This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Poisson kernel and blow-up of the second derivatives near the boundary for Stokes equations with Navier boundary condition

Hui Chen School of Science, Zhejiang University of Science and Technology, Hangzhou, 310023, People’s Republic of China [email protected] Su Liang Department of Mathematics, University of British Columbia, Vancouver, BC V6T1Z2, Canada [email protected]  and  Tai-Peng Tsai Department of Mathematics, University of British Columbia, Vancouver, BC V6T1Z2, Canada [email protected]
Abstract.

We derive the explicit Poisson kernel of Stokes equations in the half space with nonhomogeneous Navier boundary condition (BC) for both infinite and finite slip length. By using this kernel, for any q>1q>1, we construct a finite energy solution of Stokes equations with Navier BC in the half space, with bounded velocity and velocity gradient, but having unbounded second derivatives in LqL^{q} locally near the boundary. While the Caccioppoli type inequality of Stokes equations with Navier BC is true for the first derivatives of velocity, which is proved by us in [CPAA 2023], this example shows that the corresponding inequality for the second derivatives of the velocity is not true. Moreover, we give an alternative proof of the blow-up using a shear flow example, which is simple and is the solution of both Stokes and Navier–Stokes equations.

Key words: Navier boundary condition, Stokes system, Poisson kernel, Navier–Stokes equations, local regularity, boundary blowup

AMS Subject Classification (2000): 35Q30

1. Introduction

We consider the following Stokes system in +n×\mathbb{R}^{n}_{+}\times\mathbb{R}, n2n\geq 2,

(1.1) t𝒖Δ𝒖+p=0,div𝒖=0,\partial_{t}\bm{u}-\Delta\bm{u}+\nabla p=0,\ \ \ \mathop{\rm div}\nolimits\bm{u}=0,

with nonhomogeneous Navier boundary condition (Navier BC) on +n×\partial\mathbb{R}^{n}_{+}\times\mathbb{R}

(1.2) nukαuk=ak,un=an,\partial_{n}u_{k}-\alpha u_{k}=a_{k},\ \ u_{n}=a_{n},

for 1kn11\leq k\leq n-1. The system can be also considered for t(0,)t\in(0,\infty) with an initial condition at t=0t=0. Here 𝒖(x,t)=(u1,u2,,un)\bm{u}(x,t)=(u_{1},u_{2},\ldots,u_{n}) is the velocity field, p(x,t)p(x,t) is the pressure, α0\alpha\geq 0 is the friction coefficient, and 𝒂(x,t)=(a1,a2,,an)\bm{a}(x^{\prime},t)=(a_{1},a_{2},\ldots,a_{n}) is the boundary value. For α=0\alpha=0, (1.2) is reduced to Lions boundary condition. When α>0\alpha>0, its inverse 1/α1/\alpha has the unit of length and is called the slip length. We refer to our previous paper [4] and the reference therein for more detailed introduction of the physical meaning, and the historical study on the Stokes and Navier–Stokes equations under Navier BC.

In this paper, we continue to study the local regularity of the solution of the Stokes equations (1.1) near boundary. We recall some developments along this line. For the Stokes system in the half space with Dirichlet BC, Seregin [15, Lemma 1.1] showed spatial smoothing (2𝒖,pLq,r(Q1/2+)\nabla^{2}\bm{u},\nabla p\in L^{q,r}(Q_{1/2}^{+}), 1<q,r<1<q,r<\infty) if one assumes 𝒖,𝒖,pLq,r(Q1+)\bm{u},\nabla\bm{u},p\in L^{q,r}(Q_{1}^{+}), where QR+Q_{R}^{+} denotes parabolic cylinders (see Section 2 for definition). However, without any assumption on the pressure, the smoothing in spatial variables fails due to non-local effect of the pressure. The first counter example constructed by K. Kang [7] shows that there exists a bounded weak solution of the Stokes equations whose normal derivative is unbounded near boundary,

supQ12+|n𝒖|=,supQ1+|u|+𝒖L2(Q1+)<.\sup_{Q_{\frac{1}{2}}^{+}}\left|\partial_{n}\bm{u}\right|=\infty,\quad\sup_{Q_{1}^{+}}|u|+\|\nabla\bm{u}\|_{L^{2}\left(Q_{1}^{+}\right)}<\infty.

Seregin-Šverák [13] found a simplified example in the form of a shear flow such that its gradient is unbounded near boundary, although the velocity field is locally bounded. Recently, Chang-Kang [3, Theorem 1.1] proved that for any 1<q<1<q<\infty, a bounded very weak solution (depending on qq) can be constructed whose derivatives are unbounded in LqL^{q},

(1.3) 𝒖Lq(Q12+)=,𝒖L(Q1+)<.\|\nabla\bm{u}\|_{L^{q}(Q_{\frac{1}{2}}^{+})}=\infty,\quad\|\bm{u}\|_{L^{\infty}\left(Q_{1}^{+}\right)}<\infty.

See [2, 8, 9, 14] for related study along this line and [6] for partial regularity results on the boundary with Dirichlet BC.

For Stokes system (1.1) in the half space with Navier BC, we proved in [4, Theorem 1.1] the following Caccioppoli’s inequality,

(1.4) 𝒖Lq,r(Q12+)𝒖Lq,r(Q1+), 1<q,r<.\|\nabla\bm{u}\|_{L^{q,r}(Q^{+}_{\frac{1}{2}})}\lesssim\|\bm{u}\|_{L^{q,r}\left(Q_{1}^{+}\right)},\ 1<q,r<\infty.

It is a very important distinction in comparison to the Dirichlet BC where Caccioppoli’s inequality fails near boundary by (1.3). Moreover, we also proved in [4, Theorem 1.3] that m𝒖L(Q12+)\nabla^{m}\bm{u}\in L^{\infty}(Q^{+}_{\frac{1}{2}}), m1m\geq 1 for bounded velocity 𝒖\bm{u}, if the friction coefficient α=0\alpha=0,

(1.5) m𝒖L(Q12+)𝒖L(Q1+).\|\nabla^{m}\bm{u}\|_{L^{\infty}(Q^{+}_{\frac{1}{2}})}\lesssim\|\bm{u}\|_{L^{\infty}\left(Q_{1}^{+}\right)}.

Similar study was initiated by Dong-Kim-Phan [5], where boundary second derivative estimates for generalized Stokes system with VMO coefficients under Lions BC were proved. The main motivation of this paper is to study the regularity criteria of higher order derivatives of 𝒖\bm{u} near the boundary when assuming non-zero friction coefficient. It will be proved that 𝒖\nabla\bm{u} can not be replaced by 2𝒖\nabla^{2}\bm{u} in inequality (1.4).

At first, we derive the explicit Poisson kernel of Stokes system with Navier BC, which allows us to express 𝒖\bm{u} and pp in terms of 𝒂\bm{a}.

Theorem 1.1 (Poisson kernel).

For n2n\geq 2, α0\alpha\geq 0, 1k,jn1\leq k,j\leq n, let the kernels Pkj=Pkj0+αPkjαP_{kj}=P_{kj}^{0}+\alpha P_{kj}^{\alpha} and gj=gj0+αgjαg_{j}=g_{j}^{0}+\alpha g_{j}^{\alpha} be given as in Lemma 3.1 and Lemma 3.3.

  1. (a)

    Suppose 𝒂(x,t)Cc(n1×)n\bm{a}(x^{\prime},t)\in C_{c}^{\infty}(\mathbb{R}^{n-1}\times\mathbb{R})^{n} and define 𝒖(x,t)\bm{u}(x,t), p(x,t)p(x,t) by

    (1.6) uk(x,t)=\displaystyle u_{k}(x,t)= n1Pkj(xy,ts)aj(y,s)dyds,\displaystyle\int_{\mathbb{R}}\int_{\mathbb{R}^{n-1}}P_{kj}(x-y^{\prime},t-s)a_{j}(y^{\prime},s)\,{\rm d}y^{\prime}\,{\rm d}s,
    p(x,t)=\displaystyle p(x,t)= n1gj(xy,ts)aj(y,s)dyds.\displaystyle\int_{\mathbb{R}}\int_{\mathbb{R}^{n-1}}g_{j}(x-y^{\prime},t-s)a_{j}(y^{\prime},s)\,{\rm d}y^{\prime}\,{\rm d}s.

    Then 𝒖(x,t)\bm{u}(x,t), p(x,t)p(x,t) are smooth functions satisfying (1.1)–(1.2). Note that repeated index means summation.

  2. (b)

    Suppose 𝒂Lcq\bm{a}\in L^{q}_{c}, q>1q>1, and define 𝒖\bm{u} by (1.6). Then 𝒖\bm{u} is a very weak solution of Stokes equations (1.1) in +n×\mathbb{R}^{n}_{+}\times\mathbb{R} with Navier boundary condition (1.2) with data 𝒂\bm{a} on +n×\partial\mathbb{R}^{n}_{+}\times\mathbb{R}, i.e., 𝒖Lloc1(+n¯×)\bm{u}\in L^{1}_{\mathrm{loc}}(\overline{\mathbb{R}^{n}_{+}}\times\mathbb{R}), and

    (1.7) +n𝒖(t+Δ)𝚽dxdt=n1k=1n1akΦkannΦndxdt,+n𝒖Ψdx=n1anΨdx,(a.e.t)\displaystyle\begin{split}\int_{\mathbb{R}}\int_{\mathbb{R}^{n}_{+}}\bm{u}\cdot(\partial_{t}+\Delta)\bm{\Phi}\,{\rm d}x\,{\rm d}t&=\int_{\mathbb{R}}\int_{\mathbb{R}^{n-1}}\sum_{k=1}^{n-1}a_{k}\Phi_{k}-a_{n}\partial_{n}\Phi_{n}\,{\rm d}x^{\prime}\,{\rm d}t,\\ \int_{\mathbb{R}^{n}_{+}}\bm{u}\cdot\nabla\Psi\,{\rm d}x&=-\int_{\mathbb{R}^{n-1}}a_{n}\Psi\,{\rm d}x^{\prime},\quad(a.e.\ t)\end{split}

    for any ΨCc1(+n¯)\Psi\in C_{c}^{1}(\overline{\mathbb{R}^{n}_{+}}) and any divergence free vector 𝚽Cc2,1(+n¯×)\bm{\Phi}\in C_{c}^{2,1}(\overline{\mathbb{R}^{n}_{+}}\times\mathbb{R}) satisfying

    nΦkαΦk=0,(1k<n),Φn=0,when xn=0.\partial_{n}\Phi_{k}-\alpha\Phi_{k}=0,\ \ (1\leq k<n),\quad\Phi_{n}=0,\quad\text{when\ }x_{n}=0.

By LcqL^{q}_{c} we mean LqL^{q} functions with compact support.

We refer to [4, Definition 2.2] for the motivation of the definition of very weak solutions. Above we have added nonhomogeneous boundary data in the definition. Next we use the Poisson kernel to construct a finite energy solution of Stokes equations, which has bounded velocity and velocity gradient, while its second derivatives blow up in LqL^{q} norm.

Theorem 1.2 (Unbounded second derivative in LqL^{q}).

Let n2n\geq 2, 1<q1<q\leq\infty, α>0\alpha>0. There exists a very weak solution of Stokes equations (1.1) in Q1+Q^{+}_{1} with homogeneous (i.e. 𝐚=0\bm{a}=0) Navier boundary condition (1.2) on B1B^{\prime}_{1} such that

(1.8) 𝒖L(Q1+)+𝒖L(Q1+)<,2𝒖Lq(Q12+)=.\displaystyle\|\bm{u}\|_{L^{\infty}(Q_{1}^{+})}+\|\nabla\bm{u}\|_{L^{\infty}(Q_{1}^{+})}<\infty,\ \ \ \|\nabla^{2}\bm{u}\|_{L^{q}(Q^{+}_{\frac{1}{2}})}=\infty.

Moreover, it is the restriction of a global solution of (1.1) in +n×(0,2)\mathbb{R}^{n}_{+}\times(0,2) with finite global energy

(1.9) sup0<t<2+n|𝒖(x,t)|2dx+02+n|𝒖(x,t)|2dxdt<,\sup_{0<t<2}\int_{\mathbb{R}_{+}^{n}}|\bm{u}(x,t)|^{2}\,{\rm d}x+\int_{0}^{2}\int_{\mathbb{R}_{+}^{n}}|\nabla\bm{u}(x,t)|^{2}\,{\rm d}x\,{\rm d}t<\infty,

and this global solution satisfies Navier boundary condition (1.2) on +n×(0,2)\partial\mathbb{R}^{n}_{+}\times(0,2) with bounded and compactly supported boundary data 𝐚\bm{a}.

Remark 1.3.

(i) This theorem under Navier BC is parallel to (1.3) under zero BC. It tells us that the similar inequality of (1.4) with 𝒖\nabla\bm{u} replaced by 2𝒖\nabla^{2}\bm{u} is not true when α>0\alpha>0. By (1.5), the blow-up of 2𝒖\nabla^{2}\bm{u} does not happen if α=0\alpha=0.

(ii) One of the key ingredients in our proof is the inequalities (2.11) of Lemma 2.8 for the norm in the Besov space B˙q,q1212q()\dot{B}^{\frac{1}{2}-\frac{1}{2q}}_{q,q}(\mathbb{R}). The first inequality of (2.11) is proved by Chang-Kang [3] using interpolation theorems in anisotropic Sobolev spaces. We give a simple, alternative proof of full (2.11) in this paper.

(iii) The blow-up of 2𝒖\nabla^{2}\bm{u} will not happen if we assume regularity of the pressure. Actually in [4, Theorem 1.2], we proved that for 1<q,r<1<q,r<\infty,

(1.10) t𝒖Lq,r(Q12+)+3𝒖Lq,r(Q12+)+2pLq,r(Q12+)𝒖Lq,r(Q1+)+pLq,r(Q1+).\|\nabla\partial_{t}\bm{u}\|_{L^{q,r}(Q^{+}_{\frac{1}{2}})}+\|\nabla^{3}\bm{u}\|_{L^{q,r}(Q^{+}_{\frac{1}{2}})}+\|\nabla^{2}p\|_{L^{q,r}(Q^{+}_{\frac{1}{2}})}\lesssim\|\bm{u}\|_{L^{q,r}(Q^{+}_{1})}+\|p\|_{L^{q,r}(Q^{+}_{1})}.

(iv) An example can be constructed to make 4𝒖Lq(Q12+)=\|\nabla^{4}\bm{u}\|_{L^{q}(Q^{+}_{\frac{1}{2}})}=\infty while pL(Q1+)\|p\|_{L^{\infty}(Q^{+}_{1})} and 𝒖L(Q1+)\|\bm{u}\|_{L^{\infty}(Q^{+}_{1})} are bounded. See Remark 6.3.

(v) If we further require the boundary data to be continuous, we can still construct a solution with unbounded second derivative, similar to [9]. See Remark 5.4.

Inspired by Seregin-Šverák [13], where they construct a shear flow in +3\mathbb{R}^{3}_{+} with unbounded derivatives of velocity near the boundary under Dirichlet BC, we will give another example which has the same kind of blow-up as (1.8). The advantage of this example is that it is simple and is the solution of both Stokes and Navier–Stokes equations. It should be pointed out that it is a shear flow and has no spatial decay. In particular, it has infinite global energy.

Theorem 1.4 (Shear flow example).

Let n2n\geq 2, 1<q1<q\leq\infty, α>0\alpha>0. There exists a very weak solution of both Stokes equations (1.1) and Navier-Stokes equations in +n×(0,2)\mathbb{R}^{n}_{+}\times(0,2), with homogeneous ((i.e. 𝐚=0)\bm{a}=0) Navier boundary condition (1.2) on +n×(0,2)\partial\mathbb{R}^{n}_{+}\times(0,2) and zero initial condition at t=0t=0 such that (1.8) is true.

In fact, the same proof can be used to give a second example of (1.3) under zero BC. See Remark 6.2.

The rest of this paper is organized as follows: We introduce notations and some preliminary results in Section 2. We derive the expression of the Poisson kernel in Section 3. We give the estimate of the kernel and prove Theorem 1.1 in Section 4. We introduce the example for Theorem 1.2 in Section 5. We give a proof of Theorem 1.4 in Section 6.

2. Notations and preliminaries

For x=(x1,,xn)nx=(x_{1},\cdots,x_{n})\in\mathbb{R}^{n}, denote x=(x1,,xn1)x^{\prime}=(x_{1},\cdots,x_{n-1}) as the horizontal variable. Let BR(x)={zn1:|zx|<R}B^{\prime}_{R}(x^{\prime})=\{z^{\prime}\in\mathbb{R}^{n-1}:|z^{\prime}-x^{\prime}|<R\}, 𝒞R+=BR(0)×(0,R)\mathcal{C}_{R}^{+}=B^{\prime}_{R}(0)\times(0,R), and QR+=𝒞R+×(1R2,1)Q^{+}_{R}=\mathcal{C}_{R}^{+}\times(1-R^{2},1). Denote the heat kernel

Γ(x,t)={1(4πt)n/2e|x|24t for t>00 for t0\Gamma(x,t)=\begin{cases}\frac{1}{(4\pi t)^{n/2}}e^{\frac{-|x|^{2}}{4t}}&\text{ for }t>0\\ 0&\text{ for }t\leq 0\end{cases}

and the fundamental solution of Δ-\Delta

E(x)={1n(n2)|B1|1|x|n2 for n312πlog|x| if n=2.E(x)=\begin{cases}\frac{1}{n(n-2)|B_{1}|}\frac{1}{|x|^{n-2}}&\text{ for }n\geq 3\\ -\frac{1}{2\pi}\log|x|&\text{ if }n=2\end{cases}.

Here |B1|=πn2Γ(n2+1)|B_{1}|=\frac{\pi^{\frac{n}{2}}}{\Gamma(\frac{n}{2}+1)} denotes the volume of the unit ball B1B_{1} in n\mathbb{R}^{n}. Notice that for n2n\geq 2,

(2.1) 0+iΓ(x,t)dt=iE(x).\int_{0}^{+\infty}\partial_{i}\Gamma(x,t)\,{\rm d}t=\partial_{i}E(x).

Here we add the derivative i\partial_{i} to avoid singularity at t=+t=+\infty when n=2n=2. Let (t)\mathcal{H}(t) be the Heaviside function. Denote fgf\lesssim g if there is a constant CC such that fCgf\leq Cg, and CC depends on some variables which are clear in the context. Let fgf*g be the convolution in terms of (x,t)(x^{\prime},t). We use the following definition of Fourier transform

f(ξ)=(2π)n2neixξf(x)dx,\mathcal{F}f(\xi)=(2\pi)^{-\frac{n}{2}}\int_{\mathbb{R}^{n}}e^{-ix\cdot\xi}\,f(x)\,{\rm d}x,
xf(ξ,xn)=(2π)n12n1eixξf(x)dx,\mathcal{F}_{x^{\prime}}f(\xi^{\prime},x_{n})=(2\pi)^{-\frac{n-1}{2}}\int_{\mathbb{R}^{n-1}}e^{-ix^{\prime}\cdot\xi^{\prime}}\,f(x)\,{\rm d}x^{\prime},

and

(2.2) g~(ξ,xn,s)x,tg=(2π)n2n1ei(xξ+st)g(x,t)dxdt.\tilde{g}(\xi^{\prime},x_{n},s)\equiv\mathcal{F}_{x^{\prime},t}\,g=(2\pi)^{-\frac{n}{2}}\int_{\mathbb{R}}\int_{\mathbb{R}^{n-1}}e^{-i(x^{\prime}\cdot\xi^{\prime}+st)}g(x,t)\,{\rm d}x^{\prime}\,{\rm d}t.

The following several lemmas (Lemma 2.1–Lemma 2.5) will be used in calculating the inverse Fourier transform to get the Poisson kernel. They are not new and are widely used for the derivation of Green tensor of the Stokes equations [9, 11]. We give their proofs here for the convenience of the readers.

Lemma 2.1.

Suppose xn>0x_{n}>0. For n3n\geq 3 we have

x1(exn|ξ||ξ|)=2(2π)n12E(x).\mathcal{F}_{x^{\prime}}^{-1}\left(\frac{e^{-x_{n}|\xi^{\prime}|}}{|\xi^{\prime}|}\right)=2(2\pi)^{\frac{n-1}{2}}E(x).

For n=2n=2, we have

x1(ex2|ξ1|)=2(2π)122E(x),x1(iξ1ex2|ξ1||ξ1|)=2(2π)121E(x).\mathcal{F}_{x^{\prime}}^{-1}\left(-e^{-x_{2}|\xi_{1}|}\right)=2(2\pi)^{\frac{1}{2}}\partial_{2}E(x),\ \ \ \mathcal{F}_{x^{\prime}}^{-1}\left(i\xi_{1}\frac{e^{-x_{2}|\xi_{1}|}}{|\xi_{1}|}\right)=2(2\pi)^{\frac{1}{2}}\partial_{1}E(x).
Proof.

It is well known that the Fourier transform of the fundamental solution of Δ-\Delta is

x(E(x))=1(2π)n2|ξ|2,n3.\mathcal{F}_{x}\Big{(}E(x)\Big{)}=\frac{1}{(2\pi)^{\frac{n}{2}}|\xi|^{2}},\quad n\geq 3.

Hence,

x(E(x))\displaystyle\mathcal{F}_{x^{\prime}}\Big{(}E(x)\Big{)} =xn1(1(2π)n2|ξ|2)\displaystyle=\mathcal{F}_{x_{n}}^{-1}\Big{(}\frac{1}{(2\pi)^{\frac{n}{2}}|\xi|^{2}}\Big{)}
=12π1(2π)n2|ξ|2eiξnxndξn\displaystyle=\frac{1}{\sqrt{2\pi}}\int_{\mathbb{R}}\frac{1}{(2\pi)^{\frac{n}{2}}|\xi|^{2}}e^{i\xi_{n}x_{n}}\,{\rm d}\xi_{n}
(2.3) =1(2π)n+121(ξn+i|ξ|)(ξni|ξ|)eiξnxndξn.\displaystyle=\frac{1}{(2\pi)^{\frac{n+1}{2}}}\int_{\mathbb{R}}\frac{1}{(\xi_{n}+i|\xi^{\prime}|)(\xi_{n}-i|\xi^{\prime}|)}e^{i\xi_{n}x_{n}}\,{\rm d}\xi_{n}.

We can use Residue Theorem to calculate the integral in (2.3). Since xn>0x_{n}>0, eiξnxne^{i\xi_{n}x_{n}} is bounded when ξn\xi_{n} is in the upper half of the complex plane. There is only one singular point i|ξ|i|\xi^{\prime}| in the upper half of the complex plane, so

x(E(x))=2πi1(2π)n+121i|ξ|+i|ξ|ei(i|ξ|)xn=12(2π)n12exn|ξ||ξ|.\mathcal{F}_{x^{\prime}}\Big{(}E(x)\Big{)}=2\pi i\frac{1}{(2\pi)^{\frac{n+1}{2}}}\cdot\frac{1}{i|\xi^{\prime}|+i|\xi^{\prime}|}e^{i(i|\xi^{\prime}|)x_{n}}=\frac{1}{2(2\pi)^{\frac{n-1}{2}}}\cdot\frac{e^{-x_{n}|\xi^{\prime}|}}{|\xi^{\prime}|}.

