This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Principal Specialization of Monomial Symmetric Polynomials and Group Determinants of Cyclic Groups

Naoya Yamaguchi, Yuka Yamaguchi, Genki Shibukawa
Abstract

We give explicit expressions of some special values for the monomial symmetric polynomials as applications of symmetric functions and group determinants. We also prove some vanishing or non-vanishing properties of these special values.

1 Introduction

For a positive integer NN, 𝔖N\mathfrak{S}_{N} is the symmetric group of degree NN and acts on N\mathbb{Z}^{N} by

𝔖NNNσλ:=(λ1,λ2,,λN)σ.λ:=(λσ1(1),λσ1(2),,λσ1(N)).\displaystyle\begin{array}[]{cccccc}\mathfrak{S}_{N}&\curvearrowright&\mathbb{Z}^{N}&\xrightarrow{\simeq}&\mathbb{Z}^{N}&\\ \rotatebox{90.0}{$\in$}&&\rotatebox{90.0}{$\in$}&&\rotatebox{90.0}{$\in$}&\\ \sigma&\curvearrowright&\lambda:=(\lambda_{1},\lambda_{2},\ldots,\lambda_{N})&\mapsto&\sigma.\lambda:=(\lambda_{\sigma^{-1}(1)},\lambda_{\sigma^{-1}(2)},\ldots,\lambda_{\sigma^{-1}(N)}).&\end{array} (3)

Let [x1,x2,,xN]\mathbb{C}[x_{1},x_{2},\ldots,x_{N}] be the ring of polynomials in NN independent variables x1,x2,,xNx_{1},x_{2},\ldots,x_{N} with complex numbers coefficients. The group 𝔖N\mathfrak{S}_{N} also acts on the ring [x1,x2,,xN]\mathbb{C}[x_{1},x_{2},\ldots,x_{N}] by permutation of the variables xiσ(xi):=xσ(i)x_{i}\mapsto\sigma(x_{i}):=x_{\sigma(i)}. We consider a subring

SN:=[x1,x2,,xN]𝔖N:={f[x1,x2,,xN]σ(f)=ffor anyσ𝔖N},S_{N}:=\mathbb{C}[x_{1},x_{2},\ldots,x_{N}]^{\mathfrak{S}_{N}}:=\{f\in\mathbb{C}[x_{1},x_{2},\ldots,x_{N}]\mid\sigma(f)=f\>\>\text{for any}\>\>\sigma\in\mathfrak{S}_{N}\},

and we call elements of SNS_{N} symmetric polynomials. For any positive integer kk, the set

SNk:={fSNdeg(f)=k}S_{N}^{k}:=\{f\in S_{N}\mid\mathrm{deg}(f)=k\}

is a finite-dimensional vector space over \mathbb{C}, and the subring SNS_{N} is graded and has the following decomposition:

SN=k0SNk.S_{N}=\bigoplus_{k\geq 0}S_{N}^{k}.

We denote the set of partitions of length N\leq N by

𝒫N:={(λ1,λ2,,λN)N0λ1λ2λN}\mathcal{P}_{N}:=\left\{(\lambda_{1},\lambda_{2},\ldots,\lambda_{N})\in\mathbb{Z}^{N}\mid 0\leq\lambda_{1}\leq\lambda_{2}\leq\cdots\leq\lambda_{N}\right\}

and define the Monomial Symmetric Polynomial (MSP) by

mλ(x):=μ𝔖N.λxμ,λ𝒫N,\displaystyle m_{\lambda}(x):=\sum_{\mu\in\mathfrak{S}_{N}.\lambda}x^{\mu},\quad\lambda\in\mathcal{P}_{N},

where 𝔖N.λ:={σ.λσ𝔖N}\mathfrak{S}_{N}.\lambda:=\left\{\sigma.\lambda\mid\sigma\in\mathfrak{S}_{N}\right\} and xμ:=x1μ1x2μ2xNμNx^{\mu}:=x_{1}^{\mu_{1}}x_{2}^{\mu_{2}}\cdots x_{N}^{\mu_{N}}. For any λN\lambda\in\mathbb{N}^{N}, the stabilizer subgroup of 𝔖N\mathfrak{S}_{N} with respect to λ\lambda is defined by 𝔖Nλ:={σ𝔖Nσ.λ=λ}\mathfrak{S}_{N}^{\lambda}:=\left\{\sigma\in\mathfrak{S}_{N}\mid\sigma.\lambda=\lambda\right\}. By the definition of MSP and

|𝔖Nλ|=i(λ[i]!),λ[i]:=|{jλj=i}|,\left|\mathfrak{S}_{N}^{\lambda}\right|=\prod_{i\in\mathbb{N}}(\lambda[i]!),\quad\lambda[i]:=|\left\{j\mid\lambda_{j}=i\right\}|,

we obtain a well-known expression of the MSP:

mλ(x)=i1λ[i]!σ𝔖Nxσ.λ.\displaystyle m_{\lambda}(x)=\prod_{i\in\mathbb{N}}\frac{1}{\lambda[i]!}\sum_{\sigma\in\mathfrak{S}_{N}}x^{\sigma.\lambda}. (4)

If λN\lambda\in\mathbb{Z}^{N}, then mλ(x)m_{\lambda}(x) defines a 𝔖N\mathfrak{S}_{N}-invariant Laurent polynomial. For any partitions satisfying the condition |λ|:=λ1+λ2++λN=k|\lambda|:=\lambda_{1}+\lambda_{2}+\cdots+\lambda_{N}=k, the set {mλ(x)}λ\{m_{\lambda}(x)\}_{\lambda} forms a standard basis of the vector space SNkS_{N}^{k}. If we consider some special partitions λ=(k):=(0,0,,0,k)\lambda=(k):=(0,0,\ldots,0,k) or λ=(1k):=(0,0,,01,1,,1k)\lambda=(1^{k}):=(0,0,\ldots,0\overbrace{\rule{0.0pt}{9.0pt}1,1,\ldots,1}^{k}), MSP mλ(x)m_{\lambda}(x) become the kkth power sum

m(k)(x)=pk(x):=i=1Nxikm_{(k)}(x)=p_{k}(x):=\sum_{i=1}^{N}x_{i}^{k}

and the kkth elementary symmetric polynomial

m(1k)(x)=ek(x):=1i1<<ikNxi1xi2xik,m_{(1^{k})}(x)=e_{k}(x):=\sum_{1\leq i_{1}<\cdots<i_{k}\leq N}x_{i_{1}}x_{i_{2}}\cdots x_{i_{k}},

respectively.

These symmetric polynomials and their variations are very fundamental and important in various fields such as multivariate special functions [10], [13], combinatorics [1], representation theory, harmonic analysis [3], [6], and even outside mathematics in mathematical physics and statistics [4], [12]. Not only the symmetric polynomials themselves, but also their special values, are equally fundamental and important. In fact, many classical special sequences like binomials coefficients, Stirling numbers, Fibonacci and Lucas numbers are expressed as special values of these symmetric polynomials. One of the most important and standard specialization of symmetric polynomials is the principal specializations

x=(1,q,q2,,qN1),q,x=(1,q,q^{2},\ldots,q^{N-1}),\quad q\in\mathbb{C},

which are related to dimension formulas of irreducible representations for some groups or algebras and some enumeration formulas of various partitions.

