This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Planar equilibrium measure problem
in the quadratic fields with a point charge

Sung-Soo Byun Center for Mathematical Challenges, Korea Institute for Advanced Study, 85 Hoegiro, Dongdaemun-gu, Seoul 02455, Republic of Korea sungsoobyun@kias.re.kr
(Date: December 28, 2024)
Abstract.

We consider a two-dimensional equilibrium measure problem under the presence of quadratic potentials with a point charge and derive the explicit shape of the associated droplets. This particularly shows that the topology of the droplets reveals a phase transition: (i) in the post-critical case, the droplets are doubly connected domain; (ii) in the critical case, they contain two merging type singular boundary points; (iii) in the pre-critical case, they consist of two disconnected components. From the random matrix theory point of view, our results provide the limiting spectral distribution of the complex and symplectic elliptic Ginibre ensembles conditioned to have zero eigenvalues, which can also be interpreted as a non-Hermitian extension of the Marchenko-Pastur law.

Key words and phrases:
Planar equilibrium measure problem, two-dimensional Coulomb gases, elliptic Ginibre ensemble, conditional point process, conformal mapping method, a non-Hermitian extension of the Marchenko-Pastur law
Sung-Soo Byun was partially supported by Samsung Science and Technology Foundation (SSTF-BA1401-51) and by the National Research Foundation of Korea (NRF-2019R1A5A1028324) and by a KIAS Individual Grant (SP083201) via the Center for Mathematical Challenges at Korea Institute for Advanced Study.

1. Introduction and Main results

In this paper, we study a planar equilibrium problem with logarithmic interaction under the influence of quadratic potentials with a point charge. This problem is purely deterministic, but its motivation comes from the random world, more precisely, from the random matrix theory or the theory of two-dimensional Coulomb gases in general. To be more concrete, for given points 𝜻=(ΞΆj)j=1Nβˆˆβ„‚N\boldsymbol{\zeta}=(\zeta_{j})_{j=1}^{N}\in\mathbb{C}^{N} of configurations, we consider the Hamiltonians

(1.1) 𝐇Nℂ​(𝜻)\displaystyle\mathbf{H}_{N}^{\mathbb{C}}(\boldsymbol{\zeta}) :=βˆ‘1≀j<k≀Nlog⁑1|ΞΆjβˆ’ΞΆk|2+Nβ€‹βˆ‘j=1NW​(ΞΆj),\displaystyle:=\sum_{1\leq j<k\leq N}\log\frac{1}{|\zeta_{j}-\zeta_{k}|^{2}}+N\sum_{j=1}^{N}W(\zeta_{j}),
(1.2) 𝐇Nℍ​(𝜻)\displaystyle\mathbf{H}_{N}^{\mathbb{H}}(\boldsymbol{\zeta}) :=βˆ‘1≀j<k≀Nlog⁑1|ΞΆjβˆ’ΞΆk|2+βˆ‘1≀j≀k≀Nlog⁑1|ΞΆjβˆ’ΞΆΒ―k|2+2​Nβ€‹βˆ‘j=1NW​(ΞΆj).\displaystyle:=\sum_{1\leq j<k\leq N}\log\frac{1}{|\zeta_{j}-\zeta_{k}|^{2}}+\sum_{1\leq j\leq k\leq N}\log\frac{1}{|\zeta_{j}-\bar{\zeta}_{k}|^{2}}+2N\sum_{j=1}^{N}W(\zeta_{j}).

Here W:ℂ→ℝW:\mathbb{C}\to{\mathbb{R}} is a suitable function called the external potential. These are building blocks to define joint probability distributions

(1.3) d​ℙN,βℂ​(𝜻)∝eβˆ’Ξ²2​𝐇Nℂ​(𝜻)β€‹βˆj=1Nd​A​(ΞΆj),d​ℙN,βℍ​(𝜻)∝eβˆ’Ξ²2​𝐇Nℍ​(𝜻)β€‹βˆj=1Nd​A​(ΞΆj),d\mathbb{P}_{N,\beta}^{\mathbb{C}}(\boldsymbol{\zeta})\propto e^{-\frac{\beta}{2}\mathbf{H}_{N}^{\mathbb{C}}(\boldsymbol{\zeta})}\prod_{j=1}^{N}\,dA(\zeta_{j}),\qquad d\mathbb{P}_{N,\beta}^{\mathbb{H}}(\boldsymbol{\zeta})\propto e^{-\frac{\beta}{2}\mathbf{H}_{N}^{\mathbb{H}}(\boldsymbol{\zeta})}\prod_{j=1}^{N}\,dA(\zeta_{j}),

where d​A​(ΞΆ)=d2​΢/Ο€dA(\zeta)=d^{2}\zeta/\pi is the area measure and Ξ²>0\beta>0 is the inverse temperature. Both point processes β„™N,Ξ²β„‚\mathbb{P}_{N,\beta}^{\mathbb{C}} and β„™N,βℍ\mathbb{P}_{N,\beta}^{\mathbb{H}} represent two-dimensional Coulomb gas ensembles [38, 55, 62]. In particular, if Ξ²=2\beta=2, they are also called determinantal and Pfaffian Coulomb gases respectively due to their special integrable structures, see [26, 28] for recent reviews on this topic. Furthermore, they have an interpretation as eigenvalues of non-Hermitian random matrices with unitary and symplectic symmetry. For instance, if W​(ΞΆ)=|ΞΆ|2W(\zeta)=|\zeta|^{2}, the ensembles (1.3) corresponds to the eigenvalues of complex and symplectic Ginibre matrices [40].

One of the fundamental questions regarding such point processes is their macroscopic/global behaviours as Nβ†’βˆž.N\to\infty. For the case Ξ²=2\beta=2, this can be regarded as a problem determining the limiting spectral distribution of given random matrices. The classical results in this direction include the circular law for the Ginibre ensembles. As expected from the structure of the Hamiltonians (1.1) and (1.2), the macroscopic behaviours of the system can be effectively described using the logarithmic potential theory [59].

