This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Principal subspaces of basic modules for twisted affine Lie algebras, qq-series multisums, and Nandi’s identities

Katherine Baker Department of Mathematics and Computer Science, Ursinus College, 601 E Main St, Collegeville, PA 19426 [email protected] Shashank Kanade Department of Mathematics, University of Denver, Denver, CO 80208 [email protected] Matthew C. Russell Department of Mathematics, University of Illinois Urbana-Champaign, Urbana, IL 61801 [email protected]  and  Christopher Sadowski Department of Mathematics and Computer Science, Ursinus College, 601 E Main St, Collegeville, PA 19426 [email protected]
Abstract.

We provide an observation relating several known and conjectured qq-series identities to the theory of principal subspaces of basic modules for twisted affine Lie algebras. We also state and prove two new families of qq-series identities. The first family provides quadruple sum representations for Nandi’s identities, including a manifestly positive representation for the first identity. The second is a family of new mod 10 identities connected with principal characters of level 4 integrable, highest-weight modules of D4(3)\mathrm{D}_{4}^{(3)}.

1. Introduction

Principal subspaces of standard (i.e., highest-weight and integrable) modules for untwisted affine Lie algebras were introduced and studied by Feigin and Stoyanovsky [21, 42], and their study from a vertex-algebraic point of view has been developed by Calinescu, Capparelli, Lepowsky, and Milas [16, 17, 9, 10, 11], and many others. In particular, the graded dimensions of principal subspaces are interesting due to their connection to various partition identities and recursions they satisfy. The study of principal subspaces for standard modules of twisted affine Lie algebras was initiated by Calinescu, Lepowsky, and Milas [12], and further developed in works by Calinescu, Milas, Penn, and the fourth author [13, 34, 35, 14]. The multigraded dimensions for principal subspaces of basic (i.e., standard module with highest weight Λ0\Lambda_{0}, see, for example, Carter’s book [18, P. 508]) modules for twisted affine Lie algebras are well-known, and have been studied in several of those papers [13, 34, 35]. In particular, they take the form

𝐦(0)dq𝐦TA[ν]𝐦2(qkl1;qkl1)m1(qkld;qkld)mdx1m1xdmd\sum_{{\bf m}\in(\mathbb{Z}_{\geq 0})^{d}}\frac{q^{\frac{{\bf m}^{T}A[\nu]{\bf m}}{2}}}{(q^{\frac{k}{l_{1}}};q^{\frac{k}{l_{1}}})_{m_{1}}\cdots(q^{\frac{k}{l_{d}}};q^{\frac{k}{l_{d}}})_{m_{d}}}x_{1}^{m_{1}}\cdots x_{d}^{m_{d}} (1.1)

where A[ν]A[\nu] is a matrix obtained by “folding” a Cartan matrix AA of type A\mathrm{A}, D\mathrm{D}, or E\mathrm{E} by a Dynkin Diagram automorphism of order kk, and l1,,ldl_{1},\dots,l_{d} are the sizes of the orbits of various simple roots (this folding is defined generally by Penn, Webb, and the fourth author [36]). The matrices A[ν]A[\nu] are symmetrized Cartan matrices of types B\mathrm{B}, C\mathrm{C}, F\mathrm{F}, G\mathrm{G}, and, in the case A2n(2)\mathrm{A}_{2n}^{(2)}, of the tadpole Dynkin diagram.

Another recently active field of research is finding and proving Rogers–Ramanujan-type (multi)sum-to-product identities corresponding mainly to the principal characters of various affine Lie algebras. Here, the principal characters refer to principally specialized characters divided by a certain factor depending on the affine Lie algebra in question. For more on this terminology, see the works of the second and third authors [27], [24] or Sills’ textbook [39]. This use of “principal” is not to be confused with the “principal” subspaces mentioned above; these correspond to completely different notions. The second and third authors conjectured identities [26] regarding principal characters of level 22 standard modules of A9(2)\mathrm{A}_{9}^{(2)}, which were later proved by Bringmann, Jennings-Shaffer, and Mahlburg [8] and Rosengren [37]; Takigiku and Tsuchioka [45] provided various results on levels 55 and 77 of A2(2)\mathrm{A}_{2}^{(2)} and some conjectures on level 22 standard modules of A13(2)\mathrm{A}_{13}^{(2)}; the authors [27] proved identities for all standard modules of A2(2)\mathrm{A}_{2}^{(2)}. Andrews, Schilling, and Warnaar [4], Corteel, Dousse, and Uncu [20], Warnaar [49], the second and third authors [24], and Tsuchioka [46] all provided conjectures and/or proved results on identities related to the standard modules of A2(1)\mathrm{A}_{2}^{(1)}. Finally, Griffin, Ono, and Warnaar [23] demonstrated many identities for (not necessarily principal) characters for a variety of affine Lie algebra modules. For an excellent overview of Rogers–Ramanujan-type identities, we refer the reader to the textbook of Sills [39].

This work grew out of the following observations: The graded dimension of the principal subspaces of the basic A2n(2)\mathrm{A}_{2n}^{(2)} module was studied by Calinescu, Milas, and Penn [13] and is given by

𝐦(0)dq𝐦TTd𝐦2(q;q)m1(q;q)md\sum_{{\bf m}\in(\mathbb{Z}_{\geq 0})^{d}}\frac{q^{\frac{{\bf m}^{T}T_{d}{\bf m}}{2}}}{(q;q)_{m_{1}}\cdots(q;q)_{m_{d}}} (1.2)

where TdT_{d} is the Cartan matrix of the tadpole Dynkin diagram. Meanwhile, Calinescu, Penn, and the fourth author [14] conjectured that the graded dimension of the principal subspace of the level kk standard A2(2)\mathrm{A}_{2}^{(2)} module having highest weight kΛ0k\Lambda_{0} is given by the sum side of

𝐦(0)dq𝐦T2Td1𝐦2(q2;q2)m1(q2;q2)md,\sum_{{\bf m}\in(\mathbb{Z}_{\geq 0})^{d}}\frac{q^{\frac{{\bf m}^{T}2T_{d}^{-1}{\bf m}}{2}}}{(q^{2};q^{2})_{m_{1}}\cdots(q^{2};q^{2})_{m_{d}}}, (1.3)

which is the sum side in Stembridge’s generalization of the Göllnitz–Gordon–Andrews identities [41] (see also  [7] and  [48] for more general sums of this form). This conjectured graded dimension has been proved by Takenaka [43]. Similarly, Penn and the fourth author [34] showed that the graded dimension of the basic D4(3)\mathrm{D}_{4}^{(3)}-module is given by

𝐦(0)2q𝐦TA[ν]𝐦2(q3;q3)m1(q;q)m2,\sum_{{\bf m}\in(\mathbb{Z}_{\geq 0})^{2}}\frac{q^{\frac{{\bf m}^{T}A[\nu]{\bf m}}{2}}}{(q^{3};q^{3})_{m_{1}}(q;q)_{m_{2}}}, (1.4)

where

A[ν]=[6332].A[\nu]=\begin{bmatrix}6&-3\\ -3&2\end{bmatrix}. (1.5)

Meanwhile, Penn, Webb, and the fourth author [36] constructed a principal subspace of a twisted module for a lattice vertex operator algebra whose graded dimension is

𝐦(0)2q𝐦T3A[ν]1𝐦2(q;q)m1(q3;q3)m2,\sum_{{\bf m}\in(\mathbb{Z}_{\geq 0})^{2}}\frac{q^{\frac{{\bf m}^{T}3A[\nu]^{-1}{\bf m}}{2}}}{(q;q)_{m_{1}}(q^{3};q^{3})_{m_{2}}}, (1.6)

which is precisely the sum side of one of the mod 99 conjectures of the second and third authors [25] as found by Kurşungöz [30].

The present work is the result of a discussion at the AMS Fall Sectional Meeting at Binghamton University involving Alejandro Ginory, the second author, and the fourth author. Namely, generalizing the shapes of (1.2) and (1.3) (or (1.4) and (1.6)), do the sum sides of any other identities emerge when something similar is done to the graded dimensions of the principal subspaces of the basic modules for a twisted affine Lie algebra? In this work, we show that, for matrices AA of type A\mathrm{A}, D\mathrm{D}, or E6\mathrm{E}_{6}, we do obtain qq-series identities. In particular, we replace A[ν]A[\nu] with a suitable multiple (large enough to clear fractional entries) of A[ν]1A[\nu]^{-1} and manipulate the denominator of each sum of the form (1.1) in a predictable way: if the diagram automorphism has order k=2k=2 or k=3k=3, we replace instances of (q;q)n(q;q)_{n} with (qk;qk)n(q^{k};q^{k})_{n} and vice-versa. In all cases except when AA is of type A2n1A_{2n-1} for n2n\geq 2 these identities come in pairs, producing two families of identities.

After experimentation by the first and fourth authors using Garvan’s qseries Maple package [22], new identities were found using a matrix AA of type E6(2)\mathrm{E}_{6}^{(2)}:

i,j,k,0q4i2+12ij+8ik+4i+12j2+16jk+8j+6k2+6k+22(q2;q2)i(q2;q2)j(q;q)k(q;q)\displaystyle\sum_{i,j,k,\ell\geq 0}\frac{q^{4i^{2}+12ij+8ik+4i\ell+12j^{2}+16jk+8j\ell+6k^{2}+6k\ell+2\ell^{2}}}{\left(q^{2};q^{2}\right)_{i}\left(q^{2};q^{2}\right)_{j}\left(q;q\right)_{k}\left(q;q\right)_{\ell}} =(q2,q3,q4,q10,q11,q12;q14)1,\displaystyle=\left(q^{2},q^{3},q^{4},q^{10},q^{11},q^{12};q^{14}\right)^{-1}_{\infty}, (1.7)
i,j,k,0q2i2+6ij+4ik+2i+6j2+8jk+4j+3k2+3k+2(q2;q2)i(q2;q2)j(q;q)k(q;q)\displaystyle\sum_{i,j,k,\ell\geq 0}\frac{q^{2i^{2}+6ij+4ik+2i\ell+6j^{2}+8jk+4j\ell+3k^{2}+3k\ell+\ell^{2}}}{\left(q^{2};q^{2}\right)_{i}\left(q^{2};q^{2}\right)_{j}\left(q;q\right)_{k}\left(q;q\right)_{\ell}} =(q,q2,q4,q6,q8,q9;q10)1.\displaystyle=\left(q,q^{2},q^{4},q^{6},q^{8},q^{9};q^{10}\right)^{-1}_{\infty}. (1.8)

Notably, the product side of (1.7) matches one of Nandi’s identities. These were first conjectured by Nandi in his thesis [33] and later proved by Takigiku and Tsuchioka [44]. Remarkably, the (new) expression on the left side of (1.7) above is a manifestly positive quadruple sum. (The sums used in Takigiku and Tsuchoika’s proof are double sums, but are not manifestly positive.) Nandi’s identities are connected to principal characters of level 4 standard modules of A2(2)\mathrm{A}_{2}^{(2)} (and also level 2 of A11(2)\mathrm{A}_{11}^{(2)}).

In (1.8), the left side is again a manifestly positive quadruple sum. In fact, the exponent of qq in the terms on the left side of (1.7) is exactly twice the exponent of qq in the terms on the left side of (1.8). The product side here is connected to level 4 of D4(3)\mathrm{D}_{4}^{(3)}. The same relationship (of doubling the quadratic form) holds between Capparelli’s identities [15, 26, 29] which reside at level 33 of A2(2)\mathrm{A}_{2}^{(2)} and Kurşungöz’s (multi)sum-to-product companions [30] to the conjectures of the second and third authors [25] related to level 33 of D4(3)\mathrm{D}_{4}^{(3)}.

Sections 5 and 6 are dedicated to proofs of these identities and others in their families. We now outline our proof strategy.

We begin by deducing x,qx,q-relations (or, in the second case, x,y,qx,y,q-relations) that sum sides equalling each respective product side are known to satisfy. After appropriately generalizing the quadruple sums, we then demonstrate relations that these generalized quadruple sums must satisfy. We finish our proofs by showing that that the desired relations follow from these known relations. In the case of the Nandi identities, this proof requires the use of a computer. This technique is similar to one that the second and third authors used in a previous paper  [24] (see also the work of Chern [19]).

Acknowledgments

We are indebted to S. Ole Warnaar for his most valuable comments on an earlier draft of this manuscript. S.K. acknowledges the support from the Collaboration Grant for Mathematicians #636937 awarded by the Simons Foundation.

2. Notation and preliminaries

2.1. Partitions

We will write partitions in a weakly decreasing order. If λ=λ1+λ2++λj\lambda=\lambda_{1}+\lambda_{2}+\cdots+\lambda_{j} is a partition of nn, we will say that the weight of λ\lambda is wt(λ)=n\operatorname{wt}(\lambda)=n and we will let j=(λ)j=\ell(\lambda) be the length, or the number of parts, of λ\lambda. Each λi\lambda_{i} will be called a part of λ\lambda. Given a positive integer ii, we denote by mi(λ)m_{i}(\lambda) the multiplicity of ii in λ\lambda. By a (contiguous) sub-partition of λ\lambda, we mean the subsequence λs++λt\lambda_{s}+\cdots+\lambda_{t} of λ\lambda. We say that λ\lambda satisfies the difference condition [d1,d2,,dj1][d_{1},d_{2},\cdots,d_{j-1}] if λiλi+1=di\lambda_{i}-\lambda_{i+1}=d_{i} for all 1ij11\leq i\leq j-1.

Let 𝒞\mathscr{C} be any set of partitions. In the usual way, the (x,q)(x,q) generating function of 𝒞\mathscr{C} is defined as

f𝒞(x,q)=λ𝒞x(λ)qwt(λ).\displaystyle f_{\mathscr{C}}(x,q)=\sum_{\lambda\in\mathscr{C}}x^{\ell(\lambda)}q^{\operatorname{wt}(\lambda)}. (2.1)

Then, the qq-generating function of 𝒞\mathscr{C} is simply f𝒞(1,q)f_{\mathscr{C}}(1,q) (sometimes denoted just by f𝒞(q)f_{\mathscr{C}}(q)).

As usual, we will let [[x,q]]\mathbb{Z}[[x,q]] be the ring of power series in variables x,qx,q with coefficients in \mathbb{Z}. We will require a subset 𝒮[[x,q]]\mathscr{S}\subset\mathbb{Z}[[x,q]] of series f[[x,q]]f\in\mathbb{Z}[[x,q]] such that f(0,q)=f(x,0)=1f(0,q)=f(x,0)=1.

2.2. qq-Series

We shall use standard notation regarding qq-series. All of our series are formal, and issues of analytic convergence are disregarded.

For n0{}n\in\mathbb{Z}_{\geq 0}\cup\{\infty\} we define:

(a;q)n=0t<n(1aqt).\displaystyle(a;q)_{n}=\prod_{0\leq t<n}(1-aq^{t}). (2.2)

We will simply write (a)n(a)_{n} when the base qq is understood. To compress notation, we will write

(a1,a2,,ar;q)n=(a1;q)n(a2;q)n(ar;q)n.\displaystyle(a_{1},a_{2},\dots,a_{r};q)_{n}=(a_{1};q)_{n}(a_{2};q)_{n}\cdots(a_{r};q)_{n}. (2.3)

We will also use modified theta functions:

θ(a;q)=(a;q)(q/a;q),\displaystyle\theta(a;q)=(a;q)_{\infty}(q/a;q)_{\infty}, (2.4)

and

θ(a1,a2,,ar;q)=θ(a1;q)θ(a2;q)(ar;q).\displaystyle\theta(a_{1},a_{2},\dots,a_{r};q)=\theta(a_{1};q)\theta(a_{2};q)\cdots(a_{r};q). (2.5)

2.3. Vertex-algebraic background.

We recall certain details relevant to this work from the vertex-algebraic constructions found in the works of Calinescu, Lepowsky, Milas, Penn, Webb, and the fourth author [12, 14, 34, 35, 36]. Suppose

L=α1αDL=\mathbb{Z}\alpha_{1}\oplus\cdots\oplus\mathbb{Z}\alpha_{D} (2.6)

is a rank DD positive-definite even lattice, equipped with a nondegenerate \mathbb{Z}-bilinear form

,:L×L\langle\cdot,\cdot\rangle:L\times L\rightarrow\mathbb{Z} (2.7)

whose Gram matrix is either a Cartan matrix of type A\mathrm{A}, D\mathrm{D}, E\mathrm{E} or contains only non-negative entries. Consider the complexification of LL given by

𝔥=L\mathfrak{h}=L\otimes_{\mathbb{Z}}\mathbb{C}

to which we extend ,\langle\cdot,\cdot\rangle. Let λ1,,λD𝔥\lambda_{1},\dots,\lambda_{D}\in\mathfrak{h} be dual to the α1,,αD\alpha_{1},\dots,\alpha_{D} such that

αi,λj=δi,j\langle\alpha_{i},\lambda_{j}\rangle=\delta_{i,j}

for 1i,jD1\leq i,j\leq D. Suppose that ν:LL\nu:L\rightarrow L is an automorphism of order kk which permutes α1,,αD\alpha_{1},\dots,\alpha_{D}. For 1iD1\leq i\leq D we have a ν\nu-orbit given by αi\alpha_{i}. Let dd be the number of disctinct ν\nu-orbits of the αi\alpha_{i}. Choose an αij\alpha_{i_{j}} from each of the dd distinct orbits and let j\ell_{j} be the length of its orbit. For 1jd1\leq j\leq d we define

βj=1k(αij+ναij++νk1αij)\beta_{j}=\frac{1}{k}\left(\alpha_{i_{j}}+\nu\alpha_{i_{j}}+\cdots+\nu^{k-1}\alpha_{i_{j}}\right)

and

γj=1k(λij+νλij++νk1λij).\gamma_{j}=\frac{1}{k}\left(\lambda_{i_{j}}+\nu\lambda_{i_{j}}+\cdots+\nu^{k-1}\lambda_{i_{j}}\right).