In our paper, for N=knN=kn and a primitive complex nnth root of unity ζn:=e2π1n\zeta_{n}:=e^{\frac{2\pi\sqrt{-1}}{n}}, we consider a specialization

ζ(n,k):=(1,ζn,ζn2,,ζnkn1)kn\zeta_{(n,k)}:=(1,\zeta_{n},\zeta_{n}^{2},\ldots,\zeta_{n}^{kn-1})\in\mathbb{C}^{kn}

and study special values mλ(ζ(n,k))m_{\lambda}(\zeta_{(n,k)}) which appear naturally zonal spherical functions of Gelfand pairs for the complex reflection groups or arithmetic exponential sums. From a generating function for mλ(ζ(n,k))m_{\lambda}(\zeta_{(n,k)}) (see Proposition 2.1), these special values mλ(ζ(n,k))m_{\lambda}(\zeta_{(n,k)}) appear the generalized Waring’s formula [9] that is a formula to expand el(x1n,x2n,,xnn)e_{l}(x_{1}^{n},x_{2}^{n},\ldots,x_{n}^{n}) by {el(x)}l\{e_{l}(x)\}_{l}.

The MSP mλ(x)m_{\lambda}(x) is a special case of the Macdonald polynomial Pλ(x;q,t)P_{\lambda}(x;q,t) (see [10, Chapter VI]) whose the principal specialization evaluate explicitly. However, since mλ(x)=Pλ(x;0,1)m_{\lambda}(x)=P_{\lambda}(x;0,1), it is very hard to obtain explicit or simple expression of mλ(ζ(n,k))m_{\lambda}(\zeta_{(n,k)}) in general. Our main results give some explicit formulas and vanishing (or non-vanishing) properties of these special values for partitions

Λnk:={(λ1,λ2,,λkn)kn1λ1λ2λknn}\Lambda_{n}^{k}:=\left\{(\lambda_{1},\lambda_{2},\ldots,\lambda_{kn})\in\mathbb{Z}^{kn}\mid 1\leq\lambda_{1}\leq\lambda_{2}\leq\cdots\leq\lambda_{kn}\leq n\right\}

satisfying some conditions. First, we have the following results from some properties of MSP and Lemma 2.2.

Theorem 1.1.

The following is true for mλ(ζ(n,k)):m_{\lambda}(\zeta_{(n,k)}):

  1. (1)

    Let pp be a prime. Then, for any λ=(λ1,λ2,,λp)p\lambda=(\lambda_{1},\lambda_{2},\ldots,\lambda_{p})\in\mathbb{Z}^{p},

    |λ|0(modp)if and only ifmλ(ζ(p,1))=i1λ[i]!σ𝔖pζ(p,1)σ.λ0.|\lambda|\equiv 0\pmod{p}\>\>\text{if and only if}\>\>m_{\lambda}(\zeta_{(p,1)})=\prod_{i\in\mathbb{N}}\frac{1}{\lambda[i]!}\sum_{\sigma\in\mathfrak{S}_{p}}\zeta_{(p,1)}^{\sigma.\lambda}\neq 0.
  2. (2)

    For any λ=(λ1,λ1,,λ1a,n,n,,nkna)kn\lambda=(\overbrace{\rule{0.0pt}{9.0pt}\lambda_{1},\lambda_{1},\ldots,\lambda_{1}}^{a},\overbrace{\rule{0.0pt}{9.0pt}n,n,\ldots,n}^{kn-a})\in\mathbb{Z}^{kn} with nλ1n\nmid\lambda_{1},

    mλ(ζ(n,k))={(1)a+angcd(λ1,n)(kgcd(λ1,n)angcd(λ1,n))0,|λ|0(modn),0,|λ|0(modn).m_{\lambda}(\zeta_{(n,k)})=\begin{cases}(-1)^{a+\frac{a}{n}\gcd(\lambda_{1},n)}\begin{pmatrix}k\gcd(\lambda_{1},n)\\ \frac{a}{n}\gcd(\lambda_{1},n)\\ \end{pmatrix}\not=0,&|\lambda|\equiv 0\pmod{n},\\ 0,&|\lambda|\not\equiv 0\pmod{n}.\end{cases}
  3. (3)

    For any λ=(λ1,λ1,,λ1a,λ2,λ2,,λ2kna)kn\lambda=(\overbrace{\rule{0.0pt}{9.0pt}\lambda_{1},\lambda_{1},\ldots,\lambda_{1}}^{a},\overbrace{\rule{0.0pt}{9.0pt}\lambda_{2},\lambda_{2},\ldots,\lambda_{2}}^{kn-a})\in\mathbb{Z}^{kn} with nλ2λ1n\nmid\lambda_{2}-\lambda_{1},

    mλ(ζ(n,k))=(1)k(n+1)λ1mλ(ζ(n,k)),m_{\lambda}(\zeta_{(n,k)})=(-1)^{k(n+1)\lambda_{1}}m_{\lambda^{\prime}}(\zeta_{(n,k)}),

    where λ=(λ2λ1,λ2λ1,,λ2λ1kna,n,n,,na)\lambda^{\prime}=(\overbrace{\rule{0.0pt}{9.0pt}\lambda_{2}-\lambda_{1},\lambda_{2}-\lambda_{1},\ldots,\lambda_{2}-\lambda_{1}}^{kn-a},\overbrace{\rule{0.0pt}{9.0pt}n,n,\ldots,n}^{a}).

On the other hand, from Dedekind’s theorem on group determinants for finite abelian groups, special values mλ(ζ(n,k))m_{\lambda}(\zeta_{(n,k)}) appear as coefficients of kkth power of the group determinant a cyclic group /n\mathbb{Z}/n\mathbb{Z}. Also, in order to determine the multiplication table of the group from the group determinant, the coefficients of the terms of several types of the group determinant were obtained by Mansfield [11]. Hence, by applications of some results for group determinants, we have the second main results.

Theorem 1.2.

The following is true for mλ(ζ(n,k)):m_{\lambda}(\zeta_{(n,k)}):

  1. (1)

    For any λ=(λ1,λ2,n,n,,nkn2)kn\lambda=(\lambda_{1},\lambda_{2},\overbrace{\rule{0.0pt}{9.0pt}n,n,\ldots,n}^{kn-2})\in\mathbb{Z}^{kn} with nλ1n\nmid\lambda_{1} and nλ1+λ2n\mid\lambda_{1}+\lambda_{2},

    mλ(ζ(n,k))={n20,λ1λ2(modn),n0,λ1λ2(modn).\displaystyle m_{\lambda}(\zeta_{(n,k)})=\begin{cases}-\frac{n}{2}\not=0,&\lambda_{1}\equiv\lambda_{2}\pmod{n},\\ -n\not=0,&\lambda_{1}\not\equiv\lambda_{2}\pmod{n}.\end{cases}
  2. (2)

    For any λ=(λ1,λ1,λ1,n,n,,nkn3)kn\lambda=(\lambda_{1},\lambda_{1},\lambda_{1},\overbrace{\rule{0.0pt}{9.0pt}n,n,\ldots,n}^{kn-3})\in\mathbb{Z}^{kn} with nλ1n\nmid\lambda_{1} and n3λ1n\mid 3\lambda_{1}, mλ(ζ(n,k))=n30m_{\lambda}(\zeta_{(n,k)})=\frac{n}{3}\not=0.

  3. (3)

    For any λ=(λ1,λ1,λ2,n,n,,nkn3)kn\lambda=(\lambda_{1},\lambda_{1},\lambda_{2},\overbrace{\rule{0.0pt}{9.0pt}n,n,\ldots,n}^{kn-3})\in\mathbb{Z}^{kn}, where n2λ1+λ2n\mid 2\lambda_{1}+\lambda_{2} and λ1,λ2,n\lambda_{1},\lambda_{2},n are mutually incongruent modulo nn, we have mλ(ζ(n,k))=n0m_{\lambda}(\zeta_{(n,k)})=n\not=0.

