This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Possible molecular states from interactions of charmed baryons

Dan Song, Lin-Qing Song, Shu-Yi Kong, Jun He111Corresponding author: [email protected] School of Physics and Technology, Nanjing Normal University, Nanjing 210097, China
Abstract

In this work, we perform a systematic study of possible molecular states composed of two charmed baryons including hidden-charm systems ΛcΛ¯c\Lambda_{c}\bar{\Lambda}_{c}, Σc()Σ¯c()\Sigma_{c}^{(*)}\bar{\Sigma}_{c}^{(*)}, and ΛcΣ¯c()\Lambda_{c}\bar{\Sigma}_{c}^{(*)}, and corresponding double-charm systems ΛcΛc\Lambda_{c}\Lambda_{c}, Σc()Σc()\Sigma_{c}^{(*)}\Sigma_{c}^{(*)}, and ΛcΣc()\Lambda_{c}\Sigma_{c}^{(*)}. With the help of the heavy quark chiral effective Lagrangians, the interactions are described with π\pi, ρ\rho, η\eta, ω\omega, ϕ\phi, and σ\sigma exchanges. The potential kernels are constructed, and inserted into the quasipotential Bethe-Salpeter equation. The bound states from the interactions considered is studied by searching for the poles of the scattering amplitude. The results suggest that strong attractions exist in both hidden-charm and double-charm systems considered in the current work, and bound states can be produced in most of the systems. More experimental studies about these molecular states are suggested though the nucleon-nucleon collision at LHC and nucleon-antinucleon collision at P¯ANDA\rm\bar{P}ANDA.

I Introduction

With the development of the experimental technology, a large amount of data accumulated in experiment provide opportunity to the study of the hadron spectrum. In the recent years, more and more hadrons have been observed in experiment PDG . Many of these new observed hadrons cannot be put into the conventional quark model, which is the basic frame to understand the hadron spectrum Godfrey:1985xj ; Capstick:1986ter . A growing number of efforts have been paid to explain their origin and internal structure. An obvious observation is that many newly observed particles are close to the threshold of two hadrons, so a popular picture to understand these exotic hadrons is the molecular state, which is a loosely bound state of hadrons. The XYZXYZ particles, such as X(3872)X(3872), Zc(3900)Z_{c}(3900) and Zb(10610)Z_{b}(10610) and Zc(10650)Z_{c}(10650), were widely assigned as molecular states in the literature Chen:2016qju ; Guo:2017jvc ; Tornqvist:1993ng ; He:2014nya ; Sun:2011uh . Particularly, the observed hidden-charm pentaquarks provide a wonderful spectrum of molecular states composed of an anticharmed meson and a charmed baryon Wu:2010jy ; Yang:2011wz ; Xiao:2013yca ; Chen:2015loa ; He:2015cea ; Liu:2019tjn ; He:2019ify . Such picture is enhanced by the recent observed strange hidden-charm pentaquarks Peng:2020hql ; Wang:2020eep ; Chen:2016ryt ; Zhu:2021lhd . However, though the well-known deuteron and the dibaryon with nucleon, Δ\Delta, and Λ\Lambda baryon were predicted and studied in both theory and experiment very far before the XYZ particle and pentaquarks, few predicted molecular states of two baryons are observed in experiment Clement:2016vnl ; PDG . Some theoretical studies have been performed to discuss the possibility of existence of molecular states composed of two baryons beyond nucleon, Δ\Delta, and Λ\Lambda baryon vanBeveren:2008rt ; Zhu:2019ibc ; Lee:2011rka ; Dong:2021juy ; Song:2022yfr ; Liu:2011xc .

Most of the molecular state candidates observed in the past two decades are in the hidden-charm sector. Hence, it is natural to expect the molecular state composed of a charmed baryon and an anticharmed baryon. In recent years, the structures near the ΛcΛ¯c\Lambda_{c}\bar{\Lambda}_{c} threshold has attracted much attentions. A charmoniumlike Y(4630)Y(4630) with quantum numbers JPC=1J^{PC}=1^{--} was observed at Belle Belle:2008xmh . After the experimental discovery of Y(4630)Y(4630), many theoretical works have performed to understand its origin, such as conventional charmonium state Badalian:2008dv ; Segovia:2008ta and compact multiquark state Maiani:2014aja ; Cotugno:2009ys ; Brodsky:2014xia ; Wang:2021qmn . Due to the closeness of the mass of Y(4630)Y(4630) and the ΛcΛ¯c\Lambda_{c}\bar{\Lambda}_{c} threshold, the relation between Y(4630)Y(4630) and the threshold effect was studies in Ref. vanBeveren:2008rt . In Ref. Simonov:2011jc , the mechanism of Y(4630)Y(4630) enhancement in ΛcΛ¯c\Lambda_{c}\bar{\Lambda}_{c} electroproduction was also studied. The ΛcΛ¯c\Lambda_{c}\bar{\Lambda}_{c} molecular state also attracts much attention Chen:2011cta ; Wang:2021qmn ; Lee:2011rka ; Simonov:2011jc . Theoretical calculations suggest strong attraction between a Λc\Lambda_{c} baryon and an Λ¯c\bar{\Lambda}_{c} baryon by σ\sigma and ω\omega exchanges, which favors the existence of a ΛcΛ¯c\Lambda_{c}\bar{\Lambda}_{c} molecular state Lee:2011rka ; Simonov:2011jc . In our previous work, the ΛcΛ¯c\Lambda_{c}\bar{\Lambda}_{c} molecular state can be produced from the interaction, but it is difficult to be used to interpret the Y(4630)Y(4630) Song:2022yfr . The studies of more molecular states with a charmed baryon and an anticharmed baryon are also helpful to understand this exotic structure. In the current work, the interactions ΛcΛ¯c\Lambda_{c}\bar{\Lambda}_{c}, Σc()Σ¯c()\Sigma_{c}^{(*)}\bar{\Sigma}_{c}^{(*)}, and ΛcΣ¯c()\Lambda_{c}\bar{\Sigma}_{c}^{(*)} will be studied in a quasipotential Bethe-Salpeter equation (qBSE) approach.

In our model, the double-charm molecular states can be obtained by replacing the anticharmed hadron by a charmed hadron Ding:2020dio ; Ding:2021igr ; Kong:2021ohg . The recent experimental observation exhibits the ability to observe double-charm hadrons in experiment. The LHC Collaboration reported a state Ξcc++\Xi_{cc}^{++}  LHCb:2017iph , which indicts the possibility of experimental observation of double-heavy molecular state. Very recently, the LHCb Collaboration observed an open charm tetraquark state Tcc+T_{cc}^{+} below the D0D+D^{0}D^{*+} mass threshold LHCb:2021vvq , which has already been predicted by a lot of theoretical works in the diquark and antidiquark picture  Ader:1981db ; Zouzou:1986qh ; Lipkin:1986dw ; Heller:1986bt ; Carlson:1987hh ; Silvestre-Brac:1993zem ; Semay:1994ht ; Gelman:2002wf , also in the molecular picture  Manohar:1992nd ; Pepin:1996id ; Molina:2010tx ; Li:2012ss ; Wang:2017uld ; Maiani:2019lpu ; Liu:2019stu . The doubly charm dibaryon attracts some attentions from the hadron physics community Li:2012bt ; Garcilazo:2020acl ; Carames:2015sya ; Chen:2021cfl ; Ling:2021asz ; Dong:2021bvy . Hence, in the current work, the double-charm systems ΛcΛc\Lambda_{c}\Lambda_{c}, Σc()Σc()\Sigma_{c}^{(*)}\Sigma_{c}^{(*)}, and ΛcΣc()\Lambda_{c}\Sigma_{c}^{(*)} will be also calculated.

