This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Pointwise error estimates of compact difference scheme for mixed-type time-fractional Burgers’ equation

Xiangyi Peng [email protected] Da Xu [email protected] Wenlin Qiu [email protected] MOE-LCSM, School of Mathematics and Statistics, Hunan Normal University, Changsha, Hunan 410081, China
Abstract

In this paper, based on the developed nonlinear fourth-order operator and method of order reduction, a novel fourth-order compact difference scheme is constructed for the mixed-type time-fractional Burgers’ equation, from which L1L_{1}-discretization formula is employed to deal with the terms of fractional derivative, and the nonlinear convection term is discretized by nonlinear compact difference operator. Then a fully discrete compact difference scheme can be established by approximating spatial second-order derivative with classic compact difference formula. The convergence and stability are rigorously proved in the LL^{\infty}-norm by the energy argument and mathematical induction. Finally, several numerical experiments are provided to verify the theoretical analysis.

keywords:
Mixed-type time-fractional Burgers’ equation , compact difference scheme , pointwise error estimate , stability , numerical experiments

1 Introduction

In this article, considering the following mixed-type time-fractional Burgers’ equation

μ1𝔻t(α+1)u+μ2𝔻t(α)u+uux=λuxx(x,t),(x,t)(0,L)×(0,T],α(0,1),\begin{array}[]{ll}\mu_{1}\mathbb{D}_{t}^{(\alpha+1)}u+\mu_{2}\mathbb{D}_{t}^{(\alpha)}u+uu_{x}=\lambda u_{xx}(x,t),\qquad(x,t)\in(0,L)\times(0,T],\quad\alpha\in(0,1),\end{array} (1.1)

with the initial conditions and the boundary conditions

u(x,0)=φ1(x),ut(x,0)=φ2(x),x[0,L],u(x,0)=\varphi_{1}(x),\quad u_{t}(x,0)=\varphi_{2}(x),\qquad x\in[0,L], (1.2)
u(0,t)=u(L,t)=0,t[0,T],\begin{array}[]{ll}u(0,t)=u(L,t)=0,\quad t\in[0,T],\end{array} (1.3)

where λ>0\lambda>0 is the coefficient of kinematic viscosity, μ1,μ20\mu_{1},\mu_{2}\geq 0 (μ12+μ220\mu_{1}^{2}+\mu_{2}^{2}\neq 0), φ1(x)\varphi_{1}(x) and φ2(x)\varphi_{2}(x) are given functions, and the notation 𝔻t(β)u\mathbb{D}_{t}^{(\beta)}u denotes the Caputo fractional derivative [15, 16], defined by

𝔻t(β)u(x,t):={1Γ(1β)0tu(x,s)s(ts)β𝑑s,0<β<1,u(x,t)t,β=1,1Γ(2β)0t2u(x,s)s2(ts)(1β)𝑑s,1<β<2,\mathbb{D}_{t}^{(\beta)}u(x,t):=\begin{cases}\frac{1}{\Gamma(1-\beta)}\int_{0}^{t}\frac{\partial u(x,s)}{\partial s}(t-s)^{-\beta}ds,&\quad 0<\beta<1,\\ \\ \frac{\partial u(x,t)}{\partial t},&\quad\beta=1,\\ \\ \frac{1}{\Gamma(2-\beta)}\int_{0}^{t}\frac{\partial^{2}u(x,s)}{\partial s^{2}}(t-s)^{(1-\beta)}ds,&\quad 1<\beta<2,\\ \end{cases}

where Γ()\Gamma(\cdot) indicates the Gamma function. Burgers-type equations are the basic partial differential equations of applied mathematics, which are widely used in various fields, such as fluid mechanics [2, 27], nonlinear acoustics [4, 14], gas dynamics [3, 10], etc. And they can be used as a reference for solving complex problems such as Navier-Stokes equations. With the deepening of physical research, in past decades years, fractional Burgers-type equations had been proposed and studied, because fractional derivative can be used to describe the cumulative effect of wall friction through boundary layer [5, 6, 22]. Generally speaking, it is difficult to get the analytical solutions of partial differential equations, let alone fractional partial differential equations (FPDEs). Thus this drives people to search for high-precision and efficient numerical methods to solve FPDEs. In recent several years, a lot of studies [8, 12, 14, 18] for the time FPDEs and some profound results have been developed. As a classical PDE problem, time-fractional Burgers’ equation is concerned and studied by many scholars naturally [11, 13, 31]. For examples, the following time-fractional Burgers’ equation have been studied by many scholars

𝔻t(α)u+uux=λuxx,(x,t)(0,L)×(0,T],α(0,1),\mathbb{D}_{t}^{(\alpha)}u+uu_{x}=\lambda u_{xx},\qquad(x,t)\in(0,L)\times(0,T],\quad\alpha\in(0,1), (1.4)

which is obtained by taking μ1=0\mu_{1}=0 and μ2=1\mu_{2}=1 in (1.1). Generally, (1.4) belongs to parabolic time-fractional Burgers’ equation. Qiu et al. [17] considered an implicit difference scheme for one-dimensional time fractional Burgers’ equation and proposed a novel iterative algorithm to implement it. Li and Li [13] investigated the exact and numerical solutions of the time fractional Burgers’ equation by using Cole-Hopf transformation, the method of variables separation, the L1-scheme on graded meshes, and the Legendre-Galerkin spectral method. Akram [1] developed a finite difference scheme which depended on a new approximation based on an extended cubic B-spline. And Zhang et al. [31] developed fourth-order compact difference scheme. Besides, some articles have considered the following time-fractional Burgers’ equation with hyperbolic properties

𝔻t(γ)u+uux=λuxx,(x,t)(0,L)×(0,T],γ(1,2),\mathbb{D}_{t}^{(\gamma)}u+uu_{x}=\lambda u_{xx},\qquad(x,t)\in(0,L)\times(0,T],\quad\gamma\in(1,2), (1.5)

which is equivalent to the case of μ1=1\mu_{1}=1 and μ2=0\mu_{2}=0 in (1.1). Vong and Lyu [25] proposed a second-order linearized scheme for (1.5) in sense of maximum-norm. Furthermore, based on research of [17], Zhang [32] developed a semi-implicit finite difference scheme for the multi-term time-fractional Burgers-type equations. Up to now, many scholars have done a lot of work to the above two kinds of time-fractional Burgers’ equations. However, researches on the numerical solutions of the mixed-type time-fractional Burgers’ equations are still scant because of the complexity of numerical computation and the difficulty of theoretical analysis. Moreover, in certain physical phenomenon [9], mixed-type time-fractional derivative describes physical models more profound than single time-fractional derivative, which means that it is quite significant to investigate mixed-type time-fractional Burgers’ equation. Inspired by some work [26, 28, 29, 30, 31], especially in dealing with nonlinear convection term, they ingeniously constructed fourth-order nonlinear compact operators. These encourage us to carry out the following work. The main aim of this article is to establish a fourth-order compact difference scheme for mixed-type time-fractional Burgers’ equation. In this paper, we deal with the Caputo fractional derivatives by the L1L_{1}-discretization formula and Crank-Nicolson technique, and introduce nonlinear compact operator to treat the nonlinear convection term. The constructed compact difference scheme is stable and convergent with the convergence order of 44 for space and 2α2-\alpha for time, which is verified by strict theoretical analysis. The rest of this paper is organized as follows. In section 2, the main is some preliminaries including grid division, some notations, and useful lemmas. Then, in section 3, establishing the compact difference scheme for the problem (1.1)-(1.3). In section 4, the convergence and stability of the compact difference scheme are discussed via the discrete energy method and mathematical induction. In section 5, three numerical experiments are carried out to vaildate our theoretical analysis. Finally, a brief conclusion is given in section 6.

2 Preliminaries

In order to solve the problem (1.1)-(1.3), first we divide the domain [0,L]×[0,T][0,L]\times[0,T]. Let ωh:={xi|0iM}\omega_{h}:=\{x_{i}|0\leq i\leq M\} and ωτ:={tn|0nN}\omega_{\tau}:=\{t_{n}|0\leq n\leq N\} be two uniform meshes, where xi:=ih,h:=LMx_{i}:=ih,h:=\frac{L}{M}; tn:=nτt_{n}:=n\tau, τ:=TN\tau:=\frac{T}{N}, MM and NN are two given positive integers. Denote ωhτ:=ωh×ωτ\omega_{h\tau}:=\omega_{h}\times\omega_{\tau}. For any grid function v:={vin|0iM,0nN}v:=\{v_{i}^{n}|0\leq i\leq M,0\leq n\leq N\} defined on ωhτ\omega_{h\tau}, introduce the following notations

vin12:=12(vin+vin1),δtvin12:=1τ(vinvin1),δxvi12n:=1h(vinvi1n),Δxvin:=12h(vi+1nvi1n),δx2vin:=1h(δxvi+12nδxvi12n).\begin{array}[]{ccc}v_{i}^{n-\frac{1}{2}}:=\frac{1}{2}(v_{i}^{n}+v_{i}^{n-1}),\qquad\delta_{t}v_{i}^{n-\frac{1}{2}}:=\frac{1}{\tau}(v_{i}^{n}-v_{i}^{n-1}),\qquad\delta_{x}v_{i-\frac{1}{2}}^{n}:=\frac{1}{h}(v_{i}^{n}-v_{i-1}^{n}),\\ \\ \Delta_{x}v_{i}^{n}:=\frac{1}{2h}(v_{i+1}^{n}-v_{i-1}^{n}),\qquad\delta_{x}^{2}v_{i}^{n}:=\frac{1}{h}(\delta_{x}v_{i+\frac{1}{2}}^{n}-\delta_{x}v_{i-\frac{1}{2}}^{n}).\end{array}

And let Ωh:={v|v=(v0,v1,,vM)}\Omega_{h}:=\{v|v=(v_{0},v_{1},\cdots,v_{M})\} and Ω̊h:={v|vΩh,v0=vM=0}\mathring{\Omega}_{h}:=\{v|v\in\Omega_{h},v_{0}=v_{M}=0\} be the spaces of grid functions on ωh\omega_{h}. For any u,vΩ̊hu,v\in\mathring{\Omega}_{h}, we define the following inner products and norms

u,v:=hi=1M1uivi,(u,v):=hi=1M(δxui12)(δxvi12),v:=v,v,|v|1:=(v,v),v:=max0iM|vi|.\begin{array}[]{cc}\langle u,v\rangle:=h\sum\limits_{i=1}^{M-1}u_{i}v_{i},\qquad(u,v):=h\sum\limits_{i=1}^{M}(\delta_{x}u_{i-\frac{1}{2}})(\delta_{x}v_{i-\frac{1}{2}}),\\ \\ \|v\|:=\sqrt{\langle v,v\rangle},\qquad|v|_{1}:=\sqrt{(v,v)},\qquad\|v\|_{\infty}:=\max\limits_{0\leq i\leq M}|v_{i}|.\end{array}

In addition, in order to discretize nonlinear term uuxuu_{x}, we introduce the function ψ\psi [7, 26] as follows

ψ(ui,vi):=13[uiΔxvi+Δx(uivi)],1iM1.\psi(u_{i},v_{i}):=\frac{1}{3}[u_{i}\Delta_{x}v_{i}+\Delta_{x}(u_{i}v_{i})],\quad 1\leq i\leq M-1.
Remark 1.

It is easy to know that ψ\psi is a bilinear function without commutativity.

Finally, we introduce some useful lemmas which will be used later.

Lemma 2.1.

[23] For any grid functions v,wΩ̊hv,w\in\mathring{\Omega}_{h}, we have

w,δx2v=δxw,δxv=δx2w,v.\langle w,\delta_{x}^{2}v\rangle=-\langle\delta_{x}w,\delta_{x}v\rangle=\langle\delta_{x}^{2}w,v\rangle. (2.1)
Lemma 2.2.

[23] For any grid function vΩ̊hv\in\mathring{\Omega}_{h}, we have

vL2|v|1,vL6|v|1,Δxv|v|1,|v|12hv.\|v\|_{\infty}\leq\frac{\sqrt{L}}{2}|v|_{1},\quad\|v\|\leq\frac{L}{\sqrt{6}}|v|_{1},\quad\|\Delta_{x}v\|\leq|v|_{1},\quad|v|_{1}\leq\frac{2}{h}\|v\|. (2.2)
Lemma 2.3.

[24] Suppose G(t)C2[0,tn]G(t)\in C^{2}[0,t_{n}], existing C~>0\tilde{C}>0, it holds that

|1Γ(1α)0tnG(s)(tns)α𝑑sτ1Γ(1α)𝒟t(α)G(tn)|C~τ2α,0<α<1,𝒟t(α)G(tn):=b0G(tn)i=1n1(bni1bni)G(ti)bn1G(t0),\begin{split}&\left|\frac{1}{\Gamma(1-\alpha)}\int_{0}^{t_{n}}\frac{G^{\prime}(s)}{(t_{n}-s)^{\alpha}}\,ds-\frac{\tau^{-1}}{\Gamma(1-\alpha)}\mathcal{D}_{t}^{(\alpha)}G(t_{n})\right|\leq\tilde{C}\tau^{2-\alpha},\quad 0<\alpha<1,\\ &\mathcal{D}_{t}^{(\alpha)}G(t_{n}):=b_{0}G(t_{n})-\sum\limits_{i=1}^{n-1}(b_{n-i-1}-b_{n-i})G(t_{i})-b_{n-1}G(t_{0}),\end{split} (2.3)

where bi:=titi+1sα𝑑s=τ1α1α[(i+1)1αi1α]b_{i}:=\int_{t_{i}}^{t_{i+1}}s^{-\alpha}\,ds=\frac{\tau^{1-\alpha}}{1-\alpha}[(i+1)^{1-\alpha}-i^{1-\alpha}], i0i\geq 0.

Lemma 2.4.

[26] Let f(x)C5[xi1,xi+1]f(x)\in C^{5}[x_{i-1},x_{i+1}] and F(x):=f′′(x)F(x):=f^{\prime\prime}(x), then we have

f(xi)f(xi)=ψ(fi,fi)h22ψ(Fi,fi)+O(h4).f(x_{i})f^{\prime}(x_{i})=\psi(f_{i},f_{i})-\frac{h^{2}}{2}\psi(F_{i},f_{i})+O(h^{4}). (2.4)
Lemma 2.5.

[20] For any grid functions uΩhu\in\Omega_{h} and vΩ̊hv\in\mathring{\Omega}_{h}, then we get

ψ(u,v),v=0.\langle\psi(u,v),v\rangle=0. (2.5)
Lemma 2.6.

[26] For any w,uΩ̊hw,u\in\mathring{\Omega}_{h} and RΩhR\in{\Omega}_{h} satisfying

wi=δx2uih212δx2wi+Ri,1iM1,w_{i}=\delta_{x}^{2}u_{i}-\frac{h^{2}}{12}\delta_{x}^{2}w_{i}+R_{i},\quad 1\leq i\leq M-1,

we have

w,u=|u|12h212w2+h4144|w|12+h212R,w+R,u,\langle w,u\rangle=-|u|_{1}^{2}-\frac{h^{2}}{12}\|w\|^{2}+\frac{h^{4}}{144}|w|_{1}^{2}+\frac{h^{2}}{12}\langle R,w\rangle+\langle R,u\rangle, (2.6)
w,u|u|12h218w2+h212R,w+R,u.\langle w,u\rangle\leq-|u|_{1}^{2}-\frac{h^{2}}{18}\|w\|^{2}+\frac{h^{2}}{12}\langle R,w\rangle+\langle R,u\rangle. (2.7)
Lemma 2.7.

[26] For any u,w,Ru,w,R defined on ωhτ\omega_{h\tau} satisfying

{win=δx2uinh212δx2win+Rin,1iM1,0nN,u0n=uMn=w0n=wMn=0,0nN,\begin{cases}w_{i}^{n}=\delta_{x}^{2}u_{i}^{n}-\frac{h^{2}}{12}\delta_{x}^{2}w_{i}^{n}+R_{i}^{n},\quad 1\leq i\leq M-1,\quad 0\leq n\leq N,\\ u_{0}^{n}=u_{M}^{n}=w_{0}^{n}=w_{M}^{n}=0,\quad 0\leq n\leq N,\end{cases}

we can obtain

wn12,δtun12=12τ[(|un|12|un1|12)+h212(wn2wn12)h4144(|wn|12|wn1|12)]+h212wn12,δtRn12+Rn12,δtun12,1nN.\begin{split}\langle w^{n-\frac{1}{2}},\delta_{t}u^{n-\frac{1}{2}}\rangle=&-\frac{1}{2\tau}\left[(|u^{n}|_{1}^{2}-|u^{n-1}|_{1}^{2})+\frac{h^{2}}{12}(\|w^{n}\|^{2}-\|w^{n-1}\|^{2})-\frac{h^{4}}{144}(|w^{n}|_{1}^{2}-|w^{n-1}|_{1}^{2})\right]\\ &+\frac{h^{2}}{12}\langle w^{n-\frac{1}{2}},\delta_{t}R^{n-\frac{1}{2}}\rangle+\langle R^{n-\frac{1}{2}},\delta_{t}u^{n-\frac{1}{2}}\rangle,\quad 1\leq n\leq N.\end{split}
Remark 2.

In this paper, the notation C~\tilde{C} denotes a generic constant with different values in different situations, but it is independent of the spatial step hh and temporal step τ\tau.

