This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Polynomial-Time Approximation of Zero-Free Partition Functions

Penghui Yao Yitong Yin  and  Xinyuan Zhang State Key Laboratory for Novel Software Technology, Nanjing University, 163 Xianlin Avenue, Nanjing, Jiangsu Province, China. E-mails: [email protected], [email protected], [email protected]
Abstract.

Zero-free based algorithm is a major technique for deterministic approximate counting. In Barvinok’s original framework [4], by calculating truncated Taylor expansions, a quasi-polynomial time algorithm was given for estimating zero-free partition functions. Patel and Regts [29] later gave a refinement of Barvinok’s framework, which gave a polynomial-time algorithm for a class of zero-free graph polynomials that can be expressed as counting induced subgraphs in bounded-degree graphs.

In this paper, we give a polynomial-time algorithm for estimating classical and quantum partition functions specified by local Hamiltonians with bounded maximum degree, assuming a zero-free property for the temperature. Consequently, when the inverse temperature is close enough to zero by a constant gap, we have polynomial-time approximation algorithm for all such partition functions. Our result is based on a new abstract framework that extends and generalizes the approach of Patel and Regts.

1. Introduction

Let Ω=[q]V\Omega=[q]^{V} be a finite space of configurations, where VV is a set of nn variables. Let H1,,HmH_{1},\ldots,H_{m} be a collection of local constraints, where each Hj:ΩH_{j}:\Omega\rightarrow\mathbb{C} is independent of all but a small subset of variables, and let H=j=1mHjH=\sum_{j=1}^{m}H_{j}. The partition function of the given system is defined by

(1) ZH(β)=σΩexp(βH(σ)),\displaystyle Z_{H}(\beta)=\sum_{\sigma\in\Omega}\exp(-\beta\cdot H(\sigma)),

where the parameter β\beta is usually called the inverse temperature.

The computational complexity of partition functions is one of the central topics in theoretical computer science, which has been found wide applications in computational counting, combinatorics, and statistical physics. To date, numerous algorithms as well as hardnesses of approximation for the partition functions of various systems have been established, to list a few [20, 33, 14, 21, 39, 38, 32, 35, 24, 37, 17, 25, 7, 11, 8]. The most important question here is, what property captures the approximability of partition functions.

It is widely believed that for various classes of partition functions of interests, the hardness of approximation is captured by the locus of complex zeros. The study of the locus of complex zeros has a rich history in statistical physics, for example, in the famous Lee-Yang theorem [27]. In computer science, the absence of complex zeros may imply efficient approximation algorithms for partition functions [4, 29, 31, 19, 26, 25, 30, 10, 15, 16, 18, 36, 9, 12]. This line of research was initiated by Barvinok’s pioneering works [1, 2, 3, 4, 5], which used truncated Taylor expansions to approximate non-vanishing polynomials and established quasi-polynomial time approximations of partition functions with no complex zeros within a region. Later in a seminal work of Patel and Regts [29], this quasi-polynomial running time was improved to polynomial time for a class of graph polynomials which can be expressed as induced subgraph sums in graphs of constant maximum degree. And this polynomial-time framework was further extended by Liu, Sinclair and Srivastava [26] to hypergraph 2-spin systems with no complex-zeros for the external field.

For the quantum version, several (classical) algorithms have been proposed, including [22, 18, 28], to estimate the quantum generalization of the partition function (1) where HH is the Hamiltonian. Yet an important question remains to answer is the polynomial-time approximability of the quantum or classic partition function in the form of (1) assuming its zero-freeness.

1.1. Our results.

We show the polynomial-time approximability of zero-free quantum partition functions.

Let VV be a set of nn sites (also called vertices or particles). Let q2q\geq 2 be an integer. Throughout the paper, we assume that each site uVu\in V is associated with a qq-dimensional Hilbert space 𝒱u\mathcal{V}_{u}, and let 𝒱=uV𝒱u\mathcal{V}=\bigotimes_{u\in V}\mathcal{V}_{u}. A Hamiltonian HH is a Hermitian matrix in 𝒱\mathcal{V}. The support of a Hamiltonian HH, denoted by supp(H)\mathrm{supp}(H), is the minimal set of sites on which HH acts non-trivially. Given a Hamiltonian HH, exp(H)\exp(H) is defined by exp(H)==11!H\exp(H)=\sum_{\ell=1}^{\infty}\frac{1}{\ell!}H^{\ell}, and the partition function ZH:Z_{H}:\mathbb{C}\to\mathbb{C} induced by HH is defined as follows:

(2) β,ZH(β)𝐓𝐫[exp(βH)].\displaystyle\forall\beta\in\mathbb{C},\quad Z_{H}(\beta)\triangleq\mathbf{Tr}\left[\exp(-\beta H)\right].

We are interested in partition functions induced by local Hamiltonians with bounded maximum degrees.

Definition 1.1 (local Hamiltonian).

A Hamiltonian H𝒱H\in\mathcal{V} is said to be kk-local if HH can be expressed as

H=j=1mHj,H=\sum_{j=1}^{m}H_{j},

where each HjH_{j} acts non-trivially on at most kk sites, i.e. |supp(Hj)|k\left|\mathrm{supp}(H_{j})\right|\leq k. A Hamiltonian H𝒱H\in\mathcal{V} called a (k,d)(k,d)-Hamiltonian if HH is kk-local and for every vVv\in V, deg(v)|{jvsupp(Hj)}|d\deg(v)\triangleq\left|\left\{j\mid v\in\mathrm{supp}(H_{j})\right\}\right|\leq d.

Notice that if all HjH_{j}’s are diagonal, then HH is diagonal as well. The quantum partition function ZH(β)Z_{H}(\beta) then degenerates to the classical partition function defined in (1). Indeed, in such diagonal case we have

ZH(β)=σ[q]Vexp(βH(σ)),Z_{H}(\beta)=\sum_{\sigma\in[q]^{V}}\exp(-\beta\cdot H(\sigma)),

where H(σ)=j=1mHj(σ)H(\sigma)=\sum_{j=1}^{m}H_{j}(\sigma) and Hj(σ)H_{j}(\sigma) represents the σ\sigma-th diagonal entry of HjH_{j}. Since each HjH_{j} is diagonal and acts non-trivially on subset supp(Hj)\mathrm{supp}(H_{j}) of at most kk sites, the value of Hj(σ)H_{j}(\sigma) is determines by the variables in supp(Hj)\mathrm{supp}(H_{j}). Hence the ZH(β)Z_{H}(\beta) above is precisely the classical partition function defined in (1).

The quantum partition functions encode rich information about quantum systems, e.g. the free energy and ground state energy. Meanwhile, the non-diagonal property, especially the non-commutativity of multiplication for non-diagonal matrices, imposes great challenges for the computation of partition functions.

We prove the following zero-free based approximability of quantum partition functions.

Theorem 1.2 (Theorem 3.6, informal).

Let Ω\Omega\subseteq\mathbb{C} be a “well-shaped” complex region (formalized by Definition 3.3) and k,d1k,d\geq 1 be constants. There is a deterministic algorithm which takes a (k,d)(k,d)-Hamiltonian HH on nn sites and a β\beta from interior of Ω\Omega as input, and outputs an estimation of the quantum partition function ZH(β)Z_{H}(\beta) in polynomial time in nn, if ZHZ_{H} satisfies the zero-free property such that |logZH|poly(n)\left|\log Z_{H}\right|\leq\mathrm{poly}(n) on Ω\Omega.

The formal statement (Theorem 3.6) is more general: it further takes into account the measurement of the quantum system. Such generalization may encode broader classes of partition functions, e.g. the ones with external fields, and also enable sampling from Gibbs state. Following a recent major advance for quantum zero-freeness of Harrow et al [18], we give concrete applications (in Section 5), namely, polynomial-time algorithms for approximating the quantum partition function (Theorem 5.1) and sampling from the Gibbs state (Theorem 5.3) in a high-temperature regime (where β\beta is close to zero by a constant gap), improving the quasi-polynomial-time algorithms in [18]. A polynomial-time approximation of the quantum partition functions in a slightly bigger high-temperature regime was obtained in [28] using the cluster expansion technique [19], by transforming the quantum partition function to a polymer model and showing the convergence of the cluster expansion assuming high temperature.

We prove polynomial-time approximability of the quantum partition function directly from a black-box property of zero-freeness, without further restricting the parameters of the model. Moreover, our result is proved in a new abstract framework, namely, functions specified by abstract neighborhood structures called dependency graphs. We prove the following general result.

Theorem 1.3 (Theorem 3.5, informal).

Suppose that functions {fG}\{f_{G}\} specified by dependency graphs GG satisfies certain boundedness property of its Taylor coefficients (formalized in Definition 3.1). Let Ω\Omega\subseteq\mathbb{C} be a “well-shaped” complex region. There is a deterministic algorithm which takes a dependency graph GG of O(1)O(1) max-degree and xx from the interior of Ω\Omega as input, and outputs an estimation of fG(x)f_{G}(x) in polynomial time in size nn of GG, if fG(0)f_{G}(0) is easy to compute and fGf_{G} satisfies the zero-free property such that |logfG|poly(n)\left|\log f_{G}\right|\leq\mathrm{poly}(n) on Ω\Omega.

The abstract framework is described in Definition 3.1. As verified in Section 3, our framework subsumes previous polynomial-time frameworks for zero-free based algorithms ([29] and [26]) as special cases, and more importantly, it extends the previous frameworks to become compatible with infinite-degree polynomials and non-commutative systems, which are crucial for quantum partition functions.

2. Preliminaries

2.1. Local Hamiltonians

Given a Hamiltonian HH in 𝒱\mathcal{V}, we use supp(H)\mathrm{supp}(H) to denote the support of HH, the minimal set of sites on which HH acts non-trivially. Formally, if SS is the support of HH, then SS is the minimal subset of VV satisfying that H=HSIVSH=H_{S}\otimes I_{V\setminus S}, where HSH_{S} is a Hamiltonian in the space vS𝒱v\bigotimes_{v\in S}\mathcal{V}_{v} and IVSI_{V\setminus S} is the identity matrix in the space vVS𝒱v\bigotimes_{v\in V\setminus S}\mathcal{V}_{v}. Readers may refer to [13, 23] for a thorough treatment.

2.2. Basic facts about complex functions

A complex-valued function f:Ωf:\Omega\rightarrow\mathbb{C} defined on a complex domain Ω\Omega\subseteq\mathbb{C} is called holomorphic if for every point zΩz\in\Omega, the complex derivative exists in a neighborhood of zz. A holomorphic function f:Ωf:\Omega\rightarrow\mathbb{C} is infinitely differentiable and equals locally to its Taylor series. A biholomorphic function is a bijective holomorphic function whose inverse is also holomorphic Furthermore, a function f:f:\mathbb{C}\rightarrow\mathbb{C} is called an entire function if it is holomorphic on \mathbb{C}. A region Ω\Omega\subseteq\mathbb{C} is simply connected if ¯Ω\overline{\mathbb{C}}\setminus\Omega is connected, where ¯={}\overline{\mathbb{C}}=\mathbb{C}\cup\{\infty\} denotes the extended complex plane.

The logarithm of a complex-valued function ff, denoted by g=logfg=\log f, is a function such that f(z)=eg(z)f(z)=\mathrm{e}^{g(z)}. For holomorphic function f:Ω{0}f:\Omega\rightarrow\mathbb{C}\setminus\{0\} on simply connected region Ω\Omega\subseteq\mathbb{C}, such logf\log f always exists (see e.g. [34]). Specifically, for an arbitrarily fixed pair z0,c0z_{0},c_{0}\in\mathbb{C} satisfying that f(z0)=ec0f(z_{0})=\mathrm{e}^{c_{0}}, we have

(3) zΩ,logf(z)=Pf(w)f(w)𝑑w+c0,\displaystyle\forall z\in\Omega,\quad\log f(z)=\int_{P}\frac{f^{\prime}(w)}{f(w)}\,dw\ +c_{0},

where PP is an arbitrary path in Ω\Omega connecting zz and z0z_{0}. Throughout the paper, we mainly deal with such holomorphic ff on simply connected Ω\Omega that 0Ω0\in\Omega and f(0)+f(0)\in\mathbb{R}^{+}. For such case, the definition of logf\log f is uniquely determined by z0=0z_{0}=0 and the real c0=ln(f(0))c_{0}=\ln(f(0)).

2.3. Approximation of non-vanishing function

We now recap the polynomial interpolation technique of Barvinok [4] to estimate values of non-vanishing holomorphic functions.

For b+b\in\mathbb{R}^{+}, we use 𝔻b\mathbb{D}_{b} to denote the complex disc of radius bb centered at the origin. Formally,

𝔻b={z||z|<b}.\mathbb{D}_{b}=\left\{z\in\mathbb{C}|\left|z\right|<b\right\}.

In particular, let 𝔻=𝔻1\mathbb{D}=\mathbb{D}_{1} denote the unit disc.

For β\beta\in\mathbb{C} and δ+\delta\in\mathbb{R}^{+}, we use Sβ,γS_{\beta,\gamma} to denote δ\delta-strip of interval [0,β]={tβt[0,1]}[0,\beta]=\{t\beta\mid t\in[0,1]\}. Formally,

Sβ,γ={zdist(z,[0,β])<δ}.S_{\beta,\gamma}=\left\{z\in\mathbb{C}\mid\mathrm{dist}(z,[0,\beta])<\delta\right\}.

where dist(,)\mathrm{dist}(\cdot,\cdot) denotes Euclidean distance. It is clear that both 𝔻b\mathbb{D}_{b} and Sβ,γS_{\beta,\gamma} are simply connected.

The following is the key property of zero-freeness for complex-valued functions.

Definition 2.1 (zero-freeness).

Let M>0M>0 be finite positive real. A holomorphic function ff on a simply connected region Ω\Omega\subseteq\mathbb{C} is MM-zero-free on Ω\Omega if |logf(z)|M\left|\log f(z)\right|\leq M for all zΩz\in\Omega.

Notice that the zero-freeness of ff on Ω\Omega implies that ff is non-vanishing on the same region. A definition of logf\log f is assumed in the context when this concept is used.

For any polynomial p[z]p\in\mathbb{C}[z] that does not vanish on 𝔻\mathbb{D}, the polynomial pp automatically exhibits the above zero-freeness property with a bounded gap on 𝔻b\mathbb{D}_{b} for any b(0,1)b\in(0,1).

Lemma 2.2.

Let p[z]p\in\mathbb{C}[z] be a polynomial of degree dd, and let b(0,1)b\in(0,1). If p(z)0p(z)\neq 0 for all z𝔻z\in\mathbb{D}, then pp is MM-zero-free on 𝔻b\mathbb{D}_{b} for M=dln11b+|logp(0)|M=d\ln\frac{1}{1-b}+\left|\log p(0)\right|.

Proof.

Let ζ1,ζ2,,ζd\zeta_{1},\zeta_{2},\ldots,\zeta_{d}\in\mathbb{C} denote the roots of polynomial pp. For any z𝔻bz\in\mathbb{D}_{b},

|logp(z)|=|logp(0)+j=1dlog(1zζj)||logp(0)|j=1dln(1|zζj|)|logp(0)|+dln11b.\displaystyle\left|\log p(z)\right|=\left|\log p(0)+\sum_{j=1}^{d}\log\left(1-\frac{z}{\zeta_{j}}\right)\right|\leq\left|\log p(0)\right|-\sum_{j=1}^{d}\ln\left(1-\left|\frac{z}{\zeta_{j}}\right|\right)\leq\left|\log p(0)\right|+d\ln\frac{1}{1-b}.