This article is organized as follows. After the Introduction, Section II shows the details of dynamics of the charmed baryons interactions, reduction of potential kernel and a brief introduction of the qBSE. In Section III, the numerical results are given. Finally, summary and discussion are given in Section IV.

II Theoretical frame

To study the interactions of charmed baryons, we need to construct the potential kernel, which is performed by introducing the exchanges of peseudoscalar \mathbb{P}, vector 𝕍\mathbb{V} and scalar σ\sigma mesons. The Lagrangians depicting the couplings of light mesons and baryons are required and will be presented below.

II.1 Relevant Lagrangians

The Lagrangians for the couplings between charmed baryon and light mesons are constructed under the heavy quark limit and chiral symmetry as Liu:2011xc ; Isola:2003fh ; Falk:1992cx ,

S\displaystyle{\cal L}_{S} =32g1(vκ)ϵμνλκtr[S¯μ𝒜νSλ]+iβStr[S¯μvα(𝒱αρα)Sμ]\displaystyle=-\frac{3}{2}g_{1}(v_{\kappa})\epsilon^{\mu\nu\lambda\kappa}{\rm tr}[\bar{S}_{\mu}{\cal A}_{\nu}S_{\lambda}]+i\beta_{S}{\rm tr}[\bar{S}_{\mu}v_{\alpha}(\mathcal{V}^{\alpha}-\rho^{\alpha})S^{\mu}]
+λStr[S¯μFμνSν]+Str[S¯μσSμ],\displaystyle+\lambda_{S}{\rm tr}[\bar{S}_{\mu}F^{\mu\nu}S_{\nu}]+\ell_{S}{\rm tr}[\bar{S}_{\mu}\sigma S^{\mu}],
B3¯\displaystyle{\cal L}_{B_{\bar{3}}} =iβBtr[B¯3¯vμ(𝒱μρμ)B3¯]+Btr[B¯3¯σB3¯],\displaystyle=i\beta_{B}{\rm tr}[\bar{B}_{\bar{3}}v_{\mu}(\mathcal{V}^{\mu}-\rho^{\mu})B_{\bar{3}}]+\ell_{B}{\rm tr}[\bar{B}_{\bar{3}}{\sigma}B_{\bar{3}}],
int\displaystyle{\cal L}_{int} =ig4tr[S¯μ𝒜μB3¯]+iλIϵμνλκvμtr[S¯νFλκB3¯]+H.c.,\displaystyle=ig_{4}{\rm tr}[\bar{S}^{\mu}{\cal A}_{\mu}B_{\bar{3}}]+i\lambda_{I}\epsilon^{\mu\nu\lambda\kappa}v_{\mu}{\rm tr}[\bar{S}_{\nu}F_{\lambda\kappa}B_{\bar{3}}]+H.c., (1)

where SabμS^{\mu}_{ab} is composed of the Dirac spinor operators,

Sμab\displaystyle S^{ab}_{\mu} =13(γμ+vμ)γ5Bab+BμabB0μab+B1μab,\displaystyle=-\sqrt{\frac{1}{3}}(\gamma_{\mu}+v_{\mu})\gamma^{5}B^{ab}+B^{*ab}_{\mu}\equiv{B}^{ab}_{0\mu}+B^{ab}_{1\mu},
S¯μab\displaystyle\bar{S}^{ab}_{\mu} =13B¯abγ5(γμ+vμ)+B¯μabB¯0μab+B¯1μab,\displaystyle=\sqrt{\frac{1}{3}}\bar{B}^{ab}\gamma^{5}(\gamma_{\mu}+v_{\mu})+\bar{B}^{*ab}_{\mu}\equiv{\bar{B}}^{ab}_{0\mu}+\bar{B}^{ab}_{1\mu}, (2)

and the bottomed baryon matrices are defined as

B3¯\displaystyle B_{\bar{3}} =(0Λc+Ξc+Λc+0Ξc0Ξc+Ξc00),B=(Σc++12Σc+12Ξc+12Σc+Σc012Ξc012Ξc+12Ξc0Ωc0).\displaystyle=\left(\begin{array}[]{ccc}0&\Lambda^{+}_{c}&\Xi_{c}^{+}\\ -\Lambda_{c}^{+}&0&\Xi_{c}^{0}\\ -\Xi^{+}_{c}&-\Xi_{c}^{0}&0\end{array}\right),\quad B=\left(\begin{array}[]{ccc}\Sigma_{c}^{++}&\frac{1}{\sqrt{2}}\Sigma^{+}_{c}&\frac{1}{\sqrt{2}}\Xi^{\prime+}_{c}\\ \frac{1}{\sqrt{2}}\Sigma^{+}_{c}&\Sigma_{c}^{0}&\frac{1}{\sqrt{2}}\Xi^{\prime 0}_{c}\\ \frac{1}{\sqrt{2}}\Xi^{\prime+}_{c}&\frac{1}{\sqrt{2}}\Xi^{\prime 0}_{c}&\Omega^{0}_{c}\end{array}\right). (9)
B\displaystyle B^{*} =(Σc++12Σc+12Ξc+12Σc+Σc012Ξc012Ξc+12Ξc0Ωc0).\displaystyle=\left(\begin{array}[]{ccc}\Sigma_{c}^{*++}&\frac{1}{\sqrt{2}}\Sigma^{*+}_{c}&\frac{1}{\sqrt{2}}\Xi^{*+}_{c}\\ \frac{1}{\sqrt{2}}\Sigma^{*+}_{c}&\Sigma_{c}^{*0}&\frac{1}{\sqrt{2}}\Xi^{*0}_{c}\\ \frac{1}{\sqrt{2}}\Xi^{*+}_{c}&\frac{1}{\sqrt{2}}\Xi^{*0}_{c}&\Omega^{*0}_{c}\end{array}\right). (13)

