This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Primal Construction of Integer Programming Value Functions

Seth Brown Rice University, Department of Computational and Applied Mathematics Wenxin Zhang Tsinghua University, Department of Industrial Engineering Temitayo Ajayi Rice University, Department of Computational and Applied Mathematics The University of Texas MD Anderson Cancer Center, Department of Radiation Oncology Andrew J. Schaefer [email protected] Rice University, Department of Computational and Applied Mathematics

A Gilmore-Gomory Construction of Integer Programming Value Functions

Seth Brown Rice University, Department of Computational and Applied Mathematics Wenxin Zhang Tsinghua University, Department of Industrial Engineering Temitayo Ajayi Rice University, Department of Computational and Applied Mathematics The University of Texas MD Anderson Cancer Center, Department of Radiation Oncology Andrew J. Schaefer [email protected] Rice University, Department of Computational and Applied Mathematics
Abstract

In this paper, we analyze how sequentially introducing decision variables into an integer program (IP) affects the value function and its level sets. We use a Gilmore-Gomory approach to find parametrized IP value functions over a restricted set of variables. We introduce the notion of maximal connected subsets of level sets - volumes in which changes to the constraint right-hand side have no effect on the value function - and relate these structures to IP value functions and optimal solutions.

Keywords— Value function, level set, parametrized optimization

1 Introduction

Given a constraint matrix 𝐀+m×n\mathbf{A}\in\mathbb{Z}^{m\times n}_{+} and objective coefficients 𝐜n\mathbf{c}\in\mathbb{Z}^{n}, the integer programming (IP) value function represents the optimal objective value of an IP parametrized by the right-hand side. Let 𝐛+m\mathbf{b}\in\mathbb{Z}^{m}_{+} be a component-wise upper bound on permissible right-hand sides. Define i=1m[0,bi]\mathcal{B}\coloneqq\bigtimes\limits_{i=1}^{m}[0,b_{i}]. Given 𝜷\bm{\beta}\in\mathcal{B}, the parametrized IP, IP(𝜷\bm{\beta}), and its value function, z:z:\mathcal{B}\to\mathbb{R}, are defined by

z(𝜷)max𝐱{𝐜𝐱:𝐀𝐱𝜷,𝐱+n}.\displaystyle z(\bm{\beta})\coloneqq\max\limits_{\mathbf{x}}\left\{\mathbf{c}^{\top}\mathbf{x}:\mathbf{A}\mathbf{x}\leq\bm{\beta},\ \mathbf{x}\in\mathbb{Z}^{n}_{+}\right\}. (IP(𝜷\bm{\beta}))

Note that because of the nonnegativity of 𝐀\mathbf{A} and 𝐛\mathbf{b}, without loss of generality we assume 𝐜\mathbf{c} is also nonnegative. Denote the jthj^{th} column vector of the matrix 𝐀\mathbf{A} by 𝐚j\mathbf{a}_{j}. We assume that 𝐚j𝟎\mathbf{a}_{j}\neq\mathbf{0} and 𝐚j𝐛\mathbf{a}_{j}\leq\mathbf{b}, for all j{1,,n}j\in\{1,\dots,n\}. Note that z(𝜷)=z(𝜷)z(\bm{\beta})=z(\lfloor\bm{\beta}\rfloor) for all 𝜷\bm{\beta}\in\mathcal{B}, and that each parametrized IP is feasible because 𝟎\mathbf{0} is a feasible solution for each 𝜷\bm{\beta}\in\mathcal{B}, and the IPs are bounded because 𝐀\mathbf{A} is nonnegative with no zero columns.

Studying the value function of the parametrized IP is particularly useful in cases where IP(𝜷\bm{\beta}) must be solved many times for different right-hand sides, such as in bilevel programming, where IP(𝜷\bm{\beta}) in the form of the follower problem has its right-hand side depend on the leader problem decisions. Similarly, in stochastic programming, IP(𝜷\bm{\beta}) in the form of the second-stage problem is dependent on both the first-stage decisions and the resolution of uncertain values. Parametrized solution approaches to these problems can be found in, e.g., [11, 19] for bilevel optimization, and [15, 1, 9] for stochastic optimization.

Early work on parametrized IP focuses on value functions and their construction. [5] provide bounds on the variation of the value function relative to the variation of the right-hand sides for both mixed-integer programs (MIPs) and IPs. [6] show that IP value functions are Gomory functions, and [4] generalizes this result for MIPs. [10] use the connection between IP value functions and Gomory functions to produce a primal-dual algorithm for solving 0-1 IPs. [20] provides a doubly recursive procedure using Chvátal functions to construct the value function of a conic integer linear program.

More recent work focuses on the construction and applications of value functions. [14] provide an algorithm for constructing value functions for MIPs. Value functions have also been incorporated into solution approaches for two-stage stochastic integer programs [13, 17]. Various value function approaches have also been applied to the solution of mixed-integer bilevel programs. [16] use a generalized MIP value function, which takes both the objective function coefficients and the constraint right-hand side as arguments, to solve both stochastic and multifollower bilevel MIPs. [3] use Gomory, Chvátal, and Jeroslow functions, as well as value functions, to analyze the representability of mixed-integer bilevel programs.

Some of our results are analogous to the Gilmore-Gomory approach for knapsack problems [7], which uses dynamic programming to recursively determine the value function of a one- or two-dimensional knapsack IP. Our method focuses on one variable at each step; in contrast, the approach in [7] considers all variables at each recursive level.

Thus far, level sets of the value function, along with related topics, such as level-set-minimal vectors, have been sparsely studied. [9] use minimal tenders in a stochastic programming solution approach. [18] introduce the notion of level-set-minimal vectors and use them to represent the value functions of the first and second stage of a stochastic program. [2] relate level-set-minimal vectors to the linear programming relaxation gap functions. The stability regions discussed in [8] are similar to the value function level sets discussed in our work, but [8] use a parametrization of the objective function to study changes to optimal solutions, not the objective value.

In this paper, we examine the properties of the level sets of IP value functions in detail, especially the connections among these level sets as primal variables are added to a problem. We develop a primal construction of the IP value function, in constrast to dual approaches, for example, using Chvátal or Gomory functions [6]. A primal approach enables us to analyze the behavior of restricted versions of the IP. Our contributions are as follows:

  1. 1.

    We analyze the IP value function over subsets of primal variables, including how the value function’s level sets change as primal variables are added iteratively to the formulation in a Gilmore-Gomory-type procedure.

  2. 2.

    We characterize the structure of level sets of IPs. We show how the level sets of a restricted IP relate to the level sets when a new variable is included.

  3. 3.

    We introduce the notion of maximal connected subsets of level sets and demonstrate several properties of these subsets. These results can be used to determine common optimal solutions within a maximal connected subset.

Our key results include:

  • A sufficient condition for a right-hand side to be level-set minimal (\threfdown);

  • A recursive approach to construct variable-restricted value functions (\threfgenstepup);

  • Additional connectedness properties of maximally-connected level sets and lattices (\threfCsteppro and \threfMC_Adjacent).

2 Level Sets of the IP Value Function

For any α\alpha\in\mathbb{R}, the level set S(α)S(\alpha) of the value function zz is the set of right-hand sides over which the function takes on the value α\alpha: S(α){𝜷|z(𝜷)=α}S(\alpha)\coloneqq\left\{\bm{\beta}\in\mathcal{B}\,|\,z(\bm{\beta})=\alpha\right\}. If S(α)=S(\alpha)=\emptyset, then for all 𝜷\bm{\beta}\in\mathcal{B}, z(𝜷)αz(\bm{\beta})\neq\alpha. In particular, under our assumptions, for all α(,0)(z(𝐛),)\alpha\in(-\infty,0)\cup(z(\mathbf{b}),\infty), S(α)=S(\alpha)=\emptyset. We examine the structure of level sets of IPs and develop properties of level sets over subsets of the primal variables. We focus on the case of adding or removing a single primal variable at a time, but these results can also be extended to sets of primal variables.

Define the restricted value function, zk(𝜷)z_{k}(\bm{\beta}), with respect to the parametrized IP over the first k{1,,n}k\in\{1,...,n\} variables, IP(𝜷)k{}_{k}(\bm{\beta}), as

zk(𝜷)max𝐱{j=1kcjxj:j=1k𝐚jxj𝜷,𝐱+k}.\displaystyle z_{k}(\bm{\beta})\coloneqq\max\limits_{\mathbf{x}}\left\{\sum_{j=1}^{k}c_{j}x_{j}:\sum_{j=1}^{k}\mathbf{a}_{j}x_{j}\leq\bm{\beta},\ \mathbf{x}\in\mathbb{Z}^{k}_{+}\right\}. (IP(𝜷k{}_{k}(\bm{\beta}))

Define Sk(α){𝜷|zk(𝜷)=α}S_{k}(\alpha)\coloneqq\left\{\bm{\beta}\in\mathcal{B}\,|\,z_{k}(\bm{\beta})=\alpha\right\} and optk(𝜷)argmax𝐱{j=1kcjxj:j=1k𝐚jxj𝜷,𝐱+k}\mathrm{opt}_{k}(\bm{\beta})\coloneqq\arg\max\limits_{\mathbf{x}}\left\{\sum_{j=1}^{k}c_{j}x_{j}:\sum_{j=1}^{k}\mathbf{a}_{j}x_{j}\leq\bm{\beta},\ \mathbf{x}\in\mathbb{Z}^{k}_{+}\right\}.

2.1 Properties of Restricted Value Functions

We apply fundamental properties of the IP value function to restricted value functions.

Proposition 1.

[21]\thlabelelementary Basic properties of the restricted value functions zkz_{k}, for k=1,,n,k=1,\dots,n, include:

  1. (1)

    zk(𝐚j)cjz_{k}(\mathbf{a}_{j})\geq c_{j} for j=1,,kj=1,\dots,k.

  2. (2)

    zkz_{k} is nondecreasing over \mathcal{B}.

  3. (3)

    zkz_{k} is superadditive over \mathcal{B}; i.e., for all 𝜷1\bm{\beta}_{1}, 𝜷2\bm{\beta}_{2}\in\mathcal{B}, 𝜷1+𝜷2\bm{\beta}_{1}+\bm{\beta}_{2}\in\mathcal{B}, zk(𝜷1)+zk(𝜷2)zk(𝜷1+𝜷2)z_{k}(\bm{\beta}_{1})+z_{k}(\bm{\beta}_{2})\leq z_{k}(\bm{\beta}_{1}+\bm{\beta}_{2}).

Proposition 2.

[12]\thlabelIPCS Given k{1,,n}k\in\{1,...,n\}, if 𝐱\mathbf{x}^{*} optk(𝛃)\in\mathrm{opt}_{k}(\bm{\beta}), then for all 𝐱+k\mathbf{x}\in\mathbb{Z}_{+}^{k} such that 𝐱\mathbf{x}\leq 𝐱\mathbf{x}^{*}, zk(j=1k𝐚jxj)=j=1kcjxjz_{k}(\sum_{j=1}^{k}\mathbf{a}_{j}x_{j})=\sum_{j=1}^{k}c_{j}x_{j} and zk(j=1k𝐚jxj)+zk(𝛃j=1k𝐚jxj)=zk(𝛃)z_{k}(\sum_{j=1}^{k}\mathbf{a}_{j}x_{j})+z_{k}(\bm{\beta}-\sum_{j=1}^{k}\mathbf{a}_{j}x_{j})=z_{k}(\bm{\beta}).

\thref

IPCS is often referred to as IP complementary slackness.

Lemma 1.
\thlabel

nondecreasingbetweeniterations For all k{2,,n}k\in\{2,...,n\}, if 𝛃Sk1(α1)\bm{\beta}\in S_{k-1}(\alpha_{1}) and 𝛃Sk(α2)\bm{\beta}\in S_{k}(\alpha_{2}), then α2α1\alpha_{2}\geq\alpha_{1}.

\thref

nondecreasingbetweeniterations states that zk(𝜷)z_{k}(\bm{\beta}) increases monotonically with kk for fixed 𝜷\bm{\beta} - as more variables become available, the value of the restricted problem can only improve.

Lemma 2.
\thlabel

notOptimal Given k{2,,n}k\in\{2,...,n\}, 𝐱+k\mathbf{x}\in\mathbb{Z}^{k}_{+} such that j=1k𝐚jxj𝐛\sum_{j=1}^{k}\mathbf{a}_{j}x_{j}\leq\mathbf{b}, let α=j=1kcjxj\alpha=\sum_{j=1}^{k}c_{j}x_{j}. If Sk(α)=S_{k}(\alpha)=\emptyset, then 𝐱optk(j=1k𝐚jxj){\mathbf{x}}\notin\mathrm{opt}_{k}(\sum_{j=1}^{k}\mathbf{a}_{j}{x}_{j}).

Hence, \threfnotOptimal gives a necessary condition for optimality. Let 𝐞i\mathbf{e}_{i} indicate the iith unit vector.

Proposition 3.
\thlabel

schaeferoriginal Given k{2,,n}k\in\{2,...,n\} and 𝛃\bm{\beta}\in\mathcal{B}, let 𝐱optk(𝛃)\mathbf{x}^{*}\in\mathrm{opt}_{k}(\bm{\beta}). We have:

  1. (1)

    For all t+t\in\mathbb{Z}_{+} such that txkt\leq x^{*}_{k}, zk(𝜷)=zk(𝜷t𝐚k)+zk(t𝐚k)=zk1(𝜷𝐚kxk)+ckxkz_{k}(\bm{\beta})=z_{k}(\bm{\beta}-t\mathbf{a}_{k})+z_{k}(t\mathbf{a}_{k})=z_{k-1}(\bm{\beta}-\mathbf{a}_{k}x^{*}_{k})+c_{k}{x}_{k}^{*}. Further, 𝐱t𝐞koptk(𝜷t𝐚k)\mathbf{x}^{*}-t\mathbf{e}_{k}\in\mathrm{opt}_{k}(\bm{\beta}-t\mathbf{a}_{k}), and if 𝜷Sk(α)\bm{\beta}\in S_{k}(\alpha), then 𝜷t𝐚kSk(αtck)\bm{\beta}-t\mathbf{a}_{k}\in S_{k}(\alpha-tc_{k}).

  2. (2)

    If 𝜷Sk(α)\bm{\beta}\in S_{k}(\alpha), then 𝜷𝐚kxkSk1(αckxk)\bm{\beta}-\mathbf{a}_{k}x^{*}_{k}\in S_{k-1}(\alpha-c_{k}x^{*}_{k}).

