This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Prikry-type Forcing and the Set of Possible Cofinalities

Kenta Tsukuura Doctoral Program in Mathematics, Degree Programs in Pure and Applied Sciences, Graduate School of Science and Technology, University of Tsukuba, Tsukuba, 305-8571, Japan [email protected]
Abstract.

It is known that the set of possible cofinalities pcf(A)\operatorname{pcf}(A) has good properties if AA is a progressive interval of regular cardinals. In this paper, we give an interval of regular cardinals AA such that pcf(A)\operatorname{pcf}(A) has no good properties in the presence of a measurable cardinal, or in generic extensions by Prikry-type forcing.

Key words and phrases:
pcf theory, Prikry-type forcing, Prikry forcing, Magidor forcing
2020 Mathematics Subject Classification:
03E04, 03E35, 03E55
This research was supported by Grant-in-Aid for JSPS Research Fellow Number 20J21103 and JSPS KAKENHI Grant Nos.18K03403 and 18K03404. The author is grateful to Masahiro Shioya for helpful discussions.

1. Introduction

Cardinal arithmetic has been one of the most important areas in set theory. Shortly after Cohen devised the method of forcing, Easton [3] proved that the powers of regular cardinals is subject only to König’s theorem in ZFC. Easton’s theorem left the behavior of the powers of singular cardinals as the Singular Cardinal Problem. Some time later, Silver [11] proved the first nontrivial result around the problem: Singular cardinals of uncountable cofinality cannot be the least cardinal at which the Generalized Continuum Hypothesis (GCH) fails. Still later, Shelah [10] developed pcf theory and established a result that supersedes Silver’s theorem:

Theorem 1.1 (Shelah).

ω0<(20)++ω4\aleph_{\omega}^{\aleph_{0}}<(2^{\aleph_{0}})^{+}+\aleph_{\omega_{4}}.

An outline of the proof is as follows. First we have ω0=20+cf([ω]0,)\aleph_{\omega}^{\aleph_{0}}=2^{\aleph_{0}}+{\rm cf}([\aleph_{\omega}]^{\aleph_{0}},\subseteq). The crucial claim is that cf([ω]0,)=maxpcf({nn<ω})<ω4{\rm cf}([\aleph_{\omega}]^{\aleph_{0}},\subseteq)=\max{\operatorname{pcf}(\{\aleph_{n}\mid n<\omega\})}<\aleph_{\omega_{4}}. Shelah proved it by analyzing the structure of pcf({nn<ω})\operatorname{pcf}(\{\aleph_{n}\mid n<\omega\}). More specifically, he obtained the latter inequality by showing the following results for a progressive interval of regular cardinals AA:

  • pcf(A)\operatorname{pcf}(A) is an interval of regular cardinals with a largest element.

  • |pcf(A)|<|A|+4|\operatorname{pcf}(A)|<|A|^{+4}.

Theorem 1.1 can be generalized for a non-fixed point of the \aleph function. Let κ\kappa be a singular cardinal with κ=μ>μ\kappa=\aleph_{\mu}>\mu. Shelah proved that cf([κ]|μ|,)=maxpcf(A){\rm cf}([\kappa]^{|\mu|},\subseteq)=\max\operatorname{pcf}(A) for some progressive interval of regular cardinals AA with supA=κ\sup A=\kappa. As before, this reduces the investigation of the power of κ\kappa to that of the structure of pcf(A){\operatorname{pcf}(A)}. Note that we can take AA to be progressive because κ\kappa is a non-fixed point of the \aleph function. Thus the assumption of AA being progressive seems essential in pcf theory. Now one may ask

Question 1.2.

What if AA is a non-progressive interval of regular cardinals?

Motivated by the question, we prove in this paper

Theorem 1.3.

Suppose κ\kappa is a measurable cardinal. Then the following hold:

  1. (1)(1)

    pcf(κReg)=(2κ)+Reg\operatorname{pcf}(\kappa\cap{\rm Reg})=(2^{\kappa})^{+}\cap{\rm Reg}.

  2. (2)(2)

    Prikry forcing over κ\kappa forces that pcf(κReg)=(2κ)+Reg\operatorname{pcf}({\kappa}\cap{\rm Reg})=(2^{{\kappa}})^{+}\cap{\rm Reg}.

From Theorem 1.3 (1) we get

Corollary 1.4.

Suppose κ\kappa is a measurable cardinal. Then the following hold:

  1. (1)(1)

    pcf(κReg)\operatorname{pcf}(\kappa\cap{\rm Reg}) has no largest element if 2κ2^{\kappa} is singular.

  2. (2)(2)

    |pcf(κReg)|>|κReg|+4|\operatorname{pcf}(\kappa\cap{\rm Reg})|>|\kappa\cap{\rm Reg}|^{+4} if 2κ>κ+(κ+4)2^{\kappa}>\kappa^{+(\kappa^{+4})}.

The following corollary of Theorem 1.3 (2) answers Question 1.2:

Corollary 1.5.

Suppose there is a supercompact cardinal. Then in some forcing extension there is a non-progressive interval of regular cardinals AA such that sup(A){\rm sup}(A) is singular, pcf(A)\operatorname{pcf}(A) has no largest element and |pcf(A)|>|A|+4|\operatorname{pcf}(A)|>|A|^{+4}.

The proof of Corollary 1.5 is as follows. Let κ\kappa be a supercompact cardinal. We may assume that κ\kappa is indestructibly supercompact in the sense of Laver [6]. This enables us to get a model in which κ\kappa is supercompact and 2κ2^{\kappa} is a singular cardinal >κ+(κ+4)>\kappa^{+(\kappa^{+4})}. Finally, Prikry forcing gives a model in which A=κRegA=\kappa\cap{\rm Reg} is as desired by Theorem 1.3 (2). See Corollary 3.1 for an additional property of the final model.

Some large cardinal hypothesis is necessary in Theorem 1.3. Assume on the contrary that GCH holds and there is no weakly inaccessible cardinal. A simple argument shows that if ARegA\subseteq{\rm Reg}, then pcf(A)=A{(supB)+BA\operatorname{pcf}(A)=A\cup\{(\sup B)^{+}\mid B\subseteq A has no maximal element}\}, so that pcf(A)\operatorname{pcf}(A) has a largest element and |pcf(A)|<|A|+4|\operatorname{pcf}(A)|<|A|^{+4}.

The structure of this paper is as follows. In Section 2, we recall basic facts of pcf theory and Prikry forcing. Theorem 1.3 is proved in Section 3. We also consider the problem whether pcf(pcf(A))=pcf(A)\operatorname{pcf}(\operatorname{pcf}(A))=\operatorname{pcf}(A) holds. In Section 4, we prove an analogue of Theorem 1.3 (2) for Magidor forcing.

2. Preliminaries

In this section, we recall basic facts of pcf theory and Prikry forcing. For more on the topics, we refer the reader to [1] and [4] respectively. We also use [5] as a reference for set theory in general.

Our notation is standard. We let Reg{\rm Reg} denote the class of all regular cardinals. Let ARegA\subseteq{\rm Reg}. Then A\prod A is the set {f:AAγA(f(γ)<γ)}\{f:A\to\bigcup A\mid\forall\gamma\in A(f(\gamma)<\gamma)\}. Let FF be a filter over AA. We define a strict order <F<_{F} on A\prod A by f<Fgf<_{F}g iff {γAf(γ)<g(γ)}F\{\gamma\in A\mid f(\gamma)<g(\gamma)\}\in F.

Definition 2.1.

For ARegA\subseteq{\rm Reg},

pcf(A)={cf(A,<D)D is an ultrafilter over A}.\operatorname{pcf}(A)=\left\{\operatorname{cf}\left(\prod A,<_{D}\right)\mid D\text{ is an ultrafilter over }A\right\}.