The explicit forms of the Lagrangians can be written as,

BB\displaystyle{\cal L}_{BB\mathbb{P}} =i3g14fπmB¯mBϵμνλκνi=0,1B¯iμκBjλ,\displaystyle=-i\frac{3g_{1}}{4f_{\pi}\sqrt{m_{\bar{B}}m_{B}}}~{}\epsilon^{\mu\nu\lambda\kappa}\partial^{\nu}\mathbb{P}~{}\sum_{i=0,1}\bar{B}_{i\mu}\overleftrightarrow{\partial}_{\kappa}B_{j\lambda},
BB𝕍\displaystyle{\cal L}_{BB\mathbb{V}} =βSgV22mB¯mB𝕍νi=0,1B¯iμνBjμ\displaystyle=-\frac{\beta_{S}g_{V}}{2\sqrt{2m_{\bar{B}}m_{B}}}\mathbb{V}^{\nu}\sum_{i=0,1}\bar{B}_{i}^{\mu}\overleftrightarrow{\partial}_{\nu}B_{j\mu}
λSgV2(μ𝕍νν𝕍μ)i=0,1B¯iμBjν,\displaystyle-\frac{\lambda_{S}g_{V}}{\sqrt{2}}(\partial_{\mu}\mathbb{V}_{\nu}-\partial_{\nu}\mathbb{V}_{\mu})\sum_{i=0,1}\bar{B}_{i}^{\mu}B_{j}^{\nu},
BBσ\displaystyle{\cal L}_{BB\sigma} =Sσi=0,1B¯iμBjμ,\displaystyle=\ell_{S}\sigma\sum_{i=0,1}\bar{B}_{i}^{\mu}B_{j\mu},
B3¯B3¯𝕍\displaystyle{\cal L}_{B_{\bar{3}}B_{\bar{3}}\mathbb{V}} =gVβB22mB¯3¯mB3¯𝕍μB¯3¯μB3¯,\displaystyle=-\frac{g_{V}\beta_{B}}{2\sqrt{2m_{\bar{B}_{\bar{3}}}m_{B_{\bar{3}}}}}\mathbb{V}^{\mu}\bar{B}_{\bar{3}}\overleftrightarrow{\partial}_{\mu}B_{\bar{3}},
B3¯B3¯σ\displaystyle{\cal L}_{B_{\bar{3}}B_{\bar{3}}\sigma} =iBσB¯3¯B3¯,\displaystyle=i\ell_{B}\sigma\bar{B}_{\bar{3}}B_{\bar{3}},
BB3¯\displaystyle{\cal L}_{BB_{\bar{3}}\mathbb{P}} =ig4fπiB¯iμμB3¯+H.c.,\displaystyle=-i\frac{g_{4}}{f_{\pi}}\sum_{i}\bar{B}_{i}^{\mu}\partial_{\mu}\mathbb{P}B_{\bar{3}}+{\rm H.c.},
BB3¯𝕍\displaystyle{\cal L}_{BB_{\bar{3}}\mathbb{V}} =g𝕍λI2mB¯mB3¯ϵμνλκλ𝕍κiB¯iνμB3¯+H.c..\displaystyle=\frac{g_{\mathbb{V}}\lambda_{I}}{\sqrt{2m_{\bar{B}}m_{B_{\bar{3}}}}}\epsilon^{\mu\nu\lambda\kappa}\partial_{\lambda}\mathbb{V}_{\kappa}\sum_{i}\bar{B}_{i\nu}\overleftrightarrow{\partial}_{\mu}B_{\bar{3}}+{\rm H.c.}. (14)

The 𝕍\mathbb{V} and \mathbb{P} are the vector and pseudoscalar matrices as

=(3π0+η6π+K+π3π0+η6K0KK¯02η6),𝕍=(ρ0+ω2ρ+K+ρρ0+ω2K0KK¯0ϕ).\displaystyle{\mathbb{P}}=\left(\begin{array}[]{ccc}\frac{\sqrt{3}\pi^{0}+\eta}{\sqrt{6}}&\pi^{+}&K^{+}\\ \pi^{-}&\frac{-\sqrt{3}\pi^{0}+\eta}{\sqrt{6}}&K^{0}\\ K^{-}&\bar{K}^{0}&\frac{-2\eta}{\sqrt{6}}\end{array}\right),\mathbb{V}=\left(\begin{array}[]{ccc}\frac{\rho^{0}+\omega}{\sqrt{2}}&\rho^{+}&K^{*+}\\ \rho^{-}&\frac{-\rho^{0}+\omega}{\sqrt{2}}&K^{*0}\\ K^{*-}&\bar{K}^{*0}&\phi\end{array}\right). (21)

The masses of particles involved in the calculation are chosen as suggested central values in the Review of Particle Physics (PDG) PDG . The mass of broad σ\sigma meson is chosen as 500 MeV. The coupling constants involved are listed in Table 1.

Table 1: The coupling constants adopted in the calculation, which are cited from the literature Chen:2019asm ; Liu:2011xc ; Isola:2003fh ; Falk:1992cx ; Zhu:2022fyb ; Zhu:2021lhd . The λ\lambda and λS,I\lambda_{S,I} are in the units of GeV-1. Others are in the units of 11.
β\beta gg gVg_{V} λ\lambda gsg_{s}
0.9 0.59 5.9 0.56 0.76
βS\beta_{S} S\ell_{S} g1g_{1} λS\lambda_{S} βB\beta_{B} B\ell_{B} g4g_{4} λI\lambda_{I}
-1.74 6.2 -0.94 -3.31 βS/2-\beta_{S}/2 S/2-\ell_{S}/2 3g1/(22)3g_{1}/{(2\sqrt{2})} λS/8-\lambda_{S}/\sqrt{8}

First, we should construct flavor wave functions with definite isospin under SU(3)SU(3) symmetry. In this paper, we take the following charge conjugation conventions for two-baryon system as  Dong:2021juy ,

|B1B2c=12|B1B¯2(1)JJ1J2cc1c2|B2B¯1,|B_{1}B_{2}\rangle_{c}=\frac{1}{\sqrt{2}}|B_{1}\bar{B}_{2}-(-1)^{J-J_{1}-J_{2}}cc_{1}c_{2}|B_{2}\bar{B}_{1}\rangle, (22)

where JJ and JiJ_{i} are the spins of system |B1B¯2|B_{1}\bar{B}_{2}\rangle and |Bi|B_{i}\rangle, respectively, and cic_{i} is defined by 𝒞|Bi=ciB¯i\mathcal{C}|B_{i}\rangle=c_{i}\bar{B}_{i}\rangle. For the isovector state, the CC parity cannot be defined, so we will use the GG parity instead as G=(1)ICG=(-1)^{I}C with C=cC=c.

Following the method in Ref. He:2019rva , we input vertices Γ\Gamma and propagators PP into the code directly. The potential can be written as

𝒱,σ=I,σΓ1Γ2P,σf(q2),𝒱𝕍=I𝕍Γ1μΓ2νP𝕍μνf(q2).{\cal V}_{\mathbb{P},\sigma}=I_{\mathbb{P},\sigma}\Gamma_{1}\Gamma_{2}P_{\mathbb{P},\sigma}f(q^{2}),\ \ {\cal V}_{\mathbb{V}}=I_{\mathbb{V}}\Gamma_{1\mu}\Gamma_{2\nu}P^{\mu\nu}_{\mathbb{V}}f(q^{2}). (23)

In this work, both hidden-charm and double-charm systems will be considered in the calculation. The well-known GG-parity rule will be adopted to write the interaction of a charmed and an anticharmed baryon from the interaction of two charmed baryons. By inserting the G1GG^{-1}G operator into the potential, the GG-parity rule can be obtained easily as Phillips:1967zza ; Klempt:2002ap ; Lee:2011rka ; Zhu:2019ibc ,

V\displaystyle V =\displaystyle= iζiVihh.\displaystyle\sum_{i}{\zeta_{i}V_{ihh}}. (24)

The GG parity of the exchanged meson is left as a ζi\zeta_{i} factor for ii meson.

The propagators are defined as usual as

P,σ=iq2m,σ2,P𝕍μν=igμν+qμqν/m𝕍2q2m𝕍2,P_{\mathbb{P},\sigma}=\frac{i}{q^{2}-m_{\mathbb{P},\sigma}^{2}},\ \ P^{\mu\nu}_{\mathbb{V}}=i\frac{-g^{\mu\nu}+q^{\mu}q^{\nu}/m^{2}_{\mathbb{V}}}{q^{2}-m_{\mathbb{V}}^{2}}, (25)

where the form factor f(q2)f(q^{2}) is adopted to compensate the off-shell effect of exchanged meson as f(q2)=e(me2q2)2/Λe2f(q^{2})=e^{-(m_{e}^{2}-q^{2})^{2}/\Lambda_{e}^{2}} with mem_{e} and qq being the m,𝕍,σm_{\mathbb{P},\mathbb{V},\sigma} and the momentum of the exchanged meson. The IiI_{i} is the flavor factor for certain meson exchange ii of certain interaction, and the explicit values are listed in Table 2.