The two inequalities are due to that all |ζj|>1\left|\zeta_{j}\right|>1 since p(z)0p(z)\neq 0 for all z𝔻z\in\mathbb{D}. ∎

The following lemma of Barvinok says that any holomorphic function on 𝔻\mathbb{D} can be approximated by its truncated Taylor expansion if it is zero-free on 𝔻\mathbb{D}.

Lemma 2.3 ([4]).

Let g:𝔻g:\mathbb{D}\to\mathbb{C} be holomorphic and M>0M>0. If |g(z)|M|g(z)|\leq M for all z𝔻z\in\mathbb{D}, then for any z𝔻z\in\mathbb{D} and any m+m\in\mathbb{N}^{+},

|g(z)k=0mg(k)(0)k!zk|Mδ(1δ)m+1,\displaystyle\left|g(z)-\sum_{k=0}^{m}\frac{g^{(k)}(0)}{k!}z^{k}\right|\leq\frac{M}{\delta}(1-\delta)^{m+1},

where δ=dist(z,𝔻)\delta=\mathrm{dist}(z,\partial\mathbb{D}) represents the Euclidean distance between zz and the boundary of unit disc.

In particular, when the above lemma is applied to g=logfg=\log f for some holomorphic f:𝔻{0}f:\mathbb{D}\to\mathbb{C}\setminus\{0\}, one can obtain a multiplicative approximation of ff on 𝔻\mathbb{D} assuming zero-freeness of ff on 𝔻\mathbb{D}. To make such approximation effective, we should be able to compute the Taylor coefficients of g=logfg=\log f.

The following Newton’s identity relates the Taylor coefficients of g=logfg=\log f to those of ff.

Lemma 2.4 (Newton’s identity).

Let f(z)=k=0+fkzkf(z)=\sum_{k=0}^{+\infty}f_{k}z^{k} be an entire function such that f(z)0f(z)\neq 0 for all z𝔻z\in\mathbb{D}. Then g(z)=logf(z)=k=0+gkzkg(z)=\log f(z)=\sum_{k=0}^{+\infty}g_{k}z^{k} is well-defined on 𝔻\mathbb{D}, and

ngn=nfnk=1n1kgkfnk.ng_{n}=nf_{n}-\sum_{k=1}^{n-1}kg_{k}f_{n-k}.
Proof.

By the definition of g=logfg=\log f, we have f=gff^{\prime}=g^{\prime}f. Therefore,

nfn=1(n1)!f(n)(0)=1(n1)!k=0n1(n1k)f(k)(0)g(nk)(0)=k=0n1(nk)gnkfk=k=1nkgkfnk.\displaystyle nf_{n}=\frac{1}{(n-1)!}f^{(n)}(0)=\frac{1}{(n-1)!}\sum_{k=0}^{n-1}\binom{n-1}{k}f^{(k)}(0)g^{(n-k)}(0)=\sum_{k=0}^{n-1}(n-k)g_{n-k}f_{k}=\sum_{k=1}^{n}kg_{k}f_{n-k}.

When the zero-free region is not unit disc, some preprocessing is needed. The following polynomial transformation from 𝔻\mathbb{D} to any Sβ,γS_{\beta,\gamma} is known.

Lemma 2.5 ([4]).

For any β\beta\in\mathbb{C}, δ(0,1)\delta\in(0,1), there is an explicitly constructed polynomial pβ,δp_{\beta,\delta} of degree d=d(β,δ)d=d(\beta,\delta) satisfying

  • pβ,δ(0)=0p_{\beta,\delta}(0)=0 and pβ,δ(1δ0)=βp_{\beta,\delta}(1-\delta_{0})=\beta for some δ0(0,1)\delta_{0}\in(0,1);

  • pβ,δ(𝔻)Sβ,γp_{\beta,\delta}(\mathbb{D})\subseteq S_{\beta,\gamma};

The proof of Lemma 2.5 is deferred to Appendix A.

3. Approximation of Zero-Free Holomorphic Function

We now introduce an abstraction for partition functions, namely, multiplicative holomorphic functions specified by a class of abstract structures called dependency graphs.

A dependency graph is a vertex-labeled graph G=(V,E,)G=(V,E,\mathcal{L}), where (V,E)(V,E) is an undirected simple graph, and =(Lv)vV\mathcal{L}=(L_{v})_{v\in V} assigns each vertex vVv\in V a label LvL_{v}. Two labeled graphs G=(V,E,)G=(V,E,\mathcal{L}) and G=(V,E,)G^{\prime}=(V^{\prime},E^{\prime},\mathcal{L}^{\prime}) are isomorphic if there is a bijection ϕ:VV\phi:V\to V^{\prime} such that the two simple graphs (V,E)(V,E) and (V,E)(V^{\prime},E^{\prime}) are isomorphic under ϕ\phi and Lv=Lϕ(v)L_{v}=L^{\prime}_{\phi(v)} for all vVv\in V. Furthermore, we say that two labeled graphs G=(V,E,)G=(V,E,\mathcal{L}) and G=(V,E,)G^{\prime}=(V^{\prime},E^{\prime},\mathcal{L}^{\prime}) are disjoint if VV=V\cap V^{\prime}=\varnothing. A family 𝒢\mathcal{G} of dependency graphs is called downward-closed if for any G=(V,E,)𝒢G=(V,E,\mathcal{L})\in\mathcal{G} and any SVS\subseteq V we have G[S]𝒢G[S]\in\mathcal{G}, where G[S]G[S] stands for the subgraph of GG induced by subset SVS\subseteq V preserving labels.

We use ff_{\cdot} to denote an operator that maps each dependency graph GG in 𝒢\mathcal{G} to an entire function fG:f_{G}:\mathbb{C}\to\mathbb{C} (i.e. fGf_{G} is holomorphic on \mathbb{C}), such that fGf_{G} gives the same entire function for isomorphic dependency graphs GG. Such an ff_{\cdot} is multiplicative if for any GG that is disjoint union of G1,G2G_{1},G_{2}, we have fG=fG1fG2f_{G}=f_{G_{1}}f_{G_{2}}.

Definition 3.1 (boundedness).

Let 𝒢\mathcal{G} be a downward-closed family of dependency graphs. Let α,β1\alpha,\beta\geq 1. A multiplicative ff_{\cdot} is called (α,β)(\alpha,\beta)-bounded on 𝒢\mathcal{G} if for any G=(V,E,)𝒢G=(V,E,\mathcal{L})\in\mathcal{G}, we have fG(0)+f_{G}(0)\in\mathbb{R}^{+} and

fG(z)=fG(0)+=1+(SVλG[S],)z,\displaystyle f_{G}(z)=f_{G}(0)+\sum_{\ell=1}^{+\infty}\left(\sum_{S\subseteq V}\lambda_{G[S],\ell}\right)z^{\ell},

where the complex coefficients (λH,)H𝒢,+(\lambda_{H,\ell})_{H\in\mathcal{G},\ell\in\mathbb{N}^{+}} are invariant for isomorphic dependency graphs HH, and satisfy that λH,0\lambda_{H,\ell}\neq 0 only if |VH|α|V_{H}|\leq\alpha\ell, and each λH,\lambda_{H,\ell} can be calculated within βpoly()\beta^{\ell}\cdot\mathrm{poly}(\ell) time.

For (α,β)(\alpha,\beta)-bounded ff_{\cdot}, it always holds that fG(0)+f_{G}(0)\in\mathbb{R}^{+}. Then we always fix the definition of logf\log f to be the one uniquely defined by Eq.(3) with z0=0z_{0}=0 and c0=ln(f(0))c_{0}=\ln(f(0)) being real. Such logf\log f is well defined within a neighborhood of the origin.

As we will formally verify in Section 3.2, this notion of bounded holomorphic functions specified by dependency graphs generalizes the bounded induced graph counting polynomials (BIGCPs) of Patel and Regts [29]. A major difference here is that fGf_{G} may not be a polynomial of finite degree.

We show that for (α,β)(\alpha,\beta)-bounded ff_{\cdot}, the approach of Patel and Regts [29] based on Newton’s identity and local enumeration of connected subgraphs can efficiently compute Taylor coefficients of logfG\log f_{G}, even though the function fGf_{G} can now encode problems far beyond counting subgraphs.

Theorem 3.2 (efficient coefficient computing).

Let 𝒢\mathcal{G} be a downward-closed family of dependency graphs, and ff_{\cdot} be (α,β)(\alpha,\beta)-bounded on 𝒢\mathcal{G} for α,β1\alpha,\beta\geq 1. There exists a deterministic algorithm which given any G𝒢G\in\mathcal{G} and +\ell\in\mathbb{N}^{+} as input, outputs the \ell-th coefficient of the Taylor series of logfG\log f_{G} at the origin in time O~(n(8eβΔ)α)\widetilde{O}\left(n(8\mathrm{e}\beta\Delta)^{\alpha\ell}\right), where nn is the number of vertices, Δ\Delta is the maximum degree of GG, and O~()\widetilde{O}(\cdot) hides poly(Δ,,log(n))\mathrm{poly}(\Delta,\ell,\log(n)).

The theorem will be proved in Section 4.

Due to Riemann mapping theorem in complex analysis, for any proper and simply connected region Ω\Omega\subset\mathbb{C} and any point z0Ωz_{0}\in\Omega, there is a biholomorphic function hh from 𝔻\mathbb{D} to Ω\Omega such that h(0)=z0h(0)=z_{0}. We are interested in those good regions Ω\Omega\subseteq\mathbb{C} such that a transformation hh from 𝔻\mathbb{D} to Ω\Omega does not only exist but also has efficiently computable Taylor coefficients.

Definition 3.3 (good region).

Let γ1\gamma\geq 1. A simply connected region Ω\Omega\subseteq\mathbb{C} is γ\gamma-good if 0Ω0\in\Omega and given any xΩx\in\Omega, there exists a holomorphic function hxh_{x} on 𝔻\mathbb{D} along with a zx𝔻z_{x}\in\mathbb{D} such that:

  1. (1)

    hx(𝔻)Ωh_{x}(\mathbb{D})\subseteq\Omega, hx(0)=0h_{x}(0)=0 and hx(zx)=xh_{x}(z_{x})=x;

  2. (2)

    for every +\ell\in\mathbb{N}^{+}, the \ell-th Taylor coefficient hx,h_{x,\ell} of hxh_{x} at 0 can be determined in γpoly()\gamma^{\ell}\mathrm{poly}(\ell) time.

Given a γ\gamma-good region Ω\Omega\subseteq\mathbb{C} and δ(0,1)\delta\in(0,1), we use Ωδ\Omega_{\delta} to denote the set of all xΩx\in\Omega with zx𝔻1δz_{x}\in\mathbb{D}_{1-\delta}.

Any convex region is 11-good, given access to an oracle that determines the distance to its boundary, which will be formally proved in Appendix A.

Fact 3.4.

Let Ω\Omega\subseteq\mathbb{C} be a convex region. Suppose that for any zΩz\in\Omega, dist(z,Ω)\mathrm{dist}(z,\partial\Omega) can be determined in O(1)O(1) time. Then Ω\Omega is 11-good.

Applying our Theorem 3.2 to logfG\log f_{G}, combining with Barvinok’s approximation (Lemma 2.3) and our notion of good region, we obtain the following theorem for multiplicative approximation of zero-free fGf_{G}’s.

Theorem 3.5 (efficient ε\varepsilon-approximation).

Let α,β,γ1\alpha,\beta,\gamma\geq 1. Let 𝒢\mathcal{G} be a downward-closed family of dependency graphs, and ff_{\cdot} be (α,β)(\alpha,\beta)-bounded on 𝒢\mathcal{G}. Let Ω\Omega\subset\mathbb{C} be a γ\gamma-good region.

For any δ(0,1)\delta\in(0,1), there is a deterministic algorithm which takes G𝒢G\in\mathcal{G}, xΩδx\in\Omega_{\delta} and an error bound ε(0,1)\varepsilon\in(0,1) as input, and outputs an estimation fG(x)^\widehat{f_{G}(x)} of fG(x)f_{G}(x) within ε\varepsilon-multiplicative error:

1ε|fG(x)^||fG(x)|1+ε,1-\varepsilon\leq\frac{\left|\widehat{f_{G}(x)}\right|}{\left|f_{G}(x)\right|}\leq 1+\varepsilon,

in O~(n(Mδε)C)\widetilde{O}\left(n\left(\frac{M}{\delta\varepsilon}\right)^{C}\right) time with C=αδln(8eΔ(β+γ))C=\frac{\alpha}{\delta}\ln(8\mathrm{e}\Delta(\beta+\gamma)), where Δ\Delta is the maximum degree of GG, if provided that fGf_{G} is MM-zero-free on Ω\Omega\subset\mathbb{C} and the value of fG(0)f_{G}(0) is also provided to the algorithm.

Note that in above theorem, the zero-freeness property can be verified on any particular class of dependency graphs, although the boundedness property should be guaranteed on a downward-closed family. When applying this theorem, the value of fG(0)f_{G}(0) is usually trivial to compute (e.g. fG(0)=1f_{G}(0)=1), and the MM-zero-freeness is usually established for some M=poly(n)M=\mathrm{poly}(n) (e.g. M=O(n)M=O(n)) on nn-vertex dependency graphs. In such typical cases, the running time in Theorem 3.5 is bounded as (nδε)O(1δlogΔ)\left(\frac{n}{\delta\varepsilon}\right)^{O\left(\frac{1}{\delta}\log\Delta\right)}.

Proof of Theorem 3.5.

Let h=hxh=h_{x} be a holomorphic function that transforms 𝔻\mathbb{D} to the γ\gamma-good region Ω\Omega with h(zx)=xh(z_{x})=x, where zx𝔻1δz_{x}\in\mathbb{D}_{1-\delta} since xΩδx\in\Omega_{\delta}. And let fGh=fGhf^{h}_{G}=f_{G}\circ h.

First, observe that fGhf_{G}^{h} is MM-zero-free on 𝔻\mathbb{D}, because |logfGh(z)|=|logfG(h(z))|M\left|\log f_{G}^{h}(z)\right|=\left|\log f_{G}(h(z))\right|\leq M holds for all z𝔻z\in\mathbb{D} since h(𝔻)Ωh(\mathbb{D})\subseteq\Omega and fGf_{G} is MM-zero-free on Ω\Omega. Then by Lemma 2.3, for any z𝔻z\in\mathbb{D}, the difference between logfGh(z)\log f^{h}_{G}(z) and the truncated Taylor expansion at 0 is bounded by

(4) |logfGh(z)k=0m(logfGh)(k)(0)k!zk|Mδ(1δ)m+1<ε,\displaystyle\left|\log f^{h}_{G}(z)-\sum_{k=0}^{m}\frac{\left(\log f_{G}^{h}\right)^{(k)}(0)}{k!}z^{k}\right|\leq\frac{M}{\delta}(1-\delta)^{m+1}<\varepsilon,

for m=1δlnMδεm=\lceil\frac{1}{\delta}\ln\frac{M}{\delta\varepsilon}\rceil.

It remains to verify that fhf^{h}_{\cdot} is (α,β+γ)(\alpha,\beta+\gamma)-bounded on 𝒢\mathcal{G}. By Theorem 3.2, this will prove the theorem.