Note that Apcf(A)(2supA)+RegA\subseteq\operatorname{pcf}(A)\subseteq(2^{\sup A})^{+}\cap{\rm Reg}. If there is an increasing and cofinal sequence in (A,<F){\left(\prod A,<_{F}\right)} of length θ\theta for some filter FF over AA, then cf(θ)pcf(A)\operatorname{cf}(\theta)\in\operatorname{pcf}(A).

A set ARegA\subseteq{\rm Reg} is progressive if minA>|A|\min A>|A|. An interval of regular cardinals is a set of the form [λ,κ)Reg[\lambda,\kappa)\cap{\rm Reg} for a pair of cardinals λ<κ\lambda<\kappa. Here is the fundamental theorem on progressive intervals of regular cardinals.

Theorem 2.2 (Shelah).

If ARegA\subseteq{\rm Reg} is a progressive interval, then we have

  1. (1)(1)

    pcf(A)\operatorname{pcf}(A) has a largest element.

  2. (2)(2)

    |pcf(A)|<|A|+4|\operatorname{pcf}(A)|<|A|^{+4}.

  3. (3)(3)

    pcf(pcf(A))=pcf(A)\operatorname{pcf}(\operatorname{pcf}(A))=\operatorname{pcf}(A).

Theorem 2.3 is known as the scale theorem.

Theorem 2.3 (Shelah).

Suppose κ\kappa is a singular cardinal. Then there is a set A[κReg]cf(κ)A\in[\kappa\cap{\rm Reg}]^{\operatorname{cf}(\kappa)} such that supA=κ\sup A=\kappa and (A,<F){\left(\prod A,<_{F}\right)} has an increasing and cofinal sequence of length κ+\kappa^{+}. Here, FF is the cobounded filter over AA. In particular, κ+pcf(κReg)\kappa^{+}\in\operatorname{pcf}(\kappa\cap{\rm Reg}).

Next, we recall basic facts of Prikry forcing from [9]. Let κ\kappa be a measurable cardinal and UU a normal ultrafilter over κ\kappa. Prikry forcing \mathbb{P} is the set [κ]<ω×U[\kappa]^{<\omega}\times U ordered by b,Ya,X{\langle b,Y\rangle}\leq{\langle a,X\rangle} iff aeba\subseteq_{e}b (i.e. a=b(max(a)+1)a=b\cap(\max(a)+1)), YXY\subseteq X and baXb\setminus a\subseteq X.

\mathbb{P} has the κ+\kappa^{+}-c.c. and size 2κ2^{\kappa}. Thus, \mathbb{P} does not change the value of 2θ2^{\theta} for any θκ{\theta}\geq\kappa. \mathbb{P} preserves all cardinals above κ{\kappa} but changes the cofinality of κ{\kappa}. Let g˙\dot{g} be a \mathbb{P}-name such that g˙={aX(a,XG˙)}\mathbb{P}\Vdash\dot{g}=\bigcup\{a\mid\exists X({\langle a,X\rangle}\in\dot{G})\}, where G˙\dot{G} is the canonical \mathbb{P}-name for a generic filter. Then g˙\dot{g} is forced to be a cofinal subset of κ\kappa of order type ω\omega. Moreover, we need

  • a,Xaeg˙g˙aX{\langle a,X\rangle}\Vdash{a}\subseteq_{e}\dot{g}\land\dot{g}\setminus{a}\subseteq{X}. In particular, g˙X\mathbb{P}\Vdash\dot{g}\subseteq^{*}X for every XUX\in U.

  • If a,Xξg˙\langle a,X\rangle\Vdash\xi\in\dot{g}, then ξa\xi\in a.

The latter property follows by a,X(ξ+1)a,X\langle a,X\setminus(\xi+1)\rangle\leq\langle a,X\rangle forces g˙aX(ξ+1)\dot{g}\setminus a\subseteq X\setminus(\xi+1).

For subsequent purposes, we present a direct proof of Prikry lemma. Suppose {Xbb[κ]<ω}U\{X_{b}\mid b\in[\kappa]^{<\omega}\}\subseteq U. The diagonal intersection bXb\triangle_{b}X_{b} is defined to be the set {ξ<κb[ξ]<ω(ξXb)}\{\xi<\kappa\mid\forall b\in[\xi]^{<\omega}(\xi\in X_{b})\}. Since UU is normal, we have bXbU\triangle_{b}X_{b}\in U.

Lemma 2.4.

Suppose {Xbb[κ]<ω}U\{X_{b}\mid b\in[\kappa]^{<\omega}\}\subseteq U and a[κ]<ωa\in[\kappa]^{<\omega}. Then any extension of a,bXb{\langle a,\triangle_{b}X_{b}\rangle} is compatible with a,Xa{\langle a,X_{a}\rangle}.

Proof.

Let c,Ya,bXb{\langle c,Y\rangle}\leq{\langle a,\triangle_{b}X_{b}\rangle}. Then caXac\setminus a\subseteq X_{a} by aeca\subseteq_{e}c and cabXbc\setminus a\subseteq\triangle_{b}X_{b}. Thus c,YXa{\langle c,Y\cap X_{a}\rangle} is a common extension of c,Y{\langle c,Y\rangle} and a,Xa{\langle a,X_{a}\rangle}, as desired. ∎

Lemma 2.5 (Prikry lemma).

Let a[κ]<ωa\in[\kappa]^{<\omega} and σ\sigma be a statement of the forcing language. Then there is an XUX\in U such that a,X{\langle a,X\rangle} decides σ\sigma, i.e. a,Xσ{\langle a,X\rangle}\Vdash\sigma or a,X¬σ{\langle a,X\rangle}\Vdash\lnot\sigma.

Proof.

For each b[κ]<ωb\in[\kappa]^{<\omega} define XbUX_{b}\in U as follows: If aeba\subseteq_{e}b, let XbX_{b} be the unique set from the following mutually disjoint sets

  • Xb+={ξ<κbξYU(b{ξ},Yσ)}X_{b}^{+}=\{\xi<\kappa\mid{b}\subseteq\xi\land\exists Y\in U({\langle b\cup\{\xi\},Y\rangle}\Vdash\sigma)\}.

  • Xb={ξ<κbξYU(b{ξ},Y¬σ)}X_{b}^{-}=\{\xi<\kappa\mid{b}\subseteq\xi\land\exists Y\in U({\langle b\cup\{\xi\},Y\rangle}\Vdash\lnot\sigma)\}.

  • Xb0=κ(Xb+Xb)X_{b}^{0}=\kappa\setminus(X_{b}^{+}\cup X_{b}^{-}).

Otherwise, let Xb=κX_{b}=\kappa. For each b[κ]<ωb\in[\kappa]^{<\omega} define YbUY_{b}\in U as follows: If there is a YUY\in U such that b,Y{\langle b,Y\rangle} decides σ\sigma, let YbY_{b} be one such YY. Otherwise, let Yb=κY_{b}=\kappa. We claim that X=b(XbYb)UX=\triangle_{b}(X_{b}\cap Y_{b})\in U is as desired. Take an arbitrary extension c,Ya,X{\langle c,Y\rangle}\leq{\langle a,X\rangle} that decides σ\sigma. We may assume c=b{ξ}c=b\cup\{\xi\} with aebξa\subseteq_{e}b\subseteq\xi. Note that c,Yc{\langle c,Y_{c}\rangle} decides σ\sigma. We may assume c,Ycσ{\langle c,Y_{c}\rangle}\Vdash\sigma. Then c,bYbσ{\langle c,\triangle_{b}Y_{b}\rangle}\Vdash\sigma by Lemma 2.4. Thus c,Xc,bYb{\langle c,X\rangle}\leq{\langle c,\triangle_{b}Y_{b}\rangle} forces σ\sigma. We claim that b,Xσ{\langle b,X\rangle}\Vdash\sigma, which completes the proof by repeating the argument.