For this purpose, let us briefly recap some basic notions in the logarithmic potential theory. Given a compactly supported probability measure ΞΌ\mu on β„‚\mathbb{C}, the weighted logarithmic energy IW​[ΞΌ]I_{W}[\mu] associated with the potential WW is given by

(1.4) IW​[ΞΌ]:=βˆ«β„‚2log⁑1|zβˆ’w|​d​μ​(z)​𝑑μ​(w)+βˆ«β„‚W​𝑑μ.I_{W}[\mu]:=\int_{\mathbb{C}^{2}}\log\frac{1}{|z-w|}\,d\mu(z)\,d\mu(w)+\int_{\mathbb{C}}W\,d\mu.

For a general potential WW satisfying suitable conditions, there exists a unique probability measure ΞΌW\mu_{W} which minimises IW​[ΞΌ]I_{W}[\mu]. Such a minimiser ΞΌW\mu_{W} is called the equilibrium measure associated with WW and its support SW:=supp⁑(ΞΌW)S_{W}:=\operatorname{supp}(\mu_{W}) is called the droplet. Furthermore, if WW is C2C^{2}-smooth in a neighbourhood of SWS_{W}, it follows from Frostman’s theorem that ΞΌW\mu_{W} is absolutely continuous with respect to d​AdA and takes the form

(1.5) d​μW​(z)=Δ​W​(z)β‹…πŸ™{z∈SW}​d​A​(z),d\mu_{W}(z)=\Delta W(z)\cdot\mathbbm{1}_{\{z\in S_{W}\}}\,dA(z),

where Ξ”:=βˆ‚βˆ‚Β―\Delta:=\partial\bar{\partial} is the quarter of the usual Laplacian.

In relation with the point processes (1.3), it is well known [31, 15, 41] that

(1.6) ΞΌN,W:=1Nβ€‹βˆ‘j=1Nδ΢jβ†’ΞΌW\mu_{N,W}:=\frac{1}{N}\sum_{j=1}^{N}\delta_{\zeta_{j}}\to\mu_{W}

in the weak star sense of measure. From the statistical physics viewpoint, this convergence is quite natural since the weighted energy IWI_{W} in (1.4) corresponds to the continuum limit of the discrete Hamiltonians (1.1) and (1.2) after proper renormalisations. (In the case of (1.2), it is required to further assume that W​(ΞΆ)=W​(ΞΆΒ―)W(\zeta)=W(\bar{\zeta}).)

Contrary to the density (1.5) of the measure ΞΌW\mu_{W}, there is no general theory on the determination of its support SWS_{W}. (See however [60] for a general theory on the regularity and [49] on the connectivity of the droplet associated with Hele-Shaw type potentials.) This leads to the following natural question.

For a given potential WW, what is the precise shape of the associated droplet?

In view of the energy functional (1.4), this is a typical form of an inverse problem in the potential theory and is called an equilibrium measure problem. Beyond the case when WW is radially symmetric (cf. [59, Section IV.6]), this problem is highly non-trivial even for some explicit potentials with a simple form, see [3, 12, 44, 14, 21, 35, 54, 36] for some recent works. Let us also stress that such a problem is important not only because it provides the intrinsic macroscopic behaviours of the point processes (1.3) but also because it plays the role of the first step to perform the Riemann-Hilbert analysis which gives rise to a more detailed statistical information (kk-point functions) of the point processes, see [12, 13, 17, 18, 44, 45, 46, 47, 51, 53, 56] for extensive studies in this direction. In this work, we aim to contribute to the equilibrium problems associated with the potentials (1.7) and (1.14) below, which are of particular interest in the context of non-Hermitian random matrix theory.

1.1. Main results

For given parameters Ο„βˆˆ[0,1)\tau\in[0,1) and cβ‰₯0c\geq 0, we consider the potential

(1.7) Q​(ΞΆ):=11βˆ’Ο„2​(|ΞΆ|2βˆ’Ο„β€‹Re⁑΢2)βˆ’2​c​log⁑|ΞΆ|.Q(\zeta):=\frac{1}{1-\tau^{2}}\Big{(}|\zeta|^{2}-\tau\operatorname{Re}\zeta^{2}\Big{)}-2c\log|\zeta|.

When Ξ²=2\beta=2, the ensembles (1.3) associated with QQ correspond to the distribution of random eigenvalues of the elliptic Ginibre matrices of size (c+1)​N(c+1)N conditioned to have zero eigenvalues with multiplicity c​NcN. We mention that such a model with c>0c>0 was also studied in the context of Quantum Chromodynamics [1].

In (1.7), the logarithmic term can be interpreted as an insertion of a point charge, see [4, 33, 23, 22, 27] for recent investigations of the models (1.3) in this situation. Such insertion of a point charge has also been studied in the theory of planar orthogonal polynomials [12, 13, 17, 51, 52, 53, 16]. On the other hand, the parameter Ο„βˆˆ[0,1)\tau\in[0,1) captures the non-Hermiticity of the model. To be more precise, the models (1.3) associated with QQ interpolate the complex/symplectic Ginibre ensembles (Ο„=0\tau=0) with the Gaussian Unitary/Symplectic ensembles (Ο„=1\tau=1) conditioned to have zero eigenvalues, see Remark 1.6 for further discussion in relation to our main results.

For the case c=0c=0, the terminology β€œelliptic” comes from the fact that the limiting spectrum SΟ„,0S_{\tau,0} is given by the ellipse

(1.8) SΟ„,0:={(x,y)βˆˆβ„2:(x1+Ο„)2+(y1βˆ’Ο„)2≀1},S_{\tau,0}:=\Big{\{}(x,y)\in{\mathbb{R}}^{2}:\Big{(}\frac{x}{1+\tau}\Big{)}^{2}+\Big{(}\frac{y}{1-\tau}\Big{)}^{2}\leq 1\Big{\}},

which is known as the elliptic law, see e.g. [34, 37]. We refer to [50, 5, 8, 57, 20, 19] and references therein for more about the recent progress on the complex elliptic Ginibre ensembles and [43, 6, 24, 25] for their symplectic counterparts. For the rotationally invariant case when Ο„=0,\tau=0, it is easy to show that the associated droplet S0,cS_{0,c} is given by

(1.9) S0,c:={(x,y)βˆˆβ„2:c≀x2+y2≀1+c},S_{0,c}:=\Big{\{}(x,y)\in{\mathbb{R}}^{2}:c\leq x^{2}+y^{2}\leq 1+c\Big{\}},

see e.g. [59, Section IV.6] and [26, Section 5.2].


