This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Power Fluctuations of An Irreversible Quantum Otto Engine

Guangqian Jiao1    Shoubao Zhu1    Jizhou He1    Yongli Ma2    Jianhui Wang1,2 [email protected] 1{}^{1}\, Department of Physics, Nanchang University, Nanchang 330031, China
2{}^{2}\, State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai 200433, China
Abstract

We derive the general probability distribution function of stochastic work for quantum Otto engines in which both the isochoric and driving processes are irreversible due to finite time duration. The time-dependent power fluctuations, average power, and thermodynamic efficiency are explicitly obtained for a complete cycle operating with an analytically solvable two-level system. We show that, there is a trade-off between efficiency (or power) and power fluctuations.

PACS number(s): 05.70.Ln

I Introduction

The second law of thermodynamics tells us that any heat engines working between a hot and a cold thermal bath of constant inverse temperatures βh\beta_{h} and βc\beta_{c} (with β=1/T\beta=1/T and kB1k_{B}\equiv 1) are not able to run more efficiently than a reversible Carnot cycle with its efficiency ηC=1βh/βc\eta_{C}=1-\beta_{h}/\beta_{c}. When a cyclic heat engine runs at a Carnot efficiency, its cycle operation consisting of consecutive thermodynamic processes must be reversible and thus the power output becomes null. Practically heat engines must proceed in a finite time period accounting for irreversibility and produce finite power output 1 ; 2 ; 3 ; 4 ; 5 ; 6 . The performance in finite time was intensively studied for both quantum7 ; 8 and classical4 engines. For an adequate description of heat engines, the effects induced by finite-time cycle operation on the machine performance have to be considered by involving both heat-transfer and adiabatic processes.

Unlike in macroscopic systems where both work and heat are deterministic, the work 9 ; 10 ; 11 ; 12 ; 13 ; 14 ; 15 ; 16 ; 17 and heat 18 ; 19 ; 20 for microscale systems are random due to thermal and quantum fluctuations8 ; 10 ; 21 ; 22 ; 23 ; 24 . The statistics of either work or efficiency for heat engines at microscale were examined experimentally and theoretically8 ; 16 ; 22 ; 23 ; 25 ; 26 ; 27 ; 28 ; 29 ; 30 ; 31 ; 32 ; 33 ; 34 , but under the assumption that either adiabatic8 ; 23 or isothermal strokes22 are reversible. To our knowledge, the power fluctuations have not been examined so far for an irreversible quantum heat engine where the isothermal and adiabatic strokes are finite-time and thus both of them are away from reversible limit.

In this paper, we derive the general expression for the distribution function of quantum work and heat along irreversible quantum Otto engines composed of two finite-time isochoric and two driving strokes8 ; 22 ; 23 ; 34 ; 35 ; 36 ; 37 ; 38 . This distribution function allows us to obtain the quantum work statistics explicitly depending on the time evolution dynamics of the two isochoric and two driving processes. We then analytically examine the power statistics of an Otto cycle working with an exactly, solvable two-level system. The effects of irreversibility induced by finite-time duration of either driving or isochoric strokes on machine performance and power statistics are discussed. We finally demonstrate that irreversibility results in deterioration of efficiency and power but increasing the power fluctuations, thereby indicating that the price for improving machine efficiency is increasing power fluctuations.

II Model

The model of a quantum Otto engine is sketched in Fig. 1. This machine consists of two isochoric branches, one with a hot and another with a cold thermal bath where the system frequency is kept constant, and two driving strokes, where the system (which is isolated from the two heat reservoirs and driven by the external field) undergoes unitary transformation. The four branches can be described as follows.

Refer to caption
Figure 1: Schematic diagram of a two-level quantum Otto cycle operating between a hot and a cold thermal bath of inverse constant inverse temperatures (βh\beta_{h} and βc\beta_{c}) in (ω,n)(\omega,\langle n\rangle) plane. The cycle consists of the two driving strokes (connecting states AA and BB, and CC and DD), where the system isolated from the two thermal baths evolves unitary transformation and the respective time durations are τch\tau_{ch} and τhc\tau_{hc}, and two isochoric strokes (connecting states BB and CC, and DD and AA), where the system is kept in thermal contact with the hot and the cold reservoir, respectively, and these respective time durations are τh\tau_{h} and τc\tau_{c}. The average populations at the four instants A,B,C,DA,B,C,D can be expressed as nA=n(0),nB=n(τch),nC=n(τch+τh),nD=n(τcycτc)\langle n_{A}\rangle=\langle n(0)\rangle,\langle n_{B}\rangle=\langle n(\tau_{ch})\rangle,\langle n_{C}\rangle=\langle n(\tau_{ch}+\tau_{h})\rangle,\langle n_{D}\rangle=\langle n(\tau_{cyc}-\tau_{c})\rangle. The mean population nA(nC)\langle n_{A}\rangle(\langle n_{C}\rangle) at the end of the cold (hot) isochoric stroke would approach its asymptotic value nceq\langle n_{c}\rangle^{eq} (nheq\langle n_{h}\rangle^{eq}), when and only when the thermalization is completed after infinite long duration of the system-bath interaction interval τc\tau_{c} (τh\tau_{h}).

During the adiabatic compression ABA\rightarrow B, the system is isolated from the two thermal baths but driven by the external field, and it undergoes a unitary expansion from time t=0t=0 to t=τcht=\tau_{ch}. Initially, the system of inverse temperature βA\beta_{A} is assumed to be (local) thermal equilibrium 2 ; 3 , which means that the thermal occupation probability at instant AA takes the canonical form

pn0=eβAEncZA,p_{n}^{0}=\frac{e^{-\beta_{A}E^{c}_{n}}}{Z_{A}}, (1)

with the partition function ZA=neβAEncZ_{A}=\sum_{n}e^{-\beta_{A}E_{n}^{c}}. The transition probability from eigenstate |n|n\rangle to |m|m\rangle is given by

pnmτch=|n|Ucom|m|2,p_{n\rightarrow m}^{\tau_{ch}}=|\langle n|U_{\mathrm{com}}|m\rangle|^{2}, (2)

where UcomU_{\mathrm{com}} denotes the unitary time evolution operator along the compression. In the special case when the system Hamiltonian evolves slowly enough by satisfying quantum adiabatic condition 38 , the system remains in the same state and the transition probability becomes pnmτch=δnmp_{n\rightarrow m}^{\tau_{ch}}=\delta_{nm}, with the Kronecker delta function δ\delta.