  4. (4)

    For any λ=(λ1,λ2,λ3,n,n,,nkn3)kn\lambda=(\lambda_{1},\lambda_{2},\lambda_{3},\overbrace{\rule{0.0pt}{9.0pt}n,n,\ldots,n}^{kn-3})\in\mathbb{Z}^{kn}, where nλ1+λ2+λ3n\mid\lambda_{1}+\lambda_{2}+\lambda_{3} and λ1,λ2,λ3,n\lambda_{1},\lambda_{2},\lambda_{3},n are mutually incongruent modulo nn, we have mλ(ζ(n,k))=2n0m_{\lambda}(\zeta_{(n,k)})=2n\not=0.

  5. (5)

    For any λkn\lambda\in\mathbb{Z}^{kn}, mλ(ζ(n,k))m_{\lambda}(\zeta_{(n,k)})\in\mathbb{Z}.

  6. (6)

    For any λkn\lambda\in\mathbb{Z}^{kn} with |λ|0(modn)|\lambda|\not\equiv 0\pmod{n}, mλ(ζ(n,k))=0m_{\lambda}(\zeta_{(n,k)})=0.

  7. (7)

    When λ=(λ1,λ2,,λkn)Λnk\lambda=(\lambda_{1},\lambda_{2},\ldots,\lambda_{kn})\in\Lambda_{n}^{k} and μ=(μ1,μ2,,μ(k+l)n)Λnk+l\mu=(\mu_{1},\mu_{2},\ldots,\mu_{(k+l)n})\in\Lambda_{n}^{k+l} satisfy

    {λ1,λ2,,λkn}{μ1,μ2,,μ(k+l)n}as set,\{\lambda_{1},\lambda_{2},\ldots,\lambda_{kn}\}\subset\{\mu_{1},\mu_{2},\ldots,\mu_{(k+l)n}\}\>\text{as set},

    and |{iλi=a,1ikn}||{iμi=a,1i(k+l)n}|\left|\left\{i\mid\lambda_{i}=a,1\leq i\leq kn\right\}\right|\leq\left|\left\{i\mid\mu_{i}=a,1\leq i\leq(k+l)n\right\}\right| for any 1an1\leq a\leq n, we write as λμ\lambda\triangleleft\mu and we define μ\λΛnl\mu\backslash\lambda\in\Lambda_{n}^{l} as the sequence obtained by removing λi\lambda_{i} from μ\mu. Then, for any μΛnk+l\mu\in\Lambda_{n}^{k+l},

    mμ(ζ(n,k+l))=λΛnkλμmλ(ζ(n,k))mμ\λ(ζ(n,l)).m_{\mu}(\zeta_{(n,k+l)})=\displaystyle\sum_{\begin{subarray}{c}\lambda\in\Lambda_{n}^{k}\\ \lambda\>\triangleleft\>\mu\end{subarray}}m_{\lambda}(\zeta_{(n,k)})m_{\mu\backslash\lambda}(\zeta_{(n,l)}).
  8. (8)

    For any λkn\lambda\in\mathbb{Z}^{kn} and ll\in\mathbb{Z} with gcd(l,n)=1\gcd(l,n)=1,

    mlλ(ζ(n,k))=mλ(ζ(n,k)),m_{l\lambda}(\zeta_{(n,k)})=m_{\lambda}(\zeta_{(n,k)}),

    where lλ:=(lλ1,lλ2,,lλkn).l\lambda:=(l\lambda_{1},l\lambda_{2},\ldots,l\lambda_{kn}).

From the point of view of the group determinant, these results derive some non-vanishing properties for the terms of the group determinant.

The content of this paper is as follows. In Section 2, we mention a generating function of mλ(ζ(n,k))m_{\lambda}(\zeta_{(n,k)}) which is a specialization of the dual Cauchy kernel. From this generating function, we have integer and vanishing properties of mλ(ζ(n,k))m_{\lambda}(\zeta_{(n,k)}) (Theorem 1.2 (5) and (6)). We also prove a reduction formula of the sum over the symmetric group 𝔖n\mathfrak{S}_{n} for a periodic function, which is a key step in the proof of Theorem 1.1 (1). Next, we introduce some fundamental results for the group determinant of finite abelian groups, in particular cyclic groups in Section 3. We give proofs of main theorems and some remarks in Section 4. Finally, we mention some future works related to some non-vanishing properties of mλ(ζ(n,k))m_{\lambda}(\zeta_{(n,k)}) and the numbers of terms of the group determinant.

2 A generating function of mλ(ζ(n,k))m_{\lambda}(\zeta_{(n,k)}) and a reduction formula

First we mention the dual Cauchy kernel formula [10, Chapter I (4.2)]. For any partitions λ=(λ1,λ2,,λN)\lambda=(\lambda_{1},\lambda_{2},\ldots,\lambda_{N}) and μ=(μ1,μ2,,μN)\mu=(\mu_{1},\mu_{2},\ldots,\mu_{N}), let λμ\lambda\subseteq\mu be the inclusion partial order defined by

λμλiμi,i=1,2,,N.\lambda\subseteq\mu\quad\Longleftrightarrow\quad\lambda_{i}\leq\mu_{i},\quad i=1,2,\ldots,N.

For positive integers MM and NN, the following identity holds:

i=1Mj=1N(1+xiyj)=λ(MN)eλ(x)mλ(y),\displaystyle\prod_{i=1}^{M}\prod_{j=1}^{N}(1+x_{i}y_{j})=\sum_{\lambda\subseteq(M^{N})}e_{\lambda}(x)m_{\lambda}(y),

where

eλ(x):=i=1Meλi(x).e_{\lambda}(x):=\prod_{i=1}^{M}e_{\lambda_{i}}(x).

As a corollary of this famous result, we obtain a generating function of mλ(ζ(n,k))m_{\lambda}(\zeta_{(n,k)}) immediately.

Proposition 2.1.

For any positive integers kk and nn, we have

i=1nj=1kn(1xiζnj1)=i=1n(1xin)k=λ(nkn)|λ|0(modn)(1)|λ|eλ(x)mλ(ζ(n,k)).\displaystyle\prod_{i=1}^{n}\prod_{j=1}^{kn}(1-x_{i}\zeta_{n}^{j-1})=\prod_{i=1}^{n}(1-x_{i}^{n})^{k}=\sum_{\begin{subarray}{c}\lambda\subseteq(n^{kn})\\ |\lambda|\equiv 0\pmod{n}\end{subarray}}(-1)^{|\lambda|}e_{\lambda}(x)m_{\lambda}(\zeta_{(n,k)}).

From this generating function, we have integer and vanishing properties of mλ(ζ(n,k))m_{\lambda}(\zeta_{(n,k)}) (see Theorem 1.2 (5), (6) and Remark 4.1).

To prove Theorem 1.1 (1), we use the following lemma.

Lemma 2.2.

Let λ=(λ1,λ2,,λn)n\lambda=(\lambda_{1},\lambda_{2},\ldots,\lambda_{n})\in\mathbb{Z}^{n} with |λ|0(modn)|\lambda|\equiv 0\pmod{n} and ff be a function of period nn. Then

σ𝔖nf(λ1σ(1)+λ2σ(2)++λnσ(n))=nτ𝔖n1f(λ1τ(1)+λ2τ(2)++λn1τ(n1)).\sum_{\sigma\in\mathfrak{S}_{n}}f(\lambda_{1}\sigma(1)+\lambda_{2}\sigma(2)+\cdots+\lambda_{n}\sigma(n))=n\sum_{\tau\in\mathfrak{S}_{n-1}}f(\lambda_{1}\tau(1)+\lambda_{2}\tau(2)+\cdots+\lambda_{n-1}\tau(n-1)).
Proof.