For n=2n=2, we calculate them directly:

x11(ex2|ξ1|)=(2π)12eix1zex2|z|dz\displaystyle\ \ \ \ \mathcal{F}_{x_{1}}^{-1}\left(-e^{-x_{2}|\xi_{1}|}\right)=-(2\pi)^{-\frac{1}{2}}\int_{\mathbb{R}}e^{ix_{1}\cdot z}e^{-x_{2}|z|}\,{\rm d}z
=(2π)120ex2z(eix1z+eix1z)dz=(2π)122x2x12+x22=2(2π)122E(x),\displaystyle=-(2\pi)^{-\frac{1}{2}}\int_{0}^{\infty}e^{-x_{2}z}\left(e^{ix_{1}z}+e^{-ix_{1}z}\right)\,{\rm d}z=-(2\pi)^{-\frac{1}{2}}\frac{2x_{2}}{x_{1}^{2}+x_{2}^{2}}=2(2\pi)^{\frac{1}{2}}\partial_{2}E(x),
x11(iξ1ex2|ξ1||ξ1|)=(2π)12eix1ziz|z|ex2|z|dz\displaystyle\ \ \ \ \mathcal{F}_{x_{1}}^{-1}\left(i\xi_{1}\frac{e^{-x_{2}|\xi_{1}|}}{|\xi_{1}|}\right)=(2\pi)^{-\frac{1}{2}}\int_{\mathbb{R}}e^{ix_{1}\cdot z}\frac{iz}{|z|}e^{-x_{2}|z|}\,{\rm d}z
=(2π)12i0ex2z(eix1zeix1z)dz=(2π)122x1x12+x22=2(2π)121E(x).\displaystyle=(2\pi)^{-\frac{1}{2}}i\int_{0}^{\infty}e^{-x_{2}z}\left(e^{ix_{1}z}-e^{-ix_{1}z}\right)\,{\rm d}z=-(2\pi)^{-\frac{1}{2}}\frac{2x_{1}}{x_{1}^{2}+x_{2}^{2}}=2(2\pi)^{\frac{1}{2}}\partial_{1}E(x).\qed
Remark 2.2.

When n=2n=2, the Fourier transform x1(2(2π)12E(x1,x2))\mathcal{F}_{x_{1}}\big{(}2(2\pi)^{\frac{1}{2}}E(x_{1},x_{2})\big{)} is not the function ex2|ξ1||ξ1|\frac{e^{-x_{2}|\xi_{1}|}}{|\xi_{1}|}, which is not locally integrable, but the distribution

(2.4) Tx2(ξ1)=ex2|ξ1|1|ξ1|+(1|ξ1|)1+2γδ(ξ1)=[(1|ξ1|)1+2γδ(ξ1)]ex2|ξ1|,T_{x_{2}}(\xi_{1})=\frac{e^{-x_{2}|\xi_{1}|}-1}{|\xi_{1}|}+\left(\frac{1}{|\xi_{1}|}\right)_{1}+2\gamma\delta(\xi_{1})=\left[\left(\frac{1}{|\xi_{1}|}\right)_{1}+2\gamma\delta(\xi_{1})\right]\cdot e^{-x_{2}|\xi_{1}|},

where γ\gamma is the Euler–Mascheroni constant, and the distribution (1|ξ1|)1\left(\frac{1}{|\xi_{1}|}\right)_{1} is defined by

(2.5) (1|ξ1|)1,f=|ξ1|<1f(ξ1)f(0)|ξ1|𝑑ξ1+|ξ1|1f(ξ1)|ξ1|𝑑ξ1.\displaystyle\langle\left(\frac{1}{|\xi_{1}|}\right)_{1},f\rangle=\int_{|\xi_{1}|<1}\frac{f(\xi_{1})-f(0)}{|\xi_{1}|}\,d\xi_{1}+\int_{|\xi_{1}|\geq 1}\frac{f(\xi_{1})}{|\xi_{1}|}\,d\xi_{1}.

See [12, page 258]. There is a good discussion by Mark Viola in Math Stack Exchange, see this link. \square

By differentiating the equation in Lemma 2.1 with respect to xnx_{n}, we have

Corollary 2.3.

For n2n\geq 2 and xn>0x_{n}>0, we have

x1(exn|ξ|)=2(2π)n12nE(x),\mathcal{F}_{x^{\prime}}^{-1}\left(-e^{-x_{n}|\xi^{\prime}|}\right)=2(2\pi)^{\frac{n-1}{2}}\partial_{n}E(x),
x1(|ξ|exn|ξ|)=2(2π)n12n2E(x),\mathcal{F}_{x^{\prime}}^{-1}\left(|\xi^{\prime}|e^{-x_{n}|\xi^{\prime}|}\right)=2(2\pi)^{\frac{n-1}{2}}\partial^{2}_{n}E(x),
x1(|ξ|2exn|ξ|)=2(2π)n12n3E(x).\mathcal{F}_{x^{\prime}}^{-1}\left(-|\xi^{\prime}|^{2}e^{-x_{n}|\xi^{\prime}|}\right)=2(2\pi)^{\frac{n-1}{2}}\partial^{3}_{n}E(x).
Lemma 2.4.

For n1n\geq 1 and xn>0x_{n}>0, we have

x,t1(exn|ξ|2+is|ξ|2+is)=2(2π)n2Γ(x,t).\mathcal{F}^{-1}_{x^{\prime},t}\left(\frac{e^{-x_{n}\sqrt{|\xi^{\prime}|^{2}+is}}}{\sqrt{|\xi^{\prime}|^{2}+is}}\right)=2(2\pi)^{\frac{n}{2}}\Gamma(x,t).

Note that in our definition, Re(|ξ|2+is)>0\mathrm{Re}(\sqrt{|\xi^{\prime}|^{2}+is})>0 no matter s>0s>0 or s<0s<0.

Proof.

It is well known that the Fourier transform of heat kernel is

x,t(Γ(x,t))=1(2π)n+12(|ξ|2+is).\mathcal{F}_{x,t}\Big{(}\Gamma(x,t)\Big{)}=\frac{1}{(2\pi)^{\frac{n+1}{2}}(|\xi|^{2}+is)}.

Hence,

x,t(Γ(x,t))\displaystyle\mathcal{F}_{x^{\prime},t}\Big{(}\Gamma(x,t)\Big{)} =xn1(1(2π)n+12(|ξ|2+is))\displaystyle=\mathcal{F}_{x_{n}}^{-1}\Big{(}\frac{1}{(2\pi)^{\frac{n+1}{2}}(|\xi|^{2}+is)}\Big{)}
=12π1(2π)n+12(|ξ|2+is)eiξnxndξn\displaystyle=\frac{1}{\sqrt{2\pi}}\int_{\mathbb{R}}\frac{1}{(2\pi)^{\frac{n+1}{2}}(|\xi|^{2}+is)}e^{i\xi_{n}x_{n}}\,{\rm d}\xi_{n}
(2.6) =1(2π)n+221(ξn+i|ξ|2+is)(ξni|ξ|2+is)eiξnxndξn.\displaystyle=\frac{1}{(2\pi)^{\frac{n+2}{2}}}\int_{\mathbb{R}}\frac{1}{(\xi_{n}+i\sqrt{|\xi^{\prime}|^{2}+is})(\xi_{n}-i\sqrt{|\xi^{\prime}|^{2}+is})}e^{i\xi_{n}x_{n}}\,{\rm d}\xi_{n}.

We can use Residue Theorem to calculate the integral in (2.6). Since xn>0x_{n}>0, eiξnxne^{i\xi_{n}x_{n}} is bounded when ξn\xi_{n} is in the upper half of the complex plane. There is only one singular point i|ξ|2+isi\sqrt{|\xi^{\prime}|^{2}+is} in the upper half of the complex plane, so

x,t(Γ(x,t))\displaystyle\mathcal{F}_{x^{\prime},t}\Big{(}\Gamma(x,t)\Big{)} =2πi1(2π)n+221i|ξ|2+is+i|ξ|2+isei(i|ξ|2+is)xn\displaystyle=2\pi i\frac{1}{(2\pi)^{\frac{n+2}{2}}}\cdot\frac{1}{i\sqrt{|\xi^{\prime}|^{2}+is}+i\sqrt{|\xi^{\prime}|^{2}+is}}e^{i(i\sqrt{|\xi^{\prime}|^{2}+is})x_{n}}
=12(2π)n2exn|ξ|2+is|ξ|2+is.\displaystyle=\frac{1}{2(2\pi)^{\frac{n}{2}}}\cdot\frac{e^{-x_{n}\sqrt{|\xi^{\prime}|^{2}+is}}}{\sqrt{|\xi^{\prime}|^{2}+is}}.\qed

By differentiating the equation in Lemma 2.4 with respect to xnx_{n}, we have

Corollary 2.5.

For n2n\geq 2 and xn>0x_{n}>0, we have

x,t1(exn|ξ|2+is)=2(2π)n2nΓ(x,t),\mathcal{F}_{x^{\prime},t}^{-1}\left(-e^{-x_{n}\sqrt{|\xi^{\prime}|^{2}+is}}\right)=2(2\pi)^{\frac{n}{2}}\partial_{n}\Gamma(x,t),
x,t1(|ξ|2+isexn|ξ|2+is)=2(2π)n2n2Γ(x,t),\mathcal{F}_{x^{\prime},t}^{-1}\left(\sqrt{|\xi^{\prime}|^{2}+is}e^{-x_{n}\sqrt{|\xi^{\prime}|^{2}+is}}\right)=2(2\pi)^{\frac{n}{2}}\partial^{2}_{n}\Gamma(x,t),
x,t1((|ξ|2+is)exn|ξ|2+is)=2(2π)n2n3Γ(x,t).\mathcal{F}_{x^{\prime},t}^{-1}\left(-(|\xi^{\prime}|^{2}+is)e^{-x_{n}\sqrt{|\xi^{\prime}|^{2}+is}}\right)=2(2\pi)^{\frac{n}{2}}\partial^{3}_{n}\Gamma(x,t).

The following lemma will be used in the pointwise estimate of the Poisson kernel. For w,zw,z\in\mathbb{R}, we denote

(2.7) A(x,w,z,t)=n1E(xy,w)Γ(y,z,t)dy.A(x^{\prime},w,z,t)=\int_{\mathbb{R}^{n-1}}E(x^{\prime}-y^{\prime},w)\Gamma(y^{\prime},z,t)\,{\rm d}y^{\prime}.

For n=3n=3, it is defined in [16] for w=0w=0 or z=0z=0, whose derivative estimates are given in [16, (62, 63)] for n=3n=3 and [8, (2.11), (2.12)] for general n2n\geq 2. Now we give similar estimates for our generalized function AA.

Lemma 2.6.

For n2n\geq 2 and integers m,l,j,k0m,l,j,k\geq 0 with l+j+n3l+j+n\geq 3,

(2.8) |tmxlwjzkA(x,w,z,t)|1(|x|2+w2+z2+t)l+j+n22(z2+t)k+12+mez210t.|\partial_{t}^{m}\partial_{x^{\prime}}^{l}\partial_{w}^{j}\partial_{z}^{k}A(x^{\prime},w,z,t)|\lesssim\frac{1}{\left(|x^{\prime}|^{2}+w^{2}+z^{2}+t\right)^{\frac{l+j+n-2}{2}}\left(z^{2}+t\right)^{\frac{k+1}{2}+m}}e^{-\frac{z^{2}}{10t}}.

This lemma follows from A(x,w,z,t)=A(x,w,0,t)ez24tA(x^{\prime},w,z,t)=A(x^{\prime},w,0,t)e^{-\frac{z^{2}}{4t}}, the estimate of A(x,w,0,t)A(x^{\prime},w,0,t) in [8, (2.11)], and the inequalities

(2.9) 1a2+tecz2/t1a2+ttz2+t1a2+z2+t.\frac{1}{a^{2}+t}e^{-cz^{2}/t}\lesssim\frac{1}{a^{2}+t}\cdot\frac{t}{z^{2}+t}\lesssim\frac{1}{a^{2}+z^{2}+t}.

The next two lemmas will be useful to generate the blow-up in the proof of Theorem 1.2.

Lemma 2.7.

For |x|>0|x^{\prime}|>0, we have

(2.10) p.v.n1y1|y|ne|xy|24tdy=(4πt)n12x1|x|n+Err(x,t)tn2|x|n,\mathrm{p.v.}\int_{\mathbb{R}^{n-1}}\frac{y_{1}}{|y^{\prime}|^{n}}e^{-\frac{|x^{\prime}-y^{\prime}|^{2}}{4t}}\,{\rm d}y^{\prime}=(4\pi t)^{\frac{n-1}{2}}\frac{x_{1}}{|x^{\prime}|^{n}}+Err(x^{\prime},t)\frac{t^{\frac{n}{2}}}{|x^{\prime}|^{n}},

where |Err(x,t)|1|Err(x^{\prime},t)|\lesssim 1. The first term dominates the second when t|x1|\sqrt{t}\ll|x_{1}|.

Proof.

The proof is similar to [3, Lemma 3.2]. We divide n1\mathbb{R}^{n-1} to three disjoint sets D1D_{1}, D2D_{2} and D3D_{3}, which are defined by

D1={yn1:|xy||x|10},D2={yn1:|y||x|10},D_{1}=\{y^{\prime}\in\mathbb{R}^{n-1}:|x^{\prime}-y^{\prime}|\leq\frac{|x^{\prime}|}{10}\},\ \ \ D_{2}=\{y^{\prime}\in\mathbb{R}^{n-1}:|y^{\prime}|\leq\frac{|x^{\prime}|}{10}\},

and D3=n1(D1D2)D_{3}=\mathbb{R}^{n-1}\setminus(D_{1}\cup D_{2}). We then split the integral into three terms as follows:

p.v.n1y1|y|ne|xy|24tdy=D1+p.v.D2+D3G1+G2+G3.\text{p.v.}\int_{\mathbb{R}^{n-1}}\frac{y_{1}}{|y^{\prime}|^{n}}e^{-\frac{|x^{\prime}-y^{\prime}|^{2}}{4t}}\,{\rm d}y^{\prime}=\int_{D_{1}}\cdots+\text{p.v.}\int_{D_{2}}\cdots+\int_{D_{3}}\cdots\equiv G_{1}+G_{2}+G_{3}.

Since p.v.D2y1|y|ndy=0\text{p.v.}\int_{D_{2}}\frac{y_{1}}{|y^{\prime}|^{n}}\,{\rm d}y^{\prime}=0, we have

G2=D2y1|y|n(e|xy|24te|x|24t)dy.G_{2}=\int_{D_{2}}\frac{y_{1}}{|y^{\prime}|^{n}}\left(e^{-\frac{|x^{\prime}-y^{\prime}|^{2}}{4t}}-e^{-\frac{|x^{\prime}|^{2}}{4t}}\right)\,{\rm d}y^{\prime}.

Thus, using |e|x|24t||x|te|x|24t|\nabla e^{-\frac{|x^{\prime}|^{2}}{4t}}|\lesssim\frac{|x^{\prime}|}{t}e^{-\frac{|x^{\prime}|^{2}}{4t}}, we have

|G2|\displaystyle|G_{2}| |x|te|x|24tD21|y|n2dy|x|2te|x|24ttn2|x|n.\displaystyle\lesssim\frac{|x^{\prime}|}{t}e^{-\frac{|x^{\prime}|^{2}}{4t}}\int_{D_{2}}\frac{1}{|y^{\prime}|^{n-2}}\,{\rm d}y^{\prime}\lesssim\frac{|x^{\prime}|^{2}}{t}e^{-\frac{|x^{\prime}|^{2}}{4t}}\lesssim\frac{t^{\frac{n}{2}}}{|x^{\prime}|^{n}}.

Since |y|>ae|y|2dye12a2|y|>ae12|y|2dye12a2\int_{|y^{\prime}|>a}e^{-|y^{\prime}|^{2}}\,{\rm d}y^{\prime}\leq e^{-\frac{1}{2}a^{2}}\int_{|y^{\prime}|>a}e^{-\frac{1}{2}|y^{\prime}|^{2}}\,{\rm d}y^{\prime}\lesssim e^{-\frac{1}{2}a^{2}}, a>0a>0, we have

|G3|1|x|n1|xy||x|10e|xy|24tdy1|x|n1tn12e|x|2800ttn2|x|n.|G_{3}|\lesssim\frac{1}{|x^{\prime}|^{n-1}}\int_{|x^{\prime}-y^{\prime}|\geq\frac{|x^{\prime}|}{10}}e^{-\frac{|x^{\prime}-y^{\prime}|^{2}}{4t}}\,{\rm d}y^{\prime}\lesssim\frac{1}{|x^{\prime}|^{n-1}}t^{\frac{n-1}{2}}e^{-\frac{|x^{\prime}|^{2}}{800t}}\lesssim\frac{t^{\frac{n}{2}}}{|x^{\prime}|^{n}}.

We decompose G1G_{1} in the following way,

G1\displaystyle G_{1} =|y||x|10x1y1|xy|ne|y|24tdy=|y||x|10(x1y1|xy|nx1|x|n)e|y|24tdy\displaystyle=\int_{|y^{\prime}|\leq\frac{|x^{\prime}|}{10}}\frac{x_{1}-y_{1}}{|x^{\prime}-y^{\prime}|^{n}}e^{-\frac{|y^{\prime}|^{2}}{4t}}\,{\rm d}y^{\prime}=\int_{|y^{\prime}|\leq\frac{|x^{\prime}|}{10}}\left(\frac{x_{1}-y_{1}}{|x^{\prime}-y^{\prime}|^{n}}-\frac{x_{1}}{|x^{\prime}|^{n}}\right)e^{-\frac{|y^{\prime}|^{2}}{4t}}\,{\rm d}y^{\prime}
+n1x1|x|ne|y|24tdy|y||x|10x1|x|ne|y|24tdy=G11+G12+G13.\displaystyle\ \ \ +\int_{\mathbb{R}^{n-1}}\frac{x_{1}}{|x^{\prime}|^{n}}e^{-\frac{|y^{\prime}|^{2}}{4t}}\,{\rm d}y^{\prime}-\int_{|y^{\prime}|\geq\frac{|x^{\prime}|}{10}}\frac{x_{1}}{|x^{\prime}|^{n}}e^{-\frac{|y^{\prime}|^{2}}{4t}}\,{\rm d}y^{\prime}=G_{11}+G_{12}+G_{13}.

It’s not hard to get G12=(4πt)n12x1|x|nG_{12}=(4\pi t)^{\frac{n-1}{2}}\frac{x_{1}}{|x^{\prime}|^{n}}. Similar to G3G_{3}, we have

|G13|1|x|n1tn12e|x|2800ttn2|x|n.|G_{13}|\lesssim\frac{1}{|x^{\prime}|^{n-1}}t^{\frac{n-1}{2}}e^{-\frac{|x^{\prime}|^{2}}{800t}}\lesssim\frac{t^{\frac{n}{2}}}{|x^{\prime}|^{n}}.

Since |x1|x|n|1|x|n|\nabla\frac{x_{1}}{|x^{\prime}|^{n}}|\lesssim\frac{1}{|x^{\prime}|^{n}}, we have

|G11|1|x|n|y||x|10|y|e|y|24tdy1|x|ntn2n1|z|e|z|2dztn2|x|n.|G_{11}|\lesssim\frac{1}{|x^{\prime}|^{n}}\int_{|y^{\prime}|\leq\frac{|x^{\prime}|}{10}}|y^{\prime}|e^{-\frac{|y^{\prime}|^{2}}{4t}}\,{\rm d}y^{\prime}\lesssim\frac{1}{|x^{\prime}|^{n}}t^{\frac{n}{2}}\int_{\mathbb{R}^{n-1}}|z^{\prime}|e^{-|z^{\prime}|^{2}}\,{\rm d}z^{\prime}\lesssim\frac{t^{\frac{n}{2}}}{|x^{\prime}|^{n}}.

Combining the above estimates, we arrive at (2.10). ∎

The following lemma is a generalized version of [3, (4.14)] and plays a crucial role in the proof of Theorem 1.2. Our lemma establishes both directions of the inequalities, while [3, (4.14)] only establishes the first inequality of (2.11), though only the first inequality is used later. Also our proof is more elementary and direct, without usage of the trace theorem of anisotropic Sobolev spaces. Recall that for function uu in homogeneous Besov space B˙q,rs\dot{B}^{s}_{q,r} (see [1, Definition 2.15]), its norm is defined by

uB˙q,rs=(j2rjsΔjuLqr)1r,\|u\|_{\dot{B}^{s}_{q,r}}=\bigg{(}\textstyle\sum_{j\in\mathbb{Z}}2^{rjs}\|\Delta_{j}u\|^{r}_{L^{q}}\bigg{)}^{\frac{1}{r}},

where Δj\Delta_{j} is the Littlewood-Paley operator.

Lemma 2.8.

Let f(x,t)=Γ1(x,ts)g(s)dsf(x,t)=\int_{\mathbb{R}}\Gamma_{1}(x,t-s)g(s)\,{\rm d}s, x>0x>0, tt\in\mathbb{R}, where Γ1\Gamma_{1} is the 1D heat kernel. We have that for 1q<1\leq q<\infty,

(2.11) gB˙q,q1212q()x2fLq(+×)gB˙q,q1212q().\left\|g\right\|_{\dot{B}^{\frac{1}{2}-\frac{1}{2q}}_{q,q}(\mathbb{R})}\lesssim\left\|\partial_{x}^{2}f\right\|_{L^{q}(\mathbb{R}_{+}\times\mathbb{R})}\lesssim\left\|g\right\|_{\dot{B}^{\frac{1}{2}-\frac{1}{2q}}_{q,q}(\mathbb{R})}.
Proof.

Notice that

(2.12) tf(x,s)=12isexistg(s).\mathcal{F}_{t}f(x,s)=\frac{1}{2\sqrt{is}}e^{-x\sqrt{is}}\cdot\mathcal{F}_{t}g(s).

For fixed xx, we have

(2.13) x2fLq()ΣjΔjx2fLq()Σj 2j/2ecx2j/2ΔjgLq().\|\partial_{x}^{2}f\|_{L^{q}(\mathbb{R})}\lesssim\Sigma_{j\in\mathbb{Z}}\ \|\Delta_{j}\partial_{x}^{2}f\|_{L^{q}(\mathbb{R})}\lesssim\Sigma_{j\in\mathbb{Z}}\ 2^{j/2}e^{-cx2^{j/2}}\|\Delta_{j}g\|_{L^{q}(\mathbb{R})}.

Here c>0c>0 is a constant. The first inequality is due to Littlewood-Paley decomposition and Minkowski’s inequality. The proof of the second inequality is similar to [1, Lemma 2.4]. Specifically, by definition and (2.12),

Δjx2fLq()=(ϕ^(2js)is2exisg^(s))Lq(),\displaystyle\|\Delta_{j}\partial_{x}^{2}f\|_{L^{q}(\mathbb{R})}=\|\Big{(}\hat{\phi}(2^{-j}s)\frac{\sqrt{is}}{2}e^{-x\sqrt{is}}\hat{g}(s)\Big{)}^{\vee}\|_{L^{q}(\mathbb{R})},

where ϕ^(s)\hat{\phi}(s) is supported in some annulus 0<c1<|s|<c2<0<c_{1}<|s|<c_{2}<\infty with jϕ^(2js)=1\sum_{j\in\mathbb{Z}}\hat{\phi}(2^{-j}s)=1. Let ψ^(s)\hat{\psi}(s) be supported in some annulus with ψ^(s)=1\hat{\psi}(s)=1 on the support of ϕ^(s)\hat{\phi}(s). By Young’s inequality and scaling technique, we can write the above equation as

Δjx2fLq()\displaystyle\|\Delta_{j}\partial_{x}^{2}f\|_{L^{q}(\mathbb{R})} =(ψ^(2js)ϕ^(2js)is2exisg^(s))Lq()\displaystyle=\|\Big{(}\hat{\psi}(2^{-j}s)\hat{\phi}(2^{-j}s)\frac{\sqrt{is}}{2}e^{-x\sqrt{is}}\hat{g}(s)\Big{)}^{\vee}\|_{L^{q}(\mathbb{R})}
(ψ^(2js)is2exis)L1()(ϕ^(2js)g^(s))Lq()\displaystyle\leq\|\Big{(}\hat{\psi}(2^{-j}s)\frac{\sqrt{is}}{2}e^{-x\sqrt{is}}\Big{)}^{\vee}\|_{L^{1}(\mathbb{R})}\cdot\|\Big{(}\hat{\phi}(2^{-j}s)\hat{g}(s)\Big{)}^{\vee}\|_{L^{q}(\mathbb{R})}
2j/2(ψ^(s)is2ex2j/2is)L1()ΔjgLq().\displaystyle\leq 2^{j/2}\,\|\Big{(}\hat{\psi}(s)\frac{\sqrt{is}}{2}e^{-x2^{j/2}\sqrt{is}}\Big{)}^{\vee}\|_{L^{1}(\mathbb{R})}\cdot\|\Delta_{j}g\|_{L^{q}(\mathbb{R})}.