  3. (3)

    If 𝜷Sk(α)\bm{\beta}\in S_{k}(\alpha) and Sk1(α)=S_{k-1}(\alpha)=\emptyset, then xk>0x^{*}_{k}>0.

Proof.

Statements (1)-(2) follow from \threfIPCS. For (3), suppose that xk=0x^{*}_{k}=0. By (2), 𝜷Sk1(α)\bm{\beta}\in S_{k-1}(\alpha), which is a contradiction. ∎

\thref

schaeferoriginal demonstrates how the structure of optimal solutions can determine members of level sets over a restricted set of primal variables. In particular, \threfschaeferoriginal shows the impact on the value of a particular 𝜷\bm{\beta} after removing a primal variable from the restricted problem. In addition, given 𝜷\bm{\beta} and kk, and given 𝐱optk(𝜷)\mathbf{x}^{*}\in\mathrm{opt}_{k}(\bm{\beta}), for any feasible solution 𝐱𝐱\mathbf{x}\leq\mathbf{x}^{*} \threfIPCS implies 𝐱optk(j=1k𝐚jxj){\mathbf{x}}\in\mathrm{opt}_{k}(\sum_{j=1}^{k}\mathbf{a}_{j}x_{j}).

2.2 Level-Set-Minimal Vectors

Level-set-minimal vectors represent the efficient frontiers for the corresponding level sets and can be used to construct the boundaries of a value function’s level sets.

Definition 1.

[18]\thlabelminimal A vector 𝛃\bm{\beta}\in\mathcal{B} is level-set-minimal with respect to z:z:\mathcal{B}\rightarrow\mathbb{R} if z(𝛃δ𝐞i)<z(𝛃)z(\bm{\beta}-\delta\mathbf{e}_{i})<z(\bm{\beta}) for all δ>0\delta>0 for all i{1,,m}i\in\{1,\dots,m\} such that 𝛃δ𝐞i\bm{\beta}-\delta\mathbf{e}_{i}\in\mathcal{B}. For all k{1,,n}k\in\{1,...,n\}, 𝐁¯k+m\bar{\mathbf{B}}_{k}\subset\mathbb{Z}^{m}_{+} is the set of level-set-minimal vectors with respect to zkz_{k}. Further, 𝐁¯=𝐁¯n\bar{\mathbf{B}}=\bar{\mathbf{B}}_{n} is the set of level-set-minimal vectors with respect to zz.

We define ¯\bar{\mathcal{B}}, the component-wise integral subset of the domain of zz, as ¯+m\bar{\mathcal{B}}\coloneqq\mathcal{B}\cap\mathbb{Z}^{m}_{+}.

Remark 1.

Note that if 𝛃¯\bm{\beta}\in\bar{\mathcal{B}}, \threfminimal can be simplified as 𝛃\bm{\beta} is level-set-minimal if z(𝛃𝐞i)<z(𝛃)z(\bm{\beta}-\mathbf{e}_{i})<z(\bm{\beta}) for all i{1,,m}i\in\{1,...,m\} such that 𝛃𝐞i¯\bm{\beta}-\mathbf{e}_{i}\in\bar{\mathcal{B}}.

Determining whether a vector is level-set-minimal is NP-complete ([18]). Thus, we provide a variety of necessary and sufficient conditions to verify whether a right-hand side is level-set-minimal.

\thref

equal states that the set of level-set-minimal vectors is a subset of the image of 𝐀\mathbf{A} over +n\mathbb{Z}^{n}_{+}, which implies that all optimal solutions of a level-set-minimal vector are tight at all constraints. Note that for any 𝜷1,𝜷2m\bm{\beta}_{1},\bm{\beta}_{2}\in\mathbb{R}^{m}, we say that 𝜷1𝜷2\bm{\beta}_{1}\lneq\bm{\beta}_{2} if 𝜷1𝜷2\bm{\beta}_{1}\leq\bm{\beta}_{2}, and 𝜷1𝜷2\bm{\beta}_{1}\neq\bm{\beta}_{2}.

Lemma 3.
\thlabel

equal Given k{1,,n}k\in\{1,...,n\}, for all 𝛃𝐁¯k\bm{\beta}\in\bar{\mathbf{B}}_{k} and all 𝐱optk(𝛃)\mathbf{x}^{*}\in\mathrm{opt}_{k}(\bm{\beta}), j=1k𝐚jxj=𝛃\sum_{j=1}^{k}\mathbf{a}_{j}x^{*}_{j}=\bm{\beta}.

\thref

LSMiter provides a sufficient condition under which a level-set-minimal vector with k1k-1 variables maintains level-set-minimality with kk variables.

Proposition 4.
\thlabel

LSMiter Let 𝛃𝐁¯k1\bm{\beta}\in\bar{\mathbf{B}}_{k-1}. If for all 𝛃¯𝛃\bar{\bm{\beta}}\lneq\bm{\beta} and all 𝐱optk(𝛃¯)\mathbf{x}^{*}\in\mathrm{opt}_{k}(\bar{\bm{\beta}}), xk=0x^{*}_{k}=0, then 𝛃𝐁¯k\bm{\beta}\in\bar{\mathbf{B}}_{k}.

Note that there are some conditions under which 𝜷𝐁¯k1\bm{\beta}\in\bar{\mathbf{B}}_{k-1} and 𝜷𝐁¯k\bm{\beta}\in\bar{\mathbf{B}}_{k} but there exists 𝜷¯𝜷\bar{\bm{\beta}}\lneq\bm{\beta} with 𝐱optk(𝜷¯)\mathbf{x}^{*}\in\mathrm{opt}_{k}(\bar{\bm{\beta}}), xk>0x^{*}_{k}>0. For example, if 𝐚k1=𝐚k\mathbf{a}_{k-1}=\mathbf{a}_{k} and ck1=ckc_{k-1}=c_{k}, then 𝐁¯k1=𝐁¯k\bar{\mathbf{B}}_{k-1}=\bar{\mathbf{B}}_{k}, but any 𝜷¯\bar{\bm{\beta}} with 𝐱optk(𝜷¯)\mathbf{x}^{*}\in\mathrm{opt}_{k}(\bar{\bm{\beta}}), xk=0x^{*}_{k}=0, xk1>0x^{*}_{k-1}>0 will also have 𝐱𝐞k1+𝐞k\mathbf{x}^{*}-\mathbf{e}_{k-1}+\mathbf{e}_{k} as an optimal solution.

Parametrized IP 2.2 is used in examples throughout. Note that the constraint right-hand side upper bound, 𝐛\mathbf{b}, is specified for each example, or \mathcal{B} is given to be unbounded above.

max𝐱\displaystyle\max\limits_{\mathbf{x}}\ 2x1+3x2+4x3+3x4+3x5+6x6\displaystyle 2x_{1}+3x_{2}+4x_{3}+3x_{4}+3x_{5}+6x_{6}
s.t. (121112112132)𝐱𝜷,𝐱+6.\displaystyle\begin{pmatrix}1&2&1&1&1&2\\ 1&1&2&1&3&2\end{pmatrix}\mathbf{x}\leq\bm{\beta},\ \mathbf{x}\in\mathbb{Z}^{6}_{+}. (EXIP(𝜷)(\bm{\beta}))
Example 1.
\thlabel

exExampleIP Consider 2.2 with 𝐛=(3,4)\mathbf{b}=(3,4)^{\top}, and 𝛃=(3,3)𝐁¯4\bm{\beta}=(3,3)^{\top}\in\bar{\mathbf{B}}_{4}. For all 𝛃¯𝛃\bar{\bm{\beta}}\lneq\bm{\beta} and for all 𝐱opt5(𝛃¯)\mathbf{x}^{*}\in\mathrm{opt}_{5}(\bar{\bm{\beta}}), x5=0x^{*}_{5}=0. As such, 𝛃𝐁¯5\bm{\beta}\in\bar{\mathbf{B}}_{5}. ∎

\thref

LSMlinind uses a linear independence relationship among a subset of primal variables to provide a necessary condition for level-set-minimal vectors.

Proposition 5.
\thlabel

LSMlinind If 𝛃𝐁¯k1\bm{\beta}\notin\bar{\mathbf{B}}_{k-1}, 𝐚1,,𝐚k\mathbf{a}_{1},\dots,\mathbf{a}_{k} are linearly independent, and 𝛃\bm{\beta} and 𝐚k\mathbf{a}_{k} are linearly independent, then for all t+t\in\mathbb{Z}_{+} such that 𝛃+t𝐚k\bm{\beta}+t\mathbf{a}_{k}\in\mathcal{B}, 𝛃+t𝐚k𝐁¯k\bm{\beta}+t\mathbf{a}_{k}\notin\bar{\mathbf{B}}_{k}.

\thref

LSMiter,LSMlinind provide conditions for which a right-hand side is level-set-minimal as primal variables are added. In contrast, \threfschaefer gives a sufficient condition such that a right-hand side is level-set-minimal as primal variables are removed.

Proposition 6.
\thlabel

schaefer If 𝛃𝐁¯k\bm{\beta}\in\bar{\mathbf{B}}_{k} and 𝐱optk(𝛃)\mathbf{x}^{*}\in\mathrm{opt}_{k}(\bm{\beta}), then 𝛃𝐚kxk𝐁¯k1.\bm{\beta}-\mathbf{a}_{k}x^{*}_{k}\in\bar{\mathbf{B}}_{k-1}.

Proof.

Suppose 𝜷𝐚kxk𝐁¯k1\bm{\beta}-\mathbf{a}_{k}x^{*}_{k}\not\in\bar{\mathbf{B}}_{k-1}, then there exists 𝝅𝐁¯k1\bm{\pi}\in\bar{\mathbf{B}}_{k-1} such that 𝝅𝜷𝐚kxk\bm{\pi}\lneq\bm{\beta}-\mathbf{a}_{k}x^{*}_{k} and zk1(𝝅)=zk1(𝜷𝐚kxk)z_{k-1}(\bm{\pi})=z_{k-1}(\bm{\beta}-\mathbf{a}_{k}x^{*}_{k}). Let 𝐱¯optk1(𝝅)\bar{\mathbf{x}}\in\mathrm{opt}_{k-1}(\bm{\pi}). Because 𝝅𝜷𝐚kxk,\bm{\pi}\lneq\bm{\beta}-\mathbf{a}_{k}x^{*}_{k}, and j=1k1cjx¯j=zk1(𝝅)=zk1(𝜷𝐚kxk),\sum\limits_{j=1}^{k-1}c_{j}\bar{x}_{j}=z_{k-1}(\bm{\pi})=z_{k-1}(\bm{\beta}-\mathbf{a}_{k}x^{*}_{k}), we have 𝐱¯optk1(𝜷𝐚kxk)\bar{\mathbf{x}}\in\mathrm{opt}_{k-1}(\bm{\beta}-\mathbf{a}_{k}x^{*}_{k}). Moreover, (x1,,xk1)x^{*}_{1},\dots,x^{*}_{k-1})^{\top} is a feasible solution to IP(𝜷𝐚kxk)k1{}_{k-1}(\bm{\beta}-\mathbf{a}_{k}x^{*}_{k}), which implies that j=1k1cjx¯jj=1k1cjxj\sum\limits_{j=1}^{k-1}c_{j}\bar{x}_{j}\geq\sum\limits_{j=1}^{k-1}c_{j}x^{*}_{j}.

Let 𝐱^=(x¯1,,x¯k1,xk)\hat{\mathbf{x}}=(\bar{x}_{1},\dots,\bar{x}_{k-1},x^{*}_{k})^{\top}. Then j=1kcjx^j=j=1k1cjx¯j+ckxkj=1kcjxj\sum\limits_{j=1}^{k}c_{j}\hat{x}_{j}=\sum\limits_{j=1}^{k-1}c_{j}\bar{x}_{j}+c_{k}x^{*}_{k}\geq\sum\limits_{j=1}^{k}c_{j}x^{*}_{j}, and because 𝐱optk(𝜷),𝐱^optk(𝜷)\mathbf{x}^{*}\in\mathrm{opt}_{k}(\bm{\beta}),\hat{\mathbf{x}}\in\mathrm{opt}_{k}(\bm{\beta}). However, j=1k𝐚jx^j=j=1k1𝐚jx¯j+𝐚kxk=𝝅+𝐚kxk𝜷\sum\limits_{j=1}^{k}\mathbf{a}_{j}\hat{x}_{j}=\sum\limits_{j=1}^{k-1}\mathbf{a}_{j}\bar{x}_{j}+\mathbf{a}_{k}x^{*}_{k}=\bm{\pi}+\mathbf{a}_{k}x^{*}_{k}\lneq\bm{\beta}, which implies that 𝜷𝐁¯k\bm{\beta}\not\in\bar{\mathbf{B}}_{k}, a contradiction. ∎

Example LABEL:exExampleIP (continued).

In (EXIP), if 𝐛=(3,4)\mathbf{b}=(3,4)^{\top}, then 𝛃=(3,3)𝐁¯3\bm{\beta}=(3,3)^{\top}\in\bar{\mathbf{B}}_{3}, and (0,1,1)opt3(𝛃)(0,1,1)^{\top}\in\mathrm{opt}_{3}(\bm{\beta}). Hence, (3,3)𝐚3=(2,1)𝐁¯2(3,3)^{\top}-\mathbf{a}_{3}=(2,1)^{\top}\in\bar{\mathbf{B}}_{2}. ∎

Proposition 7.
\thlabel

down If 𝐱optk(j=1k𝐚jxj)\mathbf{x}^{*}\in\mathrm{opt}_{k}(\sum_{j=1}^{k}\mathbf{a}_{j}x^{*}_{j}) and j=1k𝐚jxj𝐁¯k\sum_{j=1}^{k}\mathbf{a}_{j}x_{j}^{*}\in\bar{\mathbf{B}}_{k}, then for all 𝐱+k\mathbf{x}\in\mathbb{Z}_{+}^{k} such that 𝐱𝐱\mathbf{x}\lneq\mathbf{x}^{*}, we have j=1k𝐚jxj𝐁¯k\sum_{j=1}^{k}\mathbf{a}_{j}{x}_{j}\in\bar{\mathbf{B}}_{k}.

Proof.

