This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Positivity of entropy production for the three-level maser

Alex Arash Sand Kalaee    Andreas Wacker [email protected] Mathematical Physics and NanoLund, Lund University, Sweden
(, accepted manuscript, to appear in Physical Review A)
Abstract

Entropy production is a key concept of thermodynamics and allows one to analyze the operation of engines. For the Scovil-Schulz-DuBois heat engine, the archetypal three-level thermal maser coupled to thermal baths, it was argued that the common definition of heat flow may provide negative entropy production for certain parameters [E. Boukobza and D. J. Tannor, Phys. Rev. Lett. 98, 240601 (2007)]. Here, we show that this can be cured, if corrections for detuning are properly applied to the energies used for the bath transitions. This method can be used more generally for the thermodynamical analysis of optical transitions where the modes of the light field are detuned from the transition energy.

I Introduction

With the realization of masers and lasers quantum optics has proved fertile ground for thermodynamic research in open quantum systems. An archetypal example is the Scovil-Schulz-DuBois heat engine based on a three-level maser driven by two heat baths of different temperatures [1]. This system served as a model to develop a variety of approaches for the microscopic description of quantum systems in contact with thermal baths in interaction with classical [2, 3, 4, 5, 6] or quantized light fields [7, 8, 9].

Of key relevance is the formulation of work and heat in the quantum realm. Refs. [10, 11] defined work flow (power) and heat flow by partitioning the time derivative of the expectation value of the full Hamiltonian, i.e. including the time-dependent interaction with classical degrees of freedom, such as a microwave field. Later, Boukobza and Tannor [5] proposed an alternative definition of power and heat flow by restricting to the bare Hamiltonian, which describes the system itself and lacks explicit time dependence. This is sometimes conceptually simpler and was, e.g., also used in Refs. [12, 13]. The authors argued [14], that the bare heat flows always provide a positive entropy production [15] for the three level maser, while this was not the case for full heat flows in their treatment, which thus may violate the second law of thermodynamics. (We use full and bare in the sense that they relate to the Hamiltonian from which the flows are derived.) The correct definition of heat and work is actually still an open issue, see, e.g., the discussion on page 339 of [16], where further references are given.

In this work we study the definitions for work and heat for the three-level maser coupled to a classical microwave field, where the bath couplings are treated by a Lindblad dissipator as outlined in Sec. II. Sec. III focuses on the different definitions of heat and work, where we essentially follow Ref. [14] showing a violation of entropy production for the full approach. In Sec. IV we present a reformulation of their expressions, which allows for the correct identification of energies supplied by the baths. Using these we recover a strictly positive entropy production for the full heat flows.

II The system

We consider the three-level system of Scovil and Schulz-DuBois [1] consisting of an upper (uu) and lower (ll) maser level and the ground level (gg), see Fig 1. Throughout this article we set =kB=1\hbar=k_{B}=1 in order to simplify the notation. The full system Hamiltonian, H=H0+V(t)H=H_{0}+V(t), consists of the bare Hamiltonian H0=ωuσuu+ωlσllH_{0}=\omega_{u}\sigma_{uu}+\omega_{l}\sigma_{ll} and a modulating external field V(t)=ϵ(eiωdtσlu+eiωdtσul)V(t)=\epsilon({\rm e}^{{\rm i}\omega_{d}t}\sigma_{lu}+{\rm e}^{-{\rm i}\omega_{d}t}\sigma_{ul}), where ϵ\epsilon is the strength of the driving field, ωd\omega_{d} its modulating frequency, and we use the operators σij=|ij|\sigma_{ij}=\left|i\right\rangle\left\langle j\right|. Without loss of generality the energy of the ground state |g\left|g\right\rangle is set to zero. The three-level system is connected to two bosonic reservoirs (baths), which are labeled by α\alpha, where α{u,l}\alpha\in\{u,l\}. The bath α\alpha couples to the transition |g|α\left|g\right\rangle\leftrightarrow\left|\alpha\right\rangle with strength γα\gamma_{\alpha}, where an average number of excitations nαn_{\alpha} is available in the bath. The model and the analysis of its steady state behavior summarized below follows recent work by [5, 14, 13].

Refer to caption
Figure 1: Energy diagram of the three-level maser subjected to a modulating field (dotted arrow), where the transitions gug\leftrightarrow u and glg\leftrightarrow l (full arrows) are coupled to different reservoirs. A finite value of Δ=ωd(ωuωl)\Delta=\omega_{d}-(\omega_{u}-\omega_{l}) reflects the detuning between the modulating field and the energy level difference.

The time evolution of the system density operator ρ\rho is assumed to be Markovian and governed by the Lindblad master equation [17]

ρ˙=i[H(t),ρ]+u[ρ]+l[ρ]\dot{\rho}=-{\rm i}[H(t),\rho]+\mathcal{L}_{u}[\rho]+\mathcal{L}_{l}[\rho] (1)

where the coupling to the baths are described by α[ρ]=γαnα𝒟σαg[ρ]+γα(nα+1)𝒟σgα[ρ]\mathcal{L}_{\alpha}[\rho]=\gamma_{\alpha}n_{\alpha}\mathcal{D}_{\sigma_{\alpha g}}[\rho]+\gamma_{\alpha}(n_{\alpha}+1)\mathcal{D}_{\sigma_{g\alpha}}[\rho] with the dissipator 𝒟σ[ρ]=σρσ12{σσρ+ρσσ}\mathcal{D}_{\sigma}[\rho]=\sigma\rho\sigma^{\dagger}-\frac{1}{2}\left\{\sigma^{\dagger}\sigma\rho+\rho\sigma^{\dagger}\sigma\right\}.