3 Derivation of the compact difference scheme

Let w:=uxx,v:=utw:=u_{xx},v:=u_{t}, then the problem (1.1)-(1.3) is equivalent to

μ1𝔻t(α+1)u+μ2𝔻t(α)u+uux=λw(x,t),(x,t)(0,L)×(0,T],α(0,1),\displaystyle\mu_{1}\mathbb{D}_{t}^{(\alpha+1)}u+\mu_{2}\mathbb{D}_{t}^{(\alpha)}u+uu_{x}=\lambda w(x,t),\quad(x,t)\in(0,L)\times(0,T],\quad\alpha\in(0,1), (3.1)
w(x,t)=uxx(x,t),(x,t)(0,L)×(0,T],\displaystyle w(x,t)=u_{xx}(x,t),\qquad(x,t)\in(0,L)\times(0,T], (3.2)
u(x,0)=φ1(x),v(x,0)=φ2(x),x[0,L],\displaystyle u(x,0)=\varphi_{1}(x),\quad v(x,0)=\varphi_{2}(x),\qquad x\in[0,L], (3.3)
u(0,t)=u(L,t)=0,t[0,T].\displaystyle u(0,t)=u(L,t)=0,\quad t\in[0,T]. (3.4)

According to (3.1) and (3.4), we can easily get

w(0,t)=w(L,t)=0,t[0,T].w(0,t)=w(L,t)=0,\quad t\in[0,T]. (3.5)

Let U:={Uin|0iM,0nN}U:=\{U_{i}^{n}|0\leq i\leq M,0\leq n\leq N\} and W:={Win|0iM,0nN}W:=\{W_{i}^{n}|0\leq i\leq M,0\leq n\leq N\} denote the grid functions defined on ωhτ\omega_{h\tau}, where Uin:=u(xi,tn)U_{i}^{n}:=u(x_{i},t_{n}) and Win:=w(xi,tn)W_{i}^{n}:=w(x_{i},t_{n}). Considering (3.1) at the point (xi,tn12)(x_{i},t_{n-\frac{1}{2}}) and using Lemma 2.3 and Lemma 2.4, we have

τ1Γ(1α)𝒟t(α)(μ1δtUin12+μ2Uin12)+ψ(Uin12,Uin12)h22ψ(Win12,Uin12)=λWin12+Pin12,1iM1,1nN,\begin{split}&\frac{\tau^{-1}}{\Gamma(1-\alpha)}\mathcal{D}_{t}^{(\alpha)}(\mu_{1}\delta_{t}U_{i}^{n-\frac{1}{2}}+\mu_{2}U_{i}^{n-\frac{1}{2}})+\psi(U_{i}^{n-\frac{1}{2}},U_{i}^{n-\frac{1}{2}})-\frac{h^{2}}{2}\psi(W_{i}^{n-\frac{1}{2}},U_{i}^{n-\frac{1}{2}})\\ &=\lambda W_{i}^{n-\frac{1}{2}}+P_{i}^{n-\frac{1}{2}},\quad 1\leq i\leq M-1,\quad 1\leq n\leq N,\end{split} (3.6)

from which we can get the following estimate for truncation error

|Pin12|C~(τ2α+h4),1iM1,1nN.\left|P_{i}^{n-\frac{1}{2}}\right|\leq\tilde{C}(\tau^{2-\alpha}+h^{4}),\quad 1\leq i\leq M-1,\quad 1\leq n\leq N. (3.7)

Meanwhile, considering (3.2) at the point (xi,tn)(x_{i},t_{n}) and using Taylor expansion, it’s easy to get

Win=δx2Uinh212δx2Win+Qin,1iM1,0nN,W_{i}^{n}=\delta_{x}^{2}U_{i}^{n}-\frac{h^{2}}{12}\delta_{x}^{2}W_{i}^{n}+Q_{i}^{n},\quad 1\leq i\leq M-1,\quad 0\leq n\leq N, (3.8)

from which QinQ_{i}^{n} and δtQin12\delta_{t}Q_{i}^{n-\frac{1}{2}} are estimated by

|Qin|C~h4,1iM1,0nN,\displaystyle\left|Q_{i}^{n}\right|\leq\tilde{C}h^{4},\quad 1\leq i\leq M-1,\quad 0\leq n\leq N, (3.9)
|δtQin12|C~h4,1iM1,1nN.\displaystyle\left|\delta_{t}Q_{i}^{n-\frac{1}{2}}\right|\leq\tilde{C}h^{4},\quad 1\leq i\leq M-1,\quad 1\leq n\leq N. (3.10)

Omitting the truncation errors Pin12P_{i}^{n-\frac{1}{2}} and QinQ_{i}^{n} in (3.6) and (3.8), replacing the functions Uin,Vin,WinU_{i}^{n},V_{i}^{n},W_{i}^{n} with their numerical approximation uin,vin,winu_{i}^{n},v_{i}^{n},w_{i}^{n}, respectively, and combining with (3.3)-(3.5), we construct the following compact difference scheme

τ1Γ(1α)𝒟t(α)(μ1δtuin12+μ2uin12)+ψ(uin12,uin12)h22ψ(win12,uin12)λwin12=0,1iM1,1nN,\begin{split}&\frac{\tau^{-1}}{\Gamma(1-\alpha)}\mathcal{D}_{t}^{(\alpha)}(\mu_{1}\delta_{t}u_{i}^{n-\frac{1}{2}}+\mu_{2}u_{i}^{n-\frac{1}{2}})+\psi(u_{i}^{n-\frac{1}{2}},u_{i}^{n-\frac{1}{2}})-\frac{h^{2}}{2}\psi(w_{i}^{n-\frac{1}{2}},u_{i}^{n-\frac{1}{2}})\\ &-\lambda w_{i}^{n-\frac{1}{2}}=0,\quad 1\leq i\leq M-1,\quad 1\leq n\leq N,\end{split} (3.11)
win=δx2uinh212δx2win,1iM1,0nN,\displaystyle w_{i}^{n}=\delta_{x}^{2}u_{i}^{n}-\frac{h^{2}}{12}\delta_{x}^{2}w_{i}^{n},\quad 1\leq i\leq M-1,\quad 0\leq n\leq N, (3.12)
ui0=φ1(xi),vi0=φ2(xi),0iM,\displaystyle u_{i}^{0}=\varphi_{1}(x_{i}),\quad v_{i}^{0}=\varphi_{2}(x_{i}),\quad 0\leq i\leq M, (3.13)
u0n=uMn=w0n=wMn=0,0nN.\displaystyle u_{0}^{n}=u_{M}^{n}=w_{0}^{n}=w_{M}^{n}=0,\quad 0\leq n\leq N. (3.14)

4 Analysis of convergence and stability

In this section, the convergence and stability of the compact difference scheme (3.11)-(3.14) will be derived. First, we introduce some lemmas as follows.

Lemma 4.1.

[19, 24] For any G~={g1,g2,g3,}\tilde{G}=\{g_{1},g_{2},g_{3},\cdots\} and q^\hat{q}, we have the following estimate

n=1N[b0gni=1n1(bni1bni)gibn1q^]gnTα2τn=1N(gn)2T1α2(1α)q^2,0<α<1,N=1,2,3,\begin{split}&\sum\limits_{n=1}^{N}\left[b_{0}g_{n}-\sum\limits_{i=1}^{n-1}(b_{n-i-1}-b_{n-i})g_{i}-b_{n-1}\hat{q}\right]g_{n}\\ &\geq\frac{T^{-\alpha}}{2}\tau\sum\limits_{n=1}^{N}(g_{n})^{2}-\frac{T^{1-\alpha}}{2(1-\alpha)}\hat{q}^{2},\qquad 0<\alpha<1,\quad N=1,2,3,\cdots\end{split}

where bi(i0)b_{i}(i\geq 0) defined in (2.3).

Lemma 4.2.

For any grid functions uΩhu\in\Omega_{h} and vΩ̊hv\in\mathring{\Omega}_{h}, then we have

ψ(un12,vn12),δtvn12=ψ(un12,vn1),δtvn12,1nN.\langle\psi(u^{n-\frac{1}{2}},v^{n-\frac{1}{2}}),\delta_{t}v^{n-\frac{1}{2}}\rangle=\langle\psi(u^{n-\frac{1}{2}},v^{n-1}),\delta_{t}v^{n-\frac{1}{2}}\rangle,\quad 1\leq n\leq N. (4.1)
Proof.

Using Lemma 2.5, we can arrive at

ψ(un12,vn12),δtvn12=ψ(un12,vn1+τ2δtvn12),δtvn12=ψ(un12,vn1),δtvn12+τ2ψ(un12,δtvn12),δtvn12=ψ(un12,vn1),δtvn12.\begin{split}&\left\langle\psi(u^{n-\frac{1}{2}},v^{n-\frac{1}{2}}),\delta_{t}v^{n-\frac{1}{2}}\right\rangle\\ =&\left\langle\psi(u^{n-\frac{1}{2}},v^{n-1}+\frac{\tau}{2}\delta_{t}v^{n-\frac{1}{2}}),\delta_{t}v^{n-\frac{1}{2}}\right\rangle\\ =&\left\langle\psi(u^{n-\frac{1}{2}},v^{n-1}),\delta_{t}v^{n-\frac{1}{2}}\right\rangle+\frac{\tau}{2}\left\langle\psi(u^{n-\frac{1}{2}},\delta_{t}v^{n-\frac{1}{2}}),\delta_{t}v^{n-\frac{1}{2}}\right\rangle\\ =&\left\langle\psi(u^{n-\frac{1}{2}},v^{n-1}),\delta_{t}v^{n-\frac{1}{2}}\right\rangle.\end{split}

Lemma 4.3.

[21] (Discrete Gro¨\ddot{o}nwall’s inequality) If ana_{n} is a non-negative real sequence and satisfies

anbn+i=0n1diai,n1,a_{n}\leq b_{n}+\sum\limits_{i=0}^{n-1}d_{i}a_{i},\quad n\geq 1,

where bnb_{n} is a non-descending and non-negative sequence, dn0d_{n}\geq 0, then we arrive at

anbnexp(i=0n1di),n1.a_{n}\leq b_{n}\exp\left(\sum\limits_{i=0}^{n-1}d_{i}\right),\quad n\geq 1.

4.1 Convergence

The convergence of compact difference scheme (3.11)-(3.14) will be analysed in the following. Firstly we give some error notations and constants as follows

ein:=Uinuin,σin:=Vinvin,ρin:=Winwin,c0:=max(x,t)[0,L]×[0,T]{|u(x,t)|,|ux(x,t)|,|uxx(x,t)|,|uxxx(x,t)|},c1:=Tα2Γ(1α),c2:=1c1μ12,c3:=c2μ1(c0+c0L6+L2),c4:=c2μ2c0(L2+L),c5:=c2μ1c0(2+L),c6:=c2μ1(2c0+L),c7:=c2μ2c0L,c8:=max{2c32+c4+3c52+5μ22L26μ12+L2+1c2μ1λ,15c62+3c72+6c2μ1λ+23,1},c9:=(2c2μ1λ+c2μ222μ1λ+c2λ2μ1(2μ12+μ22)+c2μ1λ)C~2L,c10:=e6c8T3C~+6Tc9.\begin{array}[]{lll}e_{i}^{n}:=U_{i}^{n}-u_{i}^{n},\quad\sigma_{i}^{n}:=V_{i}^{n}-v_{i}^{n},\quad\rho_{i}^{n}:=W_{i}^{n}-w_{i}^{n},\\ \\ c_{0}:=\max\limits_{(x,t)\in[0,L]\times[0,T]}\left\{|u(x,t)|,|u_{x}(x,t)|,|u_{xx}(x,t)|,|u_{xxx}(x,t)|\right\},\\ \\ c_{1}:=\frac{T^{-\alpha}}{2\Gamma(1-\alpha)},\quad c_{2}:=\frac{1}{c_{1}\mu_{1}^{2}},\quad c_{3}:=c_{2}\mu_{1}(c_{0}+\frac{c_{0}L}{\sqrt{6}}+\frac{\sqrt{L}}{2}),\quad c_{4}:=c_{2}\mu_{2}c_{0}(L^{2}+L),\\ \\ c_{5}:=c_{2}\mu_{1}c_{0}(2+L),\quad c_{6}:=c_{2}\mu_{1}(2c_{0}+\sqrt{L}),\quad c_{7}:=c_{2}\mu_{2}c_{0}L,\\ \\ c_{8}:=\max\left\{\frac{2c_{3}^{2}+c_{4}+3c_{5}^{2}+\frac{5\mu_{2}^{2}L^{2}}{6\mu_{1}^{2}}+L^{2}+1}{c_{2}\mu_{1}\lambda},\quad\frac{15c_{6}^{2}+3c_{7}^{2}+6}{c_{2}\mu_{1}\lambda}+\frac{2}{3},\quad 1\right\},\\ \\ c_{9}:=\left(\frac{2c_{2}\mu_{1}}{\lambda}+\frac{c_{2}\mu_{2}^{2}}{2\mu_{1}\lambda}+\frac{c_{2}\lambda_{2}}{\mu_{1}}(2\mu_{1}^{2}+\mu_{2}^{2})+c_{2}\mu_{1}\lambda\right)\tilde{C}^{2}L,\quad c_{10}:=e^{6c_{8}T}\sqrt{3\tilde{C}+6Tc_{9}}.\end{array}

Substracting (3.11) and (3.12) from (3.6) and (3.8) respectively, then we can get error equations as follows

τ1Γ(1α)𝒟t(α)(μ1δtein12+μ2ein12)+[ψ(Uin12,Uin12)ψ(uin12,uin12)]h22[ψ(Win12,Uin12)ψ(win12,uin12)]λρin12=Pin12,1iM1,1nN,\begin{split}&\frac{\tau^{-1}}{\Gamma(1-\alpha)}\mathcal{D}_{t}^{(\alpha)}(\mu_{1}\delta_{t}e_{i}^{n-\frac{1}{2}}+\mu_{2}e_{i}^{n-\frac{1}{2}})+\left[\psi(U_{i}^{n-\frac{1}{2}},U_{i}^{n-\frac{1}{2}})-\psi(u_{i}^{n-\frac{1}{2}},u_{i}^{n-\frac{1}{2}})\right]\\ &-\frac{h^{2}}{2}\left[\psi(W_{i}^{n-\frac{1}{2}},U_{i}^{n-\frac{1}{2}})-\psi(w_{i}^{n-\frac{1}{2}},u_{i}^{n-\frac{1}{2}})\right]-\lambda\rho_{i}^{n-\frac{1}{2}}=P_{i}^{n-\frac{1}{2}},\\ &\qquad\qquad 1\leq i\leq M-1,\quad 1\leq n\leq N,\end{split} (4.2)
ρin=δx2einh212δx2ρin+Qin,1iM1,0nN,\displaystyle\rho_{i}^{n}=\delta_{x}^{2}e_{i}^{n}-\frac{h^{2}}{12}\delta_{x}^{2}\rho_{i}^{n}+Q_{i}^{n},\quad 1\leq i\leq M-1,\quad 0\leq n\leq N, (4.3)
ei0=0,σi0=0,0iM,\displaystyle e_{i}^{0}=0,\quad\sigma_{i}^{0}=0,\quad 0\leq i\leq M, (4.4)
e0n=eMn=ρ0n=ρMn=0,0nN.\displaystyle e_{0}^{n}=e_{M}^{n}=\rho_{0}^{n}=\rho_{M}^{n}=0,\quad 0\leq n\leq N. (4.5)
Theorem 4.1.

