This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Pointwise convergence for the elastic wave equation

Chu-Hee Cho, Seongyeon Kim, Yehyun Kwon and Ihyeok Seo Department of Mathematical Sciences and RIM, Seoul National University, Seoul 08826, Republic of Korea [email protected] School of Mathematics, Korea Institute for Advanced Study, Seoul 02455, Republic of Korea [email protected] [email protected] Department of Mathematics, Sungkyunkwan University, Suwon 16419, Republic of Korea [email protected]
Abstract.

We study pointwise convergence of the solution to the elastic wave equation to the initial data which lies in the Sobolev spaces. We prove that the solution converges along every lines to the initial data almost everywhere whenever the initial regularity is greater than one half. We show this is almost optimal.

Key words and phrases:
elastic wave equation, maximal estimate, pointwise convergence
2020 Mathematics Subject Classification:
Primary: 35L05; Secondary: 42B25
This work was supported by NRF-2020R1I1A1A01072942 (C. Cho), a KIAS Individual Grant (MG082901) at Korea Institute for Advanced Study (S. Kim), a KIAS Individual Grant (MG073701) at Korea Institute for Advanced Study and NRF-2020R1F1A1A01073520 (Y. Kwon), and NRF-2022R1A2C1011312 (I. Seo).

1. Introduction

We consider the Cauchy problem for the elastic wave equation

{t2uΔu=0,(x,t)n×,u(x,0)=f(x),tu(x,0)=0,\begin{cases}\partial_{t}^{2}u-\Delta^{\ast}u=0,\quad(x,t)\in\mathbb{R}^{n}\times\mathbb{R},\\ u(x,0)=f(x),\quad\partial_{t}u(x,0)=0,\end{cases} (1.1)

where Δ\Delta^{\ast} denotes the Lamé operator defined by

Δu=μΔu+(λ+μ)divu.\Delta^{\ast}u=\mu\Delta u+(\lambda+\mu)\nabla\mathrm{div}u.

The Laplacian Δ\Delta acts on each component of a vector field uu. Moreover, the following standard condition on the Lamé constants λ,μ\lambda,\mu\in\mathbb{R} is imposed to guarantee the ellipticity of Δ\Delta^{\ast}:

μ>0,λ+2μ>0.\mu>0,\quad\lambda+2\mu>0. (1.2)

The equation in (1.1) has been widely used as a model of wave propagation in an elastic medium, where uu denotes the displacement field of the medium (see e.g., [7, 8]). In particular, it is the classical wave equation if λ+μ=0\lambda+\mu=0.

In this paper, we are concerned with determining the optimal regularity s>0s>0 such that

limt0eitΔf(x)=f(x)a.e.x\lim_{t\rightarrow 0}e^{it\sqrt{-\Delta^{\ast}}}f(x)=f(x)\ \ \text{a.e.}\ \ x

for all fHs(n)f\in H^{s}(\mathbb{R}^{n}). The elastic wave propagator eitΔe^{it\sqrt{-\Delta^{\ast}}} provides the solution u=12(eitΔf+eitΔf)u=\frac{1}{2}(e^{it\sqrt{-\Delta^{\ast}}}f+e^{-it\sqrt{-\Delta^{\ast}}}f) for the problem (1.1) (see [5]).

For the classical wave equation, the pointwise convergence has been studied by means of the maximal estimate

supt(0,1)|eitΔf(x)|L2(n)CfHs(n)\Big{\|}\sup_{t\in(0,1)}\big{|}e^{it\sqrt{-\Delta}}f(x)\big{|}\Big{\|}_{L^{2}(\mathbb{R}^{n})}\leq C\|f\|_{H^{s}(\mathbb{R}^{n})} (1.3)

which implies the convergence. Cowling [4] proved (1.3) for s>1/2s>1/2. On the other hand, it was shown by Walther [11] that (1.3) fails for s1/2s\leq 1/2. (See also [9] for maximal estimates in LpL^{p}.) While the convergence is rather well understood for the wave equation, to the best of the authors’ knowledge, there doesn’t seem to be any corresponding literature for the elastic wave equation. In this regard, it would be interesting to ask whether the results for the wave equation are still valid for the elastic case. We obtain the following.