To simplify the master equation we remove the time dependence of the Hamiltonian by transforming the system to a rotating frame [14, 13]. For X=ωlσll+(ωl+ωd)σuuX=\omega_{l}\sigma_{ll}+(\omega_{l}+\omega_{d})\sigma_{uu}, we define Arot=U(t)AU(t)A^{\textrm{rot}}=U(t)AU^{\dagger}(t) according to the unitary operator U(t)=eiXtU(t)={\rm e}^{{\rm i}Xt}. While the dissipative terms are unaffected by the choice of the rotating frame, the unitary part of the quantum evolution is determined by the Hamiltonian

H~=HrotX=Δσuu+ϵ(σul+σlu)\widetilde{H}=H^{\mathrm{rot}}-X=-\Delta\sigma_{uu}+\epsilon(\sigma_{ul}+\sigma_{lu}) (2)

with the detuning parameter Δ=ωd(ωuωl)\Delta=\omega_{d}-(\omega_{u}-\omega_{l}). Solving Eq. (1) for the steady state in the rotating frame (details are given in App. A) yields the net transition rate RulR_{u\rightarrow l} from the upper to the lower level

Rul=A(γu,γl,nu,nl,ϵ)F(γu,γl,nu,nl,ϵ,Δ)(nunl)R_{u\rightarrow l}=\frac{A(\gamma_{u},\gamma_{l},n_{u},n_{l},\epsilon)}{F(\gamma_{u},\gamma_{l},n_{u},n_{l},\epsilon,\Delta)}(n_{u}-n_{l}) (3)

where the AA and FF are both positive [14], see Eq. (24). Thus RulR_{u\rightarrow l} has the same sign as the difference nunln_{u}-n_{l} between bath occupations which is driving the transitions.

III Work, heat, and entropy

Let the average energy in the system be E=Tr{ρH}\left\langle E\right\rangle=\mathrm{Tr}\{\rho H\}. The typical definitions of full power and full heat flows in the density matrix formalism are [10, 11]

P=W˙=Tr{ρH˙},Q˙=Tr{ρ˙H}P=\dot{W}=\mathrm{Tr}\{\rho\dot{H}\},\quad\dot{Q}=\mathrm{Tr}\{\dot{\rho}H\} (4)

where we use the convention, that positive values of PP and Q˙\dot{Q} correspond to an increase of energy in the system.

Alternatively, some authors apply an alternative definition of the work and heat for systems coupled to a time-dependent external field which is based on the bare Hamiltonian, E0=Tr{ρH0}\left\langle E_{0}\right\rangle=\mathrm{Tr}\{\rho H_{0}\} [5, 12]. Based on the first law of thermodynamics the bare flows are identified from

E0˙=iTr{ρ[H0,V(t)]}+α{u,l}Tr{α[ρ]H0}\dot{E_{0}}=-{\rm i}\mathrm{Tr}\{\rho[H_{0},V(t)]\}+\sum_{\alpha\in\{u,l\}}\mathrm{Tr}\{\mathcal{L}_{\alpha}[\rho]H_{0}\} (5)

where the first (unitary) term is interpreted as the bare power P0P_{0} and the second (dissipative) term as the sum of bare heat flows Q˙0α\dot{Q}_{0\alpha} from the respective baths to the system. These terms can be either evaluated in the original or the rotating frame due to the invariance of the trace under cyclic permutations of operators. (This is simpler compared to the first definition with full power and heat flow Eq. (4), where the transformations [A˙]rotdArot/dt[\dot{A}]^{\textrm{rot}}\neq\mathrm{d}A^{\textrm{rot}}/\mathrm{d}t for A=H,ρA=H,\rho are more involved.)

From these definitions the steady state bare power and heat flow become (see App. B)

P0=Rul(ωuωl)Q˙0u=+RulωuQ˙0l=Rulωl\begin{split}P_{0}&=-R_{u\rightarrow l}(\omega_{u}-\omega_{l})\\ \dot{Q}_{0u}&=+R_{u\rightarrow l}\omega_{u}\\ \dot{Q}_{0l}&=-R_{u\rightarrow l}\omega_{l}\end{split} (6)

We note that the bare power and heat flow correspond to the net transition rate RulR_{u\rightarrow l} multiplied with the respective bare transition energies from H0H_{0}.

The second law of thermodynamics requires a positive definite entropy production. Spohn’s entropy production function for the engine reads [15]

σ=StQ˙uTuQ˙lTl\sigma=\frac{\partial S}{\partial t}-\frac{\dot{Q}_{u}}{T_{u}}-\frac{\dot{Q}_{l}}{T_{l}} (7)

where S=Tr{ρlnρ}=Tr{ρsteady staterotlnρsteady staterot}S=\mathrm{Tr}\{\rho\ln\rho\}=\mathrm{Tr}\{\rho^{\textrm{rot}}_{\textrm{steady state}}\ln\rho^{\textrm{rot}}_{\textrm{steady state}}\} is the von Neumann entropy [18] of the three-level system, which is constant in steady state. The temperatures of the baths are commonly related to the mean occupations as

Tα=ωαlog(1+1nα)T_{\alpha}=\frac{\omega_{\alpha}}{\log\left(1+\frac{1}{n_{\alpha}}\right)} (8)

by using the appropriate Bose distribution function.

Using the bare heat flows from Eq. (6) Boukobza and Tannor found [14]

σ0=Rul[log(1+1nl)log(1+1nu)]>0\sigma_{0}=R_{u\rightarrow l}\left[\log\left(1+\frac{1}{n_{l}}\right)-\log\left(1+\frac{1}{n_{u}}\right)\right]>0 (9)

which is positive definite as both factors have the same sign of (nunl)(n_{u}-n_{l}), see Eq. (3). In contrast, using the full heat flows from Eq. (4) with temperatures by Eq. (8), Boukobza and Tannor[14] detected negative entropy production for some operation points. This suggested that the definition of work and heat based on the bare Hamiltonian (5) should be preferred.