Hence, what remains to show is

(2.14) (ψ^(s)is2exis)L1()ecx.\displaystyle\|\Big{(}\hat{\psi}(s)\frac{\sqrt{is}}{2}e^{-x\sqrt{is}}\Big{)}^{\vee}\|_{L^{1}(\mathbb{R})}\lesssim e^{-cx}.

We have

(ψ^(s)is2exis)\displaystyle\Big{(}\hat{\psi}(s)\frac{\sqrt{is}}{2}e^{-x\sqrt{is}}\Big{)}^{\vee} =12πψ^(s)is2exiseistds\displaystyle=\frac{1}{\sqrt{2\pi}}\int_{-\infty}^{\infty}\hat{\psi}(s)\frac{\sqrt{is}}{2}e^{-x\sqrt{is}}e^{ist}\,{\rm d}s
=12π(1+t2)(1s2)(eist)ψ^(s)is2exisds\displaystyle=\frac{1}{\sqrt{2\pi}(1+t^{2})}\int_{-\infty}^{\infty}(1-\partial_{s}^{2})(e^{ist})\hat{\psi}(s)\frac{\sqrt{is}}{2}e^{-x\sqrt{is}}\,{\rm d}s
=12π(1+t2)(1s2)(ψ^(s)is2exis)eistds.\displaystyle=\frac{1}{\sqrt{2\pi}(1+t^{2})}\int_{-\infty}^{\infty}(1-\partial_{s}^{2})\Big{(}\hat{\psi}(s)\frac{\sqrt{is}}{2}e^{-x\sqrt{is}}\Big{)}e^{ist}\,{\rm d}s.

Note that Re(is)=12|s|\hbox{Re}(\sqrt{is})=\frac{1}{\sqrt{2}}\sqrt{|s|} no matter s>0s>0 or s<0s<0. By using the fact

|(1s2)(ψ^(s)is2exis)|ecx,\displaystyle\Big{|}(1-\partial_{s}^{2})\Big{(}\hat{\psi}(s)\frac{\sqrt{is}}{2}e^{-x\sqrt{is}}\Big{)}\Big{|}\lesssim e^{-cx},

we arrive at (2.14) and hence (2.13). Therefore,

0+x2fLq()qdx\displaystyle\int_{0}^{+\infty}\|\partial_{x}^{2}f\|_{L^{q}(\mathbb{R})}^{q}\,{\rm d}x 0+(Σj 2j/2ecx2j/2ΔjgLq())qdx\displaystyle\lesssim\int_{0}^{+\infty}\left(\Sigma_{j\in\mathbb{Z}}\ 2^{j/2}e^{-cx2^{j/2}}\|\Delta_{j}g\|_{L^{q}(\mathbb{R})}\right)^{q}\,{\rm d}x
Σj0+x1+1/q(2j/2ecx2j/2)q1+1/qdxΔjgLq()q\displaystyle\lesssim\Sigma_{j\in\mathbb{Z}}\int_{0}^{+\infty}x^{-1+1/q}\left(2^{j/2}e^{-cx2^{j/2}}\right)^{q-1+1/q}\,{\rm d}x\cdot\|\Delta_{j}g\|_{L^{q}(\mathbb{R})}^{q}
Σj 2q12jΔjgLq()qgB˙q,q1212qq.\displaystyle\lesssim\Sigma_{j\in\mathbb{Z}}\ 2^{\frac{q-1}{2}j}\ \|\Delta_{j}g\|_{L^{q}(\mathbb{R})}^{q}\approx\|g\|_{\dot{B}^{\frac{1}{2}-\frac{1}{2q}}_{q,q}}^{q}.

Note that the second inequality is by Hölder’s inequality (ajbj)q(ajq)(bjq/(q1))q1(\sum a_{j}b_{j})^{q}\leq(\sum a_{j}^{q})(\sum b_{j}^{q/(q-1)})^{q-1}, where

aj=(2j/2ecx2j/2)(q1+1/q)/qΔjgLq(),bj=(2j/2ecx2j/2)(q1)/q2,a_{j}=\left(2^{j/2}e^{-cx2^{j/2}}\right)^{(q-1+1/q)/q}\|\Delta_{j}g\|_{L^{q}(\mathbb{R})},\quad b_{j}=\left(2^{j/2}e^{-cx2^{j/2}}\right)^{(q-1)/q^{2}},

and bjq/(q1)x1/q\sum b_{j}^{q/(q-1)}\lesssim x^{-1/q} since supx>0j(x2j/2ecx2j/2)1/q1\sup_{x>0}\sum_{j\in\mathbb{Z}}(x2^{j/2}e^{-cx2^{j/2}})^{1/q}\lesssim 1, see [1, Lemma 2.35]. Hence, the second inequality in (2.11) is valid.

To prove the first inequality in (2.11), we use the following identity from (2.12),

(2.15) tg(s)=40+(2xis)exisx2tf(x,s)dx.\mathcal{F}_{t}g(s)=4\int_{0}^{+\infty}(2x\sqrt{is})e^{-x\sqrt{is}}\cdot\partial_{x}^{2}\mathcal{F}_{t}f(x,s)\,{\rm d}x.

Therefore, by Minkowski and Young’s inequalities and (2.14) (and the inequality above it), we have

ΔjgLq()\displaystyle\|\Delta_{j}g\|_{L^{q}(\mathbb{R})} =(ϕ^(2js)g^(s))Lq()\displaystyle=\|\Big{(}\hat{\phi}(2^{-j}s)\hat{g}(s)\Big{)}^{\vee}\|_{L^{q}(\mathbb{R})}
=40(ϕ^(2js)(2xis)exis(x2f^))dxLq()\displaystyle=\|4\int_{0}^{\infty}\Big{(}\hat{\phi}(2^{-j}s)(2x\sqrt{is})e^{-x\sqrt{is}}\cdot(\partial_{x}^{2}\hat{f})\Big{)}^{\vee}\,{\rm d}x\|_{L^{q}(\mathbb{R})}
0x(ϕ^(2js)isexis)L1()x2fLq()dx\displaystyle\lesssim\int_{0}^{\infty}x\left\|\big{(}\hat{\phi}(2^{-j}s)\sqrt{is}e^{-x\sqrt{is}}\big{)}^{\vee}\right\|_{L^{1}(\mathbb{R})}\cdot\|\partial_{x}^{2}f\|_{L^{q}(\mathbb{R})}\,{\rm d}x
0+x2j/2ecx2j/2x2fLq()dx.\displaystyle\lesssim\int_{0}^{+\infty}x2^{j/2}\,e^{-cx2^{j/2}}\|\partial_{x}^{2}f\|_{L^{q}(\mathbb{R})}\,{\rm d}x.

Thus,

Σj 2q12jΔjgLq()q\displaystyle\Sigma_{j\in\mathbb{Z}}\ 2^{\frac{q-1}{2}j}\ \|\Delta_{j}g\|_{L^{q}(\mathbb{R})}^{q} Σj 2q12j(0+x2j/2ecx2j/2x2fLq()dx)q\displaystyle\lesssim\Sigma_{j\in\mathbb{Z}}\ 2^{\frac{q-1}{2}j}\ \left(\int_{0}^{+\infty}x2^{j/2}\,e^{-cx2^{j/2}}\|\partial_{x}^{2}f\|_{L^{q}(\mathbb{R})}\,{\rm d}x\right)^{q}
0+(Σjx2j/2ecx2j/2)x2fLq()qdx\displaystyle\lesssim\int_{0}^{+\infty}\left(\Sigma_{j\in\mathbb{Z}}\ x2^{j/2}\,e^{-cx2^{j/2}}\right)\cdot\|\partial_{x}^{2}f\|_{L^{q}(\mathbb{R})}^{q}\,{\rm d}x
0+x2fLq()qdx.\displaystyle\lesssim\int_{0}^{+\infty}\|\partial_{x}^{2}f\|_{L^{q}(\mathbb{R})}^{q}\,{\rm d}x.

For the second inequality we have used Hölder inequality

(a(x)b(x)dx)q(a(x)qdx)(b(x)q/(q1)dx)q1,(\int a(x)b(x)\,{\rm d}x)^{q}\leq(\int a(x)^{q}\,{\rm d}x)(\int b(x)^{q/(q-1)}\,{\rm d}x)^{q-1},

where

a=(x2j/2ecx2j/2)1/qx2fLq(),b=(x2j/2ecx2j/2)11/q.a=\big{(}x2^{j/2}\,e^{-cx2^{j/2}}\big{)}^{1/q}\|\partial_{x}^{2}f\|_{L^{q}(\mathbb{R})},\quad b=\big{(}x2^{j/2}\,e^{-cx2^{j/2}}\big{)}^{1-1/q}.

For the third inequality we used supx>0jx2j/2ecx2j/21\sup_{x>0}\sum_{j\in\mathbb{Z}}x2^{j/2}e^{-cx2^{j/2}}\lesssim 1 again. Hence, the first inequality in (2.11) is proved. ∎

3. Derivation of Poisson kernel

In this section we derive the formula of Poisson kernel of system (1.1)–(1.2). We assume 𝒂(x,t)Cc(n1×)\bm{a}(x^{\prime},t)\in C_{c}^{\infty}(\mathbb{R}^{n-1}\times\mathbb{R}), 𝒖(x,t)\bm{u}(x,t) and p(x,t)p(x,t) (p\nabla p if n=2n=2) are smooth functions satisfying (1.1)–(1.2) and vanishing sufficiently fast near infinity. We will use Fourier transform to calculate the Poisson kernel, which allows us to express 𝒖\bm{u} and pp in terms of 𝒂\bm{a}.

When n3n\geq 3, it is reasonable to assume 𝒖(x,t)\bm{u}(x,t), p(x,t)p(x,t) vanish sufficiently fast near infinity, which makes the Fourier transforms of 𝒖\bm{u} and pp to be functions instead of distributions. However, we cannot expect pressure to vanish at infinity when n=2n=2, since Δp=0\Delta p=0 and the fundamental solution E(x)=12πlog|x|E(x)=-\frac{1}{2\pi}\log|x| for n=2n=2 has no spatial decay (see also the first term in the RHS of (3.13)). Hence, the n=2n=2 case is a bit subtle, and we need to treat it separately. Notice that 1𝒖\partial_{1}\bm{u}, 1p\partial_{1}p satisfy the Stokes equations (1.1) and Navier BC (1.2) with boundary value 1𝒂\partial_{1}\bm{a}. We can then express 1𝒖\partial_{1}\bm{u} and 1p\partial_{1}p in terms of 1𝒂\partial_{1}\bm{a} for n=2n=2. Hence, we can get the expression of 𝒖\bm{u} and pp in terms of 𝒂\bm{a} by the fact that 𝒖\bm{u} and p\nabla p vanish at infinity. The formula of pressure pp is subject to change up to a function f(t)f(t). In the end we will get the same form of the Poisson kernel for both n3n\geq 3 and n=2n=2.

We show the derivation of the Poisson kernel here for n3n\geq 3 and n=2n=2 is analogous using the above observation. We imitate Solonnikov’s treatment of the velocity for Stokes system in [17], and decompose 𝒖\bm{u} and pp into two parts

(3.1) 𝒖=𝒗+φ,p=tφ.\bm{u}=\bm{v}+\nabla\varphi,\quad p=-\partial_{t}\varphi.

Then 𝒗\bm{v} is solenoidal and solves the heat equation

t𝒗Δ𝒗=0,𝒗=0,\partial_{t}\bm{v}-\Delta\bm{v}=0,\quad\nabla\cdot\bm{v}=0,

while φ\varphi is harmonic

Δφ=0.\Delta\varphi=0.

Taking Fourier transform x,t\mathcal{F}_{x^{\prime},t} on the above heat equation and Laplace equation, we have

(is+|ξ|2)𝒗~n2𝒗~\displaystyle\left(is+|\xi^{\prime}|^{2}\right)\tilde{\bm{v}}-\partial_{n}^{2}\tilde{\bm{v}} =0,\displaystyle=0,
|ξ|2φ~n2φ~\displaystyle|\xi^{\prime}|^{2}\tilde{\varphi}-\partial_{n}^{2}\tilde{\varphi} =0,\displaystyle=0,

where 𝒗~,φ~\tilde{\bm{v}},\tilde{\varphi} are defined in (2.2). Solving the above ODEs in xn>0x_{n}>0 and removing the exponentially growing part, we obtain

𝒗~(ξ,xn,s)\displaystyle\tilde{\bm{v}}(\xi^{\prime},x_{n},s) =ϕ(ξ,s)exnis+|ξ|2,\displaystyle=\bm{\phi}(\xi^{\prime},s)\cdot e^{-x_{n}\sqrt{is+|\xi^{\prime}|^{2}}},
φ~(ξ,xn,s)\displaystyle\tilde{\varphi}(\xi^{\prime},x_{n},s) =ψ(ξ,s)exn|ξ|,\displaystyle=\psi(\xi^{\prime},s)\cdot e^{-x_{n}|\xi^{\prime}|},

for some function ϕ=(ϕ1,,ϕn)\bm{\phi}=\left(\phi_{1},\cdots,\phi_{n}\right) and ψ\psi. (Note ϕ\bm{\phi} and φ\varphi are different and are notations of [17].) By (3.1),

(3.2) 𝒖~\displaystyle\tilde{\bm{u}} =ϕ(ξ,s)exnis+|ξ|2+(iξ1,,iξn1,|ξ|)ψ(ξ,s)exn|ξ|,\displaystyle=\bm{\phi}(\xi^{\prime},s)\cdot e^{-x_{n}\sqrt{is+|\xi^{\prime}|^{2}}}+\left(i\xi_{1},\cdots,i\xi_{n-1},-|\xi^{\prime}|\right)\psi(\xi^{\prime},s)\cdot e^{-x_{n}|\xi^{\prime}|},
(3.3) p~\displaystyle\tilde{p} =isψ(ξ,s)exn|ξ|.\displaystyle=-is\psi(\xi^{\prime},s)\cdot e^{-x_{n}|\xi^{\prime}|}.

Next, taking Fourier transform of 𝒗=0\nabla\cdot\bm{v}=0 and the Navier boundary condition (1.2), we get that

h=1n1iξhϕh(ξ,s)is+|ξ|2ϕn(ξ,s)=0,\sum_{h=1}^{n-1}i\xi_{h}\,\phi_{h}(\xi^{\prime},s)-\sqrt{is+|\xi^{\prime}|^{2}}\,\phi_{n}(\xi^{\prime},s)=0,

and for 1kn11\leq k\leq n-1,

(is+|ξ|2+α)ϕk(ξ,s)iξk(|ξ|+α)ψ(ξ,s)\displaystyle-\left(\sqrt{is+|\xi^{\prime}|^{2}}+\alpha\right)\phi_{k}(\xi^{\prime},s)-i\xi_{k}\left(|\xi^{\prime}|+\alpha\right)\psi(\xi^{\prime},s) =a~k(ξ,s),\displaystyle=\tilde{a}_{k}(\xi^{\prime},s),
ϕn(ξ,s)|ξ|ψ(ξ,s)\displaystyle\phi_{n}(\xi^{\prime},s)-|\xi^{\prime}|\psi(\xi^{\prime},s) =a~n(ξ,s).\displaystyle=\tilde{a}_{n}(\xi^{\prime},s).

We solve the above system and get

(3.4) ψ(ξ,s)\displaystyle\psi(\xi^{\prime},s) =h=1n1iξha~h+(is+|ξ|2+αis+|ξ|2)a~nis|ξ|+α|ξ|(|ξ|is+|ξ|2),\displaystyle=\frac{\sum_{h=1}^{n-1}i\xi_{h}\tilde{a}_{h}+\left(is+|\xi^{\prime}|^{2}+\alpha\sqrt{is+|\xi^{\prime}|^{2}}\right)\tilde{a}_{n}}{-is|\xi^{\prime}|+\alpha|\xi^{\prime}|\left(|\xi^{\prime}|-\sqrt{is+|\xi^{\prime}|^{2}}\right)},
ϕk(ξ,s)\displaystyle\phi_{k}(\xi^{\prime},s) =a~kis+|ξ|2+αiξk(|ξ|+α)is+|ξ|2+αψ(ξ,s),\displaystyle=-\frac{\tilde{a}_{k}}{\sqrt{is+|\xi^{\prime}|^{2}}+\alpha}-\frac{i\xi_{k}\left(|\xi^{\prime}|+\alpha\right)}{\sqrt{is+|\xi^{\prime}|^{2}}+\alpha}\psi(\xi^{\prime},s),
ϕn(ξ,s)\displaystyle\phi_{n}(\xi^{\prime},s) =a~n+|ξ|ψ(ξ,s).\displaystyle=\tilde{a}_{n}+|\xi^{\prime}|\psi(\xi^{\prime},s).

Substituting the above expression back to (3.2), we get that for 1kn11\leq k\leq n-1,

(3.5) u~k(ξ,xn,s)=a~kis+|ξ|2+αexnis+|ξ|2iξkψ(ξ,s)(|ξ|+αis+|ξ|2+αexnis+|ξ|2exn|ξ|),u~n(ξ,xn,s)=a~nexnis+|ξ|2+|ξ|ψ(ξ,s)(exnis+|ξ|2exn|ξ|).\displaystyle\begin{split}\tilde{u}_{k}(\xi^{\prime},x_{n},s)&=-\frac{\tilde{a}_{k}}{\sqrt{is+|\xi^{\prime}|^{2}}+\alpha}e^{-x_{n}\sqrt{is+|\xi^{\prime}|^{2}}}\\ &\ \ \ -i\xi_{k}\psi(\xi^{\prime},s)\left(\frac{|\xi^{\prime}|+\alpha}{\sqrt{is+|\xi^{\prime}|^{2}}+\alpha}e^{-x_{n}\sqrt{is+|\xi^{\prime}|^{2}}}-e^{-x_{n}|\xi^{\prime}|}\right),\\ \tilde{u}_{n}(\xi^{\prime},x_{n},s)&=\tilde{a}_{n}e^{-x_{n}\sqrt{is+|\xi^{\prime}|^{2}}}+|\xi^{\prime}|\psi(\xi^{\prime},s)\left(e^{-x_{n}\sqrt{is+|\xi^{\prime}|^{2}}}-e^{-x_{n}|\xi^{\prime}|}\right).\end{split}

Taking inverse Fourier transform x,t1\mathcal{F}_{x^{\prime},t}^{-1} of equations (3.3) and (3.5), we get uk=Pkjaju_{k}=P_{kj}*a_{j} and p=gjajp=g_{j}*a_{j} for 1k,jn1\leq k,j\leq n. Observe that ψ(ξ,s)\psi(\xi^{\prime},s) can be split into two parts, the part with α=0\alpha=0 and the remaining one

(3.6) ψ=ψ0+ψα,\psi=\psi^{0}+\psi^{\alpha},

where

(3.7) ψ0=h=1n1iξha~h+(is+|ξ|2)a~nis|ξ|,ψα=αh=1n1iξha~h+is+|ξ|2|ξ|a~nis|ξ|(|ξ|+is+|ξ|2+α).\displaystyle\psi^{0}=\frac{\sum_{h=1}^{n-1}i\xi_{h}\tilde{a}_{h}+\left(is+|\xi^{\prime}|^{2}\right)\tilde{a}_{n}}{-is|\xi^{\prime}|},\ \ \ \psi^{\alpha}=\alpha\frac{-\sum_{h=1}^{n-1}i\xi_{h}\tilde{a}_{h}+\sqrt{is+|\xi^{\prime}|^{2}}|\xi^{\prime}|\tilde{a}_{n}}{-is|\xi^{\prime}|\left(|\xi^{\prime}|+\sqrt{is+|\xi^{\prime}|^{2}}+\alpha\right)}.

Hence, it seems natural to split the velocity 𝒖\bm{u} and pressure pp into two parts, where the first part is the same expression with α=0\alpha=0, and the second part is the difference. Namely,

(3.8) 𝒖=𝒖0+𝒖α,p=p0+pα,\displaystyle\bm{u}=\bm{u}^{0}+\bm{u}^{\alpha},\quad p=p^{0}+p^{\alpha},

where for 1kn11\leq k\leq n-1,

(3.9) u~k0(ξ,xn,s)=a~kexnis+|ξ|2is+|ξ|2iξk|ξ|ψ0(ξ,s)(exnis+|ξ|2is+|ξ|2exn|ξ||ξ|),u~n0(ξ,xn,s)=a~nexnis+|ξ|2+|ξ|ψ0(ξ,s)(exnis+|ξ|2exn|ξ|),\displaystyle\begin{split}\tilde{u}^{0}_{k}(\xi^{\prime},x_{n},s)&=-\tilde{a}_{k}\frac{e^{-x_{n}\sqrt{is+|\xi^{\prime}|^{2}}}}{\sqrt{is+|\xi^{\prime}|^{2}}}-i\xi_{k}|\xi^{\prime}|\psi^{0}(\xi^{\prime},s)\cdot\left(\frac{e^{-x_{n}\sqrt{is+|\xi^{\prime}|^{2}}}}{\sqrt{is+|\xi^{\prime}|^{2}}}-\frac{e^{-x_{n}|\xi^{\prime}|}}{|\xi^{\prime}|}\right),\\ \tilde{u}^{0}_{n}(\xi^{\prime},x_{n},s)&=\tilde{a}_{n}e^{-x_{n}\sqrt{is+|\xi^{\prime}|^{2}}}+|\xi^{\prime}|\psi^{0}(\xi^{\prime},s)\cdot\left(e^{-x_{n}\sqrt{is+|\xi^{\prime}|^{2}}}-e^{-x_{n}|\xi^{\prime}|}\right),\end{split}

and

(3.10) p~0(ξ,xn,s)=isψ0(ξ,s)exn|ξ|.\tilde{p}^{0}(\xi^{\prime},x_{n},s)=-is\psi^{0}(\xi^{\prime},s)e^{-x_{n}|\xi^{\prime}|}.

In the following Lemma 3.1, we give the expression of the Poisson kernel of α=0\alpha=0 case in physical variables (x,xn,t)(x^{\prime},x_{n},t) by taking inverse Fourier transform of equations (3.9) and (3.10). Derivation of p~α\tilde{p}^{\alpha}, 𝒖~α\tilde{\bm{u}}^{\alpha} will be given before Lemma 3.3.

Lemma 3.1.