First, the following is true:

σ𝔖nf(λ1σ(1)+λ2σ(2)++λnσ(n))=i=1nσ𝔖nσ(i)=nf(λ1σ(1)+λ2σ(2)++λnσ(n)).\sum_{\sigma\in\mathfrak{S}_{n}}f(\lambda_{1}\sigma(1)+\lambda_{2}\sigma(2)+\cdots+\lambda_{n}\sigma(n))=\sum_{i=1}^{n}\sum_{\begin{subarray}{c}\sigma\in\mathfrak{S}_{n}\\ \sigma(i)=n\end{subarray}}f(\lambda_{1}\sigma(1)+\lambda_{2}\sigma(2)+\cdots+\lambda_{n}\sigma(n)).

Put Ai:=σ𝔖nσ(i)=nf(λ1σ(1)+λ2σ(2)++λnσ(n))A_{i}:=\sum_{\begin{subarray}{c}\sigma\in\mathfrak{S}_{n}\\ \sigma(i)=n\end{subarray}}f(\lambda_{1}\sigma(1)+\lambda_{2}\sigma(2)+\cdots+\lambda_{n}\sigma(n)) for any 1in1\leq i\leq n. Proving

A1=A2==An=τ𝔖n1f(λ1τ(1)+λ2τ(2)++λn1τ(n1))A_{1}=A_{2}=\cdots=A_{n}=\sum_{\tau\in\mathfrak{S}_{n-1}}f(\lambda_{1}\tau(1)+\lambda_{2}\tau(2)+\cdots+\lambda_{n-1}\tau(n-1))

is sufficient to complete the proof of the lemma. Since, for any σ𝔖n\sigma\in\mathfrak{S}_{n},

{σ(j)σ(n)1jn1}{1,2,,n1}(modn)\displaystyle\left\{\sigma(j)-\sigma(n)\mid 1\leq j\leq n-1\right\}\equiv\left\{1,2,\ldots,n-1\right\}\pmod{n}

holds, there uniquely exists τσ𝔖n1\tau_{\sigma}\in\mathfrak{S}_{n-1} such that

τσ(j)σ(j)σ(n)(modn)\tau_{\sigma}(j)\equiv\sigma(j)-\sigma(n)\pmod{n}

for any 1jn11\leq j\leq n-1. Therefore, the map hi:{σ𝔖nσ(i)=n}στσ𝔖n1h_{i}\colon\{\sigma\in\mathfrak{S}_{n}\mid\sigma(i)=n\}\ni\sigma\mapsto\tau_{\sigma}\in\mathfrak{S}_{n-1} is well-defined. We prove hih_{i} is bijective. It is sufficient to show that hih_{i} is injective. If hi(σ)=hi(σ)h_{i}(\sigma)=h_{i}(\sigma^{\prime}), then

σ(j)σ(n)σ(j)σ(n)(modn)\sigma(j)-\sigma(n)\equiv\sigma^{\prime}(j)-\sigma^{\prime}(n)\pmod{n}

for any 1jn11\leq j\leq n-1.

  1. (i)

    When i=ni=n, from σ(n)=σ(n)=n\sigma(n)=\sigma^{\prime}(n)=n, we have σ(j)σ(j)(modn)\sigma(j)\equiv\sigma^{\prime}(j)\pmod{n} for any 1jn1\leq j\leq n.

  2. (ii)

    When ini\neq n, from σ(i)=σ(i)=n\sigma(i)=\sigma^{\prime}(i)=n, we have

    σ(n)σ(i)σ(n)σ(i)σ(n)σ(n)(modn).-\sigma(n)\equiv\sigma(i)-\sigma(n)\equiv\sigma^{\prime}(i)-\sigma^{\prime}(n)\equiv-\sigma^{\prime}(n)\pmod{n}.

    This leads to σ(j)σ(j)(modn)\sigma(j)\equiv\sigma^{\prime}(j)\pmod{n} for any 1jn1\leq j\leq n.

Therefore, σ=σ\sigma=\sigma^{\prime}. That is, hih_{i} is bijective. Since

λ1σ(1)++λnσ(n)\displaystyle\lambda_{1}\sigma(1)+\cdots+\lambda_{n}\sigma(n) λ1σ(1)++λn1σ(n1)(λ1++λn1)σ(n)\displaystyle\equiv\lambda_{1}\sigma(1)+\cdots+\lambda_{n-1}\sigma(n-1)-(\lambda_{1}+\cdots+\lambda_{n-1})\sigma(n)
λ1{σ(1)σ(n)}++λn1{σ(n1)σ(n)}\displaystyle\equiv\lambda_{1}\left\{\sigma(1)-\sigma(n)\right\}+\cdots+\lambda_{n-1}\left\{\sigma(n-1)-\sigma(n)\right\}
λ1τσ(1)+λ2τσ(2)++λn1τσ(n1)\displaystyle\equiv\lambda_{1}\tau_{\sigma}(1)+\lambda_{2}\tau_{\sigma}(2)+\cdots+\lambda_{n-1}\tau_{\sigma}(n-1) (modn)\displaystyle\pmod{n}

and hih_{i} is bijective, we have

σ𝔖nσ(i)=nf(λ1σ(1)+λ2σ(2)++λnσ(n))=τ𝔖n1f(λ1τ(1)++λn1τ(n1))\sum_{\begin{subarray}{c}\sigma\in\mathfrak{S}_{n}\\ \sigma(i)=n\end{subarray}}f(\lambda_{1}\sigma(1)+\lambda_{2}\sigma(2)+\cdots+\lambda_{n}\sigma(n))=\sum_{\tau\in\mathfrak{S}_{n-1}}f(\lambda_{1}\tau(1)+\cdots+\lambda_{n-1}\tau(n-1))

for any 1in1\leq i\leq n. This completes the proof. ∎

3 Coefficients of group determinants of cyclic groups

We derive a relation between mλ(ζ(n,k))m_{\lambda}(\zeta_{(n,k)}) and the group determinant of a cyclic group. Using the relation, we give some properties of mλ(ζ(n,k))m_{\lambda}(\zeta_{(n,k)}).

For a finite group G={g1,g2,,gn}G=\{g_{1},g_{2},\ldots,g_{n}\}, let xgx_{g} be an indeterminate for each gGg\in G, and let [xg]:=[xg1,xg2,,xgn]\mathbb{Z}[x_{g}]:=\mathbb{Z}[x_{g_{1}},x_{g_{2}},\ldots,x_{g_{n}}] be the multivariate polynomial ring in xgx_{g} over \mathbb{Z}. The group determinant Θ(G)\Theta(G) of GG is defined as follows (see e.g., [7], [8]):

Θ(G):=σ𝔖nsgn(σ)xg1gσ(1)1xg2gσ(2)1xgngσ(n)1[xg].\Theta(G):=\sum_{\sigma\in\mathfrak{S}_{n}}\operatorname{sgn}(\sigma)x_{g_{1}g_{\sigma(1)}^{-1}}x_{g_{2}g_{\sigma(2)}^{-1}}\cdots x_{g_{n}g_{\sigma(n)}^{-1}}\in\mathbb{Z}[x_{g}].

From this definition, it is evident that Θ(G)\Theta(G) is a homogeneous polynomial of degree nn in nn variables. Furthermore, when GG is abelian, for any term xa1xa2xanx_{a_{1}}x_{a_{2}}\cdots x_{a_{n}} in Θ(G)\Theta(G), the product of aia_{i} becomes the unit element of GG (actually, this is true even when GG is non-abelian if the product is properly ordered. For a detailed explanation, see [11, Lemma 1]). From the above, for a cyclic group /n={1,2,,n}\mathbb{Z}/n\mathbb{Z}=\{1,2,\ldots,n\}, each term in Θ(/n)\Theta(\mathbb{Z}/n\mathbb{Z}) is of the form xi1xi2xinx_{i_{1}}x_{i_{2}}\cdots x_{i_{n}} with ni1+i2++inn\mid i_{1}+i_{2}+\cdots+i_{n}. Therefore, let xλ:=xλ1xλ2xλnx_{\lambda}:=x_{\lambda_{1}}x_{\lambda_{2}}\cdots x_{\lambda_{n}} for λ=(λ1,λ2,,λn)Λn1\lambda=(\lambda_{1},\lambda_{2},\ldots,\lambda_{n})\in\Lambda_{n}^{1}, then there exist integers cλc_{\lambda} such that

Θ(/n)=λΛn1|λ|0(modn)cλxλ.\displaystyle\Theta(\mathbb{Z}/n\mathbb{Z})=\sum_{\begin{subarray}{c}\lambda\in\Lambda_{n}^{1}\\ |\lambda|\equiv 0\pmod{n}\end{subarray}}c_{\lambda}x_{\lambda}.