Theorem 1.1.

Let θSn1\theta\in S^{n-1} and v0v\geq 0. If fHs(n)f\in H^{s}(\mathbb{R}^{n}) with s>1/2s>1/2, then

supt(1,1)|eitΔf(x+vtθ)|L2(n)CfHs(n)\bigg{\|}\sup_{t\in(-1,1)}\Big{|}e^{it\sqrt{-\Delta^{\ast}}}f(x+vt\theta)\Big{|}\bigg{\|}_{L^{2}(\mathbb{R}^{n})}\leq C\|f\|_{H^{s}(\mathbb{R}^{n})} (1.4)

uniformly in θ\theta. Furthermore, this estimate fails if s<1/2s<1/2.

By a standard argument, Theorem 1.1 implies that

limt0eitΔf(x+vtθ)=f(x)a.e.x\lim_{t\rightarrow 0}e^{it\sqrt{-\Delta^{\ast}}}f(x+vt\theta)=f(x)\ \ \text{a.e.}\ \ x (1.5)

for fHs(n)f\in H^{s}(\mathbb{R}^{n}) with s>1/2s>1/2. If s<1/2s<1/2, it follows from Stein’s maximal principle ([10]) that (1.5) fails. The convergence (1.5) says that the solution converges to initial data along the line {(x+vtθ,t):t0}\{(x+vt\theta,t)\colon t\geq 0\} on the light cone with speed vv; see Figure 1. The convergence along lines on the light cone is new even for the wave equation (the case λ+μ=0\lambda+\mu=0).

Refer to caption
Figure 1. The light cone with speed vv

Notations

We denote by Sn1S^{n-1} the unit sphere in n\mathbb{R}^{n} centered at the origin. We use fL2(n)={fj}lj2L2\|f\|_{L^{2}(\mathbb{R}^{n})}=\|\{f_{j}\}\|_{l_{j}^{2}L^{2}} for a vector-valued function f=(f1,,fn)f=(f_{1},\ldots,f_{n}), and |M|=(i,j=1n|Mij|2)1/2|M|=\big{(}\sum_{i,j=1}^{n}|M_{ij}|^{2}\big{)}^{1/2} for a matrix M=(Mij)M=(M_{ij}). The letter CC stands for a positive constant which may be different at each occurrence. Also, ABA\lesssim B denotes ACBA\leq CB for a constant C>0C>0, and ABA\sim B denotes ABAA\lesssim B\lesssim A.

2. Diagonlaization of Δ\Delta^{\ast}

Recently, the three of the authors and Lee [6] diagonalized the Lamé operator so that Δ=PΔP1\Delta^{\ast}=P\Delta P^{-1} with a certain invertible matrix PP to study the elastic wave equation. We utilize the diagonalization to prove Theorem 1.1 in the following sections.

Let us recall from [6, Section 2] the diagonalization process and notations to make this article self-contained (the readers are encouraged to refer to [6] for details; also see Figure 2). For the unit vector e1=(1,0,,0)tne_{1}=(1,0,\ldots,0)^{t}\in\mathbb{R}^{n}, let S±={ωSn1:1/2ω(±e1)1}S_{\pm}=\{\omega\in S^{n-1}\colon-1/\sqrt{2}\leq\omega\cdot(\pm e_{1})\leq 1\} and ±n={ξn{0}:ξ/|ξ|S±}\mathbb{R}_{\pm}^{n}=\{\xi\in\mathbb{R}^{n}\setminus\{0\}\colon\xi/|\xi|\in S_{\pm}\}. For every ωS±{±e1}\omega\in S_{\pm}\setminus\{\pm e_{1}\}, we define the arc 𝒞±(ω)=S±span{e1,ω}\mathcal{C}_{\pm}(\omega)=S_{\pm}\cap\,\mathrm{span}\{e_{1},\omega\}, which is the intersection of S±S_{\pm} and the great circle on Sn1S^{n-1} passing through e1e_{1} and ω\omega. Now we take ρ±(ω)SO(n)\rho_{\pm}(\omega)\in\mathrm{SO}(n) so that its transpose ρ±(ω)t\rho_{\pm}(\omega)^{t} is the unique rotation mapping ω\omega to ±e1\pm e_{1} along the arc 𝒞±(ω)\mathcal{C}_{\pm}(\omega) and satisfying ρ±(ω)ty=y\rho_{\pm}(\omega)^{t}y=y whenever yspan{e1,ω}y\in\mathrm{span}\{e_{1},\omega\}^{\perp}. When ω=±e1\omega=\pm e_{1} we set ρ±(ω)t=In\rho_{\pm}(\omega)^{t}=I_{n}. We define the maps R±:±nSO(n)R_{\pm}:\mathbb{R}^{n}_{\pm}\rightarrow\mathrm{SO}(n) and the projections 𝒫±\mathcal{P}_{\pm} by