The next step is the hot isochore BCB\rightarrow C, where the system with constant frequency ω=ωh\omega=\omega_{h} is in contact with the hot thermal bath in a time duration τh\tau_{h}. The probability density of the stochastic heat absorbed from the hot bath can be determined by the conditional probability to obtain

p(qh)=k,lδ[qh(ElhEkh)]pklτh.p(q_{h})=\sum_{k,l}\delta[q_{h}-(E_{l}^{h}-E_{k}^{h})]p_{k\rightarrow l}^{\tau_{h}}. (3)

After this system-bath interaction interval, the system is assumed to be at the local thermal equilibrium state of inverse temperature βC(βh)\beta_{C}(\geq\beta_{h}), which means that pklτh=eβCElh/ZCp_{k\rightarrow l}^{\tau_{h}}={e^{-\beta_{C}E^{h}_{l}}}/{Z_{C}} with partition function ZC=leβCElhZ_{C}=\sum_{l}{e^{-\beta_{C}E^{h}_{l}}}.

During the expansion CDC\rightarrow D, the system is isolated from these two thermal baths in a time period τhc\tau_{hc} while its frequency changes back to ωc\omega_{c} from ωh\omega_{h}. Like in the driving compression, there is a transition probability from initial state ii to final one jj, which reads

pijτhc=|i|Uexp|j|2,p_{i\rightarrow j}^{\tau_{hc}}=|\langle i|U_{\mathrm{exp}}|j\rangle|^{2}, (4)

where UexpU_{\mathrm{exp}} is the time evolution operator along the expansion. At the initial instant CC the system approaches the thermal equilibrium and the occupation probabilities take the form piτch+τh=δilpklτhp_{i}^{\tau_{ch}+\tau_{h}}=\delta_{il}p_{k\rightarrow l}^{\tau_{h}}, where pklτhp_{k\rightarrow l}^{\tau_{h}} was defined in Eq. (3).

On the fourth branch DAD\rightarrow A, the system with constant frequency ω=ωc\omega=\omega_{c} is coupled to a cold reservoir of inverse temperature βc\beta_{c} in a time period τc\tau_{c}. After a cycle with the total period τcyc=τch+τh+τhc+τc\tau_{cyc}=\tau_{ch}+\tau_{h}+\tau_{hc}+\tau_{c} the system returns to its initial state AA, we can easily determine the quantum heat qcq_{c} similar to that of the quantum heat qhq_{h}. As emphasized, at instant AA the system tends to be (local) thermal equilibrium after system-bath interaction interval, which is consistent with the assumption of canonical form Eq. (1).

In view of the fact that the work per cycle is produced only in the two driving strokes ABA\rightarrow B and CDC\rightarrow D, the quantum work output can be obtained by determining the total work produced along these two microscopic trajectories to arrive at

w[n(0)m(τch);i(τch+τh)j(τcycτc)]=(EihEjc)(EmhEnc),\mathrm{w}[n(0)\rightarrow m(\tau_{ch});i(\tau_{ch}+\tau_{h})\rightarrow j(\tau_{cyc}-\tau_{c})]=(E_{i}^{h}-E_{j}^{c})-(E_{m}^{h}-E_{n}^{c}), (5)

where EncE_{n}^{c} and EmhE_{m}^{h} (EihE_{i}^{h} and EjcE_{j}^{c}) denote the respective energy eigenvalues at the initial and final instants of the compression (expansion). Here n(t)n(t) are quantum numbers indicating the states occupied by the system at time tt.

The states |n(0)|n(0)\rangle and |m(τch)|m(\tau_{ch})\rangle can be assumed to be independent of i(τch+τh)i(\tau_{ch}+\tau_{h}) and j(τcycτc)j(\tau_{cyc}-\tau_{c}), since the system would relax to thermal equilibrium in an isochoric process if its time duration is long enough. This leads to the main result of this paper, namely, the following expression for the probability density of the work w\mathrm{w}:

p(w)=m,n,i,jpnmτchpn0pijτhcpiτch+τhδ{ww[n(0)m(τch);i(τch+τh)j(τcycτc)]},p(\mathrm{w})=\sum_{m,n,i,j}p_{n\rightarrow m}^{\tau_{ch}}p_{n}^{0}p_{i\rightarrow j}^{\tau_{hc}}p_{i}^{\tau_{ch}+\tau_{h}}\delta\{\mathrm{w}-\mathrm{w}[n(0)\rightarrow m(\tau_{ch});i(\tau_{ch}+\tau_{h})\rightarrow j(\tau_{cyc}-\tau_{c})]\}, (6)

where pnmτchp_{n\rightarrow m}^{\tau_{ch}} and pijτhcp_{i\rightarrow j}^{\tau_{hc}} were defined in Eq. (2) and Eq. (4), respectively. The probability distribution function Eq. (6) for the irreversible Otto engine allows us to determine all moments of quantum work: wk=wkp(w)𝑑w\langle\mathrm{w}^{k}\rangle=\int\mathrm{w}^{k}p(\mathrm{w})d\mathrm{w} (k=1,2,).k=1,2,\dots). This result reduces to that previously obtained in a quasistatic 27 or an endoreversible 8 Otto engine when ξ0\xi\rightarrow 0 or τc,h\tau_{c,h}\rightarrow\infty. We present it here in a broader context by arguing that irreversibility is unavoidable in a finite-time cyclic engine where both the driving and system-bath interaction steps are away from quasistatic limit. For an endoreversible model where the two driving strokes are isentropic, we recover the work fluctuations 8 by setting pnmτch=δnmp_{n\rightarrow m}^{\tau_{ch}}=\delta_{nm} and pijτhc=δijp_{i\rightarrow j}^{\tau_{hc}}=\delta_{ij}, p(w)=n,ipn0piτch+τhδ{ww[n(0);i(τch+τh)]}p(\mathrm{w})=\sum_{n,i}p_{n}^{0}p_{i}^{\tau_{ch}+\tau_{h}}\delta\{\mathrm{w}-\mathrm{w}[n(0);i(\tau_{ch}+\tau_{h})]\}.

III Quantum Otto engine working with a two-level system

We now consider a quantum Otto engine that works with a two-level system of the eigenenergies E+=ω/2E_{+}=\hbar\omega/2 and E=ω/2E_{-}=-\hbar\omega/2. As the occupation probabilities at these two eigenstates p+=eβωc/2/ZAp_{+}=e^{-\beta\hbar\omega_{c}/2}/Z_{A} and p=eβωc/2/ZAp_{-}=e^{\beta\hbar\omega_{c}/2}/Z_{A}, where the partition function ZA=eβAωc/2+eβAωc/2=2cosh(βAωc2),Z_{A}=e^{-\beta_{A}\hbar\omega_{c}/2}+e^{\beta_{A}\hbar\omega_{c}/2}=2\cosh\left(\frac{\beta_{A}\hbar\omega_{c}}{2}\right), the mean population at instant AA (with time t=0t=0) can be determined by using n=nnpn\langle n\rangle=\sum_{n}np_{n} to arrive at

n(0)=12tanh(βAωc2).\langle n(0)\rangle=-\frac{1}{2}\tanh\left(\frac{\beta_{A}\hbar\omega_{c}}{2}\right). (7)