IV Resolution by effective energies

Here, we rewrite the results for the full power and heat flows evaluated from Eq. (4) in the form:

P=Rulωd,Q˙u=+Rulω~u,Q˙l=Rulω~l\begin{split}P&=-R_{u\rightarrow l}\omega_{d},\\ \quad\dot{Q}_{u}&=+R_{u\rightarrow l}\tilde{\omega}_{u},\\ \quad\dot{Q}_{l}&=-R_{u\rightarrow l}\tilde{\omega}_{l}\end{split} (10)

with effective energies (see App. C)

ω~u=ωu+Δγu(nu+1)γu(nu+1)+γl(nl+1)ω~l=ωlΔγl(nl+1)γu(nu+1)+γl(nl+1)\begin{split}\tilde{\omega}_{u}=\omega_{u}+\frac{\Delta\gamma_{u}(n_{u}+1)}{\gamma_{u}(n_{u}+1)+\gamma_{l}(n_{l}+1)}\\ \tilde{\omega}_{l}=\omega_{l}-\frac{\Delta\gamma_{l}(n_{l}+1)}{\gamma_{u}(n_{u}+1)+\gamma_{l}(n_{l}+1)}\end{split} (11)

Comparing Eq. (6) with Eq. (10) we note that all flows are proportional to the transition rate RulR_{u\to l}, describing the round trip rate of the engine. However, there are different energy factors in each term.

For vanishing detuning, Δ=0\Delta=0, the respective energy factors in Eq. (6) and Eq. (10) agree. Here, the heat fluxes from the baths are determined by the level energies ωα\omega_{\alpha} and the power transferred from the light field is given by the photon energy ωd\omega_{d}, as expected.

However, for finite detuning, i.e. Δ=ωdωu+ωl0\Delta=\omega_{d}-\omega_{u}+\omega_{l}\neq 0, energy conservation does not allow for this structure, where the full and the bare approach provide different remedies: In the bare approach based on Eq. (5), the power supplied from the ac field changes its energy factor ωdωuωl\omega_{d}\to\omega_{u}-\omega_{l}, see Eq. (6). This appears not physical, as a quantized ac field, should have energies in portions of ωd\hbar\omega_{d} and thus may result in an error of the order ΔRul\Delta R_{u\to l} in the power. In contrast, for the full approach, the bare level energies are replaced by effective ones ωαω~α\omega_{\alpha}\to\tilde{\omega}_{\alpha}, see Eq. (10), which satisfy ωd=ω~uω~l\omega_{d}=\tilde{\omega}_{u}-\tilde{\omega}_{l}, so that energy conservation holds with the ac-frequency of the field.

Here we argue that the effective energies Eq. (11) should be taken seriously in the full approach and thus be used in the definitions of the bath temperatures

T~α=ω~αlog(1+1nα)\widetilde{T}_{\alpha}=\frac{\tilde{\omega}_{\alpha}}{\log\left(1+\frac{1}{n_{\alpha}}\right)} (12)

Then Eq. (7) provides

σ=Q˙uT~uQ˙lT~l=Rul[ω~lT~lω~uT~u]=Rul[log(1+1nl)log(1+1nu)]\begin{split}\sigma&=-\frac{\dot{Q}_{u}}{\widetilde{T}_{u}}-\frac{\dot{Q}_{l}}{\widetilde{T}_{l}}=R_{u\rightarrow l}\left[\frac{\tilde{\omega}_{l}}{\widetilde{T}_{l}}-\frac{\tilde{\omega}_{u}}{\widetilde{T}_{u}}\right]\\ &=R_{u\rightarrow l}\left[\log\left(1+\frac{1}{n_{l}}\right)-\log\left(1+\frac{1}{n_{u}}\right)\right]\end{split} (13)

which is identical with the entropy production function Eq. (9) from the bare approach and, most importantly, positive definite.

Refer to caption
Figure 2: Sketch of the spectral functions (14) for the upper and lower levels, uu and ll. The black arrow shows the optical transition at frequency ωd\omega_{d} not matching the energy difference of the bare states. The energies ω~u\tilde{\omega}_{u} and ω~l\tilde{\omega}_{l} are given by (11).

Now, we want to highlight the particular meaning of the energies ω~u\tilde{\omega}_{u}, ω~l\tilde{\omega}_{l} from Eq. (11). Due to life-time broadening the energies of the levels uu and ll are smeared out by Lorentzian spectral functions (here normalized to one)

Aα(ω)=12πγα(1+nα)(ωωα)2+γα2(1+nα)2/4A_{\alpha}(\omega)=\frac{1}{2\pi}\frac{\gamma_{\alpha}(1+n_{\alpha})}{(\omega-\omega_{\alpha})^{2}+\gamma_{\alpha}^{2}(1+n_{\alpha})^{2}/4} (14)

with a full width at half maximum (FWHM) γα(1+nα)\gamma_{\alpha}(1+n_{\alpha}) resulting from the decay of the states by relaxation to the ground level. This allows for energy-conserving transitions between the levels uu and ll at the energy ωd\omega_{d} imposed by the ac field even if ωdωuωl\omega_{d}\neq\omega_{u}-\omega_{l}, see Fig. 2. Fermi’s golden rule provides the transition rate from the initial level uu with the energy ω\omega (similar but not necessarily equal to ωu\omega_{u}).

Wul=2πϵ2Al(ωωd)W_{u\to l}=2\pi\epsilon^{2}A_{l}(\omega-\omega_{d})

Weighting with the density Au(ω)A_{u}(\omega) of the initial state and multiplying with the difference in occupation fu(ω)fl(ωωd)f_{u}(\omega)-f_{l}(\omega-\omega_{d}) of the levels (technically, fαf_{\alpha} is the ratio between the imaginary part of the lesser Green’s function and the spectral function[19]), we obtain the net transition rate

Rul=2πϵ2𝑑ωAu(ω)Al(ωωd)[fu(ω)fl(ωωd)]R_{u\to l}=2\pi\epsilon^{2}\int d\omega\,A_{u}(\omega)A_{l}(\omega-\omega_{d})[f_{u}(\omega)-f_{l}(\omega-\omega_{d})] (15)

Neglecting the energy dependence of fαf_{\alpha} over the width of the spectral functions (which would be relevant to study dispersive/Bloch gain [20]), we set fu(ω)fl(ωωd)ρuuρllf_{u}(\omega)-f_{l}(\omega-\omega_{d})\approx\rho_{uu}-\rho_{ll}. Then, some algebra, see Eq. (29), results in the expression (23). This shows the equivalence of this Green’s function based treatment with the density matrix calculations used above.