Table 2: The flavor factors IidI_{i}^{d} and (1)(J+1)Iic(-1)^{(J+1)}I_{i}^{c} of exchange ii for direct diagram and cross diagram, respectively. The values in bracket are for the heavy-heavy baryons if the values are different from these of heavy-antiheavy baryons.
IidI_{i}^{d} II π\pi η\eta ρ\rho ω\omega σ\sigma
ΛcΛ¯c[ΛcΛc]\Lambda_{c}\bar{\Lambda}_{c}[\Lambda_{c}\Lambda_{c}] 0 2[2]-2[2] 4[4]4[4]
Σc()Σ¯c()[Σc()Σc()]\Sigma_{c}^{(*)}\bar{\Sigma}_{c}^{(*)}[\Sigma_{c}^{(*)}\Sigma_{c}^{(*)}] 0 1[1]1[-1] 16[16]\frac{1}{6}[\frac{1}{6}] 1[1]-1[-1] 12[12]-\frac{1}{2}[\frac{1}{2}] 1[1]1[1]
11 12[12]\frac{1}{2}[-\frac{1}{2}] 16[16]\frac{1}{6}[\frac{1}{6}] 12[12]-\frac{1}{2}[-\frac{1}{2}] 12[12]-\frac{1}{2}[\frac{1}{2}] 1[1]1[1]
22 12[12]-\frac{1}{2}[\frac{1}{2}] 16[16]\frac{1}{6}[\frac{1}{6}] 12[12]\frac{1}{2}[\frac{1}{2}] 12[12]-\frac{1}{2}[\frac{1}{2}] 1[1]1[1]
ΛcΣ¯c()[ΛcΣc()]\Lambda_{c}\bar{\Sigma}_{c}^{(*)}[\Lambda_{c}\Sigma_{c}^{(*)}] 11 1[1]-1[1] 2[2]2[2]
(1)(J+1)Iic(-1)^{(J+1)}I_{i}^{c} II π\pi η\eta ρ\rho ω\omega
ΛcΣ¯c[ΛcΣc]\Lambda_{c}\bar{\Sigma}_{c}[\Lambda_{c}\Sigma_{c}] 11 c[1]c[1] c[1]-c[1]
ΛcΣ¯c[ΛcΣc]\Lambda_{c}\bar{\Sigma}_{c}^{*}[\Lambda_{c}\Sigma_{c}^{*}] 11 c[1]-c[1] c[1]c[1]
ΣcΣ¯c[ΣcΣc]\Sigma_{c}\bar{\Sigma}_{c}^{*}[\Sigma_{c}\Sigma_{c}^{*}] 0 c[1]c[-1] c6[16]\frac{c}{6}[\frac{1}{6}] c[1]-c[-1] c2[12]-\frac{c}{2}[\frac{1}{2}]
11 c2[12]\frac{c}{2}[-\frac{1}{2}] c6[16]\frac{c}{6}[\frac{1}{6}] c2[12]-\frac{c}{2}[-\frac{1}{2}] c2[12]-\frac{c}{2}[\frac{1}{2}]
22 c2[12]-\frac{c}{2}[\frac{1}{2}] c6[16]\frac{c}{6}[\frac{1}{6}] c2[12]\frac{c}{2}[\frac{1}{2}] c2[12]-\frac{c}{2}[\frac{1}{2}]

With the potential kernel obtained, the qBSE is adopted to solve the scattering amplitude He:2014nya ; He:2015mja ; He:2012zd ; He:2015yva ; He:2017aps ; Zhu:2021lhd ; Kong:2021ohg ; Ding:2020dio . The 4-dimensional Bethe-Saltpeter equation in the Minkowski space can be reduced to a 1-dimensional equation with fixed spin-parity JPJ^{P} as He:2015mja , after partial-wave decomposition and spectator quasipotential approximation.

iλλJP(p,p)\displaystyle i{\cal M}^{J^{P}}_{\lambda^{\prime}\lambda}({\rm p}^{\prime},{\rm p}) =i𝒱λ,λJP(p,p)+λ′′p′′2dp′′(2π)3\displaystyle=i{\cal V}^{J^{P}}_{\lambda^{\prime},\lambda}({\rm p}^{\prime},{\rm p})+\sum_{\lambda^{\prime\prime}}\int\frac{{\rm p}^{\prime\prime 2}d{\rm p}^{\prime\prime}}{(2\pi)^{3}}
i𝒱λλ′′JP(p,p′′)G0(p′′)iλ′′λJP(p′′,p),\displaystyle\cdot i{\cal V}^{J^{P}}_{\lambda^{\prime}\lambda^{\prime\prime}}({\rm p}^{\prime},{\rm p}^{\prime\prime})G_{0}({\rm p}^{\prime\prime})i{\cal M}^{J^{P}}_{\lambda^{\prime\prime}\lambda}({\rm p}^{\prime\prime},{\rm p}),\quad\quad (26)

where the sum extends only over non-negative helicity λ′′\lambda^{\prime\prime}. The G0(p′′)G_{0}({\rm p}^{\prime\prime}) is reduced from the 4-dimensional propagator G(p′′)G(p^{\prime\prime}) under quasipotential approximation with one of two baryons on-shell as

G(p′′)\displaystyle G(p^{\prime\prime}) =δ+(ph′′2mh2)pl′′2ml2\displaystyle=\frac{\delta^{+}(p^{\prime\prime~{}2}_{h}-m_{h}^{2})}{p^{\prime\prime~{}2}_{l}-m_{l}^{2}}
G0(p′′)\displaystyle\to G_{0}({\rm p}^{\prime\prime}) =12Eh(p′′)[(WEh(p′′))2El2(p′′)].\displaystyle=\frac{1}{2E_{h}({\rm p^{\prime\prime}})[(W-E_{h}({\rm p}^{\prime\prime}))^{2}-E_{l}^{2}({\rm p}^{\prime\prime})]}. (27)

where pl′′p^{\prime\prime}_{l} and mlm_{l} are the momentum and mass of light hadron, respectively. As required by the spectator approximation, the heavier particle is on shell, which satisfies ph′′0=Eh(p′′)=mh2+p′′2p^{\prime\prime 0}_{h}=E_{h}({\rm p}^{\prime\prime})=\sqrt{m_{h}^{~{}2}+\rm p^{\prime\prime 2}}. The pl′′0p^{\prime\prime 0}_{l} for the lighter particle is then WEh(p′′)W-E_{h}({\rm p}^{\prime\prime}). Here and hereafter, a definition p=|𝒑|{\rm p}=|{\bm{p}}| will be adopted.

The partial wave potential is defined with the potential of interaction obtained in the above in Eq. (23) as

𝒱λλJP(p,p)\displaystyle{\cal V}_{\lambda^{\prime}\lambda}^{J^{P}}({\rm p}^{\prime},{\rm p}) =2πdcosθ[dλλJ(θ)𝒱λλ(𝒑,𝒑)\displaystyle=2\pi\int d\cos\theta~{}[d^{J}_{\lambda\lambda^{\prime}}(\theta){\cal V}_{\lambda^{\prime}\lambda}({\bm{p}}^{\prime},{\bm{p}})
+ηdλλJ(θ)𝒱λλ(𝒑,𝒑)],\displaystyle+\eta d^{J}_{-\lambda\lambda^{\prime}}(\theta){\cal V}_{\lambda^{\prime}-\lambda}({\bm{p}}^{\prime},{\bm{p}})], (28)

where η=PP1P2(1)JJ1J2\eta=PP_{1}P_{2}(-1)^{J-J_{1}-J_{2}} with PP and JJ being parity and spin for system. The initial and final relative momenta are chosen as 𝒑=(0,0,p){\bm{p}}=(0,0,{\rm p}) and 𝒑=(psinθ,0,pcosθ){\bm{p}}^{\prime}=({\rm p}^{\prime}\sin\theta,0,{\rm p}^{\prime}\cos\theta). The dλλJ(θ)d^{J}_{\lambda\lambda^{\prime}}(\theta) is the Wigner d-matrix. We also adopt an exponential regularization by introducing a form factor into the propagator as G0(p′′)G0(p′′)[e(pl′′2ml2)2/Λr4]2G_{0}({\rm p}^{\prime\prime})\to G_{0}({\rm p}^{\prime\prime})\left[e^{-(p^{\prime\prime 2}_{l}-m_{l}^{2})^{2}/\Lambda_{r}^{4}}\right]^{2} with Λr\Lambda_{r} being a cutoff He:2015mja .