Suppose there exists 𝐱1𝐱\mathbf{x}^{1}\lneq{\mathbf{x}^{*}} such that j=1k𝐚jxj1𝐁¯k.\sum\limits_{j=1}^{k}\mathbf{a}_{j}x^{1}_{j}\not\in\bar{\mathbf{B}}_{k}. Then there exists 𝐱2optk(j=1k𝐚jxj1)\mathbf{x}^{2}\in\mathrm{opt}_{k}(\sum\limits_{j=1}^{k}\mathbf{a}_{j}x^{1}_{j}) such that j=1k𝐚jxj2j=1k𝐚jxj1\sum\limits_{j=1}^{k}\mathbf{a}_{j}x^{2}_{j}\lneq\sum\limits_{j=1}^{k}\mathbf{a}_{j}x^{1}_{j}. Let 𝐱3=𝐱2+(𝐱𝐱1)\mathbf{x}^{3}=\mathbf{x}^{2}+({\mathbf{x}^{*}}-\mathbf{x}^{1}). Then, j=1k𝐚jxj3=j=1k𝐚jxj2+j=1k𝐚jxjj=1k𝐚jxj1j=1k𝐚jxj.\sum\limits_{j=1}^{k}\mathbf{a}_{j}x^{3}_{j}=\sum\limits_{j=1}^{k}\mathbf{a}_{j}x^{2}_{j}+\sum\limits_{j=1}^{k}\mathbf{a}_{j}{x}^{*}_{j}-\sum\limits_{j=1}^{k}\mathbf{a}_{j}x^{1}_{j}\lneq\sum\limits_{j=1}^{k}\mathbf{a}_{j}{x}_{j}^{*}. Because 𝐱2optk(j=1k𝐚kxj1)\mathbf{x}^{2}\in\mathrm{opt}_{k}(\sum\limits_{j=1}^{k}\mathbf{a}_{k}x^{1}_{j}), j=1kcjxj3=j=1kcj(xj2+xkxj1)j=1kcjxj\sum\limits_{j=1}^{k}c_{j}x^{3}_{j}=\sum\limits_{j=1}^{k}c_{j}(x^{2}_{j}+{x}^{*}_{k}-x^{1}_{j})\geq\sum\limits_{j=1}^{k}c_{j}{x}^{*}_{j}, and because 𝐱optk(j=1k𝐚jxj),𝐱3optk(j=1𝐚jxj){\mathbf{x}^{*}}\in\mathrm{opt}_{k}(\sum\limits_{j=1}^{k}\mathbf{a}_{j}{x}^{*}_{j}),\mathbf{x}^{3}\in\mathrm{opt}_{k}(\sum\limits_{j=1}\mathbf{a}_{j}{x}^{*}_{j}). However, j=1k𝐚jxj3j=1k𝐚jxj\sum\limits_{j=1}^{k}\mathbf{a}_{j}x^{3}_{j}\lneq\sum\limits_{j=1}^{k}\mathbf{a}_{j}{x}^{*}_{j}, which contradicts \threfequal. ∎

Proposition 8.
\thlabel

anotinB Let 𝛃𝐁¯k\bm{\beta}\in\bar{\mathbf{B}}_{k}. If 𝐚j𝐁¯k\mathbf{a}_{j}\notin\bar{\mathbf{B}}_{k}, then for all 𝐱optk(𝛃)\mathbf{x}^{*}\in\mathrm{opt}_{k}(\bm{\beta}), xj=0x^{*}_{j}=0.

Corollary 1.
\thlabel

relationship 𝐁¯k{𝛃¯|𝛃=𝛃^+t𝐚k,𝛃^𝐁¯k1,t+}\bar{\mathbf{B}}_{k}\subseteq\left\{\bm{\beta}\in\bar{\mathcal{B}}\,|\,\bm{\beta}=\hat{\bm{\beta}}+t\mathbf{a}_{k},\hat{\bm{\beta}}\in\bar{\mathbf{B}}_{k-1},t\in\mathbb{Z}_{+}\right\}.

Propositions 7 and 8 state sufficient and necessary conditions, respectively, to ensure that subsets of right-hand sides are all level-set-minimal. \threfdown requires a known optimal solution and generalizes a result of [18], who prove the case of k=nk=n. In contrast, \threfanotinB relies on the value function.

Proposition 9.
\thlabel

downt If there exists t+t\in\mathbb{Z}_{+} such that 𝛃+t𝐚k𝐁¯k\bm{\beta}+t\mathbf{a}_{k}\in\bar{\mathbf{B}}_{k} and zk(𝛃+t𝐚k)=zk(𝛃)+tckz_{k}(\bm{\beta}+t\mathbf{a}_{k})=z_{k}(\bm{\beta})+tc_{k}, then for all st,s+s\leq t,s\in\mathbb{Z}_{+}, 𝛃+s𝐚k𝐁¯k\bm{\beta}+s\mathbf{a}_{k}\in\bar{\mathbf{B}}_{k}.

Proof.

Suppose there exists s<t,s+s<t,s\in\mathbb{Z}_{+} such that 𝜷+s𝐚k𝐁¯k\bm{\beta}+s\mathbf{a}_{k}\notin\bar{\mathbf{B}}_{k}. Then there exists 𝝅𝜷+s𝐚k\bm{\pi}\lneq\bm{\beta}+s\mathbf{a}_{k} such that zk(𝝅)=zk(𝜷+s𝐚k)z_{k}(\bm{\pi})=z_{k}(\bm{\beta}+s\mathbf{a}_{k}). Then by superadditivity,

zk(𝝅+(ts)𝐚k)zk(𝝅)+(ts)ck=zk(𝜷+s𝐚k)+(ts)ckzk(𝜷)+tck=zk(𝜷+t𝐚k).z_{k}(\bm{\pi}+(t-s)\mathbf{a}_{k})\geq z_{k}(\bm{\pi})+(t-s)c_{k}=z_{k}(\bm{\beta}+s\mathbf{a}_{k})+(t-s)c_{k}\geq z_{k}(\bm{\beta})+tc_{k}=z_{k}(\bm{\beta}+t\mathbf{a}_{k}).

Because 𝝅𝜷+s𝐚k\bm{\pi}\lneq\bm{\beta}+s\mathbf{a}_{k} , 𝝅+(ts)𝐚k𝜷+t𝐚k\bm{\pi}+(t-s)\mathbf{a}_{k}\lneq\bm{\beta}+t\mathbf{a}_{k}, and zk(𝝅+(ts)𝐚k)zk(𝜷+t𝐚k)z_{k}(\bm{\pi}+(t-s)\mathbf{a}_{k})\geq z_{k}(\bm{\beta}+t\mathbf{a}_{k}), then by monotonicity, zk(𝜷+(ts)𝐚k)zk(𝜷+t𝐚k)z_{k}(\bm{\beta}+(t-s)\mathbf{a}_{k})\geq z_{k}(\bm{\beta}+t\mathbf{a}_{k}), so that 𝜷+t𝐚k𝐁¯k\bm{\beta}+t\mathbf{a}_{k}\notin\bar{\mathbf{B}}_{k}, a contradiction. ∎

Remark 2.

If 𝛃𝐁¯k1\bm{\beta}\in\bar{\mathbf{B}}_{k-1} and 𝛃𝐁¯k\bm{\beta}\notin\bar{\mathbf{B}}_{k}, then for all t+t\in\mathbb{Z}_{+} such that 𝛃+t𝐚k¯\bm{\beta}+t\mathbf{a}_{k}\in\bar{\mathcal{B}}, either

  1. (1)

    𝜷+t𝐚k𝐁¯k\bm{\beta}+t\mathbf{a}_{k}\notin\bar{\mathbf{B}}_{k}; or

  2. (2)

    𝜷+t𝐚k𝐁¯k\bm{\beta}+t\mathbf{a}_{k}\in\bar{\mathbf{B}}_{k}, zk(𝜷+t𝐚k)>zk(𝜷)+tckz_{k}(\bm{\beta}+t\mathbf{a}_{k})>z_{k}(\bm{\beta})+tc_{k}. Further, there exist 𝜷^𝐁¯k,t^+\hat{\bm{\beta}}\in\bar{\mathbf{B}}_{k},\,\hat{t}\in\mathbb{Z}_{+} such that 𝜷+t𝐚k=𝜷^+t^𝐚k\bm{\beta}+t\mathbf{a}_{k}=\hat{\bm{\beta}}+\hat{t}\mathbf{a}_{k} and zk(𝜷+t𝐚k)=zk(𝜷^)+t^ckz_{k}(\bm{\beta}+t\mathbf{a}_{k})=z_{k}(\hat{\bm{\beta}})+\hat{t}c_{k}.

Therefore, level-set-minimal vectors can be obtained by adding primal variables and the corresponding columns of 𝐀\mathbf{A} to the problem one at a time.

2.3 Order of Primal Decision Variables

We have shown a number of properties of value functions and level-set-minimal vectors when we introduce variables xkx_{k} for a given ordering (k=1,2,,nk=1,2,\dots,n) one at a time. However, if the ordering provided is arbitrary, then at each step kk, it must first be determined if 𝐚k\mathbf{a}_{k} should be added into the problem, or if it is strictly dominated by other variables and can be excluded from consideration. Here, we consider which variables are necessary to include to obtain an optimal solution; note that the order in which the decision variables are added can influence the construction of the level sets.

Lemma 4.

[21]\thlabel¿0 If zn(𝐚j)>cjz_{n}(\mathbf{a}_{j})>c_{j}, then for all 𝛃\bm{\beta}\in\mathcal{B} and all 𝐱optn(𝛃)\mathbf{x}^{*}\in\mathrm{opt}_{n}(\bm{\beta}), xj=0x^{*}_{j}=0.

By \thref¿0 and \threfanotinB, only vectors 𝐚j𝐁¯\mathbf{a}_{j}\in\bar{\mathbf{B}} such that zn(𝐚j)=cjz_{n}(\mathbf{a}_{j})=c_{j} are necessary to find an optimal solution for a given right-hand side.

Lemma 5.
\thlabel

LSMkton Suppose 𝐚k𝐁¯k\mathbf{a}_{k}\in\bar{\mathbf{B}}_{k} and zk(𝐚k)=ckz_{k}(\mathbf{a}_{k})=c_{k}, for some k{1,,n}k\in\{1,\dots,n\}. Further suppose that for all k^+\hat{k}\in\mathbb{Z}_{+} such that k<k^nk<\hat{k}\leq n, we have 𝐚k𝐚k^\mathbf{a}_{k}-\mathbf{a}_{\hat{k}}\not\in\mathcal{B}. Then, zn(𝐚k)=ckz_{n}(\mathbf{a}_{k})=c_{k} and 𝐚k𝐁¯n\mathbf{a}_{k}\in\bar{\mathbf{B}}_{n}.

By \threfLSMkton, the columns of 𝐀\mathbf{A} should be ordered such that 𝐚1𝐚2𝐚n\mathbf{a}_{1}\lneq\mathbf{a}_{2}\lneq\dots\mathbf{a}_{n}. Some of these columns cannot be compared with each other, in which case it is sufficient to ensure that for all k,k^k,\hat{k}\in\mathbb{N} where k<k^nk<\hat{k}\leq n, 𝐚k𝐚k^\mathbf{a}_{k}-\mathbf{a}_{\hat{k}}\notin\mathcal{B}. By ordering the variables in this manner, it is sufficient to check if zk(𝐚k)=ckz_{k}(\mathbf{a}_{k})=c_{k} and 𝐚k𝐁¯k\mathbf{a}_{k}\in\bar{\mathbf{B}}_{k} to evaluate whether or not to add variable kk to the set during the kthk^{th} step. By \threfnondecreasingbetweeniterations, to check if zk(𝐚k)=ckz_{k}(\mathbf{a}_{k})=c_{k}, we first check if zk1(𝐚k)ckz_{k-1}(\mathbf{a}_{k})\leq c_{k}, then if 𝐚k𝐁¯k\mathbf{a}_{k}\in\bar{\mathbf{B}}_{k}.

\thref

altvalue demonstrates the possible relationships between zk1(𝐚k)z_{k-1}(\mathbf{a}_{k}) and zk(𝐚k)z_{k}(\mathbf{a}_{k}), and the impact of this on the membership of 𝐚k\mathbf{a}_{k} in 𝐁¯k\bar{\mathbf{B}}_{k}.

Proposition 10.
\thlabel

altvalue Exactly one of the following holds:

  1. (i)

    zk1(𝐚k)<ckz_{k-1}(\mathbf{a}_{k})<c_{k}. Then zk(𝐚k)=ckz_{k}(\mathbf{a}_{k})=c_{k} and 𝐚k𝐁¯k\mathbf{a}_{k}\in\bar{\mathbf{B}}_{k}.

  2. (ii)

    zk1(𝐚k)=ckz_{k-1}(\mathbf{a}_{k})=c_{k}. Then zk(𝐚k)=ckz_{k}(\mathbf{a}_{k})=c_{k}.

  3. (iii)

    zk1(𝐚k)>ckz_{k-1}(\mathbf{a}_{k})>c_{k}. Then zk(𝐚k)=zk1(𝐚k)z_{k}(\mathbf{a}_{k})=z_{k-1}(\mathbf{a}_{k}).

Thus, zk(𝐚k)=max{zk1(𝐚k),ck}z_{k}(\mathbf{a}_{k})=\max\left\{z_{k-1}(\mathbf{a}_{k}),c_{k}\right\}. In addition, if zk1(𝐚k)ckz_{k-1}(\mathbf{a}_{k})\geq c_{k}, 𝐚k𝐁¯k\mathbf{a}_{k}\in\bar{\mathbf{B}}_{k} if and only if 𝐚k𝐁¯k1\mathbf{a}_{k}\in\bar{\mathbf{B}}_{k-1}.

Example LABEL:exExampleIP (continued).

