This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Polynomials that preserve nonnegative monomial matrices

Benjamin J. Clark    Pietro Paparella
(January 2, 2024)
Abstract

A recently-established necessary condition for polynomials that preserve the class of entrywise nonnegative matrices of a fixed order is shown to be necessary and sufficient for the class of nonnegative monomial matrices. Along the way, we provide a formula for computing an arbitrary power of a monomial matrix and a formula for computing the polynomial of a nonnegative monomial matrix.

1 Introduction

Motivated by the nonnegative inverse eigenvalue problem, Loewy and London [5] asked for a characterization of

𝒫n{p[t]p(A)0,A𝖬n(),A0}.\mathscr{P}_{n}\coloneqq\{p\in\mathbb{R}[t]\mid p(A)\geq 0,\ \forall A\in\mathsf{M}_{n}(\mathbb{R}),\ A\geq 0\}.

Clearly, 𝒫n\mathscr{P}_{n} contains polynomials with nonnegative coefficients, but it is known that it contains polynomials having some negative entries.

The characterization of 𝒫1\mathscr{P}_{1} is known as the Pólya–Szegö theorem, which asserts that p𝒫1p\in\mathscr{P}_{1} if and only if

p(t)=(f1(t)2+f2(t)2)+t(g1(t)2+g2(t)2),p(t)=\left(f_{1}(t)^{2}+f_{2}(t)^{2}\right)+t\left(g_{1}(t)^{2}+g_{2}(t)^{2}\right),

where f1,f2,g1,g2[t]f_{1},f_{2},g_{1},g_{2}\in\mathbb{R}[t] (see, e.g., Powers and Reznick [7]).

Bharali and Holtz [1] gave partial results for the superset

n{fentiref(A)0,A𝖬n(),A0}\mathscr{F}_{n}\coloneqq\{f\ {\rm entire}\mid f(A)\geq 0,\ \forall A\in\mathsf{M}_{n}(\mathbb{R}),\ A\geq 0\}

of 𝒫n\mathscr{P}_{n}, including a characterization of two-by-two matrices and results for certain structured nonnegative matrices, including upper-triangular matrices and circulant matrices.

More recently, Clark and Paparella [3] provided novel necessary conditions for 𝒫n\mathscr{P}_{n}. In particular, they showed that the coefficients of a polynomial belonging to 𝒫n\mathscr{P}_{n} satisfy certain linear inequalities. It was also shown [3, Corollary 4.5] that if p𝒫np\in\mathscr{P}_{n}, r{0,,n1}r\in\{0,\ldots,n-1\}, mdegpm\coloneqq\deg p, and (m,n,r){0kmkmodn=r}\mathcal{I}_{(m,n,r)}\coloneqq\{0\leq k\leq m\mid k\bmod{n}=r\}, then

pr(t)=p(r,n)(t)k(m,n,r)aktk𝒫1.p_{r}(t)=p_{(r,n)}(t)\coloneqq\sum_{k\in\mathcal{I}_{(m,n,r)}}a_{k}t^{k}\in\mathscr{P}_{1}.

Since 𝒫k+1𝒫k\mathscr{P}_{k+1}\subseteq\mathscr{P}_{k}, k\forall k\in\mathbb{N} (see, e.g., Bharali and Holtz [1, Lemma 1]), it follows that

p(r,k)𝒫1,k{1,,n},r{0,,k1}.p_{(r,k)}\in\mathscr{P}_{1},\ \forall k\in\{1,\ldots,n\},\ \forall r\in\{0,\ldots,k-1\}. (1)

In this work, condition (1) is shown to be sufficient for the class of nonnegative monomial matrices. In addition, a formula is given for computing the polynomial of a monomial matrix.

2 Notation

If nn\in\mathbb{N}, then 𝖬n=𝖬n()\mathsf{M}_{n}=\mathsf{M}_{n}(\mathbb{C}) denotes the algebra of nn-by-nn matrices with complex entries and SnS_{n} denotes the symmetric group of order nn. If σSn\sigma\in S_{n} and xnx\in\mathbb{C}^{n}, then σ(x)\sigma(x) denotes the vector whose iith-entry is xσ(i)x_{\sigma(i)} and Pσ𝖬nP_{\sigma}\in\mathsf{M}_{n} denotes the permutation matrix corresponding to σ\sigma (i.e., PσP_{\sigma} is the the nn-by-nn matrix whose (i,j)(i,j)-entry is δσ(i),j\delta_{\sigma(i),j}, where δij\delta_{ij} denotes the Kronecker delta). As is well-known, (Pσ)1=Pσ1=(Pσ)\left(P_{\sigma}\right)^{-1}=P_{\sigma^{-1}}=\left(P_{\sigma}\right)^{\top}. When the context is clear, PσP_{\sigma} is abbreviated to PP.