The primary goal of this work is to determine the precise shape of the droplet associated with the potential (1.7) for general Ο„βˆˆ[0,1)\tau\in[0,1) and cβ‰₯0c\geq 0. For this, we set some notations. Let us write

(1.10) Ο„c:=11+2​c\tau_{c}:=\frac{1}{1+2c}

for the critical non-Hermiticity parameter. For Ο„βˆˆ(Ο„c,1)\tau\in(\tau_{c},1), we define

(1.11) f​(z)≑fτ​(z):=(1+Ο„)​(1+2​c)2​(1βˆ’a​z)​(zβˆ’a​τ)2z​(zβˆ’a),a=βˆ’1τ​(1+2​c).f(z)\equiv f_{\tau}(z):=\frac{(1+\tau)(1+2c)}{2}\frac{(1-az)(z-a\tau)^{2}}{z(z-a)},\qquad a=-\frac{1}{\sqrt{\tau(1+2c)}}.

We are now ready to present our main result.

Theorem 1.1.

Let QQ be given by (1.7). Then the droplet S≑SΟ„,c=SQS\equiv S_{\tau,c}=S_{Q} of the equilibrium measure

(1.12) d​μQ​(z)=11βˆ’Ο„2β€‹πŸ™S​(z)​d​A​(z)d\mu_{Q}(z)=\frac{1}{1-\tau^{2}}\mathbbm{1}_{S}(z)\,dA(z)

is given as follows.

  • β€’

    (Post-critical case) If Ο„βˆˆ(0,Ο„c]\tau\in(0,\tau_{c}], we have

    (1.13) SΟ„,c={(x,y)βˆˆβ„2:(x(1+Ο„)​1+c)2+(y(1βˆ’Ο„)​1+c)2≀1,x2+y2(1βˆ’Ο„2)​cβ‰₯1}.S_{\tau,c}=\Big{\{}(x,y)\in{\mathbb{R}}^{2}:\Big{(}\frac{x}{(1+\tau)\sqrt{1+c}}\Big{)}^{2}+\Big{(}\frac{y}{(1-\tau)\sqrt{1+c}}\Big{)}^{2}\leq 1\,,\,\frac{x^{2}+y^{2}}{(1-\tau^{2})c}\geq 1\Big{\}}.
  • β€’

    (Pre-critical case) If Ο„βˆˆ[Ο„c,1)\tau\in[\tau_{c},1), the droplet SΟ„,cS_{\tau,c} is the closure of the interior of the real analytic Jordan curves given by the image of the unit circle with respect to the map z↦±f​(z)z\mapsto\pm\sqrt{f(z)}, where ff is given by (1.11).

Refer to caption
(a) Ο„=1/6<Ο„c\tau=1/6<\tau_{c}
Refer to caption
(b) Ο„=1/3=Ο„c\tau=1/3=\tau_{c}
Refer to caption
(c) Ο„=1/2>Ο„c\tau=1/2>\tau_{c}
Figure 1. The droplet SΟ„,cS_{\tau,c}, where c=1c=1 and a Fekete point configuration with N=2048N=2048.

Note that if c=0c=0 (resp., Ο„=0\tau=0), the droplet (1.13) corresponds to (1.8) (resp., (1.9)). We mention that the post-critical case of Theorem 1.1 is indeed shown in a more general setup, see (2.1) and Proposition 2.1 below.

Remark 1.2 (Phase transition of the droplet).

In Theorem 1.1, we observe that if c>0c>0, the topology of the droplet reveals a phase transition. Namely, for the post-critical case when Ο„<Ο„c\tau<\tau_{c}, the droplet is a doubly connected domain, whereas for the pre-critical case Ο„>Ο„c\tau>\tau_{c}, it consists of two disconnected components. At criticality when Ο„=Ο„c\tau=\tau_{c}, the droplet contains two symmetric double points. We refer to [12, 14, 3, 36] for further models whose droplets reveal various phase transitions. Let us also mention that recently, there have been several works on the models (1.3) with multi-component droplets, see e.g. [13, 30, 9, 10]. In this pre-critical regime, some theta-function oscillations are expected to appear for various kinds of statistics; cf. [32, 9]. The precise asymptotic behaviours of the partition function would also be interesting in connection with the conjecture that these depend on the Euler index of the droplets, see [42, 29] and [26, Sections 4.1 and 5.3] for further discussion.

Remark 1.3 (Fekete points and numerics).

A configuration {ΞΆj}j=1N\{\zeta_{j}\}_{j=1}^{N} which makes the Hamiltonians (1.1) or (1.2) minimal is known as a Fekete configuration. This can be interpreted as the ensembles (1.3) with low temperature limit Ξ²=∞\beta=\infty, see e.g. [61, 58, 7, 11] and references therein. Since the droplet is independent of the inverse temperature Ξ²>0\beta>0 (excluding the high-temperature regime [2] when Ξ²=O​(1/N)\beta=O(1/N)), the Fekete points are useful to numerically observe the shape of the droplets. In Figures 1 and 2, Fekete configurations associated with the Hamiltonian (1.1) are also presented, which show good fits with Theorems 1.1 and 1.4.

Notice that the potential (1.7) and the droplet SΟ„,cS_{\tau,c} are invariant under the map ΞΆβ†¦βˆ’ΞΆ\zeta\mapsto-\zeta. We now discuss an equivalent formulation of Theorem 1.1 under the removal of such symmetry. (See [36, Section 1.3] for a similar discussion in a vector equilibrium problem on a sphere with point charges.) The motivation for this formulation will be clear in the next subsection.