R±(ξ)=ρ±(ξ/|ξ|)and𝒫±f^(ξ)=φ±(ξ/|ξ|)f^(ξ),ξ±n,R_{\pm}(\xi)=\rho_{\pm}(\xi/|\xi|)\ \ \textrm{and}\ \ \widehat{\mathcal{P}_{\pm}f}(\xi)=\varphi_{\pm}(\xi/|\xi|)\widehat{f}(\xi),\quad\xi\in\mathbb{R}^{n}_{\pm},

where {φ+,φ}\{\varphi_{+},\varphi_{-}\} is a smooth partition of unity on Sn1S^{n-1} subordinate to the covering {intS+,intS}\{\mathrm{int}S_{+},\mathrm{int}S_{-}\}. We also set D=iD=-i\nabla and denote by m(D)f=(mf^)m(D)f=(m\widehat{f}\,)^{\vee} the Fourier multiplier defined by a bounded (matrix-valued) function mm.

Refer to caption
Figure 2. The rotation R+t(ξ)R_{+}^{t}(\xi) for ξ+n\xi\in\mathbb{R}_{+}^{n}
Lemma 2.1 ([6]).

Let L(ξ)L(\xi) be the n×nn\times n matrix-valued multiplier associated to Δ-\Delta^{\ast} and let Λ(ξ)=diag((λ+2μ)|ξ|2,μ|ξ|2,,μ|ξ|2)\Lambda(\xi)=\mathrm{diag}((\lambda+2\mu)|\xi|^{2},\mu|\xi|^{2},\ldots,\mu|\xi|^{2}). Then

Δ=L(D)=±L(D)P±=±R±(D)Λ(D)R±t(D)𝒫±.-\Delta^{\ast}=L(D)=\sum_{\pm}L(D)P_{\pm}=\sum_{\pm}R_{\pm}(D)\Lambda(D)R^{t}_{\pm}(D)\mathcal{P}_{\pm}. (2.1)

The positive square root of Λ\Lambda exists by the condition (1.2), so we have

Δ=L(D)=±R±(D)Λ(D)R±t(D)𝒫±\sqrt{-\Delta^{\ast}}=\sqrt{L}(D)=\sum_{\pm}R_{\pm}(D)\sqrt{\Lambda}(D)R^{t}_{\pm}(D)\mathcal{P}_{\pm} (2.2)

with Λ(ξ)=diag(λ+2μ|ξ|,μ|ξ|,,μ|ξ|)\sqrt{\Lambda}(\xi)=\mathrm{diag}(\sqrt{\lambda+2\mu}|\xi|,\sqrt{\mu}|\xi|,\ldots,\sqrt{\mu}|\xi|). Furthermore, it follows that

eitΔ=±eitL(D)𝒫±=±R±(D)eitΛ(D)R±t(D)𝒫±,e^{it\sqrt{-\Delta^{\ast}}}=\sum_{\pm}e^{it\sqrt{L}(D)}\mathcal{P}_{\pm}=\sum_{\pm}R_{\pm}(D)e^{it\sqrt{\Lambda}(D)}R_{\pm}^{t}(D)\mathcal{P}_{\pm}, (2.3)

where

eitΛ(D)=diag(eit(λ+2μ)Δ,eitμΔ,,eitμΔ).e^{it\sqrt{\Lambda}(D)}=\mathrm{diag}\big{(}e^{it\sqrt{-(\lambda+2\mu)\Delta}},e^{it\sqrt{-\mu\Delta}},\ldots,e^{it\sqrt{-\mu\Delta}}\big{)}.