It suffices to show that any extension of b,X{\langle b,X\rangle} is compatible with a condition forcing σ\sigma. Let d,Zb,X{\langle d,Z\rangle}\leq{\langle b,X\rangle}. We may assume bedb\subsetneq_{e}d. Note that ξXb\xi\in X_{b} by ξX\xi\in X, and hence Xb=Xb+X_{b}=X_{b}^{+} by b{ξ},Xσ{\langle b\cup\{\xi\},X\rangle}\Vdash\sigma. Let η=min(db)X\eta=\min(d\setminus b)\in X. Then ηXb=Xb+\eta\in X_{b}=X_{b}^{+}, so b{η},Yσ{\langle b\cup\{\eta\},Y\rangle}\Vdash\sigma for some YY, and hence b{η},Yb{η}σ{\langle b\cup\{\eta\},Y_{b\cup\{\eta\}}\rangle}\Vdash\sigma. Note that d(b{η})Yb{η}d\setminus(b\cup\{\eta\})\subseteq Y_{b\cup\{\eta\}} by b{η}edb\cup\{\eta\}\subseteq_{e}d and d(b{η})dbXd\setminus(b\cup\{\eta\})\subseteq d\setminus b\subseteq X. Thus d,ZYb{η}{\langle d,Z\cap Y_{b\cup\{\eta\}}\rangle} is a common extension of d,Z{\langle d,Z\rangle} and b{η},Yb{η}{\langle b\cup\{\eta\},Y_{b\cup\{\eta\}}\rangle}, as desired. ∎

Corollary 2.6.

\mathbb{P} adds no new bounded subsets of κ\kappa. In particular, \mathbb{P} preserves all cardinals below κ\kappa.

3. Prikry Forcing and a Non-progressive Interval

The first half of this section is devoted to

Proof of Theorem 1.3.

Let κ\kappa be a measurable cardinal. Take a normal ultrafilter UU over κ\kappa and form j:VMUlt(V,U)j:V\to M\simeq\text{Ult}(V,U). For each α2κ\alpha\leq 2^{\kappa}, we can choose fακκf_{\alpha}\in\mbox{}^{\kappa}\kappa such that α=[fα]U\alpha=[f_{\alpha}]_{U} by 2κ(2κ)M<j(κ)2^{\kappa}\leq(2^{\kappa})^{M}<j(\kappa).

Note that κRegpcf(κReg)(2κ)+Reg{\kappa\cap{\rm Reg}}\subseteq\operatorname{pcf}(\kappa\cap{\rm Reg})\subseteq(2^{\kappa})^{+}\cap{\rm Reg}. To complete the proof, it suffices to show that [κ,(2κ)+)Regpcf(κReg)[\kappa,(2^{\kappa})^{+})\cap{\rm Reg}\subseteq\operatorname{pcf}(\kappa\cap{\rm Reg}) in both cases, (1) and (2).

(1) Let θ[κ,(2κ)+)Reg\theta\in[\kappa,(2^{\kappa})^{+})\cap{\rm Reg}. Then we may assume fθκ(κReg)f_{\theta}\in\mbox{}^{\kappa}(\kappa\cap{\rm Reg}). Since κ=[id]U[fθ]U\kappa=[{\rm id}]_{U}\leq[f_{\theta}]_{U}, we have

X={ξ<κη<ξ(fθ(η)<ξ)ξfθ(ξ)}U.X=\{\xi<\kappa\mid\forall\eta<\xi(f_{\theta}(\eta)<\xi)\land\xi\leq f_{\theta}(\xi)\}\in U.

Note that fθXf_{\theta}\upharpoonright X is strictly increasing. Define an ultrafilter UθU_{\theta} over κReg\kappa\cap{\rm Reg} by YUθY\in U_{\theta} iff fθ1``YUf_{\theta}^{-1}``Y\in U. Then we have (ξXfθ(ξ),<U)(fθ``X,<Uθ)(κReg,<Uθ){\left(\prod_{\xi\in X}f_{\theta}(\xi),<_{U}\right)}\simeq{\left(\prod f_{\theta}``{X},<_{U_{\theta}}\right)}\simeq{\left(\prod\kappa\cap{\rm Reg},<_{U_{\theta}}\right)}.

Since fαXα<θ\langle{f_{\alpha}\upharpoonright X\mid\alpha<\theta}\rangle is increasing and cofinal in (ξXfθ(ξ),<U){\left(\prod_{\xi\in X}f_{\theta}(\xi),<_{U}\right)}, we have θ=cf(ξXfθ(ξ),<U)=cf(κReg,<Uθ)pcf(κReg)\theta=\operatorname{cf}\left(\prod_{\xi\in X}f_{\theta}(\xi),<_{U}\right)=\operatorname{cf}(\prod\kappa\cap{\rm Reg},<_{U_{\theta}})\in\operatorname{pcf}(\kappa\cap{\rm Reg}), as desired.

(2) Let \mathbb{P} be Prikry forcing defined by UU. Note that the set (κ,(2κ)+)Reg(\kappa,(2^{\kappa})^{+})\cap{\rm Reg} remains the same after forcing with \mathbb{P} and κ\kappa is singular. Let θ(κ,(2κ)+)Reg\theta\in(\kappa,(2^{\kappa})^{+})\cap{\rm Reg}. It suffices to prove that θpcf(κReg)\mathbb{P}\Vdash\theta\in\operatorname{pcf}(\kappa\cap{\rm Reg}). Again, we may assume fθ(κReg)κf_{\theta}\in{{}^{\kappa}(\kappa\cap{\rm Reg})}. First, note that

X={ξ<κη<ξ(fθ(η)<ξ)ξ<fθ(ξ)}U.X=\{\xi<\kappa\mid\forall\eta<\xi(f_{\theta}(\eta)<\xi)\land\xi<f_{\theta}(\xi)\}\in U.

Since g˙X\mathbb{P}\Vdash\dot{g}\subseteq^{*}{X}, we have

(ξg˙fθ(ξ),<)(fθ``g˙,<F˙).\mathbb{P}\Vdash{\left(\prod_{\xi\in\dot{g}}{f}_{\theta}(\xi),<^{*}\right)}\simeq{\left(\prod{f}_{\theta}{``}\dot{g},<_{\dot{F}}\right)}.

Here <<^{*} and F˙\dot{F} are \mathbb{P}-names for the order on ξg˙fθ(ξ)\prod_{\xi\in\dot{g}}{f}_{\theta}(\xi) defined by the cobounded filter over g˙\dot{g}, and the cobounded filter over fθ``g˙{f}_{\theta}{``}\dot{g} respectively. Thus it suffices to prove

  • (i)

    fαg˙α<θ\mathbb{P}\Vdash{\langle{f}_{\alpha}\upharpoonright\dot{g}\mid\alpha<{\theta}\rangle} is increasing in (ξg˙fθ(ξ),<){\left(\prod_{\xi\in\dot{g}}{f}_{\theta}(\xi),<^{*}\right)}.

  • (ii)

    fαg˙α<θ\mathbb{P}\Vdash{\langle{f}_{\alpha}\upharpoonright\dot{g}\mid\alpha<{\theta}\rangle} is cofinal in (ξg˙fθ(ξ),<){\left(\prod_{\xi\in\dot{g}}{f}_{\theta}(\xi),<^{*}\right)}.