We define the matrix A[ν]A[\nu] by

(A[ν])i,j=kβi,βj(A[\nu])_{i,j}=k\langle\beta_{i},\beta_{j}\rangle

for 1i,jd1\leq i,j\leq d.

Let VLV_{L} be the lattice vertex operator algebra constructed from LL (cf. the text of Lepowsky and Li [32]). The automorphism ν\nu can be extended to an automorphism ν^\hat{\nu} of VLTV_{L}^{T} of order kk or 2k2k (depending on LL). Let VLTV_{L}^{T} be its ν^\hat{\nu}-twisted modules as constructed by Lepowsky [31] (cf. also the work of Calinescu, Lepowsky, and Milas [12]). Let WLTW_{L}^{T} be the principal subspace of VLTV_{L}^{T}. Calinescu, Lepowsky, and Milas [12] demonstrate that VLTV_{L}^{T} and WLTW_{L}^{T} are given compatible gradings by the operators kL(0),1γ1(0),,dγd(0)kL(0),\ell_{1}\gamma_{1}(0),\dots,\ell_{d}\gamma_{d}(0) arising from the lattice construction of VLV_{L} and VLTV_{L}^{T}. In particular, WLTW_{L}^{T} is decomposed into finite-dimensional eigenspaces of these operators as

WLT=n,m1,,md(WLT)(n,m1,,md)W_{L}^{T}=\coprod_{n\in\mathbb{Q},m_{1},\cdots,m_{d}\in\mathbb{N}}\left(W_{L}^{T}\right)_{(n,m_{1},\dots,m_{d})} (2.8)

In particular, we define

χWLT(x1,x2,,xd,q)=qwt1Ttr|WLTqkL(0)x11γ1(0)xddγd(0)\chi_{W_{L}^{T}}(x_{1},x_{2},\dots,x_{d},q)=q^{-\text{wt}1_{T}}tr|_{W_{L}^{T}}q^{kL(0)}x_{1}^{\ell_{1}\gamma_{1}(0)}\cdots x_{d}^{\ell_{d}\gamma_{d}(0)}

where 1T1_{T} is a vector of lowest conformal weight in VLTV_{L}^{T} (see Section 3 of  [36] for this notation) and qwt1Tq^{-\text{wt}1_{T}} is introduced to ensure that all powers of qq are nonnegative integers. Following Penn, Webb, and the fourth author [34, 35, 36], we have that for 1id1\leq i\leq d:

χ(x1,,xd,q)=χ(x1,,qkixi,,xd,q)+xiqkβi,βi2χ(x1kβ1,βi,,xdkβd,βi,q)\chi(x_{1},\dots,x_{d},q)=\chi(x_{1},\dots,q^{\frac{k}{\ell_{i}}}x_{i},\dots,x_{d},q)+x_{i}q^{k\frac{\langle\beta_{i},\beta_{i}\rangle}{2}}\chi(x_{1}^{k\langle\beta_{1},\beta_{i}\rangle},\dots,x_{d}^{k\langle\beta_{d},\beta_{i}\rangle},q) (2.9)

which gives

χ(x1,,xd,q)=𝐦dq𝐦tA[ν]𝐦2(qk1;qk1)(qkd;qkd)x1m1xdmd.\chi(x_{1},\dots,x_{d},q)=\sum_{{\bf m}\in\mathbb{N}^{d}}\frac{q^{\frac{{\bf m}^{t}A[\nu]{\bf m}}{2}}}{(q^{\frac{k}{\ell_{1}}};q^{{\frac{k}{\ell_{1}}}})\cdots(q^{\frac{k}{\ell_{d}}};q^{{\frac{k}{\ell_{d}}}})}x_{1}^{m_{1}}\cdots x_{d}^{m_{d}}. (2.10)

We call χ(x1,,xd,q)\chi(x_{1},\dots,x_{d},q) the multigraded dimension of WLTW_{L}^{T} and call χ(1,,1,q)\chi(1,\dots,1,q) simply the graded dimension of WLTW_{L}^{T}. In this work we are primarily interested in the graded dimensions of WLTW_{L}^{T}.

3. Warmups

3.1. The Gordon–Andrews and Göllnitz–Gordon–Andrews identities from A2n(2)\mathrm{A}_{2n}^{(2)}

Here, we begin with the multigraded dimension of the principal subspace of the basic A2n(2)\mathrm{A}_{2n}^{(2)} module found by Calinescu, Milas, and Penn [13]. In this case, the graded dimension is given by:

𝐦(0)nq𝐦TA[ν]𝐦2(q;q)m1(q;q)mn\sum_{{\bf m}\in(\mathbb{Z}_{\geq 0})^{n}}\frac{q^{\frac{{\bf m}^{T}A[\nu]{\bf m}}{2}}}{{(q};q)_{m_{1}}\cdots(q;q)_{m_{n}}} (3.1)

where

A[ν]=[210000121000012100210121011]A[\nu]=\begin{bmatrix}2&-1&0&0&0&\ldots&\ldots&0\\ -1&2&-1&0&0&\ldots&\ldots&0\\ 0&-1&2&-1&0&\ldots&\ldots&0\\ \vdots&\vdots&\vdots&\ddots&\vdots&\ldots&\ldots&\vdots\\ \vdots&\vdots&\vdots&\vdots&\ddots&\ldots&\ldots&\vdots\\ \vdots&\vdots&\vdots&\vdots&\vdots&2&-1&0\\ \vdots&\vdots&\vdots&\vdots&\vdots&-1&2&-1\\ \vdots&\vdots&\vdots&\vdots&\vdots&0&-1&1\\ \end{bmatrix}

is the Cartan matrix of the tadpole Dynkin diagram. We now manipulate this sum as follows:

  • Replace A[ν]A[\nu] with 2A[ν]12A[\nu]^{-1}.

  • Replace each instance of (q;q)m(q;q)_{m} with (q2;q2)m(q^{2};q^{2})_{m}.

Here we have that

2A[ν]1=[22222222444444246666624682n42n42n424682n42n22n224682n42n22n]2A[\nu]^{-1}=\begin{bmatrix}2&2&2&2&\ldots&2&2&2\\ 2&4&4&4&\ldots&4&4&4\\ 2&4&6&6&\ldots&6&6&6\\ \vdots&\vdots&\vdots&\vdots&\vdots&\vdots&\vdots&\vdots\\ \vdots&\vdots&\vdots&\vdots&\vdots&\vdots&\vdots&\vdots\\ 2&4&6&8&\ldots&2n-4&2n-4&2n-4\\ 2&4&6&8&\ldots&2n-4&2n-2&2n-2\\ 2&4&6&8&\ldots&2n-4&2n-2&2n\\ \end{bmatrix}

whose (i,j)(i,j)-entry is 2min(i,j)2\text{min}(i,j). Using Garvan’s qseries package [22], we obtain the following known identity (Corollary 1.5 (b) of Stembridge [41], see also  [7] and Theorem 4.1 in  [48]):

𝐦(0)nq𝐦T2A[ν]1𝐦2(q2;q2)m1(q2;q2)mn=(q;q2)(q2;q2)(qn+1,qn+3,q2n+4;q2n+4).\sum_{{\bf m}\in(\mathbb{Z}_{\geq 0})^{n}}\frac{q^{\frac{{\bf m}^{T}2A[\nu]^{-1}{\bf m}}{2}}}{{(q^{2}};q^{2})_{m_{1}}\cdots(q^{2};q^{2})_{m_{n}}}=\frac{(-q;q^{2})_{\infty}}{(q^{2};q^{2})_{\infty}}(q^{n+1},q^{n+3},q^{2n+4};\,q^{2n+4})_{\infty}. (3.2)

When nn is even, the product-side of this identity is the same as in the corresponding Göllnitz–Gordon–Andrews identity. We note that

𝐦T2A[ν]1𝐦2=M12+M22++Mn2\frac{{\bf m}^{T}2A[\nu]^{-1}{\bf m}}{2}=M_{1}^{2}+M_{2}^{2}+\cdots+M_{n}^{2}

where we take

Mi=mi+mi+1++mnM_{i}=m_{i}+m_{i+1}+\cdots+m_{n} (3.3)

for 1in1\leq i\leq n, so that we can rewrite this identity as in the next theorem.

Theorem 1.
𝐦(0)nqM12+M22++Mn2(q2;q2)m1(q2;q2)mn=(q;q2)(q2;q2)(qn+1,qn+3,q2n+4;q2n+4).\sum_{{\bf m}\in(\mathbb{Z}_{\geq 0})^{n}}\frac{q^{M_{1}^{2}+M_{2}^{2}+\cdots+M_{n}^{2}}}{{(q^{2}};q^{2})_{m_{1}}\cdots(q^{2};q^{2})_{m_{n}}}=\frac{(-q;q^{2})_{\infty}}{(q^{2};q^{2})_{\infty}}(q^{n+1},q^{n+3},q^{2n+4};\,q^{2n+4})_{\infty}. (3.4)

The sum side of this equation is the graded dimension for the principal subspace of the level nn A2(2)\mathrm{A}_{2}^{(2)} vacuum module (see the work of Calinescu, Penn, and the fourth author [14] and of Takenaka [43]). Here, vacuum module refer to a standard module with highest weight nΛ0n\Lambda_{0}.

Finally, we note that doubling the exponent of qq in the numerator of the sum side yields one of the Andrews–Gordon identities, dilated by qq2q\mapsto q^{2}:

Theorem 2.
𝐦(0)nq𝐦T4A[ν]1𝐦2(q2;q2)m1(q2;q2)mn=(q2n+2,q2n+4,q4n+6;q4n+6)(q2;q2).\sum_{{\bf m}\in(\mathbb{Z}_{\geq 0})^{n}}\frac{q^{\frac{{\bf m}^{T}4A[\nu]^{-1}{\bf m}}{2}}}{{(q^{2}};q^{2})_{m_{1}}\cdots(q^{2};q^{2})_{m_{n}}}=\dfrac{(q^{2n+2},q^{2n+4},q^{4n+6};\,q^{4n+6})_{\infty}}{(q^{2};q^{2})_{\infty}}. (3.5)

Varying the linear term in the exponent of qq in the numerator of the left hand side of the equation yields the qq2q\mapsto q^{2} dilations of the remaining Andrews–Gordon identities [1].

For a very different circle of ideas that connects the affine Lie algebra A2(2)\mathrm{A}_{2}^{(2)} with the Gordon–Andrews identities, see Griffin, Ono and Warnaar’s article [23].

3.2. The Bressoud identities and partner identities from Dn(2)\mathrm{D}_{n}^{(2)}

Here, we examine the graded dimension of the principal subspace of the Dn(2)\mathrm{D}_{n}^{(2)} basic module where n3n\geq 3. The graded dimension of the principal subspace of the basic module for Dn(2)\mathrm{D}_{n}^{(2)} is given by:

𝐦(0)n1q𝐦TA[ν]𝐦2(q2;q2)m1(q2;q2)mn2(q;q)mn1\sum_{{\bf m}\in(\mathbb{Z}_{\geq 0})^{n-1}}\frac{q^{\frac{{\bf m}^{T}A[\nu]{\bf m}}{2}}}{{(q^{2}};q^{2})_{m_{1}}\cdots(q^{2};q^{2})_{m_{n-2}}(q;q)_{m_{n-1}}} (3.6)

where A[ν]A[\nu] is the (n1)×(n1)(n-1)\times(n-1) matrix

A[ν]=[420000242000024200420242022].\displaystyle A[\nu]=\begin{bmatrix}4&-2&0&0&0&\ldots&\ldots&0\\ -2&4&-2&0&0&\ldots&\ldots&0\\ 0&-2&4&-2&0&\ldots&\ldots&0\\ \vdots&\vdots&\vdots&\ddots&\vdots&\ldots&\ldots&\vdots\\ \vdots&\vdots&\vdots&\vdots&\ddots&\ldots&\ldots&\vdots\\ \vdots&\vdots&\vdots&\vdots&\vdots&4&-2&0\\ \vdots&\vdots&\vdots&\vdots&\vdots&-2&4&-2\\ \vdots&\vdots&\vdots&\vdots&\vdots&0&-2&2\\ \end{bmatrix}.

We now manipulate this sum as follows:

  • Replace A[ν]A[\nu] with 2A[ν]12A[\nu]^{-1}.

  • Replace each instance of (q2;q2)m(q^{2};q^{2})_{m} with (q;q)m(q;q)_{m} and replace each instance of (q;q)m(q;q)_{m} with (q2;q2)m(q^{2};q^{2})_{m}

  • Dilate with qq2q\mapsto q^{2}.

Here, we have that

4A[ν]1=[2222222444442466662468102n42n2]4A[\nu]^{-1}=\begin{bmatrix}2&2&2&2&2&\ldots&\ldots&2\\ 2&4&4&4&4&\ldots&\ldots&4\\ 2&4&6&6&6&\ldots&\ldots&6\\ \vdots&\vdots&\vdots&\vdots&\vdots&\ldots&\ldots&\vdots\\ \vdots&\vdots&\vdots&\vdots&\vdots&\ldots&\ldots&\vdots\\ 2&4&6&8&10&\cdots&2n-4&2n-2\\ \end{bmatrix}\\

In this case, our sum becomes:

𝐦(0)n1q𝐦T4A[ν]1𝐦2(q2;q2)m1(q2;q2)mn2(q4;q4)mn1\sum_{{\bf m}\in(\mathbb{Z}_{\geq 0})^{n-1}}\frac{q^{\frac{{\bf m}^{T}4A[\nu]^{-1}{\bf m}}{2}}}{{(q^{2}};q^{2})_{m_{1}}\cdots(q^{2};q^{2})_{m_{n-2}}(q^{4};q^{4})_{m_{n-1}}} (3.7)

where

𝐦T4A[ν]1𝐦2=M12+M22++Mn12\frac{{\bf m}^{T}4A[\nu]^{-1}{\bf m}}{2}=M_{1}^{2}+M_{2}^{2}+\cdots+M_{n-1}^{2} (3.8)

using the notation defined in (3.3) above. Using Garvan’s qseries package [22], we obtain the following known identity (see equation (5.15) in  [48]).

Theorem 3.
𝐦(0)n1qM12+M22++Mn12(q2;q2)m1(q2;q2)mn2(q4;q4)mn1=(qn,qn+1,q2n+1;q2n+1)(q,q3,q4;q4).\sum_{{\bf m}\in(\mathbb{Z}_{\geq 0})^{n-1}}\frac{q^{M_{1}^{2}+M_{2}^{2}+\cdots+M_{n-1}^{2}}}{{(q^{2}};q^{2})_{m_{1}}\cdots(q^{2};q^{2})_{m_{n-2}}(q^{4};q^{4})_{m_{n-1}}}=\frac{(q^{n},q^{n+1},q^{2n+1};q^{2n+1})_{\infty}}{(q,q^{3},q^{4};q^{4})_{\infty}}. (3.9)

Finally, we note that if we modify the series (3.7) as follows:

  • Replace 4A[ν]14A[\nu]^{-1} with 8A[ν]18A[\nu]^{-1}

  • Make the substitution qq1/2.q\mapsto q^{1/2}.

we obtain the sum side of one of Bressoud’s mod 2n2n identities [6]:

𝐦(0)n1q𝐦T4A[ν]1𝐦2(q;q)m1(q;q)mn2(q2;q2)mn1=(qn,qn,q2n;q2n)(q).\sum_{{\bf m}\in(\mathbb{Z}_{\geq 0})^{n-1}}\frac{q^{\frac{{\bf m}^{T}4A[\nu]^{-1}{\bf m}}{2}}}{{(q};q)_{m_{1}}\cdots(q;q)_{m_{n-2}}(q^{2};q^{2})_{m_{n-1}}}=\frac{(q^{n},q^{n},q^{2n};q^{2n})_{\infty}}{(q)_{\infty}}. (3.10)

Of course, varying the linear terms in the exponent of qq in the sum yields the remaining of Bressoud’s mod2n\mod 2n identities.