In (EXIP), with 𝐛=(3,3)\mathbf{b}=(3,3)^{\top}:

  1. (i)

    z3(𝐚3)=4z_{3}(\mathbf{a}_{3})=4 and z2(𝐚3)=2z_{2}(\mathbf{a}_{3})=2, so 𝐚3𝐁¯3\mathbf{a}_{3}\in\bar{\mathbf{B}}_{3},

  2. (ii)

    z5(𝐚5)=3z_{5}(\mathbf{a}_{5})=3, z4(𝐚5)=3z_{4}(\mathbf{a}_{5})=3, and 𝐱=𝐞4opt4(𝐚5)\mathbf{x}^{*}=\mathbf{e}_{4}\in\mathrm{opt}_{4}(\mathbf{a}_{5}) has j=14𝐚jxj<𝐚5\sum_{j=1}^{4}\mathbf{a}_{j}x^{*}_{j}<\mathbf{a}_{5}, so 𝐚5𝐁¯5\mathbf{a}_{5}\notin\bar{\mathbf{B}}_{5}, and

  3. (iii)

    z6(𝐚6)=6z_{6}(\mathbf{a}_{6})=6 and opt5(𝐚6)={2𝐞4}\mathrm{opt}_{5}(\mathbf{a}_{6})=\{2\mathbf{e}_{4}\}, so for all 𝐱opt5(𝐚6)\mathbf{x}\in\mathrm{opt}_{5}(\mathbf{a}_{6}), j=15𝐚jxj=𝐚6\sum_{j=1}^{5}\mathbf{a}_{j}x^{*}_{j}=\mathbf{a}_{6}, so 𝐚6𝐁¯6\mathbf{a}_{6}\in\bar{\mathbf{B}}_{6}. ∎

\thref

genstepup generalizes \threfaltvalue to relationships between zk1(𝜷)z_{k-1}(\bm{\beta}) and zk(𝜷)z_{k}(\bm{\beta}) for arbitrary fixed 𝜷\bm{\beta}; in particular, \threfgenstepup suggests a Gilmore-Gomory approach for solving IP(𝜷)(\bm{\beta}) or IP(𝜷)k{}_{k}(\bm{\beta}). The classic Gilmore-Gomory recursion is ([12]):

z(𝜷)=max{z(𝜷𝐚j)+cj|j{1,,n},𝐚j𝜷}.z(\bm{\beta})=\max\left\{z(\bm{\beta}-\mathbf{a}_{j})+c_{j}\,|\,j\in\{1,...,n\},\mathbf{a}_{j}\leq\bm{\beta}\right\}.
Proposition 11.
\thlabel

genstepup Given 𝛃\bm{\beta}\in\mathcal{B}, zk(𝛃)=max{zk1(𝛃𝐚k)+ck|𝐚k𝛃,+}z_{k}(\bm{\beta})=\max\limits_{\ell}\left\{z_{k-1}(\bm{\beta}-\ell\mathbf{a}_{k})+\ell c_{k}\,|\,\ell\mathbf{a}_{k}\leq\bm{\beta},\ell\in\mathbb{Z}_{+}\right\}.

Proof.

Suppose zk(𝜷)>max{zk1(𝜷𝐚k)+ck|𝐚k𝜷,+}z_{k}(\bm{\beta})>\max\limits_{\ell}\left\{z_{k-1}(\bm{\beta}-\ell\mathbf{a}_{k})+\ell c_{k}\,|\,\ell\mathbf{a}_{k}\leq\bm{\beta},\ell\in\mathbb{Z}_{+}\right\}; equivalently, there exists 𝐱\mathbf{x}^{*} such that j=1k𝐚jxj𝜷\sum_{j=1}^{k}\mathbf{a}_{j}x_{j}^{*}\leq\bm{\beta} and j=1kcjxj>max+:𝐚k𝜷zk1(𝜷𝐚k)+ck\sum_{j=1}^{k}c_{j}x_{j}^{*}>\max\limits_{\ell\in\mathbb{Z}_{+}:\,\ell\mathbf{a}_{k}\leq\bm{\beta}}z_{k-1}(\bm{\beta}-\ell\mathbf{a}_{k})+\ell c_{k}. Then j=1k1xjcj>max+:𝐚k𝜷zk1(𝜷𝐚k)+ck(xk)zk1(𝜷xk𝐚k)\sum_{j=1}^{k-1}x_{j}^{*}c_{j}>\max\limits_{\ell\in\mathbb{Z}_{+}:\,\ell\mathbf{a}_{k}\leq\bm{\beta}}z_{k-1}(\bm{\beta}-\ell\mathbf{a}_{k})+c_{k}(\ell-x_{k}^{*})\geq z_{k-1}(\bm{\beta}-x_{k}^{*}\mathbf{a}_{k}), a contradiction. On the other hand, suppose zk(𝜷)<max{zk1(𝜷𝐚k)+ck:𝐚k𝜷,+}z_{k}(\bm{\beta})<\max\limits_{\ell}\left\{z_{k-1}(\bm{\beta}-\ell\mathbf{a}_{k})+\ell c_{k}:\ell\mathbf{a}_{k}\leq\bm{\beta},\ \ell\in\mathbb{Z}_{+}\right\}; that is, there exists +\ell\in\mathbb{Z}_{+} such that 𝐚k𝜷\ell\mathbf{a}_{k}\leq\bm{\beta} and zk1(𝜷𝐚k)+ck>zk(𝜷)z_{k-1}(\bm{\beta}-\ell\mathbf{a}_{k})+\ell c_{k}>z_{k}(\bm{\beta}). Let 𝐱optk1(𝜷𝐚k)\mathbf{x}^{*}\in\mathrm{opt}_{k-1}(\bm{\beta}-\ell\mathbf{a}_{k}), and define 𝐱k\mathbf{x}^{\prime}\in\mathbb{Z}^{k} as xj=xjx^{\prime}_{j}=x^{*}_{j} for j{1,,k1}j\in\{1,\dots,k-1\} and xk=x^{\prime}_{k}=\ell. Then 𝐱\mathbf{x}^{\prime} is feasible for IP(𝜷)k{}_{k}(\bm{\beta}); thus, zk(𝜷)j=1kcjxj=zk1(𝜷𝐚k)+ck>zk(𝜷)z_{k}(\bm{\beta})\geq\sum\limits_{j=1}^{k}c_{j}x^{\prime}_{j}=z_{k-1}(\bm{\beta}-\ell\mathbf{a}_{k})+\ell c_{k}>z_{k}(\bm{\beta}), a contradiction. We conclude that zk(𝜷)=max+:𝐚k𝜷zk1(𝜷𝐚k)+ckz_{k}(\bm{\beta})=\max\limits_{\ell\in\mathbb{Z}_{+}:\,\ell\mathbf{a}_{k}\leq\bm{\beta}}z_{k-1}(\bm{\beta}-\ell\mathbf{a}_{k})+\ell c_{k}. ∎

The key differences between the two approaches are that \threfgenstepup focuses on a single variable from the problem at each level of the recursion, while all variables remain present throughout the Gilmore-Gomory approach given in [12]. In addition, the number of problems generated by \threfgenstepup depends on the maximum number of 𝐚k\mathbf{a}_{k} which can be removed from 𝜷\bm{\beta}, while the number of problems generated by the classic recursion is equal to the number of columns less than or equal to 𝜷\bm{\beta} in a component-wise sense.

3 Maximal Connected Level Sets of the IP Value Function

A level set of the IP value function may consist of multiple subsets of the hyperrectangle \mathcal{B} that are not connected (see \threfTstep and Figures 3 and 3). Hence, the structure of optimal solutions may vary greatly within the same level set. Having access to connected subsets of level sets for the recourse value function in these problems could allow for optimization with respect to a connected set of right-hand sides in each subset as a subproblem with fixed second-stage value and known allowable variability with respect to those bounds. We explore connected subsets of level sets, and in particular, we define and discuss properties of maximal connected subsets of level sets. Maximal connected level lattices (MC-level lattices) are MC-level sets intersected with the lattice +m\mathbb{Z}^{m}_{+}. Note that because we are interested in the connections between sets of right-hand sides, we assume throughout this section that =+m\mathcal{B}=\mathbb{R}^{m}_{+} (or, equivalently, that each component of 𝐛\mathbf{b} is positive infinity). The removal of this assumption affects only \threfMC_Adjacent, which does not necessarily hold for MC-level sets that intersect an upper boundary plane of \mathcal{B}.

Definition 2.
\thlabel

ivcurve Given 𝛃1\bm{\beta}_{1}, 𝛃2\bm{\beta}_{2}\in\mathcal{B}, a continuous function d:[0,1]d:[0,1]\to\mathcal{B} is a continuous isovalue curve from 𝛃1\bm{\beta}_{1} to 𝛃2\bm{\beta}_{2} if d(0)=𝛃1d(0)=\bm{\beta}_{1}, d(1)=𝛃2d(1)=\bm{\beta}_{2}, and z(d(t))=z(𝛃1)z(d(t))=z(\bm{\beta}_{1}) for all t[0,1]t\in[0,1].

Given disjoint connected subsets M1,M2[0,1]M_{1},M_{2}\subset[0,1], we say that M1M_{1} precedes M2M_{2} in the ordering of [0,1][0,1] if for any t1M1t_{1}\in M_{1}, t2M2t_{2}\in M_{2}, t1<t2t_{1}<t_{2}.

Definition 3.
\thlabel

Tstep For all 𝛃{\bm{\beta}}\in\mathcal{B}, define the MC-level set T(𝛃){𝛃¯|T({{\bm{\beta}}})\coloneqq\left\{\bar{\bm{\beta}}\in\mathcal{B}\,|\right. there exists a continuous isovalue curve dd from 𝛃{\bm{\beta}} to 𝛃¯}\left.\bar{\bm{\beta}}\right\}. For all 𝛃{\bm{\beta}\in} ¯\bar{\mathcal{B}}, define the MC-level lattice C(𝛃)T(𝛃)+mC({\bm{\beta}})\coloneqq T({\bm{\beta}})\cap\mathbb{Z}^{m}_{+}.

Example LABEL:exExampleIP (continued).

In (EXIP), with \mathcal{B} unbounded above, T((1,1))T((1,1)^{\top}) is the unbounded set {𝛃|𝛃11, 1𝛃2<2}\left\{\bm{\beta}\,|\,\bm{\beta}_{1}\geq 1,\ 1\leq\bm{\beta}_{2}<2\right\}, and C((1,1))={(v,1)|v}C((1,1)^{\top})=\left\{(v,1)\,|\,v\in\mathbb{N}\right\}. ∎

Lemma 6.
\thlabel

easyiso Given 𝛃1\bm{\beta}_{1}\in\mathcal{B}, 𝛃2T(𝛃1)\bm{\beta}_{2}\in T(\bm{\beta}_{1}), there exists an isovalue curve d:[0,1]d^{\prime}:[0,1]\to\mathcal{B} from 𝛃1\bm{\beta}_{1} to 𝛃2\bm{\beta}_{2} such that d(ζ)=d(θ)\lfloor d^{\prime}(\zeta)\rfloor=\lfloor d^{\prime}(\theta)\rfloor implies d(ζ)=d(η)\lfloor d^{\prime}(\zeta)\rfloor=\lfloor d^{\prime}(\eta)\rfloor for all 0ζ<η<θ10\leq\zeta<\eta<\theta\leq 1 - that is, d\lfloor d^{\prime}\rfloor takes on any given value for at most a single connected subset of [0,1][0,1].

Definition 4.

Given 𝛃1,𝛃2+m\bm{\beta}_{1},\bm{\beta}_{2}\in\mathbb{Z}^{m}_{+}, 𝛃1\bm{\beta}_{1} and 𝛃2\bm{\beta}_{2} are adjacent if there exists j{1,,m}j\in\{1,...,m\} such that 𝛃1𝛃2=±𝐞j\bm{\beta}_{1}-\bm{\beta}_{2}=\pm\mathbf{e}_{j}.

\thref

Csteppro shows that there exists a sequence of adjacent points in an MC-level lattice which connects any two of its members.

Proposition 12.
\thlabel

Csteppro Given 𝛃¯{\bm{\beta}}\in\bar{\mathcal{B}} and 𝛃1\bm{\beta}_{1}, 𝛃2C(𝛃)\bm{\beta}_{2}\in C({\bm{\beta}}), there exists a finite sequence of points, V={v1=𝛃1,,vr=𝛃2}V=\left\{v_{1}=\bm{\beta}_{1},...,v_{r}=\bm{\beta}_{2}\right\}, such that for all i{1,,r}i\in\{1,...,r\}, viC(𝛃)v_{i}\in C({\bm{\beta}}) and for all i{1,,r1}i\in\{1,...,r-1\}, viv_{i} and vi+1v_{i+1} are adjacent.

Proof.

By \threfTstep and \threfeasyiso, there must exist a continuous isovalue curve d:[0,1]d^{\prime}:[0,1]\to\mathcal{B} from 𝜷1\bm{\beta}_{1} to 𝜷2\bm{\beta}_{2} for which d\lfloor d^{\prime}\rfloor takes on any given value for at most a single connected subset of [0,1][0,1]. Let Γ={𝜸1=𝜷1,,𝜸s=𝜷2}\Gamma=\left\{\bm{\gamma}^{1}=\bm{\beta}_{1},...,\bm{\gamma}^{s}=\bm{\beta}_{2}\right\} be the ordered sequence of values taken on by d\lfloor d^{\prime}\rfloor, so that d(ti)=𝜸i\lfloor d(t_{i})\rfloor=\bm{\gamma}^{i}, d(tj)=𝜸j\lfloor d(t_{j})\rfloor=\bm{\gamma}^{j}, ti,tj[0,1]t_{i},t_{j}\in[0,1], and i<ji<j collectively imply ti<tjt_{i}<t_{j}. Let 𝐌={M1,,Ms}\mathbf{M}=\{M_{1},...,M_{s}\} be the ordered sequence of connected subsets of [0,1][0,1] corresponding to the members of Γ\Gamma - that is, for any i{1,,s}i\in\{1,\dots,s\}, tMit\in M_{i} is equivalent to d(t)=𝜸i\lfloor d^{\prime}(t)\rfloor=\bm{\gamma}^{i}. Denote the closure of MiM_{i} as M¯i\overline{M}_{i}, and define the singleton τi\tau_{i} such that {τi}=M¯iM¯i+1\{\tau_{i}\}=\overline{M}_{i}\cap\overline{M}_{i+1}; because the members of 𝐌\mathbf{M} are disjoint and ordered, and their union is [0,1][0,1], distinct τi\tau_{i} will exist for each i{1,,s1}i\in\{1,...,s-1\}. Note that either τiMi\tau_{i}\in M_{i} or τiMi+1\tau_{i}\in M_{i+1}, and that since dd^{\prime} is a continuous function over a bounded domain, each component of dd^{\prime} is also bounded, so that Γ\Gamma is finite. Further, since dd^{\prime} is continuous, 𝜸i+1𝜸i=1\|\bm{\gamma}^{i+1}-\bm{\gamma}^{i}\|_{\infty}=1 for all i{1,,s1}i\in\{1,...,s-1\}.