(i) Let α<β\alpha<\beta. Then Y={ξ<κfα(ξ)<fβ(ξ)}UY=\{\xi<\kappa\mid f_{\alpha}(\xi)<f_{\beta}(\xi)\}\in U. If a,Z{\langle a,Z\rangle}\in\mathbb{P}, then a,YZξg˙a(fα(ξ)<fβ(ξ)){\langle a,Y\cap Z\rangle}\Vdash\forall\xi\in\dot{g}\setminus{a}({f}_{\alpha}(\xi)<{f}_{\beta}(\xi)), as desired.

(ii) By the proof of (i), it suffices to show that {hg˙hξXVfθ(ξ)}\left\{h\upharpoonright\dot{g}\mid h\in\prod^{V}_{\xi\in{X}}{f}_{\theta}(\xi)\right\} is forced to be cofinal in (ξg˙fθ(ξ),<){\left(\prod_{\xi\in\dot{g}}{f}_{\theta}(\xi),<^{*}\right)}.

Assume h˙ξg˙fθ(ξ)\Vdash\dot{h}\in\prod_{\xi\in\dot{g}}{f}_{\theta}(\xi). For each b[κ]<ωb\in[\kappa]^{<\omega} define YbUY_{b}\in U and ηb<κ\eta_{b}<\kappa as follows. Note that b,X{\langle b,X\rangle} forces bg˙b\subseteq\dot{g} and hence h˙(maxb)<fθ(maxb)\dot{h}(\max{{b}})<f_{\theta}(\max{b}). By Prikry lemma, there is a b,Ybb,X{\langle b,Y_{b}\rangle}\leq{\langle b,X\rangle} that decides h˙(maxb)=η\dot{h}(\max{{b}})={\eta} for every η<fθ(maxb)\eta<f_{\theta}(\max{b}). Then we can take an ηb<fθ(maxb)\eta_{b}<f_{\theta}(\max{b}) such that

b,Ybh˙(maxb)=ηb.{\langle b,Y_{b}\rangle}\Vdash\dot{h}(\max{{b}})=\eta_{b}.

For each ξX\xi\in{X} define

h(ξ)=sup{ηb+1b[ξ+1]<ω}.h(\xi)=\sup\{\eta_{b}+1\mid b\in[\xi+1]^{<\omega}\}.

Since fθ(ξ)>ξ{f}_{\theta}(\xi)>\xi is regular, we have hξXfθ(ξ)h\in\prod_{\xi\in{X}}{f}_{\theta}(\xi) in VV. Let Y=bYbUY=\triangle_{b}Y_{b}\in U. We claim that a,Yξg˙a(h˙(ξ)<h(ξ)){\langle a,Y\rangle}\Vdash\forall\xi\in\dot{g}\setminus a(\dot{h}(\xi)<{h}(\xi)) for every a[κ]<ωa\in[\kappa]^{<\omega}, which completes the proof. It suffices to show that any extension of a,Y{\langle a,Y\rangle} forcing ξg˙a\xi\in\dot{g}\setminus a is compatible with a condition forcing h˙(ξ)<h(ξ)\dot{h}(\xi)<{h}(\xi).

Suppose b,Za,Y{\langle b,Z\rangle}\leq{\langle a,Y\rangle} forces ξg˙a\xi\in\dot{g}\setminus a. By the property we saw in Section 2, we have ξba\xi\in b\setminus a. b,Z{\langle b,Z\rangle} is compatible with b(ξ+1),Yb(ξ+1){\langle b\cap(\xi+1),Y_{b\cap(\xi+1)}\rangle} forcing h˙(ξ)=ηb(ξ+1)<h(ξ)\dot{h}(\xi)=\eta_{b\cap(\xi+1)}<h(\xi), as in the proof of Prikry lemma. ∎

Corollary 1.5 shows that the assumption of AA being progressive is necessary in Theorem 2.2 (1) and (2). Corollary 3.1 does the same for Theorem 2.2 (3).

Corollary 3.1.

One can add “Apcf(A)pcf(pcf(A))A\subsetneq\operatorname{pcf}(A)\subsetneq\operatorname{pcf}(\operatorname{pcf}(A))” to the list of properties of AA in Corollary 1.5.

Proof.

Let A=κRegA=\kappa\cap{\rm Reg} in the final model for Corollary 1.5, where 2κ2^{\kappa} is singular. By Theorem 1.3 (2) we have pcf(A)=(2κ)+Reg=2κRegA\operatorname{pcf}(A)=(2^{\kappa})^{+}\cap{\rm Reg}=2^{\kappa}\cap{\rm Reg}\neq A, which in turn implies that (2κ)+pcf(pcf(A))pcf(A)(2^{\kappa})^{+}\in\operatorname{pcf}(\operatorname{pcf}(A))\setminus\operatorname{pcf}(A) by Theorem 2.3. ∎

The rest of this section is devoted to improving Corollary 3.1. Define pcfn(A)\operatorname{pcf}^{n}(A) for n<ωn<\omega by pcf0(A)=A\operatorname{pcf}^{0}(A)=A and pcfn+1(A)=pcf(pcfn(A))\operatorname{pcf}^{n+1}(A)=\operatorname{pcf}(\operatorname{pcf}^{n}(A)).

Theorem 3.2.

Suppose κii<ω\langle\kappa_{i}\mid i<\omega\rangle is an increasing sequence of supercompact cardinals. Then the following hold in some forcing extension:

  1. (1)(1)

    κ0\kappa_{0} is a singular cardinal of cofinality ω\omega.

  2. (2)(2)

    pcfn(κ0Reg)pcfn+1(κ0Reg)\operatorname{pcf}^{n}(\kappa_{0}\cap{\rm Reg})\subsetneq\operatorname{pcf}^{n+1}(\kappa_{0}\cap{\rm Reg}) for every n<ωn<\omega.

Lemma 3.3 ensures that sets of the form pcf(θReg)\operatorname{pcf}(\theta\cap{\rm Reg}) remain the same throughout forcing extensions for Theorem 3.2.

Lemma 3.3.

Suppose ARegA\subseteq{\rm Reg}, and \mathbb{Q} has the κ\kappa-c.c. with κ=min(A)\kappa=\min(A). Then pcfV(A)pcf(A)\mathbb{Q}\Vdash{\rm pcf}^{V}(A)\subseteq\operatorname{pcf}(A).

Proof.

In VV, let θpcf(A)\theta\in\operatorname{pcf}(A) be arbitrary. Then there are an ultrafilter DD over AA and an increasing and cofinal sequence fαα<θ{\langle f_{\alpha}\mid\alpha<\theta\rangle} in (A,<D){\left(\prod A,<_{D}\right)}. Let E˙\dot{E} be a \mathbb{Q}-name for the filter generated by D{D}. Since θκ\theta\geq\kappa remains regular after forcing with \mathbb{Q}, it suffices to prove that fαα<θ{\langle f_{\alpha}\mid\alpha<\theta\rangle} is forced to be increasing and cofinal in (A,<E˙){\left(\prod{A},<_{\dot{E}}\right)}.

It is easy to see the former. For the latter, it suffices to prove that VA\prod^{V}{A} is forced to be cofinal in (A,<E˙){\left(\prod{A},<_{\dot{E}}\right)}. Assume ph˙Ap\Vdash\dot{h}\in\prod{A}. For each γA\gamma\in A, define

h(γ)=sup{ξ+1qp(qh˙(γ)=ξ)}.h^{*}(\gamma)=\sup\{\xi+1\mid\exists q\leq p(q\Vdash\dot{h}({\gamma})={\xi})\}.

Then ph˙(γ)<h(γ)p\Vdash\dot{h}({\gamma})<{h^{*}}({\gamma}) for every γA\gamma\in A. Since \mathbb{Q} has the κ\kappa-c.c. and γκ\gamma\geq\kappa is regular, we have hAh^{*}\in\prod A in VV, as desired. ∎

Proof of Theorem 3.2.