3.3. Identities from A2n1(2)\mathrm{A}_{2n-1}^{(2)}

Here, we repeat and adapt the process described above for the graded dimension of the principal subspace of the A2n1(2)\mathrm{A}_{2n-1}^{(2)} basic module. In particular, from [36] the graded dimension of the principal subspace of the basic A2n1(2)\mathrm{A}_{2n-1}^{(2)}-module is

𝐦(0)nq𝐦TA[ν]𝐦2(q;q)m1(q;q)mn1(q2;q2)mn\sum_{{\bf m}\in(\mathbb{Z}_{\geq 0})^{n}}\frac{q^{\frac{{\bf m}^{T}A[\nu]{\bf m}}{2}}}{(q;q)_{m_{1}}\cdots(q;q)_{m_{n-1}}(q^{2};q^{2})_{m_{n}}}

where

A[ν]=[210000121000012100210122024]A[\nu]=\begin{bmatrix}2&-1&0&0&0&\ldots&\ldots&0\\ -1&2&-1&0&0&\ldots&\ldots&0\\ 0&-1&2&-1&0&\ldots&\ldots&0\\ \vdots&\vdots&\vdots&\ddots&\vdots&\ldots&\ldots&\vdots\\ \vdots&\vdots&\vdots&\vdots&\ddots&\ldots&\ldots&\vdots\\ \vdots&\vdots&\vdots&\vdots&\vdots&2&-1&0\\ \vdots&\vdots&\vdots&\vdots&\vdots&-1&2&-2\\ \vdots&\vdots&\vdots&\vdots&\vdots&0&-2&4\end{bmatrix}

We now manipulate the sum as follows:

  • Replace A[ν]A[\nu] with 4A[ν]14A[\nu]^{-1}.

  • Replace (q2;q2)m(q^{2};q^{2})_{m} with (q;q)m(q;q)_{m} and replace (q;q)m(q;q)_{m} with (q2;q2)m(q^{2};q^{2})_{m}.

  • Dilate qq2q\mapsto q^{2} in the entire sum to avoid non-integer powers of qq when nn is odd.

Here, we have that

4A[ν]1=[4444424888844812121264n84n82n44n84n42n224682n42n2n]4A[\nu]^{-1}=\begin{bmatrix}4&4&4&4&4&\ldots&\ldots&2\\ 4&8&8&8&8&\ldots&\ldots&4\\ 4&8&12&12&12&\ldots&\ldots&6\\ \vdots&\vdots&\vdots&\ddots&\vdots&\ldots&\ldots&\vdots\\ \vdots&\vdots&\vdots&\vdots&\ddots&\ldots&\ldots&\vdots\\ \vdots&\vdots&\vdots&\vdots&\vdots&4n-8&4n-8&2n-4\\ \vdots&\vdots&\vdots&\vdots&\vdots&4n-8&4n-4&2n-2\\ 2&4&6&8&\ldots&2n-4&2n-2&n\end{bmatrix}

i.e.

(4A[ν]1)i,j={4min(i,j)1i<n,1j<n2ji=n,1j<n2ij=n,1i<nni=j=n.(4A[\nu]^{-1})_{i,j}=\begin{cases}4\text{min}(i,j)&1\leq i<n,1\leq j<n\\ 2j&i=n,1\leq j<n\\ 2i&j=n,1\leq i<n\\ n&i=j=n.\end{cases} (3.11)

Our new sum has the form:

𝐦(0)nq𝐦T8A[ν]1𝐦/2(q4;q4)m1(q4;q4)mn1(q2;q2)mn\sum_{{\bf m}\in(\mathbb{Z}_{\geq 0})^{n}}\frac{q^{{\bf m}^{T}8A[\nu]^{-1}{\bf m}/2}}{(q^{4};q^{4})_{m_{1}}\cdots(q^{4};q^{4})_{m_{n-1}}(q^{2};q^{2})_{m_{n}}} (3.12)

Using the qseries package [22] we get:

𝐦(0)nq𝐦T8A[ν]1𝐦/2(q4;q4)m1(q4;q4)mn1(q2;q2)mn=(qn,qn+2,q2n+2;q2n+2)(q4;q4).\displaystyle\sum_{{\bf m}\in(\mathbb{Z}_{\geq 0})^{n}}\frac{q^{{\bf m}^{T}8A[\nu]^{-1}{\bf m}/2}}{(q^{4};q^{4})_{m_{1}}\cdots(q^{4};q^{4})_{m_{n-1}}(q^{2};q^{2})_{m_{n}}}=\frac{(-q^{n},-q^{n+2},q^{2n+2};q^{2n+2})_{\infty}}{(q^{4};q^{4})_{\infty}}. (3.13)

We adopt the notation

Ni={2mi+2mi+1++2mn1+mn1in1mni=nN_{i}=\begin{cases}2m_{i}+2m_{i+1}+\cdots+2m_{n-1}+m_{n}&1\leq i\leq n-1\\ m_{n}&i=n\end{cases} (3.14)

so that the identity 3.13 can be rewritten as in the following Theorem.

Theorem 4.
𝐦(0)nqN12+N22+Nn12+Nn2(q4;q4)m1(q4;q4)mn1(q2;q2)mn=(qn,qn+2,q2n+2;q2n+2)(q4;q4).\sum_{{\bf m}\in(\mathbb{Z}_{\geq 0})^{n}}\frac{q^{N_{1}^{2}+N_{2}^{2}+\cdots N_{n-1}^{2}+N_{n}^{2}}}{(q^{4};q^{4})_{m_{1}}\cdots(q^{4};q^{4})_{m_{n-1}}(q^{2};q^{2})_{m_{n}}}=\frac{(-q^{n},-q^{n+2},q^{2n+2};q^{2n+2})_{\infty}}{(q^{4};q^{4})_{\infty}}.
Proof.

This identity is proved easily. However, since we could not find it in the literature, we present a sketch of the proof.

Due to the definition of NiN_{i}, it is clear that they have the same parity. Thus, we make two cases – when each NiN_{i} is even, we take Ni=2niN_{i}=2n_{i} and when each NiN_{i} is odd, we take Ni=2ni+1N_{i}=2n_{i}+1. Once this is done, we map qq1/4q\mapsto q^{1/4} for convenience. With a bit of algebraic manipulation, the sum then can be written as:

n1,,nk0\displaystyle\sum_{n_{1},\cdots,n_{k}\geq 0} qn12++nk2(q)n1n2(q)nk1nk(q)nk(q1/2;q)nk\displaystyle\dfrac{q^{n_{1}^{2}+\cdots+n_{k}^{2}}}{(q)_{n_{1}-n_{2}}\cdots(q)_{n_{k-1}-n_{k}}(q)_{n_{k}}(q^{1/2};q)_{n_{k}}}
+qk/41q1/2n1,,nk0qn12++nk2+n1++nk(q)n1n2(q)nk1nk(q)nk(q3/2;q)nk.\displaystyle\quad+\dfrac{q^{k/4}}{1-q^{1/2}}\sum_{n_{1},\cdots,n_{k}\geq 0}\dfrac{q^{n_{1}^{2}+\cdots+n_{k}^{2}+n_{1}+\cdots+n_{k}}}{(q)_{n_{1}-n_{2}}\cdots(q)_{n_{k-1}-n_{k}}(q)_{n_{k}}(q^{3/2};q)_{n_{k}}}. (3.15)

We now handle each of these sums using the routine theory of Bailey pairs.

Recall that two sequences αn,βn\alpha_{n},\beta_{n} (n0n\geq 0) form a Bailey pair with respect to aa if for all n0n\geq 0 we have:

βn=r=0nαn(q)nr(aq)n+r.\displaystyle\beta_{n}=\sum_{r=0}^{n}\dfrac{\alpha_{n}}{(q)_{n-r}(aq)_{n+r}}. (3.16)

We start with the pair F(1)F(1) with respect to a=1a=1 given by Slater [40]:

αn={1n=0qn2(qn/2+qn/2)n>0,βn=1(q)n(q1/2;q)n.\displaystyle\alpha_{n}=\begin{cases}1&n=0\\ q^{n^{2}}(q^{-n/2}+q^{n/2})&n>0\end{cases},\quad\beta_{n}=\dfrac{1}{(q)_{n}(q^{1/2};q)_{n}}. (3.17)

Now, inserting this pair in [2, Thm. 2] with a=1a=1, we get:

n1,,nk0\displaystyle\sum_{n_{1},\cdots,n_{k}\geq 0} qn12++nk2(q)n1n2(q)nk1nk(q)nk(q1/2;q)nk=1(q)(1+n1q(k+1)n2(qn/2+qn/2))\displaystyle\dfrac{q^{n_{1}^{2}+\cdots+n_{k}^{2}}}{(q)_{n_{1}-n_{2}}\cdots(q)_{n_{k-1}-n_{k}}(q)_{n_{k}}(q^{1/2};q)_{n_{k}}}=\dfrac{1}{(q)_{\infty}}\left(1+\sum_{n\geq 1}q^{(k+1)n^{2}}(q^{-n/2}+q^{n/2})\right) (3.18)

In exactly the same way, if we start with Slater’s pair F(2)F(2) with respect to a=qa=q:

αn=qn2+n/21+qn+1/21+q1/2βn=1(q)n(q3/2;q)n,\displaystyle\alpha_{n}=q^{n^{2}+n/2}\dfrac{1+q^{n+1/2}}{1+q^{1/2}}\quad\beta_{n}=\dfrac{1}{(q)_{n}(q^{3/2};q)_{n}}, (3.19)

we arrive at:

n1,,nk0\displaystyle\sum_{n_{1},\cdots,n_{k}\geq 0} qn12++nk2+n1++nk(q)n1n2(q)nk1nk(q)nk(q1/2;q)nk=1(q2;q)n0q(k+1)n2+(2k+1)n/21+qn+1/21+q1/2.\displaystyle\dfrac{q^{n_{1}^{2}+\cdots+n_{k}^{2}+n_{1}+\cdots+n_{k}}}{(q)_{n_{1}-n_{2}}\cdots(q)_{n_{k-1}-n_{k}}(q)_{n_{k}}(q^{1/2};q)_{n_{k}}}=\dfrac{1}{(q^{2};q)_{\infty}}\sum_{n\geq 0}q^{(k+1)n^{2}+(2k+1)n/2}\dfrac{1+q^{n+1/2}}{1+q^{1/2}}. (3.20)

Combining, we get that (3.15) equals:

1(q)(1+n1q(k+1)n2(qn/2+qn/2)+n0q(k+1)n2+(2k+1)n/2+k/4(1+qn+1/2)).\displaystyle\dfrac{1}{(q)_{\infty}}\left(1+\sum_{n\geq 1}q^{(k+1)n^{2}}(q^{-n/2}+q^{n/2})+\sum_{n\geq 0}q^{(k+1)n^{2}+(2k+1)n/2+k/4}(1+q^{n+1/2})\right). (3.21)

We now reinstate q1/4qq^{1/4}\mapsto q. After a few simple algebraic steps, the sums can be combined into a single sum.

1(q4;q4)nq(k+1)n2+n.\displaystyle\dfrac{1}{(q^{4};q^{4})_{\infty}}\sum_{n\in\mathbb{Z}}q^{(k+1)n^{2}+n}. (3.22)

A straight-forward application of the Jacobi Triple Product identity [3, Thm. 2.8] now gives the required product. ∎

3.4. Identities from D4(3)\mathrm{D}_{4}^{(3)}

This process can also be used to rediscover double sums for Capparelli’s identities and the mod 9 conjectured identities of the second and third authors [25], in the form given by Kurşungöz [30].

Here, we repeat and adapt the process described above for the character of the principal subspace of the D4(3)\mathrm{D}_{4}^{(3)} basic module.

The graded dimension of the principal subspace of the basic D4(3)\mathrm{D}_{4}^{(3)}-module is

𝐦(0)2q𝐦TA[ν]𝐦2(q3;q3)m1(q;q)m2\sum_{{\bf m}\in(\mathbb{Z}_{\geq 0})^{2}}\frac{q^{\frac{{\bf m}^{T}A[\nu]{\bf m}}{2}}}{(q^{3};q^{3})_{m_{1}}(q;q)_{m_{2}}} (3.23)

where

A[ν]=[6332].A[\nu]=\begin{bmatrix}6&-3\\ -3&2\end{bmatrix}.

We manipulate the sum as follows:

  • Replace A[ν]A[\nu] with 3A[ν]13A[\nu]^{-1}.

  • Replace (q3;q3)m(q^{3};q^{3})_{m} with (q;q)m(q;q)_{m} and replace (q;q)m(q;q)_{m} with (q3;q3)m(q^{3};q^{3})_{m}.

𝐦(0)4q𝐦T3A[ν]1𝐦2(q;q)m1(q3;q3)m2\sum_{{\bf m}\in(\mathbb{Z}_{\geq 0})^{4}}\frac{q^{\frac{{\bf m}^{T}3A[\nu]^{-1}{\bf m}}{2}}}{(q;q)_{m_{1}}(q^{3};q^{3})_{m_{2}}} (3.24)

Here, we have that

3A[ν]1=[2336]3A[\nu]^{-1}=\begin{bmatrix}2&3\\ 3&6\end{bmatrix}

and that

𝐦T3A[ν]1𝐦2=m12+3m1m2+3m22.\frac{{\bf m}^{T}3A[\nu]^{-1}{\bf m}}{2}=m_{1}^{2}+3m_{1}m_{2}+3m_{2}^{2}.

The sum under consideration is thus:

𝐦(0)2qm12+3m1m2+3m22(q;q)m1(q3;q3)m2,\sum_{{\bf m}\in\left(\mathbb{Z}_{\geq 0}\right)^{2}}\frac{q^{m_{1}^{2}+3m_{1}m_{2}+3m_{2}^{2}}}{(q;q)_{m_{1}}(q^{3};q^{3})_{m_{2}}},

which was originally shown by Kurşungöz [30] to be an analytic sum side for the identity I1I_{1} of the second and third authors [25]. Varying the linear terms produces further conjectural results from those papers (see also the work of Hickerson as given by Konenkov [28], which in turn is inspired by the paper of Uncu and Zudilin [47]):

Conjecture 5.
𝐦(0)2qm12+3m1m2+3m22(q;q)m1(q3;q3)m2\displaystyle\sum_{{\bf m}\in\left(\mathbb{Z}_{\geq 0}\right)^{2}}\frac{q^{m_{1}^{2}+3m_{1}m_{2}+3m_{2}^{2}}}{(q;q)_{m_{1}}(q^{3};q^{3})_{m_{2}}} =1θ(q,q3;q9),\displaystyle=\dfrac{1}{\theta(q,q^{3};\,q^{9})},
𝐦(0)2qm12+3m1m2+3m22+m1+3m2(q;q)m1(q3;q3)m2\displaystyle\sum_{{\bf m}\in\left(\mathbb{Z}_{\geq 0}\right)^{2}}\frac{q^{m_{1}^{2}+3m_{1}m_{2}+3m_{2}^{2}+m_{1}+3m_{2}}}{(q;q)_{m_{1}}(q^{3};q^{3})_{m_{2}}} =1θ(q2,q3;q9),\displaystyle=\dfrac{1}{\theta(q^{2},q^{3};\,q^{9})},
𝐦(0)2qm12+3m1m2+3m22+2m1+3m2(q;q)m1(q3;q3)m2\displaystyle\sum_{{\bf m}\in\left(\mathbb{Z}_{\geq 0}\right)^{2}}\frac{q^{m_{1}^{2}+3m_{1}m_{2}+3m_{2}^{2}+2m_{1}+3m_{2}}}{(q;q)_{m_{1}}(q^{3};q^{3})_{m_{2}}} =1θ(q3,q4;q9).\displaystyle=\dfrac{1}{\theta(q^{3},q^{4};\,q^{9})}.