Suppose there exists i{1,,s1}i\in\{1,...,s-1\} for which for some j{1,,m}j\in\{1,...,m\}, 𝜸ji+1>𝜸ji\bm{\gamma}^{i+1}_{j}>\bm{\gamma}^{i}_{j} and for some k{1,,m}k\in\{1,...,m\}, 𝜸ki>𝜸ki+1\bm{\gamma}^{i}_{k}>\bm{\gamma}^{i+1}_{k}. There are two possibilities:

Case 1: Suppose that both MiM_{i} and Mi+1M_{i+1} include more than a single point. Since dd^{\prime} is continuous, there must exist ϵ>0\epsilon>0 such that for all t(τiϵ,τi)t\in(\tau_{i}-\epsilon,\tau_{i}), d(t)=𝜸i\lfloor d^{\prime}(t)\rfloor=\bm{\gamma}^{i} and for all t(τi,τi+ϵ)t\in(\tau_{i},\tau_{i}+\epsilon), d(t)=𝜸i+1\lfloor d^{\prime}(t)\rfloor=\bm{\gamma}^{i+1}. For any tt such that d(t)=𝜸i\lfloor d^{\prime}(t)\rfloor=\bm{\gamma}^{i}, we must have (𝜸i+1d(t))j>0(\bm{\gamma}^{i+1}-d^{\prime}(t))_{j}>0, so by the continuity of dd^{\prime}, we must have d(τi)j=𝜸ji+1d^{\prime}(\tau_{i})_{j}=\bm{\gamma}^{i+1}_{j}. Similarly, for any tt such that d(t)=𝜸i+1\lfloor d^{\prime}(t)\rfloor=\bm{\gamma}^{i+1}, we must have (𝜸id(t))k>0(\bm{\gamma}^{i}-d^{\prime}(t))_{k}>0, so that by the continuity of dd^{\prime}, we must have d(τi)k=𝜸kid^{\prime}(\tau_{i})_{k}=\bm{\gamma}^{i}_{k}. However, this implies that τiMiMi+1\tau_{i}\notin M_{i}\cup M_{i+1}, a contradiction.

Case 2: Suppose on the other hand that MiM_{i} is a singleton; then Mi={τi}M_{i}=\{\tau_{i}\}. Observe that, because MiMi+1=M_{i}\cap M_{i+1}=\emptyset, if Mi+1M_{i+1} is a single point, Mi+1¯Mi¯=\overline{M_{i+1}}\cap\overline{M_{i}}=\emptyset. This contradicts the continuity of dd^{\prime}; thus, Mi+1M_{i+1} contains more than a single point. Fix ϵ>0\epsilon>0 such that (τi,τi+ϵ)Mi+1(\tau_{i},\tau_{i}+\epsilon)\subseteq M_{i+1}. For any δ(0,ϵ)\delta\in(0,\epsilon), d(τi+δ)jd(τi+δ)j=𝜸ji+1=𝜸ji+1d^{\prime}(\tau_{i}+\delta)_{j}\geq\lfloor d^{\prime}(\tau_{i}+\delta)_{j}\rfloor=\bm{\gamma}^{i+1}_{j}=\bm{\gamma}^{i}_{j}+1. By continuity, d(τi)j=limtτi+d(t)jγji+1=d(τi)j+1>d(τi)jd^{\prime}(\tau_{i})_{j}=\lim\limits_{t\to\tau_{i}^{+}}d^{\prime}(t)_{j}\geq\gamma^{i}_{j}+1=\lfloor d^{\prime}(\tau_{i})_{j}\rfloor+1>d^{\prime}(\tau_{i})_{j}, a contradiction. An analogous argument leads to a similar contradiction when Mi+1M_{i+1} is a singleton. Thus, we conclude that for all i{1,,s},i\in\{1,\dots,s\}, either γiγi+1\gamma^{i}\leq\gamma^{i+1} or γiγi+1\gamma^{i}\geq\gamma^{i+1}.

Define 𝜸^j\hat{\bm{\gamma}}^{j} such that 𝜸^kj=𝟙kj𝜸ki+𝟙k>j𝜸ki+1\hat{\bm{\gamma}}^{j}_{k}=\mathbbm{1}_{k\leq j}\bm{\gamma}^{i}_{k}+\mathbbm{1}_{k>j}\bm{\gamma}^{i+1}_{k} for all k{1,,m}k\in\{1,...,m\}, and for all j{0,,m}j\in\{0,...,m\}. Then for all j{0,,m}j\in\{0,...,m\}, 𝜸i𝜸^j𝜸i+1\bm{\gamma}^{i}\leq\hat{\bm{\gamma}}^{j}\leq\bm{\gamma}^{i+1} or 𝜸i𝜸^j𝜸i+1\bm{\gamma}^{i}\geq\hat{\bm{\gamma}}^{j}\geq\bm{\gamma}^{i+1}, and for all j{0,,m1}j\in\{0,...,m-1\}, either 𝜸^j𝜸^j+1=±𝐞j\hat{\bm{\gamma}}^{j}-\hat{\bm{\gamma}}^{j+1}=\pm\mathbf{e}_{j} or 𝜸^j𝜸^j+1=𝟎\hat{\bm{\gamma}}^{j}-\hat{\bm{\gamma}}^{j+1}=\mathbf{0}. By the monotonicity of the value function, 𝜸^jC(𝜷)\hat{\bm{\gamma}}^{j}\in C(\bm{\beta}) for all j{0,,m}j\in\{0,...,m\}. Inserting {𝜸^1,,𝜸^m1}\left\{\hat{\bm{\gamma}}^{1},...,\hat{\bm{\gamma}}^{m-1}\right\} in Γ\Gamma between 𝜸i\bm{\gamma}^{i} and 𝜸i+1\bm{\gamma}^{i+1} for each i{1,,s1}i\in\{1,...,s-1\}, then removing sequentially adjacent duplicate values, will yield a sequence VV satisfying the conditions of the proposition statement. ∎

\thref

finseq shows an analogous result for any pair of points in an MC-level set.

Corollary 2.
\thlabel

finseq Given 𝛃{\bm{\beta}}\in\mathcal{B}, 𝛃a\bm{\beta}_{a} and 𝛃bT(𝛃)\bm{\beta}_{b}\in T({\bm{\beta}}), there exists a finite sequence of points,
{𝛄0=𝛃a,,𝛄r=𝛃b}\left\{\bm{\gamma}^{0}=\bm{\beta}_{a},...,\bm{\gamma}^{r}=\bm{\beta}_{b}\right\}, such that 𝛄iT(𝛃)\bm{\gamma}^{i}\in T({\bm{\beta}}) and |𝛄i+1𝛄i|=λi𝐞j|\bm{\gamma}^{i+1}-\bm{\gamma}^{i}|=\lambda_{i}\mathbf{e}_{j} for all ii, where λi(0,1]\lambda_{i}\in(0,1] for all ii and 𝐞j\mathbf{e}_{j} is a unit vector for j{1,,m}j\in\{1,...,m\}.

Note that other than the steps necessary to move from 𝜷a\bm{\beta}_{a} and 𝜷b\bm{\beta}_{b} to the nearest isovalue lattice points, all the intermediate points in the above sequence may be made to be lattice points, as can be seen in Figure 1.

Refer to caption
Figure 1: An isovalue path from 𝜷a\bm{\beta}_{a} to 𝜷b\bm{\beta}_{b}
Definition 5.
\thlabel

adjhc An mm-dimensional unit hypercube HH is anchored if all of its vertices are in m\mathbb{Z}^{m}. In particular, H(𝛃)H(\bm{\beta}), 𝛃m\bm{\beta}\in\mathbb{Z}^{m}, is the anchored unit hypercube with 𝛃\bm{\beta} as its vertex with all components minimal.

Definition 6.

The open-ceiling unit hypercube anchored at 𝛃¯\bm{\beta}\in\bar{\mathcal{B}} is defined as G(𝛃)G(\bm{\beta})\coloneqq {𝛃¯\{\bar{\bm{\beta}}\in |𝛃¯=𝛃}\mathcal{B}\,|\,\lfloor\bar{\bm{\beta}}\rfloor=\bm{\beta}\}.

Remark 3.

Given an open-ceiling unit hypercube G(𝛃)G(\bm{\beta}), the closure of G(𝛃)G(\bm{\beta}) is H(𝛃)H(\bm{\beta}).

Definition 7.

Two anchored mdimensionalm-dimensional unit hypercubes H1H_{1} and H2H_{2} are adjacent if H1H2H_{1}\cap H_{2} is an anchored unit hypercube of dimension m1m-1.

\thref

MC_Adjacent shows that the closure of any MC-level set can be written as the union of a set of mm-dimensional unit hypercubes anchored at integer points.

Proposition 13.
\thlabel

MC_Adjacent Given 𝛃m\bm{\beta}\in\mathcal{B}\subset\mathbb{R}^{m}, there exists a unique set PP of anchored unit hypercubes of dimension mm with integer-valued vertex coordinates such that HPH=T(𝛃)¯\bigcup\limits_{H\in P}H=\overline{T(\bm{\beta})}, the closure of T(𝛃)T(\bm{\beta}). Further, for all pairs H1H_{1}, H2PH_{2}\,\in P, there exists a finite sequence U={U1,,Ut}U=\{U_{1},...,U_{t}\} of hypercubes in PP such that U1=H1U_{1}=H_{1}, Ut=H2U_{t}=H_{2}, and UiU_{i} and Ui+1U_{i+1} are adjacent for all i{1,,t1}i\in\{1,...,t-1\}.

Proof.

Fix 𝜷T(𝜷)\bm{\beta}^{\prime}\in T(\bm{\beta}). Then the open-ceiling unit hypercube G(𝜷)G(\lfloor\bm{\beta}^{\prime}\rfloor) is a subset of T(𝜷)T(\bm{\beta}), and 𝜷G(𝜷)\bm{\beta}^{\prime}\in G(\lfloor\bm{\beta}^{\prime}\rfloor). As such, there exists a unique countable set QQ of mm-dimensional open-ceiling anchored unit hypercubes, Q{Qr}rRQ\coloneqq\{Q_{r}\}_{r\in R}, where RR is the index set for QQ, such that T(𝜷)=rRQrT(\bm{\beta})=\bigcup\limits_{r\in R}Q_{r} - that is, for all 𝜷¯T(𝜷)\bar{\bm{\beta}}\in T(\bm{\beta}), there exists rRr\in R such that Qr=G(𝜷¯)Q_{r}=G(\lfloor\bar{\bm{\beta}}\rfloor). Let P={Qr¯}rRP=\{\overline{Q_{r}}\}_{r\in R}, and observe that T(𝜷)¯=rRQr¯\overline{T(\bm{\beta})}=\bigcup\limits_{r\in R}\overline{Q_{r}} - that is, PP is a unique set of mm-dimensional anchored unit hypercubes whose union is the closure of T(𝜷)T(\bm{\beta}).

Next, fix H1H_{1}, H2H_{2} in PP. Let 𝜷1\bm{\beta}_{1} and 𝜷2\bm{\beta}_{2} anchor H1H_{1} and H2H_{2}, respectively. Let V={v1=𝜷1,,vs=𝜷2}V=\{v_{1}=\bm{\beta}_{1},...,v_{s}=\bm{\beta}_{2}\} be the sequence of adjacent points whose existence is guaranteed by \threfCsteppro given 𝜷1\bm{\beta}_{1} and 𝜷2\bm{\beta}_{2} as input points to connect, and define a finite sequence U={H(v1),,H(vs)}U=\{H(v_{1}),...,H(v_{s})\}, where H(v1)=H1H(v_{1})=H_{1} and H(vs)=H2H(v_{s})=H_{2}. Since each of these points is in T(𝜷)T(\bm{\beta}), the mm-dimensional hypercube anchored at each point is a subset of T(𝜷)¯\overline{T(\bm{\beta})} and thus is an element of PP. Further, since vivi+1v_{i}-v_{i+1} is a unit vector for all ii, H(vi)H(vi+1)H(v_{i})\cap H(v_{i+1}) is a unit anchored hypercube of dimension m1m-1, so H(vi)H(v_{i}) and H(vi+1)H(v_{i+1}) are adjacent for all i{1,,s1}i\in\{1,...,s-1\}. ∎

\thref

MC_Adjacent shows that the closure of an MC-level set can be constructed using anchored unit hypercubes of dimension mm. In addition, given any two anchored unit hypercubes in that closure, we can find a finite sequence of adjacent anchored unit hypercubes connecting the two. In Figure 3, there is a sequence of adjacent dark squares between any two dark squares, since T(𝜷1)=T(𝜷2)T(\bm{\beta}_{1})=T(\bm{\beta}_{2}). On the other hand, in Figure 3, although the closures of T(𝜷4)T(\bm{\beta}_{4}) and T(𝜷5)T(\bm{\beta}_{5}) intersect, they do not actually share a point - and therefore there is no sequence of isovalue adjacent squares from T(𝜷4)T(\bm{\beta}_{4}) to T(𝜷5)T(\bm{\beta}_{5}).

Refer to caption
Figure 2: T(𝜷1)=T(𝜷2)T({\bm{\beta}}_{1})=T({\bm{\beta}}_{2})
Refer to caption
Figure 3: T(𝜷4)T(𝜷5)=T({\bm{\beta}}_{4})\cap T({\bm{\beta}}_{5})=\emptyset

We next demonstrate some membership properties of MC-level sets based on level-set minimal vectors.

Corollary 3.
\thlabel

segment Given 𝛃¯\bar{\bm{\beta}}\in\mathcal{B}, for all 𝛃^\hat{\bm{\beta}}\in\mathcal{B} such that z(𝛃¯)=z(𝛃^)z(\bar{\bm{\beta}})=z(\hat{\bm{\beta}}) and 𝛃^𝛃¯\hat{\bm{\beta}}\geq\bar{\bm{\beta}}, we have 𝛃^T(𝛃¯)\hat{\bm{\beta}}\in T(\bar{\bm{\beta}}).

Proof.

By the monotonicity of zz, z(𝜷^)=z(𝜷¯)z(𝜷)z(𝜷^)z(\hat{\bm{\beta}})=z(\bar{\bm{\beta}})\leq z(\bm{\beta}^{\prime})\leq z(\hat{\bm{\beta}}), for all 𝜷{𝜷|𝜷=λ𝜷¯+(1λ)𝜷^,λ(0,1)}\bm{\beta}^{\prime}\in\left\{\bm{\beta}\ |\ \bm{\beta}=\lambda\bar{\bm{\beta}}+(1-\lambda)\hat{\bm{\beta}},\lambda\in(0,1)\right\} because 𝜷(𝜷¯,𝜷^)\bm{\beta}^{\prime}\in(\bar{\bm{\beta}},\hat{\bm{\beta}}). As such, d(t)t𝜷¯+(1t)𝜷^d(t)\coloneqq t\bar{\bm{\beta}}+(1-t)\hat{\bm{\beta}} is a continuous isovalue curve from 𝜷¯\bar{\bm{\beta}} to 𝜷^\hat{\bm{\beta}}, so 𝜷^T(𝜷¯)\hat{\bm{\beta}}\in T(\bar{\bm{\beta}}). ∎

Proposition 14.
\thlabel

LSMcor For any 𝛃¯\bar{\bm{\beta}}\in\mathcal{B}, 𝛃T(𝛃¯)\bm{\beta}\in T(\bar{\bm{\beta}}) if and only if z(𝛃)=z(𝛃¯)z(\bm{\beta})=z(\bar{\bm{\beta}}) and there exists 𝛃^\hat{\bm{\beta}}\in 𝐁¯\bar{\mathbf{B}} T(𝛃¯)\cap T(\bar{\bm{\beta}}) such that 𝛃^𝛃\hat{\bm{\beta}}\leq\bm{\beta}.