3. Proof of Theorem 1.1: The necessity of s1/2s\geq 1/2

In this section, we construct an example to show that the maximal estimate (1.4) implies s1/2s\geq 1/2. We need only to consider θ=e1\theta=e_{1}. By (2.3), write

eitΔf(x+vte1)=±nR±(ξ)ei((x+vte1)ξIn+tΛ(ξ))R±t(ξ)𝒫±f^(ξ)𝑑ξ.e^{it\sqrt{-\Delta^{\ast}}}f(x+vte_{1})=\sum_{\pm}\int_{\mathbb{R}^{n}}R_{\pm}(\xi)e^{i((x+vte_{1})\cdot\xi I_{n}+t\sqrt{\Lambda}(\xi))}R_{\pm}^{t}(\xi)\widehat{\mathcal{P}_{\pm}f}(\xi)d\xi. (3.1)

We represent the n×nn\times n orthogonal matrix R±=(rij±)1i,jnR_{\pm}=(r^{\pm}_{ij})_{1\leq i,j\leq n} as the block matrix

R±=(A±B±C±D±),R_{\pm}=\begin{pmatrix}A_{\pm}&B_{\pm}\\ C_{\pm}&D_{\pm}\end{pmatrix},

where A±=r11±A_{\pm}=r^{\pm}_{11}, B±=(r1j±)2jnB_{\pm}=(r_{1j}^{\pm})_{2\leq j\leq n}, C±=(ri1±)2inC_{\pm}=(r_{i1}^{\pm})_{2\leq i\leq n} and D±=(rij±)2i,jnD_{\pm}=(r_{ij}^{\pm})_{2\leq i,j\leq n}. Then

R±(ξ)ei((x+vte1)ξIn+tΛ(ξ))R±(ξ)t\displaystyle R_{\pm}(\xi)e^{i((x+vte_{1})\cdot\xi I_{n}+t\sqrt{\Lambda}(\xi))}R_{\pm}(\xi)^{t}
=(A±(ξ)B±(ξ)C±(ξ)D±(ξ))(eiΦ(x,ξ)00eiΨ(x,ξ)In1)(A±(ξ)C±(ξ)tB±(ξ)tD±(ξ)t)\displaystyle\quad=\begin{pmatrix}A_{\pm}(\xi)&B_{\pm}(\xi)\\ C_{\pm}(\xi)&D_{\pm}(\xi)\end{pmatrix}\begin{pmatrix}e^{i\Phi(x,\xi)}&0\\ 0&e^{i\Psi(x,\xi)}I_{n-1}\end{pmatrix}\begin{pmatrix}A_{\pm}(\xi)&C_{\pm}(\xi)^{t}\\ B_{\pm}(\xi)^{t}&D_{\pm}(\xi)^{t}\end{pmatrix} (3.2)

where

Φ(x,ξ)=(x+vte1)ξ+tλ+2μ|ξ|andΨ(x,ξ)=(x+vte1)ξ+tμ|ξ|.\Phi(x,\xi)=(x+vte_{1})\cdot\xi+t\sqrt{\lambda+2\mu}\,|\xi|\ \ \textrm{and}\ \ \Psi(x,\xi)=(x+vte_{1})\cdot\xi+t\sqrt{\mu}\,|\xi|.

Let us set α=λ+2μ+v\alpha=\sqrt{\lambda+2\mu}+v. For every Nα1N\gg\alpha^{-1} we define

E\displaystyle E ={xn:(e1,x)22(αN)12,|x|α},\displaystyle=\big{\{}x\in\mathbb{R}^{n}\colon\angle(e_{1},x)\leq 2^{-2}(\alpha N)^{-\frac{1}{2}},\,|x|\leq\alpha\big{\}},
F\displaystyle F ={ξn:(e1,ξ)22(αN)12,N/2|ξ|N},\displaystyle=\big{\{}\xi\in\mathbb{R}^{n}\colon\angle(e_{1},\xi)\leq 2^{-2}(\alpha N)^{-\frac{1}{2}},\,N/2\leq|\xi|\leq N\big{\}},

where (e1,x)\angle(e_{1},x) denotes the angle between e1e_{1} and xx. It is easy to see that

|F|Nn+12and|E|Nn12.|F|\sim N^{\frac{n+1}{2}}\ \ {\rm{and}}\ \ |E|\sim N^{-\frac{n-1}{2}}.