Assume that the problem (3.1)-(3.4) has solutions u(x,t),w(x,t)u(x,t),w(x,t), and {uin,win|0iM,0nN}\{u_{i}^{n},w_{i}^{n}|0\leq i\leq M,0\leq n\leq N\} are the solutions of the compact difference scheme (3.11)-(3.14). If τ\tau and hh satisfy τ2α+h41/c10\tau^{2-\alpha}+h^{4}\leq 1/c_{10} and c8τ1/3c_{8}\tau\leq 1/3, then we have

|en|1c10(τ2α+h4),0nN.|e^{n}|_{1}\leq c_{10}(\tau^{2-\alpha}+h^{4}),\quad 0\leq n\leq N. (4.6)
Proof.

we adopt mathematical induction to prove this theorem. Step 1: It is easy to know (4.6) holds for n=0n=0. Taking n=0n=0 in (4.3) and noticing (4.4) and (4.5), we have

ρi0=h212δx2ρi0+Qi0,1iM1.\rho_{i}^{0}=-\frac{h^{2}}{12}\delta_{x}^{2}\rho_{i}^{0}+Q_{i}^{0},\quad 1\leq i\leq M-1. (4.7)

Taking an inner product of (4.7) with ρ0\rho^{0} and using (2.2), we have

ρ02=h212|ρ0|12+Q0,ρ013ρ02+13ρ02+34Q02,\|\rho^{0}\|^{2}=\frac{h^{2}}{12}|\rho^{0}|_{1}^{2}+\langle Q^{0},\rho^{0}\rangle\leq\frac{1}{3}\|\rho^{0}\|^{2}+\frac{1}{3}\|\rho^{0}\|^{2}+\frac{3}{4}\|Q^{0}\|^{2},

combining with (3.9), we can get

ρ0294Q0294L(C~h4)2C~(τ2α+h4)2.\|\rho^{0}\|^{2}\leq\frac{9}{4}\|Q^{0}\|^{2}\leq\frac{9}{4}L(\tilde{C}h^{4})^{2}\leq\tilde{C}(\tau^{2-\alpha}+h^{4})^{2}. (4.8)

Step 2: Assume that (4.6) holds for 0nN10\leq n\leq N-1. When τ2α+h41/c10\tau^{2-\alpha}+h^{4}\leq 1/c_{10}, according to (2.2), we can get

|en|11,enL6|en|1L6,enL2|en|1L2,0nN1.|e^{n}|_{1}\leq 1,\quad\|e^{n}\|\leq\frac{L}{\sqrt{6}}|e^{n}|_{1}\leq\frac{L}{\sqrt{6}},\quad\|e^{n}\|_{\infty}\leq\frac{\sqrt{L}}{2}|e^{n}|_{1}\leq\frac{\sqrt{L}}{2},\quad 0\leq n\leq N-1. (4.9)

Step 3: Next, we need to prove that (4.6) holds for n=Nn=N. Taking an inner product of (4.2) with (μ1δten12+μ2en12)(\mu_{1}\delta_{t}e^{n-\frac{1}{2}}+\mu_{2}e^{n-\frac{1}{2}}) and summing for nn from 11 to NN, we denote

Λ1n12:=n=1Nτ1Γ(1α)𝒟t(α)(μ1δten12+μ2en12),μ1δten12+μ2en12,Λ2n12:=ψ(Un12,Un12)ψ(un12,un12),μ1δten12+μ2en12,Λ3n12:=h22ψ(Wn12,Un12)ψ(wn12,un12),μ1δten12+μ2en12,Λ4n12:=λρn12,μ1δten12+μ2en12,Λ5n12:=Pn12,μ1δten12+μ2en12.\begin{split}&\Lambda_{1}^{n-\frac{1}{2}}:=\sum\limits_{n=1}^{N}\left\langle\frac{\tau^{-1}}{\Gamma(1-\alpha)}\mathcal{D}_{t}^{(\alpha)}(\mu_{1}\delta_{t}e^{n-\frac{1}{2}}+\mu_{2}e^{n-\frac{1}{2}}),\mu_{1}\delta_{t}e^{n-\frac{1}{2}}+\mu_{2}e^{n-\frac{1}{2}}\right\rangle,\\ &\Lambda_{2}^{n-\frac{1}{2}}:=-\left\langle\psi(U^{n-\frac{1}{2}},U^{n-\frac{1}{2}})-\psi(u^{n-\frac{1}{2}},u^{n-\frac{1}{2}}),\mu_{1}\delta_{t}e^{n-\frac{1}{2}}+\mu_{2}e^{n-\frac{1}{2}}\right\rangle,\\ &\Lambda_{3}^{n-\frac{1}{2}}:=\frac{h^{2}}{2}\left\langle\psi(W^{n-\frac{1}{2}},U^{n-\frac{1}{2}})-\psi(w^{n-\frac{1}{2}},u^{n-\frac{1}{2}}),\mu_{1}\delta_{t}e^{n-\frac{1}{2}}+\mu_{2}e^{n-\frac{1}{2}}\right\rangle,\\ &\Lambda_{4}^{n-\frac{1}{2}}:=\lambda\left\langle\rho^{n-\frac{1}{2}},\mu_{1}\delta_{t}e^{n-\frac{1}{2}}+\mu_{2}e^{n-\frac{1}{2}}\right\rangle,\\ &\Lambda_{5}^{n-\frac{1}{2}}:=\left\langle P^{n-\frac{1}{2}},\mu_{1}\delta_{t}e^{n-\frac{1}{2}}+\mu_{2}e^{n-\frac{1}{2}}\right\rangle.\\ \end{split}

Therefore, we get the following equation

Λ1n12n=1NΛ2n12n=1NΛ3n12n=1NΛ4n12=n=1NΛ5n12.\Lambda_{1}^{n-\frac{1}{2}}-\sum\limits_{n=1}^{N}\Lambda_{2}^{n-\frac{1}{2}}-\sum\limits_{n=1}^{N}\Lambda_{3}^{n-\frac{1}{2}}-\sum\limits_{n=1}^{N}\Lambda_{4}^{n-\frac{1}{2}}=\sum\limits_{n=1}^{N}\Lambda_{5}^{n-\frac{1}{2}}. (4.10)

Considering Λ1n12\Lambda_{1}^{n-\frac{1}{2}}, using Lemma 4.1, and noticing (4.4), we have

Λ1n12n=1NTα2Γ(1α)μ1δten12+μ2en122T1α2τΓ(2α)μ1σ0+μ2e02=n=1NTα2Γ(1α)μ1δten12+μ2en122.\begin{split}\Lambda_{1}^{n-\frac{1}{2}}&\geq\sum\limits_{n=1}^{N}\frac{T^{-\alpha}}{2\Gamma(1-\alpha)}\|\mu_{1}\delta_{t}e^{n-\frac{1}{2}}+\mu_{2}e^{n-\frac{1}{2}}\|^{2}-\frac{T^{1-\alpha}}{2\tau\Gamma(2-\alpha)}\|\mu_{1}\sigma^{0}+\mu_{2}e^{0}\|^{2}\\ &=\sum\limits_{n=1}^{N}\frac{T^{-\alpha}}{2\Gamma(1-\alpha)}\|\mu_{1}\delta_{t}e^{n-\frac{1}{2}}+\mu_{2}e^{n-\frac{1}{2}}\|^{2}.\\ \end{split} (4.11)

Thus, (4.10) turns into

n=1Nc1μ1δten12+μ2en122n=1NΛ4n12n=1NΛ2n12+n=1NΛ3n12+n=1NΛ5n12.\sum\limits_{n=1}^{N}c_{1}\|\mu_{1}\delta_{t}e^{n-\frac{1}{2}}+\mu_{2}e^{n-\frac{1}{2}}\|^{2}-\sum\limits_{n=1}^{N}\Lambda_{4}^{n-\frac{1}{2}}\leq\sum\limits_{n=1}^{N}\Lambda_{2}^{n-\frac{1}{2}}+\sum\limits_{n=1}^{N}\Lambda_{3}^{n-\frac{1}{2}}+\sum\limits_{n=1}^{N}\Lambda_{5}^{n-\frac{1}{2}}. (4.12)

Due to

μ1δten12+μ2en122(μ1δten12μ2en12)2μ12δten1222μ1μ2δten12en12,\|\mu_{1}\delta_{t}e^{n-\frac{1}{2}}+\mu_{2}e^{n-\frac{1}{2}}\|^{2}\geq\left(\|\mu_{1}\delta_{t}e^{n-\frac{1}{2}}\|-\|\mu_{2}e^{n-\frac{1}{2}}\|\right)^{2}\geq\mu_{1}^{2}\|\delta_{t}e^{n-\frac{1}{2}}\|^{2}-2\mu_{1}\mu_{2}\|\delta_{t}e^{n-\frac{1}{2}}\|\|e^{n-\frac{1}{2}}\|,

then, (4.12) becomes

n=1N(c1μ12δten122Λ4n12)n=1N(2c1μ1μ2en12δten12+Λ2n12+Λ3n12+Λ5n12).\sum\limits_{n=1}^{N}\left(c_{1}\mu_{1}^{2}\|\delta_{t}e^{n-\frac{1}{2}}\|^{2}-\Lambda_{4}^{n-\frac{1}{2}}\right)\leq\sum\limits_{n=1}^{N}\left(2c_{1}\mu_{1}\mu_{2}\|e^{n-\frac{1}{2}}\|\|\delta_{t}e^{n-\frac{1}{2}}\|+\Lambda_{2}^{n-\frac{1}{2}}+\Lambda_{3}^{n-\frac{1}{2}}+\Lambda_{5}^{n-\frac{1}{2}}\right).

Furthermore, we have

n=1N(δten1221c1μ12Λ4n12)n=1N(2μ2μ1en12δten12+1c1μ12(Λ2n12+Λ3n12+Λ5n12)),\sum\limits_{n=1}^{N}\left(\|\delta_{t}e^{n-\frac{1}{2}}\|^{2}-\frac{1}{c_{1}\mu_{1}^{2}}\Lambda_{4}^{n-\frac{1}{2}}\right)\leq\sum\limits_{n=1}^{N}\left(\frac{2\mu_{2}}{\mu_{1}}\|e^{n-\frac{1}{2}}\|\|\delta_{t}e^{n-\frac{1}{2}}\|+\frac{1}{c_{1}\mu_{1}^{2}}(\Lambda_{2}^{n-\frac{1}{2}}+\Lambda_{3}^{n-\frac{1}{2}}+\Lambda_{5}^{n-\frac{1}{2}})\right),

that is

n=1N(δten122c2Λ4n12)n=1N(2μ2μ1en12δten12+c2Λ2n12+c2Λ3n12+c2Λ5n12).\sum\limits_{n=1}^{N}\left(\|\delta_{t}e^{n-\frac{1}{2}}\|^{2}-c_{2}\Lambda_{4}^{n-\frac{1}{2}}\right)\leq\sum\limits_{n=1}^{N}\left(\frac{2\mu_{2}}{\mu_{1}}\|e^{n-\frac{1}{2}}\|\|\delta_{t}e^{n-\frac{1}{2}}\|+c_{2}\Lambda_{2}^{n-\frac{1}{2}}+c_{2}\Lambda_{3}^{n-\frac{1}{2}}+c_{2}\Lambda_{5}^{n-\frac{1}{2}}\right). (4.13)

Next, we analyze c2Λ2n12,c2Λ3n12,c2Λ4n12,c2Λ5n12c_{2}\Lambda_{2}^{n-\frac{1}{2}},c_{2}\Lambda_{3}^{n-\frac{1}{2}},c_{2}\Lambda_{4}^{n-\frac{1}{2}},c_{2}\Lambda_{5}^{n-\frac{1}{2}} and 2μ2μ1en12δten12\frac{2\mu_{2}}{\mu_{1}}\|e^{n-\frac{1}{2}}\|\|\delta_{t}e^{n-\frac{1}{2}}\| one by one. (\@slowromancapi@). Considering c2Λ2n12c_{2}\Lambda_{2}^{n-\frac{1}{2}}, according to uin=Uineinu_{i}^{n}=U_{i}^{n}-e_{i}^{n} and bilinearity of ψ\psi, we have

ψ(Un12,Un12)ψ(un12,un12)=ψ(Un12,en12)+ψ(en12,Un12)ψ(en12,en12),\begin{split}&\psi(U^{n-\frac{1}{2}},U^{n-\frac{1}{2}})-\psi(u^{n-\frac{1}{2}},u^{n-\frac{1}{2}})\\ =&\psi(U^{n-\frac{1}{2}},e^{n-\frac{1}{2}})+\psi(e^{n-\frac{1}{2}},U^{n-\frac{1}{2}})-\psi(e^{n-\frac{1}{2}},e^{n-\frac{1}{2}}),\end{split}

then

c2Λ2n12=c2ψ(Un12,en12)+ψ(en12,Un12)ψ(en12,en12),μ1δten12+μ2en12,c_{2}\Lambda_{2}^{n-\frac{1}{2}}=-c_{2}\left\langle\psi(U^{n-\frac{1}{2}},e^{n-\frac{1}{2}})+\psi(e^{n-\frac{1}{2}},U^{n-\frac{1}{2}})-\psi(e^{n-\frac{1}{2}},e^{n-\frac{1}{2}}),\mu_{1}\delta_{t}e^{n-\frac{1}{2}}+\mu_{2}e^{n-\frac{1}{2}}\right\rangle,

and noticing Lemma 2.5 and Lemma 4.2, we have

c2Λ2n12=c2μ1ψ(Un12,en12)+ψ(en12,Un12),δten12+c2μ1ψ(en12,en1),δten12c2μ2ψ(en12,Un12),en12=c2μ1h3i=1M1[Uin12Δxein12+2Δx(Uin12ein12)+ein12ΔxUin12]δtein12+c2μ1h3i=1M1[ein12Δxein1+Δx(ein12ein1)]δtein12c2μ2h3i=1M1[ein12ΔxUin12+Δx(ein12Uin12)]ein12=c2μ1h3i=1M1[3Uin12Δxein12+ei+1n12δxUi+12n12+ei1n12δxUi12n12+ein12ΔxUin12]δtein12+c2μ1h3i=1M1[2ein12Δxein1+12ei+1n1δxei+12n12+12ei1n1δxei12n12]δtein12c2μ2h3i=1M1[2ein12ΔxUin12+12Ui+1n12δxei+12n12+12Ui1n12δxei12n12]ein12.\begin{split}c_{2}\Lambda_{2}^{n-\frac{1}{2}}=&-c_{2}\mu_{1}\left\langle\psi(U^{n-\frac{1}{2}},e^{n-\frac{1}{2}})+\psi(e^{n-\frac{1}{2}},U^{n-\frac{1}{2}}),\delta_{t}e^{n-\frac{1}{2}}\right\rangle\\ &+c_{2}\mu_{1}\left\langle\psi(e^{n-\frac{1}{2}},e^{n-1}),\delta_{t}e^{n-\frac{1}{2}}\right\rangle-c_{2}\mu_{2}\left\langle\psi(e^{n-\frac{1}{2}},U^{n-\frac{1}{2}}),e^{n-\frac{1}{2}}\right\rangle\\ =&-c_{2}\mu_{1}\frac{h}{3}\sum\limits_{i=1}^{M-1}\left[U_{i}^{n-\frac{1}{2}}\Delta_{x}e_{i}^{n-\frac{1}{2}}+2\Delta_{x}(U_{i}^{n-\frac{1}{2}}e_{i}^{n-\frac{1}{2}})+e_{i}^{n-\frac{1}{2}}\Delta_{x}U_{i}^{n-\frac{1}{2}}\right]\delta_{t}e_{i}^{n-\frac{1}{2}}\\ &+c_{2}\mu_{1}\frac{h}{3}\sum\limits_{i=1}^{M-1}\left[e_{i}^{n-\frac{1}{2}}\Delta_{x}e_{i}^{n-1}+\Delta_{x}(e_{i}^{n-\frac{1}{2}}e_{i}^{n-1})\right]\delta_{t}e_{i}^{n-\frac{1}{2}}\\ &-c_{2}\mu_{2}\frac{h}{3}\sum\limits_{i=1}^{M-1}\left[e_{i}^{n-\frac{1}{2}}\Delta_{x}U_{i}^{n-\frac{1}{2}}+\Delta_{x}(e_{i}^{n-\frac{1}{2}}U_{i}^{n-\frac{1}{2}})\right]e_{i}^{n-\frac{1}{2}}\\ =&-c_{2}\mu_{1}\frac{h}{3}\sum\limits_{i=1}^{M-1}\left[3U_{i}^{n-\frac{1}{2}}\Delta_{x}e_{i}^{n-\frac{1}{2}}+e_{i+1}^{n-\frac{1}{2}}\delta_{x}U_{i+\frac{1}{2}}^{n-\frac{1}{2}}+e_{i-1}^{n-\frac{1}{2}}\delta_{x}U_{i-\frac{1}{2}}^{n-\frac{1}{2}}+e_{i}^{n-\frac{1}{2}}\Delta_{x}U_{i}^{n-\frac{1}{2}}\right]\delta_{t}e_{i}^{n-\frac{1}{2}}\\ &+c_{2}\mu_{1}\frac{h}{3}\sum\limits_{i=1}^{M-1}\left[2e_{i}^{n-\frac{1}{2}}\Delta_{x}e_{i}^{n-1}+\frac{1}{2}e_{i+1}^{n-1}\delta_{x}e_{i+\frac{1}{2}}^{n-\frac{1}{2}}+\frac{1}{2}e_{i-1}^{n-1}\delta_{x}e_{i-\frac{1}{2}}^{n-\frac{1}{2}}\right]\delta_{t}e_{i}^{n-\frac{1}{2}}\\ &-c_{2}\mu_{2}\frac{h}{3}\sum\limits_{i=1}^{M-1}\left[2e_{i}^{n-\frac{1}{2}}\Delta_{x}U_{i}^{n-\frac{1}{2}}+\frac{1}{2}U_{i+1}^{n-\frac{1}{2}}\delta_{x}e_{i+\frac{1}{2}}^{n-\frac{1}{2}}+\frac{1}{2}U_{i-1}^{n-\frac{1}{2}}\delta_{x}e_{i-\frac{1}{2}}^{n-\frac{1}{2}}\right]e_{i}^{n-\frac{1}{2}}.\\ \end{split}