Corollary 4.
\thlabel

LSMseq Let 𝛃¯𝐁¯\bar{\bm{\beta}}\in\bar{\mathbf{B}} such that there exists 𝛃^𝐁¯T(𝛃¯)\hat{\bm{\beta}}\in\bar{\mathbf{B}}\cap T(\bar{\bm{\beta}}), 𝛃^𝛃¯\hat{\bm{\beta}}\neq\bar{\bm{\beta}}. Then there exists a sequence V={v1,,vs}V=\{v_{1},...,v_{s}\} of distinct vectors in 𝐁¯T(𝛃¯)\bar{\mathbf{B}}\cap T(\bar{\bm{\beta}}) such that 𝛃¯=v1\bar{\bm{\beta}}=v_{1}, 𝛃^=vs\hat{\bm{\beta}}=v_{s}, and for all i{1,,s1}i\in\{1,...,s-1\}, there exists 𝛃iT(𝛃¯)\bm{\beta}_{i}\in T(\bar{\bm{\beta}}) such that vi𝛃iv_{i}\lneq\bm{\beta}_{i} and vi+1𝛃iv_{i+1}\lneq\bm{\beta}_{i}.

\thref

LTstepdownt discusses the relationship between a sequence of right-hand sides when “stepping down” towards MC-level sets with smaller function value.

Remark 4.
\thlabel

optstat For any 𝛃{\bm{\beta}}\in\mathcal{B}, let 𝐱opt(𝛃)\mathbf{x}^{*}\in\mathrm{opt}({\bm{\beta}}). Then for all 𝛃¯T(𝛃)\bar{\bm{\beta}}\in T({\bm{\beta}}) such that 𝛃¯𝛃\bar{\bm{\beta}}\geq{\bm{\beta}}, 𝐱opt(𝛃¯)\mathbf{x}^{*}\in\mathrm{opt}(\bar{\bm{\beta}}).

Proposition 15.
\thlabel

LTstepdownt For any 𝛃¯\bar{\bm{\beta}}\in 𝐁¯\bar{\mathbf{B}} such that z(𝛃¯)>0z(\bar{\bm{\beta}})>0, given 𝐱opt(𝛃¯){\mathbf{x}}^{*}\in\mathrm{opt}(\bar{\bm{\beta}}) and 𝛃T(𝛃¯)\bm{\beta}\in T(\bar{\bm{\beta}}) such that 𝛃¯𝛃\bar{\bm{\beta}}\leq\bm{\beta}, then for all jj such that xj>0{x}^{*}_{j}>0 and all txjt\leq{x}^{*}_{j}, 𝛃t𝐚jT(𝛃¯t𝐚j)\bm{\beta}-t\mathbf{a}_{j}\in T(\bar{\bm{\beta}}-t\mathbf{a}_{j}).

Proof.

Note that if 𝜷=𝜷¯\bm{\beta}=\bar{\bm{\beta}} the result holds trivially. Suppose there exists 𝜷^T(𝜷¯)\hat{\bm{\beta}}\in T(\bar{{\bm{\beta}}}), 𝜷¯𝜷^\bar{\bm{\beta}}\lneq\hat{\bm{\beta}}, such that there exists t: 1txjt:\,1\leq t\leq{x}^{*}_{j} for which 𝜷^t𝐚jT(𝜷¯t𝐚j)\hat{\bm{\beta}}-t\mathbf{a}_{j}\notin T(\bar{\bm{\beta}}-t\mathbf{a}_{j}). Then there exists 𝝅𝐁¯\bm{\pi}\in\bar{\mathbf{B}} such that 𝜷¯t𝐚j𝝅𝜷^t𝐚j\bar{\bm{\beta}}-t\mathbf{a}_{j}\lneq\bm{\pi}\leq\hat{\bm{\beta}}-t\mathbf{a}_{j} and z(𝜷¯t𝐚j)<z(𝝅)=z(𝜷^t𝐚j)z(\bar{\bm{\beta}}-t\mathbf{a}_{j})<z(\bm{\pi})=z(\hat{\bm{\beta}}-t\mathbf{a}_{j}). Let 𝐱^opt(𝝅)\hat{\mathbf{x}}\in\mathrm{opt}(\bm{\pi}). Then z(𝜷^)z(𝝅+t𝐚j)z(𝝅)+tcjz(\hat{\bm{\beta}})\geq z(\bm{\pi}+t\mathbf{a}_{j})\geq z(\bm{\pi})+tc_{j}. However, by \threfequal and \threfdown, z(𝜷¯t𝐚j)=z(𝜷¯)tcj=z(𝜷^)tcjz(\bar{\bm{\beta}}-t\mathbf{a}_{j})=z(\bar{\bm{\beta}})-tc_{j}=z(\hat{\bm{\beta}})-tc_{j}, a contradiction since we have now claimed that z(𝜷^)tcj<z(𝝅)z(𝜷^)tcjz(\hat{\bm{\beta}})-tc_{j}<z(\bm{\pi})\leq z(\hat{\bm{\beta}})-tc_{j}. ∎

Example LABEL:exExampleIP (continued).

In (EXIP), with \mathcal{B} unbounded above, (1,1)𝐁¯6(1,1)^{\top}\in\bar{\mathbf{B}}_{6} and z((1,1))=3z((1,1)^{\top})=3, with the unique optimal solution 𝐞4\mathbf{e}_{4}. Further, (2,1),(3,1)T((1,1))(2,1)^{\top},(3,1)^{\top}\in T((1,1)^{\top}). So by \threfLTstepdownt, (1,0),(2,0)T((0,0))(1,0)^{\top},(2,0)^{\top}\in T((0,0)^{\top}). ∎

\thref

bk=b indicates that if, for any k{1,,n}k\in\{1,...,n\}, 𝐁¯k=¯\bar{\mathbf{B}}_{k}=\bar{\mathcal{B}}, then for all kkk^{\prime}\geq k, all MC-level sets will be unit hypercubes.

Proposition 16.
\thlabel

bk=b If there exists k{1,,n}k\in\{1,\dots,n\} such that 𝐁¯k=¯\bar{\mathbf{B}}_{k}=\bar{\mathcal{B}}, then for all k^k,k^{1,,n}\hat{k}\geq k,\hat{k}\in\{1,\dots,n\}, 𝐁¯k^=¯\bar{\mathbf{B}}_{\hat{k}}=\bar{\mathcal{B}}.

Acknowledgments

The authors would like to thank the referee and associate editor for their thorough and valuable input. The authors would also like to thank Eric Antley, David Mildebrath, Saumya Sinha, and Silviya Valeva of Rice University for their helpful comments. This research was supported in part by National Science Foundation, USA grants CMMI-1826323 and CMMI-1933373.

References

  • Ahmed et al. [2004] S. Ahmed, M. Tawarmalani, and N. V. Sahinidis. A finite branch-and-bound algorithm for two-stage stochastic integer programs. Mathematical Programming, 100(2):355–377, 2004.
  • Ajayi et al. [2020] T. Ajayi, C. Thomas, and A. J. Schaefer. The gap function: Evaluating integer programming models over multiple right-hand sides. Operations Research (To appear), 2020.
  • Basu et al. [2021] A. Basu, C. T. Ryan, and S. Sankaranarayanan. Mixed-integer bilevel representability. Mathematical Programming, 185:163–197, 2021.
  • Blair [1995] C. E. Blair. A closed-form representation of mixed-integer program value functions. Mathematical Programming, 71(2):127–136, 1995.
  • Blair and Jeroslow [1977] C. E. Blair and R. G. Jeroslow. The value function of a mixed integer program: I. Discrete Mathematics, 19(2):121–138, 1977.
  • Blair and Jeroslow [1982] C. E. Blair and R. G. Jeroslow. The value function of an integer program. Mathematical Programming, 23(1):237–273, 1982.
  • Gilmore and Gomory [1966] P. C. Gilmore and R. E. Gomory. The theory and computation of knapsack functions. Operations Research, 14(6):1045–1074, 1966.
  • Kılınç-Karzan et al. [2009] F. Kılınç-Karzan, A. Toriello, S. Ahmed, G. Nemhauser, and M. Savelsbergh. Approximating the stability region for binary mixed-integer programs. Operations Research Letters, 37(4):250–254, 2009.
  • Kong et al. [2006] N. Kong, A.J. Schaefer, and B. Hunsaker. Two-stage integer programs with stochastic right-hand sides: A superadditive dual approach. Mathematical Programming, 108(2):275–296, Sep 2006.
  • Llewellyn and Ryan [1993] D. C. Llewellyn and J. Ryan. A primal dual integer programming algorithm. Discrete Applied Mathematics, 45(3):261 – 275, 1993.
  • Lozano and Smith [2017] L. Lozano and J. C. Smith. A value-function-based exact approach for the bilevel mixed-integer programming problem. Operations Research, 65(3):768–786, 2017.
  • Nemhauser and Wolsey [1988] G. L. Nemhauser and L. A. Wolsey. Integer and Combinatorial Optimization. Wiley-Interscience. John Wiley & Sons, 1988.
  • Özaltın et al. [2012] O. Y. Özaltın, O. A. Prokopyev, and A. J. Schaefer. Two-stage quadratic integer programs with stochastic right-hand sides. Mathematical Programming, 133(1):121–158, Jun 2012.
  • Ralphs and Hassanzadeh [2014] T. K. Ralphs and A. Hassanzadeh. On the value function of a mixed integer linear optimization problem and an algorithm for its construction. COR@@L Technical Report 14T–004, 2014.
  • Schultz et al. [1998] R. Schultz, L. Stougie, and M. H. Van Der Vlerk. Solving stochastic programs with integer recourse by enumeration: A framework using Gröbner basis. Mathematical Programming, 83(1-3):229–252, 1998.
  • Tavaslıoğlu et al. [2019] O. Tavaslıoğlu, O. A. Prokopyev, and A. J. Schaefer. Solving stochastic and bilevel mixed-integer programs via a generalized value function. Operations Research, 67(6):1659–1677, 2019.
  • Trapp and Prokopyev [2015] A. C. Trapp and O. A. Prokopyev. A note on constraint aggregation and value functions for two-stage stochastic integer programs. Discrete Optimization, 15:37–45, 2015.
  • Trapp et al. [2013] A. C. Trapp, O. A. Prokopyev, and A. J. Schaefer. On a level-set characterization of the value function of an integer program and its application to stochastic programming. Operations Research, 61(2):498–511, 2013.
  • Wang and Xu [2017] L. Wang and P. Xu. The watermelon algorithm for the bilevel integer linear programming problem. SIAM Journal on Optimization, 27(3):1403–1430, 2017.
  • Williams [1996] H. P. Williams. Constructing the value function for an integer linear programme over a cone. Computational Optimization and Applications, 6(1):15–26, 1996.
  • Wolsey [1981] L. A. Wolsey. Integer programming duality: Price functions and sensitivity analysis. Mathematical Programming, 20(1):173–195, 1981.

Appendix

Omitted Proofs

Lemma LABEL:equal. Given k{1,,n}k\in\{1,...,n\}, for all 𝛃𝐁¯k\bm{\beta}\in\bar{\mathbf{B}}_{k} and all 𝐱optk(𝛃)\mathbf{x}^{*}\in\mathrm{opt}_{k}(\bm{\beta}), j=1k𝐚jxj=𝛃\sum_{j=1}^{k}\mathbf{a}_{j}{x}^{*}_{j}=\bm{\beta}.

Proof.

Suppose j=1k𝐚jxj𝜷\sum_{j=1}^{k}\mathbf{a}_{j}{x}^{*}_{j}\lneq\bm{\beta}. Then zk(j=1k𝐚jxj)=zk(𝜷)z_{k}(\sum_{j=1}^{k}\mathbf{a}_{j}{x}^{*}_{j})=z_{k}(\bm{\beta}), which contradicts 𝜷𝐁¯k\bm{\beta}\in\bar{\mathbf{B}}_{k}. ∎

Proposition LABEL:LSMiter. Let 𝛃𝐁¯k1\bm{\beta}\in\bar{\mathbf{B}}_{k-1}. If for all 𝛃¯𝛃\bar{\bm{\beta}}\lneq\bm{\beta} and all 𝐱optk(𝛃¯)\mathbf{x}^{*}\in\mathrm{opt}_{k}(\bar{\bm{\beta}}), xk=0{x}^{*}_{k}=0, then 𝛃𝐁¯k\bm{\beta}\in\bar{\mathbf{B}}_{k}.

Proof.

Let 𝜷Sk(α)\bm{\beta}\in S_{k}(\alpha). Suppose 𝜷𝐁¯k\bm{\beta}\notin\bar{\mathbf{B}}_{k}. Then there exists 𝜷^𝜷\hat{\bm{\beta}}\lneq\bm{\beta} such that 𝜷^Sk(α)\hat{\bm{\beta}}\in S_{k}(\alpha). Let 𝐱optk(𝜷^){\mathbf{x}^{*}}\in\mathrm{opt}_{k}(\hat{\bm{\beta}}), with xk=0{x}^{*}_{k}=0. Then by \threfschaeferoriginal, 𝜷^Sk1(α)\hat{\bm{\beta}}\in S_{k-1}(\alpha), which implies zk1(𝜷^)=αz_{k-1}(\hat{\bm{\beta}})=\alpha. However, because zk(𝜷)=αz_{k}({\bm{\beta}})=\alpha, by \threfnondecreasingbetweeniterations, we have zk1(𝜷)αz_{k-1}(\bm{\beta})\leq\alpha. Because zk1z_{k-1} is nondecreasing, we must have zk1(𝜷)=αz_{k-1}(\bm{\beta})=\alpha, so that 𝜷𝐁¯k1\bm{\beta}\notin\bar{\mathbf{B}}_{k-1}, a contradiction. ∎

Proposition LABEL:LSMlinind. If 𝛃𝐁¯k1\bm{\beta}\notin\bar{\mathbf{B}}_{k-1}, 𝐚1,,𝐚k\mathbf{a}_{1},\dots,\mathbf{a}_{k} are linearly independent, and 𝛃\bm{\beta} and 𝐚k\mathbf{a}_{k} are linearly independent, then for all t+t\in\mathbb{Z}_{+} such that 𝛃+t𝐚k\bm{\beta}+t\mathbf{a}_{k}\in\mathcal{B}, 𝛃+t𝐚k𝐁¯k\bm{\beta}+t\mathbf{a}_{k}\notin\bar{\mathbf{B}}_{k}.