If xnx\in\mathbb{C}^{n}, then Dx𝖬nD_{x}\in\mathsf{M}_{n} denotes the diagonal matrix such that dkk=xkd_{kk}=x_{k}, 1kn1\leq k\leq n. If A𝖬nA\in\mathsf{M}_{n}, then AA is called monomial, a monomial matrix, or a generalized permutation matrix if there is an invertible diagonal matrix D=DxD=D_{x} and a permutation matrix PP such that A=DPA=DP. The set of all nn-by-nn monomial matrices is denoted by 𝖦𝖯n=𝖦𝖯n()\mathsf{GP}_{n}=\mathsf{GP}_{n}(\mathbb{C}). If A=DxPA=D_{x}P, with xnx\in\mathbb{C}^{n}, then

αxdetDx=k=1nxk.\alpha_{x}\coloneqq\det D_{x}=\prod_{k=1}^{n}x_{k}.

The restriction of 𝒫n\mathscr{P}_{n} to the class of nonnegative monomial matrices is denoted by 𝒫nmon\mathscr{P}_{n}^{\rm mon}.

If nn\in\mathbb{N}, then n{1,,n}\langle n\rangle\coloneqq\{1,\ldots,n\}, n0{0}n\langle n\rangle_{0}\coloneqq\{0\}\cup\langle n\rangle, and π=πn:nn\pi=\pi_{n}:\langle n\rangle\longrightarrow\langle n\rangle is the permutation defined by π(i)=(imodn)+1\pi(i)=(i\bmod{n})+1. The permutation matrix corresponding to π\pi is denoted by C=CnC=C_{n}. i.e., C=[δπ(i),j]𝖬nC=\left[\delta_{\pi(i),j}\right]\in\mathsf{M}_{n}. For example, if n=3n=3, then

π3=(123231)andC3=[010001100].\pi_{3}=\begin{pmatrix}1&2&3\\ 2&3&1\end{pmatrix}~{}\text{and}~{}C_{3}=\begin{bmatrix}0&1&0\\ 0&0&1\\ 1&0&0\end{bmatrix}.

If xnx\in\mathbb{C}^{n}, then

KxDxC𝖬n.K_{x}\coloneqq D_{x}C\in\mathsf{M}_{n}. (2)

For example, if x3x\in\mathbb{C}^{3}, then

Kx=[0x1000x2x300].K_{x}=\begin{bmatrix}0&x_{1}&0\\ 0&0&x_{2}\\ x_{3}&0&0\end{bmatrix}.
Definition 2.1 ([2, Definition 3.1]).

Let p(t)=k=0maktk[t]p(t)=\sum_{k=0}^{m}a_{k}t^{k}\in\mathbb{C}[t], nn\in\mathbb{N}, and rn10r\in\langle n-1\rangle_{0}. If

(m,n,r){km0kmodn=r},\mathcal{I}_{(m,n,r)}\coloneqq\{k\in\langle m\rangle_{0}\mid k\bmod{n}=r\},

then the polynomial

p(r,n)(t)k(m,n,r)aktk,p_{(r,n)}(t)\coloneqq\sum_{k\in\mathcal{I}_{(m,n,r)}}a_{k}t^{k}, (3)

is called the rmodnr\bmod{n}-part of pp.

Remark 2.2.

If m<n1m<n-1 and r>mr>m, then (m,n,r)=\mathcal{I}_{(m,n,r)}=\varnothing. In such a case, the sum on the right-hand side of (3) is empty. Consequently,

p(r,n)(t)={artr,0rm0,m<rn1.p_{(r,n)}(t)=\begin{cases}a_{r}t^{r},&0\leq r\leq m\\ 0,&m<r\leq n-1\end{cases}.
Observation 2.3 ([2, Observation 3.2]).