Eq. (15) shows that there is not a single definite energy involved for the upper and lower level, if broadening is taken into account. However, as the transitions occur with the weight Au(ω)Al(ωωd)A_{u}(\omega)A_{l}(\omega-\omega_{d}), we can identify the average energy for the upper level involved in transitions

ωu=𝑑ωωAu(ω)Al(ωωd)𝑑ωAu(ω)Al(ωωd)\langle\omega\rangle_{u}=\frac{\int d\omega\,\omega A_{u}(\omega)A_{l}(\omega-\omega_{d})}{\int d\omega A_{u}(\omega)A_{l}(\omega-\omega_{d})} (16)

and obtain after some algebra, see Eqs. (29,30), ωu=ω~u\langle\omega\rangle_{u}=\tilde{\omega}_{u} with ω~u\tilde{\omega}_{u} from Eq. (11). The average energy for the lower level involved is then ωl=ωuωd=ω~l\langle\omega\rangle_{l}=\langle\omega\rangle_{u}-\omega_{d}=\tilde{\omega}_{l}. Thus we find, that the effective levels from Eq. (11) are the average energies involved in the optical transition, if level broadening is taken into account. These are the average energies, which need to be added/removed from/to the respective bath after a transition took place in order to restore the previous state. Therefore the bath properties at these energies is of most relevance which justifies the definition of temperature via Eq. (12).

Energy exchange with the bath α\alpha at energies different from ωα\omega_{\alpha} requires that the energies available in the baths cover a range of several γα\gamma_{\alpha} around ωα\omega_{\alpha}. In the Green’s function picture, this is the basis for assuming an energy-independent self-energy (i.e. a constant width in the spectral function). For the Lindblad kinetics, the Markovian limit used requires a short bath correlation time τB1/γα\tau_{B}\ll 1/\gamma_{\alpha} [21] and consequently a spectral width of the bath well surpassing γα\gamma_{\alpha}. This demonstrates again the consistency between the Green’s function based treatment and the density matrix calculations.

Let us finally consider the Carnot efficiency of the engine. Ref. [22] reported the occurrence of efficiencies above 1Tl/Tu1-T_{l}/T_{u} for Δ>0\Delta>0 in the semi-classical treatment of the ac field. This is based on Eq. (15) of Ref. [22], which (in our notation) expresses the efficiency as

η=PQ˙u=ωdω~u=1ω~lω~u.\eta=\frac{-P}{\dot{Q}_{u}}=\frac{\omega_{d}}{\tilde{\omega}_{u}}=1-\frac{\tilde{\omega}_{l}}{\tilde{\omega}_{u}}\,. (17)

A positive power output (P)(-P) from the engine is based on Rul>0R_{u\to l}>0 and thus requires nu>nln_{u}>n_{l} by Eq. (3). Then our new definition of temperatures (12) provides

nu>nlT~uω~u>T~lω~lωl~ωu~>Tl~Tu~n_{u}>n_{l}\Rightarrow\frac{\tilde{T}_{u}}{\tilde{\omega}_{u}}>\frac{\tilde{T}_{l}}{\tilde{\omega}_{l}}\Leftrightarrow\frac{\tilde{\omega_{l}}}{\tilde{\omega_{u}}}>\frac{\tilde{T_{l}}}{\tilde{T_{u}}}

so that Eq. (17) satisfies the Carnot efficiency η<1T~l/T~u\eta<1-\tilde{T}_{l}/\tilde{T}_{u}.

V Conclusion

Both definitions of heat and work, applying either the full or the bare system Hamiltonian, provide identical (and positive definite) expressions for the entropy production for the common three-level maser driven by thermal baths. For the case of the full heat flow, it is crucial to carefully analyse the energies exchanged with the baths. These differ from the bare level energies if the ac field does not match the transition frequency. Disregarding this can provide violations of the second law as reported earlier [14]. While both the full and bare approach are thermodynamically consistent and provide identical expressions for entropy production, the full approach requires an elaborate description of the energies transferred to the bath, which rely on the steady state in our treatment. Furthermore, it is an open issue if such a description can be extended to transient behaviour, non-monochromatic fields, or non-cyclic operation [22]. On the other hand, the bare approach provides the transition frequency rather than the ac frequency in the work output, which provides a (typically small) error.

Acknowledgements

We thank the Knut and Alice Wallenberg foundation and NanoLund for financial support.

Appendix A Detailed derivations for the steady state solution

After transforming to the rotating frame, Eq. (1) provides the equations of motion for ρij=i|ρrot|j\rho_{ij}=\langle i|{\rho}^{\textrm{rot}}|j\rangle