Proof.

Suppose 𝜷+t𝐚k𝐁¯k.\bm{\beta}+t\mathbf{a}_{k}\in\bar{\mathbf{B}}_{k}. Because 𝜷𝐁¯k1\bm{\beta}\not\in\bar{\mathbf{B}}_{k-1}, there exists 𝝅𝜷\bm{\pi}\lneq\bm{\beta} such that zk1(𝜷)=zk1(𝝅)z_{k-1}(\bm{\beta})=z_{k-1}(\bm{\pi}). Let x1optk1(𝝅)x^{1}\in\mathrm{opt}_{k-1}(\bm{\pi}), then (x11,,xk11,t)(x^{1}_{1},\dots,x^{1}_{k-1},t)^{\top} is a feasible solution for IP(𝜷+t𝐚k)k{}_{k}(\bm{\beta}+t\mathbf{a}_{k}). Let 𝐱2optk(𝜷+t𝐚k)\mathbf{x}^{2}\in\mathrm{opt}_{k}(\bm{\beta}+t\mathbf{a}_{k}); then by \threfequal, we have j=1k𝐚jxj2=𝜷+t𝐚k\sum\limits_{j=1}^{k}\mathbf{a}_{j}x^{2}_{j}=\bm{\beta}+t\mathbf{a}_{k}, and because 𝐚1,𝐚k\mathbf{a}_{1},\dots\mathbf{a}_{k} are linearly independent, xk2=tx^{2}_{k}=t and j=1k1𝐚jxj2=𝜷\sum\limits_{j=1}^{k-1}\mathbf{a}_{j}x^{2}_{j}=\bm{\beta}.

The vector (x12,,xk12)(x^{2}_{1},\dots,x^{2}_{k-1})^{\top} is feasible for IP(𝜷k1{}_{k-1}(\bm{\beta}); hence j=1k1cjxj2j=1k1cjxj1\sum\limits_{j=1}^{k-1}c_{j}x^{2}_{j}\leq\sum\limits_{j=1}^{k-1}c_{j}x_{j}^{1}. This implies that j=1kcjxj2=j=1k1cjxj2+cktj=1k1cjxj1+tck\sum\limits_{j=1}^{k}c_{j}x^{2}_{j}=\sum\limits_{j=1}^{k-1}c_{j}x^{2}_{j}+c_{k}t\leq\sum\limits_{j=1}^{k-1}c_{j}x^{1}_{j}+tc_{k}. Because 𝐱2optk(𝜷+t𝐚k)\mathbf{x}^{2}\in\mathrm{opt}_{k}(\bm{\beta}+t\mathbf{a}_{k}), and (x11,,xk11,t)(x^{1}_{1},\dots,x^{1}_{k-1},t) is feasible for IP(𝜷+t𝐚k)k{}_{k}(\bm{\beta}+t\mathbf{a}_{k}), (x11,,xk11,t)optk(𝜷+t𝐚k)(x^{1}_{1},\dots,x^{1}_{k-1},t)\in\mathrm{opt}_{k}(\bm{\beta}+t\mathbf{a}_{k}). However, j=1k1𝐚jxj1+t𝐚k=𝝅+t𝐚k𝜷+t𝐚k,\sum\limits_{j=1}^{k-1}\mathbf{a}_{j}x^{1}_{j}+t\mathbf{a}_{k}=\bm{\pi}+t\mathbf{a}_{k}\lneq\bm{\beta}+t\mathbf{a}_{k}, which contradicts 𝜷+t𝐚k𝐁¯k\bm{\beta}+t\mathbf{a}_{k}\in\bar{\mathbf{B}}_{k}. Hence, 𝜷+t𝐚k𝐁¯k\bm{\beta}+t\mathbf{a}_{k}\not\in\bar{\mathbf{B}}_{k}. ∎

Proposition LABEL:anotinB. Let 𝛃𝐁¯k\bm{\beta}\in\bar{\mathbf{B}}_{k}. If 𝐚j𝐁¯k\mathbf{a}_{j}\notin\bar{\mathbf{B}}_{k}, then for all 𝐱optk(𝛃){\mathbf{x}^{*}}\in\mathrm{opt}_{k}(\bm{\beta}), xj=0{x}^{*}_{j}=0.

Proof.

Suppose first that 𝐱=𝐞j{\mathbf{x}^{*}}=\mathbf{e}_{j}. Then by \threfequal, 𝐚j𝐁¯k\mathbf{a}_{j}\in\bar{\mathbf{B}}_{k}, a contradiction.
Suppose on the other hand that 𝐱12\|{\mathbf{x}^{*}}\|_{1}\geq 2, with xj0{x}^{*}_{j}\neq 0. Let 𝐱^=𝐞j𝐱\hat{\mathbf{x}}=\mathbf{e}_{j}\lneq{\mathbf{x}^{*}}. Then by \threfdown, i=1k𝐚ix^i=𝐚j𝐁¯k\sum_{i=1}^{k}\mathbf{a}_{i}\hat{x}_{i}=\mathbf{a}_{j}\in\bar{\mathbf{B}}_{k}, also a contradiction. ∎

Corollary LABEL:relationship. 𝐁¯k{𝛃¯|𝛃=𝛃^+t𝐚k,𝛃^𝐁¯k1,t+}\bar{\mathbf{B}}_{k}\subseteq\left\{\bm{\beta}\in\bar{\mathcal{B}}\,|\,\bm{\beta}=\hat{\bm{\beta}}+t\mathbf{a}_{k},\hat{\bm{\beta}}\in\bar{\mathbf{B}}_{k-1},t\in\mathbb{Z}_{+}\right\}.

Proof.

Suppose 𝜷¯𝐁¯k\bar{\bm{\beta}}\in\bar{\mathbf{B}}_{k}, then \threfequal implies that there exists 𝐱optk(𝜷¯){\mathbf{x}^{*}}\in\mathrm{opt}_{k}(\bar{\bm{\beta}}) such that j=1k𝐚jxj=𝜷¯.\sum\limits_{j=1}^{k}\mathbf{a}_{j}{x}^{*}_{j}=\bar{\bm{\beta}}. By \threfschaefer, 𝜷¯𝐚kxk𝐁¯k1\bar{\bm{\beta}}-\mathbf{a}_{k}{x}^{*}_{k}\in\bar{\mathbf{B}}_{k-1}; hence, 𝜷¯{𝜷¯|𝜷=𝜷^+t𝐚k,𝜷^𝐁¯k1,t+}\bar{\bm{\beta}}\in\left\{\bm{\beta}\in\bar{\mathcal{B}}\,|\,\bm{\beta}=\hat{\bm{\beta}}+t\mathbf{a}_{k},\hat{\bm{\beta}}\in\bar{\mathbf{B}}_{k-1},t\in\mathbb{Z}_{+}\right\}. ∎

Lemma LABEL:LSMkton. Suppose 𝐚k𝐁¯k\mathbf{a}_{k}\in\bar{\mathbf{B}}_{k} and zk(𝐚k)=ckz_{k}(\mathbf{a}_{k})=c_{k}, for some k{1,,n}k\in\{1,\dots,n\}. Further suppose that for all k^+\hat{k}\in\mathbb{Z}_{+} such that k<k^nk<\hat{k}\leq n, we have 𝐚k𝐚k^\mathbf{a}_{k}-\mathbf{a}_{\hat{k}}\not\in\mathcal{B}. Then, zn(𝐚k)=ckz_{n}(\mathbf{a}_{k})=c_{k} and 𝐚k𝐁¯\mathbf{a}_{k}\in\bar{\mathbf{B}}.

Proof.

Suppose zn(𝐚k)ckz_{n}(\mathbf{a}_{k})\neq c_{k}. Then 𝐞koptn(𝐚k)\mathbf{e}_{k}\notin\mathrm{opt}_{n}(\mathbf{a}_{k}) and there exists 𝐱optn(𝐚k)\mathbf{x}^{*}\in\mathrm{opt}_{n}(\mathbf{a}_{k}) such that j=1n𝐚jxj𝐚k,xk=0\sum_{j=1}^{n}\mathbf{a}_{j}x^{*}_{j}\leq\mathbf{a}_{k},\,x^{*}_{k}=0. Therefore, there exists k^k\hat{k}\neq k such that xk^0x^{*}_{\hat{k}}\neq 0, then 𝐚k^𝐚k\mathbf{a}_{\hat{k}}\leq\mathbf{a}_{k}, which contradicts 𝐚k𝐚k^\mathbf{a}_{k}-\mathbf{a}_{\hat{k}}\notin\mathcal{B}.

Suppose 𝐚k𝐁¯\mathbf{a}_{k}\notin\bar{\mathbf{B}}. Then there exists 𝝅𝐚k\bm{\pi}\lneq\mathbf{a}_{k} such that zn(𝝅)=zn(𝐚k)=ckz_{n}(\bm{\pi})=z_{n}(\mathbf{a}_{k})=c_{k}. Since there does not exist k^{k+1,,n}\hat{k}\in\{k+1,...,n\} such that 𝐚k^𝐚k\mathbf{a}_{\hat{k}}\leq\mathbf{a}_{k}, it follows that there does not exist k^{k+1,,n}\hat{k}\in\{k+1,...,n\} such that 𝐚k^𝝅\mathbf{a}_{\hat{k}}\leq\bm{\pi}, and this indicates zk(𝝅)=ckz_{k}(\bm{\pi})=c_{k}, which is a contradiction of the assumption that 𝐚k𝐁¯k\mathbf{a}_{k}\in\bar{\mathbf{B}}_{k}. ∎

Proposition LABEL:altvalue. Exactly one of the following holds:

  1. (i)

    zk1(𝐚k)<ckz_{k-1}(\mathbf{a}_{k})<c_{k}. Then zk(𝐚k)=ckz_{k}(\mathbf{a}_{k})=c_{k} and 𝐚k𝐁¯k\mathbf{a}_{k}\in\bar{\mathbf{B}}_{k}.

  2. (ii)

    zk1(𝐚k)=ckz_{k-1}(\mathbf{a}_{k})=c_{k}. Then zk(𝐚k)=ckz_{k}(\mathbf{a}_{k})=c_{k}.

  3. (iii)

    zk1(𝐚k)>ckz_{k-1}(\mathbf{a}_{k})>c_{k}. Then zk(𝐚k)=zk1(𝐚k)z_{k}(\mathbf{a}_{k})=z_{k-1}(\mathbf{a}_{k}).

Thus, zk(𝐚k)=max{zk1(𝐚k),ck}z_{k}(\mathbf{a}_{k})=\max\{z_{k-1}(\mathbf{a}_{k}),c_{k}\}. In addition, if zk1(𝐚k)ckz_{k-1}(\mathbf{a}_{k})\geq c_{k}, 𝐚k𝐁¯k\mathbf{a}_{k}\in\bar{\mathbf{B}}_{k} if and only if 𝐚k𝐁¯k1\mathbf{a}_{k}\in\bar{\mathbf{B}}_{k-1}.

Proof.
  1. (i)

    Suppose zk1(𝐚k)<ckz_{k-1}(\mathbf{a}_{k})<c_{k}. The vector 𝐞k\mathbf{e}_{k} is feasible for IP(𝐚k)k{}_{k}(\mathbf{a}_{k}) with value ckc_{k}. Suppose there exists 𝐱optk(𝐚k)\mathbf{x}^{*}\in\mathrm{opt}_{k}(\mathbf{a}_{k}) such that j=1kcjxj>ck\sum_{j=1}^{k}c_{j}x_{j}^{*}>c_{k}. Then 𝐱k=0\mathbf{x}_{k}^{*}=0, contradicting zk1(𝐚k)<ckz_{k-1}(\mathbf{a}_{k})<c_{k}. Similarly, there cannot exist 𝜷𝐚k\bm{\beta}\lneq\mathbf{a}_{k} such that zk(𝜷)ckz_{k}(\bm{\beta})\geq c_{k}, so 𝐚k𝐁¯k\mathbf{a}_{k}\in\bar{\mathbf{B}}_{k}.

  2. (ii)

    Suppose zk1(𝐚k)=ckz_{k-1}(\mathbf{a}_{k})=c_{k}. Then by analogous reasoning to (i), zk(𝐚k)=ckz_{k}(\mathbf{a}_{k})=c_{k}.

  3. (iii)

    Suppose zk1(𝐚k)>ckz_{k-1}(\mathbf{a}_{k})>c_{k}. Then by analogous reasoning to (i), zk(𝐚k)=zk1(𝐚k)z_{k}(\mathbf{a}_{k})=z_{k-1}(\mathbf{a}_{k}).

Next assume zk1(𝐚k)ckz_{k-1}(\mathbf{a}_{k})\geq c_{k}. If 𝐚k𝐁¯k1\mathbf{a}_{k}\notin\bar{\mathbf{B}}_{k-1}, then 𝐚k𝐁¯k\mathbf{a}_{k}\notin\bar{\mathbf{B}}_{k}. On the other hand, if 𝐚k𝐁¯k1\mathbf{a}_{k}\in\bar{\mathbf{B}}_{k-1}, by analogous reasoning to (i), there cannot exist 𝜷𝐚k\bm{\beta}\lneq\mathbf{a}_{k} such that zk(𝜷)zk(𝐚k)z_{k}(\bm{\beta})\geq z_{k}(\mathbf{a}_{k}), so 𝐚k𝐁¯k\mathbf{a}_{k}\in\bar{\mathbf{B}}_{k}. ∎

Lemma LABEL:easyiso. Given 𝛃1\bm{\beta}_{1}\in\mathcal{B}, 𝛃2T(𝛃1)\bm{\beta}_{2}\in T(\bm{\beta}_{1}), there exists an isovalue curve d:[0,1]d^{\prime}:[0,1]\to\mathcal{B} from 𝛃1\bm{\beta}_{1} to 𝛃2\bm{\beta}_{2} such that d(ζ)=d(θ)\lfloor d^{\prime}(\zeta)\rfloor=\lfloor d^{\prime}(\theta)\rfloor implies d(ζ)=d(η)\lfloor d^{\prime}(\zeta)\rfloor=\lfloor d^{\prime}(\eta)\rfloor for all 0ζ<η<θ10\leq\zeta<\eta<\theta\leq 1 - that is, d\lfloor d^{\prime}\rfloor takes on any given value for at most a single connected subset of [0,1][0,1].