The mean population at final instant BB can then be determined according to n(τch)=n,mnpmnτchpm0\langle n(\tau_{ch})\rangle=\sum_{n,m}np_{m\rightarrow n}^{\tau_{ch}}p_{m}^{0}, which together with Eqs. (1) and (2), leads to

n(τch)=(12ξ)n(0),\langle n(\tau_{ch})\rangle=\left(1-2\xi\right)\langle n(0)\rangle, (8)

where ξ=|±|Ucom||2\xi=|\langle\pm|U_{\mathrm{com}}|\mp\rangle|^{2}. Using n(τcycτc)=n,mnpmnτhcpmτch+τh\langle n(\tau_{cyc}-\tau_{c})\rangle=\sum_{n,m}np_{m\rightarrow n}^{\tau_{hc}}p_{m}^{\tau_{ch}+\tau_{h}}, for the unitary expansion CDC\rightarrow D there is the relation:

n(τcycτc)=(12ξ)n(τch+τh),\langle n(\tau_{cyc}-\tau_{c})\rangle=(1-2\xi)\langle n(\tau_{ch}+\tau_{h})\rangle, (9)

where we have assumed ξ=|±|Uexp||2=|±|Ucom||2\xi=|\langle\pm|U_{\mathrm{exp}}|\mp\rangle|^{2}=|\langle\pm|U_{\mathrm{com}}|\mp\rangle|^{2}. ξ\xi is called the adiabaticity parameter representing the probability of transition between state |+|+\rangle and ||-\rangle during the compression or expansion, and the probability of no state transition is accordingly |±|Uexp|±|2=|±|Ucom|±|2=1ξ|\langle\pm|U_{\mathrm{exp}}|\pm\rangle|^{2}=|\langle\pm|U_{\mathrm{com}}|\pm\rangle|^{2}=1-\xi. Since the population n\langle n\rangle at any instant along the cycle is negative, ξ\xi must be situated between 0ξ<1/20\leq\xi<1/2. The adiabaticity parameter ξ\xi depends on the speed at which the driving process is performed7 ; 22 ; 36 , and it is thus a monotonic decreasing function of time duration τh,c\tau_{h,c}. Unlike in an adiabatic phase where the time scale of state change must be much larger than the dynamical one and the probability of state change is vanishing (ξ=0\xi=0), during the nonadiabatic driving stroke the rapid change in frequency ω\omega leads to inner friction and results in possible state transitions (ξ>0\xi>0)22 ; 36 ; 39 ; 40 ; 41 ; 42 . Such nonadiabatic internal dissipation accounts for irreversible entropy production and an increase in mean population n\langle n\rangle (see Fig. 1).

We are interested in the finite-time operation of the Otto engine in which the isochoric processes are far away from quasistatic limit and complete thermalization can thus not be achieved for the system. Using the master equation of stochastic thermodynamics , one can find that the mean populations n(0)\langle n(0)\rangle and n(τch+τh)\langle n(\tau_{ch}+\tau_{h})\rangle can be expressed in terms of the corresponding asymptotic equilibrium values nceq\langle n_{c}\rangle^{eq} and nheq\langle n_{h}\rangle^{eq} (see Appendix A),

n(0)=nceq+[n(τcyc)nceq]eγcτc,\langle n(0)\rangle=\langle n_{c}\rangle^{eq}+[\langle n(\tau_{cyc})\rangle-\langle n_{c}\rangle^{eq}]e^{-\gamma_{c}\tau_{c}}, (10)
n(τch+τh)=nheq+[n(τch)nheq]eγhτh.\langle n(\tau_{ch}+\tau_{h})\rangle=\langle n_{h}\rangle^{eq}+[\langle n(\tau_{ch})\rangle-\langle n_{h}\rangle^{eq}]e^{-\gamma_{h}\tau_{h}}. (11)

Using Eqs. (8),(9),(10) and (11), n(0)\langle n(0)\rangle and n(τch+τh)\langle n(\tau_{ch}+\tau_{h})\rangle can be rewritten as

n(0)=nceq+Δc,n(τch+τh)=nheq+Δh\langle n(0)\rangle=\langle n_{c}\rangle^{eq}+\Delta_{c},\langle n(\tau_{ch}+\tau_{h})\rangle=\langle n_{h}\rangle^{eq}+\Delta_{h} (12)

where

Δh=(2ξ1)[(2ξ1)nheq+nceq]xc[nheq+(2ξ1)nceq]xhxc(2ξ1)2,\Delta_{h}=\frac{\left(2\xi-1\right)\left[\left(2\xi-1\right)\langle n_{h}\rangle^{eq}+\langle n_{c}\rangle^{eq}\right]-x_{c}\left[\langle n_{h}\rangle^{eq}+\left(2\xi-1\right)\langle n_{c}\rangle^{eq}\right]}{x_{h}x_{c}-\left(2\xi-1\right)^{2}}, (13)
Δc=(2ξ1)[(2ξ1)nceq+nheq]xh[nceq+(2ξ1)nheq]xhxc(2ξ1)2.\Delta_{c}=\frac{\left(2\xi-1\right)\left[\left(2\xi-1\right)\langle n_{c}\rangle^{eq}+\langle n_{h}\rangle^{eq}\right]-x_{h}\left[\langle n_{c}\rangle^{eq}+\left(2\xi-1\right)\langle n_{h}\rangle^{eq}\right]}{x_{h}x_{c}-\left(2\xi-1\right)^{2}}. (14)

Here xheγhτhx_{h}\equiv e^{\gamma_{h}\tau_{h}} and xceγcτcx_{c}\equiv e^{\gamma_{c}\tau_{c}} denote the effective time durations along the hot and cold isochoric branches, respectively. Here nceq\langle n_{c}\rangle^{eq} and nheq\langle n_{h}\rangle^{eq} are achieved in the reversible, quasistatic limit when xh,xcx_{h},x_{c}\rightarrow\infty leads to Δh,c0\Delta_{h,c}\rightarrow 0, whether ξ\xi is zero or not. However, Δc\Delta_{c} and Δh\Delta_{h} are still positive for finite values of xcx_{c} and xhx_{h} even for two reversible driving processes with ξ0\xi\rightarrow 0. These corrections Δc\Delta_{c} and Δh\Delta_{h} indicate that how far the heat-transfer processes deviate from the reversible limit, and imply that irreversibility is exclusively caused by heat transferred between the system and the thermal bath. Such a deviation is quite natural in both quantum heat engines and classical context when the heat-transfer processes are irreversible due to finite-time duration.