III Numerical Results

With the preparation above, numerical calculation can be performed to study the molecular states from the interactions ΛcΛ¯c/ΛcΛc\Lambda_{c}\bar{\Lambda}_{c}/\Lambda_{c}\Lambda_{c}, Σc()Σ¯c()/Σc()Σc()\Sigma_{c}^{(*)}\bar{\Sigma}_{c}^{(*)}/\Sigma_{c}^{(*)}\Sigma_{c}^{(*)}, and ΛcΣ¯c()/ΛcΣc()\Lambda_{c}\bar{\Sigma}_{c}^{(*)}/\Lambda_{c}\Sigma_{c}^{(*)}. After transformation of the one dimensional integral qBSE into a matrix equation, the scattering amplitude can be obtained, and the molecular states can be searched for as the poles of the amplitude. The parameters of the Lagrangians in the current work are chosen as the same as those in our previous study of the hidden-charm pentaquarks He:2019ify ; He:2019rva . The only free parameters are cutoffs Λe\Lambda_{e} and Λr\Lambda_{r}, which are rewritten as a form of Λr=Λe=m+α0.22\Lambda_{r}=\Lambda_{e}=m+\alpha~{}0.22 GeV with mm being the mass of the exchanged meson, which is also introduced into the regularization form factor to suppress large momentum, i. e., the short-range contribution of the exchange as warned in Ref Liu:2019zvb . Hence, in the current work, only one parameter α\alpha is involved.

III.1 Interactions ΛcΛ¯c\Lambda_{c}\bar{\Lambda}_{c} and ΛcΛc\Lambda_{c}\Lambda_{c}

In the current work, only S-wave states will be considered. For the two interactions considered, the results with spins SS=1 and 0 are shown in Fig. 1. The results suggest bound states are produced from all four channels. The states with spins 1 and 0 have almost the same binding energy, which is consistent with the results in Ref. Lee:2011rka . The two bound states from the ΛcΛ¯c\Lambda_{c}\bar{\Lambda}_{c} interaction appear even with an α\alpha value below 0, which are smaller than two states for the double-charm ΛcΛc\Lambda_{c}\Lambda_{c} interaction, which indicts that the ΛcΛ¯c\Lambda_{c}\bar{\Lambda}_{c} interaction is more attractive than the ΛcΛc\Lambda_{c}\Lambda_{c} interaction due to different contributions from the meson exchanges. Since the Λ\Lambda baryon is isoscalar, the interactions ΛcΛ¯c\Lambda_{c}\bar{\Lambda}_{c} and ΛcΛc\Lambda_{c}\Lambda_{c} arises from the σ\sigma and ω\omega exchanges. In the ΛcΛ¯c\Lambda_{c}\bar{\Lambda}_{c} interaction, both σ\sigma and ω\omega exchanges provide attraction. However, in the ΛcΛc\Lambda_{c}\Lambda_{c} interaction, the ω\omega exchange is repulsive, which reduces the attraction.

Refer to caption
Figure 1: The binding energies of the bound states from ΛcΛ¯c\Lambda_{c}\bar{\Lambda}_{c} (left) and ΛcΛc\Lambda_{c}\Lambda_{c} (right) interactions with the variation of parameter α\alpha.

III.2 Interactions Σc()Σ¯c()\Sigma_{c}^{(*)}\bar{\Sigma}_{c}^{(*)} and Σc()Σc()\Sigma_{c}^{(*)}\Sigma_{c}^{(*)}

Different from the isoscalar Λc\Lambda_{c} baryon, the Σc()\Sigma_{c}^{(*)} baryon is an isovector particle. Hence, more channels will be involved in certain interaction. In Fig. 2, the bound states from the ΣcΣ¯c\Sigma_{c}\bar{\Sigma}_{c} interaction and their double-charm partners are presented. Here, the siospin II can be 0, 11, or 22, and the spin SS=0 or 11, which leads to six channels for each interaction.

Refer to caption
Figure 2: The binding energies of the bound states from ΣcΣ¯c\Sigma_{c}\bar{\Sigma}_{c} (left) and ΣcΣc\Sigma_{c}\Sigma_{c} (right) interactions with the variation of parameter α\alpha.

As shown in Fig. 2, bound states are produced in all channels, but with different behaviors with the variation of parameter α\alpha. For the isoscalar hidden-charm ΣcΣ¯c\Sigma_{c}\bar{\Sigma}_{c} system, the bound states are produced at an α\alpha value below 0, and the binding energies increase rapidly with the increase of α\alpha value. As shown in Table 2, the strong attraction is from the ρ\rho exchange with a large flavor factor 1-1. The corresponding double-charm partners appear at larger α\alpha value, which means that it is less attractive than the hidden-charm case due to the different signs for π\pi and ω\omega exchanges. The binding energies for states with different spins are almost the same. For the states with I=1I=1, the binding energies at an α\alpha value of 0 are smaller than those with I=0I=0. As shown in Table 2, the flavor factors for ρ\rho and π\pi exchanges are half of those for I=0I=0, which leads to less attraction. For the states with I=2I=2, the attraction becomes weaker due to reversing the signs of the ρ\rho and π\pi exchanges. The hidden-charm states are produced at a small α\alpha value, and binding energies increase to a value larger than 30 GeV very quickly at an α\alpha value of about 0.7. However, the binding energies of their double-charm partners appear at α\alpha value of about 0.2, and increase relatively slowly.

The binding energies of the states produced from the ΣcΣ¯c\Sigma_{c}^{*}\bar{\Sigma}_{c}^{*} interaction are shown in Fig. 3.

Refer to caption
Figure 3: The binding energies of the bound states from ΣcΣ¯c\Sigma_{c}^{*}\bar{\Sigma}_{c}^{*} (left) and ΣcΣc\Sigma_{c}^{*}\Sigma_{c}^{*} (right) interactions with the variation of parameter α\alpha.

Except that there are four spins SS=0, 1, 2, and 3, due to the flavor factors are the same as those for the ΣcΣ¯c\Sigma_{c}\bar{\Sigma}_{c} system, the results are similar to the results in Fig. 2. For the hidden-charm system with I=0I=0, there are three states with spins J=1J=1, 2, and 3 producing at an α\alpha values of about 0. As in the case of ΣcΣ¯c\Sigma_{c}\bar{\Sigma}_{c}, the attractions for the corresponding double-charm systems are weaker than the hidden-charm systems. The hidden-charm bound states with I=1I=1 appear at an α\alpha value of about 0, and the binding energies increase to 30 MeV at α\alpha value about 0.7. The hidden-charm states with I=2I=2 appear at an α\alpha value little larger than 0 while their double-charm partners appear at α\alpha value of 0.5 or larger. Generally speaking, the attractions of ΣcΣ¯c/ΣcΣc\Sigma_{c}^{*}\bar{\Sigma}_{c}^{*}/\Sigma_{c}^{*}{\Sigma}_{c}^{*} interaction are a little weaker than the case of ΣcΣ¯c/ΣcΣc\Sigma_{c}\bar{\Sigma}_{c}/\Sigma_{c}\Sigma_{c} interaction.