ddtρgg\displaystyle\frac{{\rm d}}{{\rm d}t}\rho_{gg} =\displaystyle= γu(nu+1)ρuu+γl(nl+1)ρll(nuγu+nlγl)ρgg\displaystyle\gamma_{u}(n_{u}+1)\rho_{uu}+\gamma_{l}(n_{l}+1)\rho_{ll}-(n_{u}\gamma_{u}+n_{l}\gamma_{l})\rho_{gg} (18)
ddtρuu\displaystyle\frac{{\rm d}}{{\rm d}t}\rho_{uu} =\displaystyle= γunuρggγu(nu+1)ρuu+iϵ(ρulρul)\displaystyle\gamma_{u}n_{u}\rho_{gg}-\gamma_{u}(n_{u}+1)\rho_{uu}+{\rm i}\epsilon(\rho_{ul}-\rho_{ul}^{*}) (19)
ddtρll\displaystyle\frac{{\rm d}}{{\rm d}t}\rho_{ll} =\displaystyle= γlnlρggγl(nl+1)ρlliϵ(ρulρul)\displaystyle\gamma_{l}n_{l}\rho_{gg}-\gamma_{l}(n_{l}+1)\rho_{ll}-{\rm i}\epsilon(\rho_{ul}-\rho_{ul}^{*}) (20)
ddtρul\displaystyle\frac{{\rm d}}{{\rm d}t}\rho_{ul} =\displaystyle= iΔρul+iϵ(ρuuρll)[γu(nu+1)+γl(nl+1)]ρul/2\displaystyle{\rm i}\Delta\rho_{ul}+{\rm i}\epsilon(\rho_{uu}-\rho_{ll})-[\gamma_{u}(n_{u}+1)+\gamma_{l}(n_{l}+1)]\rho_{ul}/2 (21)

In the steady state (superscript ss{}^{\textrm{ss}}), Eq. (21) provides

ρulss=ϵ(ρuussρllss)Δ+i[γu(nu+1)+γl(nl+1)]/2\rho^{\textrm{ss}}_{ul}=\frac{-\epsilon(\rho^{\textrm{ss}}_{uu}-\rho^{\textrm{ss}}_{ll})}{\Delta+{\rm i}[\gamma_{u}(n_{u}+1)+\gamma_{l}(n_{l}+1)]/2} (22)

Furthermore, we identify the net rate of transitions between uu and ll due to the ac field:

Rul=iϵ(ρulssρulss)=C(ρuussρllss)with C=ϵ2[γu(nu+1)+γl(nl+1)][γu(nu+1)+γl(nl+1)]2/4+Δ2R_{u\to l}=-{\rm i}\epsilon(\rho^{\textrm{ss}}_{ul}-\rho^{\textrm{ss}*}_{ul})=C(\rho^{\textrm{ss}}_{uu}-\rho^{\textrm{ss}}_{ll})\quad\textrm{with }C=\frac{\epsilon^{2}[\gamma_{u}(n_{u}+1)+\gamma_{l}(n_{l}+1)]}{[\gamma_{u}(n_{u}+1)+\gamma_{l}(n_{l}+1)]^{2}/4+\Delta^{2}} (23)

Using ρgg=1ρuuρll\rho_{gg}=1-\rho_{uu}-\rho_{ll}, Eqs. (19,20,23) provide the system of equations

γunu=[γu(2nu+1)+C]ρuuss+(γunuC)ρllssγlnl=(γlnlC)ρuuss+[γl(2nl+1)+C]ρllss\begin{split}\gamma_{u}n_{u}=&[\gamma_{u}(2n_{u}+1)+C]\rho^{\textrm{ss}}_{uu}+(\gamma_{u}n_{u}-C)\rho^{\textrm{ss}}_{ll}\\ \gamma_{l}n_{l}=&(\gamma_{l}n_{l}-C)\rho^{\textrm{ss}}_{uu}+[\gamma_{l}(2n_{l}+1)+C]\rho^{\textrm{ss}}_{ll}\end{split}

with the solution

ρuuss=γuγlnu(nl+1)+C(γunu+γlnl)[γl(2nl+1)+C][γu(2nu+1)+C](γlnlC)(γunuC)ρllss=γuγlnl(nu+1)+C(γunu+γlnl)[γl(2nl+1)+C][γu(2nu+1)+C](γlnlC)(γunuC)\begin{split}\rho^{\textrm{ss}}_{uu}&=\frac{\gamma_{u}\gamma_{l}n_{u}(n_{l}+1)+C(\gamma_{u}n_{u}+\gamma_{l}n_{l})}{[\gamma_{l}(2n_{l}+1)+C][\gamma_{u}(2n_{u}+1)+C]-(\gamma_{l}n_{l}-C)(\gamma_{u}n_{u}-C)}\\ \rho^{\textrm{ss}}_{ll}&=\frac{\gamma_{u}\gamma_{l}n_{l}(n_{u}+1)+C(\gamma_{u}n_{u}+\gamma_{l}n_{l})}{[\gamma_{l}(2n_{l}+1)+C][\gamma_{u}(2n_{u}+1)+C]-(\gamma_{l}n_{l}-C)(\gamma_{u}n_{u}-C)}\end{split}

so that

ρuussρllss=γlγu(nunl)γuγl(3nunl+2nu+2nl+1)+C[γu(3nu+1)+γl(3nl+1)]\rho^{\textrm{ss}}_{uu}-\rho^{\textrm{ss}}_{ll}=\frac{\gamma_{l}\gamma_{u}(n_{u}-n_{l})}{\gamma_{u}\gamma_{l}(3n_{u}n_{l}+2n_{u}+2n_{l}+1)+C[\gamma_{u}(3n_{u}+1)+\gamma_{l}(3n_{l}+1)]}

is proportional to the occupation differences of the baths. Inserting into Eq. (23), we obtain Eq. (3) from the main article, where

A=γlγu4[γu(nu+1)+γl(nl+1)]ϵ2F=γu(nu+1)+γl(nl+1)2γu(3nu+1)+γl(3nl+1)2ϵ2+γlγu4(3nunl+2nu+2nl+1){[γu(nu+1)+γl(nl+1)]24+Δ2}\begin{split}A=&\frac{\gamma_{l}\gamma_{u}}{4}[\gamma_{u}(n_{u}+1)+\gamma_{l}(n_{l}+1)]\epsilon^{2}\\ F=&\frac{\gamma_{u}(n_{u}+1)+\gamma_{l}(n_{l}+1)}{2}\frac{\gamma_{u}(3n_{u}+1)+\gamma_{l}(3n_{l}+1)}{2}\epsilon^{2}\\ &+\frac{\gamma_{l}\gamma_{u}}{4}(3n_{u}n_{l}+2n_{u}+2n_{l}+1)\left\{\frac{\left[\gamma_{u}(n_{u}+1)+\gamma_{l}(n_{l}+1)\right]^{2}}{4}+\Delta^{2}\right\}\end{split} (24)

are quadratic polynomials in ϵ\epsilon. Thus the rate Rulϵ2R_{u\to l}\propto\epsilon^{2} for small coupling ϵ\epsilon to the ac field, while it saturates for ϵ2γu2(nu+1)2+γl2(nl+1)2+4Δ2\epsilon^{2}\gtrsim\gamma_{u}^{2}(n_{u}+1)^{2}+\gamma_{l}^{2}(n_{l}+1)^{2}+4\Delta^{2}. AA and FF are identical with the expressions in Eq. (13) of [14], where γ0α=γα/2\gamma_{0\alpha}=\gamma_{\alpha}/2 is used.