For this two-level engine, the probability density of quantum work Eq. (6) can be analytically obtained as,

p(w)=\displaystyle p(\mathrm{w})= [12+2n(0)n(τch+τh)(12ξ)(1ξ)ξ]δ(w)\displaystyle\left[\frac{1}{2}+2\langle n(0)\rangle\langle n(\tau_{ch}+\tau_{h})\left(1-2\xi\right)-\left(1-\xi\right)\xi\right]\delta(\mathrm{w}) (15)
+12[(12n(0))(1ξ)ξ]δ(w+ωc)\displaystyle+\frac{1}{2}\left[\left(1-2\langle n(0)\rangle\right)\left(1-\xi\right)\xi\right]\delta(\mathrm{w}+\hbar\omega_{c})
+12[(2n(τch+τh)+1)(1ξ)ξ]δ(wωh)\displaystyle+\frac{1}{2}\left[\left(2\langle n(\tau_{ch}+\tau_{h})\rangle+1\right)\left(1-\xi\right)\xi\right]\delta(\mathrm{w}-\hbar\omega_{h})
+14[(2n(τch+τh)1)(2n(0)1)ξ2]δ(w+ωh+ωc)\displaystyle+\frac{1}{4}\left[\left(2\langle n(\tau_{ch}+\tau_{h})\rangle-1\right)\left(2\langle n(0)\rangle-1\right)\xi^{2}\right]\delta(\mathrm{w}+\hbar\omega_{h}+\hbar\omega_{c})
+14[1(2n(τch+τh))(2n(0)+1)(1ξ)2]δ(w+ωhωc)\displaystyle+\frac{1}{4}\left[1-\left(2\langle n(\tau_{ch}+\tau_{h})\rangle\right)\left(2\langle n(0)\rangle+1\right)\left(1-\xi\right)^{2}\right]\delta(\mathrm{w}+\hbar\omega_{h}-\hbar\omega_{c})
+14[(2n(τch+τh)+1)(12n(0))(1ξ)2]δ(w+ωcωh)\displaystyle+\frac{1}{4}\left[\left(2\langle n(\tau_{ch}+\tau_{h})\rangle+1\right)\left(1-2\langle n(0)\rangle\right)\left(1-\xi\right)^{2}\right]\delta(\mathrm{w}+\hbar\omega_{c}-\hbar\omega_{h})
+12[(2n(0)+1)(1ξ)ξ]δ(wωc)\displaystyle+\frac{1}{2}\left[\left(2\langle n(0)\rangle+1\right)\left(1-\xi\right)\xi\right]\delta(\mathrm{w}-\hbar\omega_{c})
+14[(2n(0)+1)(2n(τch+τh)+1)ξ2]δ(wωcωh)\displaystyle+\frac{1}{4}\left[\left(2\langle n(0)\rangle+1\right)\left(2\langle n(\tau_{ch}+\tau_{h})\rangle+1\right)\xi^{2}\right]\delta(\mathrm{w}-\hbar\omega_{c}-\hbar\omega_{h})
+12[(12n(τch+τh))(1ξ)ξ]δ(w+ωh).\displaystyle+\frac{1}{2}\left[\left(1-2\langle n(\tau_{ch}+\tau_{h})\rangle\right)\left(1-\xi\right)\xi\right]\delta(\mathrm{w}+\hbar\omega_{h}).

The stochastic work can take nine different discrete values as shown Fig. 2. The following should be noted in respect of the stochastic work per cycle: (i) w=0\mathrm{w}=0 indicates that the stochastic work by the system along the expansion is fully counterbalanced by that during the compression. (ii) w=ωcωh\mathrm{w}=\hbar\omega_{c}-\hbar\omega_{h} (w=ωhωc\mathrm{w}=\hbar\omega_{h}-\hbar\omega_{c}) corresponds to the case when the system jumps down from high-energy (low-energy) state to low-energy (high-energy) one along the hot isochore, namely, n=m=1/2n=m=1/2 but i=j=1/2i=j=-1/2 ( n=m=1/2n=m=-1/2 and i=j=1/2i=j=1/2) in Eq. (6). These values exist in the adiabatic or nonadiabatic driving. (iii) There are more values of stochastic work in the nonadiabatic driving than in the adiabatic case due to quantum fluctuations induced by nonadiabatic transitions. (iv) Finally the distribution p(w)p(\mathrm{w}) is expected to be normalized to one either for adiabatic or nonadiabatic driving.

Refer to caption
Figure 2: The probability distribution p(w)p(\mathrm{w}) of the quantum work for the adiabatic (with ξ=0,\xi=0, black squares) and nonadiabatic (with ξ=0.3,\xi=0.3, red dots) steps. The parameters are xc=xh=8x_{c}=x_{h}=8, ωc=0.4ωh=0.4\omega_{c}=0.4\omega_{h}=0.4, βh=0.2βc=0.2\beta_{h}=0.2\beta_{c}=0.2, and =2\hbar=2.

Using Eq. (3), the average heat injection, qh=qhp(qh)𝑑qh\langle q_{h}\rangle=\int q_{h}p(q_{h})dq_{h}, can be obtained as

qh=ωh[n(τch+τh)(12ξ)n(0)].\langle q_{h}\rangle=\hbar\omega_{h}[\langle n(\tau_{ch}+\tau_{h})\rangle-(1-2\xi)\langle n(0)\rangle]. (16)

By using simple algebra (see Appendix B for details), the average work (w\langle\mathrm{w}\rangle) and the work fluctuations (δw2=w2w2\delta\mathrm{w}^{2}=\langle\mathrm{w}^{2}\rangle-\langle\mathrm{w}\rangle^{2}) can be obtained as

w=[ωc(12ξ)ωh]n(0)+[ωh(12ξ)ωc]n(τch+τh),\langle\mathrm{w}\rangle=\hbar[\omega_{c}-(1-2\xi)\omega_{h}]\langle n(0)\rangle+\hbar[\omega_{h}-(1-2\xi)\omega_{c}]\langle n(\tau_{ch}+\tau_{h})\rangle, (17)

and

δw2=\displaystyle\delta\mathrm{w}^{2}= 2ωh2[12n(0)2(12ξ)2n(τch+τh)2]\displaystyle\hbar^{2}\omega_{h}^{2}[\frac{1}{2}-\langle n(0)\rangle^{2}(1-2\xi)^{2}-\langle n(\tau_{ch}+\tau_{h})\rangle^{2}] (18)
+2ωc2[12n(0)2(12ξ)2n(τch+τh)2]\displaystyle+\hbar^{2}\omega_{c}^{2}[\frac{1}{2}-\langle n(0)\rangle^{2}-(1-2\xi)^{2}\langle n(\tau_{ch}+\tau_{h})\rangle^{2}]
2ωcωh(12ξ)[12n(0)22n(τch+τh)2].\displaystyle-\hbar^{2}\omega_{c}\omega_{h}(1-2\xi)[1-2\langle n(0)\rangle^{2}-2\langle n(\tau_{ch}+\tau_{h})\rangle^{2}].