If p[t]p\in\mathbb{C}[t], then p(t)=r=0n1p(r,n)(t)p(t)=\sum_{r=0}^{n-1}p_{(r,n)}(t).

3 Preliminary results

Johnson and Paparella [4, Lemma 3.3] used the relative gain array of a matrix to give a short proof of the elementary fact that if xnx\in\mathbb{C}^{n}, then Dσ(x)=PσDxPσD_{\sigma(x)}=P_{\sigma}D_{x}P_{\sigma}^{\top}, i.e.,

PσDx=Dσ(x)Pσ.\displaystyle P_{\sigma}D_{x}=D_{\sigma(x)}P_{\sigma}. (4)
Lemma 3.1 (Frobenius normal form for monomial matrices).

If A𝖦𝖯nA\in\mathsf{GP}_{n}, then there is a permutation matrix QQ such that

QAQ=i=1kDyiCni=i=1kKyi,\displaystyle Q^{\top}AQ=\bigoplus_{i=1}^{k}D_{y_{i}}C_{n_{i}}=\bigoplus_{i=1}^{k}K_{y_{i}}, (5)

where 1kn1\leq k\leq n, y=Qxy=Q^{\top}x, and yiniy_{i}\in\mathbb{C}^{n_{i}} is the partition of yy into kk blocks of size nin_{i} for iki\in\langle{k}\rangle.

Proof.

By hypothesis, A=DxPA=D_{x}P and by the Frobenius normal form for permutation matrices (see, e.g., Paparella [6, Corollary 4.3]), there is a permutation matrix Q=QγQ=Q_{\gamma} such that

QPQ=i=1kCni,Q^{\top}PQ=\bigoplus_{i=1}^{k}C_{n_{i}},

where 1kn1\leq k\leq n. If yγ1(x)y\coloneqq\gamma^{-1}(x), where yiniy_{i}\in\mathbb{C}^{n_{i}} is the partition of yy into kk blocks of size nin_{i} for iki\in\langle{k}\rangle, then

QAQ\displaystyle Q^{\top}AQ =(QDx)PQ\displaystyle=\left(Q^{\top}D_{x}\right)PQ
=(DyQ)PQ\displaystyle=\left(D_{y}Q^{\top}\right)PQ
=Dy(QPQ)=Dyi=1kCni=i=1kDyiCni=i=1kKyi.\displaystyle=D_{y}\left(Q^{\top}PQ\right)=D_{y}\bigoplus_{i=1}^{k}C_{n_{i}}=\bigoplus_{i=1}^{k}D_{y_{i}}C_{n_{i}}=\bigoplus_{i=1}^{k}K_{y_{i}}.\qed
Lemma 3.2.

Let xnx\in\mathbb{C}^{n} and let jj be a nonnegative integer. If qj/nq\coloneqq\left\lfloor j/n\right\rfloor and r=jmodnr=j\bmod{n}, then

Kxj=αxq(j=0r1Dπj(x))Cr.K_{x}^{j}=\alpha_{x}^{q}\left(\prod_{j=0}^{r-1}D_{\pi^{j}(x)}\right)C^{r}. (6)
Proof.

Proceed by induction on jj. For the base-case, if j=0j=0, then q=r=0q=r=0, and

Kx0=I=αx0(j=01Dπj(x))Kx0,K_{x}^{0}=I=\alpha_{x}^{0}\left(\prod_{j=0}^{-1}D_{\pi^{j}(x)}\right)K_{x}^{0},

given that the product on the right-hand side is empty and equal to II.

For the induction-step, assume that the result holds when j=0j=\ell\geq 0 and write =qn+r\ell=qn+r, where 0rn10\leq r\leq n-1. Notice that

Kx+1=KxKx\displaystyle K_{x}^{\ell+1}=K_{x}^{\ell}K_{x} =αxq(j=0r1Dπj(x))CrDxC\displaystyle=\alpha_{x}^{q}\left(\prod_{j=0}^{r-1}D_{\pi^{j}(x)}\right)C^{r}D_{x}C
=αxq(j=0r1Dπj(x))Dπr(x)CrC\displaystyle=\alpha_{x}^{q}\left(\prod_{j=0}^{r-1}D_{\pi^{j}(x)}\right)D_{\pi^{r}(x)}C^{r}C (by (4))
=αxqj=0rDπj(x)Cr+1,\displaystyle=\alpha_{x}^{q}\prod_{j=0}^{r}D_{\pi^{j}(x)}C^{r+1},

and if 0rn20\leq r\leq n-2, then r+1=(+1)modnr+1=(\ell+1)\bmod{n} and the result follows.