For +\ell\in\mathbb{N}^{+}, let hk()h_{k}^{(\ell)} denote the kk-th Taylor coefficient of h(z)h(z)^{\ell} at z=0z=0. Since h(0)=0h(0)=0, we have

h(z)=(k=1+hkz)=k=+hk()zkh(z)^{\ell}=\left(\sum_{k=1}^{+\infty}h_{k}z\right)^{\ell}=\sum_{k=\ell}^{+\infty}h_{k}^{(\ell)}z^{k}

Since fGf_{G} is (α,β)(\alpha,\beta)-bounded and h(0)=0h(0)=0, we have

fGh(z)\displaystyle f^{h}_{G}(z) =fG(0)+=1+(SVλG[S],)h(z)\displaystyle=f_{G}(0)+\sum_{\ell=1}^{+\infty}\left(\sum_{S\subseteq V}\lambda_{G[S],\ell}\right)h(z)^{\ell}
=fG(0)+=1+(SVλG[S],)(k=+hk()zk)\displaystyle=f_{G}(0)+\sum_{\ell=1}^{+\infty}\left(\sum_{S\subseteq V}\lambda_{G[S],\ell}\right)\left(\sum_{k=\ell}^{+\infty}h_{k}^{(\ell)}z^{k}\right)
=fG(0)+k=1+SV(=1khk()λG[S],)zk\displaystyle=f_{G}(0)+\sum_{k=1}^{+\infty}\sum_{S\subseteq V}\left(\sum_{\ell=1}^{k}h_{k}^{(\ell)}\lambda_{G[S],\ell}\right)z^{k}
=fG(0)+k=1+(SVλG[S],kh)zk,\displaystyle=f_{G}(0)+\sum_{k=1}^{+\infty}\left(\sum_{S\subseteq V}\lambda^{h}_{G[S],k}\right)z^{k},

where λH,kh\lambda^{h}_{H,k} for any H𝒢H\in\mathcal{G} and k+k\in\mathbb{N}^{+} is defined as

λH,kh=1khk()λH,.\lambda^{h}_{H,k}\triangleq\sum_{\ell=1}^{k}h_{k}^{(\ell)}\lambda_{H,\ell}.

Clearly, λH,kh=0\lambda^{h}_{H,k}=0 if |VH|>αk|V_{H}|>\alpha k, where VHV_{H} denotes the vertex set of HH, since λH,=0\lambda_{H,\ell}=0 if |VH|>α|V_{H}|>\alpha\ell. And it can be verified that any λH,kh\lambda^{h}_{H,k} can be determined within (β+γ)kpoly(k)(\beta+\gamma)^{k}\mathrm{poly}(k) time. This is because within βkpoly(k)\beta^{k}\mathrm{poly}(k) time, one can list all λH,1,,λH,k\lambda_{H,1},\ldots,\lambda_{H,k}, and for each 1k1\leq\ell\leq k, hk()h_{k}^{(\ell)} is just the coefficient of zkz^{k} in (h1z+h2z2++hkzk)\left(h_{1}z+h_{2}z^{2}+\cdots+h_{k}z^{k}\right)^{\ell}, which can be calculated in poly(k)\mathrm{poly}(k) time given all h1,,hkh_{1},\ldots,h_{k}, which can be listed beforehand in γkpoly(k)\gamma^{k}\mathrm{poly}(k) time. Overall, this takes at most (β+γ)kpoly(k)(\beta+\gamma)^{k}\mathrm{poly}(k) time.

Therefore, fhf^{h}_{\cdot} is (α,β+γ)(\alpha,\beta+\gamma)-bounded. ∎

3.1. Quantum partition functions

We formally prove Theorem 1.2. Recall the definition of quantum partition function ZHZ_{H} in (2). We extend this definition by considering measurement.

Recall that 𝒱=uV𝒱u\mathcal{V}=\bigotimes_{u\in V}\mathcal{V}_{u} where VV is the set of nn sites and each 𝒱u\mathcal{V}_{u} is a qq-dimensional Hilbert space. A measurement 𝒪\mathcal{O} is a positive operator in 𝒱\mathcal{V}. The quantum partition function induced by Hamiltonian HH under measurement 𝒪\mathcal{O}, both in 𝒱\mathcal{V}, is defined by

(5) ZH,𝒪(β)𝐓𝐫[exp(βH)𝒪].\displaystyle Z_{H,\mathcal{O}}(\beta)\triangleq\mathbf{Tr}\left[\exp(\beta H)\mathcal{O}\right].

Furthermore, a measurement 𝒪\mathcal{O} is tensorized if 𝒪=vV𝒪v\mathcal{O}=\bigotimes_{v\in V}\mathcal{O}_{v} where supp(𝒪v)={v}\mathrm{supp}(\mathcal{O}_{v})=\{v\}.

We show that under tensorized measurement 𝒪\mathcal{O}, the quantum partition functions ZH,𝒪Z_{H,\mathcal{O}} defined by local Hamiltonians with O(1)O(1) maximum degree are (1,O(1))(1,O(1))-bounded. Together with Theorem 3.5 we obtain the following theorem.

Theorem 3.6.

Let Ω\Omega\subset\mathbb{C} be a γ\gamma-good region for γ1\gamma\geq 1. For any δ(0,1)\delta\in(0,1), there is a deterministic algorithm such that given any (k,d)(k,d)-Hamiltonian HH and tensorized measurement 𝒪\mathcal{O}, provided that 1𝐓𝐫[𝒪]ZH,𝒪\frac{1}{\mathbf{Tr}\left[\mathcal{O}\right]}Z_{H,\mathcal{O}} is MM-zero-free on Ω\Omega, for any temperature βΩδ\beta\in\Omega_{\delta} and error bound ε(0,1)\varepsilon\in(0,1), the algorithm outputs an estimation of ZH,𝒪(β)Z_{H,\mathcal{O}}(\beta) within ε\varepsilon-multiplicative error in O~(n(Mδε)C)\widetilde{O}\left(n\left(\frac{M}{\delta\varepsilon}\right)^{C}\right) time with C=1δln(8ed(2q3k+γ))C=\frac{1}{\delta}\ln\left(8\mathrm{e}d\left(2q^{3k}+\gamma\right)\right).

Note that when the measurement 𝒪\mathcal{O} is the identity, ZH,𝒪Z_{H,\mathcal{O}} is precisely the partition function ZHZ_{H}, which implies Theorem 1.2. As discussed in the introduction, Theorem 3.6 covers all classical partition functions (with or without external field) when temperature is the complex variable.

Following a recent work of Harrow, Mehraban and Soleimanifar [18], Theorem 3.6 gives polynomial-time approximations of quantum partition functions defined by local Hamiltonians with O(1)O(1) maximum degree when the inverse temperature β\beta is close to zero. And following a standard routine of self-reduction, in the same regime, we have a polynomial-time approximate sampler from the quantum Gibbs state after the measurement in the computational basis. These applications are given in Section 5.

Proof of Theorem 3.6.

Given a (k,d)(k,d)-Hamiltonian H=j=1mHjH=\sum_{j=1}^{m}H_{j}, we can construct a dependency graph GH=(U,E,)G_{H}=(U,E,\mathcal{L}) as follows:

  1. (1)

    U=[m]U=[m] is the vertex set;

  2. (2)

    E={{x,y}(U2)supp(Hx)supp(Hy)}E=\left\{\{x,y\}\in{\binom{U}{2}}\mid\mathrm{supp}(H_{x})\cap\mathrm{supp}(H_{y})\neq\varnothing\right\};

  3. (3)

    for any xUx\in U, its label is given by Lx=HxL_{x}=H_{x}.

Let 𝒢k\mathcal{G}_{k} denote the family of all such GHG_{H} where HH is a kk-local Hamiltonian. It is obvious that such 𝒢k\mathcal{G}_{k} is downward-closed.

Let 𝒪=vV𝒪v\mathcal{O}=\bigotimes_{v\in V}\mathcal{O}_{v} be a tensorized measurement. For any G=GH𝒢kG=G_{H}\in\mathcal{G}_{k}, where H=j=1mHjH=\sum_{j=1}^{m}H_{j}, define:

fG(z)=1𝐓𝐫[𝒪]ZH,𝒪(z)=1𝐓𝐫[𝒪]𝐓𝐫[exp(zj=1mHj)𝒪].\displaystyle f_{G}(z)=\frac{1}{\mathbf{Tr}\left[\mathcal{O}\right]}Z_{H,\mathcal{O}}(z)=\frac{1}{\mathbf{Tr}\left[\mathcal{O}\right]}\mathbf{Tr}\left[\exp\left(-z\sum_{j=1}^{m}H_{j}\right)\mathcal{O}\right].

The rest of the proof verifies that such ff_{\cdot} is (1,2q3k)(1,2q^{3k})-bounded on 𝒢k\mathcal{G}_{k}, which is sufficient to prove the theorem by Theorem 3.5.

We first verify that such ff_{\cdot} is multiplicative. For any G=(U,E,)𝒢kG=(U,E,\mathcal{L})\in\mathcal{G}_{k} that is the disjoint union of G1=(U1,E1,1)G_{1}=(U_{1},E_{1},\mathcal{L}_{1}) and G2=(U2,E2,2)G_{2}=(U_{2},E_{2},\mathcal{L}_{2}), there exists a bipartition V=V1V2V=V_{1}\uplus V_{2} such that supp(Hx)V1\mathrm{supp}(H_{x})\subseteq V_{1} for all xU1x\in U_{1} and supp(Hy)V2\mathrm{supp}(H_{y})\subset V_{2} for all yU2y\in U_{2}. Let HUi=xUiHxH_{U_{i}}=\sum_{x\in U_{i}}H_{x} for i=1,2i=1,2. We have,

fG(z)\displaystyle f_{G}(z) =1𝐓𝐫[𝒪]𝐓𝐫[exp(z(HU1+HU2))𝒪]\displaystyle=\frac{1}{\mathbf{Tr}[\mathcal{O}]}\mathbf{Tr}\left[\exp\left(-z(H_{U_{1}}+H_{U_{2}})\right)\mathcal{O}\right]
=1𝐓𝐫[𝒪]𝐓𝐫[exp(zHU1)exp(zHU2)𝒪]\displaystyle=\frac{1}{\mathbf{Tr}[\mathcal{O}]}\mathbf{Tr}[\exp(-zH_{U_{1}})\exp(-zH_{U_{2}})\mathcal{O}]
=1𝐓𝐫[𝒪]𝐓𝐫V1[exp(zHU1)vV1𝒪v]𝐓𝐫V2[exp(zHU2)vV2𝒪v]\displaystyle=\frac{1}{\mathbf{Tr}[\mathcal{O}]}\mathbf{Tr}_{V_{1}}\left[\exp(-zH_{U_{1}})\bigotimes_{v\in V_{1}}\mathcal{O}_{v}\right]\mathbf{Tr}_{V_{2}}\left[\exp(-zH_{U_{2}})\bigotimes_{v\in V_{2}}\mathcal{O}_{v}\right]
=1𝐓𝐫2[𝒪]𝐓𝐫[exp(zHU1)𝒪]𝐓𝐫[exp(zHU2)𝒪]\displaystyle=\frac{1}{\mathbf{Tr}^{2}[\mathcal{O}]}\mathbf{Tr}[\exp(-zH_{U_{1}})\mathcal{O}]\mathbf{Tr}[\exp(-zH_{U_{2}})\mathcal{O}]
=fG1(z)fG2(z)\displaystyle=f_{G_{1}}(z)f_{G_{2}}(z)

Here the subscripts V1,V2V_{1},V_{2} in 𝐓𝐫V1,𝐓𝐫V2\mathbf{Tr}_{V_{1}},\mathbf{Tr}_{V_{2}} indicates the sets of sites that the operators act on. Therefore, ff_{\cdot} is multiplicative.

For any G=(U,E,)𝒢kG=(U,E,\mathcal{L})\in\mathcal{G}_{k} and any +\ell\in\mathbb{N}^{+}, define

(6) λG,=1!1𝐓𝐫[𝒪]f:[]ontoU𝐓𝐫[(j=1Hf(j))𝒪].\lambda_{G,\ell}=\frac{1}{\ell!}\frac{1}{\mathbf{Tr}[\mathcal{O}]}\sum_{f:[\ell]\stackrel{{\scriptstyle\mathrm{onto}}}{{\to}}U}\mathbf{Tr}\left[\left(\prod_{j=1}^{\ell}H_{f(j)}\right)\mathcal{O}\right].

Observe that λG,=0\lambda_{G,\ell}=0 if |U|>\left|U\right|>\ell as there is no surjection from [][\ell] to UU. Moreover, for H=xUHxH=\sum_{x\in U}H_{x},

fG(z)\displaystyle f_{G}(z) =1+=1+β!𝐓𝐫[H𝒪]=1+=1+z!x1,x2,,xU𝐓𝐫[(j=1Hxj)𝒪]=1+=1+(SUλG[S],)z.\displaystyle=1+\sum_{\ell=1}^{+\infty}\frac{\beta^{\ell}}{\ell!}\mathbf{Tr}\left[H^{\ell}\mathcal{O}\right]=1+\sum_{\ell=1}^{+\infty}\frac{z^{\ell}}{\ell!}\sum_{x_{1},x_{2},\ldots,x_{\ell}\in U}\mathbf{Tr}\left[\left(\prod_{j=1}^{\ell}H_{x_{j}}\right)\mathcal{O}\right]=1+\sum_{\ell=1}^{+\infty}\left(\sum_{S\subseteq U}\lambda_{G[S],\ell}\right)z^{\ell}.

It remains to show that λG,\lambda_{G,\ell} can be determined within (2q3k)poly()(2q^{3k})^{\ell}\mathrm{poly}(\ell) time.

Fix a G=(U,E,)𝒢kG=(U,E,\mathcal{L})\in\mathcal{G}_{k}. For any SUS\subseteq U, define

HS,f:[]ontoSj=1Hf(j).\displaystyle H_{S,\ell}\triangleq\sum_{f:[\ell]\stackrel{{\scriptstyle\mathrm{onto}}}{{\to}}S}\prod_{j=1}^{\ell}H_{f(j)}.

Clearly, λG,=1!1𝐓𝐫[𝒪]𝐓𝐫[HU,𝒪]\lambda_{G,\ell}=\frac{1}{\ell!}\frac{1}{\mathbf{Tr}[\mathcal{O}]}\mathbf{Tr}\left[H_{U,\ell}\mathcal{O}\right]. Moreover, the following recurrence holds for HS,H_{S,\ell}:

(7) HS,=jSHj(HS,1+HS{j},1),\displaystyle H_{S,\ell}=\sum_{j\in S}H_{j}\left(H_{S,\ell-1}+H_{S\setminus\{j\},\ell-1}\right),

where the boundary cases are given by H,0=IH_{\varnothing,0}=I, and HS,=𝟎H_{S,\ell}=\bm{0} (the 0-matrix) if <|S|\ell<|S|, or S=S=\varnothing but >0\ell>0. Note that HS,H_{S,\ell} acts non-trivially on at most k|S|k\left|S\right| sites, where each site corresponds to a qq-dimensional Hilbert space, thus HS,H_{S,\ell} can be represented as a matrix of size at most qk|S|×qk|S|q^{k|S|}\times q^{k|S|} and the recursion step (7) can be evaluated in time O(|S|q3k|S|)O(|S|q^{3k|S|}). Therefore, for any SUS\subseteq U that 1|S|1\leq|S|\leq\ell, HS,H_{S,\ell} can be computed in time O(2|S||S|q3k|S|)=O(22q3k)O(2^{|S|}\ell|S|q^{3k|S|})=O(\ell^{2}2^{\ell}q^{3k\ell}) by a dynamic programming that constructs a 2S×[]2^{S}\times[\ell] table according to the recurrence (7). And finally, λG,=1!1𝐓𝐫[𝒪]𝐓𝐫[HU,𝒪]\lambda_{G,\ell}=\frac{1}{\ell!}\frac{1}{\mathbf{Tr}[\mathcal{O}]}\mathbf{Tr}\left[H_{U,\ell}\mathcal{O}\right] can be computed from HU,H_{U,\ell} in O(q3k)O(q^{3k\ell}) time because HU,H_{U,\ell} acts non-trivially on at most k|U|kk|U|\leq k\ell sites and 𝒪\mathcal{O} is tensorized. ∎

3.2. Induced subgraph counting

Our framework (Definition 3.1) subsumes bounded induced graph counting polynomials (BIGCP) defined by Patel and Regts [29].