The results for the ΣcΣ¯c\Sigma_{c}\bar{\Sigma}_{c}^{*} and ΣcΣc\Sigma_{c}\Sigma_{c}^{*} interactions are presented in Fig 4. For the hidden-charm states, there are two GG parities, G=±1G=\pm 1, which do not involve in the double-charm sector. For the hidden-charm systems with II=0, the bound states appear at α\alpha value a little below 0, and increase with the increase of the parameter α\alpha to 30 MeV at α\alpha value of about 1. For their double-charm partners, the bound states appear at an α\alpha value about 0, and the binding energies increase more slowly than the hidden-charm states. In the case with II=1, the states appear at an α\alpha value of about 0, and increase to 30 MeV at an α\alpha value about 1.2. The hidden-charm states with I=2I=2 appear at α\alpha value of about 0, which is smaller than these for the double-charm states, about 0.5.

Refer to caption
Figure 4: The binding energies of the bound states from ΣcΣ¯c\Sigma_{c}\bar{\Sigma}_{c}^{*} (left) and ΣcΣc\Sigma_{c}\Sigma_{c}^{*} (right) interactions with the variation of parameter α\alpha.

III.3 Interactions ΛcΣ¯c()\Lambda_{c}\bar{\Sigma}_{c}^{(*)} and ΛcΣc()\Lambda_{c}\Sigma_{c}^{(*)}

Now, we turn to the systems with a Λc/Λ¯c\Lambda_{c}/\bar{\Lambda}_{c} and a Σ()\Sigma^{(*)} baryon. The results of the ΛcΣ¯c()\Lambda_{c}\bar{\Sigma}_{c}^{(*)} states and their double-charm partners are shown in Fig. 5. Here, the S-wave states with spin J=0J=0 and 1 are considered. Since the Λc/Λ¯c\Lambda_{c}/\bar{\Lambda}_{c} baryon is isoscalar, the isospin only can be 1, and the GG parity will involve in the hidden charm sector. Due to the same flavor factors, the results of systems with Σc\Sigma_{c} and Σc\Sigma_{c}^{*} are similar. The hidden-charm states are first produced at an α\alpha value a little below 0, and the binding energies increase to 30 GeV at an α\alpha value about 1. The double-charm states appear at an α\alpha value a litter larger and the binding energies increase slowly, reach 30 MeV at an α\alpha value of about 2.

Refer to caption
Figure 5: The binding energies of the bound states from ΛcΣ¯c\Lambda_{c}\bar{\Sigma}_{c} (upper left) and ΛcΣc\Lambda_{c}\Sigma_{c} (upper right) ΛcΣ¯c\Lambda_{c}\bar{\Sigma}_{c}^{*} (bottom left) and ΛcΣc\Lambda_{c}\Sigma_{c}^{*} (bottom right) interactions with the variation of parameter α\alpha.

IV Summary

In the current work, the study of the molecular states from interactions of charmed baryons is performed. The hidden-charm systems ΛcΛ¯c\Lambda_{c}\bar{\Lambda}_{c}, Σc()Σ¯c()\Sigma_{c}^{(*)}\bar{\Sigma}_{c}^{(*)}, and ΛcΣc()\Lambda_{c}\Sigma_{c}^{(*)}, as well as their double-charm partners, are considered in the calculation. With the help of the Lagrangians in heavy quark limit and with chiral symmetry. The potential kernels are constructed in a one-boson-exchange model, and inserted into the qBSE to search the bound states.

The calculation suggests that the attractions widely exist in the systems of two charmed baryons. For the ΛcΛ¯c\Lambda_{c}\bar{\Lambda}_{c} interaction, the bound states are produced with spin parities JPJ^{P}=00^{-} and 11^{-}, and their double-charm partner can be produced with a binding energies smaller than 30 MeV in a larger range of the parameter α\alpha. Due to the same favor factors for the ΣcΣ¯c\Sigma_{c}\bar{\Sigma}_{c}, ΣcΣ¯c\Sigma_{c}^{*}\bar{\Sigma}_{c}^{*}, and ΣcΣ¯c\Sigma_{c}\bar{\Sigma}_{c}^{*} interactions, the binding energies for these three interactions behave in a similar manner. The most strong attraction can be found in the case with I=0I=0 for both hidden-charm and doubly-charm cases due to the large ρ\rho exchange as suggested by its flavor factor, which is consistent with the results in Ref. Dong:2021juy ; Dong:2021bvy . For the interactions ΛcΣ¯c()\Lambda_{c}\bar{\Sigma}_{c}^{(*)} and ΛcΣc()\Lambda_{c}\Sigma_{c}^{(*)}, all bound states produced are relatively stable, has a binding energy below 30  MeV in a large range of α\alpha value. Generally speak, the interactions of two charmed baryons are attractive, and many bound states are produced. However, only a few candidates, such as Y(4630)Y(4630), were reported in experiment. More experiment studies about these states are suggested though the processes including the nucleon- nucleon collision at LHC and nucleon-antinucleon collision at P¯ANDA\rm\bar{P}ANDA.

Acknowledgement We would like to thank Prof. Feng-Kun Guo for helpful discussions. This project is supported by the National Natural Science Foundation of China (Grants No. 11675228).