From Eqs. (16) and (17), the machine efficiency defined by η=w/qh\eta=\langle\mathrm{w}\rangle/\langle q_{h}\rangle, can be expressed as

η=1ωcωhn(0)(12ξ)n(τch+τh)(12ξ)n(0)n(τch+τh).\eta=1-\frac{\omega_{c}}{\omega_{h}}\frac{\langle n(0)\rangle-(1-2\xi)\langle n(\tau_{ch}+\tau_{h})\rangle}{(1-2\xi)\langle n(0)\rangle-\langle n(\tau_{ch}+\tau_{h})\rangle}. (19)

In case both isochoric and driving processes proceed in finite time, internal dissipation and uncomplete thermalization occur in the system resulting in the thermodynamic efficiency Eq. (19) that depends on the time evolution along each cycle except if these four processes may be done infinitely long, making the efficiency reduce to the one for cycles with complete thermalization, η=1ωcωh(12ξ)nheqnceqnheq(12ξ)nceq\eta=1-\frac{\omega_{c}}{\omega_{h}}\frac{(1-2\xi)\langle n_{h}\rangle^{eq}-\langle n_{c}\rangle^{eq}}{\langle n_{h}\rangle^{eq}-(1-2\xi)\langle n_{c}\rangle^{eq}}7 ; 34 ; 36 , or the one for models without internal dissipation 2 ; 3 ; 35 , η=1ωcωh\eta=1-\frac{\omega_{c}}{\omega_{h}}.

Refer to caption
Refer to caption
Figure 3: (Color online) The work fluctuations δw2\delta\mathrm{w}^{2} (black solid line ) and the efficiency η\eta (red dashed line) as a function of the inverse temperature of cold bath βc=5βh\beta_{c}=5\beta_{h} for ξ=0.01\xi=0.01 (a) and ξ=0.03\xi=0.03 (b). The parameters are xc=xh=8x_{c}=x_{h}=8, ωh=2ωc=1\omega_{h}=2\omega_{c}=1, and =2\hbar=2.

The efficiency and work fluctuations as a function of the inverse temperature βc\beta_{c} of cold bath is shown in Fig. 3(a) and Fig. 3(b). When increasing temperature, the efficiency η\eta increases but the work fluctuations δw2\delta\mathrm{w}^{2} decrease. The efficiency at high temperatures is larger than that at low temperatures, showing that the quantum effects which are of significance in low temperature regime can improve the machine efficiency. Because the quantum fluctuations characterizing the low temperature domain are smaller than the thermal fluctuations dominating the high temperature region, the work fluctuations δw2\delta\mathrm{w}^{2} get increased while the temperature is increased and vice versa. The increase in the adiabacity parameter ξ\xi yields in a decrease (an increase) in the machine efficiency (work fluctuations) as it should, thereby showing that there is a trade-off between efficiency and work fluctuations.

Since the stochastic power is the work divided by the cycle period τcyc\tau_{cyc}, namely, w˙[|n(0);|n(τch+τh)]=w[|n(0);|n(τch+τh)]/τcyc\dot{\mathrm{w}}[|n(0)\rangle;|n(\tau_{ch}+\tau_{h})\rangle]=\mathrm{w}[|n(0)\rangle;|n(\tau_{ch}+\tau_{h})\rangle]/\tau_{cyc}, the relative fluctuations of the power fw˙f_{\dot{\mathrm{w}}} are equivalent to corresponding those of work fwf_{\mathrm{w}}, leading to fw˙=fw=δw2/wf_{\dot{\mathrm{w}}}=f_{\mathrm{w}}=\sqrt{\delta\mathrm{w}^{2}}/\langle\mathrm{w}\rangle. For nonadiabatic driving branches, the relative power fluctuations are increasing with decreasing effective time durations xcx_{c} and xhx_{h}, see Fig. 4(a) and Fig. 4(b). Comparison between these two figures shows that irreversible nonadiabatic friction related to ξ\xi, which is a monotonic decreasing function of τh\tau_{h} as well as τc\tau_{c}, leads to an increase in relative power fluctuations. This can be understood by the fact that irreversibility either induced by finite heat flux between the system and the bath or caused by internal irreversible dissipation yields larger fluctuations than those in the reversible cycle operation. In view of the fact that the power is a monotonic decreasing function of time durations τh\tau_{h} and τc\tau_{c}, we see that the price one should pay for increasing power is increasing power fluctuations.

Refer to caption
Refer to caption
Figure 4: Contour plot of the relative fluctuations of the power fw˙f_{\dot{\mathrm{w}}} in the effective time duration (xh,xc)(x_{h},x_{c}) plane for a nonadiabatic driving, with ξ=0.01\xi=0.01 (aa) and ξ=0.03\xi=0.03 (bb). The values of the parameters are βh=0.2βc=0.2\beta_{h}=0.2\beta_{c}=0.2, ωh=2ωc=1\omega_{h}=2\omega_{c}=1, and =2\hbar=2.

IV Conclusions

In summary, we derived the probability distribution of stochastic work of quantum Otto engines working within a cycle period of finite time that leads to irreversibility in both the two isochoric and two driving processes. Employing a two-level system as the working substance of these engines, we find that, although the average work is positive, the quantum work may be negative due to quantum indeterminacy. Afterwards, we derived the analytical expressions for the power output, efficiency, and work fluctuations, all of which are dependent on the time allocations the four thermodynamic processes. We finally determined statistics of work as well as power at any finite temperatures, and showed that there is a trade-off between efficiency (or power) and power fluctuations.

Appendix A Time evolution of population along an isochoric process

The dynamics of the system with energy quantization along the system-bath interaction interval can be described by changes in the occupation probabilities pnp_{n} at states n=0,1,2,n=0,1,2,\cdots. This reduced description in which the dynamical response of the heat reservoir is cast in kinetic terms. The master equation is given by 21 ; 43

p˙n=nWn,npn,\dot{p}_{n}=\sum_{n^{\prime}}W_{n,n^{\prime}}p_{n^{\prime}}, (A.1)

where the transition rate matrix Wn,nW_{n,n^{\prime}} must satisfy nWn,n=0\sum_{n}W_{n,n^{\prime}}=0. For the system in contact with a heat bath of constant temperature β\beta, we assume that the transition rates from state nn^{\prime} to nn, WnnW_{nn^{\prime}}, fulfill the detailed balance WnneβEn=WnneβEnW_{nn^{\prime}}e^{-\beta E_{n^{\prime}}}=W_{n^{\prime}n}e^{-\beta E_{n}}, ensuring that the system can achieve asymptotically the thermal state after an infinitely long system-bath interaction duration. At thermal state, the occupation probabilities pnp_{n} achieve their asymptotic stationary values πn\pi_{n}. These πn\pi_{n} can be determined from the steady-state solution of Eq. (A.1) and given by the Boltzmann distribution: πn(β)=eβEn/Z,\pi_{n}(\beta)={e^{-\beta E_{n}}}/{Z}, where Z=neβEnZ=\sum_{n}e^{-\beta E_{n}} is the canonical partition function.