A BIGCP pp_{\cdot} defines multiplicative graph polynomials pGp_{G} for all graphs G=(V,E)G=(V,E). Moreover, there exists integer α1\alpha\geq 1 and sequence λH,\lambda_{H,\ell} of complex values such that the following conditions are satisfied.

  1. (1)

    For any graph G=(V,E)G=(V,E), pGp_{G} can be expressed as

    pG(z)=1+=1m(G)(H=(VH,EH)|VH|αλH,ind(H,G))z,\displaystyle p_{G}(z)=1+\sum_{\ell=1}^{m(G)}\left(\sum_{\begin{subarray}{c}H=(V_{H},E_{H})\\ \left|V_{H}\right|\leq\alpha\ell\end{subarray}}\lambda_{H,\ell}\cdot\mathrm{ind}(H,G)\right)z^{\ell},

    where ind(H,G)\mathrm{ind}(H,G) represents the number of induced subgraphs G[S]G[S], SVS\subseteq V, isomorphic to HH.

  2. (2)

    λH,\lambda_{H,\ell} can be determined in O(β)O(\beta^{\ell}) time for some constant β1\beta\geq 1.

For any G=(V,E)G=(V,E), we define a dependency graph G=(V,E,)G^{*}=(V,E,\mathcal{L}) where \mathcal{L} labels every vVv\in V with a trivial symbol *. Let 𝒢\mathcal{G} denote the family of all GG^{*}, which is clearly downward-closed. We define fG=pGf_{G^{*}}=p_{G}.

Note that

H=(VH,EH)|VH|αλH,ind(H,G)=SV|S|αλG[S],.\displaystyle\sum_{\begin{subarray}{c}H=(V_{H},E_{H})\\ \left|V_{H}\right|\leq\alpha\ell\end{subarray}}\lambda_{H,\ell}\mathrm{ind}(H,G)=\sum_{\begin{subarray}{c}S\subseteq V\\ \left|S\right|\leq\alpha\ell\end{subarray}}\lambda_{G[S],\ell}.

Therefore, any BIGCP pp_{\cdot} corresponds to an ff_{\cdot} that is (α,β)(\alpha,\beta)-bounded on 𝒢\mathcal{G}^{*}.

3.3. Boolean CSP with external field

A Boolean-variate constraint satisfaction problem (Boolean CSP) is specified by a Φ=(V,E,ϕ)\Phi=(V,E,\bm{\phi}), where H=(V,E)H=(V,E) is a hypergraph and ϕ=(ϕe)eE\bm{\phi}=(\phi_{e})_{e\in E} such that each ϕe:{0,1}e\phi_{e}:\{0,1\}^{e}\to\mathbb{C} is a Boolean-variate complex-valued constraint function. Furthermore, Φ=(V,E,ϕ)\Phi=(V,E,\bm{\phi}) is a (k,d)(k,d)-formula if |e|k\left|e\right|\leq k for every eEe\in E and deg(v)=|{eEve}|d\mathrm{deg}(v)=\left|\{e\in E\mid v\in e\}\right|\leq d for every vVv\in V.

The partition function for a Boolean CSP Φ=(V,E,ϕ)\Phi=(V,E,\bm{\phi}) of external field λ\lambda is defined as:

ZΦ(λ)=σ{0,1}V(eEϕe(σ|e))λσ1.\displaystyle Z_{\Phi}(\lambda)=\sum_{\sigma\in\{0,1\}^{V}}\left(\prod_{e\in E}\phi_{e}(\sigma|_{e})\right)\lambda^{\left\|\sigma\right\|_{1}}.

In [26], Liu, Sinclair and Srivastava formulated the above partition function as counting hypergraph insects and gave a polynomial-time algorithm for such a partition function assuming its zero-freeness. We will see that such a partition function is also subsumed by our framework.

Given a Boolean CSP Φ=(V,E,ϕ)\Phi=(V,E,\bm{\phi}), we can construct a dependency graph GΦ=(VΦ,EΦ,Φ)G_{\Phi}=(V_{\Phi},E_{\Phi},\mathcal{L}_{\Phi}) as follows.

  1. (1)

    VΦ=VV_{\Phi}=V;

  2. (2)

    for any distinct u,vVΦ=Vu,v\in V_{\Phi}=V, {u,v}EΦ\{u,v\}\in E_{\Phi} iff {u,v}e\{u,v\}\subseteq e for some eEe\in E;

  3. (3)

    for any vVΦ=Vv\in V_{\Phi}=V, its label Lv=(ϕe)eE,veL_{v}=(\phi_{e})_{e\in E,v\in e}.

Note that each constraint ϕe\phi_{e} appears in labels of all vev\in e, and the maximum degree of GΦG_{\Phi} is bounded by Δ(k1)d\Delta\leq(k-1)d for a (k,d)(k,d)-formula Φ\Phi.

Let 𝒢k,d\mathcal{G}_{k,d} denote the family of all such dependency graphs GΦG_{\Phi}, where Φ=(V,E,ϕ)\Phi=(V,E,\bm{\phi}) is a (k,d)(k,d)-formula, and all their induced subgraphs. Obviously, such 𝒢k,d\mathcal{G}_{k,d} is downward-closed.

Let G𝒢k,dG\in\mathcal{G}_{k,d}. Without loss of generality, suppose that G=GΦ[U]G=G_{\Phi}[U] is the subgraph of the dependency graph GΦG_{\Phi} induced by UVU\subseteq V, where Φ=(V,E,ϕ)\Phi=(V,E,\bm{\phi}) is a Boolean CSP.

We define

fG(λ)=σ{0,1}UeEeUϕeU(σ|Ue)λσ1,\displaystyle f_{G}(\lambda)=\sum_{\sigma\in\{0,1\}^{U}}\prod_{\begin{subarray}{c}e\in E\\ e\cap U\neq\varnothing\end{subarray}}\phi^{U}_{e}(\sigma|_{U\cap e})\lambda^{\left\|\sigma\right\|_{1}},

where ϕeU:Ue\phi^{U}_{e}:U\cap e\rightarrow\mathbb{C} is defined as that for any τ{0,1}Ue\tau\in\{0,1\}^{U\cap e},

ϕeU(τ)=ϕe(τ),\displaystyle\phi^{U}_{e}(\tau)=\phi_{e}(\tau^{*}),

where τ{0,1}e\tau^{*}\in\{0,1\}^{e} extends τ\tau and assigns all veUv\in e\setminus U with 0. It is easy to verify that such definition fGf_{G} uses only the information stored in the dependency graph GG, thus it is well defined. Meanwhile, it is also easy to verify that ff_{\cdot} is multiplicative and fG(λ)=ZΦ(λ)f_{G}(\lambda)=Z_{\Phi}(\lambda) if G=GΦG=G_{\Phi}.

For G=GΦ[U]G=G_{\Phi}[U] where Φ=(V,E,ϕ)\Phi=(V,E,\bm{\phi}) and UVU\subseteq V, define λG,\lambda_{G,\ell}, as

λG,={eEeUϕeU(𝟏Ue),|U|=0,o.w.\lambda_{G,\ell}=\begin{cases}\prod_{\begin{subarray}{c}e\in E\\ e\cap U\neq\varnothing\end{subarray}}\phi_{e}^{U}(\bm{1}_{U\cap e}),&\left|U\right|=\ell\\ 0,&o.w.\end{cases}

Each λG,\lambda_{G,\ell} can be determined in poly(k,d,)\mathrm{poly}(k,d,\ell) time.

Observe that,

fG(λ)\displaystyle f_{G}(\lambda) =1+=1|U|σ{0,1}Uσ1=eEeUϕeU(σ|Ue)λ\displaystyle=1+\sum_{\ell=1}^{\left|U\right|}\sum_{\begin{subarray}{c}\sigma\in\{0,1\}^{U}\\ \left\|\sigma\right\|_{1}=\ell\end{subarray}}\prod_{\begin{subarray}{c}e\in E\\ e\cap U\neq\varnothing\end{subarray}}\phi^{U}_{e}(\sigma|_{U\cap e})\lambda^{\ell}
=1+=1|U|SU|S|=eEeSϕeS(𝟏Se)λ\displaystyle=1+\sum_{\ell=1}^{\left|U\right|}\sum_{\begin{subarray}{c}S\subseteq U\\ \left|S\right|=\ell\end{subarray}}\prod_{\begin{subarray}{c}e\in E\\ e\cap S\neq\varnothing\end{subarray}}\phi^{S}_{e}(\bm{1}_{S\cap e})\lambda^{\ell}
=1+=1+(SUλG[S],)λ.\displaystyle=1+\sum_{\ell=1}^{+\infty}\left(\sum_{\begin{subarray}{c}S\subseteq U\end{subarray}}\lambda_{G[S],\ell}\right)\lambda^{\ell}.

Therefore, ff_{\cdot} is a (1,1)(1,1)-bounded on 𝒢k,d\mathcal{G}_{k,d}.

Applying Theorem 3.5, we immediately obtain the following corollary. Similar bound has been proved in [26], but here we only need to encode the problem using our framework.

Corollary 3.7.

Let Ω\Omega\subseteq\mathbb{C} be a γ\gamma-good region for γ1\gamma\geq 1. For any δ(0,1)\delta\in(0,1), there is a deterministic algorithm such that given any (k,d)(k,d)-formula Φ\Phi for Boolean CSP, provided that ZΦZ_{\Phi} is MM-zero-free on Ω\Omega, for any external field λΩδ\lambda\in\Omega_{\delta} and error bound ε(0,1)\varepsilon\in(0,1), the algorithm outputs an estimation of ZΦ(λ)Z_{\Phi}(\lambda) within ε\varepsilon-multiplicative error in O~(n(Mδε)C)\widetilde{O}\left(n\left(\frac{M}{\delta\varepsilon}\right)^{C}\right) time with C=1δln(8ekd(1+γ))C=\frac{1}{\delta}\ln\left(8\mathrm{e}kd(1+\gamma)\right).

Since such ZΦ(λ)Z_{\Phi}(\lambda) is a polynomial with finite degree, by 3.4 and Lemma 2.2, if Ω\Omega\subseteq\mathbb{C} is a convex region and ZΦZ_{\Phi} does not vanish on a slightly larger region Ω={(1+δ)zzΩ}\Omega^{\prime}=\{(1+\delta)z\mid z\in\Omega\} for some constant gap δ+\delta\in\mathbb{R}^{+}, then M=Oδ(n)M=O_{\delta}(n) and hence the algorithm in Corollary 3.7 runs in (nε)O(ln(kd)){\left(\frac{n}{\varepsilon}\right)^{O(\ln\left(kd\right))}} time.

3.4. A barrier to non-multiplicative functions

Our framework based on functions fGf_{G} induced by dependency graphs GG is fairly expressive. However, the current technique crucially relies on the multiplicative property of ff_{\cdot}. It would meet a barrier when dealing with systems lacking such multiplicative property.

We explain this using a concrete example. Consider the following generalization of  (1):

(8) β,ZH,H(β)𝐓𝐫[exp(βH+H)].\displaystyle\forall\beta\in\mathbb{C},\quad Z_{H,H^{\prime}}(\beta)\triangleq\mathbf{Tr}\left[\exp(-\beta H+H^{\prime})\right].

Here, HH and HH^{\prime} are two Hamiltonians in 𝒱\mathcal{V}. It encompasses the transverse Ising model and XXZ model. Unfortunately, this partition function fails to fit in our framework due to the lack of multiplicative property even when HH^{\prime} is a tensorized operator. For Hamiltonians H1,H2H_{1},H_{2} such that supp(H1)supp(H2)=\mathrm{supp}(H_{1})\cap\mathrm{supp}(H_{2})=\varnothing and a tensorized operator H=vVHvH^{\prime}=\bigotimes_{v\in V}H^{\prime}_{v}, the following equality fails to hold in general:

ZH1+H2,H(β)=1𝐓𝐫[exp(H)]ZH1,H(β)ZH2,H(β).\displaystyle Z_{H_{1}+H_{2},H^{\prime}}(\beta)=\frac{1}{\mathbf{Tr}\left[\exp(-H^{\prime})\right]}Z_{H_{1},H^{\prime}}(\beta)Z_{H_{2},H^{\prime}}(\beta).

For example, for β=1\beta=1, H1=I(1011)H_{1}=I\bigotimes\left(\begin{matrix}1&0\\ 1&1\\ \end{matrix}\right), H2=(1101)IH_{2}=\left(\begin{matrix}1&1\\ 0&1\\ \end{matrix}\right)\bigotimes I and H=(1002)(2001)H^{\prime}=\left(\begin{matrix}1&0\\ 0&2\end{matrix}\right)\bigotimes\left(\begin{matrix}2&0\\ 0&1\end{matrix}\right), it holds that

𝐓𝐫[exp(H)]0.6869,𝐓𝐫[exp(HiH)]0.2416,i{1,2} and 𝐓𝐫[exp(H1H2H)]0.1316.\displaystyle\mathbf{Tr}\left[\exp(-H^{\prime})\right]\approx 0.6869,\mathbf{Tr}\left[\exp(-H_{i}-H^{\prime})\right]\approx 0.2416,i\in\{1,2\}\text{ and }\mathbf{Tr}\left[\exp(-H_{1}-H_{2}-H^{\prime})\right]\approx 0.1316.

Hence, 𝐓𝐫[exp(H)]𝐓𝐫[exp(H1+H2+H)]0.09040\mathbf{Tr}\left[\exp(-H^{\prime})\right]\mathbf{Tr}\left[\exp(H_{1}+H_{2}+H^{\prime})\right]\approx 0.09040 and 𝐓𝐫[exp(H1H)]𝐓𝐫[exp(H2H)]0.05837\mathbf{Tr}\left[\exp(-H_{1}-H^{\prime})\right]\mathbf{Tr}\left[\exp(-H_{2}-H^{\prime})\right]\approx 0.05837. The main obstacle comes from the non-commutativity of Hamiltonians and it remains open to design a polynomial-time algorithm for such partition function assuming only zero-freeness.

4. Efficient Coefficient Computing

In this section we prove Theorem 3.2. First we need to establish the following lemma.

Lemma 4.1.

Let 𝒢\mathcal{G} be a downward-closed family of dependency graphs, and ff_{\cdot} be (α,β)(\alpha,\beta)-bounded on 𝒢\mathcal{G} for α,β1\alpha,\beta\geq 1. Recursively define the sequence (ζH,i)H𝒢,+(\zeta_{H,i})_{H\in\mathcal{G},\ell\in\mathbb{N}^{+}} of complex numbers as follows: for any H=(VH,EH,H)𝒢H=(V_{H},E_{H},\mathcal{L}_{H})\in\mathcal{G} and any +\ell\in\mathbb{N}^{+},

(9) ζH,=λH,s=11sS,TVHST=VHζH[S],sλH[T],s.\displaystyle\zeta_{H,\ell}=\lambda_{H,\ell}-\sum_{s=1}^{\ell-1}\frac{s}{\ell}\sum_{\begin{subarray}{c}S,T\subseteq V_{H}\\ S\cup T=V_{H}\end{subarray}}\zeta_{H[S],s}\lambda_{H[T],\ell-s}.