For this purpose, we denote

(1.14) Q^​(ΞΆ):=21βˆ’Ο„2​(|ΞΆ|βˆ’Ο„β€‹Re⁑΢)βˆ’2​c​log⁑|ΞΆ|.\widehat{Q}(\zeta):=\frac{2}{1-\tau^{2}}\Big{(}|\zeta|-\tau\operatorname{Re}\zeta\Big{)}-2c\log|\zeta|.

By definition, the potentials QQ in (1.7) and Q^\widehat{Q} in (1.14) are related as

(1.15) Q​(ΞΆ)=12​Q^​(ΞΆ2).Q(\zeta)=\frac{1}{2}\widehat{Q}(\zeta^{2}).

Denoting by S^\widehat{S} the droplet associated with Q^\widehat{Q}, it follows from [14, Lemma 1] that

(1.16) S={ΞΆβˆˆβ„‚:ΞΆ2∈S^}.S=\{\zeta\in\mathbb{C}:\zeta^{2}\in\widehat{S}\}.

Due to the relation (1.16) and

(1.17) Δ​Q^​(ΞΆ)=12​(1βˆ’Ο„2)​1|ΞΆ|,\Delta\widehat{Q}(\zeta)=\frac{1}{2(1-\tau^{2})}\frac{1}{|\zeta|},

we have the following equivalent formulation of Theorem 1.1.

Theorem 1.4.

Let Q^\widehat{Q} be given by (1.14). Then the droplet S^≑S^Ο„,c=SQ^\widehat{S}\equiv\widehat{S}_{\tau,c}=S_{\widehat{Q}} of the equilibrium measure

(1.18) d​μQ^​(ΞΆ)=12​(1βˆ’Ο„2)​1|ΞΆ|β€‹πŸ™S^​(ΞΆ)​d​A​(ΞΆ)d\mu_{\widehat{Q}}(\zeta)=\frac{1}{2(1-\tau^{2})}\frac{1}{|\zeta|}\mathbbm{1}_{\widehat{S}}(\zeta)\,dA(\zeta)

is given as follows.

  1. (i)

    (Post-critical case) If Ο„βˆˆ(0,Ο„c]\tau\in(0,\tau_{c}], we have

    (1.19) S^Ο„,c={(x,y)βˆˆβ„2:(xβˆ’2​τ​(1+c)(1+Ο„2)​(1+c))2+(y(1βˆ’Ο„2)​(1+c))2≀1,x2+y2(1βˆ’Ο„2)2​c2β‰₯1}.\widehat{S}_{\tau,c}=\Big{\{}(x,y)\in{\mathbb{R}}^{2}:\Big{(}\frac{x-2\tau(1+c)}{(1+\tau^{2})(1+c)}\Big{)}^{2}+\Big{(}\frac{y}{(1-\tau^{2})(1+c)}\Big{)}^{2}\leq 1\,,\,\frac{x^{2}+y^{2}}{(1-\tau^{2})^{2}c^{2}}\geq 1\Big{\}}.
  2. (ii)

    (Pre-critical case) If Ο„βˆˆ[Ο„c,1)\tau\in[\tau_{c},1), the droplet S^Ο„,c\widehat{S}_{\tau,c} is the closure of the interior of the real analytic Jordan curve given by the image of the unit circle with respect to the rational map z↦f​(z)z\mapsto f(z), where ff is given by (1.11).

Refer to caption
(a) Ο„=1/6<Ο„c\tau=1/6<\tau_{c}
Refer to caption
(b) Ο„=1/3=Ο„c\tau=1/3=\tau_{c}
Refer to caption
(c) Ο„=1/2>Ο„c\tau=1/2>\tau_{c}
Figure 2. The droplet S^Ο„,c\widehat{S}_{\tau,c}, where c=1c=1 and a Fekete point configuration with N=2048N=2048.
Remark 1.5 (Joukowsky transform in the critical case).

If Ο„=Ο„c\tau=\tau_{c} with (1.10), we have a=1/a=βˆ’1a=1/a=-1. Thus in this critical case, the rational function fΟ„f_{\tau} in (1.11) is simplified as

(1.20) fΟ„c​(z)=(1+c)​(z+Ο„)2z=(1+c)​(z+2​τ+Ο„2z).f_{\tau_{c}}(z)=(1+c)\frac{(z+\tau)^{2}}{z}=(1+c)\Big{(}z+2\tau+\frac{\tau^{2}}{z}\Big{)}.

Note that compared to the general case (1.11), there is one less zero and one less pole in (1.20). Indeed, in the critical case, the rational map fΟ„cf_{\tau_{c}} is a (shifted) Joukowsky transform

(1.21) fΟ„c:𝔻cβ†’{(x,y)βˆˆβ„2:(xβˆ’2​τ​(1+c)(1+Ο„2)​(1+c))2+(y(1βˆ’Ο„2)​(1+c))2β‰₯1}.f_{\tau_{c}}:\mathbb{D}^{c}\to\Big{\{}(x,y)\in{\mathbb{R}}^{2}:\Big{(}\frac{x-2\tau(1+c)}{(1+\tau^{2})(1+c)}\Big{)}^{2}+\Big{(}\frac{y}{(1-\tau^{2})(1+c)}\Big{)}^{2}\geq 1\Big{\}}.

In [3], a similar type of Joukowsky transform was used to solve an equilibrium measure problem. For the models under consideration in the present work, due to a more complicated form of the rational function (1.11), the required analysis for the associated equilibrium problem turns out to be more involved.

Remark 1.6 (A non-Hermitian extension of the Marchenko-Pastur distribution).