This is one of the simplest representations of Θ(/n)\Theta(\mathbb{Z}/n\mathbb{Z}) that summates similar terms.

Example 3.1.

The group determinant of /3\mathbb{Z}/3\mathbb{Z} is x13+x23+x333x1x2x3x_{1}^{3}+x_{2}^{3}+x_{3}^{3}-3x_{1}x_{2}x_{3}. The terms x13x_{1}^{3}, x23x_{2}^{3}, x33x_{3}^{3} and x1x2x3x_{1}x_{2}x_{3} correspond to (1,1,1)(1,1,1), (2,2,2)(2,2,2), (3,3,3)(3,3,3) and (1,2,3)Λ31(1,2,3)\in\Lambda_{3}^{1}, respectively.

More generally, there exist integers cλc_{\lambda} such that

Θ(/n)k=λΛnk|λ|0(modn)cλxλ.\displaystyle\Theta\left(\mathbb{Z}/n\mathbb{Z}\right)^{k}=\sum_{\begin{subarray}{c}\lambda\in\Lambda_{n}^{k}\\ |\lambda|\equiv 0\pmod{n}\end{subarray}}c_{\lambda}x_{\lambda}.

The following theorem implies that the coefficient cλc_{\lambda} is equal to mλ(ζ(n,k))m_{\lambda}(\zeta_{(n,k)}).

Theorem 3.2.

For any positive integer kk,

Θ(/n)k=λΛnkmλ(ζ(n,k))xλ=λΛnk|λ|0(modn)mλ(ζ(n,k))xλ.\displaystyle\Theta(\mathbb{Z}/n\mathbb{Z})^{k}=\sum_{\lambda\in\Lambda_{n}^{k}}m_{\lambda}(\zeta_{(n,k)})x_{\lambda}=\sum_{\begin{subarray}{c}\lambda\in\Lambda_{n}^{k}\\ |\lambda|\equiv 0\pmod{n}\end{subarray}}m_{\lambda}(\zeta_{(n,k)})x_{\lambda}.

To prove Theorem 3.2, we use Dedekind’s theorem. Supposing GG in the following is abelian, let G^\widehat{G} be a complete set of representatives of the equivalence classes of irreducible representations for GG over \mathbb{C}. Dedekind’s theorem is as follows (see e.g., [1], [5], [14]): The group determinant Θ(G)\Theta(G) can be factorized into irreducible polynomials over \mathbb{C} as

Θ(G)=χG^gGχ(g)xg.\Theta(G)=\prod_{\chi\in\widehat{G}}\sum_{g\in G}\chi(g)x_{g}.
Proof of Theorem 3.2.

From Dedekind’s theorem and the expression of the MSP (1), we have

Θ(/n)k\displaystyle\Theta\left(\mathbb{Z}/n\mathbb{Z}\right)^{k} =(i=1nj=1nζnijxj)k\displaystyle=\left(\prod_{i=1}^{n}\sum_{j=1}^{n}\zeta_{n}^{ij}x_{j}\right)^{k}
=(i=1nj=1nζnijxj)(i=n+12nj=1nζnijxj)(i=(k1)n+1knj=1nζnijxj)\displaystyle=\left(\prod_{i=1}^{n}\sum_{j=1}^{n}\zeta_{n}^{ij}x_{j}\right)\left(\prod_{i=n+1}^{2n}\sum_{j=1}^{n}\zeta_{n}^{ij}x_{j}\right)\cdots\left(\prod_{i=(k-1)n+1}^{kn}\sum_{j=1}^{n}\zeta_{n}^{ij}x_{j}\right)
=λΛnk{σ𝔖knζ(n,k)σ.λi1λ[i]!}xλ\displaystyle=\sum_{\lambda\in\Lambda_{n}^{k}}\left\{\sum_{\sigma\in\mathfrak{S}_{kn}}\zeta_{(n,k)}^{\sigma.\lambda}\prod_{i\in\mathbb{N}}\frac{1}{\lambda[i]!}\right\}x_{\lambda}
=λΛnkmλ(ζ(n,k))xλ.\displaystyle=\sum_{\lambda\in\Lambda_{n}^{k}}m_{\lambda}(\zeta_{(n,k)})x_{\lambda}.

Moreover, by the definition of the group determinant, terms xλx_{\lambda} with |λ|0(modn)|\lambda|\not\equiv 0\pmod{n} do not appear in Θ(/n)k\Theta(\mathbb{Z}/n\mathbb{Z})^{k}. That is, mλ(ζ(n,k))=0m_{\lambda}(\zeta_{(n,k)})=0 for any λ\lambda with |λ|0(modn)|\lambda|\not\equiv 0\pmod{n}. ∎

Remark 3.3.

Denote the number of terms in Θ(G)k\Theta(G)^{k} as N(Θ(G)k)\operatorname{N}(\Theta(G)^{k}), and let

Λ~nk:=Λnk{λkn|λ|0(modn)}.\tilde{\Lambda}_{n}^{k}:=\Lambda_{n}^{k}\cap\{\lambda\in\mathbb{Z}^{kn}\mid|\lambda|\equiv 0\pmod{n}\}.

From Theorem 3.2, we have N(Θ(/n)k)|Λ~nk|\operatorname{N}(\Theta(\mathbb{Z}/n\mathbb{Z})^{k})\leq|\tilde{\Lambda}_{n}^{k}|. Now, we use the formula obtained in [2]:

a(n,m)=1n+mdgcd(n,m)(nd+mdnd)φ(d),a(n,m)=\frac{1}{n+m}\sum_{d\mid\gcd(n,m)}\binom{\frac{n}{d}+\frac{m}{d}}{\frac{n}{d}}\varphi(d),

where a(n,m)a(n,m) is the dimension of the vector space of degree mm homogeneous invariants of the regular representation of the cyclic group of order nn and φ\varphi is Euler’s totient function. Noting that |Λ~nk|=a(n,kn)|\tilde{\Lambda}_{n}^{k}|=a(n,kn), we have

N(Θ(/n)k)\displaystyle\operatorname{N}(\Theta(\mathbb{Z}/n\mathbb{Z})^{k}) a(n,kn)\displaystyle\leq a(n,kn)
=1n+kndgcd(n,kn)(nd+kndnd)φ(d)\displaystyle=\frac{1}{n+kn}\sum_{d\mid\gcd(n,kn)}\binom{\frac{n}{d}+\frac{kn}{d}}{\frac{n}{d}}\varphi(d)
=1n(k+1)dn(knd+ndnd)φ(d)\displaystyle=\frac{1}{n(k+1)}\sum_{d\mid n}\binom{\frac{kn}{d}+\frac{n}{d}}{\frac{n}{d}}\varphi(d)
=1n(k+1)dn(dk+dd)φ(nd).\displaystyle=\frac{1}{n(k+1)}\sum_{d\mid n}\binom{dk+d}{d}\varphi\left(\frac{n}{d}\right).