It holds that ζH,0\zeta_{H,\ell}\neq 0 only if HH is connected and |VH|α|V_{H}|\leq\alpha\ell. Moreover, for any G=(V,E,)𝒢G=(V,E,\mathcal{L})\in\mathcal{G},

(10) logfG(z)=logfG(0)+=1+(SVζG[S],)z.\displaystyle\log f_{G}(z)=\log f_{G}(0)+\sum_{\ell=1}^{+\infty}\left(\sum_{S\subseteq V}\zeta_{G[S],\ell}\right)z^{\ell}.

As in [29, 26], the following result of Borgs et al. [6] is used.

Fact 4.2 (Lemma 2.1 (c) in [6]).

Let G=(V,E)G=(V,E) be a graph with maximum degree Δ\Delta, vVv\in V be a vertice and 1\ell\in\mathbb{N}_{\geq 1}. Then the number of connected subgraphs of size \ell containing vv is at most (eΔ)12\frac{(\mathrm{e}\Delta)^{\ell-1}}{2}.

With this fact, we can enumerate all connected induced subgraphs G[S]G[S] of |S|\left|S\right|\leq\ell vertices efficiently.

Lemma 4.3.

There exists a deterministic algorithm which takes a dependency graph G=(V,E,)G=(V,E,\mathcal{L}) on n=|V|n=|V| vertices with maximum degree Δ\Delta and a positive integer +\ell\in\mathbb{N}^{+} as input, and outputs

(11) 𝒞={SV|S|,G[S] is connected},\displaystyle\mathcal{C}_{\leq\ell}=\{S\subseteq V\mid\left|S\right|\leq\ell,G[S]\text{ is connected}\},

in time O~(n(eΔ))\widetilde{O}(n(\mathrm{e}\Delta)^{\ell}), where O~()\widetilde{O}(\cdot) hides poly(Δ,,log(n))\mathrm{poly}(\Delta,\ell,\log(n)).

Proof.

Let 𝒞=v\mathcal{C}_{=\ell}^{v} denote the collection of such SVS\subseteq V containing vVv\in V that |S|=|S|=\ell and G[S]G[S] is connected. Clearly 𝒞=vVj𝒞=jv\mathcal{C}_{\leq\ell}=\bigcup_{\begin{subarray}{c}v\in V\\ j\leq\ell\end{subarray}}\mathcal{C}_{=j}^{v}. Now construct each 𝒞=v\mathcal{C}_{=\ell}^{v} inductively. When =1\ell=1, 𝒞=1v={{v}}\mathcal{C}_{=1}^{v}=\{\{v\}\}. For 2\ell\geq 2, we enumerate all S𝒞=1vS\in\mathcal{C}_{=\ell-1}^{v} and uVSu\in V\setminus S such that G[S{u}]G[S\cup\{u\}] is connected, and include S{u}S\cup\{u\} into 𝒞=v\mathcal{C}_{=\ell}^{v}. It is easy to see that this correctly constructs 𝒞=v\mathcal{C}_{=\ell}^{v}. By 4.2, |𝒞=v|(eΔ)1/2\left|\mathcal{C}^{v}_{=\ell}\right|\leq(\mathrm{e}\Delta)^{\ell-1}/2. Representing each set SS as a string of vertices in SS sorted in increasing order of vertices, the set 𝒞=v\mathcal{C}^{v}_{=\ell} can be stored by a standard dynamic data structure such as prefix trees, so that it takes O(Δ(eΔ)1)O(\Delta\ell(\mathrm{e}\Delta)^{\ell-1}) time to iterate over all (S,u)𝒞=1v×V(S,u)\in\mathcal{C}_{=\ell-1}^{v}\times V such that G[S{u}]G[S\cup\{u\}] may be connected, and for each such (S,u)(S,u) pair it takes poly(Δ,,logn)\mathrm{poly}(\Delta,\ell,\log n) time to check weather G[S{u}]G[S\cup\{u\}] is connected or S{u}S\cup\{u\} is already in 𝒞=v\mathcal{C}_{=\ell}^{v}, and insert SS into 𝒞=v\mathcal{C}_{=\ell}^{v} if necessary. Overall, it takes O~(n(eΔ))\widetilde{O}(n(\mathrm{e}\Delta)^{\ell}) time to construct 𝒞\mathcal{C}_{\leq\ell}. ∎

Combining the above algorithm with (9), we can compute coefficients ζH,\zeta_{H,\ell} for logfG\log f_{G} efficiently.

Lemma 4.4.

Let 𝒢\mathcal{G} be a downward-closed family of dependency graphs, and ff_{\cdot} be (α,β)(\alpha,\beta)-bounded on 𝒢\mathcal{G} for α,β1\alpha,\beta\geq 1. There exists a deterministic algorithm which takes a dependency graph G=(V,E,)𝒢G=(V,E,\mathcal{L})\in\mathcal{G} on n=|V|n=|V| vertices with maximum degree Δ\Delta and a positive integer +\ell\in\mathbb{N}^{+} as input, and outputs (ζG[S],)S𝒞α(\zeta_{G[S],\ell})_{S\in\mathcal{C}_{\leq\alpha\ell}} within O~(n(8eβΔ)α)\widetilde{O}\left(n(8\mathrm{e}\beta\Delta)^{\alpha\ell}\right) time, where 𝒞α\mathcal{C}_{\leq\alpha\ell} is defined in Eq. (11).

The lemma follows by first enumerating all S𝒞αS\in\mathcal{C}_{\leq\alpha\ell}, which takes O~(n(eΔ)α)\widetilde{O}\left(n(\mathrm{e}\Delta)^{\alpha\ell}\right) time according to Lemma 4.3, and second for every S𝒞αS\in\mathcal{C}_{\leq\alpha\ell}, taking H=G[S]H=G[S] and computing ζH,\zeta_{H,\ell} using a dynamic programming given by Eq. (9), which takes O~(8αβ)\widetilde{O}(8^{\alpha\ell}\beta^{\ell}) time.

Let logfG(z)=logfG(0)+=1+gG,z\log f_{G}(z)=\log f_{G}(0)+\sum_{\ell=1}^{+\infty}g_{G,\ell}z^{\ell}. Due to Lemma 4.1, ζG[S],=0\zeta_{G[S],\ell}=0 if G[S]G[S] is disconnected or |S|>α|S|>\alpha\ell, thus due to Eq. (9), the \ell-th Taylor coefficient of logfG\log f_{G} is given by

gG,=SVζG[S],=S𝒞αζG[S],.g_{G,\ell}=\sum_{S\subseteq V}\zeta_{G[S],\ell}=\sum_{S\in\mathcal{C}_{\leq\alpha\ell}}\zeta_{G[S],\ell}.

Therefore, Theorem 3.2 is proved. It only remains to prove Lemma 4.1.

Proof of Lemma 4.1.

Fix an arbitrary G𝒢G\in\mathcal{G}, and consider fGf_{G}. Let logfG=logfG(0)+=1+gG,z\log f_{G}=\log f_{G}(0)+\sum_{\ell=1}^{+\infty}g_{G,\ell}z^{\ell} denote the Taylor’s expansion of logfG\log f_{G} at the origin, and fG(z)=fG(0)+=1+fG,zf_{G}(z)=f_{G}(0)+\sum_{\ell=1}^{+\infty}f_{G,\ell}z^{\ell} denote the Taylor’s expansion of fGf_{G} at the origin. We prove by induction on 1\ell\geq 1 that

(12) gG,=SVζG[S],,\displaystyle g_{G,\ell}=\sum_{S\subseteq V}\zeta_{G[S],\ell},

which implies (10).

For the induction basis, when =1\ell=1, by Lemma 2.4 we have gG,1=fG,1g_{G,1}=f_{G,1}. by the definition of bounded graph function in Definition 3.1, fG,1=SVλG[S],1f_{G,1}=\sum_{S\subseteq V}\lambda_{G[S],1}; and it follows from  (9) that λG[S],1=ζG[S],1\lambda_{G[S],1}=\zeta_{G[S],1}. Altogether, we have

gG,1=fG,1=SVλG[S],1=SVζG[S],1.\displaystyle g_{G,1}=f_{G,1}=\sum_{S\subseteq V}\lambda_{G[S],1}=\sum_{S\subseteq V}\zeta_{G[S],1}.

Now suppose that the induction hypothesis (12) holds for all <\ell^{\prime}<\ell. We have

SVζG[S],\displaystyle\sum_{S\subseteq V}\zeta_{G[S],\ell} =SV(λG[S],s=11sL,RVLR=SζG[L],sλG[R],s)\displaystyle=\sum_{S\subseteq V}\left(\lambda_{G[S],\ell}-\sum_{s=1}^{\ell-1}\frac{s}{\ell}\sum_{\begin{subarray}{c}L,R\subseteq V\\ L\cup R=S\end{subarray}}\zeta_{G[L],s}\cdot\lambda_{G[R],\ell-s}\right)
=SVλG[S],s=11s(LVζG[L],s)(RVλG[R],s)\displaystyle=\sum_{S\subseteq V}\lambda_{G[S],\ell}-\sum_{s=1}^{\ell-1}\frac{s}{\ell}\left(\sum_{L\subseteq V}\zeta_{G[L],s}\right)\left(\sum_{R\subseteq V}\lambda_{G[R],\ell-s}\right)
=fG,s=11sgG,sfG,s\displaystyle=f_{G,\ell}-\sum_{s=1}^{\ell-1}\frac{s}{\ell}g_{G,s}f_{G,\ell-s} (Induction Hypothesis)
=gG,.\displaystyle=g_{G,\ell}. (Lemma 2.4)

This finishes the inductive proof of (12).

Next, we prove that ζH,=0\zeta_{H,\ell}=0 if H=(VH,EH,H)𝒢H=(V_{H},E_{H},\mathcal{L}_{H})\in\mathcal{G} is disconnected or |VH|>α\left|V_{H}\right|>\alpha\ell. Recall that ff_{\cdot} is (α,β)(\alpha,\beta)-bounded, we have λH,=0\lambda_{H,\ell}=0 for |VH|>α\left|V_{H}\right|>\alpha\ell. Then the fact that ζH,=0\zeta_{H,\ell}=0 for |VH|>α\left|V_{H}\right|>\alpha\ell can be verified by induction on 1\ell\geq 1. Specifically, by Eq. (9),

ζH,=λH,s=11sS,TVHST=VHζH[S],sλH[T],s.\zeta_{H,\ell}=\lambda_{H,\ell}-\sum_{s=1}^{\ell-1}\frac{s}{\ell}\sum_{\begin{subarray}{c}S,T\subseteq V_{H}\\ S\cup T=V_{H}\end{subarray}}\zeta_{H[S],s}\lambda_{H[T],\ell-s}.

For the basis, ζH,1=λH,1=0\zeta_{H,1}=\lambda_{H,1}=0 when |VH|>α|V_{H}|>\alpha. In general, observe that assuming |VH|>α\left|V_{H}\right|>\alpha\ell, for any ST=VHS\cup T=V_{H}, it must hold that either |S|>αs|S|>\alpha s or |T|>α(s)|T|>\alpha(\ell-s). Therefore, assuming |VH|>α\left|V_{H}\right|>\alpha\ell, ζH,=0\zeta_{H,\ell}=0 follows from the induction hypothesis.

Finally, it remains to verify that ζH,=0\zeta_{H,\ell}=0 if HH is disconnected, which follows from the multiplicative property of ff_{\cdot}. By contradiction, assume that ζH,0\zeta_{H,\ell}\neq 0 for some disconnected H𝒢H\in\mathcal{G}. Let SVHS^{*}\subseteq V_{H} be a minimal subset of VV such that H[S]H[S^{*}] is disconnected and ζH[S],0\zeta_{H[S^{*}],\ell}\neq 0. Since H[S]H[S^{*}] is disconnected, there exist nonempty L,RSL,R\subseteq S^{*} such that LR=SL\cup R=S^{*} and L,RL,R are disconnected in H[S]H[S^{*}]. Due to the multiplicative property of ff_{\cdot}, we have fG[S]=fG[L]fG[R]f_{G[S^{*}]}=f_{G[L]}\cdot f_{G[R]}. Therefore,

(13) gG[S],=gG[L],+gG[R],=SLζG[S],+SRζG[S],,\displaystyle g_{G[S^{*}],\ell}=g_{G[L],\ell}+g_{G[R],\ell}=\sum_{S\subseteq L}\zeta_{G[S],\ell}+\sum_{S\subseteq R}\zeta_{G[S],\ell},

where the first equation can be formally verified for any disjoint dependency graphs G1,G2𝒢G_{1},G_{2}\in\mathcal{G} and any zz in the neighborhood of the origin, such that for an arbitrary path PP in Ω\Omega connecting zz and the origin,

logfG1G2(z)\displaystyle\log f_{G_{1}\cup G_{2}}(z) =logfG1G2(0)+PfG1G2(z)fG1G2(z)𝑑z\displaystyle=\log f_{G_{1}\cup G_{2}}(0)+\int_{P}\frac{f^{\prime}_{G_{1}\cup G_{2}}(z)}{f_{G_{1}\cup G_{2}}(z)}\,dz\
=logfG1(0)+logfG2(0)+P(fG1(z)fG1(z)+fG2(z)fG2(z))𝑑z\displaystyle=\log f_{G_{1}}(0)+\log f_{G_{2}}(0)+\int_{P}\left(\frac{f^{\prime}_{G_{1}}(z)}{f_{G_{1}}(z)}+\frac{f^{\prime}_{G_{2}}(z)}{f_{G_{2}}(z)}\right)\,dz\
=logfG1(z)+logfG2(z).\displaystyle=\log f_{G_{1}}(z)+\log f_{G_{2}}(z).

On the other hand,

(14) gG[S],=SSζG[S],=ζG[S],+SSζG[S],=ζG[S],+SLζG[S],+SRζG[S],,\displaystyle g_{G[S^{*}],\ell}=\sum_{S\subseteq S^{*}}\zeta_{G[S],\ell}=\zeta_{G[S^{*}],\ell}+\sum_{S\subset S^{*}}\zeta_{G[S],\ell}=\zeta_{G[S^{*}],\ell}+\sum_{S\subseteq L}\zeta_{G[S],\ell}+\sum_{S\subseteq R}\zeta_{G[S],\ell},

where the last equation is due to the minimality of SS^{*}. Combining (13) and (14), we have ζG[S],=0\zeta_{G[S^{*}],\ell}=0, a contradiction. ∎

5. Applications

In this section, we prove that any zero-free partition function of local Hamiltonians with bounded maximum degree is polynomial-time approximable if the temperature is close enough to 0. This is formally stated by the following theorem. Recall the definition of the partition function ZH,𝒪Z_{H,\mathcal{O}} induced by Hamiltonian HH under measurement 𝒪\mathcal{O} in (5).

Theorem 5.1.