References

  • (1) R.L. Workman et al. [Particle Data Group], “Review of Particle Physics,” Prog. Theor. Exp. Phys. 2022, 083C01 (2022)
  • (2) S. Godfrey and N. Isgur, “Mesons in a Relativized Quark Model with Chromodynamics,” Phys. Rev. D 32, 189-231 (1985)
  • (3) S. Capstick and N. Isgur, “Baryons in a relativized quark model with chromodynamics,” Phys. Rev. D 34, no.9, 2809-2835 (1986)
  • (4) H. X. Chen, W. Chen, X. Liu and S. L. Zhu, “The hidden-charm pentaquark and tetraquark states,” Phys. Rept. 639, 1-121 (2016)
  • (5) F. K. Guo, C. Hanhart, U. G. Meißner, Q. Wang, Q. Zhao and B. S. Zou, “Hadronic molecules,” Rev. Mod. Phys. 90, no.1, 015004 (2018) [erratum: Rev. Mod. Phys. 94, no.2, 029901 (2022)]
  • (6) N. A. Tornqvist, “From the deuteron to deusons, an analysis of deuteron - like meson meson bound states,” Z. Phys. C 61, 525-537 (1994)
  • (7) J. He, “Study of the BB¯/DD¯B\bar{B}^{*}/D\bar{D}^{*} bound states in a Bethe-Salpeter approach,” Phys. Rev. D 90, no. 7, 076008 (2014)
  • (8) Z. F. Sun, J. He, X. Liu, Z. G. Luo and S. L. Zhu, “Zb(10610)±Z_{b}(10610)^{\pm} and Zb(10650)±Z_{b}(10650)^{\pm} as the BB¯B^{*}\bar{B} and BB¯B^{*}\bar{B}^{*} molecular states,” Phys. Rev. D 84, 054002 (2011)
  • (9) J. J. Wu, R. Molina, E. Oset and B. S. Zou, “Prediction of narrow NN^{*} and Λ\Lambda^{*} resonances with hidden charm above 4 GeV,” Phys. Rev. Lett. 105, 232001 (2010)
  • (10) Z. C. Yang, Z. F. Sun, J. He, X. Liu and S. L. Zhu, “The possible hidden-charm molecular baryons composed of anti-charmed meson and charmed baryon,” Chin. Phys. C 36, 6-13 (2012)
  • (11) C. W. Xiao, J. Nieves and E. Oset, “Combining heavy quark spin and local hidden gauge symmetries in the dynamical generation of hidden charm baryons,” Phys. Rev. D 88, 056012 (2013)
  • (12) R. Chen, X. Liu, X. Q. Li and S. L. Zhu, “Identifying exotic hidden-charm pentaquarks,” Phys. Rev. Lett.  115, no. 13, 132002 (2015)
  • (13) J. He, “D¯Σc\bar{D}\Sigma^{*}_{c} and D¯Σc\bar{D}^{*}\Sigma_{c} interactions and the LHCb hidden-charmed pentaquarks,” Phys. Lett. B 753, 547 (2016)
  • (14) M. Z. Liu, Y. W. Pan, F. Z. Peng, M. Sánchez Sánchez, L. S. Geng, A. Hosaka and M. Pavon Valderrama, “Emergence of a complete heavy-quark spin symmetry multiplet: seven molecular pentaquarks in light of the latest LHCb analysis,” Phys. Rev. Lett. 122, no.24, 242001 (2019)
  • (15) J. He, “Study of Pc(4457)P_{c}(4457), Pc(4440)P_{c}(4440), and Pc(4312)P_{c}(4312) in a quasipotential Bethe-Salpeter equation approach,” Eur. Phys. J. C 79, no.5, 393 (2019)
  • (16) F. Z. Peng, M. J. Yan, M. Sánchez Sánchez and M. P. Valderrama, “The Pcs(4459)P_{cs}(4459) pentaquark from a combined effective field theory and phenomenological perspective,” Eur. Phys. J. C 81, no.7, 666 (2021)
  • (17) Z. G. Wang, “Analysis of the Pcs(4459)P_{cs}(4459) as the hidden-charm pentaquark state with QCD sum rules,” Int. J. Mod. Phys. A 36, no.10, 2150071 (2021)
  • (18) R. Chen, J. He and X. Liu, “Possible strange hidden-charm pentaquarks from Σc()D¯s\Sigma_{c}^{(*)}\bar{D}_{s}^{*} and Ξc(,)D¯\Xi^{(^{\prime},*)}_{c}\bar{D}^{*} interactions,” Chin. Phys. C 41, no.10, 103105 (2017)
  • (19) J. T. Zhu, L. Q. Song and J. He, “Pcs(4459)P_{cs}(4459) and other possible molecular states from Ξc()D¯()\Xi_{c}^{(*)}\bar{D}^{(*)} and ΞcD¯()\Xi^{\prime}_{c}\bar{D}^{(*)} interactions,” Phys. Rev. D 103, no.7, 074007 (2021)
  • (20) H. Clement, “On the History of Dibaryons and their Final Observation,” Prog. Part. Nucl. Phys. 93, 195 (2017)
  • (21) N. Lee, Z. G. Luo, X. L. Chen and S. L. Zhu, “Possible Deuteron-like Molecular States Composed of Heavy Baryons,” Phys. Rev. D 84 (2011), 014031
  • (22) J. T. Zhu, Y. Liu, D. Y. Chen, L. Jiang and J. He, “XX(2239) and η(2225)\eta(2225) as hidden-strange molecular states from ΛΛ¯\Lambda\bar{\Lambda} interaction,” Chin. Phys. C 44 (2020) no.12, 123103
  • (23) X. K. Dong, F. K. Guo and B. S. Zou, “A survey of heavy-antiheavy hadronic molecules,” Progr. Phys. 41 (2021), 65-93
  • (24) E. van Beveren, X. Liu, R. Coimbra and G. Rupp, “Possible psi(5S), psi(4D), psi(6S) and psi(5D) signals in Lambda(c) anti-Lambda(c),” EPL 85 (2009) no.6, 61002
  • (25) L. Q. Song, D. Song, J. T. Zhu and J. He, “Possible ΛcΛ¯c\Lambda_{c}\bar{\Lambda}_{c} molecular states and their productions in nulceon-antinulceon collision,” [arXiv:2207.13957 [hep-ph]].
  • (26) Y. R. Liu and M. Oka, “ΛcN\Lambda_{c}N bound states revisited,” Phys. Rev. D 85, 014015 (2012)
  • (27) G. Pakhlova et al. [Belle], “Observation of a near-threshold enhancement in the e+eΛc+Λce^{+}e^{-}\to\Lambda^{+}_{c}\Lambda^{-}_{c} cross section using initial-state radiation,” Phys. Rev. Lett. 101, 172001 (2008)
  • (28) A. M. Badalian, B. L. G. Bakker and I. V. Danilkin, “The S - D mixing and di-electron widths of higher charmonium 1– states,” Phys. Atom. Nucl. 72 (2009), 638-646
  • (29) J. Segovia, D. R. Entem and F. Fernandez, “Charm spectroscopy beyond the constituent quark model,” [arXiv:0810.2875 [hep-ph]].
  • (30) L. Maiani, F. Piccinini, A. D. Polosa and V. Riquer, “The Z(4430) and a New Paradigm for Spin Interactions in Tetraquarks,” Phys. Rev. D 89 (2014), 114010
  • (31) S. J. Brodsky, D. S. Hwang and R. F. Lebed, “Dynamical Picture for the Formation and Decay of the Exotic XYZ Mesons,” Phys. Rev. Lett. 113 (2014) no.11, 112001
  • (32) G. Cotugno, R. Faccini, A. D. Polosa and C. Sabelli, “Charmed Baryonium,” Phys. Rev. Lett. 104 (2010), 132005
  • (33) X. W. Wang, Z. G. Wang and G. l. Yu, “Study of ΛcΛc\Lambda_{c}\Lambda_{c} dibaryon and ΛcΛ¯c\Lambda_{c}{\bar{\Lambda}}_{c} baryonium states via QCD sum rules,” Eur. Phys. J. A 57, no.9, 275 (2021)
  • (34) Y. D. Chen and C. F. Qiao, “Baryonium Study in Heavy Baryon Chiral Perturbation Theory,” Phys. Rev. D 85 (2012), 034034
  • (35) Y. A. Simonov, “Theory of hadron decay into baryon-antibaryon final state,” Phys. Rev. D 85 (2012), 105025