Appendix B Heat and work with bare Hamiltonian

The definition of heat flow from the bare Hamiltonian (5) provides the bare heat entering from bath uu (note that the energy of the ground level is zero)

Q˙0u=ωuu|u(ρ)|u=ωu[γunuρggγu(nu+1)ρuu]\dot{Q}_{0u}=\omega_{u}\langle u|{\cal L}_{u}({\rho})|u\rangle=\omega_{u}\left[\gamma_{u}n_{u}\rho_{gg}-\gamma_{u}(n_{u}+1)\rho_{uu}\right] (25)

Note that the diagonal elements of ρ(t){\rho}(t) are identical in the original and rotating frame. Thus, in the steady state, Eq. (19) provides Q˙0uss=iωuϵ(ρulssρluss)=ωuRul\dot{Q}_{0u}^{\textrm{ss}}=-{\rm i}\omega_{u}\epsilon(\rho^{\textrm{ss}}_{ul}-\rho^{\textrm{ss}}_{lu})=\omega_{u}R_{u\to l} and similarly we get Q˙0lss=ωlRul\dot{Q}_{0l}^{\textrm{ss}}=-\omega_{l}R_{u\to l}. Finally, the bare work (5) done by the field on our systems is

P0=iTr{ρ[V(t),H0]}=iTr{ρrot[Vrot,H0rot]}=iϵ(ωuωl)(ρulρul)P_{0}={\rm i}\textrm{Tr}\{{\rho}[{V}(t),{H}_{0}]\}={\rm i}\textrm{Tr}\{{\rho}^{\mathrm{rot}}[{V}^{\mathrm{rot}},{H}_{0}^{\mathrm{rot}}]\}={\rm i}\epsilon(\omega_{u}-\omega_{l})(\rho_{ul}-\rho_{ul}^{*})

which in the steady state provides P0ss=(ωuωl)RulP_{0}^{\textrm{ss}}=-(\omega_{u}-\omega_{l})R_{u\to l} so that Q˙0uss+Q˙0lss+P0ss=0\dot{Q}_{0u}^{\textrm{ss}}+\dot{Q}_{0l}^{\textrm{ss}}+P^{\textrm{ss}}_{0}=0, as required by energy conservation. These are the terms provided in Eq. (6) without the superscript ss{}^{\textrm{ss}}.

Appendix C Heat and work with full Hamiltonian

With the definition (4), we obtain the power transferred to the system

P(t)=iϵωdTr{ρ(|lu|eiωdt|ul|eiωdt)}=iϵωd(ρulρlu)=in ssωdRulP(t)={\rm i}\epsilon\omega_{d}\textrm{Tr}\left\{{\rho}\left(|l\rangle\langle u|{\rm e}^{{\rm i}\omega_{d}t}-|u\rangle\langle l|{\rm e}^{-{\rm i}\omega_{d}t}\right)\right\}={\rm i}\epsilon\omega_{d}(\rho_{ul}-\rho_{lu})\stackrel{{\scriptstyle\textrm{in ss}}}{{=}}-\omega_{d}R_{u\to l}

which corresponds to the net rate of absorbed photons (Rul)(-R_{u\to l}) times the photon energy ωd\omega_{d}. (Note, that we defined ρul\rho_{ul} in the rotating frame, see App. A, so that ρul=u|ρrot|l=u|ρ|leiωdt\rho_{ul}=\langle u|{\rho}^{\textrm{rot}}|l\rangle=\langle u|{\rho}|l\rangle{\rm e}^{{\rm i}\omega_{d}t}.)

For the heat flow, the unitary evolution of ρ(t){\rho}(t) due to the Hamiltonian does not contribute, as Tr{[ρ,H]H}=Tr{ρ[H,H]}=0\textrm{Tr}\left\{[{\rho},H]H\right\}=\textrm{Tr}\left\{{\rho}[H,H]\right\}=0, where we used the invariance of the trace under cyclic permutations. Thus we can restrict to the non-unitarian part here. Then the part with H0H_{0} provides the heat current Q˙0u\dot{Q}_{0u} from Eq. (25). We have to add the part with V(t){V}(t) and find

Q˙u=Q˙0u+ϵu|u[ρ]|leiωdt+l|u[ρ]|ueiωdt=Q˙0uϵγu(nu+1)2(ρul+ρlu)\dot{Q}_{u}=\dot{Q}_{0u}+\epsilon\langle u|{\cal L}_{u}[{\rho}]|l\rangle{\rm e}^{{\rm i}\omega_{d}t}+\langle l|{\cal L}_{u}[{\rho}]|u\rangle{\rm e}^{-{\rm i}\omega_{d}t}=\dot{Q}_{0u}-\epsilon\frac{\gamma_{u}(n_{u}+1)}{2}(\rho_{ul}+\rho_{lu})