For the two-level system where the energy spectrum reads E+=12ωE_{+}=\frac{1}{2}\hbar\omega and E=12ωE_{-}=-\frac{1}{2}\hbar\omega, the master equation Eq. (A.1) becomes

(p˙+p˙)=(W+W+W+W+)(p+p),\left(\begin{array}[]{c}\dot{p}_{+}\\ \dot{p}_{-}\end{array}\right)=\left(\begin{array}[]{cc}-W_{-+}&W_{+-}\\ W_{-+}&-W_{+-}\end{array}\right)\left(\begin{array}[]{c}{p}_{+}\\ {p}_{-}\end{array}\right), (A.2)

where these two transition rates W+W_{-+} and W+W_{+-} obey the detailed balance, W+/W+=eβωW_{-+}/W_{+-}=e^{-\beta\hbar\omega}. From Eq. (A.2), the motion for the average population can be obtained as

n˙=γ(nneq),\langle\dot{n}\rangle=-\gamma(\langle n\rangle-\langle n\rangle^{eq}), (A.3)

where γ=W++W+\gamma=W_{-+}+W_{+-} and

neq=12W+W+W++W+=12tanh(12βω).\langle n\rangle^{eq}=-\frac{1}{2}\frac{W_{-+}-W_{+-}}{W_{-+}+W_{+-}}=-\frac{1}{2}\tanh\left(\frac{1}{2}\beta\hbar\omega\right). (A.4)

From Eq. (A.3), we find that instantaneous population n(t)\langle n(t)\rangle along the thermalization process (staring at initial time t=0t=0) can be written in terms of the population n(0)\langle n(0)\rangle,

n(t)=neq+[n(0)neq]eγt.\langle{n}(t)\rangle=\langle n\rangle^{eq}+[\langle n(0)\rangle-\langle n\rangle^{eq}]e^{-\gamma t}. (A.5)

Appendix B Relation between populations at the begin and the end of a unitary driving process

We consider the unitary time evolution along the driving compression ABA\rightarrow B from t=0t=0 to t=τcht=\tau_{ch} to determine n2(0)\langle n^{2}(0)\rangle and n2(τch)\langle n^{2}(\tau_{ch})\rangle at AA and BB, respectively. Using pn0=eβAnωc/ZAp_{n}^{0}=e^{-\beta_{A}n\hbar\omega_{c}}/Z_{A} with ZA=eβAωc/2+eβAωc/2Z_{A}=e^{-\beta_{A}\hbar\omega_{c}/2}+e^{\beta_{A}\hbar\omega_{c}/2}, it follows that n2(0)=nn2pn0=1/4\langle n^{2}(0)\rangle=\sum_{n}n^{2}p_{n}^{0}=1/4. Meanwhile, n2(τch)\langle n^{2}(\tau_{ch})\rangle can be calculated as

n2(τch)=\displaystyle\langle n^{2}(\tau_{ch})\rangle= n,mn2pmnτchpm0(βA)\displaystyle\sum_{n,m}n^{2}p_{m\rightarrow n}^{\tau_{ch}}p_{m}^{0}(\beta_{A}) (B.1)
=\displaystyle= n,mn2|m|Ucom|n|2pm0(βA)\displaystyle\sum_{n,m}n^{2}|\langle m|U_{\mathrm{com}}|n\rangle|^{2}p_{m}^{0}(\beta_{A})
=\displaystyle= 14ZA[eβAωc/2(|+|Ucom|+|2++|Ucom||2)\displaystyle\frac{1}{4Z_{A}}\big{[}e^{-\beta_{A}\hbar\omega_{c}/2}\left(|\langle+|U_{\mathrm{com}}|+\rangle|^{2}+\langle+|U_{\mathrm{com}}|-\rangle|^{2}\right)
+eβAωc/2(||Ucom|+|2+|Ucom||2)]\displaystyle+e^{\beta_{A}\hbar\omega_{c}/2}\left(|\langle-|U_{\mathrm{com}}|+\rangle|^{2}+\langle-|U_{\mathrm{com}}|-\rangle|^{2}\right)\big{]}
=\displaystyle= n2(0)\displaystyle\langle n^{2}(0)\rangle
=\displaystyle= 14,\displaystyle\frac{1}{4},

and n(0)n(τch)\langle n(0)n(\tau_{ch})\rangle reads

n(0)n(τch)=\displaystyle\langle n(0)n(\tau_{ch})\rangle= n,mnmpnmτchpn0(βA)\displaystyle\sum_{n,m}nmp_{n\rightarrow m}^{\tau_{ch}}p_{n}^{0}(\beta_{A}) (B.2)
=\displaystyle= n,mnm|n|Ucom|m|2pn0(βA)\displaystyle\sum_{n,m}nm|\langle n|U_{\mathrm{com}}|m\rangle|^{2}p_{n}^{0}(\beta_{A})
=\displaystyle= 14ZA[eβAωc/2(|+|Ucom|+|2+|Ucom||2)\displaystyle\frac{1}{4Z_{A}}\big{[}e^{-\beta_{A}\hbar\omega_{c}/2}\left(|\langle+|U_{\mathrm{com}}|+\rangle|^{2}-\langle+|U_{\mathrm{com}}|-\rangle|^{2}\right)
+eβAωc/2(||Ucom|+|2+|Ucom||2)]\displaystyle+e^{\beta_{A}\hbar\omega_{c}/2}\left(-|\langle-|U_{\mathrm{com}}|+\rangle|^{2}+\langle-|U_{\mathrm{com}}|-\rangle|^{2}\right)\big{]}
=\displaystyle= 14(12ξ),\displaystyle\frac{1}{4}(1-2\xi),

where ξ=|±|Uexp||2=|±|Ucom||2\xi=|\langle\pm|U_{\mathrm{exp}}|\mp\rangle|^{2}=|\langle\pm|U_{\mathrm{com}}|\mp\rangle|^{2} and 1ξ=|±|Uexp|±|2=|±|Ucom|±|21-\xi=|\langle\pm|U_{\mathrm{exp}}|\pm\rangle|^{2}=|\langle\pm|U_{\mathrm{com}}|\pm\rangle|^{2} have been used. For the unitary expansion CDC\rightarrow D of the two-level engine, we therefore have

n2(τcycτc)=n2(τch+τh)=14,\langle n^{2}(\tau_{cyc}-\tau_{c})\rangle=\langle n^{2}(\tau_{ch}+\tau_{h})\rangle=\frac{1}{4}, (B.3)

and

n(τch+τh)n(τcycτc)=14(12ξ).\langle n(\tau_{ch}+\tau_{h})n(\tau_{cyc}-\tau_{c})\rangle=\frac{1}{4}(1-2\xi). (B.4)