We may assume that each κi\kappa_{i} is indestructibly supercompact in the sense of Laver [6] and 2κi=κi+2^{\kappa_{i}}=\kappa_{i}^{+}. We refer the reader to [2] for more details.

Let \mathbb{Q} be the full support product i<ωAdd(κi,κi+1)\prod_{i<\omega}{\rm Add}(\kappa_{i},\kappa_{i+1}), where Add(κi,κi+1){\rm Add}(\kappa_{i},\kappa_{i+1}) is the poset adding κi+1\kappa_{i+1} many Cohen subsets of κi\kappa_{i}. Standard arguments show that \mathbb{Q} preserves cofinalities and forces 2κn=κn+12^{\kappa_{n}}=\kappa_{n+1} for every n<ωn<\omega. We claim that \mathbb{Q} forces pcf([κn+,κn+1+)Reg)[κn+,κn+2+)Reg\operatorname{pcf}([\kappa_{n}^{+},\kappa_{n+1}^{+})\cap{\rm Reg})\supseteq[\kappa_{n}^{+},\kappa_{n+2}^{+})\cap{\rm Reg} for every n<ωn<\omega.

Let GG\subseteq\mathbb{Q} be generic. Since i>nAdd(κi,κi+1)×inAdd(κi,κi+1)\mathbb{Q}\simeq\prod_{i>n}\operatorname{Add}(\kappa_{i},\kappa_{i+1})\times\textstyle{\prod_{i\leq n}\operatorname{Add}(\kappa_{i},\kappa_{i+1})} in VV, we have GGn×HnG\simeq G_{n}\times H_{n} in V[G]V[G]. By Theorem 1.3 (1), pcf(κn+Reg)=pcf(κnReg){κn}=(2κn)+Reg=κn++Reg\operatorname{pcf}(\kappa_{n}^{+}\cap{\rm Reg})=\operatorname{pcf}(\kappa_{n}\cap{\rm Reg})\cup\{\kappa_{n}\}=(2^{\kappa_{n}})^{+}\cap{\rm Reg}=\kappa_{n}^{++}\cap{\rm Reg} in VV. This remains true in V[Gn]V[G_{n}] by the κn+1\kappa_{n+1}-closure of the corresponding poset. Now we work in V[Gn]V[G_{n}]. Note that κn+1\kappa_{n+1} is supercompact and 2κn+1=κn+22^{\kappa_{n+1}}=\kappa_{n+2}. By Theorem 1.3 (1) we have pcf(κn+1+Reg)=pcf(κn+1Reg){κn+1}=(2κn+1)+Reg=κn+2+Reg\operatorname{pcf}(\kappa_{n+1}^{+}\cap{\rm Reg})=\operatorname{pcf}(\kappa_{n+1}\cap{\rm Reg})\cup\{\kappa_{n+1}\}=(2^{\kappa_{n+1}})^{+}\cap{\rm Reg}=\kappa_{n+2}^{+}\cap{\rm Reg}. Therefore pcf([κn+,κn+1+)Reg)=[κn+,κn+2+)Reg\operatorname{pcf}([\kappa_{n}^{+},\kappa_{n+1}^{+})\cap{\rm Reg})=[\kappa_{n}^{+},\kappa_{n+2}^{+})\cap{\rm Reg}. Note that (inAdd(κi,κi+1))V=inAdd(κi,κi+1)\left(\prod_{i\leq n}\operatorname{Add}(\kappa_{i},\kappa_{i+1})\right)^{V}=\prod_{i\leq n}\operatorname{Add}(\kappa_{i},\kappa_{i+1}) has the κn+\kappa_{n}^{+}-c.c. By Lemma 3.3 we have pcf([κn+,κn+1+)Reg)pcf([κn+,κn+1+)Reg)V[Gn]=[κn+,κn+2+)Reg\operatorname{pcf}([\kappa_{n}^{+},\kappa_{n+1}^{+})\cap{\rm Reg})\supseteq\operatorname{pcf}([\kappa_{n}^{+},\kappa_{n+1}^{+})\cap{\rm Reg})^{V[G_{n}]}=[\kappa_{n}^{+},\kappa_{n+2}^{+})\cap{\rm Reg} in V[G]=V[Gn][Hn]V[G]=V[G_{n}][H_{n}], as desired.

Since \mathbb{Q} is κ0\kappa_{0}-directed closed in VV, κ0\kappa_{0} remains supercompact in V[G]V[G]. So we can define Prikry forcing \mathbb{P} over κ0\kappa_{0}. By Theorem 1.3 (2), \mathbb{P} forces pcf(κ0Reg)=(2κ0)+Reg=κ1+Reg\operatorname{pcf}(\kappa_{0}\cap{\rm Reg})=(2^{\kappa_{0}})^{+}\cap{\rm Reg}=\kappa_{1}^{+}\cap{\rm Reg}. By Lemma 3.3, \mathbb{P} forces [κn+,κn+2+)Regpcf([κn+,κn+1+)Reg)[κn+,(2κn+1)+)Reg=[κn+,κn+2+)Reg[\kappa_{n}^{+},\kappa_{n+2}^{+})\cap{\rm Reg}\subseteq\operatorname{pcf}([\kappa_{n}^{+},\kappa_{n+1}^{+})\cap{\rm Reg})\subseteq[\kappa_{n}^{+},(2^{\kappa_{n+1}})^{+})\cap{\rm Reg}=[\kappa_{n}^{+},\kappa_{n+2}^{+})\cap{\rm Reg} for every n<ωn<\omega. Let HH\subseteq\mathbb{P} be generic. In V[G][H]V[G][H], we have pcfn+1(κ0Reg)=κn+1+Reg{\operatorname{pcf}^{n+1}(\kappa_{0}\cap{\rm Reg})}={\kappa_{n+1}^{+}\cap{\rm Reg}} by induction on n<ωn<\omega. ∎

4. An Analogue for Magidor Forcing

Prikry forcing is known for a wealth of variations. In this section, we give an analogue of Theorem 1.3 (2) for one of them. Here we take up Magidor forcing from [7], but the argument works equally well for other variations, e.g. the diagonal Prikry forcing as defined in [8].

Magidor forcing uses a sequence of ultrafilters rather than a single ultrafilter, and makes a hypermeasurable cardinal into a singular cardinal of uncountable cofinality. For normal ultrafilters U,UU,U^{\prime} over κ\kappa, UUU\vartriangleleft U^{\prime} iff UMUlt(V,U)U\in M\simeq\text{Ult}(V,U^{\prime}). Let Uαα<λ{\langle U_{\alpha}\mid\alpha<\lambda\rangle} be a \vartriangleleft-increasing sequence with λ<κ\lambda<\kappa. Note that there is a such sequence if κ\kappa is supercompact. For any β<α<λ\beta<\alpha<\lambda, we fix a function FβακVF_{\beta}^{\alpha}\in\mbox{}^{\kappa}V such that [Fβα]Uα=Uβ[F_{\beta}^{\alpha}]_{U_{\alpha}}=U_{\beta}. For each α<λ\alpha<\lambda, define

Aα\displaystyle A_{\alpha} ={δ<κβ<αγ<β(Fγα(δ)Fβα(δ) are normal ultrafilters over δ)}.\displaystyle=\{\delta<\kappa\mid\forall\beta<\alpha\forall\gamma<\beta(F_{\gamma}^{\alpha}(\delta)\vartriangleleft F_{\beta}^{\alpha}(\delta)\text{ are normal ultrafilters over }\delta)\}.
Bα\displaystyle B_{\alpha} ={δAα(λ+1)β<αγ<β([Fγβδ]Fβα(δ)=Fγα(δ))}.\displaystyle=\{\delta\in A_{\alpha}\setminus(\lambda+1)\mid\forall\beta<\alpha\forall\gamma<\beta([F^{\beta}_{\gamma}\upharpoonright\delta]_{F_{\beta}^{\alpha}(\delta)}=F_{\gamma}^{\alpha}(\delta))\}.