Taking inverse Fourier transform of equations (3.9) and (3.10), we get

uk0=Pkj0aj,p0=gj0aj,u^{0}_{k}=P^{0}_{kj}*a_{j},\ \ \ p^{0}=g^{0}_{j}*a_{j},

for 1k,jn1\leq k,j\leq n. The followings are the expressions of Pkj0P^{0}_{kj} and gj0g^{0}_{j}. For 1kn1\leq k\leq n and 1jn11\leq j\leq n-1,

(3.11) Pkj0(x,t)=2δkjΓ(x,t)2(t)kjt+Γ(x,s)ds,P_{kj}^{0}(x,t)=-2\delta_{kj}\Gamma(x,t)-2\mathcal{H}(t)\partial_{k}\partial_{j}\int_{t}^{+\infty}\Gamma(x,s)\,{\rm d}s,

and for 1kn1\leq k\leq n and j=nj=n,

(3.12) Pkn0(x,t)=2δknnΓ(x,t)2(t)kn2t+Γ(x,s)ds2δ(t)kE(x),P_{kn}^{0}(x,t)=-2\delta_{kn}\partial_{n}\Gamma(x,t)-2\mathcal{H}(t)\partial_{k}\partial_{n}^{2}\int_{t}^{+\infty}\Gamma(x,s)\,{\rm d}s-2\delta(t)\partial_{k}E(x),

where \mathcal{H} is the Heaviside function. For 1jn11\leq j\leq n-1,

gj0(x,t)=2δ(t)jE(x),g_{j}^{0}(x,t)=2\delta(t)\partial_{j}E(x),

and

(3.13) gn0(x,t)=2δ(t)E(x)+2δ(t)n2E(x).g_{n}^{0}(x,t)=2\delta^{\prime}(t)E(x)+2\delta(t)\partial_{n}^{2}E(x).
Proof.

The main tools are Lemma 2.1 to Lemma 2.5. From (3.9) and (3.7), for 1k,jn11\leq k,j\leq n-1, we have

Pkj0(x,t)=\displaystyle P_{kj}^{0}(x,t)= (2π)n/2δkjx,t1(exnis+|ξ|2is+|ξ|2)\displaystyle\,(2\pi)^{-n/2}\delta_{kj}\,\mathcal{F}_{x^{\prime},t}^{-1}\left(-\frac{e^{-x_{n}\sqrt{is+|\xi^{\prime}|^{2}}}}{\sqrt{is+|\xi^{\prime}|^{2}}}\right)
+(2π)n/2kjx,t1(1is(exnis+|ξ|2is+|ξ|2exn|ξ||ξ|))\displaystyle+(2\pi)^{-n/2}\partial_{k}\partial_{j}\mathcal{F}_{x^{\prime},t}^{-1}\left(\frac{1}{is}\left(\frac{e^{-x_{n}\sqrt{is+|\xi^{\prime}|^{2}}}}{\sqrt{is+|\xi^{\prime}|^{2}}}-\frac{e^{-x_{n}|\xi^{\prime}|}}{|\xi^{\prime}|}\right)\right)
=\displaystyle= 2δkjΓ(x,t)+2kj(0tΓ(x,s)ds(t)E(x)).\displaystyle\,-2\delta_{kj}\,\Gamma(x,t)+2\partial_{k}\partial_{j}\left(\int_{0}^{t}\Gamma(x,s)\,{\rm d}s-\mathcal{H}(t)E(x)\right).

Note that in the second step above we use the following equality

1is(exnis+|ξ|2is+|ξ|2exn|ξ||ξ|)=(1is+πδ(s))(exnis+|ξ|2is+|ξ|2exn|ξ||ξ|),\frac{1}{is}\left(\frac{e^{-x_{n}\sqrt{is+|\xi^{\prime}|^{2}}}}{\sqrt{is+|\xi^{\prime}|^{2}}}-\frac{e^{-x_{n}|\xi^{\prime}|}}{|\xi^{\prime}|}\right)=(\frac{1}{is}+\pi\delta(s))\left(\frac{e^{-x_{n}\sqrt{is+|\xi^{\prime}|^{2}}}}{\sqrt{is+|\xi^{\prime}|^{2}}}-\frac{e^{-x_{n}|\xi^{\prime}|}}{|\xi^{\prime}|}\right),

and then apply t1(πδ(s)+1is)=2π(t)\mathcal{F}^{-1}_{t}\left(\pi\delta(s)+\frac{1}{is}\right)=\sqrt{2\pi}\mathcal{H}(t). This trick will be used repeatedly in the later calculation.

For 1kn11\leq k\leq n-1 and j=nj=n, we have

Pkn0(x,t)=\displaystyle P_{kn}^{0}(x,t)= (2π)n/2kx,t1(is+|ξ|2is(exnis+|ξ|2is+|ξ|2exn|ξ||ξ|))\displaystyle\,(2\pi)^{-n/2}\partial_{k}\mathcal{F}_{x^{\prime},t}^{-1}\left(\frac{is+|\xi^{\prime}|^{2}}{is}\left(\frac{e^{-x_{n}\sqrt{is+|\xi^{\prime}|^{2}}}}{\sqrt{is+|\xi^{\prime}|^{2}}}-\frac{e^{-x_{n}|\xi^{\prime}|}}{|\xi^{\prime}|}\right)\right)
=\displaystyle= (2π)n/2kx,t1(1is(is+|ξ|2exnis+|ξ|2|ξ|exn|ξ|)exn|ξ||ξ|)\displaystyle\,(2\pi)^{-n/2}\partial_{k}\mathcal{F}_{x^{\prime},t}^{-1}\left(\frac{1}{is}\left(\sqrt{is+|\xi^{\prime}|^{2}}e^{-x_{n}\sqrt{is+|\xi^{\prime}|^{2}}}-|\xi^{\prime}|e^{-x_{n}|\xi^{\prime}|}\right)-\frac{e^{-x_{n}|\xi^{\prime}|}}{|\xi^{\prime}|}\right)
(3.14) =\displaystyle=  2kn2(0tΓ(x,s)ds(t)E(x))2δ(t)kE(x).\displaystyle\,2\partial_{k}\partial_{n}^{2}\left(\int_{0}^{t}\Gamma(x,s)\,{\rm d}s-\mathcal{H}(t)E(x)\right)-2\delta(t)\partial_{k}E(x).

For k=nk=n and 1jn11\leq j\leq n-1, we have

Pnj0(x,t)=\displaystyle P_{nj}^{0}(x,t)= (2π)n/2jx,t1(1is(exnis+|ξ|2exn|ξ|))\displaystyle\,-(2\pi)^{-n/2}\partial_{j}\mathcal{F}_{x^{\prime},t}^{-1}\left(\frac{1}{is}\left(e^{-x_{n}\sqrt{is+|\xi^{\prime}|^{2}}}-e^{-x_{n}|\xi^{\prime}|}\right)\right)
=\displaystyle=  2nj(0tΓ(x,s)ds(t)E(x)),\displaystyle\,2\partial_{n}\partial_{j}\left(\int_{0}^{t}\Gamma(x,s)\,{\rm d}s-\mathcal{H}(t)E(x)\right),

and for k=j=nk=j=n,

Pnn0(x,t)\displaystyle P_{nn}^{0}(x,t) =(2π)n/2x,t1(exnis+|ξ|2is+|ξ|2is(exnis+|ξ|2exn|ξ|))\displaystyle=(2\pi)^{-n/2}\,\mathcal{F}_{x^{\prime},t}^{-1}\left(e^{-x_{n}\sqrt{is+|\xi^{\prime}|^{2}}}-\frac{is+|\xi^{\prime}|^{2}}{is}\left(e^{-x_{n}\sqrt{is+|\xi^{\prime}|^{2}}}-e^{-x_{n}|\xi^{\prime}|}\right)\right)
=2nΓ(x,t)+2n3(0tΓ(x,s)ds(t)E(x))2δ(t)nE(x).\displaystyle=-2\partial_{n}\Gamma(x,t)+2\partial_{n}^{3}\left(\int_{0}^{t}\Gamma(x,s)\,{\rm d}s-\mathcal{H}(t)E(x)\right)-2\delta(t)\partial_{n}E(x).

By (2.1), we obtain (3.11) and (3.12).

Analogously, from (3.10) and (3.7), for 1jn11\leq j\leq n-1, we have

gj0(x,t)=(2π)n/2jx,t1(1|ξ|exn|ξ|)=2δ(t)jE(x),\displaystyle g_{j}^{0}(x,t)=(2\pi)^{-n/2}\partial_{j}\mathcal{F}_{x^{\prime},t}^{-1}\left(\frac{1}{|\xi^{\prime}|}e^{-x_{n}|\xi^{\prime}|}\right)=2\delta(t)\partial_{j}E(x),

and for j=nj=n,

gn0(x,t)=(2π)n/2x,t1(is+|ξ|2|ξ|exn|ξ|)=2δ(t)E(x)+2δ(t)n2E(x).\displaystyle g_{n}^{0}(x,t)=(2\pi)^{-n/2}\mathcal{F}_{x^{\prime},t}^{-1}\left(\frac{is+|\xi^{\prime}|^{2}}{|\xi^{\prime}|}e^{-x_{n}|\xi^{\prime}|}\right)=2\delta^{\prime}(t)E(x)+2\delta(t)\partial_{n}^{2}E(x).

The above shows the gj0g_{j}^{0} formulas in Lemma 3.1. ∎

Now we derive the expressions of 𝒖~α\tilde{\bm{u}}^{\alpha} and p~α\tilde{p}^{\alpha} defined in (3.8). Denote b=is+|ξ|2b=\sqrt{is+|\xi^{\prime}|^{2}} for simplicity. Using the facts

1b+α=1b+αb(b+α),|ξ|+αb+α=|ξ|b+α(b|ξ|)b(b+α),-\frac{1}{b+\alpha}=-\frac{1}{b}+\frac{\alpha}{b(b+\alpha)},\quad\frac{|\xi^{\prime}|+\alpha}{b+\alpha}=\frac{|\xi^{\prime}|}{b}+\frac{\alpha(b-|\xi^{\prime}|)}{b(b+\alpha)},

and the splitting of ψ(ξ,s)\psi(\xi^{\prime},s) in (3.6), we have

p~α(ξ,xn,s)\displaystyle\tilde{p}^{\alpha}(\xi^{\prime},x_{n},s) =isψα(ξ,s)exn|ξ|\displaystyle=-is\psi^{\alpha}(\xi^{\prime},s)e^{-x_{n}|\xi^{\prime}|}
(3.15) =αh=1n1iξha~h+αb|ξ|a~n|ξ|+b+αexn|ξ||ξ|,\displaystyle=\frac{-\alpha\sum_{h=1}^{n-1}i\xi_{h}\tilde{a}_{h}+\alpha b|\xi^{\prime}|\tilde{a}_{n}}{|\xi^{\prime}|+b+\alpha}\cdot\frac{e^{-x_{n}|\xi^{\prime}|}}{|\xi^{\prime}|},

and for 1kn11\leq k\leq n-1,

u~kα(ξ,xn,s)\displaystyle\tilde{u}^{\alpha}_{k}(\xi^{\prime},x_{n},s) =αa~kb(b+α)exnbiξkψ0(ξ,s)α(b|ξ|)b(b+α)exnb\displaystyle=\frac{\alpha\tilde{a}_{k}}{b(b+\alpha)}e^{-x_{n}b}-i\xi_{k}\psi^{0}(\xi^{\prime},s)\frac{\alpha(b-|\xi^{\prime}|)}{b(b+\alpha)}e^{-x_{n}b}
iξkψα(ξ,s)(|ξ|+αb+αexnbexn|ξ|)\displaystyle\quad-i\xi_{k}\psi^{\alpha}(\xi^{\prime},s)\left(\frac{|\xi^{\prime}|+\alpha}{b+\alpha}e^{-x_{n}b}-e^{-x_{n}|\xi^{\prime}|}\right)
=αa~kb(b+α)exnb+αiξk(h=1n1iξha~h)(1(|ξ|+b+α)is(exnbbexn|ξ||ξ|)\displaystyle=\frac{\alpha\tilde{a}_{k}}{b(b+\alpha)}e^{-x_{n}b}+\alpha i\xi_{k}\left(\sum_{h=1}^{n-1}i\xi_{h}\tilde{a}_{h}\right)\cdot\Bigg{(}\frac{-1}{(|\xi^{\prime}|+b+\alpha)is}\bigg{(}\frac{e^{-x_{n}b}}{b}-\frac{e^{-x_{n}|\xi^{\prime}|}}{|\xi^{\prime}|}\bigg{)}
+exnb|ξ|(|ξ|+b+α)b(b+α))\displaystyle\ \ \ +\frac{e^{-x_{n}b}}{|\xi^{\prime}|(|\xi^{\prime}|+b+\alpha)b(b+\alpha)}\Bigg{)}
(3.16) +αiξka~n(b|ξ|(|ξ|+b+α)is(exnbbexn|ξ||ξ|)+exnb|ξ|(|ξ|+b+α)),\displaystyle\ \ \ +\alpha i\xi_{k}\tilde{a}_{n}\Bigg{(}\frac{b|\xi^{\prime}|}{(|\xi^{\prime}|+b+\alpha)is}\bigg{(}\frac{e^{-x_{n}b}}{b}-\frac{e^{-x_{n}|\xi^{\prime}|}}{|\xi^{\prime}|}\bigg{)}+\frac{e^{-x_{n}b}}{|\xi^{\prime}|(|\xi^{\prime}|+b+\alpha)}\Bigg{)},

and

u~nα(ξ,xn,s)\displaystyle\tilde{u}_{n}^{\alpha}(\xi^{\prime},x_{n},s) =|ξ|ψα(ξ,s)(exnbexn|ξ|)\displaystyle=|\xi^{\prime}|\psi^{\alpha}(\xi^{\prime},s)\left(e^{-x_{n}b}-e^{-x_{n}|\xi^{\prime}|}\right)
(3.17) =αh=1n1iξha~hαb|ξ|a~n(|ξ|+b+α)is(exnbexn|ξ|).\displaystyle=\frac{\alpha\sum_{h=1}^{n-1}i\xi_{h}\tilde{a}_{h}-\alpha b|\xi^{\prime}|\tilde{a}_{n}}{(|\xi^{\prime}|+b+\alpha)is}\left(e^{-x_{n}b}-e^{-x_{n}|\xi^{\prime}|}\right).

The following Lemma will be useful in later calculation.

Lemma 3.2.
1is(|ξ|+b+α)(exnbbexn|ξ||ξ|)\displaystyle\frac{1}{is(|\xi^{\prime}|+b+\alpha)}\left(\frac{e^{-x_{n}b}}{b}-\frac{e^{-x_{n}|\xi^{\prime}|}}{|\xi^{\prime}|}\right)
(3.18) =12|ξ|b0+eαz0+e(yn+z)|ξ|(e|xn+zyn|b+e(xn+z+yn)b)dyndz\displaystyle=-\frac{1}{2|\xi^{\prime}|b}\int_{0}^{+\infty}e^{-\alpha z}\int_{0}^{+\infty}e^{-(y_{n}+z)|\xi^{\prime}|}\left(e^{-|x_{n}+z-y_{n}|b}+e^{-(x_{n}+z+y_{n})b}\right)\,{\rm d}y_{n}\,{\rm d}z
+12|ξ|b0+eαz0+e(xn+yn+z)|ξ|(e|zyn|be(z+yn)b)dyndz,\displaystyle\quad+\frac{1}{2|\xi^{\prime}|b}\int_{0}^{+\infty}e^{-\alpha z}\int_{0}^{+\infty}e^{-(x_{n}+y_{n}+z)|\xi^{\prime}|}\left(e^{-|z-y_{n}|b}-e^{-(z+y_{n})b}\right)\,{\rm d}y_{n}\,{\rm d}z,

and

(3.19) 1is(|ξ|+b+α)(exnbexn|ξ|)=1is(|ξ|+b+α)n(exnbbexn|ξ||ξ|).\frac{1}{is(|\xi^{\prime}|+b+\alpha)}\left(e^{-x_{n}b}-e^{-x_{n}|\xi^{\prime}|}\right)=-\frac{1}{is(|\xi^{\prime}|+b+\alpha)}\partial_{n}\left(\frac{e^{-x_{n}b}}{b}-\frac{e^{-x_{n}|\xi^{\prime}|}}{|\xi^{\prime}|}\right).
Proof.

Notice that, for w,z>0w,z>0,

0+e(yn+w)|ξ|e|zyn|bdyn\displaystyle\quad\int_{0}^{+\infty}e^{-(y_{n}+w)|\xi^{\prime}|}e^{-|z-y_{n}|b}\,{\rm d}y_{n}
=0ze(yn+w)|ξ|e(zyn)bdyn+z+e(yn+w)|ξ|e(ynz)bdyn\displaystyle=\int_{0}^{z}e^{-(y_{n}+w)|\xi^{\prime}|}e^{-(z-y_{n})b}\,{\rm d}y_{n}+\int_{z}^{+\infty}e^{-(y_{n}+w)|\xi^{\prime}|}e^{-(y_{n}-z)b}\,{\rm d}y_{n}
=1b|ξ|(ezbz|ξ|1)ew|ξ|ezb+1|ξ|+bez(|ξ|+b)ew|ξ|ezb\displaystyle=\frac{1}{b-|\xi^{\prime}|}\left(e^{zb-z|\xi^{\prime}|}-1\right)e^{-w|\xi^{\prime}|}e^{-zb}+\frac{1}{|\xi^{\prime}|+b}e^{-z(|\xi^{\prime}|+b)}e^{-w|\xi^{\prime}|}e^{zb}
(3.20) =1b|ξ|ew|ξ|ezb+(1b|ξ|+1b+|ξ|)e(w+z)|ξ|,\displaystyle=-\frac{1}{b-|\xi^{\prime}|}e^{-w|\xi^{\prime}|}e^{-zb}+\left(\frac{1}{b-|\xi^{\prime}|}+\frac{1}{b+|\xi^{\prime}|}\right)e^{-(w+z)|\xi^{\prime}|},

and

(3.21) 0+e(yn+w)|ξ|e(yn+z)bdyn=1b+|ξ|ew|ξ|ezb.\int_{0}^{+\infty}e^{-(y_{n}+w)|\xi^{\prime}|}e^{-(y_{n}+z)b}\,{\rm d}y_{n}=\frac{1}{b+|\xi^{\prime}|}e^{-w|\xi^{\prime}|}e^{-zb}.

Combining (3.20) and (3.21), we obtain for w,z>0w,z>0

1isew|ξ|ezb\displaystyle\frac{1}{is}e^{-w|\xi^{\prime}|}e^{-zb} =12|ξ|0+e(yn+w)|ξ|(e|zyn|b+e(yn+z)b)dyn\displaystyle=-\frac{1}{2|\xi^{\prime}|}\int_{0}^{+\infty}e^{-(y_{n}+w)|\xi^{\prime}|}\left(e^{-|z-y_{n}|b}+e^{-(y_{n}+z)b}\right)\,{\rm d}y_{n}
(3.22) +bis|ξ|e(w+z)|ξ|,\displaystyle\quad+\frac{b}{is|\xi^{\prime}|}e^{-(w+z)|\xi^{\prime}|},

and

1isew|ξ|ezb\displaystyle\frac{1}{is}e^{-w|\xi^{\prime}|}e^{-zb} =12b0+e(yn+w)|ξ|(e|zyn|be(yn+z)b)dyn\displaystyle=-\frac{1}{2b}\int_{0}^{+\infty}e^{-(y_{n}+w)|\xi^{\prime}|}\left(e^{-|z-y_{n}|b}-e^{-(y_{n}+z)b}\right)\,{\rm d}y_{n}
(3.23) +1ise(w+z)|ξ|.\displaystyle\quad+\frac{1}{is}e^{-(w+z)|\xi^{\prime}|}.

Since

1is(|ξ|+b+α)(exnbbexn|ξ||ξ|)\displaystyle\quad\frac{1}{is(|\xi^{\prime}|+b+\alpha)}\left(\frac{e^{-x_{n}b}}{b}-\frac{e^{-x_{n}|\xi^{\prime}|}}{|\xi^{\prime}|}\right)
=0+eαz1is(1bez|ξ|e(xn+z)b1|ξ|e(xn+z)|ξ|ezb)dz,\displaystyle=\int_{0}^{+\infty}e^{-\alpha z}\frac{1}{is}\left(\frac{1}{b}e^{-z|\xi^{\prime}|}e^{-\left(x_{n}+z\right)b}-\frac{1}{|\xi^{\prime}|}e^{-(x_{n}+z)|\xi^{\prime}|}e^{-zb}\right)\,{\rm d}z,

and by (3.22) and (3.23),

1is(1bez|ξ|e(xn+z)b1|ξ|e(xn+z)|ξ|ezb)\displaystyle\quad\frac{1}{is}\left(\frac{1}{b}e^{-z|\xi^{\prime}|}e^{-\left(x_{n}+z\right)b}-\frac{1}{|\xi^{\prime}|}e^{-(x_{n}+z)|\xi^{\prime}|}e^{-zb}\right)
=12|ξ|b0+e(yn+z)|ξ|(e|xn+zyn|b+e(xn+z+yn)b)dyn\displaystyle=-\frac{1}{2|\xi^{\prime}|b}\int_{0}^{+\infty}e^{-(y_{n}+z)|\xi^{\prime}|}\left(e^{-|x_{n}+z-y_{n}|b}+e^{-(x_{n}+z+y_{n})b}\right)\,{\rm d}y_{n}
+12|ξ|b0+e(xn+yn+z)|ξ|(e|zyn|be(z+yn)b)dyn,\displaystyle\quad+\frac{1}{2|\xi^{\prime}|b}\int_{0}^{+\infty}e^{-(x_{n}+y_{n}+z)|\xi^{\prime}|}\left(e^{-|z-y_{n}|b}-e^{-(z+y_{n})b}\right)\,{\rm d}y_{n},

we arrive at (3.18). ∎

Lemma 3.3.