If we take

t=t(x)=|x|α(1,0),t=t(x)=\frac{-|x|}{\alpha}\in(-1,0), (3.3)

then

|Φ(x,ξ)|\displaystyle|\Phi(x,\xi)| =|(x+vt(x)e1)ξ+t(x)λ+2μ|ξ||\displaystyle=\big{|}(x+vt(x)e_{1})\cdot\xi+t(x)\sqrt{\lambda+2\mu}\,|\xi|\big{|}
|x||ξ|((1cos(x,ξ))+vα(1cos(e1,ξ))).\displaystyle\leq|x||\xi|\Big{(}\big{(}1-\cos\angle(x,\xi))+\frac{v}{\alpha}\big{(}1-\cos\angle(e_{1},\xi)\big{)}\Big{)}.

Since cosu1u2/2\cos u\geq 1-u^{2}/2 we have for (x,ξ)E×F(x,\xi)\in E\times F

1cos(x,ξ)23(αN)1and 1cos(e1,ξ)25(αN)1,1-\cos\angle(x,\xi)\leq 2^{-3}(\alpha N)^{-1}\ \ \text{and}\ \ 1-\cos\angle(e_{1},\xi)\leq 2^{-5}(\alpha N)^{-1},

from which it follows that

|Φ(x,ξ)|αN(23(αN)1+vα25(αN)1)22|\Phi(x,\xi)|\leq\alpha N\Big{(}2^{-3}(\alpha N)^{-1}+\frac{v}{\alpha}2^{-5}(\alpha N)^{-1}\Big{)}\leq 2^{-2} (3.4)

since v/α<1v/\alpha<1.

Let us define fF:nnf_{F}\colon\mathbb{R}^{n}\to\mathbb{R}^{n} by fF^(ξ)=χF(ξ)e1\widehat{f_{F}}(\xi)=\chi_{F}(\xi)e_{1}. By the definition of FF and 𝒫±\mathcal{P}_{\pm} it is clear that 𝒫+fF=fF\mathcal{P}_{+}f_{F}=f_{F} and 𝒫fF=0\mathcal{P}_{-}f_{F}=0. By (3.1) and (3.2), we have

supt(1,1)|eitΔfF(x+vte1)|\displaystyle\sup_{t\in(-1,1)}\big{|}e^{it\sqrt{-\Delta^{\ast}}}f_{F}(x+vte_{1})\big{|}
supt=t(x)|F(eiΦ(x,ξ)A+(ξ)2+eiΨ(x,ξ)B+(ξ)B+(ξ)teiΦ(x,ξ)C+(ξ)A+(ξ)+eiΨ(x,ξ)D+(ξ)B+(ξ)t)𝑑ξ|\displaystyle\qquad\geq\sup_{t=t(x)}\bigg{|}\int_{F}\begin{pmatrix}e^{i\Phi(x,\xi)}A_{+}(\xi)^{2}+e^{i\Psi(x,\xi)}B_{+}(\xi)B_{+}(\xi)^{t}\\ e^{i\Phi(x,\xi)}C_{+}(\xi)A_{+}(\xi)+e^{i\Psi(x,\xi)}D_{+}(\xi)B_{+}(\xi)^{t}\end{pmatrix}d\xi\bigg{|}
supt=t(x)|FeiΦ(x,ξ)A+(ξ)2+eiΨ(x,ξ)B+(ξ)B+(ξ)tdξ|\displaystyle\qquad\geq\sup_{t=t(x)}\bigg{|}\int_{F}e^{i\Phi(x,\xi)}A_{+}(\xi)^{2}+e^{i\Psi(x,\xi)}B_{+}(\xi)B_{+}(\xi)^{t}d\xi\bigg{|}
supt=t(x)FcosΦ(x,ξ)A+(ξ)2B+(ξ)B+(ξ)tdξ.\displaystyle\qquad\geq\sup_{t=t(x)}\int_{F}\cos\Phi(x,\xi)A_{+}(\xi)^{2}-B_{+}(\xi)B_{+}(\xi)^{t}d\xi. (3.5)