Note that BαUαB_{\alpha}\in U_{\alpha}. Magidor forcing 𝕄\mathbb{M} is the set of pairs a,X\langle a,X\rangle such that

  • aa is an increasing function such that

    • dom(a)[λ]<ω\operatorname{dom}(a)\in[\lambda]^{<\omega} and αdom(a)(a(α)Bα)\forall\alpha\in\operatorname{dom}(a)(a(\alpha)\in B_{\alpha}).

  • XX is a function such that

    • dom(X)=λdom(a)\operatorname{dom}(X)=\lambda\setminus\operatorname{dom}(a) and αdom(X)(X(α)Bα\forall\alpha\in\operatorname{dom}(X)(X(\alpha)\subseteq B_{\alpha}),

    • For every αdom(X)\alpha\in\operatorname{dom}(X), if dom(a)(α+1)=\operatorname{dom}(a)\setminus(\alpha+1)=\emptyset, X(α)UαX(\alpha)\in U_{\alpha}. Otherwise, X(α)Fαβ(a(ρ))X(\alpha)\in F^{\beta}_{\alpha}(a(\rho)) where β=min(dom(a)(α+1))\beta=\min(\operatorname{dom}(a)\setminus(\alpha+1)).

𝕄\mathbb{M} is ordered by a,Xb,Y{\langle a,X\rangle}\leq{\langle b,Y\rangle} iff bab\subseteq a, αdom(X)(X(α)Y(α))\forall\alpha\in\operatorname{dom}(X)(X(\alpha)\subseteq Y(\alpha)) and αdom(a)dom(b)(a(α)Y(α))\forall\alpha\in\operatorname{dom}(a)\setminus\operatorname{dom}(b)(a(\alpha)\in Y(\alpha)). 𝕄\mathbb{M} has the κ+\kappa^{+}-c.c. and size 2κ2^{\kappa}. Thus, 𝕄\mathbb{M} does not change the value of 2θ2^{\theta} for any θκ\theta\geq\kappa. 𝕄\mathbb{M} preserves all cardinals above κ\kappa but changes the cofinality of κ\kappa like Prikry forcing. Let g˙\dot{g} be an 𝕄\mathbb{M}-name such that 𝕄g˙={aXa,XG˙}\mathbb{M}\Vdash\dot{g}=\bigcup\{a\mid\exists X\langle a,X\rangle\in\dot{G}\}, where G˙\dot{G} is the canonical 𝕄\mathbb{M}-name for a generic filter. g˙\dot{g} is forced to be an increasing sequence of length λ\lambda which converges to κ\kappa. As in Prikry forcing, we also have

  • a,Xg˙dom(a)=aαλdom(a)(g˙(α)X(α))\langle a,X\rangle\Vdash\dot{g}\upharpoonright\operatorname{dom}({a})={a}\land\forall\alpha\in\lambda\setminus\operatorname{dom}(a)(\dot{g}(\alpha)\in X(\alpha)).

For each β<λ\beta<\lambda, We let 𝕄β={a,Xβa,X𝕄}\mathbb{M}_{\beta}=\{{\langle a,X\rangle}_{\beta}\mid{\langle a,X\rangle}\in\mathbb{M}\} and 𝕄β={a,Xβa,X𝕄}\mathbb{M}^{\beta}=\{{\langle a,X\rangle}^{\beta}\mid{\langle a,X\rangle}\in\mathbb{M}\}. Here, a,Xβ{\langle a,X\rangle}_{\beta} and a,Xβ{\langle a,X\rangle}^{\beta} are a(β+1),X(β+1){\langle a\upharpoonright(\beta+1),X\upharpoonright(\beta+1)\rangle} and a(λ(β+1)),X(λ(β+1)){\langle a\upharpoonright(\lambda\setminus(\beta+1)),X\upharpoonright(\lambda\setminus(\beta+1))\rangle} respectively. The orders on 𝕄β\mathbb{M}_{\beta} and 𝕄β\mathbb{M}^{\beta} are naturally defined by that on 𝕄\mathbb{M}. 𝕄\mathbb{M} can be factored as follows.

Lemma 4.1.

For every a,X𝕄{\langle a,X\rangle}\in\mathbb{M} and βdom(a)\beta\in\operatorname{dom}(a), we have

𝕄/a,X𝕄β/a,Xβ×𝕄β/a,Xβ.\mathbb{M}/{\langle a,X\rangle}\simeq\mathbb{M}_{\beta}/{\langle a,X\rangle}_{\beta}\times\mathbb{M}^{\beta}/{\langle a,X\rangle}^{\beta}.

Note that 𝕄β/a,Xβ\mathbb{M}_{\beta}/\langle a,X\rangle_{\beta} has the a(β)+a(\beta)^{+}-c.c. Lemmas 4.2 and 4.3 are analogues of Lemmas 2.4 and 2.5 for Magidor forcing respectively. See [7] for proofs.

Lemma 4.2.

Suppose that a,X𝕄{\langle a,X\rangle}\in\mathbb{M} and {b,XbbLP}\{{\langle b,X_{b}\rangle}\mid b\in{\rm LP}\} is a set of extensions of a,X\langle a,X\rangle where LP={bY(b,Ya,X)}{\rm LP}=\{b\mid\exists Y(\langle{b,Y}\rangle\leq\langle{a,X}\rangle)\}. Then there is a ZZ such that a,Z𝕄\langle a,Z\rangle\in\mathbb{M} and every extension of b,Y\langle{b,Y}\rangle is compatible with b,Xb\langle b,X_{b}\rangle if b,Ya,Z\langle b,Y\rangle\leq\langle a,Z\rangle.

Lemma 4.3 (Prikry lemma).

For every a,X𝕄\langle a,X\rangle\in\mathbb{M} and statement σ\sigma of the forcing language, βdom(a)\beta\in\operatorname{dom}(a), there is a ZZ such that

  • a,Za,X\langle a,Z\rangle\leq\langle a,X\rangle and a,Zβ=a,Xβ\langle a,Z\rangle_{\beta}=\langle a,X\rangle_{\beta}.

  • If b,Ya,Z\langle b,Y\rangle\leq\langle a,Z\rangle decides σ\sigma, then b,Yβa,Zβ\langle b,Y\rangle_{\beta}^{\frown}\langle a,Z\rangle^{\beta} decides σ\sigma.

Here is the fundamental theorem of Magidor forcing:

Theorem 4.4 (Magidor).

The following hold:

  1. (1)(1)

    𝕄\mathbb{M} adds no new subsets of λ\lambda. In particular, λ+Reg\lambda^{+}\cap{\rm Reg} remains the same by 𝕄\mathbb{M}.

  2. (2)(2)

    𝕄\mathbb{M} preserves all cardinals.

  3. (3)(3)

    𝕄\mathbb{M} forces that κ{\kappa} is a strong limit singular cardinal of cofinality λ{\lambda}.

Now we get an analogue of Theorem 1.3 (2) for Magidor forcing.

Theorem 4.5.

𝕄\mathbb{M} forces that pcf(κReg)=(2κ)+Reg\operatorname{pcf}({\kappa}\cap{\rm Reg})=(2^{{\kappa}})^{+}\cap{\rm Reg}.

Proof.