Otherwise, if r=n1r=n-1, then +1=n(q+1)\ell+1=n(q+1), (+1)modn=0(\ell+1)\bmod{n}=0, and

Kx+1=αxqj=0n1Dπj(x)Cn=αxqj=0n1Dπj(x)C0.\displaystyle K_{x}^{\ell+1}=\alpha_{x}^{q}\prod_{j=0}^{n-1}D_{\pi^{j}(x)}C^{n}=\alpha_{x}^{q}\prod_{j=0}^{n-1}D_{\pi^{j}(x)}C^{0}.

Given that |π|=n|\pi|=n (here, |||\cdot| denotes the order of π\pi as a group-element of SnS_{n}), the matrix

j=0n1Dπj(x)=Dj=0n1πj(x)\prod_{j=0}^{n-1}D_{\pi^{j}(x)}=D_{\prod_{j=0}^{n-1}\pi^{j}(x)}

is a diagonal matrix such that every diagonal entry equals αx\alpha_{x}. Thus,

Kx+1=αxq+1j=00Dπj(x)C0,K_{x}^{\ell+1}=\alpha_{x}^{q+1}\prod_{j=0}^{0}D_{\pi^{j}(x)}C^{0},

as desired. ∎

Remark 3.3.

If 0rn10\leq r\leq n-1, then r/n=0\left\lfloor r/n\right\rfloor=0 and applying (6) in this case yields

Kxr=(j=0r1Dπj(x))Cr.K_{x}^{r}=\left(\prod_{j=0}^{r-1}D_{\pi^{j}(x)}\right)C^{r}.

Thus, if jj is a nonnegative integer, qj/nq\coloneqq\left\lfloor j/n\right\rfloor, and r=jmodnr=j\bmod{n}, then Kxj=αxqKxrK_{x}^{j}=\alpha_{x}^{q}K_{x}^{r}.

4 Main results

Hereinafter, it is assumed that

p(t)=k=0maktk[t],p(t)=\sum_{k=0}^{m}a_{k}t^{k}\in\mathbb{R}[t],

where am0a_{m}\not=0.

The following result gives a closed-form formula for computing the polynomial of a nonnegative monomial matrix.

Theorem 4.1.

If x>0x>0 and KxK_{x} is defined as in (2), then

p(Kx)=r=0n1p(r,n)(αx1/n)αxr/nKxr.p(K_{x})=\sum_{r=0}^{n-1}\frac{p_{(r,n)}(\alpha_{x}^{1/n})}{\alpha_{x}^{r/n}}K_{x}^{r}.
Proof.

If k(m,n,r)k\in\mathcal{I}_{(m,n,r)}, then k=qkn+rk=q_{k}n+r where 0r<n0\leq r<n. By Lemma 3.2 and Observation 2.3 we have

p(Kx)\displaystyle p(K_{x}) =r=0n1p(r,n)(Kx)=r=0n1k(m,n,r)akKxk=r=0n1k(m,n,r)akαxqkKxr.\displaystyle=\sum_{r=0}^{n-1}p_{(r,n)}(K_{x})=\sum_{r=0}^{n-1}\sum_{k\in\mathcal{I}_{(m,n,r)}}a_{k}K_{x}^{k}=\sum_{r=0}^{n-1}\sum_{k\in\mathcal{I}_{(m,n,r)}}a_{k}\alpha_{x}^{q_{k}}K_{x}^{r}.

Finally, notice that

k(m,n,r)akαxqk\displaystyle\sum_{k\in\mathcal{I}_{(m,n,r)}}a_{k}\alpha_{x}^{q_{k}} =k(m,n,r)akαxqk+r/nαxr/n\displaystyle=\sum_{k\in\mathcal{I}_{(m,n,r)}}a_{k}\frac{\alpha_{x}^{q_{k}+r/n}}{\alpha_{x}^{r/n}}
=1αxr/nk(m,n,r)akαxk/n\displaystyle=\frac{1}{\alpha_{x}^{r/n}}\sum_{k\in\mathcal{I}_{(m,n,r)}}a_{k}\alpha_{x}^{k/n}
=p(r,n)(αx1/n)αxr/n,\displaystyle=\frac{p_{(r,n)}(\alpha_{x}^{1/n})}{\alpha_{x}^{r/n}},

as desired. ∎

Corollary 4.2.