We need to estimate the size of A+(ξ)A_{+}(\xi) and B+(ξ)B_{+}(\xi) for ξF\xi\in F.

Lemma 3.1.

If ξF\xi\in F then

|1A+(ξ)|N12and|B+(ξ)|N12.|1-A_{+}(\xi)|\lesssim N^{-\frac{1}{2}}\ \ \text{and}\ \ |B_{+}(\xi)|\lesssim N^{-\frac{1}{2}}. (3.6)
Proof.

Let us write ω=ξ/|ξ|\omega=\xi/|\xi| for ξF\xi\in F and recall from Section 2 that ρ+(ω)tω=e1\rho_{+}(\omega)^{t}\omega=e_{1} and ρ+(e1)=In\rho_{+}(e_{1})=I_{n}. We observe that

(ρ+(ω)tIn)e1\displaystyle(\rho_{+}(\omega)^{t}-I_{n})e_{1} =(ρ+(ω)tIn)ω+(ρ+(ω)tIn)(e1ω)\displaystyle=(\rho_{+}(\omega)^{t}-I_{n})\omega+(\rho_{+}(\omega)^{t}-I_{n})(e_{1}-\omega)
=e1ω+(ρ+(ω)tIn)(e1ω)\displaystyle=e_{1}-\omega+(\rho_{+}(\omega)^{t}-I_{n})(e_{1}-\omega)
=ρ+(ω)t(e1ω),\displaystyle=\rho_{+}(\omega)^{t}(e_{1}-\omega),

which leads us to

|(A+(ξ)1,B+(ξ))|=|(ρ+(ω)tIn)e1|=|e1ω|(e1,ξ)(αN)12.|(A_{+}(\xi)-1,B_{+}(\xi))|=|(\rho_{+}(\omega)^{t}-I_{n})e_{1}|=|e_{1}-\omega|\leq\angle(e_{1},\xi)\lesssim(\alpha N)^{-\frac{1}{2}}.

This completes the proof (3.6). ∎

By the estimates (3.6), we have

A+(ξ)21N1andB+(ξ)B+(ξ)tN1.A_{+}(\xi)^{2}\gtrsim 1-N^{-1}\ \ \text{and}\ \ B_{+}(\xi)B_{+}(\xi)^{t}\lesssim N^{-1}. (3.7)

Combining these with (3.4) we see that (3.5) is estimated by

(1N1)supt=t(x)FcosΦ(x,ξ)𝑑ξFN1𝑑ξ|F|.\gtrsim(1-N^{-1})\sup_{t=t(x)}\int_{F}\cos\Phi(x,\xi)d\xi-\int_{F}N^{-1}d\xi\gtrsim|F|.

for every NN large enough. Thus, we obtain

supt(1,1)|eitΔfF(x+vte1)|L2(n)|F||E|12.\Big{\|}\sup_{t\in(-1,1)}\big{|}e^{it\sqrt{-\Delta^{\ast}}}f_{F}(x+vte_{1})\big{|}\Big{\|}_{L^{2}(\mathbb{R}^{n})}\gtrsim|F||E|^{\frac{1}{2}}. (3.8)

On the other hand,

fFHs(n)=(n(1+|ξ|2)sfF^(ξ)𝑑ξ)12|F|12Ns,\|f_{F}\|_{H^{s}(\mathbb{R}^{n})}=\Big{(}\int_{\mathbb{R}^{n}}(1+|\xi|^{2})^{s}\widehat{f_{F}}(\xi)d\xi\Big{)}^{\frac{1}{2}}\lesssim|F|^{\frac{1}{2}}N^{s}, (3.9)

By (3.8) and (3.9), the maximal estimate (1.4) implies

Ns|F|12|E|12N12N^{s}\gtrsim|F|^{\frac{1}{2}}|E|^{\frac{1}{2}}\sim N^{\frac{1}{2}} (3.10)

for all NN large enough. Therefore we conclude that the estimate (1.4) does not hold for s<1/2s<1/2.