By the proof of Theorem 1.3, it suffices to show that 𝕄(κ,(2κ)+)Regpcf(κReg)\mathbb{M}\Vdash(\kappa,{(2^{\kappa})}^{+})\cap{\rm Reg}\subseteq\operatorname{pcf}(\kappa\cap{\rm Reg}). Note that (κ,(2κ)+)Reg(\kappa,(2^{\kappa})^{+})\cap{\rm Reg} remains the same after forcing with 𝕄\mathbb{M}. Let θ(κ,(2κ)+)Reg\theta\in(\kappa,(2^{\kappa})^{+})\cap{\rm Reg}. Let us see that 𝕄θpcf((κ,(2κ)+)Reg)\mathbb{M}\Vdash\theta\in\operatorname{pcf}((\kappa,(2^{\kappa})^{+})\cap{\rm Reg}).

For every γθ\gamma\leq\theta and α<λ\alpha<\lambda, we fix a function fγακκf^{\alpha}_{\gamma}\in{{}^{\kappa}}\kappa such that [fγα]Uα=γ[f^{\alpha}_{\gamma}]_{U_{\alpha}}=\gamma. We may assume fθα(κReg)κf_{\theta}^{\alpha}\in{{}^{\kappa}(\kappa\cap{\rm Reg})}. Let Xα<λUαX^{\prime}\in\prod_{\alpha<\lambda}U_{\alpha} be a function in VV such that X(α)={ξBαη<ξ(fθα(η)<ξ)ξ<fθα(ξ)}X^{\prime}({\alpha})=\{\xi\in B_{\alpha}\mid\forall\eta<\xi(f^{\alpha}_{\theta}(\eta)<\xi)\land\xi<f_{\theta}^{\alpha}(\xi)\} for any α<λ\alpha<\lambda.

We will show that 𝕄\mathbb{M} forces (αλfθα(g˙(α)),<){\left(\prod_{\alpha\in\lambda}{f}^{\alpha}_{\theta}(\dot{g}(\alpha)),<^{*}\right)} has an increasing and cofinal sequence of length θ\theta. Here, <<^{*} is an 𝕄\mathbb{M}-name for the order on αλfθα(g˙(α))\prod_{\alpha\in\lambda}{f}^{\alpha}_{\theta}(\dot{g}(\alpha)) defined by the cobounded filter over λ\lambda. This gives the desired result, as shown by the following argument:

By a usual density argument, we can find an 𝕄\mathbb{M}-name A˙\dot{A} such that 𝕄\mathbb{M} forces the following properties:

  • A˙[λ]λ\dot{A}\in[\lambda]^{\lambda}.

  • α,βA˙(α<βfθα(g˙(α))<fθβ(g˙(β)))\forall\alpha,\beta\in\dot{A}(\alpha<\beta\to f_{\theta}^{\alpha}(\dot{g}(\alpha))<f_{\theta}^{\beta}(\dot{g}(\beta))).

And thus, by the proof of Theorem 1.3, we have

𝕄(αA˙fθα(g˙(α)),<A˙)({fθα(g˙(α))αA˙},<F˙)\mathbb{M}\Vdash{\left(\prod_{\alpha\in\dot{A}}{f}^{\alpha}_{\theta}(\dot{g}(\alpha)),<^{*}\upharpoonright\dot{A}\right)}\simeq\left(\prod\{{f}_{\theta}^{\alpha}(\dot{g}(\alpha))\mid\alpha\in\dot{A}\},<_{\dot{F}}\right).

Here, F˙\dot{F} is an 𝕄\mathbb{M}-names for the cobounded filter over {fθα(g˙(α))αA˙}\{{f}_{\theta}^{\alpha}(\dot{g}(\alpha))\mid\alpha\in\dot{A}\}. It follows that 𝕄\mathbb{M} forces ({fθα(g˙(α)αA˙},<F˙)\left(\prod\{{f}_{\theta}^{\alpha}(\dot{g}(\alpha)\mid\alpha\in\dot{A}\},<_{\dot{F}}\right) has an increasing and cofinal sequence of length θ\theta.

For every γ<θ\gamma<\theta, let f˙γ\dot{f}_{\gamma} be an 𝕄\mathbb{M}-name for a function αfγα(g˙(α))\alpha\mapsto{f}^{\alpha}_{\gamma}(\dot{g}(\alpha)). It suffices to prove

  • (i)

    𝕄f˙γγ<θ\mathbb{M}\Vdash{\langle\dot{f}_{\gamma}\mid\gamma<{\theta}\rangle} is increasing in (α<λfθα(g˙(α)),<)\left(\prod_{\alpha<{\lambda}}{f}^{\alpha}_{\theta}(\dot{g}(\alpha)),<^{*}\right).

  • (ii)

    𝕄f˙γγ<θ\mathbb{M}\Vdash\langle\dot{f}_{\gamma}\mid\gamma<\theta\rangle is cofinal in (α<λfθα(g˙(α)),<)\left(\prod_{\alpha<{\lambda}}{f^{\alpha}_{\theta}}(\dot{g}(\alpha)),<^{*}\right).

(i) Let γ<δ<θ\gamma<\delta<\theta. Note that we have Y(α)={ξ<κfγα(ξ)<fδα(ξ)}UαY(\alpha)=\{\xi<\kappa\mid f_{\gamma}^{\alpha}(\xi)<f_{\delta}^{\alpha}(\xi)\}\in U_{\alpha} for each α<λ\alpha<\lambda. Let a,X𝕄\langle a,X\rangle\in\mathbb{M} be arbitrary. Define Z=(Xβa)X(α)Y(α)αβaZ=(X\upharpoonright\beta_{a})^{\frown}\langle X(\alpha)\cap Y(\alpha)\mid\alpha\geq\beta_{a}\rangle. Here, βa=maxdom(a)\beta_{a}=\max{\operatorname{dom}(a)}. Then a,Za,X\langle{a,Z}\rangle\leq\langle a,X\rangle forces fγ(α)<fδ(α)f_{\gamma}(\alpha)<f_{\delta}(\alpha) for every α>βa\alpha>\beta_{a}.

(ii) Let a,X𝕄\langle a,X\rangle\in\mathbb{M} and h˙\dot{h} be arbitrary. Suppose a,Xh˙α<λfθα(g˙(α))\langle a,X\rangle\Vdash\dot{h}\in\prod_{\alpha<{\lambda}}{f}^{\alpha}_{\theta}(\dot{g}(\alpha)). By the proof of (i), we may assume that X(α)X(α)X(\alpha)\subseteq X^{\prime}(\alpha) for all α>βb\alpha>\beta_{b}. For each bLP={bY(b,Ya,X)}b\in{\rm LP}=\{b\mid\exists Y(\langle b,Y\rangle\leq\langle a,X\rangle)\} define YbY_{b} and ηb<κ\eta_{b}<\kappa as follows. If βb>βa\beta_{b}>\beta_{a}, by Lemma 4.3 and fθβb(b(βb))<κf_{\theta}^{\beta_{b}}(b(\beta_{b}))<\kappa, there is a YbY_{b} such that

  • b,Yba,X\langle b,Y_{b}\rangle\leq\langle a,X\rangle.

  • if c,Zb,Yb\langle c,Z\rangle\leq\langle b,Y_{b}\rangle forces h˙(βb)=ζ\dot{h}(\beta_{b})={\zeta}, then c,Zβbb,Ybβbh˙(βb)=ζ\langle c,Z\rangle_{\beta_{b}}^{\frown}\langle b,Y_{b}\rangle^{\beta_{b}}\Vdash\dot{h}({\beta_{b}})={\zeta}.

Define ηb\eta_{b} by

ηb=sup{ζ+1<fθβb(b(βb))p𝕄βb/b,Ybβb(pb,Ybβbh˙(βb)=ζ)}\eta_{b}=\sup\{\zeta+1<f^{\beta_{b}}_{\theta}(b(\beta_{b}))\mid\exists p\in\mathbb{M}_{\beta_{b}}/\langle b,Y_{b}\rangle_{\beta_{b}}(p^{\frown}\langle b,Y_{b}\rangle^{\beta_{b}}\Vdash\dot{h}({\beta_{b}})={\zeta})\}.