Taking inverse Fourier transform of equations (3), (3), (3), we get

ukα=αPkjαaj,pα=αgjαaj,u^{\alpha}_{k}=\alpha P^{\alpha}_{kj}*a_{j},\ \ \ p^{\alpha}=\alpha g^{\alpha}_{j}*a_{j},

for 1k,jn1\leq k,j\leq n. The following are the expressions of PkjαP^{\alpha}_{kj} and gjαg^{\alpha}_{j}. For 1kn1\leq k\leq n and 1jn11\leq j\leq n-1,

(3.24) Pkjα=2δkjI1+4δk<nkjI2+2kjI32kjI4,P_{kj}^{\alpha}=2\delta_{kj}I_{1}+4\delta_{k<n}\partial_{k}\partial_{j}I_{2}+2\partial_{k}\partial_{j}I_{3}-2\partial_{k}\partial_{j}I_{4},

with

(3.25) I1=0+eαzΓ(x,xn+z,t)dz,I2=0+0+eα(w+z)n1E(xy,z)Γ(y,xn+w+z,t)dydwdz,I3=0+eαz+nE(xy,yn+z)Γ(y,xn+zyn,t)dydz+0+eαz+nE(xy,yn+z)Γ(y,xn+z+yn,t)dydz,I4=0+eαz+nE(xy,xn+yn+z)Γ(y,zyn,t)dydz0+eαz+nE(xy,xn+yn+z)Γ(y,z+yn,t)dydz.\begin{split}I_{1}&=\int_{0}^{+\infty}e^{-\alpha z}\,\Gamma(x^{\prime},x_{n}+z,t)\,{\rm d}z,\\ I_{2}&=\int_{0}^{+\infty}\int_{0}^{+\infty}e^{-\alpha(w+z)}\int_{\mathbb{R}^{n-1}}E(x^{\prime}-y^{\prime},z)\Gamma(y^{\prime},x_{n}+w+z,t)\,{\rm d}y^{\prime}\,{\rm d}w\,{\rm d}z,\\ I_{3}&=\int_{0}^{+\infty}e^{-\alpha z}\int_{\mathbb{R}_{+}^{n}}E(x^{\prime}-y^{\prime},y_{n}+z)\Gamma(y^{\prime},x_{n}+z-y_{n},t)\,{\rm d}y\,{\rm d}z\\ &\quad+\int_{0}^{+\infty}e^{-\alpha z}\int_{\mathbb{R}_{+}^{n}}E(x^{\prime}-y^{\prime},y_{n}+z)\Gamma(y^{\prime},x_{n}+z+y_{n},t)\,{\rm d}y\,{\rm d}z,\\ I_{4}&=\int_{0}^{+\infty}e^{-\alpha z}\int_{\mathbb{R}_{+}^{n}}E(x^{\prime}-y^{\prime},x_{n}+y_{n}+z)\Gamma(y^{\prime},z-y_{n},t)\,{\rm d}y\,{\rm d}z\\ &\quad-\int_{0}^{+\infty}e^{-\alpha z}\int_{\mathbb{R}_{+}^{n}}E(x^{\prime}-y^{\prime},x_{n}+y_{n}+z)\Gamma(y^{\prime},z+y_{n},t)\,{\rm d}y\,{\rm d}z.\end{split}

For 1kn1\leq k\leq n and j=nj=n,

(3.26) Pknα=4δk<nknJ12knJ2+2knJ3,P_{kn}^{\alpha}=-4\delta_{k<n}\partial_{k}\partial_{n}J_{1}-2\partial_{k}\partial_{n}J_{2}+2\partial_{k}\partial_{n}J_{3},

with

(3.27) J1=0+eαzn1E(xy,z)Γ(y,xn+z,t)dydz,J2=0+eαz+nnE(xy,yn+z)Γ(y,xn+zyn,t)dydz+0+eαz+nnE(xy,yn+z)Γ(y,xn+z+yn,t)dydz,J3=0+eαz+nE(xy,xn+yn+z)nΓ(y,zyn,t)dydz0+eαz+nE(xy,xn+yn+z)nΓ(y,z+yn,t)dydz.\begin{split}J_{1}&=\int_{0}^{+\infty}e^{-\alpha z}\int_{\mathbb{R}^{n-1}}E(x^{\prime}-y^{\prime},z)\Gamma(y^{\prime},x_{n}+z,t)\,{\rm d}y^{\prime}\,{\rm d}z,\\ J_{2}&=\int_{0}^{+\infty}e^{-\alpha z}\int_{\mathbb{R}_{+}^{n}}\partial_{n}E(x^{\prime}-y^{\prime},y_{n}+z)\Gamma(y^{\prime},x_{n}+z-y_{n},t)\,{\rm d}y\,{\rm d}z\\ &\quad+\int_{0}^{+\infty}e^{-\alpha z}\int_{\mathbb{R}_{+}^{n}}\partial_{n}E(x^{\prime}-y^{\prime},y_{n}+z)\Gamma(y^{\prime},x_{n}+z+y_{n},t)\,{\rm d}y\,{\rm d}z,\\ J_{3}&=\int_{0}^{+\infty}e^{-\alpha z}\int_{\mathbb{R}_{+}^{n}}E(x^{\prime}-y^{\prime},x_{n}+y_{n}+z)\partial_{n}\Gamma(y^{\prime},z-y_{n},t)\,{\rm d}y\,{\rm d}z\\ &\quad-\int_{0}^{+\infty}e^{-\alpha z}\int_{\mathbb{R}_{+}^{n}}E(x^{\prime}-y^{\prime},x_{n}+y_{n}+z)\partial_{n}\Gamma(y^{\prime},z+y_{n},t)\,{\rm d}y\,{\rm d}z.\end{split}

For 1jn11\leq j\leq n-1,

gjα(x,t)=4j0+eαz(n1E(xy,xn+z)nΓ(y,z,t)dy)dz.g_{j}^{\alpha}(x,t)=4\partial_{j}\int_{0}^{+\infty}e^{-\alpha z}\left(\int_{\mathbb{R}^{n-1}}E(x^{\prime}-y^{\prime},x_{n}+z)\partial_{n}\Gamma(y^{\prime},z,t)\,{\rm d}y^{\prime}\right)\,{\rm d}z.

For j=nj=n,

gnα(x,t)=4n0+eαz(n1E(xy,xn+z)n2Γ(y,z,t)dy)dz.g_{n}^{\alpha}(x,t)=-4\partial_{n}\int_{0}^{+\infty}e^{-\alpha z}\left(\int_{\mathbb{R}^{n-1}}E(x^{\prime}-y^{\prime},x_{n}+z)\,\partial_{n}^{2}\Gamma(y^{\prime},z,t)\,{\rm d}y^{\prime}\right)\,{\rm d}z.
Proof.

The main tools are Lemma 2.1 to Lemma 2.5 and Lemma 3.2, and the following equation

(3.28) 1w+α=0+e(w+α)zdz,(Re(w)>0).\frac{1}{w+\alpha}=\int_{0}^{+\infty}e^{-(w+\alpha)z}\,{\rm d}z,\quad(\mbox{Re}(w)>0).

We first obtain the expression of gjαg_{j}^{\alpha} by inverting g~jα\tilde{g}_{j}^{\alpha}, the factor of a~j\tilde{a}_{j} in (3). For 1jn11\leq j\leq n-1, we have

gjα(x,t)\displaystyle g_{j}^{\alpha}(x,t) =(2π)n/2jx,t1(1|ξ|(|ξ|+b+α)exn|ξ|)\displaystyle=-(2\pi)^{-n/2}\partial_{j}\mathcal{F}_{x^{\prime},t}^{-1}\left(\frac{1}{|\xi^{\prime}|\left(|\xi^{\prime}|+b+\alpha\right)}e^{-x_{n}|\xi^{\prime}|}\right)
=(2π)n/2jx,t1(0+eαze(xn+z)|ξ||ξ|ezbdz)\displaystyle=-(2\pi)^{-n/2}\partial_{j}\mathcal{F}_{x^{\prime},t}^{-1}\left(\int_{0}^{+\infty}e^{-\alpha z}\cdot\frac{e^{-(x_{n}+z)|\xi^{\prime}|}}{|\xi^{\prime}|}\cdot e^{-zb}\,{\rm d}z\right)
=4j(0+eαzn1E(xy,xn+z)nΓ(y,z,t)dydz),\displaystyle=4\partial_{j}\left(\int_{0}^{+\infty}e^{-\alpha z}\int_{\mathbb{R}^{n-1}}E(x^{\prime}-y^{\prime},x_{n}+z)\partial_{n}\Gamma(y^{\prime},z,t)\,{\rm d}y^{\prime}\,{\rm d}z\right),

and for j=nj=n,

gnα(x,t)\displaystyle g_{n}^{\alpha}(x,t) =(2π)n/2x,t1(b|ξ|+b+αexn|ξ|)\displaystyle=(2\pi)^{-n/2}\mathcal{F}_{x^{\prime},t}^{-1}\left(\frac{b}{|\xi^{\prime}|+b+\alpha}\,e^{-x_{n}|\xi^{\prime}|}\right)
=(2π)n/2x,t1(0+eαze(xn+z)|ξ|bezbdz)\displaystyle=(2\pi)^{-n/2}\mathcal{F}_{x^{\prime},t}^{-1}\left(\int_{0}^{+\infty}e^{-\alpha z}\cdot e^{-(x_{n}+z)|\xi^{\prime}|}\cdot be^{-zb}\,{\rm d}z\right)
=40+eαzn1nE(xy,xn+z)n2Γ(y,z,t)dydz.\displaystyle=-4\int_{0}^{+\infty}e^{-\alpha z}\int_{\mathbb{R}^{n-1}}\partial_{n}E(x^{\prime}-y^{\prime},x_{n}+z)\,\partial_{n}^{2}\Gamma(y^{\prime},z,t)\,{\rm d}y^{\prime}\,{\rm d}z.

We next obtain the expression of PkjαP_{kj}^{\alpha} by inverting P~kjα\tilde{P}_{kj}^{\alpha}, the factor of a~j\tilde{a}_{j} in (3) and (3). For 1kn1\leq k\leq n and 1jn11\leq j\leq n-1, by (3.19) when k=nk=n, we have

Pkjα(x,t)\displaystyle P_{kj}^{\alpha}(x,t) =(2π)n/2δkjx,t1(1b(b+α)exnb)\displaystyle=(2\pi)^{-n/2}\delta_{kj}\,\mathcal{F}_{x^{\prime},t}^{-1}\left(\frac{1}{b\left(b+\alpha\right)}e^{-x_{n}b}\right)
+δk<n(2π)n/2kjx,t1(exnb|ξ|(b+α)(|ξ|+b+α)b)\displaystyle+\delta_{k<n}(2\pi)^{-n/2}\partial_{k}\partial_{j}\mathcal{F}_{x^{\prime},t}^{-1}\left(\frac{e^{-x_{n}b}}{|\xi^{\prime}|\left(b+\alpha\right)\left(|\xi^{\prime}|+b+\alpha\right)b}\right)
(2π)n/2kjx,t1(1is(|ξ|+b+α)(exnbbexn|ξ||ξ|)).\displaystyle-(2\pi)^{-n/2}\partial_{k}\partial_{j}\mathcal{F}_{x^{\prime},t}^{-1}\left(\frac{1}{is\left(|\xi^{\prime}|+b+\alpha\right)}\left(\frac{e^{-x_{n}b}}{b}-\frac{e^{-x_{n}|\xi^{\prime}|}}{|\xi^{\prime}|}\right)\right).

Using Lemmas 2.1, 2.4 and equations (3.18) and (3.28), we obtain (3.24). For 1kn1\leq k\leq n and j=nj=n, by (3.19) when k=nk=n, we have

Pknα(x,t)\displaystyle P_{kn}^{\alpha}(x,t) =δk<n(2π)n/2kx,t1(1|ξ|(|ξ|+b+α)exnb)\displaystyle=\delta_{k<n}(2\pi)^{-n/2}\partial_{k}\mathcal{F}_{x^{\prime},t}^{-1}\left(\frac{1}{|\xi^{\prime}|\left(|\xi^{\prime}|+b+\alpha\right)}e^{-x_{n}b}\right)
+(2π)n/2kx,t1(|ξ|bis(|ξ|+b+α)(exnbbexn|ξ||ξ|)).\displaystyle+(2\pi)^{-n/2}\partial_{k}\mathcal{F}_{x^{\prime},t}^{-1}\left(\frac{|\xi^{\prime}|b}{is\left(|\xi^{\prime}|+b+\alpha\right)}\left(\frac{e^{-x_{n}b}}{b}-\frac{e^{-x_{n}|\xi^{\prime}|}}{|\xi^{\prime}|}\right)\right).

Using Lemma 2.1–Corollary 2.5 and equations (3.18) and (3.28), we obtain (3.26). ∎

Lemma 3.4.

If 𝐚Cc1,0(n1×)\bm{a}\in C_{c}^{1,0}(\mathbb{R}^{n-1}\times\mathbb{R}), and 𝐮~(x,t)\tilde{\bm{u}}(x,t) is defined by (3.5), then

(3.29) (nu~kαu~k)(x,t)a~k(x,t),u~n(x,t)a~n(x,t),\displaystyle\begin{split}(\partial_{n}\tilde{u}_{k}-\alpha\tilde{u}_{k})(x,t)\to\tilde{a}_{k}(x^{\prime},t),\\ \tilde{u}_{n}(x,t)\to\tilde{a}_{n}(x^{\prime},t),\end{split}

in the L2L^{2} norm as xn0+x_{n}\to 0_{+}.

Proof.

For 𝒂(x,t)Cc1,0(n1×)\bm{a}(x^{\prime},t)\in C_{c}^{1,0}(\mathbb{R}^{n-1}\times\mathbb{R}), we have that 𝒂~(ξ,s)L2\tilde{\bm{a}}(\xi^{\prime},s)\in L^{2} and 𝒂~(ξ,s)|ξ|L2\tilde{\bm{a}}(\xi^{\prime},s)|\xi^{\prime}|\in L^{2}. By (3.5) we have for 1kn11\leq k\leq n-1,

(nu~kαu~k)(ξ,xn,s)\displaystyle(\partial_{n}\tilde{u}_{k}-\alpha\tilde{u}_{k})(\xi^{\prime},x_{n},s) =a~kexnis+|ξ|2+iξk(|ξ|+α)(exnis+|ξ|2exn|ξ|)ψ,\displaystyle=\tilde{a}_{k}e^{-x_{n}\sqrt{is+|\xi^{\prime}|^{2}}}+i\xi_{k}(|\xi^{\prime}|+\alpha)\left(e^{-x_{n}\sqrt{is+|\xi^{\prime}|^{2}}}-e^{-x_{n}|\xi^{\prime}|}\right)\psi,
u~n(ξ,xn,s)\displaystyle\tilde{u}_{n}(\xi^{\prime},x_{n},s) =a~nexnis+|ξ|2+|ξ|(exnis+|ξ|2exn|ξ|)ψ,\displaystyle=\tilde{a}_{n}e^{-x_{n}\sqrt{is+|\xi^{\prime}|^{2}}}+|\xi^{\prime}|\left(e^{-x_{n}\sqrt{is+|\xi^{\prime}|^{2}}}-e^{-x_{n}|\xi^{\prime}|}\right)\psi,

where ψ\psi is defined in (3.4). By dominated convergence theorem, we have that a~kexnis+|ξ|2\tilde{a}_{k}e^{-x_{n}\sqrt{is+|\xi^{\prime}|^{2}}} a~k\to\tilde{a}_{k} in L2L^{2}. Denote

L=exnis+|ξ|2exn|ξ|is+|ξ|2|ξ|.L=\frac{e^{-x_{n}\sqrt{is+|\xi^{\prime}|^{2}}}-e^{-x_{n}|\xi^{\prime}|}}{\sqrt{is+|\xi^{\prime}|^{2}}-|\xi^{\prime}|}.

It’s not hard to prove |L|xnexn|ξ||L|\leq x_{n}e^{-x_{n}|\xi^{\prime}|}, and hence |ξ|L|\xi^{\prime}|L is bounded. Notice that, using is=b2|ξ|2is=b^{2}-|\xi^{\prime}|^{2},

R1:\displaystyle R_{1}: =iξk(|ξ|+α)(exnis+|ξ|2exn|ξ|)ψ\displaystyle=i\xi_{k}(|\xi^{\prime}|+\alpha)\left(e^{-x_{n}\sqrt{is+|\xi^{\prime}|^{2}}}-e^{-x_{n}|\xi^{\prime}|}\right)\psi
=iξk(|ξ|+α)(h=1n1iξha~h+(αis+|ξ|2+|ξ|2)a~n)|ξ|(|ξ|+is+|ξ|2+α)L\displaystyle=\frac{-i\xi_{k}(|\xi^{\prime}|+\alpha)\left(\sum_{h=1}^{n-1}i\xi_{h}\tilde{a}_{h}+(\alpha\sqrt{is+|\xi^{\prime}|^{2}}+|\xi^{\prime}|^{2})\tilde{a}_{n}\right)}{|\xi^{\prime}|\left(|\xi^{\prime}|+\sqrt{is+|\xi^{\prime}|^{2}}+\alpha\right)}L
iξk(|ξ|+α)(|ξ|+is+|ξ|2)(exnis+|ξ|2exn|ξ|)a~n|ξ|(|ξ|+is+|ξ|2+α).\displaystyle\quad-\frac{i\xi_{k}(|\xi^{\prime}|+\alpha)\left(|\xi^{\prime}|+\sqrt{is+|\xi^{\prime}|^{2}}\right)\left(e^{-x_{n}\sqrt{is+|\xi^{\prime}|^{2}}}-e^{-x_{n}|\xi^{\prime}|}\right)\tilde{a}_{n}}{|\xi^{\prime}|\left(|\xi^{\prime}|+\sqrt{is+|\xi^{\prime}|^{2}}+\alpha\right)}.

We obtain that if xn1x_{n}\leq 1,

(3.30) |R1||𝒂~|+|𝒂~||ξ|.|R_{1}|\lesssim|\tilde{\bm{a}}|+|\tilde{\bm{a}}||\xi^{\prime}|.

By dominated convergence theorem, we have that R1R_{1} converge to 0 in L2L^{2}. Hence, we have nu~kαu~ka~k\partial_{n}\tilde{u}_{k}-\alpha\tilde{u}_{k}\to\tilde{a}_{k} in L2L^{2}. Similarly, we can prove u~na~n\tilde{u}_{n}\to\tilde{a}_{n} in L2L^{2}. ∎

4. Estimate of Poisson kernel

In this section, we give upper bound estimates of the Poisson kernel derived in Lemma 3.1 and Lemma 3.3, and extend its usage to non-smooth boundary value 𝒂\bm{a}.

Lemma 4.1.

Let t>0t>0. For 1kn1\leq k\leq n and 1jn1\leq j\leq n,

(4.1) |tmxlPkj0|1(|x|2+t)n+l+δjn2+m.\displaystyle|\partial_{t}^{m}\partial_{x}^{l}P^{0}_{kj}|\lesssim\frac{1}{(|x|^{2}+t)^{\frac{n+l+\delta_{jn}}{2}+m}}.

For 1kn1\leq k\leq n and 1jn11\leq j\leq n-1,

(4.2) |tmxlxniPkjα|1(|x|2+t)l+n12tm(δi=0+δi1(|x|2+t)12(xn2+t)i12).|\partial_{t}^{m}\partial_{x^{\prime}}^{l}\partial_{x_{n}}^{i}P_{kj}^{\alpha}|\lesssim\frac{1}{\left(|x|^{2}+t\right)^{\frac{l+n-1}{2}}t^{m}}\left(\delta_{i=0}+\frac{\delta_{i\geq 1}}{\left(|x|^{2}+t\right)^{\frac{1}{2}}\left(x_{n}^{2}+t\right)^{\frac{i-1}{2}}}\right).

For 1kn1\leq k\leq n and σ=δk<n\sigma=\delta_{k<n},

(4.3) |tmxlxniPknα|1(|x|2+t)l+nσ2(xn2+t)i+σ2tm.|\partial_{t}^{m}\partial_{x^{\prime}}^{l}\partial_{x_{n}}^{i}P_{kn}^{\alpha}|\lesssim\frac{1}{\left(|x|^{2}+t\right)^{\frac{l+n-\sigma}{2}}\left(x_{n}^{2}+t\right)^{\frac{i+\sigma}{2}}t^{m}}.
Remark 4.2.

When we evaluate the velocity 𝒖\bm{u} given by (3.8) and Lemmas 3.1 and 3.3, PknαP_{kn}^{\alpha} with 1kn11\leq k\leq n-1 are more likely the source of singularity for high-order derivatives, because one factor of (|x|2+t)12(|x|^{2}+t)^{\frac{1}{2}} becomes (xn2+t)12(x_{n}^{2}+t)^{\frac{1}{2}} in (4.3). Moreover, comparing (4.3) with the estimate of the Golovkin tensor in [16] or [9, (2.20)],

|tmxlxniKkn|1(|x|2+t)l+nσ2(xn2+t)i+σ2tm+12,1kn,|\partial_{t}^{m}\partial_{x^{\prime}}^{l}\partial_{x_{n}}^{i}K_{kn}|\lesssim\frac{1}{\left(|x|^{2}+t\right)^{\frac{l+n-\sigma}{2}}\left(x_{n}^{2}+t\right)^{\frac{i+\sigma}{2}}t^{m+\frac{1}{2}}},\quad 1\leq k\leq n,

the only difference between the estimates of KknK_{kn} and PknαP_{kn}^{\alpha} is the exponent of tt.

Proof.

For Pkj0(x,t)P^{0}_{kj}(x,t) given by (3.11) and (3.12), by

(4.4) |tmxlΓ(x,t)|1(|x|2+t)l+n2+me|x|210t,|\partial_{t}^{m}\partial_{x}^{l}\Gamma(x,t)|\lesssim\frac{1}{(|x|^{2}+t)^{\frac{l+n}{2}+m}}e^{-\frac{|x|^{2}}{10t}},

and for 2m+l+n32m+l+n\geq 3,

(4.5) |tmxltΓ(x,s)ds|1(|x|2+t)l+n22+m,\Big{|}\partial_{t}^{m}\partial_{x}^{l}\int_{t}^{\infty}\Gamma(x,s)\,{\rm d}s\Big{|}\lesssim\frac{1}{(|x|^{2}+t)^{\frac{l+n-2}{2}+m}},

we get (4.1).

Next, for PkjαP^{\alpha}_{kj}, j<nj<n, given in (3.24)-(3.25), we estimate I1I_{1}I4I_{4}. We have

|tmxlxniI1|\displaystyle|\partial_{t}^{m}\partial_{x^{\prime}}^{l}\partial_{x_{n}}^{i}I_{1}| 0+1(|x|2+z2+t)l+i+n2+mdz\displaystyle\lesssim\int_{0}^{+\infty}\frac{1}{\left(|x|^{2}+z^{2}+t\right)^{\frac{l+i+n}{2}+m}}\,{\rm d}z
1(|x|2+t)l+i+n12+m.\displaystyle\lesssim\frac{1}{\left(|x|^{2}+t\right)^{\frac{l+i+n-1}{2}+m}}.

Since

I2=0+0+eα(w+z)A(x,z,xn+w+z)dwdz,I_{2}=\int_{0}^{+\infty}\!\!\int_{0}^{+\infty}e^{-\alpha(w+z)}A(x^{\prime},z,x_{n}+w+z)\,{\rm d}w\,{\rm d}z,

by Lemma 2.6 and

(4.6) +ez210tdzt12,\int_{-\infty}^{+\infty}e^{-\frac{z^{2}}{10t}}\,{\rm d}z\lesssim\,t^{\frac{1}{2}},

we have that for l+n3l+n\geq 3

|tmxlxniI2|\displaystyle|\partial_{t}^{m}\partial_{x^{\prime}}^{l}\partial_{x_{n}}^{i}I_{2}| 0+0+1(|x|2+t)l+n22(xn2+t)i+12+mew2+z210tdwdz\displaystyle\lesssim\int_{0}^{+\infty}\!\!\int_{0}^{+\infty}\frac{1}{\left(|x|^{2}+t\right)^{\frac{l+n-2}{2}}\left(x_{n}^{2}+t\right)^{\frac{i+1}{2}+m}}e^{-\frac{w^{2}+z^{2}}{10t}}\,{\rm d}w\,{\rm d}z
t12(|x|2+t)l+n22(xn2+t)i2+m.\displaystyle\lesssim\frac{t^{\frac{1}{2}}}{\left(|x|^{2}+t\right)^{\frac{l+n-2}{2}}\left(x_{n}^{2}+t\right)^{\frac{i}{2}+m}}.