From

1n(k+1)(dk+dd)=1n(k+1)dk+dd(dk+d1)!(dk)!(d1)!=1n(dk+d1d1),\displaystyle\frac{1}{n(k+1)}\binom{dk+d}{d}=\frac{1}{n(k+1)}\frac{dk+d}{d}\frac{(dk+d-1)!}{(dk)!(d-1)!}=\frac{1}{n}\binom{dk+d-1}{d-1},

we have

N(Θ(/n)k)|Λ~nk|=1ndn(dk+d1d1)φ(nd).\operatorname{N}(\Theta(\mathbb{Z}/n\mathbb{Z})^{k})\leq|\tilde{\Lambda}_{n}^{k}|=\frac{1}{n}\sum_{d\mid n}\binom{dk+d-1}{d-1}\varphi\left(\frac{n}{d}\right).

Mansfield [11] obtained the following lemma. Unfortunately, there is a mistake in the last sentence of the proof of [11, Lemma 3]. It says that the coefficient of xen3xaxbxcx_{e}^{n-3}x_{a}x_{b}x_{c} is nn or 2n2n, but the coefficient is n/3n/3 when a=b=ca=b=c. This mistake was corrected in [15].

Lemma 3.4 ([11, Proofs of Lemmas 2 and 3], [15, Lemma 3.3]).

Let GG be a finite group, let ee be the unit element of GG and let nn be the order of GG.

  1. (1)(1)

    If none of aa, bb is ee and the monomial xen2xaxbx_{e}^{n-2}x_{a}x_{b} occurs in Θ(G)\Theta(G), the coefficient of the monomial is n/2-n/2 or n-n depending on whether or not a=ba=b.

  2. (2)(2)

    If none of aa, bb, cc is ee and the monomial xen3xaxbxcx_{e}^{n-3}x_{a}x_{b}x_{c} occurs in Θ(G)\Theta(G), the coefficient of the monomial is

    1. (i)(i)

      n/3n/3 if a=b=c;a=b=c;

    2. (ii)(ii)

      nn if two of aa, bb, cc are equal;

    3. (iii)(iii)

      nn if no two of them are equal and abba;ab\neq ba;

    4. (iv)(iv)

      2n2n if no two of them are equal and ab=baab=ba. ((Note that if abc=eabc=e, then ab=baab=ba if and only if aa, bb and cc are commutative)).

Here, we say that a monomial occurs in a polynomial if the monomial is not canceled after combining like terms.

Lemma 3.4 will be used to prove of Theorem 1.2.

4 Proofs of Theorem 1.1 and Theorem 1.2

The proof of Theorem 1.1 is as follows.

Proof of Theorem 1.1.

Using Lemma 2.2 and Theorem 3.2, we prove Theorem 1.1 (1). Let pp be a prime and λ:=(λ1,λ2,,λp)p\lambda:=(\lambda_{1},\lambda_{2},\ldots,\lambda_{p})\in\mathbb{Z}^{p}. We prove that if |λ|0(modp)|\lambda|\equiv 0\pmod{p} then

σ𝔖pζ(p,1)σλ=σ𝔖pζpλ1σ(1)+λ2σ(2)++λpσ(p)0.\sum_{\sigma\in\mathfrak{S}_{p}}\zeta_{(p,1)}^{\sigma\cdot\lambda}=\sum_{\sigma\in\mathfrak{S}_{p}}\zeta_{p}^{\lambda_{1}\sigma(1)+\lambda_{2}\sigma(2)+\cdots+\lambda_{p}\sigma(p)}\neq 0.

In the case of p=2p=2, σ𝔖2ζ2λ1σ(1)+λ2σ(2)0\sum_{\sigma\in\mathfrak{S}_{2}}\zeta_{2}^{\lambda_{1}\sigma(1)+\lambda_{2}\sigma(2)}\neq 0 can be proved via direct calculation. Let pp be an odd prime and |λ|0(modp)|\lambda|\equiv 0\pmod{p}. Then, from Lemma 2.2,

σ𝔖pζpλ1σ(1)+λ2σ(2)++λpσ(p)\displaystyle\sum_{\sigma\in\mathfrak{S}_{p}}\zeta_{p}^{\lambda_{1}\sigma(1)+\lambda_{2}\sigma(2)+\cdots+\lambda_{p}\sigma(p)} =pσ𝔖p1ζpλ1σ(1)+λ2σ(2)++λp1σ(p1).\displaystyle=p\sum_{\sigma\in\mathfrak{S}_{p-1}}\zeta_{p}^{\lambda_{1}\sigma(1)+\lambda_{2}\sigma(2)+\cdots+\lambda_{p-1}\sigma(p-1)}.

There exists cic_{i}\in\mathbb{N} such that i=1pci=(p1)!\sum_{i=1}^{p}c_{i}=(p-1)! and

σ𝔖p1ζpλ1σ(1)+λ2σ(2)++λp1σ(p1)=i=1pciζpi.\sum_{\sigma\in\mathfrak{S}_{p-1}}\zeta_{p}^{\lambda_{1}\sigma(1)+\lambda_{2}\sigma(2)+\cdots+\lambda_{p-1}\sigma(p-1)}=\sum_{i=1}^{p}c_{i}\zeta_{p}^{i}.

Suppose i=1pciζpi=0\sum_{i=1}^{p}c_{i}\zeta_{p}^{i}=0. Since {ζp,ζp2,,ζpp1}\{\zeta_{p},\zeta_{p}^{2},\ldots,\zeta_{p}^{p-1}\} is linearly independent over \mathbb{Q}, it follows that c1=c2==cpc_{1}=c_{2}=\cdots=c_{p}. This implies that pi=1pcip\mid\sum_{i=1}^{p}c_{i}. However, it contradicts p(p1)!p\nmid(p-1)!. If p|λ|p\nmid|\lambda|, then mλ(ζ(p,1))=0m_{\lambda}(\zeta_{(p,1)})=0 from Theorem 3.2.

To prove Theorem 1.1 (2), we calculate an explicit expression of the generating function for the partition λ=(λ1,λ1,,λ1a,n,n,,nkna)kn\lambda=(\overbrace{\rule{0.0pt}{9.0pt}\lambda_{1},\lambda_{1},\ldots,\lambda_{1}}^{a},\overbrace{\rule{0.0pt}{9.0pt}n,n,\ldots,n}^{kn-a})\in\mathbb{Z}^{kn} with nλ1n\nmid\lambda_{1}. Let uu be an indeterminate. Then, we have

a=0kn(1)amλ(ζ(n,k))ukna=a=0kn1i1<<iakn(1)aζnλ1(i1++ia)ukna=i=1kn(uζniλ1).\displaystyle\sum_{a=0}^{kn}(-1)^{a}m_{\lambda}(\zeta_{(n,k)})u^{kn-a}=\sum_{a=0}^{kn}\sum_{1\leq i_{1}<\cdots<i_{a}\leq kn}(-1)^{a}\zeta_{n}^{\lambda_{1}(i_{1}+\cdots+i_{a})}u^{kn-a}=\prod_{i=1}^{kn}\left(u-\zeta_{n}^{i\lambda_{1}}\right).

Supposing here that d:=gcd(λ1,n)d:=\gcd(\lambda_{1},n) and l:=ndl:=\frac{n}{d}, then ζnλ1\zeta_{n}^{\lambda_{1}} is a primitive llth root of unity. Therefore,

(uζnλ1)(uζn2λ1)(uζnlλ1)=(uζl)(uζl2)(uζll)=ul1.\displaystyle\left(u-\zeta_{n}^{\lambda_{1}}\right)\left(u-\zeta_{n}^{2\lambda_{1}}\right)\cdots\left(u-\zeta_{n}^{l\lambda_{1}}\right)=\left(u-\zeta_{l}\right)\left(u-\zeta_{l}^{2}\right)\cdots\left(u-\zeta_{l}^{l}\right)=u^{l}-1.