4. Proof of the estimate (1.4)

Let us fix a cutoff function ϕC0()\phi\in C_{0}^{\infty}(\mathbb{R}) such that ϕ(t)=1\phi(t)=1 for |t|1|t|\leq 1 and ϕ(t)=0\phi(t)=0 for |t|2|t|\geq 2, and denote

Tv,θf(x,t)=ϕ(t)eitΔf(x+vtθ).T_{v,\theta}f(x,t)=\phi(t)e^{it\sqrt{-\Delta^{\ast}}}f(x+vt\theta).

In order to prove (1.4) we need only to show the following:

Tv,θfLx,t2(n+1)\displaystyle\|T_{v,\theta}f\|_{L^{2}_{x,t}(\mathbb{R}^{n+1})} fL2(n),\displaystyle\lesssim\|f\|_{L^{2}(\mathbb{R}^{n})}, (4.1)
tTv,θfLx,t2(n+1)\displaystyle\|\partial_{t}T_{v,\theta}f\|_{L^{2}_{x,t}(\mathbb{R}^{n+1})} fH1(n).\displaystyle\lesssim\|f\|_{H^{1}(\mathbb{R}^{n})}. (4.2)

Indeed, the estimates imply

Tv,θfLx2(n;Ht1())fH1(n).\|T_{v,\theta}f\|_{L_{x}^{2}(\mathbb{R}^{n};H_{t}^{1}(\mathbb{R}))}\lesssim\|f\|_{H^{1}(\mathbb{R}^{n})}. (4.3)

Furthermore, by complex interpolation (see [2]) it follows from (4.1) and (4.3) that, for 0<s<10<s<1,

Tv,θfLx2(n;Hts())fHs(n).\|T_{v,\theta}f\|_{L_{x}^{2}(\mathbb{R}^{n};H_{t}^{s}(\mathbb{R}))}\lesssim\|f\|_{H^{s}(\mathbb{R}^{n})}. (4.4)

By the Sobolev embedding Hs()L()H^{s}(\mathbb{R})\hookrightarrow L^{\infty}(\mathbb{R}) for s>1/2s>1/2, we conclude

Tv,θfLx2(n;Lt())fHs(n),\|T_{v,\theta}f\|_{L_{x}^{2}(\mathbb{R}^{n};L_{t}^{\infty}(\mathbb{R}))}\lesssim\|f\|_{H^{s}(\mathbb{R}^{n})},

which completes the proof of (1.4).

Now let us show (4.1) and (4.2). Using the diagonalization (2.3) we write

Tv,θf(x,t)=ϕ(t)±neixξInR±(ξ)eit(vθξIn+Λ(ξ))R±(ξ)t𝒫±f^(ξ)𝑑ξ.T_{v,\theta}f(x,t)=\phi(t)\sum_{\pm}\int_{\mathbb{R}^{n}}e^{ix\cdot\xi I_{n}}R_{\pm}(\xi)e^{it(v\theta\cdot\xi I_{n}+\sqrt{\Lambda}(\xi))}R_{\pm}(\xi)^{t}\widehat{\mathcal{P}_{\pm}f}(\xi)d\xi. (4.5)

Then, by the Plancherel theorem

Tv,θfLx,t2(n+1)2\displaystyle\|T_{v,\theta}f\|_{L^{2}_{x,t}(\mathbb{R}^{n+1})}^{2} ±n+1|ϕ(t)R±(ξ)eit(vθξIn+Λ(ξ))R±(ξ)t𝒫±f^(ξ)|2𝑑ξ𝑑t\displaystyle\lesssim\sum_{\pm}\int_{\mathbb{R}^{n+1}}\big{|}\phi(t)R_{\pm}(\xi)e^{it(v\theta\cdot\xi I_{n}+\sqrt{\Lambda}(\xi))}R_{\pm}(\xi)^{t}\widehat{\mathcal{P}_{\pm}f}(\xi)\big{|}^{2}d\xi dt
fL2(n)2.\displaystyle\lesssim\|f\|_{L^{2}(\mathbb{R}^{n})}^{2}.