In the Hermitian limit τ↑1,\tau\uparrow 1, by (1.7) and (1.14), we have

(1.22) limτ↑1Q​(x+i​y)=V​(x):={x22βˆ’2​c​log⁑|x|,if β€‹y=0,+∞otherwise,\displaystyle\lim_{\tau\uparrow 1}Q(x+iy)=V(x):=\begin{cases}\displaystyle\frac{x^{2}}{2}-2c\log|x|,&\text{if }y=0,\vskip 3.0pt plus 1.0pt minus 1.0pt\\ +\infty&\text{otherwise},\end{cases}
(1.23) limτ↑1Q^​(x+i​y)=V^​(x):={xβˆ’2​c​log⁑|x|,if β€‹y=0,x>0,+∞otherwise.\displaystyle\lim_{\tau\uparrow 1}\widehat{Q}(x+iy)=\widehat{V}(x):=\begin{cases}\displaystyle x-2c\log|x|,&\text{if }y=0,\,x>0,\vskip 3.0pt plus 1.0pt minus 1.0pt\\ +\infty&\text{otherwise}.\end{cases}

Then the associated equilibrium measures are given by the well-known Marchenko-Pastur law (with squared variables) [38, Proposition 3.4.1], i.e.

(1.24) d​μV​(x)\displaystyle d\mu_{V}(x) =12​π​|x|​(Ξ»+2βˆ’x2)​(x2βˆ’Ξ»βˆ’2)β‹…πŸ™[βˆ’Ξ»+,βˆ’Ξ»βˆ’]βˆͺ[Ξ»βˆ’,Ξ»+]​d​x,\displaystyle=\frac{1}{2\pi|x|}\,\sqrt{(\lambda_{+}^{2}-x^{2})(x^{2}-\lambda_{-}^{2})}\cdot\mathbbm{1}_{[-\lambda_{+},-\lambda_{-}]\cup[\lambda_{-},\lambda_{+}]}\,dx,
(1.25) d​μV^​(x)\displaystyle d\mu_{\widehat{V}}(x) =12​π​x​(Ξ»+2βˆ’x)​(xβˆ’Ξ»βˆ’2)β‹…πŸ™[Ξ»βˆ’2,Ξ»+2]​d​x,\displaystyle=\frac{1}{2\pi x}\,\sqrt{(\lambda_{+}^{2}-x)(x-\lambda_{-}^{2})}\cdot\mathbbm{1}_{[\lambda_{-}^{2},\lambda_{+}^{2}]}\,dx,

where λ±:=2​c+1Β±1\lambda_{\pm}:=\sqrt{2c+1}\pm 1, cf. Remark 2.3. Therefore one can interpret Theorem 1.1 (resp., Theorem 1.4) as a non-Hermitian generalisation of the Marchenko-Pastur distribution (1.24) (resp., (1.25)), see [8, Section 2] for more about the geometric meaning with the notion of the statistical cross-section. We also refer to [3] for another non-Hermitian extension of (1.24) and (1.25) in the context of the chiral Ginibre ensembles.

Remark 1.7 (Inclusion relations of the droplets).

Let us write

(1.26) S1={(x,y)βˆˆβ„2:(x1+Ο„)2+(y1βˆ’Ο„)2≀1+c},S2:={(x,y)βˆˆβ„2:x2+y2≀(1βˆ’Ο„2)​c}\displaystyle S_{1}=\Big{\{}(x,y)\in{\mathbb{R}}^{2}:\Big{(}\frac{x}{1+\tau}\Big{)}^{2}+\Big{(}\frac{y}{1-\tau}\Big{)}^{2}\leq 1+c\Big{\}},\qquad S_{2}:=\Big{\{}(x,y)\in{\mathbb{R}}^{2}:x^{2}+y^{2}\leq(1-\tau^{2})c\Big{\}}

and denote by S^j\widehat{S}_{j} (j=1,2)(j=1,2) the image of SjS_{j} under the map z↦z2z\mapsto z^{2}. Then it follows from the definition (1.10) that

(1.27) Ο„βˆˆ(0,Ο„c)if and only ifS1c∩S2=βˆ….\tau\in(0,\tau_{c})\qquad\textup{if and only if}\qquad S_{1}^{c}\cap S_{2}=\emptyset.

By Theorems 1.1 and 1.4, for general Ο„βˆˆ[0,1)\tau\in[0,1) and cβ‰₯0c\geq 0, one can observe that

(1.28) SΟ„,cβŠ†S1∩(Int​S2)c,S^Ο„,cβŠ†S^1∩(Int​S^2)c.S_{\tau,c}\subseteq S_{1}\cap(\textup{Int}\,S_{2})^{c},\qquad\widehat{S}_{\tau,c}\subseteq\widehat{S}_{1}\cap(\textup{Int}\,\widehat{S}_{2})^{c}.

Here, equality in (1.28) holds if and only if in the post-critical case. (This property holds in a more general setup, see Proposition 2.1.) On the other hand, in the pre-critical case one can interpret that the particles in S1c∩S2S_{1}^{c}\cap S_{2} are smeared out to S1∩S2cS_{1}\cap S_{2}^{c} which makes the inclusion relations (1.28) strictly hold, see Figure 3.

Refer to caption
(a) SΟ„,cS_{\tau,c}
Refer to caption
(b) S^Ο„,c\widehat{S}_{\tau,c}
Figure 3. The droplets SΟ„,cS_{\tau,c} and S^Ο„,c\widehat{S}_{\tau,c} in the pre-critical case, where c=2c=2 and Ο„=0.7>Ο„c\tau=0.7>\tau_{c}. Here, the dashed lines display the boundaries of SjS_{j} and S^j\widehat{S}_{j} (j=1,2j=1,2).

1.2. Outline of the proof

Recall that ΞΌW\mu_{W} is a unique minimiser of the energy (1.4). It is well known that the equilibrium measure ΞΌW\mu_{W} is characterised by the variational conditions (see [59, p.27])

(1.29) ∫log⁑1|ΞΆβˆ’z|2​d​μW​(z)+W​(ΞΆ)=C,q.e.if β€‹ΞΆβˆˆSW;\displaystyle\int\log\frac{1}{|\zeta-z|^{2}}\,d\mu_{W}(z)+W(\zeta)=C,\quad\text{q.e.}\quad\text{if }\zeta\in S_{W};\vskip 3.0pt plus 1.0pt minus 1.0pt
(1.30) ∫log⁑1|ΞΆβˆ’z|2​d​μW​(z)+W​(ΞΆ)β‰₯C,q.e.if β€‹ΞΆβˆ‰SW.\displaystyle\int\log\frac{1}{|\zeta-z|^{2}}\,d\mu_{W}(z)+W(\zeta)\geq C,\quad\text{q.e.}\quad\text{if }\zeta\notin S_{W}.