It follows that

i=1kn(uζniλ1)\displaystyle\prod_{i=1}^{kn}\left(u-\zeta_{n}^{i\lambda_{1}}\right) =i=1kdl(uζniλ1)\displaystyle=\prod_{i=1}^{kdl}\left(u-\zeta_{n}^{i\lambda_{1}}\right)
=i=1l(uζniλ1)kd\displaystyle=\prod_{i=1}^{l}\left(u-\zeta_{n}^{i\lambda_{1}}\right)^{kd}
=(ul1)kd\displaystyle=(u^{l}-1)^{kd}
=i=0kd(kdi)(1)iul(kdi)\displaystyle=\sum_{i=0}^{kd}\binom{kd}{i}(-1)^{i}u^{l(kd-i)}
=i=0kd(kdi)(1)iuknndi.\displaystyle=\sum_{i=0}^{kd}\binom{kd}{i}(-1)^{i}u^{kn-\frac{n}{d}i}.

By comparing the above expression with the coefficients of uknau^{kn-a}, we have

(1)amλ(ζ(n,k))={(kdadn)(1)adn0,nda,0,nda.\displaystyle(-1)^{a}m_{\lambda}(\zeta_{(n,k)})=\begin{cases}\displaystyle\binom{kd}{\frac{ad}{n}}(-1)^{\frac{ad}{n}}\neq 0,&\frac{n}{d}\mid a,\\ 0,&\frac{n}{d}\nmid a.\end{cases}

From nadnaλ1|λ|0(modn)n\mid ad\iff n\mid a\lambda_{1}\iff|\lambda|\not\equiv 0\pmod{n}, the proof is complete.

Theorem 1.1 (3) follows from a direct calculation. In fact, for

λ=(λ1,λ1,,λ1a,λ2,λ2,,λ2kna)kn\lambda=(\overbrace{\rule{0.0pt}{9.0pt}\lambda_{1},\lambda_{1},\ldots,\lambda_{1}}^{a},\overbrace{\rule{0.0pt}{9.0pt}\lambda_{2},\lambda_{2},\ldots,\lambda_{2}}^{kn-a})\in\mathbb{Z}^{kn}

with nλ2λ1n\nmid\lambda_{2}-\lambda_{1}, we have

mλ(ζ(n,k))=I[kn]|I|=a(iIζnλ1i)(jIcζnλ2j),\displaystyle m_{\lambda}(\zeta_{(n,k)})=\sum_{\begin{subarray}{c}I\subset[kn]\\ |I|=a\end{subarray}}\left(\prod_{i\in I}\zeta_{n}^{\lambda_{1}i}\right)\left(\prod_{j\in I^{c}}\zeta_{n}^{\lambda_{2}j}\right),

where [kn]:={1,2,,kn}[kn]:=\{1,2,\ldots,kn\} and Ic:=[kn]II^{c}:=[kn]\setminus I. Then,

mλ(ζ(n,k))\displaystyle m_{\lambda}(\zeta_{(n,k)}) =I[kn]|I|=a(iIζnλ1i)(jIcζnλ1j)(jIcζnλ1j)(jIcζnλ2j)\displaystyle=\sum_{\begin{subarray}{c}I\subset[kn]\\ |I|=a\end{subarray}}\left(\prod_{i\in I}\zeta_{n}^{\lambda_{1}i}\right)\left(\prod_{j\in I^{c}}\zeta_{n}^{\lambda_{1}j}\right)\left(\prod_{j\in I^{c}}\zeta_{n}^{-\lambda_{1}j}\right)\left(\prod_{j\in I^{c}}\zeta_{n}^{\lambda_{2}j}\right)
=I[kn]|I|=a(i[kn]ζnλ1i)(jIcζn(λ2λ1)j)\displaystyle=\sum_{\begin{subarray}{c}I\subset[kn]\\ |I|=a\end{subarray}}\left(\prod_{i\in[kn]}\zeta_{n}^{\lambda_{1}i}\right)\left(\prod_{j\in I^{c}}\zeta_{n}^{(\lambda_{2}-\lambda_{1})j}\right)
=ζnλ1kn(kn+1)2I[kn]|I|=a(jIcζn(λ2λ1)j).\displaystyle=\zeta_{n}^{\lambda_{1}\frac{kn(kn+1)}{2}}\sum_{\begin{subarray}{c}I\subset[kn]\\ |I|=a\end{subarray}}\left(\prod_{j\in I^{c}}\zeta_{n}^{(\lambda_{2}-\lambda_{1})j}\right).

Since

ζnkn(kn+1)2\displaystyle\zeta_{n}^{\frac{kn(kn+1)}{2}} ={(1)k,nis even,1,nis odd\displaystyle=\begin{cases}(-1)^{k},&n\ \text{is even},\\ 1,&n\ \text{is odd}\end{cases}
=(1)k(n+1),\displaystyle=(-1)^{k(n+1)},

we have

mλ(ζ(n,k))=(1)k(n+1)λ1mλ(ζ(n,k)),m_{\lambda}(\zeta_{(n,k)})=(-1)^{k(n+1)\lambda_{1}}m_{\lambda^{\prime}}(\zeta_{(n,k)}),

where λ=(λ2λ1,λ2λ1,,λ2λ1kna,n,n,,na)\lambda^{\prime}=(\overbrace{\rule{0.0pt}{9.0pt}\lambda_{2}-\lambda_{1},\lambda_{2}-\lambda_{1},\ldots,\lambda_{2}-\lambda_{1}}^{kn-a},\overbrace{\rule{0.0pt}{9.0pt}n,n,\ldots,n}^{a}). ∎

The proof of Theorem 1.2 is as follows.

Proof of Theorem 1.2.

For any aa\in\mathbb{Z}, we write bb satisfying 1bn1\leq b\leq n and ba(modn)b\equiv a\pmod{n} as a¯\overline{a}. Using this notation, for any λ=(λ1,λ2,,λN)N\lambda=(\lambda_{1},\lambda_{2},\ldots,\lambda_{N})\in\mathbb{Z}^{N}, let λ¯:=(λ1¯,λ2¯,,λN¯)\overline{\lambda}:=\left(\overline{\lambda_{1}},\overline{\lambda_{2}},\ldots,\overline{\lambda_{N}}\right). Then, mλ(ζ(n,k))=mλ¯(ζ(n,k))m_{\lambda}(\zeta_{(n,k)})=m_{\overline{\lambda}}(\zeta_{(n,k)}) and |λ||λ¯|(modn)|\lambda|\equiv\left|\overline{\lambda}\right|\pmod{n} hold for any λkn\lambda\in\mathbb{Z}^{kn}. Thus, it is sufficient to prove Theorem 1.2 (1)(1)(6)(6) and (8)(8) under the assumption that λΛnk\lambda\in\Lambda_{n}^{k}. Theorem 1.2 (1)–(4) are immediately obtained from Theorem 3.2 and Lemma 3.4. From Theorem 3.2, (5)(5) and (6)(6) hold. From Theorem 3.2 and Θ(/n)k+l=Θ(/n)kΘ(/n)l\Theta(\mathbb{Z}/n\mathbb{Z})^{k+l}=\Theta(\mathbb{Z}/n\mathbb{Z})^{k}\Theta(\mathbb{Z}/n\mathbb{Z})^{l}, (7)(7) holds. For any ll\in\mathbb{Z} with gcd(l,n)=1\gcd(l,n)=1, let ψl\psi_{l} be the automorphism of /n\mathbb{Z}/n\mathbb{Z} defined by ψl(i)=li\psi_{l}(i)=li. Also, let ψ~l\tilde{\psi}_{l} be the \mathbb{C}-algebra map on [xg]\mathbb{C}[x_{g}] induced by ψl\psi_{l}. Then, noting that

Θ(G)=det(xgh1)g,hG=det(xψ(g)ψ(h1))g,hG=det(xψ(gh1))g,hG\Theta(G)=\det{\left(x_{gh^{-1}}\right)_{g,h\in G}}=\det{\left(x_{\psi(g)\psi\left(h^{-1}\right)}\right)_{g,h\in G}}=\det{\left(x_{\psi\left(gh^{-1}\right)}\right)_{g,h\in G}}

holds for any automorphism ψ\psi of GG, we have ψ~l(Θ(/n)k)=Θ(/n)k\tilde{\psi}_{l}(\Theta(\mathbb{Z}/n\mathbb{Z})^{k})=\Theta(\mathbb{Z}/n\mathbb{Z})^{k}. From this and Theorem 3.2, (8)(8) is obtained. ∎

Remark 4.1.