We note here that these identities are related to the principal characters of level 33 standard modules for the twisted affine Lie algebra D4(3)\mathrm{D}_{4}^{(3)}. We also note that doubling the exponent of qq in the numerator of the above analytic sum side (i.e. using 6A[ν]16A[\nu]^{-1} in place of 3A[ν]13A[\nu]^{-1}) yields the following double sum version of Capparelli’s identity, as deduced by the second and third authors [26] and independently by Kurşungöz [29]:

Theorem 6.
𝐦(0)2q2m12+6m1m2+6m22(q;q)m1(q3;q3)m2=1θ(q,q3;q12).\sum_{{\bf m}\in\left(\mathbb{Z}_{\geq 0}\right)^{2}}\frac{q^{2m_{1}^{2}+6m_{1}m_{2}+6m_{2}^{2}}}{(q;q)_{m_{1}}(q^{3};q^{3})_{m_{2}}}=\frac{1}{\theta(q,q^{3};\,q^{12})}.

4. Identities from E6(2)\mathrm{E}_{6}^{(2)}

Here, we repeat the process described above for the character of the principal subspace of the E6(2)\mathrm{E}_{6}^{(2)} basic module. In this case, we have

A[ν]=[2100122002420024]A[\nu]=\begin{bmatrix}2&-1&0&0\\ -1&2&-2&0\\ 0&-2&4&-2\\ 0&0&-2&4\end{bmatrix}

and the principal subspace of the basic E6(2)\mathrm{E}_{6}^{(2)}-module has graded dimension given by:

𝐦(0)4q𝐦TA[ν]𝐦2(q;q)m1(q;q)m2(q2;q2)m3(q2;q2)m4.\sum_{{\bf m}\in(\mathbb{Z}_{\geq 0})^{4}}\frac{q^{\frac{{\bf m}^{T}A[\nu]{\bf m}}{2}}}{(q;q)_{m_{1}}(q;q)_{m_{2}}(q^{2};q^{2})_{m_{3}}(q^{2};q^{2})_{m_{4}}}. (4.1)

We manipulate the sum as follows:

  • Replace A[ν]A[\nu] with 2A[ν]12A[\nu]^{-1}.

  • Replace (q2;q2)m(q^{2};q^{2})_{m} with (q;q)m(q;q)_{m} and replace (q;q)m(q;q)_{m} with (q2;q2)m(q^{2};q^{2})_{m}

which now gives us the sum:

𝐦(0)4q𝐦T2A[ν]1𝐦2(q2;q2)m1(q2;q2)m2(q;q)m3(q;q)m4.\sum_{{\bf m}\in(\mathbb{Z}_{\geq 0})^{4}}\frac{q^{\frac{{\bf m}^{T}2A[\nu]^{-1}{\bf m}}{2}}}{(q^{2};q^{2})_{m_{1}}(q^{2};q^{2})_{m_{2}}(q;q)_{m_{3}}(q;q)_{m_{4}}}. (4.2)

We have that

2A[ν]1=[46426128448632432]2A[\nu]^{-1}=\begin{bmatrix}4&6&4&2\\ 6&12&8&4\\ 4&8&6&3\\ 2&4&3&2\end{bmatrix}

so that

𝐦T2A[ν]1𝐦2=2m12+6m1m2+4m1m3+2m1m4+6m22+8m2m3+4m2m4+3m32+3m3m4+m42.\frac{{\bf m}^{T}2A[\nu]^{-1}{\bf m}}{2}=2m_{1}^{2}+6m_{1}m_{2}+4m_{1}m_{3}+2m_{1}m_{4}+6m_{2}^{2}+8m_{2}m_{3}+4m_{2}m_{4}+3m_{3}^{2}+3m_{3}m_{4}+m_{4}^{2}.

Thus the sum under consideration is:

𝐦(0)4q2m12+6m1m2+4m1m3+2m1m4+6m22+8m2m3+4m2m4+3m32+3m3m4+m42(q2;q2)m1(q2;q2)m2(q;q)m3(q;q)m4.\sum_{{\bf m}\in\left(\mathbb{Z}_{\geq 0}\right)^{4}}\frac{q^{2m_{1}^{2}+6m_{1}m_{2}+4m_{1}m_{3}+2m_{1}m_{4}+6m_{2}^{2}+8m_{2}m_{3}+4m_{2}m_{4}+3m_{3}^{2}+3m_{3}m_{4}+m_{4}^{2}}}{(q^{2};q^{2})_{m_{1}}(q^{2};q^{2})_{m_{2}}(q;q)_{m_{3}}(q;q)_{m_{4}}}.

Using Garvan’s package [22], we obtain the following identity, which we will subsequently prove:

𝐦(0)4q2m12+6m1m2+4m1m3+2m1m4+6m22+8m2m3+4m2m4+3m32+3m3m4+m42(q2;q2)m1(q2;q2)m2(q;q)m3(q;q)m4=1θ(q;q5)θ(q2;q10).\displaystyle\sum_{{\bf m}\in\left(\mathbb{Z}_{\geq 0}\right)^{4}}\frac{q^{2m_{1}^{2}+6m_{1}m_{2}+4m_{1}m_{3}+2m_{1}m_{4}+6m_{2}^{2}+8m_{2}m_{3}+4m_{2}m_{4}+3m_{3}^{2}+3m_{3}m_{4}+m_{4}^{2}}}{(q^{2};q^{2})_{m_{1}}(q^{2};q^{2})_{m_{2}}(q;q)_{m_{3}}(q;q)_{m_{4}}}=\dfrac{1}{\theta(q;q^{5})\theta(q^{2};q^{10})}.

The product-side of this expression is the principal character of a level 4 standard D4(3)\mathrm{D}_{4}^{(3)}-module. Adding appopriate linear terms to the exponent of qq in the numerator of the analytic sum-side of the previous conjecture yields the conjectural identities related to the remaining level 44 standard modules of D4(3)\mathrm{D}_{4}^{(3)}. This family of identities along with proofs is presented in Section 6 below.

Additionally, doubling the the exponent of qq used in the above analytic sum side, (i.e., using 4A[ν]14A[\nu]^{-1} in place of 2A[ν]12A[\nu]^{-1}) yields the following conjecture, where the product side is exactly that of one of Nandi’s identities related to level 44 principal characters of A2(2)\mathrm{A}_{2}^{(2)} [33].

𝐦(0)4\displaystyle\sum_{{\bf m}\in\left(\mathbb{Z}_{\geq 0}\right)^{4}} q4m12+12m1m2+8m1m3+4m1m4+12m22+16m2m3+8m2m4+6m32+6m3m4+2m42(q2;q2)m1(q2;q2)m2(q;q)m3(q;q)m4\displaystyle\frac{q^{4m_{1}^{2}+12m_{1}m_{2}+8m_{1}m_{3}+4m_{1}m_{4}+12m_{2}^{2}+16m_{2}m_{3}+8m_{2}m_{4}+6m_{3}^{2}+6m_{3}m_{4}+2m_{4}^{2}}}{(q^{2};q^{2})_{m_{1}}(q^{2};q^{2})_{m_{2}}(q;q)_{m_{3}}(q;q)_{m_{4}}} =1θ(q2,q3,q4;q14).\displaystyle=\dfrac{1}{\theta(q^{2},q^{3},q^{4};\,q^{14})}. (4.3)

5. Quadruple sums for Nandi’s identities

In this section, we will state and prove the quadruple sum representations for Nandi’s identities, including (4.3).

5.1. The identities

Nandi conjectured the following partition identities in his thesis [33]. These identities were then proved by Takigiku and Tsuchioka [44]. We now recall these identities.

Let 𝒩\mathscr{N} be the set of partitions λ\lambda that satisfy both the following conditions:

  1. (1)

    No sub-partition of λ\lambda satisfies the difference conditions [1],[0,0],[0,2],[2,0][1],[0,0],[0,2],[2,0] or [0,3][0,3].

  2. (2)

    No sub-partition with an odd weight satisfies the difference conditions [3,0],[0,4],[4,0][3,0],[0,4],[4,0] or [3,2,3,0][3,2*,3,0] (where 22* indicates zero or more occurrences of 22).

We further define the following sets:

𝒩1\displaystyle\mathscr{N}_{1} ={λ𝒩|m1(λ)=0},\displaystyle=\{\lambda\in\mathscr{N}\,|\,m_{1}(\lambda)=0\}, (5.1)
𝒩2\displaystyle\mathscr{N}_{2} ={λ𝒩|m1(λ),m2(λ),m3(λ)1},\displaystyle=\{\lambda\in\mathscr{N}\,|\,m_{1}(\lambda),m_{2}(\lambda),m_{3}(\lambda)\leq 1\}, (5.2)
𝒩3\displaystyle\mathscr{N}_{3} ={λ𝒩|m1(λ)=m3(λ)=0,m2(λ)1,λhasnosubpartitionoftheform(2k+3)+  2k+(2k2)++4+2withk1.}\displaystyle=\left\{\lambda\in\mathscr{N}\,\left|\,\begin{matrix}m_{1}(\lambda)=m_{3}(\lambda)=0,m_{2}(\lambda)\leq 1,\\ \lambda\,\,\mathrm{has\,\,no\,\,subpartition\,\,of\,\,the\,\,form\,\,}\\ (2k+3)\,\,+\,\,2k+(2k-2)+\cdots+4+2\,\,\mathrm{with}\,\,k\geq 1.\end{matrix}\right.\right\} (5.3)

Using this notation, we can state the following theorem.

Theorem 7 (Conjectured by Nandi [33], proved by Takigiku and Tsuchioka [44]).

For any n0n\geq 0, we have the following three identities.

  1. (1)

    The number of partitions of nn belonging to 𝒩1\mathscr{N}_{1} is the same as the number of partitions of nn into parts congruent to ±2\pm 2, ±3\pm 3 or ±4\pm 4 modulo 1414.

  2. (2)

    The number of partitions of nn belonging to 𝒩2\mathscr{N}_{2} is the same as the number of partitions of nn into parts congruent to ±1\pm 1, ±4\pm 4 or ±6\pm 6 modulo 1414.

  3. (3)

    The number of partitions of nn belonging to 𝒩3\mathscr{N}_{3} is the same as the number of partitions of nn into parts congruent to ±2\pm 2, ±5\pm 5 or ±6\pm 6 modulo 1414.

5.2. Difference equations

Takigiku and Tsuchioka’s remarkable proof of these identities [44] relies on a certain system of difference equations satisfied by the generating functions of 𝒩1\mathscr{N}_{1}, 𝒩2\mathscr{N}_{2} and 𝒩3\mathscr{N}_{3}.

Consider the following system:

[F0(x,q)F1(x,q)F2(x,q)F3(x,q)F4(x,q)F5(x,q)F7(x,q)]=[1xq2x2q4xqx2q2000xq20001000000010xq20xq0100000xq2011xq2x2q4xq0001xq2x2q40000][F0(xq2,q)F1(xq2,q)F2(xq2,q)F3(xq2,q)F4(xq2,q)F5(xq2,q)F7(xq2,q)]\displaystyle\begin{bmatrix}F_{0}(x,q)\\ F_{1}(x,q)\\ F_{2}(x,q)\\ F_{3}(x,q)\\ F_{4}(x,q)\\ F_{5}(x,q)\\ F_{7}(x,q)\end{bmatrix}=\begin{bmatrix}1&x{q}^{2}&{x}^{2}{q}^{4}&xq&{x}^{2}{q}^{2}&0&0\\ 0&x{q}^{2}&0&0&0&1&0\\ 0&0&0&0&0&0&1\\ 0&x{q}^{2}&0&xq&0&1&0\\ 0&0&0&0&x{q}^{2}&0&1\\ 1&x{q}^{2}&{x}^{2}{q}^{4}&xq&0&0&0\\ 1&x{q}^{2}&{x}^{2}{q}^{4}&0&0&0&0\end{bmatrix}\begin{bmatrix}F_{0}(xq^{2},q)\\ F_{1}(xq^{2},q)\\ F_{2}(xq^{2},q)\\ F_{3}(xq^{2},q)\\ F_{4}(xq^{2},q)\\ F_{5}(xq^{2},q)\\ F_{7}(xq^{2},q)\end{bmatrix} (5.4)

where each Fi(x,q)[[x,q]]F_{i}(x,q)\in\mathbb{Z}[[x,q]] for i=0,,5i=0,\dots,5 or i=7i=7 is a generating function of certain set of partitions, say 𝒞i\mathscr{C}_{i}. Then, Takigiku and Tsuchioka prove that the generating functions f𝒩i(x,q)f_{\mathscr{N}_{i}}(x,q) with i=1,2,3i=1,2,3 satisfy this system if we take:

F7(x,q)\displaystyle F_{7}(x,q) =f𝒩1(x,q),\displaystyle=f_{\mathscr{N}_{1}}(x,q), (5.5)
F3(x,q)\displaystyle F_{3}(x,q) =f𝒩2(x,q),\displaystyle=f_{\mathscr{N}_{2}}(x,q), (5.6)
F4(x,q)\displaystyle F_{4}(x,q) =f𝒩3(x,q).\displaystyle=f_{\mathscr{N}_{3}}(x,q). (5.7)

From here, we may use the modified Murray–Miller algorithm to obtain an x,qx,q-difference equation satisfied by each of the FiF_{i}s with i=0,,5i=0,\dots,5 or i=7i=7. We shall follow Takigiku and Tsuchioka’s exposition of this algorithm [44]; see also the expositions of Andrews [3, Ch. 8] and Chern [19] for more examples. In each case, it is easy to see that the resulting difference equation has a unique solution in the set 𝒮\mathscr{S}.

Proposition 8.

The power series F1(x,q)F_{1}(x,q) is the unique solution in 𝒮\mathscr{S} of:

0\displaystyle 0 =F1(x,q)+(q5xq4xq2x1)F1(xq2,q)+q3x(q8x+q6x+q2+q1)F1(xq4,q)\displaystyle=F_{1}(x,q)+(-q^{5}x-q^{4}x-q^{2}x-1)F_{1}(xq^{2},q)+q^{3}x(q^{8}x+q^{6}x+q^{2}+q-1)F_{1}(xq^{4},q)
+x2q8(q8x+q6xq3+q1)F1(xq6,q)q16x3(q11x+q9x+q8xq3q1)F1(xq8,q)\displaystyle+x^{2}q^{8}(q^{8}x+q^{6}x-q^{3}+q-1)F_{1}(xq^{6},q)-q^{16}x^{3}(q^{11}x+q^{9}x+q^{8}x-q^{3}-q-1)F_{1}(xq^{8},q)
+x3q19(q18x2q10xq8x+1)F1(xq10,q).\displaystyle+x^{3}q^{19}(q^{18}x^{2}-q^{10}x-q^{8}x+1)F_{1}(xq^{10},q). (5.8)

The power series F5(x,q)F_{5}(x,q) is the unique solution in 𝒮\mathscr{S} of:

0=\displaystyle 0= F5(x,q)+(q4xq3xq2x1)F5(xq2,q)\displaystyle F_{5}(x,q)+(-q^{4}x-q^{3}x-q^{2}x-1)F_{5}(xq^{2},q)
+xq(q8x+q7x+q6xq3x+q3+q21)F5(xq4,q)\displaystyle+xq(q^{8}x+q^{7}x+q^{6}x-q^{3}x+q^{3}+q^{2}-1)F_{5}(xq^{4},q)
x2q4(q11xq8xq7xq6x+q5q3+1)F5(xq6,q)\displaystyle-x^{2}q^{4}(q^{11}x-q^{8}x-q^{7}x-q^{6}x+q^{5}-q^{3}+1)F_{5}(xq^{6},q)
q11x3(q10x+q9x+q8xq2q1)F5(xq8,q)\displaystyle-q^{11}x^{3}(q^{10}x+q^{9}x+q^{8}x-q^{2}-q-1)F_{5}(xq^{8},q)
+q13x3(q18x2q10xq8x+1)F5(xq10,q).\displaystyle+q^{13}x^{3}(q^{18}x^{2}-q^{10}x-q^{8}x+1)F_{5}(xq^{10},q). (5.9)

The power series F7=f𝒩1F_{7}=f_{\mathscr{N}_{1}} is the unique solution in 𝒮\mathscr{S} of:

0=\displaystyle 0= F7(x,q)+(q4xq3xq2x1)F7(xq2,q)+(q5x+q4x+q3xx+1)q4xF7(xq4,q)\displaystyle F_{7}(x,q)+(-q^{4}x-q^{3}x-q^{2}x-1)F_{7}(xq^{2},q)+(q^{5}x+q^{4}x+q^{3}x-x+1)q^{4}xF_{7}(xq^{4},q)
x2q6(q9xq6xq5xq4x+1)F7(xq6,q)x3q13(q8x+q7x+q6xq2q1)F7(xq8,q)\displaystyle-x^{2}q^{6}(q^{9}x-q^{6}x-q^{5}x-q^{4}x+1)F_{7}(xq^{6},q)-x^{3}q^{13}(q^{8}x+q^{7}x+q^{6}x-q^{2}-q-1)F_{7}(xq^{8},q)
+x3q17(q14x2q8xq6x+1)F7(xq10,q).\displaystyle+x^{3}q^{17}(q^{14}x^{2}-q^{8}x-q^{6}x+1)F_{7}(xq^{10},q). (5.10)

(For this last equation, see also equation (C.1) of Takigiku and Tsuchioka [44].)