On the other hand, |tTv,θf(x,t)||\partial_{t}T_{v,\theta}f(x,t)| is estimated by

|ϕ(t)±neixξInR±(ξ)eit(vθξIn+Λ(ξ))R±(ξ)t𝒫±f^(ξ)𝑑ξ|\displaystyle\bigg{|}\phi^{\prime}(t)\sum_{\pm}\int_{\mathbb{R}^{n}}e^{ix\cdot\xi I_{n}}R_{\pm}(\xi)e^{it(v\theta\cdot\xi I_{n}+\sqrt{\Lambda}(\xi))}R_{\pm}(\xi)^{t}\widehat{\mathcal{P}_{\pm}f}(\xi)d\xi\bigg{|}
+|ϕ(t)±neixξInR±(ξ)(vθξIn+Λ)eit(vθξIn+Λ(ξ))R±(ξ)t𝒫±f^(ξ)𝑑ξ|.\displaystyle+\bigg{|}\phi(t)\sum_{\pm}\int_{\mathbb{R}^{n}}e^{ix\cdot\xi I_{n}}R_{\pm}(\xi)(v\theta\cdot\xi I_{n}+\sqrt{\Lambda})e^{it(v\theta\cdot\xi I_{n}+\sqrt{\Lambda}(\xi))}R_{\pm}(\xi)^{t}\widehat{\mathcal{P}_{\pm}f}(\xi)d\xi\bigg{|}.

Then by the Plancherel theorem, we obtain (4.2).

References

  • [1] J. A. Barceló, L. Fanelli, A. Ruiz, M. C. Vilela and N. Visciglia, Resolvent and Strichartz estimates for elastic wave equations, Appl. Math. Lett. 49 (2015), 33–41.
  • [2] J. Bergh and J. Löfström, Interpolation Spaces, An Introduction, Springer-Verlag, Berlin-New York, 1976.
  • [3] L. Carleson, Some analytic problems related to statistical mechanics, Euclidean harmonic analysis (Proc. Sem., Univ. Maryland, College Park, Md., 1979), pp. 5–45, Lecture Notes in Math., 779, Springer, Berlin, 1980.
  • [4] M. Cowling, Pointwise behavior of solutions to Schrödinger equations, Harmonic analysis (Cortona, 1982), 83–90, Lecture Notes in Math., 992, Springer, Berlin, 1983.
  • [5] S. Kim, Y. Kwon and I. Seo, Strichartz estimates and local regularity for the elastic wave equation with singular potentials, Discrete Contin. Dyn. Syst. 41 (2021), 1897–1911.
  • [6] S. Kim, Y. Kwon, S. Lee and I. Seo, Strichartz and uniform Sobolev inequalities for the elastic wave equation, to appear in Proc. Amer. Math. Soc.
  • [7] L. D. Landau, L. P. Pitaevskii, A. M. Kosevich and E. M. Lifshitz, Theory of Elasticity, Third Edition, Butterworth-Heinemann, London, 2012.
  • [8] J. E. Marsden and T. J. R. Hughes, Mathematical foundations of elasticity, Prentice Hall, 1983, reprinted by Dover Publications, N.Y., 1994.
  • [9] K.M. Rogers and P. Villarroya, Sharp estimates for maximal operators associated to the wave equation, Ark. Mat. 46 (2008), 143–151.
  • [10] E. M. Stein, On limits of sequences of operators, Ann. of Math. (2) 74 (1961), 140–170.
  • [11] B. G. Walther, Some Lp(L)L^{p}(L^{\infty})- and L2(L2)L^{2}(L^{2})-estimates for oscillatory Fourier transforms, Analysis of divergence (Orono, ME, 1997), 213–231, Appl. Numer. Harmon. Anal., Birkhäuser Boston, Boston, MA, 1999.