We can also prove Theorem 1.2 (5)(5), (6)(6) and (8)(8) without the results of the group determinant in Section 33. In fact, Theorem 1.2 (5)(5) and (6)(6) follows from Proposition 2.1 immediately and Theorem 1.2 (8)(8) is proved by the definition of mλ(ζ(n,k))m_{\lambda}(\zeta_{(n,k)}). For Theorem 1.2 (7)(7), we have a similar result from a branching formula of the Hall-Littlewood functions [10, Chapter III (5.55.5{}^{\prime})]:

mμ(ζ(n,k+l))=λμ|λ|0(modn)mλ(ζ(n,k))mμ\λ(ζ(n,l)),m_{\mu}(\zeta_{(n,k+l)})=\displaystyle\sum_{\begin{subarray}{c}\lambda\subseteq\mu\\ |\lambda|\equiv 0\pmod{n}\end{subarray}}m_{\lambda}(\zeta_{(n,k)})m_{\mu\backslash\lambda}(\zeta_{(n,l)}),

where λ,μ\lambda,\mu are partitions and μ\λ\mu\backslash\lambda is a skew Young table. Theorem 1.2 (7)(7) is stronger than this formula and we do not prove Theorem 1.2 (7)(7) from some facts of the symmetric polynomials alone.

From Remark 3.3 and Theorem 1.1 (1), we have the following corollary.

Corollary 4.2.

For any prime pp, we have

N(Θ(/p))=|Λ~p1|=1p{p1+(2p1p1)}.\operatorname{N}(\Theta(\mathbb{Z}/p\mathbb{Z}))=|\tilde{\Lambda}_{p}^{1}|=\displaystyle\frac{1}{p}\left\{p-1+\binom{2p-1}{p-1}\right\}.

5 Concluding remarks

In this paper, we determine some special values mλ(ζ(n,k))m_{\lambda}(\zeta_{(n,k)}) for some types of λΛnk\lambda\in\Lambda_{n}^{k} and prove their non-zero properties. Thus we desire more explicit formulas of mλ(ζ(n,k))m_{\lambda}(\zeta_{(n,k)}) for other types of λΛnk\lambda\in\Lambda_{n}^{k}. That is the first future problem.

The second problem is to give some necessary and sufficient conditions of non-zero property of mλ(ζ(n,k))m_{\lambda}(\zeta_{(n,k)}). At the present, we can not prove non-zero properties of these special values without explicit evaluations like the above main results except Theorem 1.1 (1). Thus, it is a natural question how to derive their non-zero properties without explicit calculations. It might be open even in the cases of Theorem 1.1 (2) and Theorem 1.2 (1)–(4). On the other hand, we have non-zero property of mλ(ζ(p,1))m_{\lambda}(\zeta_{(p,1)}) in Theorem 1.1 (1) without an explicit expression of mλ(ζ(p,1))m_{\lambda}(\zeta_{(p,1)}). As a generalization of this result, we conjecture that the following is true.

Conjecture 5.1.

For any λΛnk\lambda\in\Lambda_{n}^{k}, where nn is a prime power and kk is a positive integer, |λ|0(modn)|\lambda|\equiv 0\pmod{n} if and only if mλ(ζ(n,k))0m_{\lambda}(\zeta_{(n,k)})\neq 0. This conjecture is equivalent to the following:: For any positive integer kk, nn is a prime power if and only if N(Θ(/n)k)=|Λ~nk|\operatorname{N}\left(\Theta(\mathbb{Z}/n\mathbb{Z})^{k}\right)=|\tilde{\Lambda}_{n}^{k}|.

References

  • [1] Keith Conrad. The origin of representation theory. Enseign. Math. (2), 44(3-4):361–392, 1998.
  • [2] A. Elashvili and M. Jibladze. Hermite reciprocity for the regular representations of cyclic groups. Indag. Math. (N.S.), 9(2):233–238, 1998.
  • [3] Jacques Faraut and Adam Korányi. Analysis on symmetric cones. Oxford Mathematical Monographs. The Clarendon Press, Oxford University Press, New York, 1994. Oxford Science Publications.
  • [4] P. J. Forrester. Log-gases and random matrices, volume 34 of London Mathematical Society Monographs Series. Princeton University Press, Princeton, NJ, 2010.
  • [5] Thomas Hawkins. The origins of the theory of group characters. Arch. History Exact Sci., 7(2):142–170, 1971.
  • [6] L. K. Hua. Harmonic analysis of functions of several complex variables in the classical domains. American Mathematical Society, Providence, R.I., 1963. Translated from the Russian by Leo Ebner and Adam Korányi.
  • [7] K. W. Johnson. On the group determinant. Math. Proc. Cambridge Philos. Soc., 109(2):299–311, 1991.
  • [8] K.W. Johnson. Group Matrices, Group Determinants and Representation Theory: The Mathematical Legacy of Frobenius. Lecture Notes in Mathematics. Springer International Publishing, 2019.
  • [9] John Konvalina. A generalization of Waring’s formula. J. Combin. Theory Ser. A, 75(2):281–294, 1996.
  • [10] I. G. Macdonald. Symmetric functions and Hall polynomials. Oxford Mathematical Monographs. The Clarendon Press, Oxford University Press, New York, second edition, 1995. With contributions by A. Zelevinsky, Oxford Science Publications.
  • [11] Richard Mansfield. A group determinant determines its group. Proc. Amer. Math. Soc., 116(4):939–941, 1992.
  • [12] Robb J. Muirhead. Aspects of multivariate statistical theory. Wiley Series in Probability and Mathematical Statistics. John Wiley & Sons, Inc., New York, 1982.
  • [13] N. Ja. Vilenkin and A. U. Klimyk. Representation of Lie groups and special functions, volume 316 of Mathematics and its Applications. Kluwer Academic Publishers Group, Dordrecht, 1995. Recent advances, Translated from the Russian manuscript by V. A. Groza and A. A. Groza.
  • [14] Naoya Yamaguchi. An extension and a generalization of Dedekind’s theorem. Int. J. Group Theory, 6(3):5–11, 2017.
  • [15] Naoya Yamaguchi and Yuka Yamaguchi. Generalized group determinant gives a necessary and sufficient condition for a subset of a finite group to be a subgroup. Comm. Algebra, 49(4):1805–1811, 2021.

Naoya Yamaguchi

Faculty of Education

University of Miyazaki

1-1 Gakuen Kibanadai-nishi

Miyazaki 889-2192

JAPAN

[email protected]

Yuka Yamaguchi

Faculty of Education

University of Miyazaki

1-1 Gakuen Kibanadai-nishi

Miyazaki 889-2192

JAPAN

[email protected]

Genki Shibukawa

Department of Mathematics

Graduate School of Science

Kobe University

1-1, Rokkodai, Nada-ku

Kobe, 657-8501

JAPAN

[email protected]