Once unique solutions to F1,F5,F7𝒮F_{1},F_{5},F_{7}\in\mathscr{S} have been found, F0,F2,F3,F4F_{0},F_{2},F_{3},F_{4} are uniquely determined due to the system (5.4) as follows.

Proposition 9.

We have:

F2(x,q)\displaystyle F_{2}(x,q) =F7(xq2,q),\displaystyle=F_{7}(xq^{2},q), (5.11)
F3(x,q)\displaystyle F_{3}(x,q) =F1(x,q)+F5(x,q)F7(x,q),\displaystyle=F_{1}(x,q)+F_{5}(x,q)-F_{7}(x,q), (5.12)
F0(x,q)\displaystyle F_{0}(x,q) =F7(xq2,q)xF1(x,q)x2F2(x,q),\displaystyle=F_{7}(xq^{-2},q)-xF_{1}(x,q)-x^{2}F_{2}(x,q), (5.13)
F4(x,q)\displaystyle F_{4}(x,q) =x2q2F0(xq2,q)x2q2F5(xq2,q).\displaystyle=x^{-2}q^{2}F_{0}(xq^{-2},q)-x^{-2}q^{2}F_{5}(xq^{-2},q). (5.14)
Proof.

(5.12) follows by comparing the recurrences for F1(x,q)F_{1}(x,q), F5(x,q)F_{5}(x,q) and F7(x,q)F_{7}(x,q); (5.13) follows by solving the recurrence for F7(x,q)F_{7}(x,q) in (5.4); and (5.14) by comparing the recurrences for F0(x,q)F_{0}(x,q) and F5(x,q)F_{5}(x,q). ∎

5.3. Proofs of our sum sides

To enable us to deduce x,qx,q-recurrences, we modify the quadruple sum in (1.7) by inserting in the variable xx, along with including linear terms in the exponent of qq. To this end, we define:

SA,B,C,D(x,q)=i,j,k,0x2i+3j+2k+q4i2+12ij+8ik+4i+12j2+16jk+8j+6k2+6k+22+Ai+Bj+Ck+D(q2;q2)i(q2;q2)j(q;q)k(q;q).\displaystyle S_{A,B,C,D}(x,q)=\sum_{i,j,k,\ell\geq 0}\frac{x^{2i+3j+2k+\ell}q^{4i^{2}+12ij+8ik+4i\ell+12j^{2}+16jk+8j\ell+6k^{2}+6k\ell+2\ell^{2}+Ai+Bj+Ck+D\ell}}{\left(q^{2};q^{2}\right)_{i}\left(q^{2};q^{2}\right)_{j}\left(q;q\right)_{k}\left(q;q\right)_{\ell}}. (5.15)

We will typically suppress the xx and qq arguments when they are clear.

Our main theorem of this section is the following.

Theorem 10.

We have:

F1(x,q)\displaystyle F_{1}(x,q) =S2,2,1,0(x,q),\displaystyle=S_{2,2,1,0}(x,q), (5.16)
F5(x,q)\displaystyle F_{5}(x,q) =S0,2,2,1(x,q),\displaystyle=S_{0,-2,-2,-1}(x,q), (5.17)
F7(x,q)\displaystyle F_{7}(x,q) =S0,0,0,0(x,q).\displaystyle=S_{0,0,0,0}(x,q). (5.18)

The rest of this section is devoted to the proof of this theorem. We begin by deducing certain fundamental relations satisfied by SA,B,C,DS_{A,B,C,D}. We clearly have:

SA,B,C,D(xq,q)=SA+2,B+3,C+2,D+1(x,q).\displaystyle S_{A,B,C,D}(xq,q)=S_{A+2,B+3,C+2,D+1}(x,q). (5.19)

Additionally, we have:

n1^(A,B,C,D):\displaystyle\widehat{n_{1}}(A,B,C,D): SA,B,C,DSA+2,B,C,Dx2q4+ASA+8,B+12,C+8,D+4\displaystyle\quad S_{A,B,C,D}-S_{A+2,B,C,D}-x^{2}q^{4+A}S_{A+8,B+12,C+8,D+4} =0,\displaystyle=0, (5.20)
n2(A,B,C,D):\displaystyle n_{2}(A,B,C,D): SA,B,C,DSA,B+2,C,Dx3q12+BSA+12,B+24,C+16,D+8\displaystyle\quad S_{A,B,C,D}-S_{A,B+2,C,D}-x^{3}q^{12+B}S_{A+12,B+24,C+16,D+8} =0,\displaystyle=0, (5.21)
n3^(A,B,C,D):\displaystyle\widehat{n_{3}}(A,B,C,D): SA,B,C,DSA,B,C+1,Dx2q6+CSA+8,B+16,C+12,D+6\displaystyle\quad S_{A,B,C,D}-S_{A,B,C+1,D}-x^{2}q^{6+C}S_{A+8,B+16,C+12,D+6} =0,\displaystyle=0, (5.22)
n4^(A,B,C,D):\displaystyle\widehat{n_{4}}(A,B,C,D): SA,B,C,DSA,B,C,D+1xq2+DSA+4,B+8,C+6,D+4\displaystyle\quad S_{A,B,C,D}-S_{A,B,C,D+1}-xq^{2+D}S_{A+4,B+8,C+6,D+4} =0.\displaystyle=0. (5.23)

(compare with (2.9)). We will be modifying n1^,n3^,n4^\widehat{n_{1}},\widehat{n_{3}},\widehat{n_{4}} shortly to our final relations n1,n3,n4n_{1},n_{3},n_{4}, respectively. To prove (5.20):

SA,B,C,DSA+2,B,C,D\displaystyle S_{A,B,C,D}-S_{A+2,B,C,D}
=i,j,k,0x2i+3j+2k+q4i2+12ij+8ik+4i+12j2+16jk+8j+6k2+6k+22+Ai+Bj+Ck+D(1q2i)(q2;q2)i(q2;q2)j(q;q)k(q;q)\displaystyle=\sum_{i,j,k,\ell\geq 0}\frac{x^{2i+3j+2k+\ell}q^{4i^{2}+12ij+8ik+4i\ell+12j^{2}+16jk+8j\ell+6k^{2}+6k\ell+2\ell^{2}+Ai+Bj+Ck+D\ell}\left(1-q^{2i}\right)}{\left(q^{2};q^{2}\right)_{i}\left(q^{2};q^{2}\right)_{j}\left(q;q\right)_{k}\left(q;q\right)_{\ell}}
=i,j,k,0x2i+3j+2k+q4i2+12ij+8ik+4i+12j2+16jk+8j+6k2+6k+22+Ai+Bj+Ck+D(q2;q2)i1(q2;q2)j(q;q)k(q;q)\displaystyle=\sum_{i,j,k,\ell\geq 0}\frac{x^{2i+3j+2k+\ell}q^{4i^{2}+12ij+8ik+4i\ell+12j^{2}+16jk+8j\ell+6k^{2}+6k\ell+2\ell^{2}+Ai+Bj+Ck+D\ell}}{\left(q^{2};q^{2}\right)_{i-1}\left(q^{2};q^{2}\right)_{j}\left(q;q\right)_{k}\left(q;q\right)_{\ell}}
=𝐢,j,k,0x2(𝐢+1)+3j+2k+q4(𝐢+1)2+12(𝐢+1)j+8(𝐢+1)k+4(𝐢+1)+12j2+16jk+8j+6k2+6k+22+A(𝐢+1)+Bj+Ck+D(q2;q2)𝐢(q2;q2)j(q;q)k(q;q)\displaystyle=\sum_{{\bf{i}},j,k,\ell\geq 0}\frac{x^{2\left({\bf{i}}+1\right)+3j+2k+\ell}q^{4\left({\bf{i}}+1\right)^{2}+12\left({\bf{i}}+1\right)j+8\left({\bf{i}}+1\right)k+4\left({\bf{i}}+1\right)\ell+12j^{2}+16jk+8j\ell+6k^{2}+6k\ell+2\ell^{2}+A\left({\bf{i}}+1\right)+Bj+Ck+D\ell}}{\left(q^{2};q^{2}\right)_{{\bf{i}}}\left(q^{2};q^{2}\right)_{j}\left(q;q\right)_{k}\left(q;q\right)_{\ell}}
=x2q4+A𝐢,j,k,0x2𝐢+3j+2k+q4𝐢2+12𝐢j+8𝐢k+4𝐢+12j2+16jk+8j+6k2+6k+22+(A+8)𝐢+(B+12)j+(C+8)k+(D+4)(q2;q2)𝐢(q2;q2)j(q;q)k(q;q)\displaystyle=x^{2}q^{4+A}\sum_{{\bf{i}},j,k,\ell\geq 0}\frac{x^{2{\bf{i}}+3j+2k+\ell}q^{4{\bf{i}}^{2}+12{\bf{i}}j+8{\bf{i}}k+4{\bf{i}}\ell+12j^{2}+16jk+8j\ell+6k^{2}+6k\ell+2\ell^{2}+(A+8){\bf{i}}+(B+12)j+(C+8)k+(D+4)\ell}}{\left(q^{2};q^{2}\right)_{{\bf{i}}}\left(q^{2};q^{2}\right)_{j}\left(q;q\right)_{k}\left(q;q\right)_{\ell}}
=x2q4+ASA+8,B+12,C+8,D+4\displaystyle=x^{2}q^{4+A}S_{A+8,B+12,C+8,D+4}

Note the reindexing 𝐢=i+1{\bf{i}}=i+1 in the middle of the above calculation. Proofs for the other three fundamental relations are similar, involving multiplication by (1q2j)\left(1-q^{2j}\right), (1qk)\left(1-q^{k}\right), and (1q)\left(1-q^{\ell}\right), respectively.

Because of the structure of what we will actually need to prove, we will prefer to work with modified versions of relations n1^\widehat{n_{1}}, n3^\widehat{n_{3}} and n4^\widehat{n_{4}}. To modify n1^(A,B,C,D)\widehat{n_{1}}(A,B,C,D), we combine three copies of n1^\widehat{n_{1}} in the following way:

n1^\displaystyle\widehat{n_{1}} (A,B,C,D)+n1^(A+2,B,C,D)x2q6+An1^(A+8,B+12,C+8,D+4)\displaystyle(A,B,C,D)+\widehat{n_{1}}(A+2,B,C,D)-x^{2}q^{6+A}\widehat{n_{1}}(A+8,B+12,C+8,D+4)
=SA,B,C,DSA+2,B,C,Dx2q4+ASA+8,B+12,C+8,D+4\displaystyle=S_{A,B,C,D}-S_{A+2,B,C,D}-x^{2}q^{4+A}S_{A+8,B+12,C+8,D+4}
+SA+2,B,C,DSA+4,B,C,Dx2q6+ASA+10,B+12,C+8,D+4\displaystyle\quad+S_{A+2,B,C,D}-S_{A+4,B,C,D}-x^{2}q^{6+A}S_{A+10,B+12,C+8,D+4}
x2q6+A(SA+8,B+12,C+8,D+4SA+10,B+12,C+8,D+4x2q12+ASA+16,B+24,C+16,D+8)\displaystyle\quad-x^{2}q^{6+A}\left(S_{A+8,B+12,C+8,D+4}-S_{A+10,B+12,C+8,D+4}-x^{2}q^{12+A}S_{A+16,B+24,C+16,D+8}\right)
=SA,B,C,Dx2q4+ASA+8,B+12,C+8,D+4SA+4,B,C,Dx2q6+ASA+8,B+12,C+8,D+4\displaystyle=S_{A,B,C,D}-x^{2}q^{4+A}S_{A+8,B+12,C+8,D+4}-S_{A+4,B,C,D}-x^{2}q^{6+A}S_{A+8,B+12,C+8,D+4}
+x4q18+2ASA+16,B+24,C+16,D+8=0\displaystyle\quad+x^{4}q^{18+2A}S_{A+16,B+24,C+16,D+8}=0

We call this final relation n1(A,B,C,D)n_{1}(A,B,C,D). Similarly, to find our n3(A,B,C,D){n_{3}}(A,B,C,D) relation, we combine

n3^(A,B,C,D)+n3^(A,B,C+1,D)x2q7+Cn3^(A+8,B+16,C+12,D+6),\widehat{n_{3}}(A,B,C,D)+\widehat{n_{3}}(A,B,C+1,D)-x^{2}q^{7+C}\widehat{n_{3}}(A+8,B+16,C+12,D+6),

and to find our n4(A,B,C,D){n_{4}}(A,B,C,D) relation, we combine

n4^(A,B,C,D)+n4^(A,B,C,D+1)xq3+Dn4^(A+4,B+8,C+6,D+4).\widehat{n_{4}}(A,B,C,D)+\widehat{n_{4}}(A,B,C,D+1)-xq^{3+D}\widehat{n_{4}}(A+4,B+8,C+6,D+4).

We record the final list of relations in the following proposition.

Proposition 11.

The objects SA,B,C,DS_{A,B,C,D} satisfy the following set of relations.

n1(A,B,C,D):\displaystyle n_{1}(A,B,C,D): SA,B,C,Dx2q4+A(1+q2)SA+8,B+12,C+8,D+4SA+4,B,C,D\displaystyle\quad S_{A,B,C,D}-x^{2}q^{4+A}(1+q^{2})S_{A+8,B+12,C+8,D+4}-S_{A+4,B,C,D}
+x4q18+2ASA+16,B+24,C+16,D+8=0,\displaystyle\quad+x^{4}q^{18+2A}S_{A+16,B+24,C+16,D+8}=0, (5.24)
n2(A,B,C,D):\displaystyle n_{2}(A,B,C,D): SA,B,C,DSA,B+2,C,Dx3q12+BSA+12,B+24,C+16,D+8=0,\displaystyle\quad S_{A,B,C,D}-S_{A,B+2,C,D}-x^{3}q^{12+B}S_{A+12,B+24,C+16,D+8}=0, (5.25)
n3(A,B,C,D):\displaystyle{n_{3}}(A,B,C,D): SA,B,C,Dx2q6+CSA+8,B+16,C+12,D+6SA,B,C+2,D\displaystyle\quad S_{A,B,C,D}-x^{2}q^{6+C}S_{A+8,B+16,C+12,D+6}-S_{A,B,C+2,D}
x2q7+CSA+8,B+16,C+12,D+6+x4q25+2CSA+16,B+32,C+24,D+12=0,\displaystyle\quad-x^{2}q^{7+C}S_{A+8,B+16,C+12,D+6}+x^{4}q^{25+2C}S_{A+16,B+32,C+24,D+12}=0, (5.26)
n4(A,B,C,D):\displaystyle{n_{4}}(A,B,C,D): SA,B,C,Dxq2+DSA+4,B+8,C+6,D+4SA,B,C,D+2\displaystyle\quad S_{A,B,C,D}-xq^{2+D}S_{A+4,B+8,C+6,D+4}-S_{A,B,C,D+2}
xq3+DSA+4,B+8,C+6,D+4+x2q9+2DSA+8,B+16,C+12,D+8=0.\displaystyle\quad-xq^{3+D}S_{A+4,B+8,C+6,D+4}+x^{2}q^{9+2D}S_{A+8,B+16,C+12,D+8}=0. (5.27)

We now prove Theorem 10.

Proof of Theorem 10.

The main idea is to show that in each of the equations (5.18), (5.16) and (5.17), both sides are the (unique) solutions in 𝒮\mathscr{S} to the corresponding difference equations given in Proposition 8.