Using Eqs. (22,23) we get in the steady state

Q˙uss\displaystyle\dot{Q}^{\textrm{ss}}_{u} =\displaystyle= Q˙0ussγu(nu+1)2{ρulss}{ρulss}Rul=Rulω~u\displaystyle\dot{Q}_{0u}^{\textrm{ss}}-\frac{\gamma_{u}(n_{u}+1)}{2}\frac{\Re\left\{\rho^{ss}_{ul}\right\}}{\Im\left\{\rho^{ss}_{ul}\right\}}R_{u\to l}=R_{u\to l}\tilde{\omega}_{u} (26)
Q˙lss\displaystyle\dot{Q}_{l}^{\textrm{ss}} =\displaystyle= Q˙0lssγl(nl+1)2{ρulss}{ρulss}Rul=Rulω~l\displaystyle\dot{Q}_{0l}^{\textrm{ss}}-\frac{\gamma_{l}(n_{l}+1)}{2}\frac{\Re\left\{\rho^{ss}_{ul}\right\}}{\Im\left\{\rho^{ss}_{ul}\right\}}R_{u\to l}=-R_{u\to l}\tilde{\omega}_{l} (27)
with ω~u\displaystyle\textrm{with }\tilde{\omega}_{u} =\displaystyle= ωu+Δγu(nu+1)γu(nu+1)+γl(nl+1),ω~l=ωlΔγl(nl+1)γu(nu+1)+γl(nl+1)\displaystyle\omega_{u}+\frac{\Delta\gamma_{u}(n_{u}+1)}{\gamma_{u}(n_{u}+1)+\gamma_{l}(n_{l}+1)},\quad\tilde{\omega}_{l}=\omega_{l}-\frac{\Delta\gamma_{l}(n_{l}+1)}{\gamma_{u}(n_{u}+1)+\gamma_{l}(n_{l}+1)} (28)

where {z}\Re\{z\} and {z}\Im\{z\} denote, respectively, the real and imaginary part of a complex value zz. The full power and heat flow satisfy energy conservation Pss+Q˙uss+Q˙lss=0P^{\textrm{ss}}+\dot{Q}_{u}^{\textrm{ss}}+\dot{Q}_{l}^{\textrm{ss}}=0 and provide Eqs. (10,11), where we omitted the superscript ss{}^{\textrm{ss}}.

Appendix D Convolution of Lorentzians

We consider the function

P(ω,Δ)=12π2γuω2+γu22γl(ωΔ)2+γl2P(\omega,\Delta)=\frac{1}{2\pi}\frac{2\gamma_{u}}{\omega^{2}+\gamma_{u}^{2}}\frac{2\gamma_{l}}{(\omega-\Delta)^{2}+\gamma_{l}^{2}}

which is the product of two spectral functions with FWHM 2γα2\gamma_{\alpha}. Then we find with the residue theorem

dωP(ω,Δ)=i[2γu2iγu2γl(iγuΔ)2+γl2+2γu(Δ+iγl)2+γu22γl2iγl]=2γl[(Δ+iγl)2+γu2]+2γu[(Δiγu)2+γl2][(Δiγu)2+γl2][(Δ+iγl)2+γu2]=2(γu+γl)[Δ22iΔ(γuγl)(γuγl)2][Δ2+(γu+γl)2][Δ22iΔ(γuγl)(γuγl)2]=2(γu+γl)Δ2+(γu+γl)2\begin{split}\int{\rm d}\omega\,P(\omega,\Delta)=&{\rm i}\left[\frac{2\gamma_{u}}{2{\rm i}\gamma_{u}}\frac{2\gamma_{l}}{({\rm i}\gamma_{u}-\Delta)^{2}+\gamma_{l}^{2}}+\frac{2\gamma_{u}}{(\Delta+{\rm i}\gamma_{l})^{2}+\gamma_{u}^{2}}\frac{2\gamma_{l}}{2{\rm i}\gamma_{l}}\right]\\ =&\frac{2\gamma_{l}\left[(\Delta+{\rm i}\gamma_{l})^{2}+\gamma_{u}^{2}\right]+2\gamma_{u}\left[(\Delta-{\rm i}\gamma_{u})^{2}+\gamma_{l}^{2}\right]}{\left[(\Delta-{\rm i}\gamma_{u})^{2}+\gamma_{l}^{2}\right]\left[(\Delta+{\rm i}\gamma_{l})^{2}+\gamma_{u}^{2}\right]}\\ =&\frac{2(\gamma_{u}+\gamma_{l})\left[\Delta^{2}-2{\rm i}\Delta(\gamma_{u}-\gamma_{l})-(\gamma_{u}-\gamma_{l})^{2}\right]}{\left[\Delta^{2}+(\gamma_{u}+\gamma_{l})^{2}\right]\left[\Delta^{2}-2{\rm i}\Delta(\gamma_{u}-\gamma_{l})-(\gamma_{u}-\gamma_{l})^{2}\right]}=\frac{2(\gamma_{u}+\gamma_{l})}{\Delta^{2}+(\gamma_{u}+\gamma_{l})^{2}}\end{split} (29)

where the third identity is verified by comparing the results of the products in numerator and denominator, respectively. The main result is that we obtain a Lorentzian with the sum of the individual widths. Similarly we find

