{SL}_{2}(F_{i}) induces SL2(p𝒪K)=i=1rSL2(𝒪Fi)\mathrm{SL}_{2}(\mathbb{Z}_{p}\otimes_{\mathbb{Z}}\mathcal{O}_{K})=\prod_{i=1}^{r}\mathrm{SL}_{2}(\mathcal{O}_{F_{i}}) and G2+(a)=i=1SFi(a)G_{2}^{+}(a)=\prod_{i=1}S_{F_{i}}(a), for the sets SFi(a)S_{F_{i}}(a) defined in Section 2.2, and the Haar measure μ2\mu_{2} is the product of the measures νFi\nu_{F_{i}} defined there. Hence the claim follows from Corollary 2.4. ∎

Remark 3.5.

Lemma 3.4 is the step in our computation that obliges us to restrict to the case of irreducible Δ(x)\Delta(x). For a general primary polynomial Δ(x)\Delta(x), it appears to be difficult to compute the measure of the set

{ASL2(p[x]/(Δ(x))):(aα11α12aα21α22)M2(p[x]/(Δ(x)))}\left\{A\in\mathrm{SL}_{2}(\mathbb{Q}_{p}[x]/(\Delta(x))):\left(\begin{array}[]{cc}a\alpha_{11}&\alpha_{12}\\ a\alpha_{21}&\alpha_{22}\end{array}\right)\in\mathrm{M}_{2}(\mathbb{Z}_{p}[x]/(\Delta(x)))\right\}

in the absence of a suitable analogue of the pp-adic Cartan decomposition.

3.4. Proof of Theorem 1.1

We can now easily deduce the main result stated in the introduction. Indeed, let f(x)[x]f(x)\in\mathbb{Z}[x] be an irreducible monic polynomial of degree n3n\geq 3. Let pp be a prime coprime to f\mathcal{F}_{f} having decomposition type (𝐞,𝐟)(\mathbf{e},\mathbf{f}) in the number field Kf=(x)/(f(x))K_{f}=\mathbb{Q}(x)/(f(x)). We deduce from (3.2) and Lemma 3.4 that

ζf,p(s)=p{0}p(4n(n+2)s)vp(a)i=1r1peifivp(a)+fi1pfidμ1(a).\zeta^{\wedge}_{\mathcal{L}_{f},p}(s)=\int_{\mathbb{Z}_{p}\setminus\{0\}}p^{(4n-(n+2)s)v_{p}(a)}\prod_{i=1}^{r}\frac{1-p^{e_{i}f_{i}v_{p}(a)+f_{i}}}{1-p^{f_{i}}}d\mu_{1}(a).

For any v0v\geq 0, we have μ1({ap:vp(a)=v})=μ1(pvp×)=1\mu_{1}(\{a\in\mathbb{Z}_{p}:v_{p}(a)=v\})=\mu_{1}(p^{v}\mathbb{Z}_{p}^{\times})=1. Hence

ζf,p(s)\displaystyle\zeta^{\wedge}_{\mathcal{L}_{f},p}(s) =\displaystyle= v=0p(4n(n+2)s)vi=1r1peifiv+fi1pfi=\displaystyle\sum_{v=0}^{\infty}p^{(4n-(n+2)s)v}\prod_{i=1}^{r}\frac{1-p^{e_{i}f_{i}v+f_{i}}}{1-p^{f_{i}}}=
I[r](1)|I|v=0p(4n(n+2)s)vp(iIeifi)v+iIfii=1r(1pfi),\displaystyle\frac{\sum_{I\subseteq[r]}(-1)^{|I|}\sum_{v=0}^{\infty}p^{(4n-(n+2)s)v}\cdot p^{(\sum_{i\in I}e_{i}f_{i})v+\sum_{i\in I}f_{i}}}{\prod_{i=1}^{r}(1-p^{f_{i}})},

and by summing geometric series we find that ζf,p(s)=W𝐞,𝐟(p,ps)\zeta^{\wedge}_{\mathcal{L}_{f},p}(s)=W_{\mathbf{e},\mathbf{f}}(p,p^{-s}) for

(3.3) W𝐞,𝐟(X,Y)=i=1r(11Xfi)I[r](1)|I|XiIfi1X4n+iIeifiYn+2,W_{\mathbf{e},\mathbf{f}}(X,Y)=\prod_{i=1}^{r}\left(\frac{1}{1-X^{f_{i}}}\right)\sum_{I\subseteq[r]}(-1)^{|I|}\frac{X^{\sum_{i\in I}f_{i}}}{1-X^{4n+\sum_{i\in I}e_{i}f_{i}}Y^{n+2}},

which indeed depends only on 𝐞\mathbf{e} and 𝐟\mathbf{f}. If 𝐞=𝟏\mathbf{e}=\mathbf{1}, we observe by inspection of (3.3) that

(3.4) W𝟏,𝐟(X,Y)=1X4nYn+2i=1r(1Xfi)Φr({XI}I[r]),W_{\mathbf{1},\mathbf{f}}(X,Y)=\frac{1}{X^{4n}Y^{n+2}\prod_{i=1}^{r}(1-X^{f_{i}})}\Phi_{r}(\{X_{I}\}_{I\subseteq[r]}),

with Φr\Phi_{r} as in Definition 2.1 and XI=X4n+iIfiYn+2X_{I}=X^{4n+\sum_{i\in I}f_{i}}Y^{n+2} for all I[r]I\subseteq[r]. The claimed functional equation (1.1) follows from Proposition 2.2 and a simple calculation.