It is clear that S0,0,0,0(x,q)S_{0,0,0,0}(x,q), S2,2,1,0(x,q)S_{2,2,1,0}(x,q), S0,2,2,1(x,q)S_{0,-2,-2,-1}(x,q) belong to 𝒮\mathscr{S}.

Establishing the recurrence (5.8) for S2,2,1,0(x,q)S_{2,2,1,0}(x,q) amounts to proving:

0\displaystyle 0 =S2,2,1,0+(q5xq4xq2x1)S6,8,5,2+q3x(q8x+q6x+q2+q1)S10,14,9,4\displaystyle=S_{2,2,1,0}+(-q^{5}x-q^{4}x-q^{2}x-1)S_{6,8,5,2}+q^{3}x(q^{8}x+q^{6}x+q^{2}+q-1)S_{10,14,9,4}
+x2q8(q8x+q6xq3+q1)S14,20,13,6q16x3(q11x+q9x+q8xq3q1)S18,26,17,8\displaystyle\quad+x^{2}q^{8}(q^{8}x+q^{6}x-q^{3}+q-1)S_{14,20,13,6}-q^{16}x^{3}(q^{11}x+q^{9}x+q^{8}x-q^{3}-q-1)S_{18,26,17,8}
+x3q19(q18x2q10xq8x+1)S22,32,21,10.\displaystyle\quad+x^{3}q^{19}(q^{18}x^{2}-q^{10}x-q^{8}x+1)S_{22,32,21,10}. (5.28)

The file F1.txt provides this relation as a (huge!) linear combination of the fundamental relations in Proposition 11.

Establishing the recurrence (5.9) for S0,2,2,1(x,q)S_{0,-2,-2,-1}(x,q) amounts to proving:

0=\displaystyle 0= S0,2,2,1+(q4xq3xq2x1)S4,4,2,1+xq(q8x+q7x+q6xq3x+q3+q21)S8,10,6,3\displaystyle S_{0,-2,-2,-1}+(-q^{4}x-q^{3}x-q^{2}x-1)S_{4,4,2,1}+xq(q^{8}x+q^{7}x+q^{6}x-q^{3}x+q^{3}+q^{2}-1)S_{8,10,6,3}
x2q4(q11xq8xq7xq6x+q5q3+1)S12,16,10,5\displaystyle-x^{2}q^{4}(q^{11}x-q^{8}x-q^{7}x-q^{6}x+q^{5}-q^{3}+1)S_{12,16,10,5}
q11x3(q10x+q9x+q8xq2q1)S16,22,14,7\displaystyle-q^{11}x^{3}(q^{10}x+q^{9}x+q^{8}x-q^{2}-q-1)S_{16,22,14,7}
+q13x3(q18x2q10xq8x+1)S20,28,18,9.\displaystyle+q^{13}x^{3}(q^{18}x^{2}-q^{10}x-q^{8}x+1)S_{20,28,18,9}. (5.29)

The file F5.txt provides this relation as a linear combination of the fundamental relations in Proposition 11.

Using (5.19), establishing the recurrence (5.10) for S0,0,0,0(x,q)S_{0,0,0,0}(x,q) amounts to proving:

0=\displaystyle 0= S0,0,0,0+(q4xq3xq2x1)S2,3,2,1+q4x(q5x+q4x+q3xx+1)S8,12,8,4\displaystyle S_{0,0,0,0}+(-q^{4}x-q^{3}x-q^{2}x-1)S_{2,3,2,1}+q^{4}x(q^{5}x+q^{4}x+q^{3}x-x+1)S_{8,12,8,4}
x2q6(q9xq6xq5xq4x+1)S12,18,12,6x3q13(q8x+q7x+q6xq2q1)S16,24,16,8\displaystyle-x^{2}q^{6}(q^{9}x-q^{6}x-q^{5}x-q^{4}x+1)S_{12,18,12,6}-x^{3}q^{13}(q^{8}x+q^{7}x+q^{6}x-q^{2}-q-1)S_{16,24,16,8}
+x3q17(q14x2q8xq6x+1)S20,30,20,10.\displaystyle+x^{3}q^{17}(q^{14}x^{2}-q^{8}x-q^{6}x+1)S_{20,30,20,10}. (5.30)

The file F7.txt provides this relation as a linear combination of the fundamental relations in Proposition 11.

In each case above, the linear combinations are very large and it is impossible to check them by hand. One may simply import the files above in a computer algebra system, systematically replace all symbols n1,n2,n3,n4n_{1},n_{2},n_{3},n_{4} by the corresponding relations, simplify the answer and finally check that the required relations are obtained. This can be implemented very easily and we provide the required programs. See Appendix B for details. ∎

Now that Theorem 10 is proved, we may use Proposition 9 to finally arrive at sum sides for all of Nandi’s identities.

Theorem 12.

We have:

f𝒩1(x,q)\displaystyle f_{\mathscr{N}_{1}}(x,q) =F7(x,q)=S0,0,0,0(x,q),\displaystyle=F_{7}(x,q)=S_{0,0,0,0}(x,q), (5.31)
f𝒩2(x,q)\displaystyle f_{\mathscr{N}_{2}}(x,q) =F3(x,q)=S0,2,2,1(x,q)S0,0,0,0(x,q)+S2,2,1,0(x,q),\displaystyle=F_{3}(x,q)=S_{0,-2,-2,-1}(x,q)-S_{0,0,0,0}(x,q)+S_{2,2,1,0}(x,q), (5.32)
f𝒩3(x,q)\displaystyle f_{\mathscr{N}_{3}}(x,q) =F4(x,q)=q2x2S8,12,8,4(x,q)1xS2,4,3,2(x,q)1q2S0,0,0,0(x,q)\displaystyle=F_{4}(x,q)=\frac{q^{2}}{x^{2}}S_{-8,-12,-8,-4}(x,q)-\frac{1}{x}S_{-2,-4,-3,-2}(x,q)-\frac{1}{q^{2}}S_{0,0,0,0}(x,q)
q2x2S4,8,6,3(x,q).\displaystyle\quad-\frac{q^{2}}{x^{2}}S_{-4,-8,-6,-3}(x,q). (5.33)

Setting x1x\mapsto 1 and using the truth of Nandi’s identities [44], we obtain:

i,j,k,0\displaystyle\sum_{i,j,k,\ell\geq 0} q4i2+12ij+8ik+4i+12j2+16jk+8j+6k2+6k+22(q2;q2)i(q2;q2)j(q;q)k(q;q)=1θ(q2,q3,q4;q14),\displaystyle\frac{q^{4i^{2}+12ij+8ik+4i\ell+12j^{2}+16jk+8j\ell+6k^{2}+6k\ell+2\ell^{2}}}{\left(q^{2};q^{2}\right)_{i}\left(q^{2};q^{2}\right)_{j}\left(q;q\right)_{k}\left(q;q\right)_{\ell}}=\frac{1}{\theta(q^{2},q^{3},q^{4};q^{14})}, (5.34)
i,j,k,0\displaystyle\sum_{i,j,k,\ell\geq 0} q4i2+12ij+8ik+4i+12j2+16jk+8j+6k2+6k+22(q2;q2)i(q2;q2)j(q;q)k(q;q)(q2i+2j+k+q2j2k1)=1θ(q,q4,q6;q14),\displaystyle\frac{q^{4i^{2}+12ij+8ik+4i\ell+12j^{2}+16jk+8j\ell+6k^{2}+6k\ell+2\ell^{2}}}{\left(q^{2};q^{2}\right)_{i}\left(q^{2};q^{2}\right)_{j}\left(q;q\right)_{k}\left(q;q\right)_{\ell}}\left(q^{2i+2j+k}+q^{-2j-2k-\ell}-1\right)=\frac{1}{\theta(q,q^{4},q^{6};q^{14})}, (5.35)
i,j,k,0\displaystyle\sum_{i,j,k,\ell\geq 0} q4i2+12ij+8ik+4i+12j2+16jk+8j+6k2+6k+22(q2;q2)i(q2;q2)j(q;q)k(q;q)\displaystyle\frac{q^{4i^{2}+12ij+8ik+4i\ell+12j^{2}+16jk+8j\ell+6k^{2}+6k\ell+2\ell^{2}}}{\left(q^{2};q^{2}\right)_{i}\left(q^{2};q^{2}\right)_{j}\left(q;q\right)_{k}\left(q;q\right)_{\ell}}
×(q8i12j8k4+2q2i4j3k2q4i8j6k3+2q2)=1θ(q2,q5,q6;q14).\displaystyle\times\left(q^{-8i-12j-8k-4\ell+2}-q^{-2i-4j-3k-2\ell}-q^{-4i-8j-6k-3\ell+2}-q^{-2}\right)=\frac{1}{\theta(q^{2},q^{5},q^{6};q^{14})}. (5.36)

5.4. Concluding remarks.

Following Takigiku and Tsuchioka [44], it can be easily confirmed that F1(x,q)F_{1}(x,q) and F5(x,q)F_{5}(x,q) are generating functions of the following subsets of 𝒩\mathscr{N}:

𝒩F1\displaystyle\mathscr{N}_{F_{1}} ={λ𝒩|m1(λ)=0,m2(λ)1,m3(λ)1}={λ𝒩|λ+0𝒩},\displaystyle=\{\lambda\in\mathscr{N}\,|\,m_{1}(\lambda)=0,m_{2}(\lambda)\leq 1,m_{3}(\lambda)\leq 1\}=\{\lambda\in\mathscr{N}\,|\,\lambda+0\in\mathscr{N}\}, (5.37)
𝒩F5\displaystyle\mathscr{N}_{F_{5}} ={λ𝒩|m1(λ)1}={λ𝒩|λ+(2)𝒩}.\displaystyle=\{\lambda\in\mathscr{N}\,|\,m_{1}(\lambda)\leq 1\}=\{\lambda\in\mathscr{N}\,|\,\lambda+(-2)\in\mathscr{N}\}. (5.38)

Theorem 10 implies that F1(x,q)F_{1}(x,q), F5(x,q)F_{5}(x,q), and F7(x,q)F_{7}(x,q) can be written as single manifestly positive quadruple sums. It will be interesting to find a combinatorial reason behind this phenomenon: to know what makes 𝒩F1,𝒩F5\mathscr{N}_{F_{1}},\mathscr{N}_{F_{5}}, and 𝒩1\mathscr{N}_{1} special. As a further avenue of research, writing S0,0,0,0(x,q)=i,j,k,0Bi,j,k,(x,q)S_{0,0,0,0}(x,q)=\sum_{i,j,k,\ell\geq 0}B_{i,j,k,\ell}(x,q), we suggest studying

Bi,j,k,(x,q)=x2i+3j+2k+q4i2+12ij+8ik+4i+12j2+16jk+8j+6k2+6k+22(q2;q2)i(q2;q2)j(q;q)k(q;q)B_{i,j,k,\ell}(x,q)=\frac{x^{2i+3j+2k+\ell}q^{4i^{2}+12ij+8ik+4i\ell+12j^{2}+16jk+8j\ell+6k^{2}+6k\ell+2\ell^{2}}}{\left(q^{2};q^{2}\right)_{i}\left(q^{2};q^{2}\right)_{j}\left(q;q\right)_{k}\left(q;q\right)_{\ell}} (5.39)

to deduce which partitions belonging to 𝒩1\mathscr{N}_{1} are counted by each term in the quadruple sum.

6. New mod 10 identities

Varying the linear terms in the exponent of qq from (1.8), we have the following list of identities where the products are related to the principal characters of level 44 standard (i.e., highest-weight, integrable) D4(3)\mathrm{D}_{4}^{(3)} modules. For notation regarding D4(3)\mathrm{D}_{4}^{(3)}, see Carter’s book [18, P. 608]. For more information on principal characters and computational techniques for them, see the work of Bos [5].

i,j,k,0q2i2+6ij+4ik+2i+6j2+8jk+4j+3k2+3k+2(q2;q2)i(q2;q2)j(q;q)k(q;q)\displaystyle\sum_{i,j,k,\ell\geq 0}\frac{q^{2i^{2}+6ij+4ik+2i\ell+6j^{2}+8jk+4j\ell+3k^{2}+3k\ell+\ell^{2}}}{\left(q^{2};q^{2}\right)_{i}\left(q^{2};q^{2}\right)_{j}\left(q;q\right)_{k}\left(q;q\right)_{\ell}} =1θ(q,q2,q4;q10)=χ(Ω(2Λ0+Λ1)),\displaystyle=\dfrac{1}{\theta(q,q^{2},q^{4};q^{10})}=\chi(\Omega(2\Lambda_{0}+\Lambda_{1})), (6.1)
i,j,k,0q2i2+6ij+4ik+2i+6j2+8jk+4j+3k2+3k+2+2j+k+(q2;q2)i(q2;q2)j(q;q)k(q;q)\displaystyle\sum_{i,j,k,\ell\geq 0}\frac{q^{2i^{2}+6ij+4ik+2i\ell+6j^{2}+8jk+4j\ell+3k^{2}+3k\ell+\ell^{2}+2j+k+\ell}}{\left(q^{2};q^{2}\right)_{i}\left(q^{2};q^{2}\right)_{j}\left(q;q\right)_{k}\left(q;q\right)_{\ell}} =1θ(q2,q2,q3;q10)=χ(Ω(2Λ1)),\displaystyle=\dfrac{1}{\theta(q^{2},q^{2},q^{3};q^{10})}=\chi(\Omega(2\Lambda_{1})), (6.2)
i,j,k,0q2i2+6ij+4ik+2i+6j2+8jk+4j+3k2+3k+2+2i+2j+2k(q2;q2)i(q2;q2)j(q;q)k(q;q)\displaystyle\sum_{i,j,k,\ell\geq 0}\frac{q^{2i^{2}+6ij+4ik+2i\ell+6j^{2}+8jk+4j\ell+3k^{2}+3k\ell+\ell^{2}+2i+2j+2k}}{\left(q^{2};q^{2}\right)_{i}\left(q^{2};q^{2}\right)_{j}\left(q;q\right)_{k}\left(q;q\right)_{\ell}} =1θ(q,q4,q4;q10)=χ(Ω(Λ0+Λ2)),\displaystyle=\dfrac{1}{\theta(q,q^{4},q^{4};q^{10})}=\chi(\Omega(\Lambda_{0}+\Lambda_{2})), (6.3)
i,j,k,0q2i2+6ij+4ik+2i+6j2+8jk+4j+3k2+3k+2+2i+4j+3k+(q2;q2)i(q2;q2)j(q;q)k(q;q)\displaystyle\sum_{i,j,k,\ell\geq 0}\frac{q^{2i^{2}+6ij+4ik+2i\ell+6j^{2}+8jk+4j\ell+3k^{2}+3k\ell+\ell^{2}+2i+4j+3k+\ell}}{\left(q^{2};q^{2}\right)_{i}\left(q^{2};q^{2}\right)_{j}\left(q;q\right)_{k}\left(q;q\right)_{\ell}} =1θ(q2,q3,q4;q10)=χ(Ω(4Λ0)).\displaystyle=\dfrac{1}{\theta(q^{2},q^{3},q^{4};q^{10})}=\chi(\Omega(4\Lambda_{0})). (6.4)

Recall that identities for principal characters of level 33 standard modules of D4(3)\mathrm{D}_{4}^{(3)} were previously conjectured by the second and third authors [25], and analytic forms of these conjectures were found by Kurşungöz [30]. See also the thesis of the third author [38] for further related identities.

We will devote the remainder of this section to a proof of these conjectures.

As in the previous section, we begin by introducing refinements of the quadruple sums, along with arbitrary linear terms in the exponent of qq. However, this time, we use two variables, xx and yy.

RA,B,C,D(x,y,q)=i,j,k,0x2j+k+yi+j+kq2i2+6ij+4ik+2i+6j2+8jk+4j+3k2+3k+2+Ai+Bj+Ck+D(q2;q2)i(q2;q2)j(q;q)k(q;q).\displaystyle R_{A,B,C,D}(x,y,q)=\sum_{i,j,k,\ell\geq 0}\frac{x^{2j+k+\ell}y^{i+j+k}q^{2i^{2}+6ij+4ik+2i\ell+6j^{2}+8jk+4j\ell+3k^{2}+3k\ell+\ell^{2}+Ai+Bj+Ck+D\ell}}{\left(q^{2};q^{2}\right)_{i}\left(q^{2};q^{2}\right)_{j}\left(q;q\right)_{k}\left(q;q\right)_{\ell}}. (6.5)

As usual, we will drop the arguments x,y,qx,y,q when they are clear.