Using (4.9), Cauchy-Schwarz inequality, Young inequality, and Lemma 2.2, we can get

c2Λ2n12c2μ1c0|en12|1δten12+c2μ1c0en12δten12+c2μ13[2en12|en1|1+en1|en12|1]δten12+c2μ2c03[2en122+|en12|1en12]c2μ1c0|en12|1δten12+c2μ1c0L6|en12|1δten12+c2μ13[2L2|en12|11+L2|en12|1]δten12+c2μ2c03[2L26|en12|12+L6|en12|12]c2μ1(c0+c0L6+L2)|en12|1δten12+c2μ2c0(L2+L)|en12|12=c3|en12|1δten12+c4|en12|1215δten122+(5c324+c4)|en12|12.\begin{split}c_{2}\Lambda_{2}^{n-\frac{1}{2}}\leq&c_{2}\mu_{1}c_{0}|e^{n-\frac{1}{2}}|_{1}\|\delta_{t}e^{n-\frac{1}{2}}\|+c_{2}\mu_{1}c_{0}\|e^{n-\frac{1}{2}}\|\|\delta_{t}e^{n-\frac{1}{2}}\|\\ &+\frac{c_{2}\mu_{1}}{3}\left[2\|e^{n-\frac{1}{2}}\|_{\infty}|e^{n-1}|_{1}+\|e^{n-1}\|_{\infty}|e^{n-\frac{1}{2}}|_{1}\right]\|\delta_{t}e^{n-\frac{1}{2}}\|\\ &+\frac{c_{2}\mu_{2}c_{0}}{3}\left[2\|e^{n-\frac{1}{2}}\|^{2}+|e^{n-\frac{1}{2}}|_{1}\|e^{n-\frac{1}{2}}\|\right]\\ \leq&c_{2}\mu_{1}c_{0}|e^{n-\frac{1}{2}}|_{1}\|\delta_{t}e^{n-\frac{1}{2}}\|+c_{2}\mu_{1}c_{0}\frac{L}{\sqrt{6}}|e^{n-\frac{1}{2}}|_{1}\|\delta_{t}e^{n-\frac{1}{2}}\|\\ &+\frac{c_{2}\mu_{1}}{3}\left[2\frac{\sqrt{L}}{2}|e^{n-\frac{1}{2}}|_{1}\cdot 1+\frac{\sqrt{L}}{2}|e^{n-\frac{1}{2}}|_{1}\right]\|\delta_{t}e^{n-\frac{1}{2}}\|\\ &+\frac{c_{2}\mu_{2}c_{0}}{3}\left[2\frac{L^{2}}{6}|e^{n-\frac{1}{2}}|_{1}^{2}+\frac{L}{\sqrt{6}}|e^{n-\frac{1}{2}}|_{1}^{2}\right]\\ \leq&c_{2}\mu_{1}(c_{0}+\frac{c_{0}L}{\sqrt{6}}+\frac{\sqrt{L}}{2})|e^{n-\frac{1}{2}}|_{1}\|\delta_{t}e^{n-\frac{1}{2}}\|+c_{2}\mu_{2}c_{0}(L^{2}+L)|e^{n-\frac{1}{2}}|_{1}^{2}\\ =&c_{3}|e^{n-\frac{1}{2}}|_{1}\|\delta_{t}e^{n-\frac{1}{2}}\|+c_{4}|e^{n-\frac{1}{2}}|_{1}^{2}\\ \leq&\frac{1}{5}\|\delta_{t}e^{n-\frac{1}{2}}\|^{2}+(\frac{5c_{3}^{2}}{4}+c_{4})|e^{n-\frac{1}{2}}|_{1}^{2}.\end{split}

(\@slowromancapii@). Similarly, considering c2Λ3n12c_{2}\Lambda_{3}^{n-\frac{1}{2}}, according to uin=Uineinu_{i}^{n}=U_{i}^{n}-e_{i}^{n} and win=Winρinw_{i}^{n}=W_{i}^{n}-\rho_{i}^{n}, we have

ψ(Wn12,Un12)ψ(wn12,un12)=ψ(ρn12,Un12)+ψ(Wn12,en12)ψ(ρn12,en12),\begin{split}&\psi(W^{n-\frac{1}{2}},U^{n-\frac{1}{2}})-\psi(w^{n-\frac{1}{2}},u^{n-\frac{1}{2}})\\ =&\psi(\rho^{n-\frac{1}{2}},U^{n-\frac{1}{2}})+\psi(W^{n-\frac{1}{2}},e^{n-\frac{1}{2}})-\psi(\rho^{n-\frac{1}{2}},e^{n-\frac{1}{2}}),\end{split}

then, using Lemma 2.5 and Lemma 4.2, we can get

c2Λ3n12=c2μ1h22ψ(Wn12,en12)+ψ(ρn12,Un12)ψ(ρn12,en1),δten12+c2μ2h22ψ(ρn12,Un12),en12=c2μ1h36i=1M1[2Win12Δxein12+12ei+1n12δxWi+12n12+12ei1n12δxWi12n12]δtein12+c2μ1h36i=1M1[2ρin12ΔxUin12+12Ui+1n12δxρi+12n12+12Ui1n12δxρi12n12]δtein12c2μ1h36i=1M1[2ρin12Δxein1+12ei+1n1δxρi+12n12+12ei1n1δxρi12n12]δtein12+c2μ2h36i=1M1[2ρin12ΔxUin12+12Ui+1n12δxρi+12n12+12Ui1n12δxρi12n12]ein12.\begin{split}c_{2}\Lambda_{3}^{n-\frac{1}{2}}=&c_{2}\mu_{1}\frac{h^{2}}{2}\left\langle\psi(W^{n-\frac{1}{2}},e^{n-\frac{1}{2}})+\psi(\rho^{n-\frac{1}{2}},U^{n-\frac{1}{2}})-\psi(\rho^{n-\frac{1}{2}},e^{n-1}),\delta_{t}e^{n-\frac{1}{2}}\right\rangle\\ &+c_{2}\mu_{2}\frac{h^{2}}{2}\left\langle\psi(\rho^{n-\frac{1}{2}},U^{n-\frac{1}{2}}),e^{n-\frac{1}{2}}\right\rangle\\ =&c_{2}\mu_{1}\frac{h^{3}}{6}\sum\limits_{i=1}^{M-1}\left[2W_{i}^{n-\frac{1}{2}}\Delta_{x}e_{i}^{n-\frac{1}{2}}+\frac{1}{2}e_{i+1}^{n-\frac{1}{2}}\delta_{x}W_{i+\frac{1}{2}}^{n-\frac{1}{2}}+\frac{1}{2}e_{i-1}^{n-\frac{1}{2}}\delta_{x}W_{i-\frac{1}{2}}^{n-\frac{1}{2}}\right]\delta_{t}e_{i}^{n-\frac{1}{2}}\\ &+c_{2}\mu_{1}\frac{h^{3}}{6}\sum\limits_{i=1}^{M-1}\left[2\rho_{i}^{n-\frac{1}{2}}\Delta_{x}U_{i}^{n-\frac{1}{2}}+\frac{1}{2}U_{i+1}^{n-\frac{1}{2}}\delta_{x}\rho_{i+\frac{1}{2}}^{n-\frac{1}{2}}+\frac{1}{2}U_{i-1}^{n-\frac{1}{2}}\delta_{x}\rho_{i-\frac{1}{2}}^{n-\frac{1}{2}}\right]\delta_{t}e_{i}^{n-\frac{1}{2}}\\ &-c_{2}\mu_{1}\frac{h^{3}}{6}\sum\limits_{i=1}^{M-1}\left[2\rho_{i}^{n-\frac{1}{2}}\Delta_{x}e_{i}^{n-1}+\frac{1}{2}e_{i+1}^{n-1}\delta_{x}\rho_{i+\frac{1}{2}}^{n-\frac{1}{2}}+\frac{1}{2}e_{i-1}^{n-1}\delta_{x}\rho_{i-\frac{1}{2}}^{n-\frac{1}{2}}\right]\delta_{t}e_{i}^{n-\frac{1}{2}}\\ &+c_{2}\mu_{2}\frac{h^{3}}{6}\sum\limits_{i=1}^{M-1}\left[2\rho_{i}^{n-\frac{1}{2}}\Delta_{x}U_{i}^{n-\frac{1}{2}}+\frac{1}{2}U_{i+1}^{n-\frac{1}{2}}\delta_{x}\rho_{i+\frac{1}{2}}^{n-\frac{1}{2}}+\frac{1}{2}U_{i-1}^{n-\frac{1}{2}}\delta_{x}\rho_{i-\frac{1}{2}}^{n-\frac{1}{2}}\right]e_{i}^{n-\frac{1}{2}}.\\ \end{split}

Combining with (4.9) and Lemma 2.2, and using Cauchy-Schwarz inequality and Young inequality, we can get

c2Λ3n12c2μ1h26[2c0|en12|1+c0en12+2c0ρn12+c0|ρn12|1]δten12+c2μ1h26[2ρn12|en1|1+en1|ρn12|1]δten12+c2μ2h26[2c0ρn12+c0|ρn12|1]en12,\begin{split}c_{2}\Lambda_{3}^{n-\frac{1}{2}}\leq&c_{2}\mu_{1}\frac{h^{2}}{6}\left[2c_{0}|e^{n-\frac{1}{2}}|_{1}+c_{0}\|e^{n-\frac{1}{2}}\|+2c_{0}\|\rho^{n-\frac{1}{2}}\|+c_{0}|\rho^{n-\frac{1}{2}}|_{1}\right]\|\delta_{t}e^{n-\frac{1}{2}}\|\\ &+c_{2}\mu_{1}\frac{h^{2}}{6}\left[2\|\rho^{n-\frac{1}{2}}\|_{\infty}|e^{n-1}|_{1}+\|e^{n-1}\|_{\infty}|\rho^{n-\frac{1}{2}}|_{1}\right]\|\delta_{t}e^{n-\frac{1}{2}}\|\\ &+c_{2}\mu_{2}\frac{h^{2}}{6}\left[2c_{0}\|\rho^{n-\frac{1}{2}}\|+c_{0}|\rho^{n-\frac{1}{2}}|_{1}\right]\|e^{n-\frac{1}{2}}\|,\end{split}

then we have

c2Λ3n12c2μ1h26(2c0+c0L6)|en12|1δten12+c2μ1h23(c0+c0h)ρn12δten12+c2μ1hL2ρn12δten12+c2μ2c0h23(1+1h)L6ρn12|en12|1c2μ1c0(2+L)|en12|1δten12+c2μ1(2c0+L)hρn12δten12+c2μ2c0Lhρn12|en12|1=c5|en12|1δten12+c6hρn12δten12+c7hρn12|en12|1110δten122+52c52|en12|12+110δten122+52c62h2ρn122+12|en12|12+12c72h2ρn12215δten122+(52c52+12)|en12|12+(52c62+12c72)h2ρn122.\begin{split}c_{2}\Lambda_{3}^{n-\frac{1}{2}}\leq&c_{2}\mu_{1}\frac{h^{2}}{6}(2c_{0}+\frac{c_{0}L}{\sqrt{6}})|e^{n-\frac{1}{2}}|_{1}\|\delta_{t}e^{n-\frac{1}{2}}\|+c_{2}\mu_{1}\frac{h^{2}}{3}(c_{0}+\frac{c_{0}}{h})\|\rho^{n-\frac{1}{2}}\|\|\delta_{t}e^{n-\frac{1}{2}}\|\\ &+c_{2}\mu_{1}h\frac{\sqrt{L}}{2}\|\rho^{n-\frac{1}{2}}\|\|\delta_{t}e^{n-\frac{1}{2}}\|+c_{2}\mu_{2}c_{0}\frac{h^{2}}{3}(1+\frac{1}{h})\frac{L}{\sqrt{6}}\|\rho^{n-\frac{1}{2}}\||e^{n-\frac{1}{2}}|_{1}\\ \leq&c_{2}\mu_{1}c_{0}(2+L)|e^{n-\frac{1}{2}}|_{1}\|\delta_{t}e^{n-\frac{1}{2}}\|+c_{2}\mu_{1}(2c_{0}+\sqrt{L})h\|\rho^{n-\frac{1}{2}}\|\|\delta_{t}e^{n-\frac{1}{2}}\|\\ &+c_{2}\mu_{2}c_{0}Lh\|\rho^{n-\frac{1}{2}}\||e^{n-\frac{1}{2}}|_{1}\\ =&c_{5}|e^{n-\frac{1}{2}}|_{1}\|\delta_{t}e^{n-\frac{1}{2}}\|+c_{6}h\|\rho^{n-\frac{1}{2}}\|\|\delta_{t}e^{n-\frac{1}{2}}\|+c_{7}h\|\rho^{n-\frac{1}{2}}\||e^{n-\frac{1}{2}}|_{1}\\ \leq&\frac{1}{10}\|\delta_{t}e^{n-\frac{1}{2}}\|^{2}+\frac{5}{2}c_{5}^{2}|e^{n-\frac{1}{2}}|_{1}^{2}+\frac{1}{10}\|\delta_{t}e^{n-\frac{1}{2}}\|^{2}+\frac{5}{2}c_{6}^{2}h^{2}\|\rho^{n-\frac{1}{2}}\|^{2}+\frac{1}{2}|e^{n-\frac{1}{2}}|_{1}^{2}+\frac{1}{2}c_{7}^{2}h^{2}\|\rho^{n-\frac{1}{2}}\|^{2}\\ \leq&\frac{1}{5}\|\delta_{t}e^{n-\frac{1}{2}}\|^{2}+(\frac{5}{2}c_{5}^{2}+\frac{1}{2})|e^{n-\frac{1}{2}}|_{1}^{2}+(\frac{5}{2}c_{6}^{2}+\frac{1}{2}c_{7}^{2})h^{2}\|\rho^{n-\frac{1}{2}}\|^{2}.\end{split}

(\@slowromancapiii@). Considering c2Λ4n12c_{2}\Lambda_{4}^{n-\frac{1}{2}}. Firstly,

c2Λ4n12=c2μ1λρn12,δten12+c2μ2λρn12,en12.c_{2}\Lambda_{4}^{n-\frac{1}{2}}=c_{2}\mu_{1}\lambda\left\langle\rho^{n-\frac{1}{2}},\delta_{t}e^{n-\frac{1}{2}}\right\rangle+c_{2}\mu_{2}\lambda\left\langle\rho^{n-\frac{1}{2}},e^{n-\frac{1}{2}}\right\rangle.

Then using Lemma 2.6 and Lemma 2.7, we can get

c2Λ4n12c2μ1λ2τ[(|en|12|en1|12)+h212(ρn2ρn12)h4144(|ρn|12|ρn1|12)]c2μ1λh212ρn12,δtQn12c2μ1λQn12,δten12+c2μ2λ[|en12|12+h218ρn1212]c2μ2λh212ρn12,Qn12c2μ2λQn12,en12c2μ1λ2τ[(|en|12|en1|12)+h212(ρn2ρn12)h4144(|ρn|12|ρn1|12)]c2μ1λh212ρn12,δtQn12c2μ1λQn12,δten12c2μ2λh212ρn12,Qn12c2μ2λQn12,en12c2μ1λ2τ[(|en|12|en1|12)+h212(ρn2ρn12)h4144(|ρn|12|ρn1|12)](c2μ1λhρn12δtQn12+c2μ1λQn12δten12)(c2μ2λhρn12Qn12+c2μ2λQn12en12)c2μ1λ2τ[(|en|12|en1|12)+h212(ρn2ρn12)h4144(|ρn|12|ρn1|12)](15δten122+h2ρn122+L212|en12|12+12(c2μ1λ)2δtQn122+c22λ2(54μ12+μ22)Qn122).\begin{split}-c_{2}\Lambda_{4}^{n-\frac{1}{2}}\geq&\frac{c_{2}\mu_{1}\lambda}{2\tau}\left[(|e^{n}|_{1}^{2}-|e^{n-1}|_{1}^{2})+\frac{h^{2}}{12}(\|\rho^{n}\|^{2}-\|\rho^{n-1}\|^{2})-\frac{h^{4}}{144}(|\rho^{n}|_{1}^{2}-|\rho^{n-1}|_{1}^{2})\right]\\ &-\frac{c_{2}\mu_{1}\lambda h^{2}}{12}\langle\rho^{n-\frac{1}{2}},\delta_{t}Q^{n-\frac{1}{2}}\rangle-c_{2}\mu_{1}\lambda\langle Q^{n-\frac{1}{2}},\delta_{t}e^{n-\frac{1}{2}}\rangle\\ &+c_{2}\mu_{2}\lambda\left[|e^{n-\frac{1}{2}}|_{1}^{2}+\frac{h^{2}}{18}\|\rho^{n-\frac{1}{2}}\|_{1}^{2}\right]-\frac{c_{2}\mu_{2}\lambda h^{2}}{12}\langle\rho^{n-\frac{1}{2}},Q^{n-\frac{1}{2}}\rangle-c_{2}\mu_{2}\lambda\langle Q^{n-\frac{1}{2}},e^{n-\frac{1}{2}}\rangle\\ \geq&\frac{c_{2}\mu_{1}\lambda}{2\tau}\left[(|e^{n}|_{1}^{2}-|e^{n-1}|_{1}^{2})+\frac{h^{2}}{12}(\|\rho^{n}\|^{2}-\|\rho^{n-1}\|^{2})-\frac{h^{4}}{144}(|\rho^{n}|_{1}^{2}-|\rho^{n-1}|_{1}^{2})\right]\\ &-\frac{c_{2}\mu_{1}\lambda h^{2}}{12}\langle\rho^{n-\frac{1}{2}},\delta_{t}Q^{n-\frac{1}{2}}\rangle-c_{2}\mu_{1}\lambda\langle Q^{n-\frac{1}{2}},\delta_{t}e^{n-\frac{1}{2}}\rangle\\ &-\frac{c_{2}\mu_{2}\lambda h^{2}}{12}\langle\rho^{n-\frac{1}{2}},Q^{n-\frac{1}{2}}\rangle-c_{2}\mu_{2}\lambda\langle Q^{n-\frac{1}{2}},e^{n-\frac{1}{2}}\rangle\\ \geq&\frac{c_{2}\mu_{1}\lambda}{2\tau}\left[(|e^{n}|_{1}^{2}-|e^{n-1}|_{1}^{2})+\frac{h^{2}}{12}(\|\rho^{n}\|^{2}-\|\rho^{n-1}\|^{2})-\frac{h^{4}}{144}(|\rho^{n}|_{1}^{2}-|\rho^{n-1}|_{1}^{2})\right]\\ &-\left(c_{2}\mu_{1}\lambda h\|\rho^{n-\frac{1}{2}}\|\|\delta_{t}Q^{n-\frac{1}{2}}\|+c_{2}\mu_{1}\lambda\|Q^{n-\frac{1}{2}}\|\|\delta_{t}e^{n-\frac{1}{2}}\|\right)\\ &-\left(c_{2}\mu_{2}\lambda h\|\rho^{n-\frac{1}{2}}\|\|Q^{n-\frac{1}{2}}\|+c_{2}\mu_{2}\lambda\|Q^{n-\frac{1}{2}}\|\|e^{n-\frac{1}{2}}\|\right)\\ \geq&\frac{c_{2}\mu_{1}\lambda}{2\tau}\left[(|e^{n}|_{1}^{2}-|e^{n-1}|_{1}^{2})+\frac{h^{2}}{12}(\|\rho^{n}\|^{2}-\|\rho^{n-1}\|^{2})-\frac{h^{4}}{144}(|\rho^{n}|_{1}^{2}-|\rho^{n-1}|_{1}^{2})\right]\\ &-\Big{(}\frac{1}{5}\|\delta_{t}e^{n-\frac{1}{2}}\|^{2}+h^{2}\|\rho^{n-\frac{1}{2}}\|^{2}+\frac{L^{2}}{12}|e^{n-\frac{1}{2}}|_{1}^{2}+\frac{1}{2}(c_{2}\mu_{1}\lambda)^{2}\|\delta_{t}Q^{n-\frac{1}{2}}\|^{2}\\ &+c_{2}^{2}\lambda^{2}(\frac{5}{4}\mu_{1}^{2}+\mu_{2}^{2})\|Q^{n-\frac{1}{2}}\|^{2}\Big{)}.\\ \end{split}