By integration by parts in variable yny_{n} (to gain decay in |x||x| when we apply Lemma 2.6), we have

xniI3\displaystyle\partial_{x_{n}}^{i}I_{3} =0+eαz+nniE(xy,yn+z)Γ(y,xn+zyn,t)dydz\displaystyle=\int_{0}^{+\infty}e^{-\alpha z}\int_{\mathbb{R}_{+}^{n}}\partial_{n}^{i}E(x^{\prime}-y^{\prime},y_{n}+z)\Gamma(y^{\prime},x_{n}+z-y_{n},t)\,{\rm d}y\,{\rm d}z
+(1)i0+eαz+nniE(xy,yn+z)Γ(y,xn+z+yn,t)dydz\displaystyle\quad+(-1)^{i}\int_{0}^{+\infty}e^{-\alpha z}\int_{\mathbb{R}_{+}^{n}}\partial_{n}^{i}E(x^{\prime}-y^{\prime},y_{n}+z)\Gamma(y^{\prime},x_{n}+z+y_{n},t)\,{\rm d}y\,{\rm d}z
+2δi2Σ0τi210+eαzn1n2τ+1E(xy,z)ni2τ2Γ(y,xn+z,t)dydz.\displaystyle\quad+2\delta_{i\geq 2}\Sigma_{0\leq\tau\leq\frac{i}{2}-1}\int_{0}^{+\infty}e^{-\alpha z}\int_{\mathbb{R}^{n-1}}\partial_{n}^{2\tau+1}E(x^{\prime}-y^{\prime},z)\partial_{n}^{i-2\tau-2}\Gamma(y^{\prime},x_{n}+z,t)\,{\rm d}y^{\prime}\,{\rm d}z.

Therefore, by Lemma 2.6 and (4.6), we have that for l+i+n4l+i+n\geq 4,

|tmxlxniI3|\displaystyle|\partial_{t}^{m}\partial_{x^{\prime}}^{l}\partial_{x_{n}}^{i}I_{3}| 0+0+e(xn+zyn)210t(|x|2+z2+t)l+i+n22t12+mdyndz\displaystyle\lesssim\int_{0}^{+\infty}\int_{0}^{+\infty}\frac{e^{-\frac{(x_{n}+z-y_{n})^{2}}{10t}}}{\left(|x|^{2}+z^{2}+t\right)^{\frac{l+i+n-2}{2}}t^{\frac{1}{2}+m}}\,{\rm d}y_{n}\,{\rm d}z
+0+0+e(xn+z+yn)210t(|x|2+z2+t)l+i+n22t12+mdyndz\displaystyle\quad+\int_{0}^{+\infty}\int_{0}^{+\infty}\frac{e^{-\frac{(x_{n}+z+y_{n})^{2}}{10t}}}{\left(|x|^{2}+z^{2}+t\right)^{\frac{l+i+n-2}{2}}t^{\frac{1}{2}+m}}\,{\rm d}y_{n}\,{\rm d}z
+δi20+ez210t(|x|2+t)l+n12(xn2+t)i12tmdz\displaystyle\quad+\delta_{i\geq 2}\int_{0}^{+\infty}\frac{e^{-\frac{z^{2}}{10t}}}{\left(|x|^{2}+t\right)^{\frac{l+n-1}{2}}\left(x_{n}^{2}+t\right)^{\frac{i-1}{2}}t^{m}}\,{\rm d}z
1(|x|2+t)l+i+n32tm+δi2(|x|2+t)l+n12(xn2+t)i22tm.\displaystyle\lesssim\frac{1}{\left(|x|^{2}+t\right)^{\frac{l+i+n-3}{2}}t^{m}}+\frac{\delta_{i\geq 2}}{\left(|x|^{2}+t\right)^{\frac{l+n-1}{2}}\left(x_{n}^{2}+t\right)^{\frac{i-2}{2}}t^{m}}.

Note that in the first line above we have used |yn+z|+|xn+zyn|xn+2z|y_{n}+z|+|x_{n}+z-y_{n}|\geq x_{n}+2z. For the two double integrals, we have first integrated in yny_{n} using (4.6), and then integrated in zz using l+i+n2>1l+i+n-2>1.

Similarly, we have that for l+i+n4l+i+n\geq 4,

|tmxlxniI4|\displaystyle|\partial_{t}^{m}\partial_{x^{\prime}}^{l}\partial_{x_{n}}^{i}I_{4}| 0+0+e(zyn)210t(|x|2+z2+t)l+i+n22t12+mdyndz\displaystyle\lesssim\int_{0}^{+\infty}\int_{0}^{+\infty}\frac{e^{-\frac{(z-y_{n})^{2}}{10t}}}{\left(|x|^{2}+z^{2}+t\right)^{\frac{l+i+n-2}{2}}t^{\frac{1}{2}+m}}\,{\rm d}y_{n}\,{\rm d}z
+0+0+e(z+yn)210t(|x|2+z2+t)l+i+n22t12+mdyndz\displaystyle\quad+\int_{0}^{+\infty}\int_{0}^{+\infty}\frac{e^{-\frac{(z+y_{n})^{2}}{10t}}}{\left(|x|^{2}+z^{2}+t\right)^{\frac{l+i+n-2}{2}}t^{\frac{1}{2}+m}}\,{\rm d}y_{n}\,{\rm d}z
1(|x|2+t)l+i+n32tm.\displaystyle\lesssim\frac{1}{\left(|x|^{2}+t\right)^{\frac{l+i+n-3}{2}}t^{m}}.

Therefore, by (3.24), we arrive at (4.2).

Now for PknαP^{\alpha}_{kn} given in (3.26)-(3.27), we estimate J1J_{1}J3J_{3}. By Lemma 2.6 and (4.6), we have that for l+n3l+n\geq 3

|tmxlxniJ1|\displaystyle|\partial_{t}^{m}\partial_{x^{\prime}}^{l}\partial_{x_{n}}^{i}J_{1}| exn210t0+1(|x|2+z2+t)l+n22(xn2+t)1+i2+mez210tdz\displaystyle\lesssim e^{-\frac{x_{n}^{2}}{10t}}\int_{0}^{+\infty}\frac{1}{\left(|x|^{2}+z^{2}+t\right)^{\frac{l+n-2}{2}}\left(x_{n}^{2}+t\right)^{\frac{1+i}{2}+m}}e^{-\frac{z^{2}}{10t}}\,{\rm d}z
(4.7) 1(|x|2+t)l+n22(xn2+t)i2+mexn210t.\displaystyle\lesssim\frac{1}{\left(|x|^{2}+t\right)^{\frac{l+n-2}{2}}\left(x_{n}^{2}+t\right)^{\frac{i}{2}+m}}e^{-\frac{x_{n}^{2}}{10t}}.

Analogous to the estimates of I3I_{3}, by integration by parts in variable yny_{n}, we have

xniJ2\displaystyle\partial_{x_{n}}^{i}J_{2} =0+eαz+nni+1E(xy,yn+z)Γ(y,xn+zyn,t)dydz\displaystyle=\int_{0}^{+\infty}e^{-\alpha z}\int_{\mathbb{R}_{+}^{n}}\partial_{n}^{i+1}E(x^{\prime}-y^{\prime},y_{n}+z)\Gamma(y^{\prime},x_{n}+z-y_{n},t)\,{\rm d}y\,{\rm d}z
(4.8) +(1)i0+eαz+nni+1E(xy,yn+z)Γ(y,xn+z+yn,t)dydz\displaystyle\quad+(-1)^{i}\int_{0}^{+\infty}e^{-\alpha z}\int_{\mathbb{R}_{+}^{n}}\partial_{n}^{i+1}E(x^{\prime}-y^{\prime},y_{n}+z)\Gamma(y^{\prime},x_{n}+z+y_{n},t)\,{\rm d}y\,{\rm d}z
+2δi2Σ0τi210+eαzn1n2τ+2E(xy,z)ni2τ2Γ(y,xn+z,t)dydz.\displaystyle\quad+2\delta_{i\geq 2}\Sigma_{0\leq\tau\leq\frac{i}{2}-1}\int_{0}^{+\infty}e^{-\alpha z}\int_{\mathbb{R}^{n-1}}\partial_{n}^{2\tau+2}E(x^{\prime}-y^{\prime},z)\partial_{n}^{i-2\tau-2}\Gamma(y^{\prime},x_{n}+z,t)\,{\rm d}y^{\prime}\,{\rm d}z.

By Lemma 2.6 and (4.6), we have that for l+i+n3l+i+n\geq 3,

|tmxlxniJ2|\displaystyle|\partial_{t}^{m}\partial_{x^{\prime}}^{l}\partial_{x_{n}}^{i}J_{2}| 0+0+e(xn+zyn)210t(|x|2+z2+t)l+i+n12t12+mdyndz\displaystyle\lesssim\int_{0}^{+\infty}\int_{0}^{+\infty}\frac{e^{-\frac{(x_{n}+z-y_{n})^{2}}{10t}}}{\left(|x|^{2}+z^{2}+t\right)^{\frac{l+i+n-1}{2}}t^{\frac{1}{2}+m}}\,{\rm d}y_{n}\,{\rm d}z
+0+0+e(xn+z+yn)210t(|x|2+z2+t)l+i+n12t12+mdyndz\displaystyle\quad+\int_{0}^{+\infty}\int_{0}^{+\infty}\frac{e^{-\frac{(x_{n}+z+y_{n})^{2}}{10t}}}{\left(|x|^{2}+z^{2}+t\right)^{\frac{l+i+n-1}{2}}t^{\frac{1}{2}+m}}\,{\rm d}y_{n}\,{\rm d}z
+δi20+ez210t(|x|2+t)l+n2(xn2+z2+t)i12tmdz\displaystyle\quad+\delta_{i\geq 2}\int_{0}^{+\infty}\frac{e^{-\frac{z^{2}}{10t}}}{\left(|x|^{2}+t\right)^{\frac{l+n}{2}}\left(x_{n}^{2}+z^{2}+t\right)^{\frac{i-1}{2}}t^{m}}\,{\rm d}z
(4.9) 1(|x|2+t)l+i+n22tm+δi2(|x|2+t)l+n2(xn2+t)i22tm.\displaystyle\lesssim\frac{1}{\left(|x|^{2}+t\right)^{\frac{l+i+n-2}{2}}t^{m}}+\frac{\delta_{i\geq 2}}{\left(|x|^{2}+t\right)^{\frac{l+n}{2}}\left(x_{n}^{2}+t\right)^{\frac{i-2}{2}}t^{m}}.

By integration by parts in variable yny_{n}, we have

J3\displaystyle J_{3} =0+eαz+nnE(xy,xn+yn+z)Γ(y,zyn,t)dydz\displaystyle=\int_{0}^{+\infty}e^{-\alpha z}\int_{\mathbb{R}_{+}^{n}}\partial_{n}E(x^{\prime}-y^{\prime},x_{n}+y_{n}+z)\Gamma(y^{\prime},z-y_{n},t)\,{\rm d}y\,{\rm d}z
+0+eαz+nnE(xy,xn+yn+z)Γ(y,z+yn,t)dydz\displaystyle\quad+\int_{0}^{+\infty}e^{-\alpha z}\int_{\mathbb{R}_{+}^{n}}\partial_{n}E(x^{\prime}-y^{\prime},x_{n}+y_{n}+z)\Gamma(y^{\prime},z+y_{n},t)\,{\rm d}y\,{\rm d}z
+20+eαzn1E(xy,xn+z)Γ(y,z,t)dydz.\displaystyle\quad+2\int_{0}^{+\infty}e^{-\alpha z}\int_{\mathbb{R}^{n-1}}E(x^{\prime}-y^{\prime},x_{n}+z)\Gamma(y^{\prime},z,t)\,{\rm d}y^{\prime}\,{\rm d}z.

By Lemma 2.6 and (4.6), we have that for l+i+n3l+i+n\geq 3,

|tmxlxniJ3|\displaystyle|\partial_{t}^{m}\partial_{x^{\prime}}^{l}\partial_{x_{n}}^{i}J_{3}| 0+0+e(zyn)210t(|x|2+z2+t)l+i+n12t12+mdyndz\displaystyle\lesssim\int_{0}^{+\infty}\int_{0}^{+\infty}\frac{e^{-\frac{(z-y_{n})^{2}}{10t}}}{\left(|x|^{2}+z^{2}+t\right)^{\frac{l+i+n-1}{2}}t^{\frac{1}{2}+m}}\,{\rm d}y_{n}\,{\rm d}z
+0+0+e(z+yn)210t(|x|2+z2+t)l+i+n12t12+mdyndz\displaystyle\quad+\int_{0}^{+\infty}\int_{0}^{+\infty}\frac{e^{-\frac{(z+y_{n})^{2}}{10t}}}{\left(|x|^{2}+z^{2}+t\right)^{\frac{l+i+n-1}{2}}t^{\frac{1}{2}+m}}\,{\rm d}y_{n}\,{\rm d}z
+0+ez210t(|x|2+t)l+i+n22t12+mdz\displaystyle\quad+\int_{0}^{+\infty}\frac{e^{-\frac{z^{2}}{10t}}}{\left(|x|^{2}+t\right)^{\frac{l+i+n-2}{2}}t^{\frac{1}{2}+m}}\,{\rm d}z
(4.10) 1(|x|2+t)l+i+n22tm.\displaystyle\lesssim\frac{1}{\left(|x|^{2}+t\right)^{\frac{l+i+n-2}{2}}t^{m}}.

Therefore, by (3.26), we have that for 1kn11\leq k\leq n-1,

(4.11) |tmxlxniPknα|1(|x|2+t)l+n12(xn2+t)i+12tm,|\partial_{t}^{m}\partial_{x^{\prime}}^{l}\partial_{x_{n}}^{i}P_{kn}^{\alpha}|\lesssim\frac{1}{\left(|x|^{2}+t\right)^{\frac{l+n-1}{2}}\left(x_{n}^{2}+t\right)^{\frac{i+1}{2}}t^{m}},

and for k=nk=n,

(4.12) |tmxlxniPnnα|1(|x|2+t)l+n2(xn2+t)i2tm.|\partial_{t}^{m}\partial_{x^{\prime}}^{l}\partial_{x_{n}}^{i}P_{nn}^{\alpha}|\lesssim\frac{1}{\left(|x|^{2}+t\right)^{\frac{l+n}{2}}\left(x_{n}^{2}+t\right)^{\frac{i}{2}}t^{m}}.

These show (4.3). ∎

Lemma 4.3.

Let 1kn1\leq k\leq n and 1<q<1<q<\infty. For all a(x,t)Cc(n1×)a(x^{\prime},t)\in C^{\infty}_{c}(\mathbb{R}^{n-1}\times\mathbb{R}), we have

(4.13) (Pkn0a)(x,xn,t)Lx,tqCaLx,tq,\|(P^{0}_{kn}*a)(x^{\prime},x_{n},t)\|_{L^{q}_{x^{\prime},t}}\leq C\|a\|_{L^{q}_{x^{\prime},t}},

where CC is independent of xn>0x_{n}>0. Hence the convolution Pkn0aP^{0}_{kn}*a has a unique extension to all a(x,t)Lq(n1×)a(x^{\prime},t)\in L^{q}(\mathbb{R}^{n-1}\times\mathbb{R}) that satisfies (4.13).

Proof.

Recall Pkn0(x,t)P^{0}_{kn}(x,t) is given by (3.12). It suffices to show (4.13) for aCca\in C^{\infty}_{c}. It is easy to check that

(4.14) nΓ(x,xn,t)Lx,t1+nE(x,xn)Lx1C,\|\partial_{n}\Gamma(x^{\prime},x_{n},t)\|_{L^{1}_{x^{\prime},t}}+\|\partial_{n}E(x^{\prime},x_{n})\|_{L^{1}_{x^{\prime}}}\leq C,

where the constant CC is independent of xnx_{n}. As for f(x,t)=(t)n3tΓ(x,s)𝑑sf(x,t)=\mathcal{H}(t)\partial^{3}_{n}\int_{t}^{\infty}\Gamma(x,s)ds, it’s not hard to see f(x,t)=1xnn+1f(xxn,1,txn2)f(x,t)=\frac{1}{x_{n}^{n+1}}f(\frac{x^{\prime}}{x_{n}},1,\frac{t}{x_{n}^{2}}). Thus,

f(x,xn,t)Lx,t1=f(x,1,t)Lx,t1C.\|f(x^{\prime},x_{n},t)\|_{L^{1}_{x^{\prime},t}}=\|f(x^{\prime},1,t)\|_{L^{1}_{x^{\prime},t}}\leq C.

Hence, by Young’s inequality, we obtain (4.13) for k=nk=n.

For 1kn11\leq k\leq n-1, by [18, page 29, Theorem 1], we can prove

(4.15) kE(x)xaLx,tqCaLx,tq.\|\partial_{k}E(x)*_{x^{\prime}}a\|_{L^{q}_{x^{\prime},t}}\leq C\|a\|_{L^{q}_{x^{\prime},t}}.

As for g(x,t)=(t)kn2tΓ(x,s)dsg(x,t)=\mathcal{H}(t)\partial_{k}\partial^{2}_{n}\int_{t}^{\infty}\Gamma(x,s)\,{\rm d}s with 1kn11\leq k\leq n-1, by (3.14), we have

x,t(g)\displaystyle\mathcal{F}_{x^{\prime},t}(g) =12(2π)n2iξkis(is+|ξ|2exnis+|ξ|2|ξ|exn|ξ|)\displaystyle=\frac{1}{2(2\pi)^{\frac{n}{2}}}\frac{i\xi_{k}}{is}\left(\sqrt{is+|\xi^{\prime}|^{2}}e^{-x_{n}\sqrt{is+|\xi^{\prime}|^{2}}}-|\xi^{\prime}|e^{-x_{n}|\xi^{\prime}|}\right)
=12(2π)n2iξkis+|ξ|2+|ξ|is+|ξ|2exnis+|ξ|2|ξ|exn|ξ|is+|ξ|2|ξ|\displaystyle=\frac{1}{2(2\pi)^{\frac{n}{2}}}\frac{i\xi_{k}}{\sqrt{is+|\xi^{\prime}|^{2}}+|\xi^{\prime}|}\cdot\frac{\sqrt{is+|\xi^{\prime}|^{2}}e^{-x_{n}\sqrt{is+|\xi^{\prime}|^{2}}}-|\xi^{\prime}|e^{-x_{n}|\xi^{\prime}|}}{\sqrt{is+|\xi^{\prime}|^{2}}-|\xi^{\prime}|}

which is bounded uniformly in xn>0x_{n}>0. Thus, the inequality

(4.16) gaLx,tqCaLx,tq\|g*a\|_{L^{q}_{x^{\prime},t}}\leq C\|a\|_{L^{q}_{x^{\prime},t}}

holds for q=2q=2. By the estimate (4.5) we can verify the conditions for [19, page 19, Theorem 3] are fulfilled, which shows that (4.16) holds for q2q\leq 2. Using duality argument we can get that (4.16) holds for q2q\geq 2. Combining (4.16) and (4.15), we arrive at (4.13). ∎

Lemma 4.4.

Suppose 𝐚(x,t)Lcq(n1×)\bm{a}(x^{\prime},t)\in L^{q}_{c}(\mathbb{R}^{n-1}\times\mathbb{R}), 1<q<1<q<\infty, and 𝐮(x,t)\bm{u}(x,t) is constructed through the Poisson kernel by (1.6). Denote Ω=supp(𝐚)\Omega=\hbox{supp}(\bm{a}). For any compact set K+n¯×K\subset\overline{\mathbb{R}^{n}_{+}}\times\mathbb{R}, we have

(4.17) 𝒖Lq(K)C(K,Ω)𝒂Lq(Ω).\displaystyle\|\bm{u}\|_{L^{q}(K)}\leq C(K,\Omega)\|\bm{a}\|_{L^{q}(\Omega)}.

Moreover, 𝐮\bm{u} is spatially differentiable to any order when xn>0x_{n}>0.

Proof.

Recall uk=Pkjaju_{k}=P_{kj}*a_{j} with Pkj=Pkj0+αPkjαP_{kj}=P^{0}_{kj}+\alpha P^{\alpha}_{kj}. By Lemma 4.3, we have that

Pkn0aLq(K)CaLq(Ω).\|P^{0}_{kn}*a\|_{L^{q}(K)}\leq C\|a\|_{L^{q}(\Omega)}.

By Lemmas 3.1 and 3.3, Pkj0P^{0}_{kj}, PkjαP^{\alpha}_{kj}, j<nj<n and PknαP^{\alpha}_{kn} are functions on +n¯×\overline{\mathbb{R}^{n}_{+}}\times\mathbb{R} that vanish for t0t\leq 0. By Lemma 4.1, we have for 1kn1\leq k\leq n, 1jn11\leq j\leq n-1, t>0t>0 and σ=δk<n\sigma=\delta_{k<n},

|Pkj0|1(|x|2+t)n2,|Pkjα|1(|x|2+t)n12,|Pknα|1(|x|2+t)nσ2tσ2.|P^{0}_{kj}|\lesssim\frac{1}{(|x^{\prime}|^{2}+t)^{\frac{n}{2}}},\ \ \ |P^{\alpha}_{kj}|\lesssim\frac{1}{(|x^{\prime}|^{2}+t)^{\frac{n-1}{2}}},\ \ \ |P^{\alpha}_{kn}|\lesssim\frac{1}{(|x^{\prime}|^{2}+t)^{\frac{n-\sigma}{2}}t^{\frac{\sigma}{2}}}.

Therefore, Pkj0,Pkjα,PknαLloc1(n1×)P_{kj}^{0},\,P_{kj}^{\alpha},\,P_{kn}^{\alpha}\in L^{1}_{\mathrm{loc}}(\mathbb{R}^{n-1}\times\mathbb{R}), uniformly in xn0x_{n}\geq 0.

By Young’s convolution inequality, (4.17) is proved. Also by Lemma 4.1, 𝒖\bm{u} is spatially differentiable to any order when xn>0x_{n}>0, and we have

(4.18) |xl𝒖|C(1+xnln1).|\partial_{x}^{l}\bm{u}|\leq C(1+x_{n}^{-l-n-1}).\qed
Proof of Theorem 1.1.

First suppose 𝒂Cc\bm{a}\in C_{c}^{\infty}. Similar to (4.18), 𝒖\bm{u}, pp are smooth functions for both variables xx and tt. Similar to the proof of Lemma 5.2, 𝒖\bm{u}, pp (p\nabla p if n=2n=2) vanish sufficient fast near infinity. Since 𝒖~,p~\tilde{\bm{u}},\tilde{p} are given in (3.5) and (3.3), it is not hard to verify they satisfy Stokes equations in Fourier space. Hence 𝒖\bm{u}, pp satisfy Stokes equations (1.1) in physical space. By Lemma 3.4 we know 𝒖\bm{u} satisfies Navier boundary condition (1.2). Hence, 𝒖\bm{u} is a weak solution satisfying (1.7). Then using Lemma 4.4 and a density argument, we get the general case for 𝒂Lcq\bm{a}\in L^{q}_{c}. ∎

5. Blow-up of the second derivative in LqL^{q}

In this section, we will prove Theorem 1.2. In the following we assume 1<q<1<q<\infty, since LqL^{q} blow-up in Q12+Q_{\frac{1}{2}}^{+} implies LL^{\infty} blow up in Q12+Q_{\frac{1}{2}}^{+}. Using a similar idea as that in [3], we set the boundary value

𝒂(x,t)=g(x,t)en,en=(0,,0,1),\bm{a}(x^{\prime},t)=g(x^{\prime},t)e_{n},\ \ \ e_{n}=(0,...,0,1),

for scalar function g(x,t)=g𝒮(x)g𝒯(t)g(x^{\prime},t)=g^{\mathcal{S}}(x^{\prime})g^{\mathcal{T}}(t), where g𝒮(x)g^{\mathcal{S}}(x^{\prime}) is a cutoff function

(5.1) g𝒮(x)Cc(B1(x0)),x0=(4,0,,0),g^{\mathcal{S}}(x^{\prime})\in C_{c}^{\infty}(B^{\prime}_{1}(x^{\prime}_{0})),\quad x^{\prime}_{0}=(-4,0,\cdots,0),

and

(5.2) suppg𝒯(t)(34,78),g𝒯(t)L()B˙q,q1212q().\mathrm{supp}\ g^{\mathcal{T}}(t)\subset(\frac{3}{4},\frac{7}{8}),\quad g^{\mathcal{T}}(t)\in L^{\infty}(\mathbb{R})\setminus\dot{B}^{\frac{1}{2}-\frac{1}{2q}}_{q,q}(\mathbb{R}).