We have the following shifts of RA,B,C,DR_{A,B,C,D}:

RA,B,C,D(xq,y,q)\displaystyle R_{A,B,C,D}(xq,y,q) =RA,B+2,C+1,D+1(x,y,q),\displaystyle=R_{A,B+2,C+1,D+1}(x,y,q), (6.6)
RA,B,C,D(x,yq,q)\displaystyle R_{A,B,C,D}(x,yq,q) =RA+1,B+1,C+1,D(x,y,q).\displaystyle=R_{A+1,B+1,C+1,D}(x,y,q). (6.7)

The fundamental relations governing these sums are deduced easily.

Proposition 13.
m1(A,B,C,D):\displaystyle m_{1}(A,B,C,D): RA,B,C,DRA+2,B,C,Dyq2+ARA+4,B+6,C+4,D+2\displaystyle\quad R_{A,B,C,D}-R_{A+2,B,C,D}-yq^{2+A}R_{A+4,B+6,C+4,D+2} =0,\displaystyle=0, (6.8)
m2(A,B,C,D):\displaystyle m_{2}(A,B,C,D): RA,B,C,DRA,B+2,C,Dx2yq6+BRA+6,B+12,C+8,D+4\displaystyle\quad R_{A,B,C,D}-R_{A,B+2,C,D}-x^{2}yq^{6+B}R_{A+6,B+12,C+8,D+4} =0,\displaystyle=0, (6.9)
m3(A,B,C,D):\displaystyle m_{3}(A,B,C,D): RA,B,C,DRA,B,C+1,Dxyq3+CRA+4,B+8,C+6,D+3\displaystyle\quad R_{A,B,C,D}-R_{A,B,C+1,D}-xyq^{3+C}R_{A+4,B+8,C+6,D+3} =0,\displaystyle=0, (6.10)
m4(A,B,C,D):\displaystyle m_{4}(A,B,C,D): RA,B,C,DRA,B,C,D+1xq1+DRA+2,B+4,C+3,D+2\displaystyle\quad R_{A,B,C,D}-R_{A,B,C,D+1}-xq^{1+D}R_{A+2,B+4,C+3,D+2} =0.\displaystyle=0. (6.11)
Theorem 14.

The series R0,0,0,0R_{0,0,0,0} is the unique solution in [[x,y,q]]\mathbb{Z}[[x,y,q]] satisfying the following:

F(x,y,q)\displaystyle F(x,y,q) =F(xq,y,q)+xqF(xq2,y,q),\displaystyle=F(xq,y,q)+xqF\left(xq^{2},y,q\right), (6.12)
F(x,y,0)\displaystyle F(x,y,0) =1,F(x,0,q)=0q2x(q),F(0,y,q)=i0q2i2yi(q2;q2)i.\displaystyle=1,\quad F(x,0,q)=\sum_{\ell\geq 0}\dfrac{q^{\ell^{2}}x^{\ell}}{(q)_{\ell}},\quad F(0,y,q)=\sum_{i\geq 0}\dfrac{q^{2i^{2}}y^{i}}{(q^{2};q^{2})_{i}}. (6.13)
Proof.

R0,0,0,0R_{0,0,0,0} is seen to satisfy (6.13) easily. Due to the shifts (6.6) and (6.7), showing that R0,0,0,0R_{0,0,0,0} satisfies (6.12) is equivalent to showing:

R0,0,0,0R0,2,1,1xqR0,4,2,2=0.\displaystyle R_{0,0,0,0}-R_{0,2,1,1}-xqR_{0,4,2,2}=0. (6.14)

This relation can be obtained as a linear combination of the fundamental relations (6.8)–(6.11):

m1\displaystyle-m_{1} (2,0,0,0)+m1(2,0,0,1)xqm1(0,4,2,2)+xqm1(0,4,3,2)+m2(0,0,0,1)\displaystyle(-2,0,0,0)+m_{1}(-2,0,0,1)-xq\cdot m_{1}(0,4,2,2)+xq\cdot m_{1}(0,4,3,2)+m_{2}(0,0,0,1)
+m3(0,2,0,1)xqm3(2,4,2,2)+m4(2,0,0,0)ym4(2,6,4,2).\displaystyle+m_{3}(0,2,0,1)-xq\cdot m_{3}(2,4,2,2)+m_{4}(-2,0,0,0)-y\cdot m_{4}(2,6,4,2). (6.15)

Now we prove the uniqueness. Suppose that F(x,y,q)=i,j,k0fi,j,kxiyjqkF(x,y,q)=\sum_{i,j,k\geq 0}f_{i,j,k}x^{i}y^{j}q^{k} is a solution to this system. Note that for all i,j,k0i,j,k\geq 0, f0,j,kf_{0,j,k}, fi,0,kf_{i,0,k} and fi,j,0f_{i,j,0} are uniquely determined due to the initial conditions (6.13). For convenience, we define fi,j,k=0f_{i,j,k}=0 whenever any one or more of i,j,ki,j,k are negative. (6.12) translates to:

fi,j,k\displaystyle f_{i,j,k} =fi,j,ki+fi1,j,k2i+1.\displaystyle=f_{i,j,k-i}+f_{i-1,j,k-2i+1}. (6.16)

Now we induct on N=i+kN=i+k and show that all fi,j,kf_{i,j,k} are uniquely determined. The case N=0N=0 follows easily since f0,j,0f_{0,j,0} are uniquely known due to (6.13). Suppose that for all triples (i,j,k)(i,j,k) with i+k<Ni+k<N, the values fi,j,kf_{i,j,k} are determined. Pick a triple (I,J,K)(I,J,K) such that I+K=NI+K=N. If I=0I=0, we know f0,J,Nf_{0,J,N} by (6.13). So, suppose that I1I\geq 1. Then, the RHS of (6.16) involves two terms:

  1. (1)

    fI,J,KIf_{I,J,K-I} for which I+(KI)=K<NI+(K-I)=K<N, (since K+I=NK+I=N and I1I\geq 1)

  2. (2)

    fI1,J,K2I+1f_{I-1,J,K-2I+1} for which (I1)+(K2I+1)=KI<N(I-1)+(K-2I+1)=K-I<N (since K+I=NK+I=N and I1I\geq 1).

This means that the RHS of (6.16) has been determined already, and this determines the LHS uniquely. ∎

Theorem 15.

Identities (6.1)–(6.4) are true.

Proof.

It is easy to see using chapter 7 of Andrews’ text [3] that the series

(i0xiqi2(q)i)(j0yjq2j2(q2;q2)j)\displaystyle\left(\sum_{i\geq 0}\dfrac{x^{i}q^{i^{2}}}{(q)_{i}}\right)\left(\sum_{j\geq 0}\dfrac{y^{j}q^{2j^{2}}}{(q^{2};q^{2})_{j}}\right) (6.17)

satisfies (6.12) and (6.13). Thus, due to uniqueness, we have:

R0,0,0,0(x,y,q)=(i0xiqi2(q)i)(j0yjq2j2(q2;q2)j).\displaystyle R_{0,0,0,0}(x,y,q)=\left(\sum_{i\geq 0}\dfrac{x^{i}q^{i^{2}}}{(q)_{i}}\right)\left(\sum_{j\geq 0}\dfrac{y^{j}q^{2j^{2}}}{(q^{2};q^{2})_{j}}\right). (6.18)

By the Rogers–Ramanujan identities [3, Ch. 7], we now have:

R0,0,0,0(1,1,q)=1θ(q;q5)θ(q2;q10),\displaystyle R_{0,0,0,0}(1,1,q)=\dfrac{1}{\theta(q;q^{5})\theta(q^{2};q^{10})}, (6.19)
R0,0,0,0(q,1,q)=1θ(q2;q5)θ(q2;q10),\displaystyle R_{0,0,0,0}(q,1,q)=\dfrac{1}{\theta(q^{2};q^{5})\theta(q^{2};q^{10})}, (6.20)
R0,0,0,0(1,q2,q)=1θ(q;q5)θ(q4;q10),\displaystyle R_{0,0,0,0}(1,q^{2},q)=\dfrac{1}{\theta(q;q^{5})\theta(q^{4};q^{10})}, (6.21)
R0,0,0,0(q,q2,q)=1θ(q2;q5)θ(q4;q10).\displaystyle R_{0,0,0,0}(q,q^{2},q)=\dfrac{1}{\theta(q^{2};q^{5})\theta(q^{4};q^{10})}. (6.22)

This immediately proves (6.1)–(6.4). ∎

Appendix A Modified Murray–Miller algorithm

We follow the pseudo-code given by Takigiku and Tsuchioka [44] for the modified Murray–Miller algorithm. Our Maple program murraymiller.mw is used as follows.

We begin by importing the Linear Algebra package, and then loading our Maple program.

with(LinearAlgebra);
read(‘murraymiller.txt‘);

This file provides the recurrence matrix of (5.4):

tt;

which equals:

[1xq2x2q4xqx2q2000xq20001000000010xq20xq0100000xq2011xq2x2q4xq0001xq2x2q40000]\displaystyle\begin{bmatrix}1&x{q}^{2}&{x}^{2}{q}^{4}&xq&{x}^{2}{q}^{2}&0&0\\ 0&x{q}^{2}&0&0&0&1&0\\ 0&0&0&0&0&0&1\\ 0&x{q}^{2}&0&xq&0&1&0\\ 0&0&0&0&x{q}^{2}&0&1\\ 1&x{q}^{2}&{x}^{2}{q}^{4}&xq&0&0&0\\ 1&x{q}^{2}&{x}^{2}{q}^{4}&0&0&0&0\end{bmatrix}

Recall that the indices of this matrix are 0,1,,5,70,1,\dots,5,7. The latter procedures assume that we are trying to find a higher order difference equation satisfied by the function corresponding to the first index. So, to find a recurrence satisfied by F7F_{7}, we first exchange the indices 0 and 77 by exchanging the rows and columns.

ttF7:=ColumnOperation(RowOperation(tt,[1,7]),[1,7]);

This gives us:

𝚝𝚝𝙵𝟽:=[0xq2x2q400010xq20001010000000xq20xq0101000xq2000xq2x2q4xq0010xq2x2q4xqx2q201]\displaystyle\mathtt{ttF7}:=\begin{bmatrix}0&x{q}^{2}&{x}^{2}{q}^{4}&0&0&0&1\\ 0&x{q}^{2}&0&0&0&1&0\\ 1&0&0&0&0&0&0\\ 0&x{q}^{2}&0&xq&0&1&0\\ 1&0&0&0&x{q}^{2}&0&0\\ 0&x{q}^{2}&{x}^{2}{q}^{4}&xq&0&0&1\\ 0&x{q}^{2}&{x}^{2}{q}^{4}&xq&{x}^{2}{q}^{2}&0&1\end{bmatrix}

Now we put this matrix in “standard form”:

mmttF7:=murraymiller(ttF7,2);

Here the second argument 2 corresponds to the shift xxq2x\mapsto xq^{2}. The output is:

𝚖𝚖𝚝𝚝𝙵𝟽:=[5,[0100000x2x+110000x2(x1)q2xqq11000x2q3x(q2x)q4q2xq4q2xq3100x3q7000xq400010qx1q3x(x1)00010qx1q3x100]]\displaystyle\mathtt{mmttF7}:=[5,{\begin{bmatrix}0&1&0&0&0&0&0\\ {x}^{2}&x+1&1&0&0&0&0\\ -{\frac{{x}^{2}\left(x-1\right)}{{q}^{2}}}&{\frac{x}{q}}&{q}^{-1}&1&0&0&0\\ -{\frac{{x}^{2}}{{q}^{3}}}&-{\frac{x\left({q}^{2}-x\right)}{{q}^{4}}}&-{\frac{{q}^{2}-x}{{q}^{4}}}&-{\frac{{q}^{2}-x}{{q}^{3}}}&1&0&0\\ -{\frac{{x}^{3}}{{q}^{7}}}&0&0&0&{\frac{x}{{q}^{4}}}&0&0\\ 0&1&0&{\frac{q}{x-1}}&-{\frac{{q}^{3}}{x\left(x-1\right)}}&0&0\\ 0&1&0&{\frac{q}{x-1}}&-{\frac{{q}^{3}}{x-1}}&0&0\end{bmatrix}]}

Here, the second entry in the output is the recurrence matrix put into a standard form, and the first entry 5 denotes that the first 5×55\times 5 block is to be used to find the recurrence. We thus use:

mmrec(mmttF7[2][1..5,1..5],2,g);

Here, again the first argument is the relevant portion of the matrix in the standard form, the second argument is the shift xxq2x\mapsto xq^{2}, and the third argument is the dummy variable to be used in the recurrence. The output is:

𝚡𝟹(𝚡𝚚𝟸𝚚𝟸𝚡𝟸+𝚡)𝚐(𝚡𝚚𝟸)𝚚𝟿𝚡𝟹(𝚚𝟺+𝚚𝟹𝚡𝚚𝟸+𝚚𝟸𝚡𝚚𝚡)𝚐(𝚡)𝚚𝟷𝟹\displaystyle\mathtt{{\frac{{x}^{3}\left(x{q}^{2}-{q}^{2}-{x}^{2}+x\right)g\left(x{q}^{2}\right)}{{q}^{9}}}-{\frac{{x}^{3}\left({q}^{4}+{q}^{3}-x{q}^{2}+{q}^{2}-xq-x\right)g\left(x\right)}{{q}^{13}}}}
+𝚡𝟸(𝚚𝟻𝚡+𝚚𝟺𝚡𝚚𝟸𝚡𝚚𝚡)𝚚𝟷𝟺𝚐(𝚡𝚚𝟸)𝚡(𝚚𝟾+𝚚𝟻𝚡+𝚡𝚚𝟺+𝚡𝚚𝟹𝚡)𝚚𝟷𝟸𝚐(𝚡𝚚𝟺)\displaystyle\mathtt{+{\frac{{x}^{2}\left({q}^{5}x+{q}^{4}-x{q}^{2}-xq-x\right)}{{q}^{14}}g\left({\frac{x}{{q}^{2}}}\right)}-{\frac{x\left({q}^{8}+{q}^{5}x+x{q}^{4}+x{q}^{3}-x\right)}{{q}^{12}}g\left({\frac{x}{{q}^{4}}}\right)}}
+𝚚𝟼+𝚡𝚚𝟸+𝚡𝚚+𝚡𝚚𝟼𝚐(𝚡𝚚𝟼)𝚐(𝚡𝚚𝟾)\displaystyle\mathtt{+{\frac{{q}^{6}+x{q}^{2}+xq+x}{{q}^{6}}g\left({\frac{x}{{q}^{6}}}\right)}-g\left({\frac{x}{{q}^{8}}}\right)}

This is equivalent to (5.10) upon shifting xxq8x\mapsto xq^{8}.

We repeat for F1F_{1}:

ttF1:=ColumnOperation(RowOperation(tt,[1,2]),[1,2]);
mmttF1:=murraymiller(ttF1,2);
mmrec(mmttF1[2][1..6,1..6],2,g);

The output is:

𝚡𝟹(𝚡𝚚𝟸𝚚𝟸𝚡𝟸+𝚡)𝚐(𝚡)𝚚𝟷𝟹𝚡𝟹(𝚚𝟻𝚡𝚚𝟹+𝚚𝟹+𝚚𝟸𝚡𝚚𝚡)𝚚𝟷𝟼𝚐(𝚡𝚚𝟸)\displaystyle\mathtt{{\frac{{x}^{3}\left(x{q}^{2}-{q}^{2}-{x}^{2}+x\right)g\left(x\right)}{{q}^{13}}}-{\frac{{x}^{3}\left({q}^{5}-x{q}^{3}+{q}^{3}+{q}^{2}-xq-x\right)}{{q}^{16}}g\left({\frac{x}{{q}^{2}}}\right)}}
+𝚡𝟸(𝚚𝟽𝚚𝟻+𝚚𝟺𝚡𝚚𝟸𝚡)𝚚𝟷𝟼𝚐(𝚡𝚚𝟺)𝚡(𝚚𝟼+𝚚𝟻𝚚𝟺+𝚡𝚚𝟸+𝚡)𝚚𝟷𝟷𝚐(𝚡𝚚𝟼)\displaystyle\mathtt{+{\frac{{x}^{2}\left({q}^{7}-{q}^{5}+{q}^{4}-x{q}^{2}-x\right)}{{q}^{16}}g\left({\frac{x}{{q}^{4}}}\right)}-{\frac{x\left({q}^{6}+{q}^{5}-{q}^{4}+x{q}^{2}+x\right)}{{q}^{11}}g\left({\frac{x}{{q}^{6}}}\right)}}
+𝚚𝟾+𝚡𝚚𝟹+𝚡𝚚𝟸+𝚡𝚚𝟾𝚐(𝚡𝚚𝟾)𝚐(𝚡𝚚𝟷𝟶)\displaystyle\mathtt{+{\frac{{q}^{8}+x{q}^{3}+x{q}^{2}+x}{{q}^{8}}g\left({\frac{x}{{q}^{8}}}\right)}-g\left({\frac{x}{{q}^{10}}}\right)}

which is equivalent to (5.8) under xxq10x\mapsto xq^{10}.