Let k,d+k,d\in\mathbb{N}^{+}, h>0h>0, δ(0,1)\delta\in(0,1) and β0=15kdh\beta_{0}=\frac{1}{5kdh}. There is a deterministic algorithm such that given any (k,d)(k,d)-Hamiltonian H=j=1mHjH=\sum_{j=1}^{m}H_{j} on nn sites satisfying Hjh\left\|H_{j}\right\|\leq h and tensorized measurement 𝒪\mathcal{O}, for any temperature β𝔻(1δ)β0\beta\in\mathbb{D}_{(1-\delta)\beta_{0}} and error bound ε(0,1)\varepsilon\in(0,1), the algorithm outputs an estimation of ZH,𝒪(β)Z_{H,\mathcal{O}}(\beta) within ε\varepsilon-multiplicative error in O~((nδε)C)\widetilde{O}\left(\left(\frac{n}{\delta\varepsilon}\right)^{C}\right) time with C=1δ(ln8ed+3klnq)+1C=\frac{1}{\delta}\left(\ln 8\mathrm{e}d+3k\ln q\right)+1.

It was established in [18] that the partition function exhibits zero-freeness property when the inverse temperature β\beta is close to the 0. Similarly, we have the following lemma.

Lemma 5.2.

Let h+h\in\mathbb{R}^{+}, H=j=1mHjH=\sum_{j=1}^{m}H_{j} be a (k,d)(k,d)-Hamiltonian on nn sites, and 𝒪\mathcal{O} be a tensorized measurement. If |Hj|h\left|H_{j}\right|\leq h for all 1jm1\leq j\leq m, then for any β𝔻β0\beta\in\mathbb{D}_{\beta_{0}} where β0=15edkh\beta_{0}=\frac{1}{5edkh}, it holds that

|logZH,𝒪(β)𝐓𝐫[𝒪]|n.\displaystyle\left|\log\frac{Z_{H,\mathcal{O}}(\beta)}{\mathbf{Tr}[\mathcal{O}]}\right|\leq n.

Theorem 5.1 follows directly from Lemma 5.2 and Theorem 3.6.

Besides estimation of partition function, another related important computational problem is to sample according to the Gibbs state.

The quantum Gibbs state specified by Hamiltonian H𝒱H\in\mathcal{V} and inverse temperature β+\beta\in\mathbb{R}^{+} is:

ρH(β)=exp(βH)ZH(β).\displaystyle\rho_{H}(\beta)=\frac{\exp(-\beta H)}{Z_{H}(\beta)}.

The classical distribution μH,β\mu_{H,\beta} over [q]V[q]^{V} is the quantum Gibbs state ρH(β)\rho_{H}(\beta) after measurement in the computational basis, i.e.

σ[q]V,μH,β(σ)=ZH,𝒪σ(β)ZH(β),\displaystyle\forall\sigma\in[q]^{V},\quad\mu_{H,\beta}(\sigma)=\frac{Z_{H,\mathcal{O}_{\sigma}}(\beta)}{Z_{H}(\beta)},

where 𝒪σ=|σσ|\mathcal{O}_{\sigma}=\lvert\sigma\rangle\langle\sigma\rvert. Note that μH,β\mu_{H,\beta} is a well-defined distribution over [q]V[q]^{V}. To see this, first note that σ𝒪σ=I\sum_{\sigma}\mathcal{O}_{\sigma}=I is the identity matrix in 𝒱\mathcal{V}, and hence σZH,𝒪σ(β)=ZH(β)\sum_{\sigma}Z_{H,\mathcal{O}_{\sigma}}(\beta)=Z_{H}(\beta); and second, both 𝒪σ\mathcal{O}_{\sigma} and exp(βH)\exp(\beta H) are positive semidefinite since HH is Hermitian and β+\beta\in\mathbb{R}^{+}, and hence ZH,𝒪σ(β)=𝐓𝐫[exp(βH)𝒪σ]0Z_{H,\mathcal{O}_{\sigma}}(\beta)=\mathbf{Tr}\left[\exp(\beta H)\mathcal{O}_{\sigma}\right]\geq 0.

In the same regime as Theorem 5.1, we have a polynomial-time approximate sampler from μH,β\mu_{H,\beta}, the classical distribution obtained after measurement of the quantum Gibbs state in the computational basis.

Theorem 5.3.

Let k,d+k,d\in\mathbb{N}^{+}, h>0h>0, δ(0,1)\delta\in(0,1) and β0=15kdh\beta_{0}=\frac{1}{5kdh}. There is a randomized algorithm such that given any (k,d)(k,d)-Hamiltonian H=j=1mHjH=\sum_{j=1}^{m}H_{j} on nn sites satisfying Hjh\left\|H_{j}\right\|\leq h, for any temperature β𝔻(1δ)β0\beta\in\mathbb{D}_{(1-\delta)\beta_{0}} and error bound ε(0,1)\varepsilon\in(0,1), the algorithm outputs an approximate sample σ[q]V\sigma\in[q]^{V} within ε\varepsilon total variation distance from the distribution μH,β\mu_{H,\beta}, in O~((nδε)C)\widetilde{O}\left(\left(\frac{n}{\delta\varepsilon}\right)^{C}\right) time with C=1δ(2log8ed+6klogq)+3C=\frac{1}{\delta}\left(2\log 8\mathrm{e}d+6k\log q\right)+3.

Proof.

We leverage the algorithm in Theorem 5.1 as a subroutine, and give the following classical algorithm for approximate sampling from μH,β\mu_{H,\beta}.

Without loss of generality, we may assume that V=[n]V=[n]. Let j=|jj|\mathcal{M}_{j}=\lvert j\rangle\langle j\rvert for 1jq1\leq j\leq q, and v,j=(=1v1I)j(=v+1nI)\mathcal{M}_{v,j}=\left(\bigotimes_{\ell=1}^{v-1}I\right)\otimes\mathcal{M}_{j}\otimes\left(\bigotimes_{\ell=v+1}^{n}I\right). Our procedure for sampling σ[q]V\sigma\in[q]^{V} is as follows.

  1. (1)

    Initialize 𝒪\mathcal{O} with the identity operator on Hilbert space \mathcal{H};

  2. (2)

    Iterate vv from 11 to nn;

  3. (3)

    For each jj from 11 to nn, estimate zv,j=ZH,𝒪v1v,j(β)z_{v,j}=Z_{H,\mathcal{O}_{v-1}\mathcal{M}_{v,j}}(\beta) within ε0=ε10n\varepsilon_{0}=\frac{\varepsilon}{10n}-multiplicative error.

  4. (4)

    samples j[q]j\in[q] proportional to z~v,j\tilde{z}_{v,j}, the estimation of zv,jz_{v,j}, updates 𝒪\mathcal{O} with 𝒪v,j\mathcal{O}\mathcal{M}_{v,j}, and assigns σ(v)\sigma(v) with jj.

Note that 𝒪\mathcal{O} is a tensorized measurement during the process. Hence, Theorem 5.1 guarantees an estimation of zv,jz_{v,j} within ε0\varepsilon_{0}-multiplicative error in O~((nεδ)C)\widetilde{O}(\left(\frac{n}{\varepsilon\delta}\right)^{C}) time with C=1δ(2log8ed+6klogq)+2C=\frac{1}{\delta}\left(2\log 8\mathrm{e}d+6k\log q\right)+2. Furthermore, note that for each configuration σ[q]V\sigma\in[q]^{V},

𝐏𝐫[σ is generated]μH,𝒪(σ)=v=1nzv,σ(v)j[q]zv,jj=1qz~v,jz~v,σ(v),\displaystyle\frac{\mathbf{Pr}[\sigma\text{ is generated}]}{\mu_{H,\mathcal{O}}(\sigma)}=\prod_{v=1}^{n}\frac{z_{v,\sigma(v)}}{\sum_{j\in[q]}z_{v,j}}\frac{\sum_{j=1}^{q}\tilde{z}_{v,j}}{\tilde{z}_{v,\sigma(v)}},

and for each vVv\in V and j[q]j\in[q],

1ε0z~v,jzv,j1+ε0.\displaystyle 1-\varepsilon_{0}\leq\frac{\tilde{z}_{v,j}}{z_{v,j}}\leq 1+\varepsilon_{0}.

Hence,

1ε<()(1ε1+ε)n𝐏𝐫[σ is generated]μH,𝒪(σ)(1+ε01ε0)n<()1+ε,\displaystyle 1-\varepsilon\overset{(*)}{<}\left(\frac{1-\varepsilon}{1+\varepsilon}\right)^{n}\leq\frac{\mathbf{Pr}[\sigma\text{ is generated}]}{\mu_{H,\mathcal{O}}(\sigma)}\leq\left(\frac{1+\varepsilon_{0}}{1-\varepsilon_{0}}\right)^{n}\overset{(\star)}{<}1+\varepsilon,

where ()(\star) follows from (1+ε01ε0)(1+3ε0)n<exp(310ε)<1+ε\left(\frac{1+\varepsilon_{0}}{1-\varepsilon_{0}}\right)\leq(1+3\varepsilon_{0})^{n}<\exp(\frac{3}{10}\varepsilon)<1+\varepsilon, and ()(*) follows from ()(\star) and 11+ε>1ε\frac{1}{1+\varepsilon}>1-\varepsilon. Therefore, the total varaince distance between μH,𝒪\mu_{H,\mathcal{O}} and the output from our sampler will differ at most ε\varepsilon.

We conclude the proof by observing that our algorithm calls the subrountine O(nq)O(nq) times with parameter ε0=ε10n\varepsilon_{0}=\frac{\varepsilon}{10n}, which takes O~((nε)C)\widetilde{O}\left(\left(\frac{n}{\varepsilon}\right)^{C}\right) time with C=1δ(2log8ed+6klogq)+3C=\frac{1}{\delta}\left(2\log 8\mathrm{e}d+6k\log q\right)+3 in total. ∎

5.1. Proof of Lemma 5.2

We now give a proof of Lemma 5.2. This result extends the zero-freeness result proved in [18] to the case that allows tensorized measurement. We will see that the same inductive proof based on cluster expansion works for this more general case.

Let H=i=1mHiH=\sum_{i=1}^{m}H_{i} be a (k,d)(k,d)-Hamiltonian, 𝒪=vV𝒪v\mathcal{O}=\bigotimes_{v\in V}\mathcal{O}_{v} be a tensorized measurement, and XVX\subseteq V be an arbitrary subset.

Define HXH_{X} the Hamiltonian HH restricted on XX as

HX=i[m]supp(Hi)XHi,\displaystyle H_{X}=\sum_{\begin{subarray}{c}i\in[m]\\ \mathrm{supp}(H_{i})\subseteq X\end{subarray}}H_{i},

and define the partition function ZH,𝒪Z_{H,\mathcal{O}} restricted on XX as

ZH,𝒪X(β)=𝐓𝐫X[exp(βHX)𝒪X],\displaystyle Z^{X}_{H,\mathcal{O}}(\beta)=\mathbf{Tr}_{X}[\exp(-\beta H_{X})\mathcal{O}_{X}],

where OX=vX𝒪vO_{X}=\bigotimes_{v\in X}\mathcal{O}_{v}. And ZH,𝒪=1Z^{\varnothing}_{H,\mathcal{O}}=1. Here the subscript XX in 𝐓𝐫X\mathbf{Tr}_{X} indicates that the operators act on the sites in XX.

Moreover, recall the dependency graph GH=(U,E,)G_{H}=(U,E,\mathcal{L}) defined in the proof of Theorem 3.6:

  1. (1)

    U=[m]U=[m];

  2. (2)

    E={(x,y)U×Uxy,supp(Hx)supp(Hy)}E=\{(x,y)\in U\times U\mid x\neq y,\mathrm{supp}(H_{x})\cap\mathrm{supp}(H_{y})\neq\varnothing\};

  3. (3)

    Lx=HxL_{x}=H_{x} for any xUx\in U.

We are now ready to introduce the cluster expansions of partition functions. The following lemma was an extension of [18, Lemma 26] with tensorized measurement 𝒪\mathcal{O}.

Lemma 5.4 (high temperature expansion [18]).

Let h+h\in\mathbb{R}^{+}, H=i=1mHiH=\sum_{i=1}^{m}H_{i} be a (k,d)(k,d)-Hamiltonian, and 𝒪\mathcal{O} be a tensorized measurement. If Hih\left\|H_{i}\right\|\leq h, then the following holds for all ΛV\Lambda\subseteq V, xΛx\in\Lambda and β𝔻β0\beta\in\mathbb{D}_{\beta_{0}}.

ZH,𝒪Λ(β)=𝐓𝐫[𝒪x]ZH,𝒪Λ{x}(β)+S[m]jS,xsupp(Hj)GH[S] is connectedWS(β)ZH,𝒪ΛRS(β),\displaystyle Z^{\Lambda}_{H,\mathcal{O}}(\beta)=\mathbf{Tr}[\mathcal{O}_{x}]Z^{\Lambda\setminus\{x\}}_{H,\mathcal{O}}(\beta)+\sum_{\begin{subarray}{c}S\subseteq[m]\\ \exists j\in S,x\in\mathrm{supp}(H_{j})\\ G_{H}[S]\text{ is connected}\end{subarray}}W_{S}(\beta)Z^{\Lambda\setminus R_{S}}_{H,\mathcal{O}}(\beta),

where

WS(β)\displaystyle W_{S}(\beta) =l=|S|+(β)ll!(i1,i2,,il)Slj=1l{ij}=S𝐓𝐫RS[j=1lHij𝒪RS],\displaystyle=\sum_{l=\left|S\right|}^{+\infty}\frac{(-\beta)^{l}}{l!}\sum_{\begin{subarray}{c}(i_{1},i_{2},\ldots,i_{l})\in S^{l}\\ \cup_{j=1}^{l}\{i_{j}\}=S\end{subarray}}\mathbf{Tr}_{R_{S}}\left[\prod_{j=1}^{l}H_{i_{j}}\mathcal{O}_{R_{S}}\right],
RS\displaystyle R_{S} =jSsupp(Hj),\displaystyle=\bigcup_{j\in S}\mathrm{supp}(H_{j}),
β0\displaystyle\beta_{0} =1e(e1)dh.\displaystyle=\frac{1}{\mathrm{e}(\mathrm{e}-1)dh}.
Proof.

Without lose of generality, we assume that Λ=V\Lambda=V. Directly from the definition, we have

ZH,𝒪(β)\displaystyle Z_{H,\mathcal{O}}(\beta) =𝐓𝐫V[=0+(β)!(j=1mHj)𝒪]\displaystyle=\mathbf{Tr}_{V}\left[\sum_{\ell=0}^{+\infty}\frac{(-\beta)^{\ell}}{\ell!}\left(\sum_{j=1}^{m}H_{j}\right)^{\ell}\mathcal{O}\right]
=()=0+(β)!𝐓𝐫V[HV{x}𝒪+(i1,i2,,i)[m]j[],xsupp(Hij)j=1Hij𝒪]\displaystyle\overset{(\star)}{=}\sum_{\ell=0}^{+\infty}\frac{(-\beta)^{\ell}}{\ell!}\mathbf{Tr}_{V}\left[H_{V\setminus\{x\}}^{\ell}\mathcal{O}+\sum_{\begin{subarray}{c}(i_{1},i_{2},\ldots,i_{\ell})\in[m]^{\ell}\\ \exists j\in[\ell],x\in\mathrm{supp}(H_{i_{j}})\end{subarray}}\prod_{j=1}^{\ell}H_{i_{j}}\mathcal{O}\right]
=𝐓𝐫[𝒪x]ZH,𝒪V{x}(β)+=0+(i1,i2,,i)[m]j[],xsupp(Hij)(β)!𝐓𝐫V[j=1Hij𝒪],\displaystyle=\mathbf{Tr}[\mathcal{O}_{x}]Z^{V\setminus\{x\}}_{H,\mathcal{O}}(\beta)+\sum_{\ell=0}^{+\infty}\sum_{\begin{subarray}{c}(i_{1},i_{2},\ldots,i_{\ell})\in[m]^{\ell}\\ \exists j\in[\ell],x\in\mathrm{supp}(H_{i_{j}})\end{subarray}}\frac{(-\beta)^{\ell}}{\ell!}\mathbf{Tr}_{V}\left[\prod_{j=1}^{\ell}H_{i_{j}}\mathcal{O}\right],

where ()(\star) follows from the fact that H=HV{x}+j[m]xsupp(Hj)HjH=H_{V\setminus\{x\}}+\sum_{\begin{subarray}{c}j\in[m]\\ x\in\mathrm{supp}(H_{j})\end{subarray}}H_{j}.