There is an example of function g𝒯g^{\mathcal{T}} satisfying (5.2) in [3, Appendix C]. We will take g𝒮0g^{\mathcal{S}}\geq 0 for n3n\geq 3, and g𝒮=1g1𝒮g^{\mathcal{S}}=\partial_{1}g^{\mathcal{S}}_{1} with g1𝒮0g^{\mathcal{S}}_{1}\geq 0 for n=2n=2.

By Theorem 1.1, a velocity field satisfying Stokes equation (1.1) and Navier BC (1.2) with the given boundary data 𝒂\bm{a} is

(5.3) uk(x,t)=0tn1(Pkn0+αPknα)(ξ,xn,s)g𝒮(xξ)g𝒯(ts)dξdsuk0+αukα,\displaystyle\begin{split}u_{k}(x,t)&=\int_{0}^{t}\int_{\mathbb{R}^{n-1}}\big{(}P^{0}_{kn}+\alpha P^{\alpha}_{kn}\big{)}(\xi^{\prime},x_{n},s)g^{\mathcal{S}}(x^{\prime}-\xi^{\prime})g^{\mathcal{T}}(t-s)\,{\rm d}\xi^{\prime}\,{\rm d}s\\ &\equiv u_{k}^{0}+\alpha u_{k}^{\alpha},\end{split}

for 1kn1\leq k\leq n, where Pkn0P_{kn}^{0} and PknαP_{kn}^{\alpha} are defined in (3.12) and (3.26). By (3.26), we set

(5.4) ukα=4δk<nuk,1α2uk,2α+2uk,3α,u_{k}^{\alpha}=-4\delta_{k<n}u_{k,1}^{\alpha}-2u_{k,2}^{\alpha}+2u_{k,3}^{\alpha},

where for 131\leq\ell\leq 3,

(5.5) uk,α=0tn1knJ(ξ,xn,s)an(xξ,ts)dξds.u_{k,\ell}^{\alpha}=\int_{0}^{t}\int_{\mathbb{R}^{n-1}}\partial_{k}\partial_{n}J_{\ell}(\xi^{\prime},x_{n},s)a_{n}(x^{\prime}-\xi^{\prime},t-s)\,{\rm d}\xi^{\prime}\,{\rm d}s.

We give some identities which will be often used in this section. By the fact

(5.6) n2E=ΔxE,n2Γ=ΔxΓ+tΓ,\partial_{n}^{2}E=-\Delta_{x^{\prime}}E,\quad\partial_{n}^{2}\Gamma=-\Delta_{x^{\prime}}\Gamma+\partial_{t}\Gamma,

and (4.8) for n2J2\partial_{n}^{2}J_{2}, we obtain that for J1,J2,J3J_{1},J_{2},J_{3} defined in (3.27),

(5.7) n2J1=ΔxJ1+tJ1,n2J2=ΔxJ22ΔxJ1,n2J3=ΔxJ3.\displaystyle\partial_{n}^{2}J_{1}=-\Delta_{x^{\prime}}J_{1}+\partial_{t}J_{1},\ \ \ \partial_{n}^{2}J_{2}=-\Delta_{x^{\prime}}J_{2}-2\Delta_{x^{\prime}}J_{1},\ \ \ \partial_{n}^{2}J_{3}=-\Delta_{x^{\prime}}J_{3}.

The first identity in (5.7) will not be used.

Lemma 5.1.

For 𝐮\bm{u} defined in (5.3), we have |𝐮(x,t)|+|𝐮(x,t)|1|\bm{u}(x,t)|+|\nabla\bm{u}(x,t)|\lesssim 1, when |x|10|x|\leq 10 and 0<t20<t\leq 2.

Proof.

We first consider the case n3n\geq 3.

First, we estimate uk0u_{k}^{0}, 1kn1\leq k\leq n. Notice that by (5.6),

(5.8) n2tΓ(x,s)ds=Γ(x,t)ΔxtΓ(x,s)ds,\partial_{n}^{2}\int_{t}^{\infty}\Gamma(x,s)\,{\rm d}s=-\Gamma(x,t)-\Delta_{x^{\prime}}\int_{t}^{\infty}\Gamma(x,s)\,{\rm d}s,

and by (4.5),

(5.9) 02B20(|Γ|+|xtΓ(x,s)ds|)dxdt1.\displaystyle\int_{0}^{2}\int_{B^{\prime}_{20}}\left(|\Gamma|+\left|\partial_{x}\int_{t}^{\infty}\Gamma(x,s)\,{\rm d}s\right|\right)\,{\rm d}x^{\prime}\,{\rm d}t\lesssim 1.

By (4.14), (5.8)–(5.9) and integration by parts of the horizontal derivatives xm\partial_{x^{\prime}}^{m}, m1m\geq 1, it is easy to verify

(5.10) |𝒖0|+|𝒖0|1.|\bm{u}^{0}|+|\nabla\bm{u}^{0}|\lesssim 1.

Next we estimate ukαu^{\alpha}_{k}, 1kn1\leq k\leq n. Using (5.7) and integration by parts of the horizontal derivatives xm\partial_{x^{\prime}}^{m}, m1m\geq 1, we get

(5.11) |𝒖α|+|x𝒖α|02B20(|J1|+|nJ1|+|J2|+|nJ2|+|J3|+|nJ3|)dξds.|\bm{u}^{\alpha}|+|\partial_{x^{\prime}}\bm{u}^{\alpha}|\lesssim\int_{0}^{2}\int_{B^{\prime}_{20}}\left(|J_{1}|+|\partial_{n}J_{1}|+|J_{2}|+|\partial_{n}J_{2}|+|J_{3}|+|\partial_{n}J_{3}|\right)\,{\rm d}\xi^{\prime}\,{\rm d}s.

By estimates (4.7), (4.9) and (4.10), the RHS of the above inequality is bounded, i.e.,

(5.12) |𝒖α|+|x𝒖α|1.|\bm{u}^{\alpha}|+|\partial_{x^{\prime}}\bm{u}^{\alpha}|\lesssim 1.

Analogously for 1kn1\leq k\leq n, we have

(5.13) |nuk,2α|+|nuk,3α|1,|\partial_{n}u^{\alpha}_{k,2}|+|\partial_{n}u^{\alpha}_{k,3}|\lesssim 1,

where uk,αu_{k,\ell}^{\alpha} is defined in (5.5). Now we look at normal derivative of uk,1αu_{k,1}^{\alpha}, 1kn11\leq k\leq n-1,

nuk,1α=0tn1n2J1(ξ,xn,s)kan(xξ,ts)dξds.\partial_{n}u^{\alpha}_{k,1}=-\int_{0}^{t}\int_{\mathbb{R}^{n-1}}\partial_{n}^{2}J_{1}(\xi^{\prime},x_{n},s)\partial_{k}a_{n}(x^{\prime}-\xi^{\prime},t-s)\,{\rm d}\xi^{\prime}\,{\rm d}s.

We first integrate by parts in variable xnx_{n} to get

(5.14) nJ1=0+eαzn1E(xy,z)zΓ(y,xn+z,t)dydz=K1+αJ1K2,\displaystyle\partial_{n}J_{1}=\int_{0}^{+\infty}e^{-\alpha z}\int_{\mathbb{R}^{n-1}}E(x^{\prime}-y^{\prime},z)\partial_{z}\Gamma(y^{\prime},x_{n}+z,t)\,{\rm d}y^{\prime}\,{\rm d}z=-K_{1}+\alpha J_{1}-K_{2},

where

K1=n1E(y,0)Γ(xy,xn,t)dy,K_{1}=\int_{\mathbb{R}^{n-1}}E(y^{\prime},0)\Gamma(x^{\prime}-y^{\prime},x_{n},t)\,{\rm d}y^{\prime},
K2=0+eαzn1nE(xy,z)Γ(y,xn+z,t)dydz.K_{2}=\int_{0}^{+\infty}e^{-\alpha z}\int_{\mathbb{R}^{n-1}}\partial_{n}E(x^{\prime}-y^{\prime},z)\Gamma(y^{\prime},x_{n}+z,t)\,{\rm d}y^{\prime}\,{\rm d}z.

We can obtain that by (4.7),

(5.15) |nJ1|1|x|n2t12,|\partial_{n}J_{1}|\lesssim\frac{1}{|x|^{n-2}\cdot t^{\frac{1}{2}}},

by Lemma 2.6,

(5.16) |nxmK1|=14πt|xmA(x,0,0,t)||nexn24t|xn|x|n+m2t32exn24t,m0,|\partial_{n}\partial_{x^{\prime}}^{m}K_{1}|=\frac{1}{\sqrt{4\pi t}}|\partial_{x^{\prime}}^{m}A(x^{\prime},0,0,t)|\cdot|\partial_{n}e^{-\frac{x_{n}^{2}}{4t}}|\lesssim\frac{x_{n}}{|x|^{n+m-2}\cdot t^{\frac{3}{2}}}e^{-\frac{x_{n}^{2}}{4t}},\quad m\geq 0,

and by Young’s convolution inequality, (4.14) and (4.6)

nK2Lx1(n1)\displaystyle\|\partial_{n}K_{2}\|_{L^{1}_{x^{\prime}}(\mathbb{R}^{n-1})} 0+eαznE(x,z)Lx1(n1)nΓ(y,xn+z,t)Ly1(n1)dz\displaystyle\lesssim\int_{0}^{+\infty}e^{-\alpha z}\|\partial_{n}E(x^{\prime},z)\|_{L^{1}_{x^{\prime}}(\mathbb{R}^{n-1})}\|\partial_{n}\Gamma(y^{\prime},x_{n}+z,t)\|_{L^{1}_{y^{\prime}}(\mathbb{R}^{n-1})}\,{\rm d}z
(5.17) 0+11t1ez28tdzt12.\displaystyle\lesssim\int_{0}^{+\infty}1\cdot 1\cdot t^{-1}e^{-\frac{z^{2}}{8t}}\,{\rm d}z\lesssim t^{-\frac{1}{2}}.

Therefore, we have

(5.18) 02B20|nK1|+|nJ1|+|nK2|dξds1.\int_{0}^{2}\int_{B^{\prime}_{20}}|\partial_{n}K_{1}|+|\partial_{n}J_{1}|+|\partial_{n}K_{2}|\,{\rm d}\xi^{\prime}\,{\rm d}s\lesssim 1.

Hence, we get that for 1kn11\leq k\leq n-1,

(5.19) |nuk,1α(x,t)|1.|\partial_{n}u_{k,1}^{\alpha}(x,t)|\lesssim 1.

By (5.13) and (5.19), we have

(5.20) |n𝒖α|1.|\partial_{n}\bm{u}^{\alpha}|\lesssim 1.

Combining (5.10), (5.12), and (5.20), we have proved Lemma 5.1 for n3n\geq 3.

For n=2n=2, extra care is needed because we need l1l\geq 1 in Lemma 2.6. We can use the following estimate

(5.21) |B201J1(ξ,xn)g𝒮(xξ)dξ|=|B201J(ξ,xn)(g𝒮(xξ)g𝒮(x))dξ|B20|1J(ξ,xn)||ξ|Dg𝒮LdξB201|ξ|n2dξ1,\displaystyle\begin{split}&\ \ \ |\int_{B^{\prime}_{20}}\partial_{1}J_{1}(\xi^{\prime},x_{n})g^{\mathcal{S}}(x^{\prime}-\xi^{\prime})\,{\rm d}\xi^{\prime}|=|\int_{B^{\prime}_{20}}\partial_{1}J(\xi^{\prime},x_{n})(g^{\mathcal{S}}(x^{\prime}-\xi^{\prime})-g^{\mathcal{S}}(x^{\prime}))\,{\rm d}\xi^{\prime}|\\ &\lesssim\int_{B^{\prime}_{20}}|\partial_{1}J(\xi^{\prime},x_{n})|\cdot|\xi^{\prime}|\cdot\|Dg^{\mathcal{S}}\|_{L^{\infty}}\,{\rm d}\xi^{\prime}\lesssim\int_{B^{\prime}_{20}}\frac{1}{|\xi^{\prime}|^{n-2}}\,{\rm d}\xi^{\prime}\lesssim 1,\end{split}

on the estimate of JkJ_{k} with 1k31\leq k\leq 3 and K1K_{1}, and replacing (5.11) by

|𝒖α|+|x𝒖α|02B20k=13(|1Jk|+|1nJk|)dξds,|\bm{u}^{\alpha}|+|\partial_{x^{\prime}}\bm{u}^{\alpha}|\lesssim\int_{0}^{2}\int_{B^{\prime}_{20}}\sum_{k=1}^{3}\left(|\partial_{1}J_{k}|+|\partial_{1}\partial_{n}J_{k}|\right)\,{\rm d}\xi^{\prime}\,{\rm d}s,

and similarly for (5.18). The other parts are the same as n3n\geq 3. ∎

Lemma 5.2.

For 𝐮\bm{u} defined in (5.3), we have that for |x|>10|x|>10 and 0<t20<t\leq 2,

(5.22) |𝒖(x,t)|+|𝒖(x,t)|1|x|n1.|\bm{u}(x,t)|+|\nabla\bm{u}(x,t)|\lesssim\frac{1}{|x|^{n-1}}.
Proof.

By (4.1), (4.3), 1|xξ|1|x|\frac{1}{|x-\xi^{\prime}|}\lesssim\frac{1}{|x|} when ξB5(x0)\xi^{\prime}\in B_{5}^{\prime}(x^{\prime}_{0}), and 02t1/2dt1\int_{0}^{2}t^{-1/2}\,{\rm d}t\lesssim 1, we have

(5.23) |𝒖|+|𝒖0(x,t)|+|x𝒖α|+|nunα|1|x|n1.|\bm{u}|+|\nabla\bm{u}^{0}(x,t)|+|\partial_{x^{\prime}}\bm{u}^{\alpha}|+|\partial_{n}u_{n}^{\alpha}|\lesssim\frac{1}{|x|^{n-1}}.

Now we come to the estimate of nukα\partial_{n}u_{k}^{\alpha} with 1kn11\leq k\leq n-1. By (4.9) and (4.10), we have

(5.24) |nuk,2α|+|nuk,3α|1|x|n1.|\partial_{n}u_{k,2}^{\alpha}|+|\partial_{n}u_{k,3}^{\alpha}|\lesssim\frac{1}{|x|^{n-1}}.

By Lemma 2.6, we have

(5.25) |knK2|1|x|nt12.|\partial_{k}\partial_{n}K_{2}|\lesssim\frac{1}{|x|^{n}\cdot t^{\frac{1}{2}}}.

By the decomposition of nJ1\partial_{n}J_{1} in (5.14) and (4.7), (5.16), (5.25), we have that for 1kn11\leq k\leq n-1

(5.26) |nuk,1α|1|x|n1.|\partial_{n}u_{k,1}^{\alpha}|\lesssim\frac{1}{|x|^{n-1}}.

Thus, we have proved this lemma. ∎

Thus, by Lemma 5.1 and 5.2, we get the finite global energy (1.9) of 𝒖\bm{u} for n3n\geq 3. For n=2n=2, by moving the derivative 1\partial_{1} in g𝒮(x)=1g1𝒮g^{\mathcal{S}}(x^{\prime})=\partial_{1}g^{\mathcal{S}}_{1} to PknP_{kn} in (5.3), we are able to get a stronger decay estimate, for |x|>10|x|>10 and 0<t20<t\leq 2,

(5.27) |𝒖(x,t)|+|𝒖(x,t)|1|x|n.|\bm{u}(x,t)|+|\nabla\bm{u}(x,t)|\lesssim\frac{1}{|x|^{n}}.

Thus, it has finite energy (1.9). We leave the details to the interested readers. Now, we show the blow-up of second derivative of the solution in Lq(Q12+)L^{q}(Q_{\frac{1}{2}}^{+}), 1<q<1<q<\infty.

Lemma 5.3.

For 𝐮\bm{u} defined in (5.3) and 1<q<1<q<\infty, we have

(5.28) n2u1Lq(Q12+)=.\|\partial^{2}_{n}u_{1}\|_{L^{q}(Q_{\frac{1}{2}}^{+})}=\infty.
Proof.

For (x,t)Q1+(x,t)\in Q^{+}_{1}, we can obtain that by (4.1),

(5.29) |n2𝒖0|1,|\partial_{n}^{2}\bm{u}^{0}|\lesssim 1,

and by estimate (4.9) and (4.10), both with i=3i=3,

(5.30) |n2u1,2α|+|n2u1,3α|1.|\partial_{n}^{2}u_{1,2}^{\alpha}|+|\partial_{n}^{2}u_{1,3}^{\alpha}|\lesssim 1.

Next we work on n2u1,1α\partial^{2}_{n}u^{\alpha}_{1,1}

n2u1,1α=0tB1(x0)1n3J1(xξ,xn,s)an(ξ,ts)dξds.\partial^{2}_{n}u^{\alpha}_{1,1}=\int_{0}^{t}\int_{B^{\prime}_{1}(x_{0}^{\prime})}\partial_{1}\partial_{n}^{3}J_{1}(x^{\prime}-\xi^{\prime},x_{n},s)a_{n}(\xi^{\prime},t-s)\,{\rm d}\xi^{\prime}\,{\rm d}s.

We still use the decomposition (5.14) to get

n3J1=n2K1+αn2J1n2K2.\partial_{n}^{3}J_{1}=-\partial_{n}^{2}K_{1}+\alpha\partial_{n}^{2}J_{1}-\partial_{n}^{2}K_{2}.

For n2J1\partial_{n}^{2}J_{1}, by (5.19), we know that for (x,t)Q1+(x,t)\in Q_{1}^{+},

(5.31) |0tB1(x0)1n2J1(xξ,xn,s)an(ξ,ts)dξds|=|nu1,1α|1.\Big{|}\int_{0}^{t}\int_{B^{\prime}_{1}(x_{0}^{\prime})}\partial_{1}\partial^{2}_{n}J_{1}(x^{\prime}-\xi^{\prime},x_{n},s)a_{n}(\xi^{\prime},t-s)\,{\rm d}\xi^{\prime}\,{\rm d}s\Big{|}=|\partial_{n}u^{\alpha}_{1,1}|\lesssim 1.

Moreover, for n2K2\partial_{n}^{2}K_{2}, using the fact that 2nE(x,xn)δ(x)-2\partial_{n}E(x^{\prime},x_{n})\to\delta(x^{\prime}) as xn0+x_{n}\to 0^{+}, we have

limz0+n1nE(xy,z)Γ(y,xn+z,t)dy=12Γ(x,t).\lim_{z\rightarrow 0^{+}}\int_{\mathbb{R}^{n-1}}\partial_{n}E(x^{\prime}-y^{\prime},z)\Gamma(y^{\prime},x_{n}+z,t)\,{\rm d}y^{\prime}=-\frac{1}{2}\Gamma(x,t).

Thus, by integration by parts of variable zz, we have

nK2=12Γ(x,t)+αK2K3,\partial_{n}K_{2}=\frac{1}{2}\Gamma(x,t)+\alpha K_{2}-K_{3},

where

K3=0+eαzn1n2E(xy,z)Γ(y,xn+z,t)dydz.K_{3}=\int_{0}^{+\infty}e^{-\alpha z}\int_{\mathbb{R}^{n-1}}\partial_{n}^{2}E(x^{\prime}-y^{\prime},z)\Gamma(y^{\prime},x_{n}+z,t)\,{\rm d}y^{\prime}\,{\rm d}z.

By Lemma 2.6 and (4.6), we have

(5.32) |1nK3|1|x|n+1t12.|\partial_{1}\partial_{n}K_{3}|\lesssim\frac{1}{|x|^{n+1}\cdot t^{\frac{1}{2}}}.

Therefore, by (4.4), (5.25), (5.32), and |xξ|3|x^{\prime}-\xi^{\prime}|\geq 3 for ξsuppg𝒮\xi^{\prime}\in\operatorname{supp}g^{\mathcal{S}}, we are able to obtain

(5.33) |0tB1(x0)1n2K2(xξ,xn,s)an(ξ,ts)dξds|1.\Big{|}\int_{0}^{t}\int_{B^{\prime}_{1}(x_{0}^{\prime})}\partial_{1}\partial^{2}_{n}K_{2}(x^{\prime}-\xi^{\prime},x_{n},s)a_{n}(\xi^{\prime},t-s)\,{\rm d}\xi^{\prime}\,{\rm d}s\Big{|}\lesssim 1.

Next, we denote the leading blow-up term from n2K1\partial_{n}^{2}K_{1}:

(5.34) H(x,t)=0tB1(x0)1n2K1(xξ,xn,s)an(ξ,ts)dξds,H(x,t)=\int_{0}^{t}\int_{B^{\prime}_{1}(x_{0}^{\prime})}\partial_{1}\partial_{n}^{2}K_{1}(x^{\prime}-\xi^{\prime},x_{n},s)a_{n}(\xi^{\prime},t-s)\,{\rm d}\xi^{\prime}\,{\rm d}s,

where

1n2K1(x,t)=n1E(y,0)1n2Γ(xy,xn,t)dy=p.v.n11E(y,0)n2Γ(xy,xn,t)dy,\partial_{1}\partial^{2}_{n}K_{1}(x,t)=\int_{\mathbb{R}^{n-1}}E(y^{\prime},0)\partial_{1}\partial_{n}^{2}\Gamma(x^{\prime}-y^{\prime},x_{n},t)\,{\rm d}y^{\prime}=\mathrm{p.v.}\!\int_{\mathbb{R}^{n-1}}\partial_{1}E(y^{\prime},0)\partial_{n}^{2}\Gamma(x^{\prime}-y^{\prime},x_{n},t)\,{\rm d}y^{\prime},

using limε0yn1,|y|=εE(y,0)n2Γ(xy,xn,t)e1yεdSy=0\lim_{\varepsilon\to 0}\int_{y^{\prime}\in\mathbb{R}^{n-1},|y^{\prime}|=\varepsilon}E(y^{\prime},0)\partial_{n}^{2}\Gamma(x^{\prime}-y^{\prime},x_{n},t)e_{1}\cdot\frac{y^{\prime}}{\varepsilon}\,dS_{y^{\prime}}=0. By Lemma 2.7, we can decompose HH into

H=H1+H2,H=H_{1}+H_{2},

where

H1=0tB1(x0)n2Γ1(xn,s)1E(xξ,0)an(ξ,ts)dξds,H_{1}=\int_{0}^{t}\int_{B^{\prime}_{1}(x_{0}^{\prime})}\partial_{n}^{2}\Gamma_{1}(x_{n},s)\partial_{1}E(x^{\prime}-\xi^{\prime},0)a_{n}(\xi^{\prime},t-s)\,{\rm d}\xi^{\prime}\,{\rm d}s,

Γ1\Gamma_{1} is the 1D heat kernel, and

H2=1n(4π)n2|B1|0tB1(x0)n2(exn24s)Err(xξ,s)1|xξ|nan(ξ,ts)dξds.H_{2}=-\frac{1}{n(4\pi)^{\frac{n}{2}}|B_{1}|}\int_{0}^{t}\int_{B^{\prime}_{1}(x_{0}^{\prime})}\partial_{n}^{2}\big{(}e^{-\frac{x_{n}^{2}}{4s}}\big{)}Err(x^{\prime}-\xi^{\prime},s)\frac{1}{|x^{\prime}-\xi^{\prime}|^{n}}a_{n}(\xi^{\prime},t-s)\,{\rm d}\xi^{\prime}\,{\rm d}s.