(\@slowromancapiv@). Considering c2Λ5n12c_{2}\Lambda_{5}^{n-\frac{1}{2}}, we have

c2Λ5n12c2μ1Pn12δten12+c2μ2Pn12en1215δten122+(54c22μ12+12c22μ22)Pn122+L212|en12|12.\begin{split}c_{2}\Lambda_{5}^{n-\frac{1}{2}}\leq&c_{2}\mu_{1}\|P^{n-\frac{1}{2}}\|\|\delta_{t}e^{n-\frac{1}{2}}\|+c_{2}\mu_{2}\|P^{n-\frac{1}{2}}\|\|e^{n-\frac{1}{2}}\|\\ \leq&\frac{1}{5}\|\delta_{t}e^{n-\frac{1}{2}}\|^{2}+(\frac{5}{4}c_{2}^{2}\mu_{1}^{2}+\frac{1}{2}c_{2}^{2}\mu_{2}^{2})\|P^{n-\frac{1}{2}}\|^{2}+\frac{L^{2}}{12}|e^{n-\frac{1}{2}}|_{1}^{2}.\end{split}

(\@slowromancapv@). Finally, we have

2μ2μ1en12δten1215δten12+5μ22μ12en12215δten12+5μ22L26μ12|en12|12.\frac{2\mu_{2}}{\mu_{1}}\|e^{n-\frac{1}{2}}\|\|\delta_{t}e^{n-\frac{1}{2}}\|\leq\frac{1}{5}\|\delta_{t}e^{n-\frac{1}{2}}\|+\frac{5\mu_{2}^{2}}{\mu_{1}^{2}}\|e^{n-\frac{1}{2}}\|^{2}\leq\frac{1}{5}\|\delta_{t}e^{n-\frac{1}{2}}\|+\frac{5\mu_{2}^{2}L^{2}}{6\mu_{1}^{2}}|e^{n-\frac{1}{2}}|_{1}^{2}.

Now we substitute the analysis results of (\@slowromancapi@)-(\@slowromancapv@) back into (4.13), we have

n=1N{δten122+c2μ1λ2τ[(|en|12|en1|12)+h212(ρn2ρn12)h4144(|ρn|12|ρn1|12)]}n=1N{δten122+(54c32+c4+52c52+L26+5μ22L26μ12+12)|en12|12+(15c62+3c72+6)h26ρn122+(54c22μ12+12c22μ22)Pn122+c22λ22(54μ12+μ22)Qn122+12(c2μ1λ)2δtQn122}.\begin{split}&\sum\limits_{n=1}^{N}\biggl{\{}\|\delta_{t}e^{n-\frac{1}{2}}\|^{2}+\frac{c_{2}\mu_{1}\lambda}{2\tau}\left[(|e^{n}|_{1}^{2}-|e^{n-1}|_{1}^{2})+\frac{h^{2}}{12}(\|\rho^{n}\|^{2}-\|\rho^{n-1}\|^{2})-\frac{h^{4}}{144}(|\rho^{n}|_{1}^{2}-|\rho^{n-1}|_{1}^{2})\right]\biggr{\}}\\ \leq&\sum\limits_{n=1}^{N}\biggl{\{}\|\delta_{t}e^{n-\frac{1}{2}}\|^{2}+(\frac{5}{4}c_{3}^{2}+c_{4}+\frac{5}{2}c_{5}^{2}+\frac{L^{2}}{6}+\frac{5\mu_{2}^{2}L^{2}}{6\mu_{1}^{2}}+\frac{1}{2})|e^{n-\frac{1}{2}}|_{1}^{2}+(15c_{6}^{2}+3c_{7}^{2}+6)\frac{h^{2}}{6}\|\rho^{n-\frac{1}{2}}\|^{2}\\ &+(\frac{5}{4}c_{2}^{2}\mu_{1}^{2}+\frac{1}{2}c_{2}^{2}\mu_{2}^{2})\|P^{n-\frac{1}{2}}\|^{2}+c_{2}^{2}\lambda_{2}^{2}(\frac{5}{4}\mu_{1}^{2}+\mu_{2}^{2})\|Q^{n-\frac{1}{2}}\|^{2}+\frac{1}{2}(c_{2}\mu_{1}\lambda)^{2}\|\delta_{t}Q^{n-\frac{1}{2}}\|^{2}\biggr{\}}.\end{split}

Furthermore, we have

n=1N{12τ[(|en|12|en1|12)+h212(ρn2ρn12)h4144(|ρn|12|ρn1|12)]}n=1N{(2c32+c4+3c52+5μ22L26μ12+L2+1c2μ1λ)|en12|12+(15c62+3c72+6c2μ1λ)h26ρn122+(2c2μ1λ+c2μ222μ1λ)Pn122+c2λ2μ1(2μ12+μ22)Qn122+c2μ1λδtQn122}n=1N{(2c32+c4+3c52+5μ22L26μ12+L2+1c2μ1λ)|en12|12+(15c62+3c72+6c2μ1λ+23)h26ρn122h436|ρn12|12+(2c2μ1λ+c2μ222μ1λ)Pn122+c2λ2μ1(2μ12+μ22)Qn122+c2μ1λδtQn122}.\begin{split}&\sum\limits_{n=1}^{N}\biggl{\{}\frac{1}{2\tau}\left[(|e^{n}|_{1}^{2}-|e^{n-1}|_{1}^{2})+\frac{h^{2}}{12}(\|\rho^{n}\|^{2}-\|\rho^{n-1}\|^{2})-\frac{h^{4}}{144}(|\rho^{n}|_{1}^{2}-|\rho^{n-1}|_{1}^{2})\right]\biggr{\}}\\ \leq&\sum\limits_{n=1}^{N}\biggl{\{}\Big{(}\frac{2c_{3}^{2}+c_{4}+3c_{5}^{2}+\frac{5\mu_{2}^{2}L^{2}}{6\mu_{1}^{2}}+L^{2}+1}{c_{2}\mu_{1}\lambda}\Big{)}|e^{n-\frac{1}{2}}|_{1}^{2}+\Big{(}\frac{15c_{6}^{2}+3c_{7}^{2}+6}{c_{2}\mu_{1}\lambda}\Big{)}\frac{h^{2}}{6}\|\rho^{n-\frac{1}{2}}\|^{2}\\ &+\Big{(}\frac{2c_{2}\mu_{1}}{\lambda}+\frac{c_{2}\mu_{2}^{2}}{2\mu_{1}\lambda}\Big{)}\|P^{n-\frac{1}{2}}\|^{2}+\frac{c_{2}\lambda_{2}}{\mu_{1}}\left(2\mu_{1}^{2}+\mu_{2}^{2}\right)\|Q^{n-\frac{1}{2}}\|^{2}+c_{2}\mu_{1}\lambda\|\delta_{t}Q^{n-\frac{1}{2}}\|^{2}\biggr{\}}\\ \leq&\sum\limits_{n=1}^{N}\biggl{\{}\Big{(}\frac{2c_{3}^{2}+c_{4}+3c_{5}^{2}+\frac{5\mu_{2}^{2}L^{2}}{6\mu_{1}^{2}}+L^{2}+1}{c_{2}\mu_{1}\lambda}\Big{)}|e^{n-\frac{1}{2}}|_{1}^{2}+\Big{(}\frac{15c_{6}^{2}+3c_{7}^{2}+6}{c_{2}\mu_{1}\lambda}+\frac{2}{3}\Big{)}\frac{h^{2}}{6}\|\rho^{n-\frac{1}{2}}\|^{2}-\frac{h^{4}}{36}|\rho^{n-\frac{1}{2}}|_{1}^{2}\\ &+\Big{(}\frac{2c_{2}\mu_{1}}{\lambda}+\frac{c_{2}\mu_{2}^{2}}{2\mu_{1}\lambda}\Big{)}\|P^{n-\frac{1}{2}}\|^{2}+\frac{c_{2}\lambda_{2}}{\mu_{1}}\left(2\mu_{1}^{2}+\mu_{2}^{2}\right)\|Q^{n-\frac{1}{2}}\|^{2}+c_{2}\mu_{1}\lambda\|\delta_{t}Q^{n-\frac{1}{2}}\|^{2}\biggr{\}}.\\ \end{split}

Define

Hn:=|en|12+h212ρn2h4144|ρn|12,0nN.H^{n}:=|e^{n}|_{1}^{2}+\frac{h^{2}}{12}\|\rho^{n}\|^{2}-\frac{h^{4}}{144}|\rho^{n}|_{1}^{2},\quad 0\leq n\leq N.

It is easy to konw that 0h218ρ02H0h212ρ020\leq\frac{h^{2}}{18}\|\rho^{0}\|^{2}\leq H^{0}\leq\frac{h^{2}}{12}\|\rho^{0}\|^{2} by the inverse estimate. Combining (3.7)-(3.10), we can get

n=1N[12τ(HnHn1)]n=1N[c8(Hn+Hn1)+c9(τ2α+h4)2].\sum\limits_{n=1}^{N}\Bigl{[}\frac{1}{2\tau}(H^{n}-H^{n-1})\Bigr{]}\leq\sum\limits_{n=1}^{N}\Bigl{[}c_{8}(H^{n}+H^{n-1})+c_{9}(\tau^{2-\alpha}+h^{4})^{2}\Bigr{]}.

Then

12τ(HNH0)c8HN+2c8n=0N1Hn+n=0N1c9(τ2α+h4)2,\frac{1}{2\tau}(H^{N}-H^{0})\leq c_{8}H^{N}+2c_{8}\sum\limits_{n=0}^{N-1}H^{n}+\sum\limits_{n=0}^{N-1}c_{9}(\tau^{2-\alpha}+h^{4})^{2},

and when τc81/3\tau c_{8}\leq 1/3, we can get

HN3H0+n=0N16τc9(τ2α+h4)2+n=0N112τc8Hn,0nN1.H^{N}\leq 3H^{0}+\sum\limits_{n=0}^{N-1}6\tau c_{9}(\tau^{2-\alpha}+h^{4})^{2}+\sum\limits_{n=0}^{N-1}12\tau c_{8}H^{n},\quad 0\leq n\leq N-1.

Combining Lemma 4.3 and (4.8), we can get

HNe(12c8T)(3H0+6Tc9(τ2α+h4)2)c102(τ2α+h4)2,\begin{split}H^{N}\leq e^{(12c_{8}T)}\left(3H^{0}+6Tc_{9}(\tau^{2-\alpha}+h^{4})^{2}\right)\leq c_{10}^{2}(\tau^{2-\alpha}+h^{4})^{2},\end{split}

and it is easy to know

HN|eN|12+h218ρN2|eN|12.H^{N}\geq|e^{N}|_{1}^{2}+\frac{h^{2}}{18}\|\rho^{N}\|^{2}\geq|e^{N}|_{1}^{2}.

Finally, we can obtain

|eN|1c10(τ2α+h4).|e^{N}|_{1}\leq c_{10}(\tau^{2-\alpha}+h^{4}).

This completes the proof. ∎

Remark 3.

Under the conditions of Theorem 4.1, combining with (2.2), we can obtain

enc10L6(τ2α+h4),enc10L2(τ2α+h4),0nN.\|e^{n}\|\leq\frac{c_{10}L}{\sqrt{6}}(\tau^{2-\alpha}+h^{4}),\quad\|e^{n}\|_{\infty}\leq\frac{c_{10}\sqrt{L}}{2}(\tau^{2-\alpha}+h^{4}),\quad 0\leq n\leq N. (4.14)

4.2 Stability

In the following, we consider the stability of the compact difference scheme (3.11)-(3.14). Now supposing some perturbation terms are added into (3.11)-(3.14), we get the following system of equations

τ1Γ(1α)𝒟t(α)(μ1δtu~in12+μ2u~in12)+ψ(u~in12,u~in12)h22ψ(w~in12,u~in12)λw~in12=fin12,1iM1,1nN,\begin{split}&\frac{\tau^{-1}}{\Gamma(1-\alpha)}\mathcal{D}_{t}^{(\alpha)}(\mu_{1}\delta_{t}\tilde{u}_{i}^{n-\frac{1}{2}}+\mu_{2}\tilde{u}_{i}^{n-\frac{1}{2}})+\psi(\tilde{u}_{i}^{n-\frac{1}{2}},\tilde{u}_{i}^{n-\frac{1}{2}})-\frac{h^{2}}{2}\psi(\tilde{w}_{i}^{n-\frac{1}{2}},\tilde{u}_{i}^{n-\frac{1}{2}})\\ &-\lambda\tilde{w}_{i}^{n-\frac{1}{2}}=f_{i}^{n-\frac{1}{2}},\quad 1\leq i\leq M-1,\quad 1\leq n\leq N,\end{split} (4.15)
w~in=δx2u~inh212δx2w~in,1iM1,0nN,\displaystyle\tilde{w}_{i}^{n}=\delta_{x}^{2}\tilde{u}_{i}^{n}-\frac{h^{2}}{12}\delta_{x}^{2}\tilde{w}_{i}^{n},\quad 1\leq i\leq M-1,\quad 0\leq n\leq N, (4.16)
u~i0=φ1(xi)+r1(xi),v~i0=φ2(xi)+r2(xi),0iM,\displaystyle\tilde{u}_{i}^{0}=\varphi_{1}(x_{i})+r_{1}(x_{i}),\quad\tilde{v}_{i}^{0}=\varphi_{2}(x_{i})+r_{2}(x_{i}),\quad 0\leq i\leq M, (4.17)
u~0n=u~Mn=w~0n=w~Mn=0,0nN.\displaystyle\tilde{u}_{0}^{n}=\tilde{u}_{M}^{n}=\tilde{w}_{0}^{n}=\tilde{w}_{M}^{n}=0,\quad 0\leq n\leq N. (4.18)

Denote

βin=u~inuin,γin=w~inwin,ηi0=v~i0vi0,0iM,0nN.\beta_{i}^{n}=\tilde{u}_{i}^{n}-u_{i}^{n},\quad\gamma_{i}^{n}=\tilde{w}_{i}^{n}-w_{i}^{n},\quad\eta_{i}^{0}=\tilde{v}_{i}^{0}-v_{i}^{0},\quad 0\leq i\leq M,\quad 0\leq n\leq N.

Substracting (3.11)-(3.14) from (4.15)-(4.18), respectively, we get the residual equations as follows

τ1Γ(1α)𝒟t(α)(μ1δtβin12+μ2βin12)+[ψ(u~in12,u~in12)ψ(uin12,uin12)]h22[ψ(w~in12,u~in12)ψ(win12,uin12)]λγin12=fin12,1iM1,1nN,\begin{split}&\frac{\tau^{-1}}{\Gamma(1-\alpha)}\mathcal{D}_{t}^{(\alpha)}(\mu_{1}\delta_{t}\beta_{i}^{n-\frac{1}{2}}+\mu_{2}\beta_{i}^{n-\frac{1}{2}})+\left[\psi(\tilde{u}_{i}^{n-\frac{1}{2}},\tilde{u}_{i}^{n-\frac{1}{2}})-\psi(u_{i}^{n-\frac{1}{2}},u_{i}^{n-\frac{1}{2}})\right]\\ &-\frac{h^{2}}{2}\left[\psi(\tilde{w}_{i}^{n-\frac{1}{2}},\tilde{u}_{i}^{n-\frac{1}{2}})-\psi(w_{i}^{n-\frac{1}{2}},u_{i}^{n-\frac{1}{2}})\right]-\lambda\gamma_{i}^{n-\frac{1}{2}}=f_{i}^{n-\frac{1}{2}},\\ &\qquad\qquad 1\leq i\leq M-1,\quad 1\leq n\leq N,\end{split} (4.19)
γin=δx2βinh212δx2γin,1iM1,0nN,\displaystyle\gamma_{i}^{n}=\delta_{x}^{2}\beta_{i}^{n}-\frac{h^{2}}{12}\delta_{x}^{2}\gamma_{i}^{n},\quad 1\leq i\leq M-1,\quad 0\leq n\leq N, (4.20)
βi0=r1(xi),ηi0=r2(xi),0iM,\displaystyle\beta_{i}^{0}=r_{1}(x_{i}),\quad\eta_{i}^{0}=r_{2}(x_{i}),\quad 0\leq i\leq M, (4.21)
β0n=βMn=γ0n=γMn=0,0nN.\displaystyle\beta_{0}^{n}=\beta_{M}^{n}=\gamma_{0}^{n}=\gamma_{M}^{n}=0,\quad 0\leq n\leq N. (4.22)

For purpose of facilitating the following description of stability, we denote some coefficients as follows

c11:=T1α2Γ(2α),c12:=c11c1μ12,c13:=c12c2μ1λ,c^3:=c2μ1(c0+c0L6+L2C),c^6:=c2μ1(2c0+LC),\begin{split}&c_{11}:=\frac{T^{1-\alpha}}{2\Gamma(2-\alpha)},\quad c_{12}:=\frac{c_{11}}{c_{1}\mu_{1}^{2}},\quad c_{13}:=\frac{c_{12}}{c_{2}\mu_{1}\lambda},\\ &\hat{c}_{3}:=c_{2}\mu_{1}(c_{0}+\frac{c_{0}L}{\sqrt{6}}+\frac{\sqrt{L}}{2}C^{\star}),\quad\hat{c}_{6}:=c_{2}\mu_{1}(2c_{0}+\sqrt{L}C^{\star}),\\ \end{split}
c14:=max{2c^32+c4+2c52+5μ22L26μ12+L2+1c2μ1λ,8c^62+3c72c2μ1λ+23,1},c15:=2c2μ1λ+c2μ222μ1λ,\begin{split}&c_{14}:=\max\left\{\frac{2\hat{c}_{3}^{2}+c_{4}+2c_{5}^{2}+\frac{5\mu_{2}^{2}L^{2}}{6\mu_{1}^{2}}+L^{2}+1}{c_{2}\mu_{1}\lambda},\quad\frac{8\hat{c}_{6}^{2}+3c_{7}^{2}}{c_{2}\mu_{1}\lambda}+\frac{2}{3},\quad 1\right\},\\ &c_{15}:=\frac{2c_{2}\mu_{1}}{\lambda}+\frac{c_{2}\mu_{2}^{2}}{2\mu_{1}\lambda},\\ \end{split}

from which, CC^{\star} will be given in the following theorem.