Integrating over the probability density function Eq. (15)in Main text, the first two central moment of quantum work can be calculated as

w=\displaystyle\langle\mathrm{w}\rangle= wp(w)𝑑w\displaystyle\int\mathrm{w}p(\mathrm{w})d\mathrm{w} (B.5)
=\displaystyle= w𝑑wm,n,i,jpnmτchpn0pijτhcpiτch+τhδ{ww[n(0)m(τch);i(τch+τh)j(τcycτc)]}\displaystyle\int\mathrm{w}d\mathrm{w}\sum_{m,n,i,j}p_{n\rightarrow m}^{\tau_{ch}}p_{n}^{0}p_{i\rightarrow j}^{\tau_{hc}}p_{i}^{\tau_{ch}+\tau_{h}}\delta\{\mathrm{w}-\mathrm{w}[n(0)\rightarrow m(\tau_{ch});i(\tau_{ch}+\tau_{h})\rightarrow j(\tau_{cyc}-\tau_{c})]\}
=\displaystyle= w𝑑wm,n,i,jpnmτchpn0pijτhcpiτch+τhδ{w[(EihEjc)(EmhEnc)]}\displaystyle\int\mathrm{w}d\mathrm{w}\sum_{m,n,i,j}p_{n\rightarrow m}^{\tau_{ch}}p_{n}^{0}p_{i\rightarrow j}^{\tau_{hc}}p_{i}^{\tau_{ch}+\tau_{h}}\delta\{\mathrm{w}-[(E_{i}^{h}-E_{j}^{c})-(E_{m}^{h}-E_{n}^{c})]\}
=\displaystyle= w𝑑wm,n,i,jpnmτchpn0pijτhcpiτch+τhδ{w[(iωhjωc)(mωhnωc)]}\displaystyle\int\mathrm{w}d\mathrm{w}\sum_{m,n,i,j}p_{n\rightarrow m}^{\tau_{ch}}p_{n}^{0}p_{i\rightarrow j}^{\tau_{hc}}p_{i}^{\tau_{ch}+\tau_{h}}\delta\{\mathrm{w}-\hbar[(i\omega_{h}-j\omega_{c})-(m\omega_{h}-n\omega_{c})]\}
=\displaystyle= [(ωc(12ξ)ωh]n(0)+[(ωh(12ξ)ωc]n(τch+τh),\displaystyle\hbar[(\omega_{c}-(1-2\xi)\omega_{h}]\langle n(0)\rangle+\hbar[(\omega_{h}-(1-2\xi)\omega_{c}]\langle n(\tau_{ch}+\tau_{h})\rangle,

and

w2=\displaystyle\langle\mathrm{w}^{2}\rangle= w2p(w)𝑑w\displaystyle\int\mathrm{w}^{2}p(\mathrm{w})d\mathrm{w} (B.6)
=\displaystyle= w2𝑑wm,n,i,jpnmτchpn0pijτhcpiτch+τhδ{ww[n(0)m(τch);i(τch+τh)j(τcycτc)]}\displaystyle\int\mathrm{w}^{2}d\mathrm{w}\sum_{m,n,i,j}p_{n\rightarrow m}^{\tau_{ch}}p_{n}^{0}p_{i\rightarrow j}^{\tau_{hc}}p_{i}^{\tau_{ch}+\tau_{h}}\delta\{\mathrm{w}-\mathrm{w}[n(0)\rightarrow m(\tau_{ch});i(\tau_{ch}+\tau_{h})\rightarrow j(\tau_{cyc}-\tau_{c})]\}
=\displaystyle= w2𝑑wm,n,i,jpnmτchpn0pijτhcpiτch+τhδ{w[(EihEjc)(EmhEnc)]}\displaystyle\int\mathrm{w}^{2}d\mathrm{w}\sum_{m,n,i,j}p_{n\rightarrow m}^{\tau_{ch}}p_{n}^{0}p_{i\rightarrow j}^{\tau_{hc}}p_{i}^{\tau_{ch}+\tau_{h}}\delta\{\mathrm{w}-[(E_{i}^{h}-E_{j}^{c})-(E_{m}^{h}-E_{n}^{c})]\}
=\displaystyle= w2𝑑wm,n,i,jpnmτchpn0pijτhcpiτch+τhδ{w[(iωhjωc)(mωhnωc)]}\displaystyle\int\mathrm{w}^{2}d\mathrm{w}\sum_{m,n,i,j}p_{n\rightarrow m}^{\tau_{ch}}p_{n}^{0}p_{i\rightarrow j}^{\tau_{hc}}p_{i}^{\tau_{ch}+\tau_{h}}\delta\{\mathrm{w}-\hbar[(i\omega_{h}-j\omega_{c})-(m\omega_{h}-n\omega_{c})]\}
=\displaystyle= 2ωh2n2(τch+τh)22ωcωhn(τch+τh)n(τcycτc)22ωcωhn(0)n(τch)\displaystyle\hbar^{2}\omega_{h}^{2}\langle n^{2}(\tau_{ch}+\tau_{h})\rangle-2\hbar^{2}\omega_{c}\omega_{h}\langle n(\tau_{ch}+\tau_{h})n(\tau_{cyc}-\tau_{c})\rangle-2\hbar^{2}\omega_{c}\omega_{h}\langle n(0)n(\tau_{ch})\rangle
+2ωc2n2(0)+22[(ωc(12ξ)ωh]n(0)[(ωh(12ξ)ωc]n(τch+τh)\displaystyle+\hbar^{2}\omega_{c}^{2}\langle n^{2}(0)\rangle+2\hbar^{2}[(\omega_{c}-(1-2\xi)\omega_{h}]\langle n(0)\rangle[(\omega_{h}-(1-2\xi)\omega_{c}]\langle n(\tau_{ch}+\tau_{h})\rangle
+2ωc2n2(τcycτc)+2ωh2n2(τch).\displaystyle+\hbar^{2}\omega_{c}^{2}\langle n^{2}(\tau_{cyc}-\tau_{c})\rangle+\hbar^{2}\omega_{h}^{2}\langle n^{2}(\tau_{ch})\rangle.

With the above results, the second moment of stochastic work can be simplified as

w2=\displaystyle\langle\mathrm{w}^{2}\rangle= 22{14[ωh2+ωc22ωcωh(12ξ)]+[ωc(12ξ)ωh]\displaystyle 2\hbar^{2}\big{\{}\frac{1}{4}[\omega_{h}^{2}+\omega_{c}^{2}-2\omega_{c}\omega_{h}(1-2\xi)]+[\omega_{c}-(1-2\xi)\omega_{h}] (B.7)
×n(0)[ωh(12ξ)ωc]n(τch+τh)}.\displaystyle\times\langle n(0)\rangle[\omega_{h}-(1-2\xi)\omega_{c}]\langle n(\tau_{ch}+\tau_{h})\rangle\big{\}}.