If A=DxP0A=D_{x}P\geq 0 with Frobenius normal form given by (5), then

p(A)=Q(i=1kr=0ni1p(r,ni)(αxi1/ni)αxir/niKxir)Q.\displaystyle p(A)=Q\left(\bigoplus_{i=1}^{k}\sum_{r=0}^{n_{i}-1}\frac{p_{(r,n_{i})}\left(\alpha_{x_{i}}^{1/n_{i}}\right)}{\alpha_{x_{i}}^{r/n_{i}}}K_{x_{i}}^{r}\right)Q^{\top}. (7)
Proof.

Follows from Lemma 3.1, Theorem 4.1, and noting that for a matrix A𝖬nA\in\mathsf{M}_{n} and permutation matrix PP we have p(PAP)=Pp(A)Pp\left(PAP^{\top}\right)=Pp(A)P^{\top}. ∎

Example 4.3.

If

A=[0300005000021000]A=\begin{bmatrix}0&3&0&0\\ 0&0&5&0\\ 0&0&0&2\\ 1&0&0&0\end{bmatrix}

and

p(t)=t20+4t15+2t8+3t2+t+5,p(t)=t^{20}+4t^{15}+2t^{8}+3t^{2}+t+5,

then, by Theorem 4.1,

p(A)\displaystyle p(A) =r=03p(r,4)(301/4)30r/4Ar\displaystyle=\sum_{r=0}^{3}\frac{p_{(r,4)}(30^{1/4})}{30^{r/4}}A^{r}
=p(0,4)(301/4)I4+p(1,4)(301/4)301/4A+p(2,4)(301/4)301/2A2+p(3,4)(301/4)303/4A3\displaystyle=p_{(0,4)}(30^{1/4})I_{4}+\frac{p_{(1,4)}(30^{1/4})}{30^{1/4}}A+\frac{p_{(2,4)}(30^{1/4})}{30^{1/2}}A^{2}+\frac{p_{(3,4)}(30^{1/4})}{30^{3/4}}A^{3}
=(305+2302+5)I4+A+3A2+303A3.\displaystyle=(30^{5}+2\cdot 30^{2}+5)I_{4}+A+3A^{2}+30^{3}A^{3}.
Theorem 4.4.

p𝒫nmonp\in\mathscr{P}_{n}^{\rm mon} if and only if p(r,k)𝒫1,kn,rn10p_{(r,k)}\in\mathscr{P}_{1},\ \forall k\in\langle n\rangle,\ \forall r\in\langle n-1\rangle_{0}.

Proof.

Since condition (1) is necessary for polynomials belonging to 𝒫n\mathscr{P}_{n} (Clark and Paparella [3, Corollary 4.9]), it must also be necessary for polynomials belonging to 𝒫nmon\mathscr{P}_{n}^{\rm mon}.

For sufficiency, if A=DxP0A=D_{x}P\geq 0 with Frobenius normal form given by (5), then p(A)0p(A)\geq 0 in view of Corollary 4.2 and (7). ∎

References

  • [1] G. Bharali and O. Holtz. Functions preserving nonnegativity of matrices. SIAM J. Matrix Anal. Appl., 30(1):84–101, 2008.
  • [2] B. J. Clark and P. Paparella. Polynomials that preserve nonnegative matrices. Linear Algebra Appl., 637:110–118, 2022.
  • [3] B. J. Clark and P. Paparella. Polynomials that preserve nonnegative matrices of order two. Mathematics Exchange, 16:58–65, 2022.
  • [4] C. R. Johnson and P. Paparella. Perron spectratopes and the real nonnegative inverse eigenvalue problem. Linear Algebra Appl., 493:281–300, 2016.
  • [5] R. Loewy and D. London. A note on an inverse problem for nonnegative matrices. Linear and Multilinear Algebra, 6(1):83–90, 1978/79.
  • [6] P. Paparella. Frobenius normal forms of doubly stochastic matrices. Special Matrices, 7(1):213–217, 2019.
  • [7] V. Powers and B. Reznick. Polynomials that are positive on an interval. Trans. Amer. Math. Soc., 352(10):4677–4692, 2000.