dωωP(ω,Δ)=i[2γu2iγuiγu2γl(iγuΔ)2+γl2+2γu(Δ+iγl)(Δ+iγl)2+γu22γl2iγl]=2iγuγl[(Δ+iγl)2+γu2]+2γu(Δ+iγl)[(Δiγu)2+γl2][(Δiγu)2+γl2][(Δ+iγl)2+γu2]=2γuΔ[Δ22iΔ(γuγl)(γuγl)2][Δ2+(γu+γl)2][Δ22iΔ(γuγl)(γuγl)2]=2γuΔΔ2+(γu+γl)2\begin{split}\int{\rm d}\omega\,\omega P(\omega,\Delta)=&{\rm i}\left[\frac{2\gamma_{u}}{2{\rm i}\gamma_{u}}\frac{{\rm i}\gamma_{u}2\gamma_{l}}{({\rm i}\gamma_{u}-\Delta)^{2}+\gamma_{l}^{2}}+\frac{2\gamma_{u}(\Delta+{\rm i}\gamma_{l})}{(\Delta+{\rm i}\gamma_{l})^{2}+\gamma_{u}^{2}}\frac{2\gamma_{l}}{2{\rm i}\gamma_{l}}\right]\\ =&\frac{2{\rm i}\gamma_{u}\gamma_{l}\left[(\Delta+{\rm i}\gamma_{l})^{2}+\gamma_{u}^{2}\right]+2\gamma_{u}(\Delta+{\rm i}\gamma_{l})\left[(\Delta-{\rm i}\gamma_{u})^{2}+\gamma_{l}^{2}\right]}{\left[(\Delta-{\rm i}\gamma_{u})^{2}+\gamma_{l}^{2}\right]\left[(\Delta+{\rm i}\gamma_{l})^{2}+\gamma_{u}^{2}\right]}\\ =&\frac{2\gamma_{u}\Delta\left[\Delta^{2}-2{\rm i}\Delta(\gamma_{u}-\gamma_{l})-(\gamma_{u}-\gamma_{l})^{2}\right]}{\left[\Delta^{2}+(\gamma_{u}+\gamma_{l})^{2}\right]\left[\Delta^{2}-2{\rm i}\Delta(\gamma_{u}-\gamma_{l})-(\gamma_{u}-\gamma_{l})^{2}\right]}=\frac{2\gamma_{u}\Delta}{\Delta^{2}+(\gamma_{u}+\gamma_{l})^{2}}\end{split} (30)

References

  • Scovil and Schulz-DuBois [1959] H. E. Scovil and E. O. Schulz-DuBois, Three-level masers as heat engines, Phys. Rev. Lett. 2, 262 (1959).
  • Lamb Jr [1964] W. E. Lamb Jr, Theory of an optical maser, Phys. Rev. 134, A1429 (1964).
  • Geva and Kosloff [1994] E. Geva and R. Kosloff, Three-level quantum amplifier as a heat engine: A study in finite-time thermodynamics, Phys. Rev. E 49, 3903 (1994).
  • Geva and Kosloff [1996] E. Geva and R. Kosloff, The quantum heat engine and heat pump: An irreversible thermodynamic analysis of the three-level amplifier, J. Chem. Phys. 104, 7681 (1996).
  • Boukobza and Tannor [2006a] E. Boukobza and D. J. Tannor, Thermodynamics of bipartite systems: Application to light-matter interactions, Phys. Rev. A 74, 063823 (2006a).
  • Scully et al. [2011] M. O. Scully, K. R. Chapin, K. E. Dorfman, M. B. Kim, and A. Svidzinsky, Quantum heat engine power can be increased by noise-induced coherence, Proc. Nat. Acad. Sci. USA 108, 15097 (2011).
  • Boukobza and Tannor [2006b] E. Boukobza and D. J. Tannor, Thermodynamic analysis of quantum light amplification, Phys. Rev. A 74, 063822 (2006b).
  • Ghosh et al. [2018] A. Ghosh, D. Gelbwaser-Klimovsky, W. Niedenzu, A. I. Lvovsky, I. Mazets, M. O. Scully, and G. Kurizki, Two-level masers as heat-to-work converters, Proc. Nat. Acad. Sci. USA 115, 9941 (2018).
  • Niedenzu et al. [2019] W. Niedenzu, M. Huber, and E. Boukobza, Concepts of work in autonomous quantum heat engines, Quantum 3, 195 (2019).
  • Pusz and Woronowicz [1978] W. Pusz and S. L. Woronowicz, Passive states and KMS states for general quantum systems, Comm. Math. Phys. 58, 273 (1978).
  • Alicki [1979] R. Alicki, The quantum open system as a model of the heat engine, J. Phys. A 12, L103 (1979).
  • Kiršanskas et al. [2018] G. Kiršanskas, M. Franckié, and A. Wacker, Phenomenological position and energy resolving Lindblad approach to quantum kinetics, Phys. Rev. B 97, 035432 (2018).
  • Jaseem et al. [2020] N. Jaseem, M. Hajdušek, V. Vedral, R. Fazio, L.-C. Kwek, and S. Vinjanampathy, Quantum synchronization in nanoscale heat engines, Phys. Rev. E 101, 020201 (2020).
  • Boukobza and Tannor [2007] E. Boukobza and D. J. Tannor, Three-level systems as amplifiers and attenuators: A thermodynamic analysis, Phys. Rev. Lett. 98, 240601 (2007).
  • Spohn [1978] H. Spohn, Entropy production for quantum dynamical semigroups, J. Math. Phys. 19, 1227 (1978).
  • Gelbwaser-Klimovsky et al. [2015] D. Gelbwaser-Klimovsky, W. Niedenzu, and G. Kurizki, Chapter twelve - thermodynamics of quantum systems under dynamical control, in Advances In Atomic, Molecular, and Optical Physics, Vol. 64, edited by E. Arimondo, C. C. Lin, and S. F. Yelin (Academic Press, 2015) pp. 329 – 407.
  • Lindblad [1976] G. Lindblad, On the generators of quantum dynamical semigroups, Comm. Math. Phys. 48, 119 (1976).
  • von Neumann [1932] J. von Neumann, Mathematische Grundlagen der Quantenmechanik (Springer, Berlin, 1932).
  • Haug and Jauho [1996] H. Haug and A.-P. Jauho, Quantum Kinetics in Transport and Optics of Semiconductors (Springer, Berlin, 1996).
  • Wacker [2007] A. Wacker, Lasers: Coexistence of gain and absorption, Nat. Phys. 3, 298 (2007).
  • Breuer and Petruccione [2006] H.-P. Breuer and F. Petruccione, Open Quantum Systems (Oxford University Press, Oxford, 2006).
  • Boukobza and Ritsch [2013] E. Boukobza and H. Ritsch, Breaking the Carnot limit without violating the second law: A thermodynamic analysis of off-resonant quantum light generation, Phys. Rev. A 87, 063845 (2013).