Here, q.e. stands for quasi-everywhere. (Nevertheless, this notion is not important in the sequel as we will show that for the models we consider the conditions (1.29) and (1.30) indeed hold everywhere.)

Due to the uniqueness of the equilibrium measure, all we need to show is that if W=QW=Q, then ΞΌQ\mu_{Q} in (1.12) satisfies the variational principles (1.29) and (1.30). Equivalently, by (1.16), it also suffices to show the variational principles for the equilibrium measure ΞΌQ^\mu_{\widehat{Q}} in (1.18).

However, it is far from being obvious to obtain the β€œcorrect candidate” of the droplets. Perhaps one may think that at least for the post-critical case, the shape of the droplet (1.13) is quite natural given the well-known cases (1.8) and (1.9) as well as the fact that the area of SΟ„,cS_{\tau,c} should be (1βˆ’Ο„2)​π(1-\tau^{2})\pi. On the other hand, for the pre-critical case, one can easily notice that there is some secret behind deriving the explicit formula of the rational function (1.11). To derive the correct candidate, we use the conformal mapping method with the help of the Schwarz function, see Appendix A.

Remark 1.8 (Removal of symmetry).

We emphasise that the conformal mapping method does not work for the multi-component droplet, i.e. the pre-critical case of Theorem 1.1. This is essentially due to the lack of the Riemann mapping theorem. Nevertheless, one can observe that once we remove the symmetry ΞΆβ†¦βˆ’ΞΆ\zeta\mapsto-\zeta, the droplet in the pre-critical case of Theorem 1.4 is simply connected. This explains the reason why we need the idea of removing symmetry.

The rest of this paper is organised as follows.

  • β€’

    In Section 2, we prove Theorems 1.1 and 1.4. In Subsection 2.1, we show the post-critical case of Theorem 1.1 in a more general setup, see Proposition 2.1. On the other hand, in Subsection 2.2, we show the pre-critical case of Theorem 1.4. Then by the relation (1.16), these complete the proof of our main results.

  • β€’

    This article contains two appendices. In Appendix A, we explain the conformal mapping method to derive the β€œcorrect candidate” of the droplets. In Appendix B, we present a way to solve a one-dimensional equilibrium problem in Remark 2.3, which shares a common feature with the conformal mapping method. These appendices are made only for instructive purposes and the readers who only want the proof of the main theorems may stop at the end of Section 2.

2. Proof of main theorem

In this section, we show Theorems 1.1 and 1.4.

2.1. Post critical cases

Extending (1.7), we consider the potential

(2.1) Qp​(ΞΆ):=11βˆ’Ο„2​(|ΞΆ|2βˆ’Ο„β€‹Re⁑΢2)βˆ’2​c​log⁑|ΞΆβˆ’p|,pβˆˆβ„‚.Q_{p}(\zeta):=\frac{1}{1-\tau^{2}}\Big{(}|\zeta|^{2}-\tau\operatorname{Re}\zeta^{2}\Big{)}-2c\log|\zeta-p|,\qquad p\in\mathbb{C}.

For the case Ο„=0\tau=0, the shape of the droplet associated with the potential (2.1) was fully characterised in [12]. (In this case, it suffices to consider the case pβ‰₯0p\geq 0 due to the rotational invariance.) In particular, it was shown that if

(2.2) c<(1βˆ’p2)24​p2,Ο„=0,pβ‰₯0,c<\frac{(1-p^{2})^{2}}{4p^{2}},\qquad\tau=0,\qquad p\geq 0,

the droplet is given by S=𝔻​(0,1+c)Β―βˆ–π”»β€‹(p,c),S=\overline{\mathbb{D}(0,\sqrt{1+c})}\setminus\mathbb{D}(p,\sqrt{c}), where 𝔻​(p,R)\mathbb{D}(p,R) is the disc with centre pp and radius RR, cf. see Remark A.5 for the other case c>(1βˆ’p2)2/(4​p2)c>(1-p^{2})^{2}/(4p^{2}).

To describe the droplets associated with QpQ_{p}, we denote

(2.3) S1:={(x,y)βˆˆβ„2:(x1+Ο„)2+(y1βˆ’Ο„)2≀1+c}S_{1}:=\Big{\{}(x,y)\in{\mathbb{R}}^{2}:\Big{(}\frac{x}{1+\tau}\Big{)}^{2}+\Big{(}\frac{y}{1-\tau}\Big{)}^{2}\leq 1+c\Big{\}}

and

(2.4) S2:={(x,y)βˆˆβ„2:(xβˆ’Re⁑p)2+(yβˆ’Im⁑p)2≀(1βˆ’Ο„2)​c}.S_{2}:=\Big{\{}(x,y)\in{\mathbb{R}}^{2}:(x-\operatorname{Re}p)^{2}+(y-\operatorname{Im}p)^{2}\leq(1-\tau^{2})c\Big{\}}.

Then we obtain the following.

Proposition 2.1.

Suppose that the parameters Ο„,cβˆˆβ„\tau,c\in{\mathbb{R}} and pβˆˆβ„‚p\in\mathbb{C} are given to satisfy

(2.5) S2βŠ‚S1,S_{2}\subset S_{1},

where S1S_{1} and S2S_{2} are given by (2.3) and (2.4). Then the droplet S≑SQpS\equiv S_{Q_{p}} associated with (2.1) is given by

(2.6) S=S1∩(Int​S2)c.S=S_{1}\cap(\textup{Int}\,S_{2})^{c}.