Then,

b,Ybh˙(βb)<ηb\langle b,Y_{b}\rangle\Vdash\dot{h}({\beta_{b}})<\eta_{b}.

For bLPb\in\mathrm{LP} with βbβa\beta_{b}\leq\beta_{a}, Yb=XY_{b}=X and ηb=0\eta_{b}=0.

For each bLPb\in\mathrm{LP}, since 𝕄βb/b,Ybβb\mathbb{M}_{\beta_{b}}/\langle b,Y_{b}\rangle_{\beta_{b}} has the b(βb)+b(\beta_{b})^{+}-c.c., ηb<fθβb(b(βb))\eta_{b}<f^{\beta_{b}}_{\theta}(b(\beta_{b})). For every α>αb\alpha>\alpha_{b}, define hα(ξ)=sup{ηb<fθα(ξ)bLPb(βb)=ξβb=α}h^{\alpha}(\xi)=\sup\{\eta_{b}<f^{\alpha}_{\theta}(\xi)\mid b\in{\rm LP}\land b(\beta_{b})=\xi\land\beta_{b}=\alpha\}. Because of |{bLPb(βb)=ξβb=α}|=|α||ξ||\{b\in{\rm LP}\mid b(\beta_{b})=\xi\land\beta_{b}=\alpha\}|=|\alpha|\cdot|\xi|, we have hα(ξ)<fθα(ξ)h^{\alpha}(\xi)<f_{\theta}^{\alpha}(\xi) for every ξX(α)\xi\in X(\alpha). Let γ=supα>βb[hα]Uα+1<θ\gamma=\sup_{\alpha>\beta_{b}}[h^{\alpha}]_{U_{\alpha}}+1<\theta. By Lemma 4.2 and the proof of (i), there is an extension a,Za,X\langle a,Z\rangle\leq\langle a,X\rangle such that

  • every extension of b,Y\langle b,Y\rangle is compatible with b,Yb\langle b,Y_{b}\rangle if b,Ya,Z\langle b,Y\rangle\leq\langle a,Z\rangle.

  • α>βaξZ(α)(hα(ξ)<fγα(ξ))\forall\alpha>\beta_{a}\forall\xi\in Z(\alpha)(h^{\alpha}(\xi)<f_{\gamma}^{\alpha}(\xi)).

Lastly, we claim that a,Zh˙(α)<f˙γ(α)\langle a,Z\rangle\Vdash\dot{h}(\alpha)<\dot{f}_{\gamma}(\alpha) for all α>βa\alpha>\beta_{a}. Let b,Ya,Z\langle{b,Y}\rangle\leq\langle{a,Z}\rangle and α>βa\alpha>\beta_{a} be arbitrary. Extending b,Y\langle b,Y\rangle we may assume that αdom(b)(βa+1)\alpha\in\operatorname{dom}(b)\setminus(\beta_{a}+1). Now, we can find c,Y\langle c,Y^{\prime}\rangle such that b,Yc,Ya,Z\langle b,Y\rangle\leq\langle c,Y^{\prime}\rangle\leq\langle a,Z\rangle and βc=α\beta_{c}=\alpha. By the certain property of a,Z\langle a,Z\rangle, c,Yc\langle{c,Y_{c}}\rangle and b,Y\langle b,Y\rangle have a common extension forcing h˙(α)<ηc<hα(c(α))<fγα(c(α))=f˙γ(α)\dot{h}(\alpha)<\eta_{c}<h^{\alpha}(c(\alpha))<f^{\alpha}_{\gamma}(c(\alpha))=\dot{f}_{\gamma}(\alpha), as desired. ∎

Theorem 4.5 enables us to generalize Theorem 3.2 as follows, including the case of uncountable cofinality.

Theorem 4.6.

Suppose κii<ω\langle\kappa_{i}\mid i<\omega\rangle is an increasing sequence of supercompact cardinals greater than a regular cardinal λ\lambda. Then in some forcing extension the following hold:

  1. (1)(1)

    κ0\kappa_{0} is a singular cardinal of cofinality λ\lambda.

  2. (2)(2)

    pcfn(κ0Reg)pcfn+1(κ0Reg)\operatorname{pcf}^{n}(\kappa_{0}\cap{\rm Reg})\subsetneq\operatorname{pcf}^{n+1}(\kappa_{0}\cap{\rm Reg}) for all n<ωn<\omega.

  3. (3)(3)

    λ+Reg=(λ+Reg)V\lambda^{+}\cap{\rm Reg}=(\lambda^{+}\cap{\rm Reg})^{V}.

For ARegA\subseteq{\rm Reg}, define

pcfα(A)={Aα=0pcf(pcfβ(A))α=β+1β<αpcfβ(A)αLim\operatorname{pcf}^{\alpha}(A)=\begin{cases}A&\alpha=0\\ \operatorname{pcf}(\operatorname{pcf}^{\beta}(A))&\alpha=\beta+1\\ \bigcup_{\beta<\alpha}\operatorname{pcf}^{\beta}(A)&\alpha\in{\rm Lim}\end{cases}

Note that GCH implies pcf(pcf(A))=pcf(A)\operatorname{pcf}(\operatorname{pcf}(A))=\operatorname{pcf}(A) for every ARegA\subseteq{\rm Reg}. By Theorem 4.6, it is consistent that pcfn(A)n<ω{\langle\operatorname{pcf}^{n}(A)\mid n<\omega\rangle} is \subsetneq-increasing for some ARegA\subseteq{\rm Reg}. We conclude this paper with the following

Question 4.7.

Is it a theorem of ZFC that for every ARegA\subseteq{\rm Reg} there is an α\alpha such that pcfα+1(A)=pcfα(A)\operatorname{pcf}^{\alpha+1}(A)=\operatorname{pcf}^{\alpha}(A)?

References

  • [1] Abraham, U. and Magidor, M. Cardinal arithmetic. In Handbook of set theory. Vols. 1, 2, 3, pages 1149–1227. Springer, Dordrecht, 2010.
  • [2] Apter, A. W. Some results on consecutive large cardinals. Ann. Pure Appl. Logic 25(1983), no.1, 1–17.
  • [3] Easton, W. B. Powers of regular cardinals. Ann. Math. Logic 1 (1970), 139–178.
  • [4] Gitik, M. Prikry-type forcings. In Handbook of set theory. Vols. 1, 2, 3, pages 1351–1447. Springer, Dordrecht, 2010.
  • [5] Kanamori, A. The higher infinite. Springer Monographs in Mathematics. Springer-Verlag, Berlin, second edition, Large cardinals in set theory from their beginnings, Paperback reprint of the 2003 edition, 2009.
  • [6] Laver, R. Making the supercompactness of κ\kappa indestructible under κ\kappa-directed closed forcing. Israel J. Math. 29(1978), no.4, 385–388.
  • [7] Magidor, M. Changing cofinality of cardinals. Fund. Math. 99(1978), no. 1, 61–71.
  • [8] Neeman, I. and Unger, S. Aronszajn trees and the SCH. In Appalachian set theory 2006–2012, volume 406 of London Math. Soc. Lecture Note Ser., pages 187–206. Cambridge Univ. Press, Cambridge, 2013.
  • [9] Prikry, K. L. Changing measurable into accessible cardinals. Dissertationes Math. (Rozprawy Mat.) 68(1970), 55.
  • [10] Shelah, S. Cardinal arithmetic. volume 29 of Oxford Logic Guides. The Clarendon Press, Oxford University Press, New York, Oxford Science Publications, 1994.
  • [11] Silver, J. On the singular cardinals problem. In Proceedings of the International Congress of Mathematicians (Vancouver, B. C., 1974), Vol. 1, pages 265–268, 1975.