Proof.

Given a continuous isovalue curve d:[0,1]d:[0,1]\to\mathcal{B} from 𝜷1\bm{\beta}_{1} to 𝜷2\bm{\beta}_{2}, we define the set 𝒮(d)\mathcal{S}(d) as the set of values in ¯\bar{\mathcal{B}} which are given by d\lfloor d\rfloor for multiple, non-connected subsets of [0,1][0,1]. In particular, 𝒮(d)={𝜸1,,𝜸r}¯\mathcal{S}(d)=\left\{\bm{\gamma}^{1},...,\bm{\gamma}^{r}\right\}\subset\bar{\mathcal{B}}, so that for all 𝜸i𝒮(d)\bm{\gamma}^{i}\in\mathcal{S}(d), there exist 0ζi<ηi<θi10\leq\zeta^{i}<\eta^{i}<\theta^{i}\leq 1 for which d(ζi)=d(θi)=𝜸id(ηi)\lfloor d(\zeta^{i})\rfloor=\lfloor d(\theta^{i})\rfloor=\bm{\gamma}^{i}\neq\lfloor d(\eta^{i})\rfloor, and so that for any 𝜸T(𝜷1)\bm{\gamma}\in T(\bm{\beta}_{1}) but not in 𝒮(d)\mathcal{S}(d), for any 0ζ<η<θ10\leq\zeta<\eta<\theta\leq 1, d(ζ)=d(θ)=𝜸\lfloor d(\zeta)\rfloor=\lfloor d(\theta)\rfloor=\bm{\gamma} implies d(η)=𝜸\lfloor d(\eta)\rfloor=\bm{\gamma}. Note that since any particular continuous isovalue curve dd is continuous and has a bounded domain, each component of dd is also bounded, so 𝒮(d)\mathcal{S}(d) is finite. Let d¯:[0,1]\bar{d}:[0,1]\to\mathcal{B} be a continuous isovalue curve from 𝜷1\bm{\beta}_{1} to 𝜷2\bm{\beta}_{2} such that |𝒮(d¯)||\mathcal{S}(\bar{d})| is minimized. Suppose the statement does not hold; then |𝒮(d¯)|>0|\mathcal{S}(\bar{d})|>0. Without loss of generality, let ζ1\zeta^{1} be in the first connected subset of [0,1][0,1] for which d¯=𝜸1\lfloor\bar{d}\rfloor=\bm{\gamma}^{1} and let θ1\theta^{1} be in the last connected subset of [0,1][0,1] for which d¯=𝜸1\lfloor\bar{d}\rfloor=\bm{\gamma}^{1}. Note however that {𝜷|𝜷=𝜸1}\left\{\bm{\beta}^{\prime}\in\mathcal{B}\,|\,\lfloor\bm{\beta}^{\prime}\rfloor=\bm{\gamma}^{1}\right\} is a convex set over which zz is constant, and {d¯(θ1),d¯(ζ1)}T(β1)\{\bar{d}(\theta^{1}),\bar{d}(\zeta^{1})\}\subset T(\beta_{1}), so the line segment from d¯(ζ1)\bar{d}(\zeta^{1}) to d¯(θ1)\bar{d}(\theta^{1}) must be a subset of T(𝜷1)T(\bm{\beta}_{1}). Thus, consider d^:[0,1]\hat{d}:[0,1]\to\mathcal{B}:

d^(t){d¯(t)t[0,1][ζ1,θ1]tζ1θ1ζ1d¯(ζ1)+θ1tθ1ζ1d¯(θ1)t[ζ1,θ1].\hat{d}(t)\coloneqq\left\{\begin{array}[]{ll}\bar{d}(t)&t\in[0,1]\setminus[\zeta^{1},\theta^{1}]\\ \frac{t-\zeta^{1}}{\theta^{1}-\zeta^{1}}\bar{d}(\zeta^{1})+\frac{\theta^{1}-t}{\theta^{1}-\zeta^{1}}\bar{d}(\theta^{1})&t\in[\zeta^{1},\theta^{1}]\end{array}\right..

Observe that d^\hat{d} as defined is a continuous isovalue curve from 𝜷1\bm{\beta}_{1} to 𝜷2\bm{\beta}_{2} and 𝒮(d^)\mathcal{S}(\hat{d}) has at most |𝒮(d¯)|1|\mathcal{S}(\bar{d})|-1 members, a contradiction, so there exists dd^{\prime} for which 𝒮(d)=\mathcal{S}(d^{\prime})=\emptyset. ∎

Corollary LABEL:finseq. Given 𝛃{\bm{\beta}}\in\mathcal{B}, 𝛃a\bm{\beta}_{a} and 𝛃bT(𝛃)\bm{\beta}_{b}\in T({\bm{\beta}}), there exists a finite sequence of points,
{𝛄0=𝛃a,,𝛄r=𝛃b}\left\{\bm{\gamma}^{0}=\bm{\beta}_{a},...,\bm{\gamma}^{r}=\bm{\beta}_{b}\right\}, such that 𝛄iT(𝛃)\bm{\gamma}^{i}\in T({\bm{\beta}}) and |𝛄i+1𝛄i|=λi𝐞j|\bm{\gamma}^{i+1}-\bm{\gamma}^{i}|=\lambda_{i}\mathbf{e}_{j} for all ii, where λi(0,1]\lambda_{i}\in(0,1] for all ii and 𝐞j\mathbf{e}_{j} is a unit vector for j{1,,m}j\in\{1,...,m\}.

Proof.

Note that 𝜷a\lfloor\bm{\beta}_{a}\rfloor and 𝜷b\lfloor\bm{\beta}_{b}\rfloor are both in T(𝜷)T(\bm{\beta}). If ss and tt are the number of fractional components of 𝜷a\bm{\beta}_{a} and 𝜷b\bm{\beta}_{b}, respectively, then the first ss members of the sequence after 𝜷a\bm{\beta}_{a} can be defined as the component by component rounding down of 𝜷a\bm{\beta}_{a}, so that 𝜸s=𝜷a\bm{\gamma}^{s}=\lfloor{\bm{\beta}_{a}}\rfloor. The same can be done for the last tt members of the sequence, so that 𝜸rt=𝜷b\bm{\gamma}^{r-t}=\lfloor\bm{\beta}_{b}\rfloor. These first ss and final tt terms are all in T(𝜷)T(\bm{\beta}), and there is a finite number of them. Then by \threfCsteppro, there exists a finite sequence from 𝜸s\bm{\gamma}^{s} to 𝜸rt\bm{\gamma}^{r-t} in C(𝜷)C(\bm{\beta}), so prepending the first ss terms and appending the final tt terms to that sequence will yield the desired result. ∎

Proposition LABEL:LSMcor. For any 𝛃¯\bar{\bm{\beta}}\in\mathcal{B}, 𝛃T(𝛃¯)\bm{\beta}\in T(\bar{\bm{\beta}}) if and only if z(𝛃)=z(𝛃¯)z(\bm{\beta})=z(\bar{\bm{\beta}}) and there exists 𝛃^\hat{\bm{\beta}}\in 𝐁¯\bar{\mathbf{B}} T(𝛃¯)\cap T(\bar{\bm{\beta}}) such that 𝛃^𝛃\hat{\bm{\beta}}\leq\bm{\beta}.

Proof.

By definition of T(𝜷)T(\bm{\beta}), if z(𝜷)z(𝜷¯)z(\bm{\beta})\neq z(\bar{\bm{\beta}}), then 𝜷T(𝜷¯)\bm{\beta}\not\in T(\bar{\bm{\beta}}). Suppose z(𝜷)=z(𝜷¯)z(\bm{\beta})=z(\bar{\bm{\beta}}) but there does not exist level-set-minimal 𝜷^𝜷\hat{\bm{\beta}}\leq\bm{\beta} in the same MC-level set as 𝜷¯\bar{\bm{\beta}}. Note that there must exist at least one 𝜷~𝜷\tilde{\bm{\beta}}\leq\bm{\beta} which is level-set-minimal and for which 𝜷~T(𝜷)\tilde{\bm{\beta}}\in T(\bm{\beta}). However, there is no continuous curve from 𝜷¯\bar{\bm{\beta}} to any such 𝜷~\tilde{\bm{\beta}}; thus, because there is a continuous curve from 𝜷~\tilde{\bm{\beta}} to 𝜷\bm{\beta}, there cannot be a continuous curve from 𝜷¯\bar{\bm{\beta}} to 𝜷\bm{\beta}, i.e., 𝜷T(𝜷¯)\bm{\beta}\not\in T(\bar{\bm{\beta}}). On the other hand, suppose there does exist level-set-minimal 𝜷^𝜷\hat{\bm{\beta}}\leq\bm{\beta} in the same MC-level set as 𝜷¯\bar{\bm{\beta}}. Then there exists a continuous curve from 𝜷¯\bar{\bm{\beta}} to 𝜷^\hat{\bm{\beta}}, and from 𝜷^\hat{\bm{\beta}} to 𝜷\bm{\beta}, so that there exists a single continuous curve from 𝜷¯\bar{\bm{\beta}} to 𝜷\bm{\beta}, and 𝜷T(𝜷¯)\bm{\beta}\in T(\bar{\bm{\beta}}). ∎

Corollary LABEL:LSMseq. Let 𝛃¯𝐁¯\bar{\bm{\beta}}\in\bar{\mathbf{B}} such that there exists 𝛃^𝐁¯T(𝛃¯)\hat{\bm{\beta}}\in\bar{\mathbf{B}}\cap T(\bar{\bm{\beta}}), 𝛃^𝛃¯\hat{\bm{\beta}}\neq\bar{\bm{\beta}}. Then there exists a sequence V={v1,,vs}V=\{v_{1},...,v_{s}\} of distinct vectors in 𝐁¯T(𝛃¯)\bar{\mathbf{B}}\cap T(\bar{\bm{\beta}}) such that 𝛃¯=v1\bar{\bm{\beta}}=v_{1}, 𝛃^=vs\hat{\bm{\beta}}=v_{s}, and for all i{1,,s1}i\in\{1,...,s-1\}, there exists 𝛃iT(𝛃¯)\bm{\beta}_{i}\in T(\bar{\bm{\beta}}) such that vi𝛃iv_{i}\lneq\bm{\beta}_{i} and vi+1𝛃iv_{i+1}\lneq\bm{\beta}_{i}.

Proof.

Let U={u1,,ut}U=\{u_{1},...,u_{t}\} be the finite sequence of points in T(𝜷¯)T(\bar{\bm{\beta}}) from 𝜷¯\bar{\bm{\beta}} to 𝜷^\hat{\bm{\beta}} whose existence is guaranteed by \threfCsteppro. Set V={𝜷¯}V=\{\bar{\bm{\beta}}\} initially, and set 𝜷~=𝜷¯\tilde{\bm{\beta}}=\bar{\bm{\beta}}. Let uiu_{i} be the last member in the ordering of UU such that 𝜷~ui\tilde{\bm{\beta}}\lneq u_{i}. Then ui+1=ui𝐞ju_{i+1}=u_{i}-\mathbf{e}_{j} for some component jj, since each member of UU differs from the next by a single unit vector, and we must have ui+1uiu_{i+1}\lneq u_{i} since we have assumed that uiu_{i} is the final vector in the ordering of UU for which 𝜷~ui\tilde{\bm{\beta}}\lneq u_{i}. By \threfLSMcor, there must exist 𝜷𝐁¯nT(𝜷¯)\bm{\beta}^{\prime}\in\bar{\mathbf{B}}_{n}\cap T(\bar{\bm{\beta}}) such that 𝜷ui+1\bm{\beta}^{\prime}\leq u_{i+1}. Further, we also have 𝜷ui\bm{\beta}^{\prime}\lneq u_{i}, so we can append 𝜷\bm{\beta}^{\prime} to VV. Then update 𝜷~=𝜷\tilde{\bm{\beta}}=\bm{\beta}^{\prime} and repeat until 𝜷=𝜷^\bm{\beta}^{\prime}=\hat{\bm{\beta}} is added to VV. Since UU is finite, the process will complete in finitely many steps. ∎

Proposition LABEL:bk=b. If there exists k{1,,n}k\in\{1,\dots,n\} such that 𝐁¯k=¯\bar{\mathbf{B}}_{k}=\bar{\mathcal{B}}, then for all k^k,k^{1,,n}\hat{k}\geq k,\hat{k}\in\{1,\dots,n\}, 𝐁¯k^=¯\bar{\mathbf{B}}_{\hat{k}}=\bar{\mathcal{B}}.

Proof.

Fix k^\hat{k} such that k<k^nk<\hat{k}\leq n (if k=nk=n, the result is immediate). Suppose there exists 𝜷¯\bm{\beta}\in\bar{\mathcal{B}} such that 𝜷𝐁¯k^\bm{\beta}\notin\bar{\mathbf{B}}_{\hat{k}}. Then there must exist 𝝅𝜷\bm{\pi}\lneq\bm{\beta} such that zk^(𝝅)=zk^(𝜷)z_{\hat{k}}(\bm{\pi})=z_{\hat{k}}(\bm{\beta}). By \threfelementary, we have

zk^(𝝅)=zk^(𝜷)=zk^(𝝅+𝜷𝝅)zk^(𝝅)+zk^(𝜷𝝅).z_{\hat{k}}(\bm{\pi})=z_{\hat{k}}(\bm{\beta})=z_{\hat{k}}(\bm{\pi}+\bm{\beta}-\bm{\pi})\geq z_{\hat{k}}(\bm{\pi})+z_{\hat{k}}(\bm{\beta}-\bm{\pi}).

Therefore, zk^(𝜷𝝅)=0z_{\hat{k}}(\bm{\beta}-\bm{\pi})=0. By \threfnotOptimal, 0zk(𝜷𝝅)zk^(𝜷𝝅)=00\leq z_{k}(\bm{\beta}-\bm{\pi})\leq z_{\hat{k}}(\bm{\beta}-\bm{\pi})=0; hence, 𝜷𝝅𝐁¯k\bm{\beta}-\bm{\pi}\not\in\bar{\mathbf{B}}_{k}, a contradiction. As such, 𝐁¯k^=¯\bar{\mathbf{B}}_{\hat{k}}=\bar{\mathcal{B}}. ∎