  • (36) Z. M. Ding, H. Y. Jiang and J. He, “Molecular states from D()D¯()/B()B¯()D^{(*)}\bar{D}^{(*)}/B^{(*)}\bar{B}^{(*)} and D()D()/B¯()B¯()D^{(*)}D^{(*)}/\bar{B}^{(*)}\bar{B}^{(*)} interactions,” Eur. Phys. J. C 80 (2020) no.12, 1179
  • (37) Z. M. Ding, H. Y. Jiang, D. Song and J. He, “Hidden and doubly heavy molecular states from interactions D(s)()D¯s()D^{(*)}_{(s)}{{\bar{D}}}^{(*)}_{s}/B(s)()B¯s()B^{(*)}_{(s)}{{\bar{B}}}^{(*)}_{s} and D(s)()Ds(){D}^{(*)}_{(s)}D_{s}^{(*)}/B(s)()Bs(){B}^{(*)}_{(s)}B_{s}^{(*)},” Eur. Phys. J. C 81, no.8, 732 (2021)
  • (38) S. Y. Kong, J. T. Zhu, D. Song and J. He, “Heavy-strange meson molecules and possible candidates Ds0*(2317), Ds1(2460), and X0(2900),” Phys. Rev. D 104 (2021) no.9, 094012
  • (39) R. Aaij et al. [LHCb], “Observation of the doubly charmed baryon Ξcc++\Xi_{cc}^{++},” Phys. Rev. Lett. 119 (2017) no.11, 112001
  • (40) R. Aaij et al. [LHCb], “Observation of an exotic narrow doubly charmed tetraquark,” [arXiv:2109.01038 [hep-ex]].
  • (41) J. P. Ader, J. M. Richard and P. Taxil, “Do Narrow Heavy Multi-quark States exist?,” Phys. Rev. D 25 (1982), 2370
  • (42) S. Zouzou, B. Silvestre-Brac, C. Gignoux and J. M. Richard, “Four Quark Bound States,” Z. Phys. C 30 (1986), 457
  • (43) H. J. Lipkin, “A Model Independent Appraoch to Multi-quark Bound States,” Phys. Lett. B 172 (1986), 242-247
  • (44) L. Heller and J. A. Tjon, “On the Existence of Stable Dimesons,” Phys. Rev. D 35 (1987), 969
  • (45) J. Carlson, L. Heller and J. A. Tjon, “Stability of Dimesons,” Phys. Rev. D 37 (1988), 744
  • (46) B. Silvestre-Brac and C. Semay, “Systematics of L = 0 q-2 anti-q-2 systems,” Z. Phys. C 57 (1993), 273-282
  • (47) C. Semay and B. Silvestre-Brac, “Diquonia and potential models,” Z. Phys. C 61 (1994), 271-275
  • (48) B. A. Gelman and S. Nussinov, “Does a narrow tetraquark cc anti-u anti-d state exist?,” Phys. Lett. B 551 (2003), 296-304
  • (49) A. V. Manohar and M. B. Wise, “Exotic Q Q anti-q anti-q states in QCD,” Nucl. Phys. B 399 (1993), 17-33
  • (50) S. Pepin, F. Stancu, M. Genovese and J. M. Richard, “Tetraquarks with color blind forces in chiral quark models,” Phys. Lett. B 393 (1997), 119-123
  • (51) R. Molina, T. Branz and E. Oset, “A new interpretation for the Ds2(2573)D^{*}_{s2}(2573) and the prediction of novel exotic charmed mesons,” Phys. Rev. D 82 (2010), 014010
  • (52) N. Li, Z. F. Sun, X. Liu and S. L. Zhu, “Coupled-channel analysis of the possible D()D(),B¯()B¯()D^{(*)}D^{(*)},\overline{B}^{(*)}\overline{B}^{(*)} and D()B¯()D^{(*)}\overline{B}^{(*)} molecular states,” Phys. Rev. D 88 (2013) no.11, 114008
  • (53) Z. G. Wang, “Analysis of the axialvector doubly heavy tetraquark states with QCD sum rules,” Acta Phys. Polon. B 49 (2018), 1781
  • (54) L. Maiani, A. D. Polosa and V. Riquer, “Hydrogen bond of QCD in doubly heavy baryons and tetraquarks,” Phys. Rev. D 100 (2019) no.7, 074002
  • (55) M. Z. Liu, T. W. Wu, M. Pavon Valderrama, J. J. Xie and L. S. Geng, “Heavy-quark spin and flavor symmetry partners of the X(3872) revisited: What can we learn from the one boson exchange model?,” Phys. Rev. D 99 (2019) no.9, 094018
  • (56) N. Li and S. L. Zhu, “Hadronic Molecular States Composed of Heavy Flavor Baryons,” Phys. Rev. D 86, 014020 (2012)
  • (57) H. Garcilazo and A. Valcarce, “Doubly charmed multibaryon systems,” Eur. Phys. J. C 80, no.8, 720 (2020)
  • (58) T. F. Carames and A. Valcarce, “Heavy flavor dibaryons,” Phys. Rev. D 92, no.3, 034015 (2015)
  • (59) K. Chen, R. Chen, L. Meng, B. Wang and S. L. Zhu, “Systematics of the heavy flavor hadronic molecules,” Eur. Phys. J. C 82, no.7, 581 (2022)
  • (60) X. Z. Ling, M. Z. Liu and L. S. Geng, “Masses and strong decays of open charm hexaquark states Σc()Σc()\Sigma_{c}^{(*)}{\Sigma}_{c}^{(*)},” Eur. Phys. J. C 81 (2021) no.12, 1090
  • (61) X. K. Dong, F. K. Guo and B. S. Zou, “A survey of heavy–heavy hadronic molecules,” Commun. Theor. Phys. 73, no.12, 125201 (2021)
  • (62) C. Isola, M. Ladisa, G. Nardulli and P. Santorelli, “Charming penguins in BKπ,K(ρ,ω,ϕ)B\to K^{*}\pi,K(\rho,\omega,\phi) decays,” Phys. Rev. D 68, 114001 (2003)
  • (63) A. F. Falk and M. E. Luke, “Strong decays of excited heavy mesons in chiral perturbation theory,” Phys. Lett. B 292, 119 (1992)
  • (64) R. Chen, Z. F. Sun, X. Liu and S. L. Zhu, “Strong LHCb evidence supporting the existence of the hidden-charm molecular pentaquarks,” Phys. Rev. D 100, no.1, 011502 (2019)
  • (65) J. T. Zhu, S. Y. Kong, L. Q. Song and J. He, Phys. Rev. D 105 (2022) no.9, 094036 doi:10.1103/PhysRevD.105.094036 [arXiv:2205.07586 [hep-ph]].
  • (66) J. He and D. Y. Chen, “Molecular states from Σc()D¯()ΛcD¯()\Sigma^{(*)}_{c}\bar{D}^{(*)}-\Lambda_{c}\bar{D}^{(*)} interaction,” Eur. Phys. J. C 79 no.11, 887 (2019)
  • (67) R. J. N. Phillips, “Antinuclear Forces,” Rev. Mod. Phys.  39, 681 (1967).
  • (68) E. Klempt, F. Bradamante, A. Martin and J. M. Richard, “Antinucleon nucleon interaction at low energy: Scattering and protonium,” Phys. Rept.  368, 119 (2002).
  • (69) J. He, “Internal structures of the nucleon resonances N(1875) and N(2120),” Phys. Rev. C 91, no.1, 018201 (2015)
  • (70) J. He, “Nucleon resonances N(1875)N(1875) and N(2100)N(2100) as strange partners of LHCb pentaquarks,” Phys. Rev. D 95, no.7, 074031 (2017)
  • (71) J. He, “The Zc(3900)Z_{c}(3900) as a resonance from the DD¯D\bar{D}^{*} interaction,” Phys. Rev. D 92, no.3, 034004 (2015)
  • (72) J. He, D. Y. Chen and X. Liu, “New Structure Around 3250 MeV in the Baryonic B Decay and the D0(2400)ND^{*}_{0}(2400)N Molecular Hadron,” Eur. Phys. J. C 72, 2121 (2012)
  • (73) M. Z. Liu, T. W. Wu, M. Sánchez Sánchez, M. P. Valderrama, L. S. Geng and J. J. Xie, “Spin-parities of the Pc(4440)P_{c}(4440) and Pc(4457)P_{c}(4457) in the one-boson-exchange model,” Phys. Rev. D 103, no.5, 054004 (2021)