See Figure 4 for the shape of the droplets and numerical simulations of Fekete point configurations. We remark that with slight modifications, Proposition 2.1 can be further extended to the case with multiple point charges, i.e. the potential of the form

(2.7) 11βˆ’Ο„2​(|ΞΆ|2βˆ’Ο„β€‹Re⁑΢2)βˆ’2β€‹βˆ‘cj​log⁑|ΞΆβˆ’pj|,pjβˆˆβ„‚,cjβ‰₯0.\frac{1}{1-\tau^{2}}\Big{(}|\zeta|^{2}-\tau\operatorname{Re}\zeta^{2}\Big{)}-2\sum c_{j}\log|\zeta-p_{j}|,\qquad p_{j}\in\mathbb{C},\quad c_{j}\geq 0.

(See Remark A.4 for a related discussion.) Let us also mention that a similar statement for an equilibrium problem on the sphere was shown in [21]. For a treatment of a more general case, we refer the reader to [35, 54, 36].

Refer to caption
(a) p=221​14​ip=\frac{2}{21}\sqrt{14}\,i
Refer to caption
(b) p=27​14p=\frac{2}{7}\sqrt{14}
Refer to caption
(c) p=35+15​ip=\frac{3}{5}+\frac{1}{5}i
Figure 4. The droplet SS in Proposition 2.1, where Ο„=1/3\tau=1/3 and c=1/7c=1/7. Here, a Fekete point configuration with N=2048N=2048 is also displayed.
Remark 2.2.

If p=0p=0, the condition (2.5) corresponds to

(2.8) Ο„<11+2​c=Ο„c.\tau<\frac{1}{1+2c}=\tau_{c}.

Therefore Proposition 2.1 for the special value p=0p=0 gives Theorem 1.1 (i). As a consequence, by (1.16), Theorem 1.4 (i) also follows. We also mention that if Ο„=0\tau=0 and p>0p>0, the condition (2.5) coincides with (2.2).

Remark 2.3 (Equilibrium measure in the Hermitian limit).

Before moving on to the planar equilibrium problem for (2.1), we first discuss the one-dimensional problem arising in the Hermitian limit. For pβˆˆβ„p\in{\mathbb{R}}, the Hermitian limit τ↑1\tau\uparrow 1 of the potential QpQ_{p} is given by

(2.9) limτ↑1Qp​(x+i​y)=Vp​(x):={x22βˆ’2​c​log⁑|xβˆ’p|,if β€‹y=0,+∞otherwise.\lim_{\tau\uparrow 1}Q_{p}(x+iy)=V_{p}(x):=\begin{cases}\displaystyle\frac{x^{2}}{2}-2c\log|x-p|,&\text{if }y=0,\vskip 3.0pt plus 1.0pt minus 1.0pt\\ +\infty&\text{otherwise}.\end{cases}

Then one can show that the associated equilibrium measure ΞΌV≑μVp\mu_{V}\equiv\mu_{V_{p}} is given by

(2.10) d​μV​(x)d​x=βˆ’βˆj=14(xβˆ’Ξ»j)2​π​|xβˆ’p|β‹…πŸ™[Ξ»1,Ξ»2]βˆͺ[Ξ»3,Ξ»4]​(x),\frac{d\mu_{V}(x)}{dx}=\frac{\sqrt{-\prod_{j=1}^{4}(x-\lambda_{j})}}{2\pi|x-p|}\cdot\mathbbm{1}_{[\lambda_{1},\lambda_{2}]\cup[\lambda_{3},\lambda_{4}]}(x),

where

(2.11) Ξ»1=pβˆ’2βˆ’(p+2)2+8​c2,Ξ»2=p+2βˆ’(pβˆ’2)2+8​c2,\displaystyle\lambda_{1}=\frac{p-2-\sqrt{(p+2)^{2}+8c}}{2},\qquad\lambda_{2}=\frac{p+2-\sqrt{(p-2)^{2}+8c}}{2},
(2.12) Ξ»3=pβˆ’2+(p+2)2+8​c2,Ξ»4=p+2+(pβˆ’2)2+8​c2.\displaystyle\lambda_{3}=\frac{p-2+\sqrt{(p+2)^{2}+8c}}{2},\qquad\lambda_{4}=\frac{p+2+\sqrt{(p-2)^{2}+8c}}{2}.

We remark that when p=0p=0, it recovers (1.24). See Figure 5 for the graphs of the equilibrium measure ΞΌVp\mu_{V_{p}}. The equilibrium measure (2.10) follows from the standard method using the Stieltjes transform and the Sokhotski-Plemelj inversion formula. For reader’s convenience, we provide a proof of (2.10) in Appendix B.

Refer to caption
(a) p=0p=0
Refer to caption
(b) p=1p=1
Refer to caption
(c) p=4p=4
Figure 5. Graphs of the equilibrium measure ΞΌVp\mu_{V_{p}}, where c=1c=1.

In the rest of this subsection, we prove Proposition 2.1. First, let us show the following elementary lemmas.

Lemma 2.4.

For a,b>0a,b>0, let

K:={(x,y)βˆˆβ„2:(xa)2+(yb)2≀1}.K:=\Big{\{}(x,y)\in{\mathbb{R}}^{2}:\Big{(}\frac{x}{a}\Big{)}^{2}+\Big{(}\frac{y}{b}\Big{)}^{2}\leq 1\Big{\}}.

Then we have

(2.13) ∫K1ΞΆβˆ’z​𝑑A​(z)={ΞΆΒ―βˆ’aβˆ’ba+b​΢if β€‹ΞΆβˆˆK,2​a​ba2βˆ’b2​(ΞΆβˆ’ΞΆ2βˆ’a2+b2)otherwise.\int_{K}\frac{1}{\zeta-z}\,dA(z)=\begin{cases}\displaystyle\bar{\zeta}-\frac{a-b}{a+b}\,\zeta&\text{if }\zeta\in K,\vskip 3.0pt plus 1.0pt minus 1.0pt\\ \displaystyle\frac{2ab}{a^{2}-b^{2}}\Big{(}\zeta-\sqrt{\zeta^{2}-a^{2}+b^{2}}\Big{)}&\text{otherwise.}\end{cases}

In particular, for ΢∈K\zeta\in K, there exists a constant c0βˆˆβ„c_{0}\in{\mathbb{R}} such that

(2.14) ∫Klog⁑|ΞΆβˆ’z|2​d​A​(z)=|ΞΆ|2βˆ’aβˆ’ba+b​Re⁑΢2+c0.\int_{K}\log|\zeta-z|^{2}\,dA(z)=|\zeta|^{2}-\frac{a-b}{a+b}\operatorname{Re}\zeta^{2}+c_{0}.
Remark 2.5.