3.5. Proof of Corollary 1.2

If f(x)=x32f(x)=x^{3}-2, then K=Kf=(23)K=K_{f}=\mathbb{Q}(\sqrt[3]{2}), and it is a classical fact (see, for instance, [9, Theorem 6.4.13]) that 𝒪K=[23]\mathcal{O}_{K}=\mathbb{Z}[\sqrt[3]{2}]. Thus f=(1)\mathcal{F}_{f}=(1) and Theorem 1.1 applies to all primes. The discriminant of KK is 108-108, so the only ramified primes are p{2,3}p\in\{2,3\}, and one easily verifies that they are both totally ramified. If p>3p>3, then it follows from [9, Corollary 6.4.15] and the characterization of the totally split primes in e.g. [10, Theorem 9.8] that pp is totally split if p=a2+27b2p=a^{2}+27b^{2} (which implies p1mod 3p\equiv 1\,\mathrm{mod}\,3), whereas p𝒪K=𝔭1𝔭2p\mathcal{O}_{K}=\mathfrak{p}_{1}\mathfrak{p}_{2} with f1=1f_{1}=1 and f2=2f_{2}=2 if p2mod 3p\equiv 2\,\mathrm{mod}\,3 and pp is inert otherwise. With this classification of primes by decomposition type in hand, the claimed formulas are obtained from Theorem 1.1 by straightforward computation.

Acknowledgements.

We are grateful to the anonymous referee for helpful suggestions.

References

  • [1] R. Abdellatif, Classification des représentations modulo pp de SL(2,F){\rm SL}(2,F), Bull. Soc. Math. France 142 (2014), 537–589.
  • [2] T. Bauer and M. M. Schein, Ideal growth in amalgamated powers of nilpotent rings of class two and zeta functions of quiver representations, Bull. London Math. Soc. 55 (2023), 1511–1529.
  • [3] M. N. Berman, I. Glazer, and M. M. Schein, Pro-isomorphic zeta functions of nilpotent groups and Lie rings under base extension, Trans. Amer. Math. Soc. 375 (2022), 1051–1100.
  • [4] M. N. Berman and B. Klopsch, A nilpotent group without local functional equations for pro-isomorphic subgroups, J. Group Theory 18 (2015), 489–510.
  • [5] M. N. Berman, B. Klopsch, and U. Onn, On pro-isomorphic zeta functions of D{D}^{\ast}-groups of even Hirsch length, arXiv/1511.06360, to appear in Israel J. Math.
  • [6] by same author, On pro-isomorphic zeta functions of D{D}^{\ast}-groups of even Hirsch length, arXiv/1511.06360v2.
  • [7] by same author, A family of class-2 nilpotent groups, their automorphisms and pro-isomorphic zeta functions, Math. Z. 290 (2018), 909–935.
  • [8] A. Carnevale, M. M. Schein, and C. Voll, Generalized Igusa functions and ideal growth of nilpotent Lie rings, arXiv:1903.03090, to appear in Algebra Number Theory.
  • [9] H. Cohen, A course in computational algebraic number theory, Graduate Texts in Mathematics, vol. 138, Springer-Verlag, Berlin, 1993.
  • [10] D. A. Cox, Primes of the form x2+ny2x^{2}+ny^{2}, 2nd ed., Pure and Applied Mathematics, John Wiley & Sons, Hoboken, 2013.
  • [11] M. P. F. du Sautoy and A. Lubotzky, Functional equations and uniformity for local zeta functions of nilpotent groups, Amer. J. Math. 118 (1996), 39–90.
  • [12] D. Garbanati, Class field theory summarized, Rocky Mountain J. Math. 11 (1981), 195–225.
  • [13] F. J. Grunewald and D. Segal, Reflections on the classification of torsion-free nilpotent groups, Group Theory. Essays for Philip Hall, Academic Press, London, 1984, pp. 121–158.
  • [14] F. J. Grunewald, D. Segal, and G. C. Smith, Subgroups of finite index in nilpotent groups, Invent. Math. 93 (1988), 185–223.
  • [15] I. Kovacs, D. S. Silver, and S. G. Williams, Determinants of commuting-block matrices, Amer. Math. Monthly 106 (1999), 950–952.
  • [16] J. C. Lagarias, Sets of primes determined by systems of polynomial congruences, Illinois J. Math. 27 (1983), 224–239.
  • [17] S. Lee and C. Voll, Zeta functions of integral nilpotent quiver representations, Int. Math. Res. Not. IMRN (2023), 3460–3515.
  • [18] J. Maglione and C. Voll, Flag Hilbert-Hoincaré series of hyperplane arrangements and their Igusa zeta functions, arXiv:2103.03640, to appear in Israel J. Math.
  • [19] L. Nachbin, The Haar integral, Van Nostrand, Princeton-Toronto-London, 1965.
  • [20] T. Rossmann and C. Voll, Groups, graphs, and hypergraphs: average sizes of kernels of generic matrices with support constraints, arXiv:1908.09589, to appear in Memoirs Amer. Math. Soc.
  • [21] M. M. Schein and C. Voll, Normal zeta functions of the Heisenberg groups over number rings I – the unramified case, J. London Math. Soc. (2) 91 (2015), 19–46.
  • [22] D. Segal, On the automorphism groups of certain Lie algebras, Math. Proc. Camb. Phil. Soc. 106 (1989), 67–76.
  • [23] M. Stanojkovski and C. Voll, Hessian matrices, automorphisms of pp-groups, and torsion points of elliptic curves, Math. Ann. 381 (2021), 593–629.
  • [24] C. Voll, Zeta functions of groups and enumeration in Bruhat-Tits buildings, Amer. J. Math. 126 (2004), 1005–1032.
  • [25] by same author, Functional equations for zeta functions of groups and rings, Ann. of Math. (2) 172 (2010), 1181–1218.
  • [26] by same author, Ideal zeta functions associated to a family of class-2-nilpotent Lie rings, Q. J. Math. 71 (2020), 959–980.