For (x,t)Q1+(x,t)\in Q_{1}^{+},

|H2|\displaystyle|H_{2}| |0tn2(exn24s)ds|0t1sexn28sdsln(2+1xn2).\displaystyle\lesssim\Big{|}\int_{0}^{t}\partial_{n}^{2}\big{(}e^{-\frac{x_{n}^{2}}{4s}}\big{)}\,{\rm d}s\Big{|}\lesssim\int_{0}^{t}\frac{1}{s}e^{-\frac{x_{n}^{2}}{8s}}\,{\rm d}s\lesssim\ln(2+\frac{1}{x_{n}^{2}}).

Hence, we have that for 1<q<1<q<\infty,

(5.35) H2Lq(Q1+)1.\|H_{2}\|_{L^{q}(Q_{1}^{+})}\lesssim 1.

Next, we factor H1H_{1} as

(5.36) H1=ψ(x)θ(xn,t),H_{1}=\psi(x^{\prime})\theta(x_{n},t),

where

(5.37) θ(xn,t)=0tn2Γ1(xn,s)g𝒯(ts)ds,\theta(x_{n},t)=\int_{0}^{t}\partial_{n}^{2}\Gamma_{1}(x_{n},s)g^{\mathcal{T}}(t-s)\,{\rm d}s,

for n3n\geq 3,

ψ(x)=n11E(xξ,0)g𝒮(ξ)dξ=1n|B1|n1x1ξ1|xξ|ng𝒮(ξ)dξ,\psi(x^{\prime})=\int_{\mathbb{R}^{n-1}}\partial_{1}E(x^{\prime}-\xi^{\prime},0)g^{\mathcal{S}}(\xi^{\prime})\,{\rm d}\xi^{\prime}=-\frac{1}{n|B_{1}|}\int_{\mathbb{R}^{n-1}}\frac{x_{1}-\xi_{1}}{|x^{\prime}-\xi^{\prime}|^{n}}\cdot g^{\mathcal{S}}(\xi^{\prime})\,{\rm d}\xi^{\prime},

and for n=2n=2,

ψ(x)=1n|B1|53x1ξ1|x1ξ1|21g1𝒮(ξ)dξ=1n|B1|531(x1ξ1)2g1𝒮(ξ)dξ.\psi(x^{\prime})=-\frac{1}{n|B_{1}|}\int_{-5}^{-3}\frac{x_{1}-\xi_{1}}{|x_{1}-\xi_{1}|^{2}}\cdot\partial_{1}g^{\mathcal{S}}_{1}(\xi^{\prime})\,{\rm d}\xi^{\prime}=\frac{1}{n|B_{1}|}\int_{-5}^{-3}\frac{1}{(x_{1}-\xi_{1})^{2}}\cdot g^{\mathcal{S}}_{1}(\xi^{\prime})\,{\rm d}\xi^{\prime}.

Actually for xB1x^{\prime}\in B^{\prime}_{1}, we have that 2x1ξ162\leq x_{1}-\xi_{1}\leq 6. Hence for n3n\geq 3 we have C1ψ(x)C2<0C_{1}\leq\psi(x^{\prime})\leq C_{2}<0, and for n=2n=2 we have 0<C1ψ(x)C20<C_{1}\leq\psi(x^{\prime})\leq C_{2}. Hence we have ψLq(B12)0\|\psi\|_{L^{q}(B^{\prime}_{\frac{1}{2}})}\neq 0.

Since g𝒯(t)g^{\mathcal{T}}(t) is supported in (34,78)(\frac{3}{4},\frac{7}{8}), θ(xn,t)\theta(x_{n},t) is defined for (xn,t)×(x_{n},t)\in\mathbb{R}\times\mathbb{R}, and vanishes for t<3/4t<3/4. We have for 1<t<1<t<\infty,

|θ(xn,t)|t3/2exn210tg𝒯L(),|\theta(x_{n},t)|\lesssim t^{-3/2}e^{-\frac{x_{n}^{2}}{10t}}\cdot\|g^{\mathcal{T}}\|_{L^{\infty}(\mathbb{R})},

and for 0<t10<t\leq 1,

|θ(xn,t)|0t1s32exn28sdsg𝒯L()xn1g𝒯L().\displaystyle|\theta(x_{n},t)|\lesssim\int_{0}^{t}\frac{1}{s^{\frac{3}{2}}}e^{-\frac{x_{n}^{2}}{8s}}\,{\rm d}s\cdot\|g^{\mathcal{T}}\|_{L^{\infty}(\mathbb{R})}\lesssim x_{n}^{-1}\cdot\|g^{\mathcal{T}}\|_{L^{\infty}(\mathbb{R})}.

This implies that for 1<q<1<q<\infty, using (4.6),

(5.38) 10|θ(xn,t)|qdxndtg𝒯L(),0112|θ(xn,t)|qdxndtg𝒯L().\displaystyle\begin{split}\int_{1}^{\infty}\int_{0}^{\infty}|\theta(x_{n},t)|^{q}\,{\rm d}x_{n}\,{\rm d}t\lesssim\|g^{\mathcal{T}}\|_{L^{\infty}(\mathbb{R})},\\ \int_{0}^{1}\int_{\frac{1}{2}}^{\infty}|\theta(x_{n},t)|^{q}\,{\rm d}x_{n}\,{\rm d}t\lesssim\|g^{\mathcal{T}}\|_{L^{\infty}(\mathbb{R})}.\end{split}

Note that both inequalities above are not true when q=1q=1. By Lemma 2.8, we have

(5.39) =g𝒯B˙q,q1212qθ(xn,t)Lq(+×).\displaystyle\infty=\|g^{\mathcal{T}}\|_{\dot{B}_{q,q}^{\frac{1}{2}-\frac{1}{2q}}}\lesssim\|\theta(x_{n},t)\|_{L^{q}(\mathbb{R}_{+}\times\mathbb{R})}.

With the aid of (5.36), (5.38), (5.39), and the fact that θ(xn,t)=0\theta(x_{n},t)=0 when t<34t<\frac{3}{4}, we conclude that

(5.40) θ(xn,t)Lq((0,12)×(34,1))=θ(xn,t)Lq((0,12)×(0,1))θ(xn,t)Lq(+×)cg𝒯L()=.\displaystyle\begin{split}\|\theta(x_{n},t)\|_{L^{q}((0,\frac{1}{2})\times(\frac{3}{4},1))}&=\|\theta(x_{n},t)\|_{L^{q}((0,\frac{1}{2})\times(0,1))}\\ &\geq\|\theta(x_{n},t)\|_{L^{q}(\mathbb{R}_{+}\times\mathbb{R})}-c\|g^{\mathcal{T}}\|_{L^{\infty}(\mathbb{R})}=\infty.\end{split}

Hence

H1Lq(Q12+)\displaystyle\|H_{1}\|_{L^{q}(Q_{\frac{1}{2}}^{+})} =θ(xn,t)Lq((0,12)×(34,1))ψLq(B12)=.\displaystyle=\|\theta(x_{n},t)\|_{L^{q}((0,\frac{1}{2})\times(\frac{3}{4},1))}\|\psi\|_{L^{q}(B^{\prime}_{\frac{1}{2}})}=\infty.

By the above unboundedness and (5.29)-(5.31), (5.33), (5.35), we obtain that

(5.41) n2u1Lq(Q12+)=.\|\partial_{n}^{2}u_{1}\|_{L^{q}(Q_{\frac{1}{2}}^{+})}=\infty.\qed

Theorem 1.2 now follows from Lemmas 5.1-5.3.

Remark 5.4.

When we further require the boundary data 𝒂\bm{a} to be continuous, we cannot use g𝒯(t)L()B˙q,q1212q()g^{\mathcal{T}}(t)\in L^{\infty}(\mathbb{R})\setminus\dot{B}^{\frac{1}{2}-\frac{1}{2q}}_{q,q}(\mathbb{R}) satisfying (5.2). Instead, we can choose g𝒯Cc(14,1]C1(0,1)g^{\mathcal{T}}\in C_{c}(\frac{1}{4},1]\cap C^{1}(0,1) and g𝒯=(1t)βg^{\mathcal{T}}=(1-t)^{\beta} when t(12,1)t\in(\frac{1}{2},1), for β(0,12]\beta\in(0,\frac{1}{2}]. Then we can prove 𝒖\bm{u} has unbounded second derivative near boundary at time t=1t=1, similar to [9].

6. Shear flow example

In this section, we prove Theorem 1.4. We follow Seregin-Šverák [13] and look for shear flow solutions of the Stokes system (1.1)–(1.2) in +n×(0,2)\mathbb{R}^{n}_{+}\times(0,2) with Navier boundary value 𝒂=0\bm{a}=0 in the form

(6.1) 𝒖(x,t)=(v(xn,t),0,,0),p(x,t)=g(t)x1,\bm{u}(x,t)=(v(x_{n},t),0,\ldots,0),\ \ p(x,t)=-g^{\prime}(t)x_{1},

where g(t)Cc(+)g(t)\in C_{c}^{\infty}(\mathbb{R}_{+}). It’s easy to see that the convection term 𝒖𝒖\bm{u}\cdot\nabla\bm{u} is zero, so it is also a solution of Navier–Stokes equations. Denote y=xn>0y=x_{n}>0, and we can reformulate the original equations as

(6.2) tv(y,t)vyy(y,t)=g(t),vy(0,t)αv(0,t)=0,v(y,0)=0.\partial_{t}v(y,t)-v_{yy}(y,t)=g^{\prime}(t),\ \ \ v_{y}(0,t)-\alpha v(0,t)=0,\ \ \ v(y,0)=0.

For the heat equation with Robin BC [10], the solution is given by

(6.3) v(y,t)=0tg(tτ)0G(y,ξ,τ)dξdτ,v(y,t)=\int_{0}^{t}g^{\prime}(t-\tau)\int_{0}^{\infty}G(y,\xi,\tau)\,{\rm d}\xi\,{\rm d}\tau,

using its Green function

G(y,ξ,t)\displaystyle G(y,\xi,t) =Γ(yξ,t)Γ(y+ξ,t)2ξ0eαzΓ(y+ξ+z,t)dz.\displaystyle=\Gamma(y-\xi,t)-\Gamma(y+\xi,t)-2\partial_{\xi}\int_{0}^{\infty}e^{-\alpha z}\Gamma(y+\xi+z,t)\,{\rm d}z.

Here Γ(y,t)\Gamma(y,t) is 1D heat kernel. Direct calculation gives

(6.4) 0G(y,ξ,t)dξ\displaystyle\int_{0}^{\infty}G(y,\xi,t)\,{\rm d}\xi =20yΓ(ξ,t)dξ+20eαzΓ(y+z,t)dz,\displaystyle=2\int_{0}^{y}\Gamma(\xi,t)\,{\rm d}\xi+2\int_{0}^{\infty}e^{-\alpha z}\Gamma(y+z,t)\,{\rm d}z,
y0G(y,ξ,t)dξ\displaystyle\partial_{y}\int_{0}^{\infty}G(y,\xi,t)\,{\rm d}\xi =2α0eαzΓ(y+z,t)dz.\displaystyle=2\alpha\int_{0}^{\infty}e^{-\alpha z}\Gamma(y+z,t)\,{\rm d}z.

Since

vyαv=2α0tg(tτ)0yΓ(ξ,τ)dξdτ0,asy0,v_{y}-\alpha v=-2\alpha\int_{0}^{t}g^{\prime}(t-\tau)\int_{0}^{y}\Gamma(\xi,\tau)\,{\rm d}\xi\,{\rm d}\tau\rightarrow 0,\ \ \textrm{as}\ y\rightarrow 0,

the boundary condition is satisfied. It is easy to check v(y,t)v(y,t) in (6.3) is a smooth solution (up to the boundary y=0y=0) of heat equation (6.2).

By (6.4), we get

limt00G(y,ξ,t)dξ=1,\lim_{t\rightarrow 0}\int_{0}^{\infty}G(y,\xi,t)\,{\rm d}\xi=1,

and

t0G(y,ξ,t)dξ=2αΓ(y,t)+2α20eαzΓ(y+z,t)dz.\partial_{t}\int_{0}^{\infty}G(y,\xi,t)\,{\rm d}\xi=-2\alpha\Gamma(y,t)+2\alpha^{2}\int_{0}^{\infty}e^{-\alpha z}\Gamma(y+z,t)\,{\rm d}z.

Using integration by parts of the derivative t\partial_{t}, we can obtain an equivalent formula of (6.3),

v(y,t)\displaystyle v(y,t) =g(t)+0tg(tτ)τ0G(y,ξ,τ)dξdτ\displaystyle=g(t)+\int_{0}^{t}g(t-\tau)\partial_{\tau}\int_{0}^{\infty}G(y,\xi,\tau)\,{\rm d}\xi\,{\rm d}\tau
(6.5) =g(t)2α0tg(tτ)Γ(y,τ)dτ+2α20tg(tτ)0eαzΓ(y+z,τ)dzdτ.\displaystyle=g(t)-2\alpha\int_{0}^{t}g(t-\tau)\Gamma(y,\tau)\,{\rm d}\tau+2\alpha^{2}\int_{0}^{t}g(t-\tau)\int_{0}^{\infty}e^{-\alpha z}\Gamma(y+z,\tau)\,{\rm d}z\,{\rm d}\tau.

Notice that

|Γ(y,t)|+|0eαzΓ(y+z,t)dz|1t,|\Gamma(y,t)|+\left|\int_{0}^{\infty}e^{-\alpha z}\Gamma(y+z,t)\,{\rm d}z\right|\lesssim\frac{1}{\sqrt{t}},

so by Young’s convolution inequality,

v(y,)Lq(0,T)(1+T12)g(t)Lq(0,T),\displaystyle\|v(y,\cdot)\|_{L^{q}(0,T)}\lesssim(1+T^{\frac{1}{2}})\,\|g(t)\|_{L^{q}(0,T)},

for 1q1\leq q\leq\infty. Since CcC_{c}^{\infty} is dense in LqL^{q} for 1q<1\leq q<\infty, by the density argument it is easy to check that for any gLcq(+)g\in L^{q}_{c}(\mathbb{R}_{+}) with 1q<1\leq q<\infty, v(y,t)v(y,t) in (6) satisfies the weak form of (6.2), and hence 𝒖\bm{u} given by (6.1) satisfies the weak form of Stokes systems (1.7) with Navier boundary value 𝒂=0\bm{a}=0.

Lemma 6.1.

Fix 1<q<1<q<\infty. Let g(t)=g𝒯(t)g(t)=g^{\mathcal{T}}(t) satisfy (5.2), v(y,t)v(y,t) be given by (6), and the solution 𝐮\bm{u} be given by (6.1). We have

(6.6) 𝒖L(Q1+)+𝒖L(Q1+)<,2𝒖Lq(Q12+)=.\displaystyle\|\bm{u}\|_{L^{\infty}(Q_{1}^{+})}+\|\nabla\bm{u}\|_{L^{\infty}(Q_{1}^{+})}<\infty,\ \ \ \|\nabla^{2}\bm{u}\|_{L^{q}(Q^{+}_{\frac{1}{2}})}=\infty.
Proof.

Notice that, by taking derivative of (6),

yv(y,t)\displaystyle\partial_{y}v(y,t) =2α0tg(tτ)yΓ(y,τ)dτ2α20tg(tτ)Γ(y,τ)dτ\displaystyle=-2\alpha\int_{0}^{t}g(t-\tau)\partial_{y}\Gamma(y,\tau)\,{\rm d}\tau-2\alpha^{2}\int_{0}^{t}g(t-\tau)\Gamma(y,\tau)\,{\rm d}\tau
+2α30tg(tτ)0eαzΓ(y+z,τ)dzdτ,\displaystyle\ \ \ +2\alpha^{3}\int_{0}^{t}g(t-\tau)\int_{0}^{\infty}e^{-\alpha z}\Gamma(y+z,\tau)\,{\rm d}z\,{\rm d}\tau,

and

(6.7) vyy(y,t)=2α0tg(tτ)y2Γ(y,τ)dτ+αvy(y,t).v_{yy}(y,t)=-2\alpha\int_{0}^{t}g(t-\tau)\partial^{2}_{y}\Gamma(y,\tau)\,{\rm d}\tau+\alpha v_{y}(y,t).

For 0<t10<t\leq 1, y+y\in\mathbb{R}_{+}

(6.8) |v(y,t)|+|vy(y,t)|1+0tτ12dτ+0tyτ32ey24τdτ1.|v(y,t)|+|v_{y}(y,t)|\lesssim 1+\int_{0}^{t}\tau^{-\frac{1}{2}}\,{\rm d}\tau+\int_{0}^{t}\frac{y}{\tau^{\frac{3}{2}}}e^{-\frac{y^{2}}{4\tau}}\,{\rm d}\tau\lesssim 1.

Denote the main term of vyyv_{yy} in (6.7) same as (5.37)

θ(y,t)=0tg(tτ)y2Γ(y,τ)dτ.\theta(y,t)=\int_{0}^{t}g(t-\tau)\partial^{2}_{y}\Gamma(y,\tau)\,{\rm d}\tau.

By the same argument in the proof of Lemma 5.3, we get the same estimate as (5.40),

(6.9) θ(y,t)Lq((0,12)×(34,1))=.\|\theta(y,t)\|_{L^{q}((0,\frac{1}{2})\times(\frac{3}{4},1))}=\infty.

By (6.7), (6.8) and (6.9), we reach (6.6). ∎

The above lemma proves Theorem 1.4 for the 1<q<1<q<\infty, and the LL^{\infty} blow-up in Q12+Q_{\frac{1}{2}}^{+} follows from LqL^{q} blow-up in Q12+Q_{\frac{1}{2}}^{+}.

Remark 6.2.

This shear flow example can also be used to prove the blow-up of the gradient of velocity near boundary under zero-BC, i.e., [3, Theorem 1.1]. We can use the same ansatz (6.1), (6.3), with the Green function replaced by

G(y,ξ,t)\displaystyle G(y,\xi,t) =Γ(yξ,t)Γ(y+ξ,t),\displaystyle=\Gamma(y-\xi,t)-\Gamma(y+\xi,t),

and setting g=g𝒯g=g^{\mathcal{T}} satisfying (5.2). \square

Remark 6.3.

If we set pressure p=g𝒯x1p=-g^{\mathcal{T}}x_{1} in (6.1) (instead of p=(g𝒯)x1p=-(g^{\mathcal{T}})^{\prime}x_{1}), we can prove the following estimates,

𝒖L(Q1+)+3𝒖L(Q1+)+pL(Q1+)<,\displaystyle\|\bm{u}\|_{L^{\infty}(Q_{1}^{+})}+\|\nabla^{3}\bm{u}\|_{L^{\infty}(Q_{1}^{+})}+\|p\|_{L^{\infty}(Q_{1}^{+})}<\infty,
4𝒖Lq(Q12+)=.\displaystyle\|\nabla^{4}\bm{u}\|_{L^{q}(Q^{+}_{\frac{1}{2}})}=\infty.

In other words, velocity blows up at fourth derivative. This is a supplementary result of estimate (1.10). \square

Acknowledgments

We warmly thank K. Kang for fruitful discussions on his paper [3] with T. Chang. We also thank Rulin Kuan for reference [12] for Remark 2.2. Hui Chen was supported in part by National Natural Science Foundation of China under grant [12101556] and Zhejiang Provincial Natural Science Foundation of China under grant [LY24A010015]. The research of both Liang and Tsai was partially supported by Natural Sciences and Engineering Research Council of Canada (NSERC) under grant RGPIN-2023-04534.

References

  • [1] H. Bahouri, J.-Y. Chemin, and R. Danchin. Fourier analysis and nonlinear partial differential equations. Springer, Heidelberg, 2011.
  • [2] T. Chang and K. Kang. On Caccioppoli’s inequalities of Stokes equations and Navier–Stokes equations near boundary. J. Differential Equations, 269(9):6732–6757, 2020.
  • [3] T. Chang and K. Kang. Local regularity near boundary for the Stokes and Navier–Stokes equations. SIAM J. Math. Anal., 55(5):5051–5085, 2023.
  • [4] H. Chen, S. Liang, and T.-P. Tsai. Gradient estimates for the non-stationary Stokes system with the Navier boundary condition. Commun. Pure Appl. Anal., 2023.
  • [5] H. Dong, D. Kim, and T. Phan. Boundary Lebesgue mixed-norm estimates for non-stationary Stokes systems with VMO coefficients. Comm. Partial Differential Equations, 47(8):1700–1731, 2022.
  • [6] S. Gustafson, K. Kang, and T.-P. Tsai. Regularity criteria for suitable weak solutions of the Navier–Stokes equations near the boundary. J. Differential Equations, 226(2):594–618, 2006.
  • [7] K. Kang. Unbounded normal derivative for the Stokes system near boundary. Math. Ann., 331(1):87–109, 2004.
  • [8] K. Kang, B. Lai, C.-C. Lai, and T.-P. Tsai. Finite energy Navier–Stokes flows with unbounded gradients induced by localized flux in the half-space. Trans. Amer. Math. Soc., 375:6701–6746, 2022.
  • [9] K. Kang, B. Lai, C.-C. Lai, and T.-P. Tsai. The Green tensor of the nonstationary Stokes system in the half space. Comm. Math. Phys., 399(2):1291–1372, 2023.
  • [10] J. B. Keller. Oblique derivative boundary conditions and the image method. SIAM J. Appl. Math., 41(2):294–300, 1981.
  • [11] F. Lin, Y. Sire, J. Wei, and Y. Zhou. Nematic liquid crystal flow with partially free boundary. Arch. Ration. Mech. Anal., 247(2), 2023.
  • [12] L. Schwartz. Théorie des distributions. Hermann, 1966.
  • [13] G. Seregin and V. Šverák. On a bounded shear flow in a half-space. Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI), 385:200–205, 2010. J. Math. Sci. (N.Y.) 178 (2011), no. 3, 353–356.
  • [14] G. A. Seregin. Some estimates near the boundary for solutions to the nonstationary linearized Navier–Stokes equations. Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI), 271:204–223, 2000. J. Math. Sci. (N.Y.) 115 (2003), no. 6, 2820–2831.
  • [15] G. A. Seregin. A note on local boundary regularity for the Stokes system. Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI), 370:151–159, 2009. J. Math. Sci. (N.Y.) 166 (2010), no. 1, 86–90.
  • [16] V. A. Solonnikov. Estimates for solutions of a non-stationary linearized system of Navier-Stokes equations. Trudy Mat. Inst. Steklov., pages 213–317, 1964.
  • [17] V. A. Solonnikov. Estimates for solutions of nonstationary Navier–Stokes equations. Journal of Soviet Mathematics, 8(4):467–529, 1977.
  • [18] E. M. Stein. Singular integrals and differentiability properties of functions. Princeton Mathematical Series, No. 30. Princeton University Press, Princeton, N.J., 1970.
  • [19] E. M. Stein. Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals, volume 43 of Princeton Mathematical Series. Princeton University Press, Princeton, NJ, 1993. With the assistance of Timothy S. Murphy, Monographs in Harmonic Analysis, III.