Theorem 4.2.

Suppose {βin,γin}\{\beta_{i}^{n},\gamma_{i}^{n}\} is the solution of (4.19)-(4.22), for any 0nN0\leq n\leq N, when τc141/3\tau c_{14}\leq 1/3, the following inequality holds

|βn|1e(6c14T)(214|β0|12+6c13μ1η0+μ2β02+6τn=0N1c15fn+122)1/2.|\beta^{n}|_{1}\leq e^{(6c_{14}T)}\left(\frac{21}{4}|\beta^{0}|_{1}^{2}+6c_{13}\|\mu_{1}\eta^{0}+\mu_{2}\beta^{0}\|^{2}+6\tau\sum\limits_{n=0}^{N-1}c_{15}\|f^{n+\frac{1}{2}}\|^{2}\right)^{1/2}. (4.23)
Proof.

It is obvious that (4.23) holds for n=0n=0. Assume (4.23) is vaild for 1nN11\leq n\leq N-1. C>0\exists C^{\star}>0, such that |βn|1C|\beta^{n}|_{1}\leq C^{\star} (1nN1)(1\leq n\leq N-1), combining with Lemma 2.2, we can arrive at

βnL6C,βnL2C,1nN1.\|\beta^{n}\|\leq\frac{L}{\sqrt{6}}C^{\star},\quad\|\beta^{n}\|_{\infty}\leq\frac{\sqrt{L}}{2}C^{\star},\quad 1\leq n\leq N-1. (4.24)

Below we need to prove that (4.23) is valid for n=Nn=N. Similar to the proof of convergence, taking the inner product of (4.23) with (μ1δtβn12+μ2βn12)(\mu_{1}\delta_{t}\beta^{n-\frac{1}{2}}+\mu_{2}\beta^{n-\frac{1}{2}}) and summing for nn from 11 to NN, then we have

Π1n12n=1NΠ2n12n=1NΠ3n12n=1NΠ4n12=n=1NΠ5n12,\Pi_{1}^{n-\frac{1}{2}}-\sum\limits_{n=1}^{N}\Pi_{2}^{n-\frac{1}{2}}-\sum\limits_{n=1}^{N}\Pi_{3}^{n-\frac{1}{2}}-\sum\limits_{n=1}^{N}\Pi_{4}^{n-\frac{1}{2}}=\sum\limits_{n=1}^{N}\Pi_{5}^{n-\frac{1}{2}}, (4.25)

where

Π1n12:=n=1Nτ1Γ(1α)𝒟t(α)(μ1δtβn12+μ2βn12),μ1δtβn12+μ2βn12,Π2n12:=ψ(u~n12,u~n12)ψ(un12,un12),μ1δtβn12+μ2βn12,Π3n12:=h22ψ(w~n12,u~n12)ψ(wn12,un12),μ1δtβn12+μ2βn12,Π4n12:=λγn12,μ1δtβn12+μ2βn12,Π5n12:=fn12,μ1δtβn12+μ2βn12.\begin{split}&\Pi_{1}^{n-\frac{1}{2}}:=\sum\limits_{n=1}^{N}\left\langle\frac{\tau^{-1}}{\Gamma(1-\alpha)}\mathcal{D}_{t}^{(\alpha)}(\mu_{1}\delta_{t}\beta^{n-\frac{1}{2}}+\mu_{2}\beta^{n-\frac{1}{2}}),\mu_{1}\delta_{t}\beta^{n-\frac{1}{2}}+\mu_{2}\beta^{n-\frac{1}{2}}\right\rangle,\\ &\Pi_{2}^{n-\frac{1}{2}}:=-\left\langle\psi(\tilde{u}^{n-\frac{1}{2}},\tilde{u}^{n-\frac{1}{2}})-\psi(u^{n-\frac{1}{2}},u^{n-\frac{1}{2}}),\mu_{1}\delta_{t}\beta^{n-\frac{1}{2}}+\mu_{2}\beta^{n-\frac{1}{2}}\right\rangle,\\ &\Pi_{3}^{n-\frac{1}{2}}:=\frac{h^{2}}{2}\left\langle\psi(\tilde{w}^{n-\frac{1}{2}},\tilde{u}^{n-\frac{1}{2}})-\psi(w^{n-\frac{1}{2}},u^{n-\frac{1}{2}}),\mu_{1}\delta_{t}\beta^{n-\frac{1}{2}}+\mu_{2}\beta^{n-\frac{1}{2}}\right\rangle,\\ &\Pi_{4}^{n-\frac{1}{2}}:=\lambda\left\langle\gamma^{n-\frac{1}{2}},\mu_{1}\delta_{t}\beta^{n-\frac{1}{2}}+\mu_{2}\beta^{n-\frac{1}{2}}\right\rangle,\\ &\Pi_{5}^{n-\frac{1}{2}}:=\left\langle f^{n-\frac{1}{2}},\mu_{1}\delta_{t}\beta^{n-\frac{1}{2}}+\mu_{2}\beta^{n-\frac{1}{2}}\right\rangle.\\ \end{split}

First, considering Π1n12\Pi_{1}^{n-\frac{1}{2}}, combining with Lemma 4.1 and (4.21), we have

Π1n12n=1NTα2Γ(1α)μ1δtβn12+μ2βn122T1α2τΓ(2α)μ1η0+μ2β02.\begin{split}\Pi_{1}^{n-\frac{1}{2}}&\geq\sum\limits_{n=1}^{N}\frac{T^{-\alpha}}{2\Gamma(1-\alpha)}\|\mu_{1}\delta_{t}\beta^{n-\frac{1}{2}}+\mu_{2}\beta^{n-\frac{1}{2}}\|^{2}-\frac{T^{1-\alpha}}{2\tau\Gamma(2-\alpha)}\|\mu_{1}\eta^{0}+\mu_{2}\beta^{0}\|^{2}.\\ \end{split}

Therefore, we have

n=1Nc1μ1δtβn12+μ2βn122c11τ1μ1η0+μ2β02n=1NΠ4n12n=1NΠ2n12+n=1NΠ3n12+n=1NΠ5n12,\begin{split}&\sum\limits_{n=1}^{N}c_{1}\|\mu_{1}\delta_{t}\beta^{n-\frac{1}{2}}+\mu_{2}\beta^{n-\frac{1}{2}}\|^{2}-c_{11}\tau^{-1}\|\mu_{1}\eta^{0}+\mu_{2}\beta^{0}\|^{2}-\sum\limits_{n=1}^{N}\Pi_{4}^{n-\frac{1}{2}}\\ &\leq\sum\limits_{n=1}^{N}\Pi_{2}^{n-\frac{1}{2}}+\sum\limits_{n=1}^{N}\Pi_{3}^{n-\frac{1}{2}}+\sum\limits_{n=1}^{N}\Pi_{5}^{n-\frac{1}{2}},\\ \end{split}

furthermore, the above inequality is transformed into

n=1N{δtβn122c2Π4n12}n=1N{c2Π2n12+c2Π3n12+c2Π5n12+2μ2μ1δtβn12βn12}+c12τ1μ1η0+μ2β02.\begin{split}\sum\limits_{n=1}^{N}\biggl{\{}\|\delta_{t}\beta^{n-\frac{1}{2}}\|^{2}-c_{2}\Pi_{4}^{n-\frac{1}{2}}\biggr{\}}\leq&\sum\limits_{n=1}^{N}\biggl{\{}c_{2}\Pi_{2}^{n-\frac{1}{2}}+c_{2}\Pi_{3}^{n-\frac{1}{2}}+c_{2}\Pi_{5}^{n-\frac{1}{2}}+\frac{2\mu_{2}}{\mu_{1}}\|\delta_{t}\beta^{n-\frac{1}{2}}\|\|\beta^{n-\frac{1}{2}}\|\biggr{\}}\\ &+c_{12}\tau^{-1}\|\mu_{1}\eta^{0}+\mu_{2}\beta^{0}\|^{2}.\\ \end{split} (4.26)

Similarly, we analyze c2Π2n12,c2Π3n12,c2Π4n12,c2Π5n12c_{2}\Pi_{2}^{n-\frac{1}{2}},c_{2}\Pi_{3}^{n-\frac{1}{2}},c_{2}\Pi_{4}^{n-\frac{1}{2}},c_{2}\Pi_{5}^{n-\frac{1}{2}} and 2μ2μ1βn12δtβn12\frac{2\mu_{2}}{\mu_{1}}\|\beta^{n-\frac{1}{2}}\|\|\delta_{t}\beta^{n-\frac{1}{2}}\|, respectively. Since the process of analysis is the same as (\@slowromancapi@)-(\@slowromancapiv@), we omit the detail of analysis process and here give their corresponding estimates directly

c2Π2n1215δtβn122+(5c^324+c4)|βn12|12,\displaystyle c_{2}\Pi_{2}^{n-\frac{1}{2}}\leq\frac{1}{5}\|\delta_{t}\beta^{n-\frac{1}{2}}\|^{2}+(\frac{5\hat{c}_{3}^{2}}{4}+c_{4})|\beta^{n-\frac{1}{2}}|_{1}^{2}, (4.27)
c2Π3n1225δtβn122+(54c52+12)|βn12|12+(54c^62+12c72)h2γn122,\displaystyle c_{2}\Pi_{3}^{n-\frac{1}{2}}\leq\frac{2}{5}\|\delta_{t}\beta^{n-\frac{1}{2}}\|^{2}+(\frac{5}{4}c_{5}^{2}+\frac{1}{2})|\beta^{n-\frac{1}{2}}|_{1}^{2}+(\frac{5}{4}\hat{c}_{6}^{2}+\frac{1}{2}c_{7}^{2})h^{2}\|\gamma^{n-\frac{1}{2}}\|^{2}, (4.28)
\displaystyle- c2Π4n12c2μ1λ2τ[(|βn|12|βn1|12)+h212(γn2γn12)h4144(|γn|12|γn1|12)],\displaystyle c_{2}\Pi_{4}^{n-\frac{1}{2}}\geq\frac{c_{2}\mu_{1}\lambda}{2\tau}\left[(|\beta^{n}|_{1}^{2}-|\beta^{n-1}|_{1}^{2})+\frac{h^{2}}{12}(\|\gamma^{n}\|^{2}-\|\gamma^{n-1}\|^{2})-\frac{h^{4}}{144}(|\gamma^{n}|_{1}^{2}-|\gamma^{n-1}|_{1}^{2})\right], (4.29)
c2Π5n1215δtβn122+(54c22μ12+12c22μ22)fn122+L212|βn12|12,\displaystyle c_{2}\Pi_{5}^{n-\frac{1}{2}}\leq\frac{1}{5}\|\delta_{t}\beta^{n-\frac{1}{2}}\|^{2}+(\frac{5}{4}c_{2}^{2}\mu_{1}^{2}+\frac{1}{2}c_{2}^{2}\mu_{2}^{2})\|f^{n-\frac{1}{2}}\|^{2}+\frac{L^{2}}{12}|\beta^{n-\frac{1}{2}}|_{1}^{2}, (4.30)
2μ2μ1βn12δtβn1215δtβn12+5μ22L26μ12|βn12|12.\displaystyle\frac{2\mu_{2}}{\mu_{1}}\|\beta^{n-\frac{1}{2}}\|\|\delta_{t}\beta^{n-\frac{1}{2}}\|\leq\frac{1}{5}\|\delta_{t}\beta^{n-\frac{1}{2}}\|+\frac{5\mu_{2}^{2}L^{2}}{6\mu_{1}^{2}}|\beta^{n-\frac{1}{2}}|_{1}^{2}. (4.31)

Now substituting (4.27)-(4.31) back into (4.26), we can get

n=1N{δtβn122+c2μ1λ2τ[(|βn|12|βn1|12)+h212(γn2γn12)h4144(|γn|12|γn1|12)]}n=1N{δtβn122+(54c^32+c4+54c52+L212+5μ22L26μ12+12)|βn12|12+(152c^62+3c72)h26γn122+(54c22μ12+12c22μ22)fn122}+c12τ1μ1η0+μ2β02.\begin{split}&\sum\limits_{n=1}^{N}\biggl{\{}\|\delta_{t}\beta^{n-\frac{1}{2}}\|^{2}+\frac{c_{2}\mu_{1}\lambda}{2\tau}\left[(|\beta^{n}|_{1}^{2}-|\beta^{n-1}|_{1}^{2})+\frac{h^{2}}{12}(\|\gamma^{n}\|^{2}-\|\gamma^{n-1}\|^{2})-\frac{h^{4}}{144}(|\gamma^{n}|_{1}^{2}-|\gamma^{n-1}|_{1}^{2})\right]\biggr{\}}\\ \leq&\sum\limits_{n=1}^{N}\biggl{\{}\|\delta_{t}\beta^{n-\frac{1}{2}}\|^{2}+\left(\frac{5}{4}\hat{c}_{3}^{2}+c_{4}+\frac{5}{4}c_{5}^{2}+\frac{L^{2}}{12}+\frac{5\mu_{2}^{2}L^{2}}{6\mu_{1}^{2}}+\frac{1}{2}\right)|\beta^{n-\frac{1}{2}}|_{1}^{2}+\left(\frac{15}{2}\hat{c}_{6}^{2}+3c_{7}^{2}\right)\frac{h^{2}}{6}\|\gamma^{n-\frac{1}{2}}\|^{2}\\ &+\left(\frac{5}{4}c_{2}^{2}\mu_{1}^{2}+\frac{1}{2}c_{2}^{2}\mu_{2}^{2}\right)\|f^{n-\frac{1}{2}}\|^{2}\biggr{\}}+c_{12}\tau^{-1}\|\mu_{1}\eta^{0}+\mu_{2}\beta^{0}\|^{2}.\\ \end{split}