For each \ell-tuple 𝒊=(i1,i2,,i)\bm{i}=(i_{1},i_{2},\ldots,i_{\ell}) satisfying that there exists j[]j^{*}\in[\ell] such that xsupp(Hij)x\in\mathrm{supp}(H_{i_{j^{*}}}), let S𝒊{i1,i2,,i}S_{\bm{i}}\subseteq\{i_{1},i_{2},\ldots,i_{\ell}\} be the minimum subset such that ijS𝒊i_{j^{*}}\in S_{\bm{i}} and (jS𝒊supp(Hj))(j{i1,i2,,i}S𝒊supp(Hj))=\left(\bigcup_{j\in S_{\bm{i}}}\mathrm{supp}(H_{j})\right)\cap\left(\bigcup_{j\in\{i_{1},i_{2},\ldots,i_{\ell}\}\setminus S_{\bm{i}}}\mathrm{supp}(H_{j})\right)=\varnothing. Note that

(j=1Hij)𝒪=(1jijS𝒊Hij)𝒪RS(1jijS𝒊Hij)𝒪VRS,\displaystyle\left(\prod_{j=1}^{\ell}H_{i_{j}}\right)\mathcal{O}=\left(\prod_{\begin{subarray}{c}1\leq j\leq\ell\\ i_{j}\in S_{\bm{i}}\end{subarray}}H_{i_{j}}\right)\mathcal{O}_{R_{S}}\left(\prod_{\begin{subarray}{c}1\leq j\leq\ell\\ i_{j}\not\in S_{\bm{i}}\end{subarray}}H_{i_{j}}\right)\mathcal{O}_{V\setminus R_{S}},

where RS=jSsupp(Hj)R_{S}=\bigcup_{j\in S}\mathrm{supp}(H_{j}).

Therefore,

=0+(i1,i2,,i)[m]j[],xsupp(Hij)(β)!𝐓𝐫V[j=1Hij𝒪]\displaystyle\sum_{\ell=0}^{+\infty}\sum_{\begin{subarray}{c}(i_{1},i_{2},\ldots,i_{\ell})\in[m]^{\ell}\\ \exists j\in[\ell],x\in\mathrm{supp}(H_{i_{j}})\end{subarray}}\frac{(-\beta)^{\ell}}{\ell!}\mathbf{Tr}_{V}\left[\prod_{j=1}^{\ell}H_{i_{j}}\mathcal{O}\right]
=S[m]jS,xsupp(Hj)=0+𝒊=(i1,i2,,ik)[m]kS=S𝒊(β)!𝐓𝐫V[j=1Hij𝒪]\displaystyle=\sum_{\begin{subarray}{c}S\subseteq[m]\\ \exists j\in S,x\in\mathrm{supp}(H_{j})\end{subarray}}\sum_{\ell=0}^{+\infty}\sum_{\begin{subarray}{c}\bm{i}=(i_{1},i_{2},\ldots,i_{k})\in[m]^{k}\\ S=S_{\bm{i}}\end{subarray}}\frac{(-\beta)^{\ell}}{\ell!}\mathbf{Tr}_{V}\left[\prod_{j=1}^{\ell}H_{i_{j}}\mathcal{O}\right]
=S[m]iS,xsupp(Hi)GH[S] is connectedl=|S|+r=0+(β)l+rl!r!((i1,i2,,il)Slj=1l{ij}=S𝐓𝐫RS[j=1lHij𝒪RS])((i1,i2,,ir)[m]lsupp(Hil)VRS𝐓𝐫VRS[j=1rHij𝒪VRS])\displaystyle=\sum_{\begin{subarray}{c}S\subseteq[m]\\ \exists i\in S,x\in\mathrm{supp}(H_{i})\\ G_{H}[S]\text{ is connected}\end{subarray}}\sum_{l=\left|S\right|}^{+\infty}\sum_{r=0}^{+\infty}\frac{(-\beta)^{l+r}}{l!r!}\left(\sum_{\begin{subarray}{c}(i_{1},i_{2},\ldots,i_{l})\in S^{l}\\ \cup_{j=1}^{l}\{i_{j}\}=S\end{subarray}}\mathbf{Tr}_{R_{S}}\left[\prod_{j=1}^{l}H_{i_{j}}\mathcal{O}_{R_{S}}\right]\right)\left(\sum_{\begin{subarray}{c}(i_{1},i_{2},\ldots,i_{r})\in[m]^{l}\\ \mathrm{supp}(H_{i_{l}})\subseteq V\setminus R_{S}\end{subarray}}\mathbf{Tr}_{V\setminus R_{S}}\left[\prod_{j=1}^{r}H_{i_{j}}\mathcal{O}_{V\setminus R_{S}}\right]\right)
=S[m]jS,xsupp(Hj)GH[S] is connected(l=|S|+(β)ll!(i1,i2,,il)Slj=1l{ij}=S𝐓𝐫RS[j=1lHij𝒪RS])ZH,𝒪VR(β)\displaystyle=\sum_{\begin{subarray}{c}S\subseteq[m]\\ \exists j\in S,x\in\mathrm{supp}(H_{j})\\ G_{H}[S]\text{ is connected}\end{subarray}}\left(\sum_{l=\left|S\right|}^{+\infty}\frac{(-\beta)^{l}}{l!}\sum_{\begin{subarray}{c}(i_{1},i_{2},\ldots,i_{l})\in S^{l}\\ \cup_{j=1}^{l}\{i_{j}\}=S\end{subarray}}\mathbf{Tr}_{R_{S}}\left[\prod_{j=1}^{l}H_{i_{j}}\mathcal{O}_{R_{S}}\right]\right)Z^{V\setminus R}_{H,\mathcal{O}}(\beta)
=S[m]jS,xsupp(Hj)GH[S] is connectedWS(β)ZH,𝒪VRS(β),\displaystyle=\sum_{\begin{subarray}{c}S\subseteq[m]\\ \exists j\in S,x\in\mathrm{supp}(H_{j})\\ G_{H}[S]\text{ is connected}\end{subarray}}W_{S}(\beta)Z^{V\setminus R_{S}}_{H,\mathcal{O}}(\beta),

where these identities hold by Fubini’s theorem assuming that the summation converges absolutely. Hence, it remains to verify that S[m]jS,xsupp(Hj)GH[S] is connected|WS(β)ZH,𝒪VR(β)|<+\sum_{\begin{subarray}{c}S\subseteq[m]\\ \exists j\in S,x\in\mathrm{supp}(H_{j})\\ G_{H}[S]\text{ is connected}\end{subarray}}\left|W_{S}(\beta)Z^{V\setminus R}_{H,\mathcal{O}}(\beta)\right|<+\infty.

Note that

|WS(β)|\displaystyle\left|W_{S}(\beta)\right| l=|S|+|β|ll!(i1,i2,,il)Slj=1l{ij}=S𝐓𝐫RS[|j=1lHij𝒪RS|]\displaystyle\leq\sum_{l=\left|S\right|}^{+\infty}\frac{\left|\beta\right|^{l}}{l!}\sum_{\begin{subarray}{c}(i_{1},i_{2},\ldots,i_{l})\in S^{l}\\ \cup_{j=1}^{l}\{i_{j}\}=S\end{subarray}}\mathbf{Tr}_{R_{S}}\left[\left|\prod_{j=1}^{l}H_{i_{j}}\mathcal{O}_{R_{S}}\right|\right]
𝐓𝐫RS[𝒪RS]l=|S|+(|β|h)ll!|{(i1,i2,,il)Slj=1l{ij}=S}|\displaystyle\leq\mathbf{Tr}_{R_{S}}[\mathcal{O}_{R_{S}}]\sum_{l=\left|S\right|}^{+\infty}\frac{(\left|\beta\right|h)^{l}}{l!}\left|\{(i_{1},i_{2},\ldots,i_{l})\in S^{l}\mid\cup_{j=1}^{l}\{i_{j}\}=S\}\right|
=𝐓𝐫RS[𝒪RS]l=|S|+(|β|h)ll!j1,j2,,j|S|1j1+j2++j|S|=ll!j1!j2!j|S|!\displaystyle=\mathbf{Tr}_{R_{S}}[\mathcal{O}_{R_{S}}]\sum_{l=\left|S\right|}^{+\infty}\frac{(\left|\beta\right|h)^{l}}{l!}\sum_{\begin{subarray}{c}j_{1},j_{2},\ldots,j_{\left|S\right|}\geq 1\\ j_{1}+j_{2}+\ldots+j_{\left|S\right|}=l\end{subarray}}\frac{l!}{j_{1}!j_{2}!\ldots j_{\left|S\right|}!}
(15) =𝐓𝐫RS[𝒪RS](exp(|β|h)1)|S|,\displaystyle=\mathbf{Tr}_{R_{S}}[\mathcal{O}_{R_{S}}]\left(\exp(\left|\beta\right|h)-1\right)^{\left|S\right|},

where the two inequalities follow from triangle inequality and Hölder’s inequality respectively. Similarly,

|ZVRSH,𝒪(β)|𝐓𝐫VRS[𝒪VRS]exp(βHVRS)𝐓𝐫VRS[𝒪VRS]exp(|β|hdn),\displaystyle\left|Z_{V\setminus R_{S}}^{H,\mathcal{O}}(\beta)\right|\leq\mathbf{Tr}_{V\setminus R_{S}}\left[\mathcal{O}_{V\setminus R_{S}}\right]\exp(\left\|\beta H_{V\setminus R_{S}}\right\|)\leq\mathbf{Tr}_{V\setminus R_{S}}\left[\mathcal{O}_{V\setminus R_{S}}\right]\exp(\left|\beta\right|hdn),

where the last inequality follows from the fact that mdnm\leq dn. Hence,

S[m]jS,xsupp(Hj)GH[S] is connected|WS(β)ZH,𝒪VRS(β)|\displaystyle\sum_{\begin{subarray}{c}S\subseteq[m]\\ \exists j\in S,x\in\mathrm{supp}(H_{j})\\ G_{H}[S]\text{ is connected}\end{subarray}}\left|W_{S}(\beta)Z^{V\setminus R_{S}}_{H,\mathcal{O}}(\beta)\right| 𝐓𝐫[𝒪]exp(|β|hdn)S[m]jS,xsupp(Hj)GH[S] is connected (exp(|β|h)1)|S|\displaystyle\leq\mathbf{Tr}[\mathcal{O}]\exp(\left|\beta\right|hdn)\sum_{\begin{subarray}{c}S\subseteq[m]\\ \exists j\in S,x\in\mathrm{supp}(H_{j})\\ G_{H}[S]\text{ is connected }\end{subarray}}\left(\exp(\left|\beta\right|h)-1\right)^{\left|S\right|}
𝐓𝐫[𝒪]exp(|β|hdn)=0+(ed)(exp(|β|h)1),\displaystyle\leq\mathbf{Tr}[\mathcal{O}]\exp(\left|\beta\right|hdn)\sum_{\ell=0}^{+\infty}(\mathrm{e}d)^{\ell}\left(\exp(\left|\beta\right|h)-1\right)^{\ell},

where the last inequality follows from 4.2 that there exists at most (ed)(\mathrm{e}d)^{\ell} connected subgraph of size \ell in dependency graph GHG_{H} which contains vertice jUj\in U such that xsupp(Hj)x\in\mathrm{supp}(H_{j}). Since |β|<1e(e1)dh\left|\beta\right|<\frac{1}{\mathrm{e}(\mathrm{e}-1)dh},

ed(exp(|β|h)1)<e(e1)dh|β|<1,\displaystyle\mathrm{e}d\left(\exp(\left|\beta\right|h)-1\right)<\mathrm{e}(\mathrm{e}-1)dh\left|\beta\right|<1,

concluding the proof of Lemma 5.4. ∎

At last, we need the following technical lemma [18, Lemma 27] in order to prove Lemma 5.2.

Lemma 5.5 ([18]).

Let H=i=1mHiH=\sum_{i=1}^{m}H_{i} be a (k,d)(k,d)-Hamiltonian, and β0=15edkh\beta_{0}=\frac{1}{5\mathrm{e}dkh}, then for |β|<β0\left|\beta\right|<\beta_{0}

S[m]jS,xsupp(Hj)GH[S] is connected(e|β|h1)|S|exp(dhe2|β||RS|)e(e1)dh|β|.\displaystyle\sum_{\begin{subarray}{c}S\subseteq[m]\\ \exists j\in S,x\in\mathrm{supp}(H_{j})\\ G_{H}[S]\text{ is connected}\end{subarray}}\left(\mathrm{e}^{\left|\beta\right|h}-1\right)^{\left|S\right|}\exp(dh\mathrm{e}^{2}\left|\beta\right|\left|R_{S}\right|)\leq\mathrm{e}(\mathrm{e}-1)dh\left|\beta\right|.
Proof of Lemma 5.2.

Let ΛV\Lambda\subseteq V. As observed in [18], it suffices to prove that removal of single site xΛx\in\Lambda can only produce bounded additive overhead to logZH,𝒪Λ(β)\log Z_{H,\mathcal{O}}^{\Lambda}(\beta). Formally, we are going to prove that, for any xΛx\in\Lambda,

log|1𝐓𝐫[𝒪x]ZH,𝒪Λ(β)ZH,𝒪Λ{x}(β)|e2dh|β|,\displaystyle\log\left|\frac{1}{\mathbf{Tr}[\mathcal{O}_{x}]}\frac{Z^{\Lambda}_{H,\mathcal{O}}(\beta)}{Z^{\Lambda\setminus\{x\}}_{H,\mathcal{O}}(\beta)}\right|\leq\mathrm{e}^{2}dh\left|\beta\right|, |β|<β0.\displaystyle\left|\beta\right|<\beta_{0}.