For F5F_{5}:

ttF5:=ColumnOperation(RowOperation(tt,[1,6]),[1,6]);
mmttF5:=murraymiller(ttF5,2);
mmrec(mmttF5[2][1..6,1..6],2,g);

The output is:

𝚡𝟹(𝚡𝚚𝟸𝚚𝟸𝚡𝟸+𝚡)𝚐(𝚡)𝚚𝟷𝟿𝚡𝟹(𝚚𝟺+𝚚𝟹𝚡𝚚𝟸+𝚚𝟸𝚡𝚚𝚡)𝚚𝟸𝟷𝚐(𝚡𝚚𝟸)\displaystyle\mathtt{{\frac{{x}^{3}\left(x{q}^{2}-{q}^{2}-{x}^{2}+x\right)g\left(x\right)}{{q}^{19}}}-{\frac{{x}^{3}\left({q}^{4}+{q}^{3}-x{q}^{2}+{q}^{2}-xq-x\right)}{{q}^{21}}g\left({\frac{x}{{q}^{2}}}\right)}}
+(𝚚𝟿𝚚𝟽+𝚡𝚚𝟻+𝚚𝟺𝚡𝚚𝟸𝚡𝚚𝚡)𝚡𝟸𝚚𝟸𝟶𝚐(𝚡𝚚𝟺)\displaystyle\mathtt{+{\frac{\left({q}^{9}-{q}^{7}+x{q}^{5}+{q}^{4}-x{q}^{2}-xq-x\right){x}^{2}}{{q}^{20}}g\left({\frac{x}{{q}^{4}}}\right)}}
𝚡(𝚚𝟷𝟶+𝚚𝟿𝚚𝟽+𝚡𝚚𝟻+𝚡𝚚𝟺+𝚡𝚚𝟹𝚡)𝚚𝟷𝟼𝚐(𝚡𝚚𝟼)+𝚚𝟾+𝚡𝚚𝟸+𝚡𝚚+𝚡𝚚𝟾𝚐(𝚡𝚚𝟾)𝚐(𝚡𝚚𝟷𝟶)\displaystyle\mathtt{-{\frac{x\left({q}^{10}+{q}^{9}-{q}^{7}+x{q}^{5}+x{q}^{4}+x{q}^{3}-x\right)}{{q}^{16}}g\left({\frac{x}{{q}^{6}}}\right)}+{\frac{{q}^{8}+x{q}^{2}+xq+x}{{q}^{8}}g\left({\frac{x}{{q}^{8}}}\right)}-g\left({\frac{x}{{q}^{10}}}\right)}

which is equivalent to (5.9) under xxq10x\mapsto xq^{10}.

Appendix B Proof verification

We explain the Maple program checknandi.mw that verifies (5.28)–(5.30) as explicit linear combinations of fundamental relations (5.24)–(5.27).

We begin by defining (5.24)–(5.27):

N1 := (A,B,C,D) -> S(A,B,C,D)
                   -x^2*q^(4+A)*(1+q^2)*S(A+8,B+12,C+8,D+4)
                   -S(A+4,B,C,D)
                   +x^4*q^(18+2*A)*S(A+16,B+24,C+16,D+8):

N2 := (A,B,C,D) -> S(A,B,C,D)
                   -S(A,B+2,C,D)
                   -x^3*q^(12+B)*S(A+12,B+24,C+16,D+8):

N3 := (A,B,C,D) -> S(A,B,C,D)
                   -x^2*q^(6+C)*S(A+8,B+16,C+12,D+6)-S(A,B,C+2,D)
                   -x^2*q^(7+C)*S(A+8,B+16,C+12,D+6)
                   +x^4*q^(25+2*C)*S(A+16,B+32,C+24,D+12):

N4 := (A,B,C,D) -> S(A,B,C,D)
                   -x*q^(2+D)*S(A+4,B+8,C+6,D+4)-S(A,B,C,D+2)
                   -x*q^(3+D)*S(A+4,B+8,C+6,D+4)
                   +x^2*q^(9+2*D)*S(A+8,B+16,C+12,D+8):

We now read the file that contains a linear combination of (5.24)–(5.27) which when expanded is supposed to yield (5.28).

F1rel := parse(FileTools[Text][ReadFile]("F1.txt")):

Simply simplifying this entire expression takes too long. Thus, we collect all like SS terms together and simplify the coefficients.

collect(F1rel, S, simplify);

Naturally, most coefficients are 0 and get dropped from the expression. The output is:

-x^3*q^16*(q^11*x+q^9*x+q^8*x-q^3-q-1)*S(18, 26, 17, 8)
+x*q^3*(q^8*x+q^6*x+q^2+q-1)*S(10, 14, 9, 4)
+x^3*q^19*(q^18*x^2-q^10*x-q^8*x+1)*S(22, 32, 21, 10)
+S(2, 2, 1, 0)+(-q^5*x-q^4*x-q^2*x-1)*S(6, 8, 5, 2)
+x^2*q^8*(q^8*x+q^6*x-q^3+q-1)*S(14, 20, 13, 6)

which is exactly (5.28). We repeat the process for (5.29):

F5rel := parse(FileTools[Text][ReadFile]("F5.txt")):
collect(F5rel, S, simplify);

and the answer matches (5.29):

S(0, -2, -2, -1)
-x^2*q^4*(q^11*x-q^8*x-q^7*x-q^6*x+q^5-q^3+1)*S(12, 16, 10, 5)
-(q^10*x+q^9*x+q^8*x-q^2-q-1)*q^11*x^3*S(16, 22, 14, 7)
+(q^8*x+q^7*x+q^6*x-q^3*x+q^3+q^2-1)*q*x*S(8, 10, 6, 3)
+(q^18*x^2-q^10*x-q^8*x+1)*q^13*x^3*S(20, 28, 18, 9)
+(-q^4*x-q^3*x-q^2*x-1)*S(4, 4, 2, 1)

For (5.30):

F7rel := parse(FileTools[Text][ReadFile]("F7.txt")):
collect(F7rel, S, simplify);

and the answer matches (5.30):

S(0, 0, 0, 0)
+(q^5*x+q^4*x+q^3*x-x+1)*q^4*x*S(8, 12, 8, 4)
+x^3*q^17*(q^14*x^2-q^8*x-q^6*x+1)*S(20, 30, 20, 10)
-x^2*q^6*(q^9*x-q^6*x-q^5*x-q^4*x+1)*S(12, 18, 12, 6)
+(-q^4*x-q^3*x-q^2*x-1)*S(4, 6, 4, 2)
-x^3*q^13*(q^8*x+q^7*x+q^6*x-q^2-q-1)*S(16, 24, 16, 8)

References

  • [1] G. E. Andrews. An analytic generalization of the Rogers-Ramanujan identities for odd moduli. Proc. Nat. Acad. Sci. U.S.A., 71:4082–4085, 1974.
  • [2] G. E. Andrews. Multiple series Rogers-Ramanujan type identities. Pacific J. Math., 114(2):267–283, 1984.
  • [3] G. E. Andrews. The theory of partitions. Cambridge Mathematical Library. Cambridge University Press, Cambridge, 1998. Reprint of the 1976 original.
  • [4] G. E. Andrews, A. Schilling, and S. O. Warnaar. An A2A_{2} Bailey lemma and Rogers-Ramanujan-type identities. J. Amer. Math. Soc., 12(3):677–702, 1999.
  • [5] M. K. Bos. Coding the principal character formula for affine Kac-Moody Lie algebras. Math. Comp., 72(244):2001–2012, 2003.
  • [6] D. M. Bressoud. Analytic and combinatorial generalizations of the Rogers-Ramanujan identities. Mem. Amer. Math. Soc., 24(227):54, 1980.
  • [7] D. M. Bressoud, M. Ismail, and D. Stanton. Change of Base in Bailey Pairs. Ramanujan J. 4 (2000), no. 4, 435–453.
  • [8] K. Bringmann, C. Jennings-Shaffer, and K. Mahlburg. Proofs and reductions of various conjectured partition identities of Kanade and Russell. J. Reine Angew. Math., 766:109–135, 2020.
  • [9] C. Calinescu, J. Lepowsky, and A. Milas. Vertex-algebraic structure of the principal subspaces of certain A1(1)A_{1}^{(1)}-modules. I. Level one case. Internat. J. Math., 19(1):71–92, 2008.
  • [10] C. Calinescu, J. Lepowsky, and A. Milas. Vertex-algebraic structure of the principal subspaces of certain A1(1)A^{(1)}_{1}-modules. II. Higher-level case. J. Pure Appl. Algebra, 212(8):1928–1950, 2008.
  • [11] C. Calinescu, J. Lepowsky, and A. Milas. Vertex-algebraic structure of the principal subspaces of level one modules for the untwisted affine Lie algebras of types A,D,EA,\ D,\ E. J. Algebra, 323(1):167–192, 2010.
  • [12] C. Calinescu, J. Lepowsky, and A. Milas. Vertex-algebraic structure of principal subspaces of standard A2(2)A^{(2)}_{2}-modules, I. Internat. J. Math., 25(7):1450063, 44, 2014.
  • [13] C. Calinescu, A. Milas, and M. Penn. Vertex algebraic structure of principal subspaces of basic A2n(2)A_{2n}^{(2)}-modules. J. Pure Appl. Algebra, 220(5):1752–1784, 2016.
  • [14] C. Calinescu, M. Penn, and C. Sadowski. Presentations of principal subspaces of higher level standard A2(2){A}_{2}^{(2)}-modules. Algebr. Represent. Theory, 22(6):1457–1478, 2019.
  • [15] S. Capparelli. On some representations of twisted affine Lie algebras and combinatorial identities. J. Algebra, 154(2):335–355, 1993.
  • [16] S. Capparelli, J. Lepowsky, and A. Milas. The Rogers-Ramanujan recursion and intertwining operators. Commun. Contemp. Math., 5(6):947–966, 2003.
  • [17] S. Capparelli, J. Lepowsky, and A. Milas. The Rogers-Selberg recursions, the Gordon-Andrews identities and intertwining operators. Ramanujan J., 12(3):379–397, 2006.
  • [18] R. W. Carter. Lie algebras of finite and affine type, volume 96 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 2005.
  • [19] S. Chern. Linked partition ideals, directed graphs and qq-multi-summations. Electron. J. Combin., 27(3):Paper No. 3.33, 29, 2020.
  • [20] S. Corteel, J. Dousse, and A. K. Uncu. Cylindric partitions and some new A2A_{2} Rogers-Ramanujan identities. Proc. Amer. Math. Soc., 150(2):481–497, 2022.
  • [21] B. Feigin and A. V. Stoyanovsky. Quasi-particles models for the representations of lie algebras and geometry of flag manifold. 1993.
  • [22] F. Garvan. A qq-product tutorial for a qq-series MAPLE package. volume 42, pages Art. B42d, 27. 1999. The Andrews Festschrift (Maratea, 1998).
  • [23] M. J. Griffin, K. Ono, and S. O. Warnaar. A framework of Rogers-Ramanujan identities and their arithmetic properties. Duke Math. J., 165(8):1475–1527, 2016.
  • [24] S. Kanade and M. C. Russell. Completing the A2\mathrm{A}_{2} Andrews–Schilling–Warnaar identities. Int. Math. Res. Not. IMRN. Accepted.
  • [25] S. Kanade and M. C. Russell. IdentityFinder and some new identities of Rogers-Ramanujan type. Exp. Math., 24(4):419–423, 2015.
  • [26] S. Kanade and M. C. Russell. Staircases to analytic sum-sides for many new integer partition identities of Rogers-Ramanujan type. Electron. J. Combin., 26(1):Paper No. 1.6, 33, 2019.
  • [27] S. Kanade and M. C. Russell. On qq-series for principal characters of standard A2(2)A^{(2)}_{2}-modules. Adv. Math., 400:Paper No. 108282, 24, 2022.
  • [28] S. Konenkov. Further q-reflections on the modulo 9 Kanade-Russell (conjectural) identities. arXiv:2207.04852 [math.NT].
  • [29] K. Kurşungöz. Andrews-Gordon type series for Capparelli’s and Göllnitz-Gordon identities. J. Combin. Theory Ser. A, 165:117–138, 2019.
  • [30] K. Kurşungöz. Andrews-Gordon type series for Kanade-Russell conjectures. Ann. Comb., 23(3-4):835–888, 2019.
  • [31] J. Lepowsky. Calculus of twisted vertex operators. Proc. Nat. Acad. Sci. U.S.A., 82(24):8295–8299, 1985.
  • [32] J. Lepowsky and H. Li. Introduction to vertex operator algebras and their representations, volume 227 of Progress in Mathematics. Birkhäuser Boston, Inc., Boston, MA, 2004.
  • [33] D. Nandi. Partition identities arising from the standard A2 (2)-modules of level 4. ProQuest LLC, Ann Arbor, MI, 2014. Thesis (Ph.D.)–Rutgers The State University of New Jersey - New Brunswick.
  • [34] M. Penn and C. Sadowski. Vertex-algebraic structure of principal subspaces of basic D4(3)D_{4}^{(3)}-modules. Ramanujan J., 43(3):571–617, 2017.
  • [35] M. Penn and C. Sadowski. Vertex-algebraic structure of principal subspaces of the basic modules for twisted affine Lie algebras of type A2n1(2)A_{2n-1}^{(2)}, Dn(2)D_{n}^{(2)}, E6(2)E_{6}^{(2)}. J. Algebra, 496:242–291, 2018.
  • [36] M. Penn, C. Sadowski, and G. Webb. Principal subspaces of twisted modules for certain lattice vertex operator algebras. Internat. J. Math., 30(10):1950048, 47, 2019.
  • [37] H. Rosengren. Proofs of some partition identities conjectured by Kanade and Russell. Ramanujan J., 2021.
  • [38] M. C. Russell. Using experimental mathematics to conjecture and prove theorems in the theory of partitions and commutative and non-commutative recurrences. ProQuest LLC, Ann Arbor, MI, 2016. Thesis (Ph.D.)–Rutgers The State University of New Jersey - New Brunswick.
  • [39] A. V. Sills. An invitation to the Rogers-Ramanujan identities. CRC Press, Boca Raton, FL, 2018. With a foreword by George E. Andrews.
  • [40] L. J. Slater. A new proof of Rogers’s transformations of infinite series. Proc. London Math. Soc. (2), 53:460–475, 1951.
  • [41] J. R. Stembridge. Hall-Littlewood functions, plane partitions, and the Rogers-Ramanujan identities. Trans. Amer. Math. Soc., 319(2):469–498, 1990.
  • [42] A. V. Stoyanovskiĭ and B. L. Feĭgin. Functional models of the representations of current algebras, and semi-infinite Schubert cells. Funktsional. Anal. i Prilozhen., 28(1):68–90, 96, 1994.
  • [43] R. Takenaka. Vertex algebraic construction of modules for twisted affine Lie algebras of type A2l(2){A}_{2l}^{(2)}. arXiv:2205.05271 [math.RT].
  • [44] M. Takigiku and S. Tsuchioka. A proof of conjectured partition identities of Nandi. arXiv:1910.12461 [math.CO].
  • [45] M. Takigiku and S. Tsuchioka. Andrews-Gordon type series for the level 5 and 7 standard modules of the affine Lie algebra A2(2)A^{(2)}_{2}. Proc. Amer. Math. Soc., 149(7):2763–2776, 2021.
  • [46] S. Tsuchioka. An example of A2A_{2} Rogers-Ramanujan bipartition identities of level 3. arXiv:2205.04811 [math.RT].
  • [47] A. Uncu and W. Zudilin. Reflecting (on) the modulo 9 Kanade-Russell (conjectural) identities. Sém. Lothar. Combin., 85:Art. B85e, 17, [2020–2021].
  • [48] S. O. Warnaar. The generalized Borwein conjecture. II. Refined qq-trinomial coefficients Discrete Math. 272 (2003), no. 2-3, 215–258.
  • [49] S. O. Warnaar. The A2A_{2} Andrews-Gordon identities and cylindric partitions. arXiv:2111.07550 [math.CO].