Moreover, we have

n=1N12τ[(|βn|12|βn1|12)+h212(γn2γn12)h4144(|γn|12|γn1|12)]n=1N{(2c^32+c4+2c52+5μ22L26μ12+L2+1c2μ1λ)|βn12|12+(8c^62+3c72c2μ1λ)h26γn122}+n=1N(2c2μ1λ+c2μ222μ1λ)fn122+c12c2μ1λτ1μ1η0+μ2β02n=1N{(2c^32+c4+2c52+5μ22L26μ12+L2+1c2μ1λ)|βn12|12+(8c^62+3c72c2μ1λ+23)h26γn122h436|γn12|12}+n=1Nc15fn122+c13τ1μ1η0+μ2β02\begin{split}&\sum\limits_{n=1}^{N}\frac{1}{2\tau}\left[(|\beta^{n}|_{1}^{2}-|\beta^{n-1}|_{1}^{2})+\frac{h^{2}}{12}(\|\gamma^{n}\|^{2}-\|\gamma^{n-1}\|^{2})-\frac{h^{4}}{144}(|\gamma^{n}|_{1}^{2}-|\gamma^{n-1}|_{1}^{2})\right]\\ \leq&\sum\limits_{n=1}^{N}\biggl{\{}\Big{(}\frac{2\hat{c}_{3}^{2}+c_{4}+2c_{5}^{2}+\frac{5\mu_{2}^{2}L^{2}}{6\mu_{1}^{2}}+L^{2}+1}{c_{2}\mu_{1}\lambda}\Big{)}|\beta^{n-\frac{1}{2}}|_{1}^{2}+\Big{(}\frac{8\hat{c}_{6}^{2}+3c_{7}^{2}}{c_{2}\mu_{1}\lambda}\Big{)}\frac{h^{2}}{6}\|\gamma^{n-\frac{1}{2}}\|^{2}\biggr{\}}\\ &+\sum\limits_{n=1}^{N}\Big{(}\frac{2c_{2}\mu_{1}}{\lambda}+\frac{c_{2}\mu_{2}^{2}}{2\mu_{1}\lambda}\Big{)}\|f^{n-\frac{1}{2}}\|^{2}+\frac{c_{12}}{c_{2}\mu_{1}\lambda}\tau^{-1}\|\mu_{1}\eta^{0}+\mu_{2}\beta^{0}\|^{2}\\ \leq&\sum\limits_{n=1}^{N}\biggl{\{}\Big{(}\frac{2\hat{c}_{3}^{2}+c_{4}+2c_{5}^{2}+\frac{5\mu_{2}^{2}L^{2}}{6\mu_{1}^{2}}+L^{2}+1}{c_{2}\mu_{1}\lambda}\Big{)}|\beta^{n-\frac{1}{2}}|_{1}^{2}+\left(\frac{8\hat{c}_{6}^{2}+3c_{7}^{2}}{c_{2}\mu_{1}\lambda}+\frac{2}{3}\right)\frac{h^{2}}{6}\|\gamma^{n-\frac{1}{2}}\|^{2}-\frac{h^{4}}{36}|\gamma^{n-\frac{1}{2}}|_{1}^{2}\biggr{\}}\\ &+\sum\limits_{n=1}^{N}c_{15}\|f^{n-\frac{1}{2}}\|^{2}+c_{13}\tau^{-1}\|\mu_{1}\eta^{0}+\mu_{2}\beta^{0}\|^{2}\\ \end{split}
n=1Nc14[(|βn|12+|βn1|12)+h212(γn2+γn12)h4144(|γn|12+|γn1|12)]+n=1Nc15fn122+c13τ1μ1η0+μ2β02.\begin{split}\leq&\sum\limits_{n=1}^{N}c_{14}\left[(|\beta^{n}|_{1}^{2}+|\beta^{n-1}|_{1}^{2})+\frac{h^{2}}{12}(\|\gamma^{n}\|^{2}+\|\gamma^{n-1}\|^{2})-\frac{h^{4}}{144}(|\gamma^{n}|_{1}^{2}+|\gamma^{n-1}|_{1}^{2})\right]\\ &+\sum\limits_{n=1}^{N}c_{15}\|f^{n-\frac{1}{2}}\|^{2}+c_{13}\tau^{-1}\|\mu_{1}\eta^{0}+\mu_{2}\beta^{0}\|^{2}.\\ \end{split}

Define

H~n:=|βn|12+h212γn2h4144|γn|12,0nN.\tilde{H}^{n}:=|\beta^{n}|_{1}^{2}+\frac{h^{2}}{12}\|\gamma^{n}\|^{2}-\frac{h^{4}}{144}|\gamma^{n}|_{1}^{2},\quad 0\leq n\leq N.

It is easy to konw H~0|β0|12+h218γ02>0\tilde{H}^{0}\geq|\beta^{0}|_{1}^{2}+\frac{h^{2}}{18}\|\gamma^{0}\|^{2}>0, we can get

12τ(H~NH~0)c14H~N+2c14n=0N1H~n+n=1Nc15fn122+c13τ1μ1η0+μ2β02,\begin{array}[]{ccc}\frac{1}{2\tau}(\tilde{H}^{N}-\tilde{H}^{0})\leq c_{14}\tilde{H}^{N}+2c_{14}\sum\limits_{n=0}^{N-1}\tilde{H}^{n}+\sum\limits_{n=1}^{N}c_{15}\|f^{n-\frac{1}{2}}\|^{2}+c_{13}\tau^{-1}\|\mu_{1}\eta^{0}+\mu_{2}\beta^{0}\|^{2},\end{array}

when τc141/3\tau c_{14}\leq 1/3, then

H~N3H~0+6c13μ1η0+μ2β02+6τn=0N1c15fn+122+n=0N112τc14H~n.\begin{array}[]{ccc}\tilde{H}^{N}\leq 3\tilde{H}^{0}+6c_{13}\|\mu_{1}\eta^{0}+\mu_{2}\beta^{0}\|^{2}+6\tau\sum\limits_{n=0}^{N-1}c_{15}\|f^{n+\frac{1}{2}}\|^{2}+\sum\limits_{n=0}^{N-1}12\tau c_{14}\tilde{H}^{n}.\end{array}

Combining with Lemma 4.3, we can get

H~Ne(12c14T)(3H~0+6c13μ1η0+μ2β02+6τn=0N1c15fn+122).\begin{split}\tilde{H}^{N}\leq e^{(12c_{14}T)}\left(3\tilde{H}^{0}+6c_{13}\|\mu_{1}\eta^{0}+\mu_{2}\beta^{0}\|^{2}+6\tau\sum\limits_{n=0}^{N-1}c_{15}\|f^{n+\frac{1}{2}}\|^{2}\right).\end{split}

Next, taking the inner product of (4.20) (case n=0n=0) with γ0\gamma^{0} and utilizing the inverse estimate, then we get

γ022h|β0|1γ0+13γ02,\|\gamma^{0}\|^{2}\leq\frac{2}{h}|\beta^{0}|_{1}\|\gamma^{0}\|+\frac{1}{3}\|\gamma^{0}\|^{2},

thus

γ03h|β0|1,\begin{split}\|\gamma^{0}\|\leq\frac{3}{h}|\beta^{0}|_{1},\end{split}

and it is easy to yield

H~N|βN|12+h218γN2|βN|12.\tilde{H}^{N}\geq|\beta^{N}|_{1}^{2}+\frac{h^{2}}{18}\|\gamma^{N}\|^{2}\geq|\beta^{N}|_{1}^{2}.

Then we can get

|βN|1e(6c14T)(214|β0|12+6c13μ1η0+μ2β02+6τn=0N1c15fn+122)1/2.|\beta^{N}|_{1}\leq e^{(6c_{14}T)}\left(\frac{21}{4}|\beta^{0}|_{1}^{2}+6c_{13}\|\mu_{1}\eta^{0}+\mu_{2}\beta^{0}\|^{2}+6\tau\sum\limits_{n=0}^{N-1}c_{15}\|f^{n+\frac{1}{2}}\|^{2}\right)^{1/2}.

This completes the proof. ∎

Remark 4.

Under the conditions of Theorem 4.2, combining with (2.2), for 0nN0\leq n\leq N, we can obtain

βnL6e(6c14T)(214|β0|12+6c13μ1η0+μ2β02+6τn=0N1c15fn+122)1/2,|βn|L2e(6c14T)(214|β0|12+6c13μ1η0+μ2β02+6τn=0N1c15fn+122)1/2.\begin{split}&\|\beta^{n}\|\leq\frac{L}{\sqrt{6}}e^{(6c_{14}T)}\left(\frac{21}{4}|\beta^{0}|_{1}^{2}+6c_{13}\|\mu_{1}\eta^{0}+\mu_{2}\beta^{0}\|^{2}+6\tau\sum\limits_{n=0}^{N-1}c_{15}\|f^{n+\frac{1}{2}}\|^{2}\right)^{1/2},\\ &|\beta^{n}|_{\infty}\leq\frac{\sqrt{L}}{2}e^{(6c_{14}T)}\left(\frac{21}{4}|\beta^{0}|_{1}^{2}+6c_{13}\|\mu_{1}\eta^{0}+\mu_{2}\beta^{0}\|^{2}+6\tau\sum\limits_{n=0}^{N-1}c_{15}\|f^{n+\frac{1}{2}}\|^{2}\right)^{1/2}.\end{split}

5 Numerical experiment

In this section, all experiments will be performed by utilizing the software MATLAB R2021a on a MacOS 12.5 (64 bit) PC-Inter(R) Core(TM) i5 CPU 1.4 GHz and 8.0 GB of RAM. Three illustrative examples are given to demonstrate the efficiency and numerical accuracy of our scheme.

Let UinU_{i}^{n} and uinu_{i}^{n} (0iM0\leq i\leq M, 0nN0\leq n\leq N) be the exact solutions and numerical solutions respectively, and we compute the problem (1.1)-(1.3) by using the compact difference scheme (3.11)-(3.14). In the implementation of the implicit scheme, we apply the method of fixed point iteration [31]. Denote

E(τ,h):=max0nNUnun,Orderτ:=log2(E(2τ,h)E(τ,h)),Orderh:=log2(E(τ,2h)E(τ,h)).\begin{array}[]{cc}E_{\infty}(\tau,h):=\max\limits_{0\leq n\leq N}\|U^{n}-u^{n}\|_{\infty},\\ Order^{\tau}:=\log_{2}\Big{(}\frac{E_{\infty}(2\tau,h)}{E_{\infty}(\tau,h)}\Big{)},\qquad Order^{h}:=\log_{2}\Big{(}\frac{E_{\infty}(\tau,2h)}{E_{\infty}(\tau,h)}\Big{)}.\end{array}

In the following the fixed point iteration is applied to the implicit scheme (3.11)-(3.14). It can be seen from (3.11)-(3.12) that

(I+h212δx2)(1θ𝒟t(α)(μ1δtuin12+μ2uin12)+ψ(uin12,uin12)h22ψ(win12,uin12))=λδx2uin12,\left(I+\frac{h^{2}}{12}\delta_{x}^{2}\right)\left(\frac{1}{\theta}\mathcal{D}_{t}^{(\alpha)}(\mu_{1}\delta_{t}u_{i}^{n-\frac{1}{2}}+\mu_{2}u_{i}^{n-\frac{1}{2}})+\psi(u_{i}^{n-\frac{1}{2}},u_{i}^{n-\frac{1}{2}})-\frac{h^{2}}{2}\psi(w_{i}^{n-\frac{1}{2}},u_{i}^{n-\frac{1}{2}})\right)=\lambda\delta_{x}^{2}u_{i}^{n-\frac{1}{2}},

where II denotes the identity operator, θ:=ταΓ(1α)\theta:=\tau^{\alpha}\Gamma(1-\alpha). Let ξ1:=μ1/τ+μ2/2\xi_{1}:=\mu_{1}/\tau+\mu_{2}/2 and ξ2:=μ2/2μ1/τ\xi_{2}:=\mu_{2}/2-\mu_{1}/\tau, then we have

μ1δtuin12+μ2uin12=ξ1uin+ξ2uin1.\mu_{1}\delta_{t}u_{i}^{n-\frac{1}{2}}+\mu_{2}u_{i}^{n-\frac{1}{2}}=\xi_{1}u_{i}^{n}+\xi_{2}u_{i}^{n-1}.

Next, we analyze the term ψ(uin12,uin12)\psi(u_{i}^{n-\frac{1}{2}},u_{i}^{n-\frac{1}{2}}), that is

ψ(uin12,uin12)=14(ψ(uin,uin)+ψ(uin,uin1)+ψ(uin1,uin)+ψ(uin1,uin1)).\psi(u_{i}^{n-\frac{1}{2}},u_{i}^{n-\frac{1}{2}})=\frac{1}{4}\left(\psi(u_{i}^{n},u_{i}^{n})+\psi(u_{i}^{n},u_{i}^{n-1})+\psi(u_{i}^{n-1},u_{i}^{n})+\psi(u_{i}^{n-1},u_{i}^{n-1})\right).

In addition, the expansion of ψ(win12,uin12)\psi(w_{i}^{n-\frac{1}{2}},u_{i}^{n-\frac{1}{2}}) is similar to that of ψ(uin12,uin12)\psi(u_{i}^{n-\frac{1}{2}},u_{i}^{n-\frac{1}{2}}). Therefore, we can obtain

{(I+h212δx2)(𝒟t(α)(ξ1uin,k+1+ξ2uin1)+θψk+12(uin12,uin12)θh22ψ(win12,k,uin12,k))=θλ2δx2(uin,k+1+uin1),ψk+12(uin12,uin12)=14(ψk+12(uin,uin)+ψ(uin,k+1,uin1)+ψ(uin1,uin,k+1)+ψ(uin1,uin1)),ψ(win12,k,uin12,k)=14(ψ(win,k,uin,k)+ψ(win,k,uin1)+ψ(win1,uin,k)+ψ(win1,uin1)),ψk+12(uin,uin)=ui1n,k+uin,k+ui+1n,k6h(ui+1n,k+1ui1n,k+1),(I+h212δx2)win,k=δx2uin,k,\begin{cases}\left(I+\frac{h^{2}}{12}\delta_{x}^{2}\right)\left(\mathcal{D}_{t}^{(\alpha)}(\xi_{1}u_{i}^{n,k+1}+\xi_{2}u_{i}^{n-1})+\theta\psi^{k+\frac{1}{2}}(u_{i}^{n-\frac{1}{2}},u_{i}^{n-\frac{1}{2}})-\frac{\theta h^{2}}{2}\psi(w_{i}^{n-\frac{1}{2},k},u_{i}^{n-\frac{1}{2},k})\right)\\ =\frac{\theta\lambda}{2}\delta_{x}^{2}(u_{i}^{n,k+1}+u_{i}^{n-1}),\\ \\ \psi^{k+\frac{1}{2}}(u_{i}^{n-\frac{1}{2}},u_{i}^{n-\frac{1}{2}})=\frac{1}{4}\left(\psi^{k+\frac{1}{2}}(u_{i}^{n},u_{i}^{n})+\psi(u_{i}^{n,k+1},u_{i}^{n-1})+\psi(u_{i}^{n-1},u_{i}^{n,k+1})+\psi(u_{i}^{n-1},u_{i}^{n-1})\right),\\ \\ \psi(w_{i}^{n-\frac{1}{2},k},u_{i}^{n-\frac{1}{2},k})=\frac{1}{4}\left(\psi(w_{i}^{n,k},u_{i}^{n,k})+\psi(w_{i}^{n,k},u_{i}^{n-1})+\psi(w_{i}^{n-1},u_{i}^{n,k})+\psi(w_{i}^{n-1},u_{i}^{n-1})\right),\\ \\ \psi^{k+\frac{1}{2}}(u_{i}^{n},u_{i}^{n})=\frac{u_{i-1}^{n,k}+u_{i}^{n,k}+u_{i+1}^{n,k}}{6h}(u_{i+1}^{n,k+1}-u_{i-1}^{n,k+1}),\\ \\ \left(I+\frac{h^{2}}{12}\delta_{x}^{2}\right)w_{i}^{n,k}=\delta_{x}^{2}u_{i}^{n,k},\end{cases}

where 1iM11\leq i\leq M-1, 1nN1\leq n\leq N, kk denotes the iteration times, the initial guess is given by uin,0=uin1u_{i}^{n,0}=u_{i}^{n-1}, and the stopping criterion is set as un,k+1un,k108\|u^{n,k+1}-u^{n,k}\|_{\infty}\leq 10^{-8}.

Example 1. In the first example, considering (1.1)-(1.3) with L=T=1L=T=1, we give the following exact solution

u(x,t)=(t2+α+1)sin(πx),u(x,t)=(t^{2+\alpha}+1)\sin(\pi x),

then the initial conditions are ψ1(x)=sin(πx)\psi_{1}(x)=\sin(\pi x) and ψ2(x)=0\psi_{2}(x)=0, and the source term is

f(x,t)=Γ(3+α)tsin(πx)(μ1+μ2t2)+π2sin(2πx)(t2+α+1)2+λπ2sin(πx)(t2+α+1).f(x,t)=\Gamma(3+\alpha)t\sin(\pi x)\left(\mu_{1}+\frac{\mu_{2}t}{2}\right)+\frac{\pi}{2}\sin(2\pi x)(t^{2+\alpha}+1)^{2}+\lambda\pi^{2}\sin(\pi x)(t^{2+\alpha}+1).

Tables 1 and 2 present the LL^{\infty}-norm errors and corresponding convergence orders for compact difference schemes (3.11)-(3.14). As we can see, all numerical results are consistent with the theoretical results. In temporal and spatial directions, it can approximately arrive at order (2α)(2-\alpha) and fourth order, respectively. Figure 1 shows the temporal convergence order for different values α\alpha when M=80M=80, μ1=μ2=1\mu_{1}=\mu_{2}=1, and λ=1\lambda=1. The spatial convergence with fixed time step and coefficients (μ1,μ2,λ\mu_{1},\mu_{2},\lambda) is showed in Figure 2, when varying spatial step sizes for different α\alpha.