We will prove the result by induction on |Λ|\left|\Lambda\right|. By Lemma 5.4,

|log|1𝐓𝐫[𝒪x]ZH,𝒪Λ(β)ZH,𝒪Λ{x}(β)||\displaystyle\left|\log\left|\frac{1}{\mathbf{Tr}[\mathcal{O}_{x}]}\frac{Z^{\Lambda}_{H,\mathcal{O}}(\beta)}{Z^{\Lambda\setminus\{x\}}_{H,\mathcal{O}}(\beta)}\right|\right| =|log|1+S[m]jS,xsupp(Hj)GH[S] is connectedWS(β)(1𝐓𝐫[𝒪x]ZH,𝒪ΛRS(β)ZH,𝒪Λ{x}(β))||\displaystyle=\left|\log\left|1+\sum_{\begin{subarray}{c}S\subseteq[m]\\ \exists j\in S,x\in\mathrm{supp}(H_{j})\\ G_{H}[S]\text{ is connected}\end{subarray}}W_{S}(\beta)\left(\frac{1}{\mathbf{Tr}[\mathcal{O}_{x}]}\frac{Z^{\Lambda\setminus R_{S}}_{H,\mathcal{O}}(\beta)}{Z^{\Lambda\setminus\{x\}}_{H,\mathcal{O}}(\beta)}\right)\right|\right|
log(1S[m]jS,xsupp(Hj)GH[S] is connected|WS(β)||1𝐓𝐫[𝒪x]ZH,𝒪ΛRS(β)ZH,𝒪Λ{x}(β)|)\displaystyle\leq-\log\left(1-\sum_{\begin{subarray}{c}S\subseteq[m]\\ \exists j\in S,x\in\mathrm{supp}(H_{j})\\ G_{H}[S]\text{ is connected}\end{subarray}}\left|W_{S}(\beta)\right|\left|\frac{1}{\mathbf{Tr}[\mathcal{O}_{x}]}\frac{Z^{\Lambda\setminus R_{S}}_{H,\mathcal{O}}(\beta)}{Z^{\Lambda\setminus\{x\}}_{H,\mathcal{O}}(\beta)}\right|\right)
()log(1S[m]jS,xsupp(Hj)GH[S] is connected|WS(β)|(1𝐓𝐫[𝒪RS]exp(e2dh|β|)))\displaystyle\overset{(*)}{\leq}-\log\left(1-\sum_{\begin{subarray}{c}S\subseteq[m]\\ \exists j\in S,x\in\mathrm{supp}(H_{j})\\ G_{H}[S]\text{ is connected}\end{subarray}}\left|W_{S}(\beta)\right|\left(\frac{1}{\mathbf{Tr}[\mathcal{O}_{R_{S}}]}\exp(-\mathrm{e}^{2}dh\left|\beta\right|)\right)\right)
()log(1S[m]jS,xsupp(Hj)GH[S] is connected(exp(|β|h)1)|S|exp(e2dh|β|)),\displaystyle\overset{(\star)}{\leq}-\log\left(1-\sum_{\begin{subarray}{c}S\subseteq[m]\\ \exists j\in S,x\in\mathrm{supp}(H_{j})\\ G_{H}[S]\text{ is connected}\end{subarray}}\left(\exp(\left|\beta\right|h)-1\right)^{\left|S\right|}\exp(-\mathrm{e}^{2}dh\left|\beta\right|)\right),

where ()(*) follows from induction hypothesis and ()(\star) follows from  (15). Together with Lemma 5.5, we have

log(1S[m]jS,xsupp(Hj)GH[S] is connected(exp(|β|h)1)|S|exp(e2dh|β|))log(1e(e1)dh|β|)e2dh|β|,\displaystyle-\log\left(1-\sum_{\begin{subarray}{c}S\subseteq[m]\\ \exists j\in S,x\in\mathrm{supp}(H_{j})\\ G_{H}[S]\text{ is connected}\end{subarray}}\left(\exp(\left|\beta\right|h)-1\right)^{\left|S\right|}\exp(-\mathrm{e}^{2}dh\left|\beta\right|)\right)\leq-\log(1-\mathrm{e}(\mathrm{e}-1)dh\left|\beta\right|)\leq\mathrm{e}^{2}dh\left|\beta\right|,

where the last inequality follows from the fact that log(1e1ey)y-\log\left(1-\frac{\mathrm{e}-1}{\mathrm{e}}y\right)\leq y for all y[0,1]y\in[0,1]. ∎

6. Acknowledgements

This research was supported by National Natural Science Foundation of China (Grant No. 61972191) and the Program for Innovative Talents and Entrepreneur in Jiangsu.

References

  • Bar [15] Alexander Barvinok. Computing the partition function for cliques in a graph. Theory of Computing, 11(13):339–355, 2015.
  • Bar [16] Alexander Barvinok. Computing the permanent of (some) complex matrices. Foundations of Computational Mathematics, 16(2):329–342, 2016.
  • [3] Alexander Barvinok. Approximating permanents and hafnians. Discrete Analysis, page 1244, 2017.
  • [4] Alexander Barvinok. Combinatorics and Complexity of Partition Functions. Springer Publishing Company, Incorporated, 1st edition, 2017.
  • [5] Alexander Barvinok. Computing the partition function of a polynomial on the boolean cube. In A Journey Through Discrete Mathematics, pages 135–164. Springer, 2017.
  • BCKL [13] Christian Borgs, Jennifer Chayes, Jeff Kahn, and László Lovász. Left and right convergence of graphs with bounded degree. Random Struct. Algorithms, 42(1):1–28, January 2013.
  • BGGŠ [20] Ivona Bezáková, Andreas Galanis, Leslie Ann Goldberg, and Daniel Štefankovič. Inapproximability of the independent set polynomial in the complex plane. SIAM J. Comput., 49(5), 2020.
  • BGGŠ [21] Ivona Bezáková, Andreas Galanis, Leslie Ann Goldberg, and Daniel Štefankovič. The complexity of approximating the matching polynomial in the complex plane. ACM Trans. Comput. Theory, 13(2):13:1–13:37, 2021.
  • BGPR [21] Pjotr Buys, Andreas Galanis, Viresh Patel, and Guus Regts. Lee-yang zeros and the complexity of the ferromagnetic ising model on bounded-degree graphs. In SODA, pages 1508–1519. SIAM, 2021.
  • CDK+ [20] Matthew Coulson, Ewan Davies, Alexandra Kolla, Viresh Patel, and Guus Regts. Statistical physics approaches to unique games. In 35th Computational Complexity Conference (CCC), volume 169 of LIPIcs, pages 13:1–13:27. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020.
  • [11] Zongchen Chen, Kuikui Liu, and Eric Vigoda. Optimal mixing of glauber dynamics: Entropy factorization via high-dimensional expansion. In STOC, pages 1537–1550, 2021.
  • [12] Zongchen Chen, Kuikui Liu, and Eric Vigoda. Spectral independence via stability and applications to holant-type problems. arXiv preprint arXiv:2106.03366, 2021.
  • GHLS [15] Sevag Gharibian, Yichen Huang, Zeph Landau, and Seung Woo Shin. Quantum hamiltonian complexity. Found. Trends Theor. Comput. Sci., 10(3):159–282, 2015.
  • GJP [03] Leslie Ann Goldberg, Mark Jerrum, and Mike Paterson. The computational complexity of two-state spin systems. Random Structures Algorithms, 23(2):133–154, 2003.
  • GLL [20] Heng Guo, Jingcheng Liu, and Pinyan Lu. Zeros of ferromagnetic 2-spin systems. In SODA, pages 181–192. SIAM, 2020.
  • GLLZ [20] Heng Guo, Chao Liao, Pinyan Lu, and Chihao Zhang. Zeros of holant problems: locations and algorithms. ACM Transactions on Algorithms (TALG), 17(1):1–25, 2020.
  • GŠV [15] Andreas Galanis, Daniel Štefankovič, and Eric Vigoda. Inapproximability for antiferromagnetic spin systems in the tree nonuniqueness region. J. ACM, 62(6):Art. 50, 60, 2015.
  • HMS [20] Aram W Harrow, Saeed Mehraban, and Mehdi Soleimanifar. Classical algorithms, correlation decay, and complex zeros of partition functions of quantum many-body systems. In STOC, pages 378–386, 2020.
  • HPR [20] Tyler Helmuth, Will Perkins, and Guus Regts. Algorithmic pirogov–sinai theory. Probability Theory and Related Fields, 176(3):851–895, 2020.
  • JS [93] Mark Jerrum and Alistair Sinclair. Polynomial-time approximation algorithms for the Ising model. SIAM Journal on Computing, 22(5):1087–1116, 1993.
  • JSV [04] Mark Jerrum, Alistair Sinclair, and Eric Vigoda. A polynomial-time approximation algorithm for the permanent of a matrix with nonnegative entries. Journal of the ACM (JACM), 51(4):671–697, 2004.
  • KKB [20] Tomotaka Kuwahara, Kohtaro Kato, and Fernando GSL Brandão. Clustering of conditional mutual information for quantum gibbs states above a threshold temperature. Physical review letters, 124(22):220601, 2020.
  • KSVV [02] Alexei Yu Kitaev, Alexander Shen, Mikhail N Vyalyi, and Mikhail N Vyalyi. Classical and quantum computation. Number 47. American Mathematical Soc., 2002.
  • LLY [13] Liang Li, Pinyan Lu, and Yitong Yin. Correlation decay up to uniqueness in spin systems. In SODA, pages 67–84. SIAM, 2013.
  • [25] Jingcheng Liu, Alistair Sinclair, and Piyush Srivastava. Correlation decay and partition function zeros: Algorithms and phase transitions. arXiv preprint arXiv:1906.01228, 2019.
  • [26] Jingcheng Liu, Alistair Sinclair, and Piyush Srivastava. The ising partition function: Zeros and deterministic approximation. Journal of Statistical Physics, 174:287–315, 2019.
  • LY [52] Tsung-Dao Lee and Chen-Ning Yang. Statistical theory of equations of state and phase transitions. ii. lattice gas and ising model. Physical Review, 87(3):410, 1952.
  • MH [21] Ryan L Mann and Tyler Helmuth. Efficient algorithms for approximating quantum partition functions. Journal of Mathematical Physics, 62(2):022201, 2021.
  • PR [17] Viresh Patel and Guus Regts. Deterministic polynomial-time approximation algorithms for partition functions and graph polynomials. SIAM Journal on Computing, 46(6):1893–1919, Jan 2017.
  • PR [19] Han Peters and Guus Regts. On a conjecture of sokal concerning roots of the independence polynomial. Michigan Math. J., 68(1):33–35, 2019.
  • Reg [18] Guus Regts. Zero-free regions of partition functions with applications to algorithms and graph limits. Combinatorica, 38(4):987–1015, 2018.
  • Sly [10] Allan Sly. Computational transition at the uniqueness threshold. In FOCS, pages 287–296, 2010.
  • SS [97] Jesús Salas and Alan D Sokal. Absence of phase transition for antiferromagnetic Potts models via the Dobrushin uniqueness theorem. J. Stat. Phys., 86(3):551–579, 1997.
  • SS [10] E.M. Stein and R. Shakarchi. Complex Analysis. Princeton lectures in analysis. Princeton University Press, 2010.
  • SS [12] Allan Sly and Nike Sun. The computational hardness of counting in two-spin models on d-regular graphs. In FOCS, pages 361–369, 2012.
  • SS [20] Shuai Shao and Yuxin Sun. Contraction: A unified perspective of correlation decay and zero-freeness of 2-spin systems. In ICALP, volume 168 of LIPIcs, pages 96:1–96:15. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020.
  • SST [14] Alistair Sinclair, Piyush Srivastava, and Marc Thurley. Approximation algorithms for two-state anti-ferromagnetic spin systems on bounded degree graphs. Journal of Statistical Physics, 155(4):666–686, 2014. (conference version in SODA’12).
  • ŠVV [09] Daniel Štefankovič, Santosh S. Vempala, and Eric Vigoda. Adaptive simulated annealing: A near-optimal connection between sampling and counting. J. ACM, 56(3):18:1–18:36, 2009.
  • Wei [06] Dror Weitz. Counting independent sets up to the tree threshold. In STOC, pages 140–149, 2006.

Appendix A Region Transformation

We give a proof of Lemma 2.5 which says that the convex region Ω\Omega\subseteq\mathbb{C} is a 11-good region, so long as dist(Ω,z)\mathrm{dist}(\Omega,z) can be determined in O(1)O(1) time for all zΩz\in\Omega.

The following result proved in [4, Lemma 2.2.3] explicitly gives a polynomial that maps a disk with radius slightly larger than 11 to a strip.

Lemma A.1 ([4]).

Let δ(0,1)\delta\in(0,1) be a constant. Define qδ[z]q_{\delta}\in\mathbb{C}[z] as follows:

qδ(z)=1k=1nCkkk=1n(Cz)kk,\displaystyle q_{\delta}(z)=\frac{1}{\sum_{k=1}^{n}\frac{C^{k}}{k}}\sum_{k=1}^{n}\frac{(Cz)^{k}}{k},

where C=1exp(1δ)C=1-\exp\left(-\frac{1}{\delta}\right), n=(1+1δ)exp(1+1δ)n=\left\lfloor\left(1+\frac{1}{\delta}\right)\exp(1+\frac{1}{\delta})\right\rfloor. Then for all |z|<ρ\left|z\right|<\rho, where ρ=1exp(11δ)1exp(1δ)>1\rho=\frac{1-\exp\left(-1-\frac{1}{\delta}\right)}{1-\exp\left(-\frac{1}{\delta}\right)}>1,

  1. (1)

    qδ(0)=0q_{\delta}(0)=0, qδ(1)=1q_{\delta}(1)=1,

  2. (2)

    𝐑𝐞(qδ(z))[δ,1+2δ]\mathbf{Re}\left(q_{\delta}(z)\right)\in[-\delta,1+2\delta] and |𝐈𝐦(qδ(z))|2δ\left|\mathbf{Im}\left(q_{\delta}(z)\right)\right|\leq 2\delta.

We now can prove Lemma 2.5.

Proof of Lemma 2.5.

Without loss of generality, we assume that β0\beta\neq 0. Note that the polynomial qδq_{\delta} defined in Lemma A.1 satisfies

  1. (1)

    qδ(𝔻ρ)S1,4δq_{\delta}(\mathbb{D}_{\rho})\subseteq S_{1,4\delta};

  2. (2)

    qδ(0)=0q_{\delta}(0)=0, qδ(1)=1q_{\delta}(1)=1.

Therefore, we can set pβ,δ(z)=βqδ(ρz)p_{\beta,\delta}(z)=\beta q_{\delta^{\prime}}(\rho^{\prime}z), where δ0=δ4|β|\delta_{0}=\frac{\delta}{4\left|\beta\right|} and ρ=1exp(11δ)1exp(1δ)\rho^{\prime}=\frac{1-\exp\left(-1-\frac{1}{\delta^{\prime}}\right)}{1-\exp\left(-\frac{1}{\delta^{\prime}}\right)}. We conclude our proof by observing that:

  1. (1)

    pβ,δ(𝔻)Sβ,γp_{\beta,\delta}(\mathbb{D})\subseteq S_{\beta,\gamma};

  2. (2)

    pβ,δ(0)=0p_{\beta,\delta}(0)=0, pβ,δ(1ρ)=βp_{\beta,\delta}\left(\frac{1}{\rho^{\prime}}\right)=\beta.

Here we give a proof of 3.4, which is a direct application of Lemma 2.5.

Proof of 3.4.

The convexity of Ω\Omega implies that dist([zl,zr],Ω)=min(dist(zl),dist(zr))\mathrm{dist}([z_{l},z_{r}],\partial\Omega)=\mathrm{min}(\mathrm{dist}(z_{l}),\mathrm{dist}(z_{r})) for arbitrary complex values zl,zrΩz_{l},z_{r}\in\Omega, where [zl,zr]={zl+t(zrzl)t[0,1]}[z_{l},z_{r}]=\{z_{l}+t(z_{r}-z_{l})\mid t\in[0,1]\}. Hence, for each xΩx\in\Omega, we set fx=px,δf_{x}=p_{x,\delta}, a polynomial defined in Lemma A.1. We conclude the proof by observing that the kk-th coefficient of px,δp_{x,\delta} can be determined in O(k)O(k) time. ∎