Combining this with Eq. (B.5), the work fluctuations, δw2=w2w2\delta\mathrm{w}^{2}=\langle\mathrm{w}^{2}\rangle-\langle\mathrm{w}\rangle^{2}, we can obtain Eq. (18) in Main text.

Acknowledgements We acknowledge the finical support by National Natural Science Foudantion (Grant Nos. 11875034 and 11505091), and the Major Program of Jiangxi Provincial Natural Science Foundation (No. 20161ACB21006). Y.L.M. acknowledges the financial support from the State Key Programs of China under Grant (No. 2017YFA0304204).

References

  • (1) D. Gauthier, Phys. World 18, 30 (2005).
  • (2) T. Feldmann, and R. Kosloff, Phys. Rev. E 68, 016101 (2003); T. Feldmann, and R. Kosloff, Phys. Rev. E 61, 4774 (2000).
  • (3) Y. Rezek, and R. Kosloff, New J. Phys. 8, 83 (2006).
  • (4) Z. C. Tu, Chin. Phys. B 21, 020513 (2012).
  • (5) Z. C. Tu, J. Phys. A 41, 312003 (2008).
  • (6) F. Wu , L. G. Chen, F. R. Sun, C. Wu, and Q. Li, Phys. Rev. E 73, 016103 (2006).
  • (7) O. Abah, J. Roßnagel, G. Jacob, S. Deffner, F. Schmidt-Kaler, K. Singer, and E. Lutz, Phys. Rev. Lett. 109, 203006 (2012).
  • (8) Y. Hong, Y. Xiao, J. He, and J. H. Wang, Phys. Rev. E 102, 022143 (2020).
  • (9) B. Gaveau, M. Moreau, and L. S. Schulman, Phys. Rev. Lett. 105, 060601 (2010).
  • (10) G. Maslennikov, S. Ding, R. Hablützel, J. Gan, A. Roulet, S. Nimmrichter, J. Dai, V. Scarani, and D. Matsukevich, Nat. Commun. 10, 202 (2019).
  • (11) G. Verley, C. V. D. Broeck, and M. Esposito, New J. Phys. 16, 095001 (2014).
  • (12) P. Solinas, D. V. Averin, and J. P. Pekola, Phys. Rev. B 87, 060508(R) (2013).
  • (13) Y. Qian, and F.Liu, Phys. Rev. E 100, 062119 (2019).
  • (14) P. Talkner, E. Lutz, and P. Hänggi, Phys. Rev. E 75, 050102 (2007).
  • (15) Z. Fei, N. Freitas, V. Cavina, H. T. Quan, and M. Esposito, Phys. Rev. Lett. 124, 170603 (2020).
  • (16) F. Cerisola, Y. Margalit, S. Machluf, A. J. Roncaglia, J. P. Paz, and R. Folman, Nat. Commun. 8, 1241 (2017).
  • (17) F. W. J. Hekking, and J. P. Pekola, Phys. Rev. Lett. 111, 093602 (2013).
  • (18) S. Rahav, U. Harbola, and S. Mukamel, Phys. Rev. A 86, 043843 (2012).
  • (19) T. Denzler, and E. Lutz, Phys. Rev. E 98, 052106 (2018).
  • (20) S. Gasparinetti, P. Solinas, A. Braggio, and M. Sassetti, New J. Phys. 16, 115001 (2014).
  • (21) U. Seifert, Rep. Prog. Phys. 75, 126001 (2012).
  • (22) T. Denzler, and E. Lutz, Phys. Rev. Research 2, 032062 (2020).
  • (23) J. H. Wang, J. Z. He, and Y. L. Ma, Phys. Rev. E 100, 052126 (2019).
  • (24) M. Esposito, U. Harbola, and S. Mukamel, Rev. Mod. Phys. 81, 1665 (2009).
  • (25) V. Holubec, and A. Ryabov, Phys. Rev. Lett. 121, 120601 (2018).
  • (26) V. Holubec, J. Stat. Mech. P05022, (2014).
  • (27) V. Holubec, and A. Ryabov, Phys. Rev. E 96, 030102 (2017).
  • (28) H. Vroylandt, M. Esposito, and G. Verley, Phys. Rev. Lett. 124, 250603 (2020).
  • (29) J. M. Park, H. M. Chun, and J. D. Noh, Phys. Rev. E 94, 012127 (2016).
  • (30) J. H. Jiang, B. K. Agarwalla, and D. Segal, Phys. Rev. Lett. 115, 040601 (2015).
  • (31) H. Vroylandt, A. Bonfils, and G. Verley, Phys. Rev. E 93, 052123 (2016).
  • (32) G. Verley, and M. Esposito, Phys. Rev. Lett. 114, 050601 (2015).
  • (33) G. Verley, T. Willaert, C. V. D. Broeck, and M. Esposito, Phys. Rev. E 90, 052145 (2014).
  • (34) J. P. S. Peterson, T. B. Batalhão, M. Herrera, A. M. Souza, R. S. Sarthour, I. S. Oliveira, and R. M. Serra, Phys. Rev. Lett. 123, 240601 (2019).
  • (35) F. L. Wu, J. Z. He, Y. L. Ma, and J. H. Wang, Phys. Rev. E 90, 062134 (2014).
  • (36) R. J. de Assis, T. M. de Mendonça, C. J. Villas-Boas, A. M. de Souza, R. S. Sarthour, I. S. Oliveira, and N. G. de Almeida, Phys. Rev. Lett. 122, 240602 (2019).
  • (37) S. H. Su, X. Q. Luo, J. C. Chen, and C. P. Sun, Europhys. Lett 115, 30002 (2016).
  • (38) M. Born, and V. Fock, Z. Phys. 51, 165 (1928).
  • (39) A. Alecce, F. Galve, N. L. Gullo, L. Dell'Anna, F.Plastina, and R. Zambrini, New J. Phys. 17, 075007 (2015).
  • (40) S. Lee, M. Ha, Jong-Min Park, and H. Jeong, Phys. Rev. E 101, 022127 (2020).
  • (41) F. Plastina, A. Alecce, T. J. G. Apollaro, G. Falcone, G. Francica, F. Galve, N. Lo Gullo, and R. Zambrini, Phys. Rev. Lett. 113, 260601 (2014).
  • (42) L. A. Correa, J. P. Palao, and D. Alonso, Phys. Rev. E 92, 032136 (2015).
  • (43) M. Esposito, and C. V. D. Broeck, Phys. Rev. E 82, 011143 (2010).