Table 1: The LL^{\infty}-norm errors and temporal convergence orders in viscous coefficients λ=1\lambda=1 and 0.010.01, respectively.
Compact difference scheme (3.11)-(3.14) with M=80M=80, μ1=μ2=1\mu_{1}=\mu_{2}=1
λ=1\lambda=1 λ=0.01\lambda=0.01
NN α=0.25\alpha=0.25 α=0.5\alpha=0.5 α=0.75\alpha=0.75 NN α=0.25\alpha=0.25 α=0.5\alpha=0.5 α=0.75\alpha=0.75
E(τ,h)E_{\infty}(\tau,h) OrderτOrder^{\tau} E(τ,h)E_{\infty}(\tau,h) OrderτOrder^{\tau} E(τ,h)E_{\infty}(\tau,h) OrderτOrder^{\tau} E(τ,h)E_{\infty}(\tau,h) OrderτOrder^{\tau} E(τ,h)E_{\infty}(\tau,h) OrderτOrder^{\tau} E(τ,h)E_{\infty}(\tau,h) OrderτOrder^{\tau}
64 5.043e-05 * 2.917e-04 * 1.871e-03 * 64 5.219e-04 * 2.435e-03 * 7.983e-03 *
128 1.586e-05 1.669 1.667e-04 1.478 7.904e-04 1.243 128 1.687e-04 1.630 8.830e-04 1.457 3.384e-03 1.234
256 4.938e-06 1.683 3.813e-05 1.484 3.332e-04 1.246 256 5.297e-05 1.677 3.183e-04 1.472 1.430e-03 1.243
512 1.527e-06 1.694 1.357e-05 1.489 1.403e-04 1.248 512 1.597e-05 1.730 1.137e-04 1.485 6.030e-04 1.246
Table 2: The LL^{\infty}-norm errors and spatial convergence orders in viscous coefficients λ=1\lambda=1 and 0.010.01, respectively.
Compact difference scheme (3.11)-(3.14) with N=20000N=20000, μ1=μ2=1\mu_{1}=\mu_{2}=1
λ=1\lambda=1 λ=0.01\lambda=0.01
MM α=0.25\alpha=0.25 α=0.5\alpha=0.5 α=0.75\alpha=0.75 MM α=0.25\alpha=0.25 α=0.5\alpha=0.5 α=0.75\alpha=0.75
E(τ,h)E_{\infty}(\tau,h) OrderhOrder^{h} E(τ,h)E_{\infty}(\tau,h) OrderhOrder^{h} E(τ,h)E_{\infty}(\tau,h) OrderhOrder^{h} E(τ,h)E_{\infty}(\tau,h) OrderhOrder^{h} E(τ,h)E_{\infty}(\tau,h) OrderhOrder^{h} E(τ,h)E_{\infty}(\tau,h) OrderhOrder^{h}
4 9.565e-03 * 9.175e-03 * 8.763e-03 * 4 7.732e-02 * 5.880e-02 * 5.218e-02 *
8 6.348e-04 3.913 6.089e-04 3.914 5.836e-04 3.909 8 7.476e-03 3.370 6.898e-03 3.091 4.417e-03 3.575
16 4.156e-05 3.933 3.978e-05 3.947 3.897e-05 3.904 16 5.680e-04 3.718 4.522e-04 3.931 2.864e-04 3.945
32 2.614e-06 3.991 2.530e-06 3.975 1.403e-06 3.946 32 3.595e-05 3.982 2.798e-05 4.015 1.385e-05 4.106
Refer to caption
Figure 1: Temporal convergence orders when M=80M=80, μ1=μ2=1\mu_{1}=\mu_{2}=1, and λ=1\lambda=1.
Refer to caption
Figure 2: Spatial convergence orders when N=20000N=20000, μ1=μ2=1\mu_{1}=\mu_{2}=1, and λ=1\lambda=1.

Example 2. In the second example, we consider that the second-order derivative of time of the exact solution has weak singularity at zero. Although we see that u(x,t)u(x,t) are supposed to belong to C2[0,T]C^{2}[0,T] in Lemma 2.3, the constructed compact difference scheme (3.11)-(3.14) is still valid. Following, we consider (1.1) at α=0.5\alpha=0.5 and set L=T=1L=T=1, and μ1=μ2=1\mu_{1}=\mu_{2}=1, the exact solution is given as follows

u(x,t)=t32sin(2πx),u(x,t)=t^{\frac{3}{2}}\sin(2\pi x),

then the initial conditions are ψ1(x)=ψ2(x)=0\psi_{1}(x)=\psi_{2}(x)=0, and the source term is

f(x,t)=3πsin(2πx)4(μ1+μ2t)+πt3sin(4πx)+4λπ2t32sin(2πx).f(x,t)=\frac{3\sqrt{\pi}\sin(2\pi x)}{4}\left(\mu_{1}+\mu_{2}t\right)+\pi t^{3}\sin(4\pi x)+4\lambda\pi^{2}t^{\frac{3}{2}}\sin(2\pi x).

In Tables 3 and 4, the numerical results show that the compact difference scheme (3.11)-(3.14) is still applicable for some functions whose second-order derivative of time has weak singularity. The corresponding convergence orders are same as that in Example 1. In other words, the convergence orders are 4 for space and (2α2-\alpha) for time in LL^{\infty} norm.

Table 3: The LL^{\infty}-norm errors and temporal convergence orders in viscous coefficients λ=1\lambda=1 and 0.010.01, respectively.
Compact difference scheme (3.11)-(3.14) with M=80M=80
λ=1\lambda=1 λ=0.01\lambda=0.01
NN E(τ,h)E_{\infty}(\tau,h) OrderτOrder^{\tau} NN E(τ,h)E_{\infty}(\tau,h) OrderτOrder^{\tau}
64 3.832e-04 * 64 7.567e-04 *
128 1.515e-04 1.339 128 2.815e-04 1.427
256 5.840e-05 1.375 256 1.021e-04 1.474
512 2.199e-05 1.409 512 3.577e-05 1.512
1024 8.150e-06 1.432 1024 1.247e-05 1.520
Table 4: The LL^{\infty}-norm errors and spatial convergence orders in viscous coefficients λ=1\lambda=1 and 0.010.01, respectively.
Compact difference scheme (3.11)-(3.14) with N=20000N=20000
λ=1\lambda=1 λ=0.01\lambda=0.01
MM E(τ,h)E_{\infty}(\tau,h) OrderhOrder^{h} MM E(τ,h)E_{\infty}(\tau,h) OrderhOrder^{h}
8 2.067e-03 * 8 1.506e-02 *
16 1.370e-04 3.916 16 1.047e-03 3.846
32 8.915e-06 3.941 32 7.584e-05 3.787
64 5.590e-07 3.995 64 4.619e-06 4.037

Example 3. In the third example, we consider the original problem (1.1)-(1.3) with L=T=1L=T=1, chooes the initial conditions ψ1(x)=x2(xL)2(x2Lx+L2)\psi_{1}(x)=x^{2}(x-L)^{2}(x^{2}-Lx+L^{2}), ψ2(x)=0\psi_{2}(x)=0, and the source term f(x,t)=0f(x,t)=0. The exact solution is unknown.

In this case, since the exact solution is unknown, we need to redefine the errors and convergence orders. First, denote the error and convergence order in time as follows

F1(τ,h):=max0iM|uiN(τ,h)ui2N(τ/2,h)|,Order1τ:=log2(F1(2τ,h)F1(τ,h)).F_{\infty}^{1}(\tau,h):=\max\limits_{0\leq i\leq M}\left|u_{i}^{N}(\tau,h)-u_{i}^{2N}(\tau/2,h)\right|,\qquad Order^{\tau}_{1}:=\log_{2}\left(\frac{F_{\infty}^{1}(2\tau,h)}{F_{\infty}^{1}(\tau,h)}\right).

Then, we denote the error and convergence order in space as follows

G1(τ,h):=max0iM|uiN(τ,h)u2iN(τ,h/2)|,Order1h:=log2(G1(τ,2h)G1(τ,h)).G_{\infty}^{1}(\tau,h):=\max\limits_{0\leq i\leq M}|u_{i}^{N}(\tau,h)-u_{2i}^{N}(\tau,h/2)|,\qquad Order^{h}_{1}:=\log_{2}\Big{(}\frac{G_{\infty}^{1}(\tau,2h)}{G_{\infty}^{1}(\tau,h)}\Big{)}.

Tables 5 and 6 list LL^{\infty}-norm errors and corresponding convergence orders for compact difference scheme (3.11)-(3.14). It can be observed with selected different α\alpha, the spatial and temporal convergence orders approximate fourth order and order 2α2-\alpha, respectively. Moreover, Figures 3 and 4 more visually show the spatial and temporal convergence with different values α\alpha, when μ1=μ2=1\mu_{1}=\mu_{2}=1, λ=0.01\lambda=0.01. These numerical results further verify the theories.

Table 5: The LL^{\infty}-norm errors and temporal convergence orders in viscous coefficients λ=1\lambda=1 and 0.010.01, respectively.
Compact difference scheme (3.11)-(3.14) with M=256M=256, μ1=μ2=1\mu_{1}=\mu_{2}=1
λ=1\lambda=1 λ=0.01\lambda=0.01
NN α=0.05\alpha=0.05 α=0.5\alpha=0.5 α=0.85\alpha=0.85 NN α=0.05\alpha=0.05 α=0.5\alpha=0.5 α=0.85\alpha=0.85
F1(τ,h)F_{\infty}^{1}(\tau,h) Order1τOrder_{1}^{\tau} F1(τ,h)F_{\infty}^{1}(\tau,h) Order1τOrder_{1}^{\tau} F1(τ,h)F_{\infty}^{1}(\tau,h) Order1τOrder_{1}^{\tau} F1(τ,h)F_{\infty}^{1}(\tau,h) Order1τOrder_{1}^{\tau} F1(τ,h)F_{\infty}^{1}(\tau,h) Order1τOrder_{1}^{\tau} F1(τ,h)F_{\infty}^{1}(\tau,h) Order1τOrder_{1}^{\tau}
16 2.868e-04 * 1.384e-04 * 8.506e-04 * 32 2.384e-07 * 2.094e-06 * 1.911e-05 *
32 7.184e-05 1.997 5.346e-05 1.372 4.070e-04 1.063 64 5.844e-08 2.034 7.857e-07 1.414 8.702e-06 1.134
64 1.751e-05 2.037 1.974e-05 1.437 1.903e-04 1.097 128 1.426e-08 2.035 2.891e-07 1.442 3.943e-06 1.142
128 4.478e-06 1.967 7.145e-06 1.466 8.681e-05 1.132 256 3.597e-09 1.987 1.051e-07 1.460 1.782e-06 1.146
Table 6: The LL^{\infty}-norm errors and spatial convergence orders in viscous coefficients λ=1\lambda=1 and 0.010.01, respectively.
Compact difference scheme (3.11)-(3.14) with N=1024N=1024, μ1=μ2=1\mu_{1}=\mu_{2}=1
λ=1\lambda=1 λ=0.01\lambda=0.01
MM α=0.25\alpha=0.25 α=0.5\alpha=0.5 α=0.75\alpha=0.75 MM α=0.25\alpha=0.25 α=0.5\alpha=0.5 α=0.75\alpha=0.75
G1(τ,h)G_{\infty}^{1}(\tau,h) Order1hOrder_{1}^{h} G1(τ,h)G_{\infty}^{1}(\tau,h) Order1hOrder_{1}^{h} G1(τ,h)G_{\infty}^{1}(\tau,h) Order1hOrder_{1}^{h} G1(τ,h)G_{\infty}^{1}(\tau,h) Order1hOrder_{1}^{h} G1(τ,h)G_{\infty}^{1}(\tau,h) Order1hOrder_{1}^{h} G1(τ,h)G_{\infty}^{1}(\tau,h) Order1hOrder_{1}^{h}
8 1.194e-06 * 1.171e-06 * 6.954e-06 * 32 5.077e-06 * 7.083e-07 * 4.690e-06 *
16 7.609e-08 3.972 7.314e-08 4.000 5.934e-07 3.550 64 3.489e-07 3.863 4.394e-08 4.010 3.346e-07 3.809
32 4.779e-09 3.993 4.571e-09 4.000 3.720e-08 3.996 128 2.209e-08 3.981 2.734e-09 4.006 2.596e-08 3.691
64 2.990e-10 3.998 2.857e-10 4.000 2.347e-09 3.986 256 1.390e-09 3.990 1.718e-10 3.993 1.703e-09 3.928
Refer to caption
Figure 3: Temporal convergence orders when M=80M=80, μ1=μ2=1\mu_{1}=\mu_{2}=1, and λ=0.01\lambda=0.01.
Refer to caption
Figure 4: Spatial convergence orders when N=1024N=1024, μ1=μ2=1\mu_{1}=\mu_{2}=1, and λ=0.01\lambda=0.01.

6 Summary

In the current work, we have established a novel fourth-order compact difference scheme for mixed-type time-fractional Burgers’ equation based on a developed nonlinear compact operator and reduction order technique. The convergence and stability in LL^{\infty}-norm are deduced by discrete energy method. Three numerical examples illustrate the accuracy and effectiveness of the compact difference scheme. All numerical results are consistent with the theoretical analysis. In our future work, a generalized mixed-type time-fractional Burgers’ equations will be considered by spatial compact difference method.

References

References

  • [1] Akram T, Abbas M, Riaz M B, et al. An efficient numerical technique for solving time fractional Burgers equation. Alexandria Engineering Journal, 2020, 59(4): 2201-2220.
  • [2] Bouchaud J P, Mézard M. Velocity fluctuations in forced Burgers turbulence. Physical Review E, 1996, 54(5): 5116.
  • [3] Brio M, Hunter J K. Mach reflection for the two-dimensional Burgers equation. Physica D: Nonlinear Phenomena, 1992, 60(1-4): 194-207.
  • [4] Crighton D G, Scott J F. Asymptotic solutions of model equations in nonlinear acoustics. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, 1979, 292(1389): 101-134.
  • [5] Djordjevic V D, Atanackovic T M. Similarity solutions to nonlinear heat conduction and Burgers/Korteweg-deVries fractional equations. Journal of Computational and Applied Mathematics, 2008, 222(2): 701-714.
  • [6] Garra R. Fractional-calculus model for temperature and pressure waves in fluid-saturated porous rocks. Physical Review E, 2011, 84(3): 036605.
  • [7] Guo B Y. Difference methods for partial differential equations. Pure and Applied Mathematics, 1988, 17.
  • [8] Hassani H, Naraghirad E. A new computational method based on optimization scheme for solving variable-order time fractional Burgers’ equation. Mathematics and Computers in Simulation, 2019, 162: 1-17.
  • [9] Jin B, Lazarov R, Liu Y, et al. The Galerkin finite element method for a multi-term time-fractional diffusion equation. Journal of Computational Physics, 2015, 281: 825-843.
  • [10] Kida S. Asymptotic properties of Burgers turbulence. Journal of Fluid mechanics, 1979, 93(2): 337-377.
  • [11] Li C, Li D, Wang Z. L1/LDG method for the generalized time-fractional Burgers equation. Mathematics and Computers in Simulation, 2021, 187: 357-378.
  • [12] Li D, Zhang C, Ran M. A linear finite difference scheme for generalized time fractional Burgers equation. Applied Mathematical Modelling, 2016, 40(11-12): 6069-6081.
  • [13] Li L, Li D. Exact solutions and numerical study of time fractional Burgers’ equations. Applied Mathematics Letters, 2020, 100: 106011.
  • [14] Lombard B, Matignon D. Diffusive approximation of a time-fractional Burger’s equation in nonlinear acoustics. SIAM Journal on Applied Mathematics, 2016, 76(5): 1765-1791.
  • [15] Oldham K, Spanier J. The Fractional Calculus, Academic Press, New York, 1999.
  • [16] Podlubny I. Fractional Differential Equations, Academic Press, San Diego, 1999.
  • [17] Qiu W, Chen H, Zheng X. An implicit difference scheme and algorithm implementation for the one-dimensional time-fractional Burgers equations. Mathematics and Computers in Simulation, 2019, 166: 298-314.
  • [18] Qiu W, Xiao X, Li K. Second-order accurate numerical scheme with graded meshes for the nonlinear partial integrodifferential equation arising from viscoelasticity. Communications in Nonlinear Science and Numerical Simulation, 2022.
  • [19] Qiu, W, Xu, D, Guo, J et al. A time two-grid algorithm based on finite difference method for the two-dimensional nonlinear time-fractional mobile/immobile transport model. Numerical Algorithms, 2020, 85: 39-58.
  • [20] Sun H, Sun Z. On two linearized difference schemes for Burgers’ equation. International Journal of Computer Mathematics, 2015, 92(6): 1160-1179.
  • [21] Sloan I H, Thomée V. Time discretization of an integro-differential equation of parabolic type. SIAM Journal on Numerical Analysis, 1986, 23(5): 1052-1061.
  • [22] Sugimoto N. Generalized Burgers equations and fractional calculus. Nonlinear wave motion, 1989: 162-179.
  • [23] Sun Z. Numerical Methods of Partial Differential Equations, 2nd edn. Science Press, Beijing 2012.
  • [24] Sun Z, Wu X. A fully discrete difference scheme for a diffusion-wave system. Applied Numerical Mathematics, 2006, 56(2): 193-209.
  • [25] Vong S, Lyu P. Unconditional convergence in maximum-norm of a second-order linearized scheme for a time-fractional Burgers-type equation. Journal of Scientific Computing, 2018, 76(2): 1252-1273.
  • [26] Wang X, Zhang Q, Sun Z. The pointwise error estimates of two energy-preserving fourth-order compact schemes for viscous Burgers’ equation. Advances in Computational Mathematics, 2021, 47(2): 1-42.
  • [27] Yepez J. Quantum lattice-gas model for the Burgers equation. Journal of Statistical Physics, 2002, 107(1): 203-224.
  • [28] Zhang Q, Liu L. Convergence and Stability in Maximum Norms of Linearized Fourth-Order Conservative Compact Scheme for Benjamin-Bona-Mahony-Burgers’ Equation. Journal of Scientific Computing, 2021, 87(2): 1-31.
  • [29] Zhang Q, Qin Y, Sun Z. Linearly compact scheme for 2D Sobolev equation with Burgers’ type nonlinearity. Numerical Algorithms, 2022: 1-34.
  • [30] Zhang Q, Qin Y, Wang X, et al. The study of exact and numerical solutions of the generalized viscous Burgers’ equation. Applied Mathematics Letters, 2021, 112: 106719.
  • [31] Zhang Q, Sun C, Fang Z W, et al. Pointwise error estimate and stability analysis of fourth-order compact difference scheme for time-fractional Burgers’ equation. Applied Mathematics and Computation, 2022, 418: 126824.
  • [32] Zhang W. A semi-implicit finite difference scheme for the multi-term time-fractional Burgers-type equations. Journal of Applied Mathematics and Computing, 2021, 65(1): 813-830.