The Cauchy transform in (2.13) is useful to explicitly compute the moments of the equilibrium measure. Namely, by definition, we have

∫K1ΞΆβˆ’z​𝑑A​(z)=1ΞΆβ€‹βˆ‘k=0∞1ΞΆkβ€‹βˆ«Kzk​𝑑A​(z),ΞΆβ†’βˆž.\int_{K}\frac{1}{\zeta-z}\,dA(z)=\frac{1}{\zeta}\sum_{k=0}^{\infty}\frac{1}{\zeta^{k}}\int_{K}z^{k}\,dA(z),\qquad\zeta\to\infty.

On the other hand, we have

ΞΆβˆ’ΞΆ2βˆ’a2+b2=a2βˆ’b2ΞΆβ€‹βˆ‘k=0∞(1/2k+1)​(b2βˆ’a2)kΞΆ2​k,ΞΆβ†’βˆž.\displaystyle\zeta-\sqrt{\zeta^{2}-a^{2}+b^{2}}=\frac{a^{2}-b^{2}}{\zeta}\sum_{k=0}^{\infty}\binom{1/2}{k+1}\frac{(b^{2}-a^{2})^{k}}{\zeta^{2k}},\qquad\zeta\to\infty.

Combining the above equations with (2.13), we obtain that for any non-negative integer k,k,

(2.15) 1a​bβ€‹βˆ«Kz2​k​𝑑A​(z)=2​(1/2k+1)​(b2βˆ’a2)k.\frac{1}{ab}\int_{K}z^{2k}\,dA(z)=2\binom{1/2}{k+1}(b^{2}-a^{2})^{k}.
Proof of Lemma 2.4.

Recall that 𝔻\mathbb{D} is the unit disc with centre the origin. Then the Joukowsky transform f:𝔻¯cβ†’Kcf:\bar{\mathbb{D}}^{c}\to K^{c} is given by

(2.16) f​(z)=a+b2​z+aβˆ’b2​1z.f(z)=\frac{a+b}{2}\,z+\frac{a-b}{2}\,\frac{1}{z}.

By applying Green’s formula, we have

(2.17) ∫K1ΞΆβˆ’z​𝑑A​(z)=12​π​iβ€‹βˆ«βˆ‚KzΒ―ΞΆβˆ’z​𝑑z+ΞΆΒ―β‹…πŸ™{΢∈K}.\int_{K}\frac{1}{\zeta-z}\,dA(z)=\frac{1}{2\pi i}\int_{\partial K}\frac{\bar{z}}{\zeta-z}\,dz+\bar{\zeta}\cdot\mathbbm{1}_{\{\zeta\in K\}}.

Furthermore, by the change of variable z=f​(w)z=f(w), it follows that

(2.18) βˆ«βˆ‚KzΒ―ΞΆβˆ’z​𝑑z\displaystyle\int_{\partial K}\frac{\bar{z}}{\zeta-z}\,dz =βˆ«βˆ‚π”»f​(1/wΒ―)Β―ΞΆβˆ’f​(w)​f′​(w)​𝑑w=βˆ«βˆ‚π”»g΢​(w)​𝑑w,\displaystyle=\int_{\partial\mathbb{D}}\frac{\overline{f(1/\bar{w})}}{\zeta-f(w)}f^{\prime}(w)\,dw=\int_{\partial\mathbb{D}}g_{\zeta}(w)\,dw,

where gΞΆg_{\zeta} is the rational function given by

(2.19) g΢​(w):=1ΞΆβˆ’f​(w)​(a+b2​1w+aβˆ’b2​w)​(a+b2βˆ’aβˆ’b2​1w2).g_{\zeta}(w):=\frac{1}{\zeta-f(w)}\Big{(}\frac{a+b}{2}\frac{1}{w}+\frac{a-b}{2}w\Big{)}\Big{(}\frac{a+b}{2}-\frac{a-b}{2}\frac{1}{w^{2}}\Big{)}.

Observe that

ΞΆ=f​(w)if and only ifw=wΞΆΒ±:=ΞΆΒ±ΞΆ2βˆ’a2+b2a+b,\zeta=f(w)\qquad\textrm{if and only if}\qquad w=w_{\zeta}^{\pm}:=\frac{\zeta\pm\sqrt{\zeta^{2}-a^{2}+b^{2}}}{a+b},

i.e. the points wΞΆΒ±w_{\zeta}^{\pm} are solutions to the quadratic equation

(a+b)​w2βˆ’2​΢​w+(aβˆ’b)=0.(a+b)w^{2}-2\zeta\,w+(a-b)=0.

Here, the branch of the square root is chosen such that

wΞΆβˆ’β†’0ΞΆβ†’βˆž.w_{\zeta}^{-}\to 0\qquad\zeta\to\infty.

By above observation, the function gΞΆg_{\zeta} has poles only at

0,wΞΆ+,wΞΆβˆ’.0,\qquad w_{\zeta}^{+},\qquad w_{\zeta}^{-}.

Moreover note that

΢∈Kif and only ifwΞΆΒ±βˆˆπ”».\zeta\in K\qquad\textrm{if and only if}\qquad w_{\zeta}^{\pm}\in\mathbb{D}.

Notice that if ΢∈Kc\zeta\in K^{c}, then wΞΆβˆ’βˆˆπ”»w_{\zeta}^{-}\in\mathbb{D} and wΞΆ+βˆˆπ”»cw_{\zeta}^{+}\in\mathbb{D}^{c}.

Using the residue calculus, we have

(2.20) Resw=0​[g΢​(w)]=a+baβˆ’b​΢.\underset{w=0}{\textrm{Res}}\,\Big{[}g_{\zeta}(w)\Big{]}=\frac{a+b}{a-b}\,\zeta.

On the other hand, we have

(2.21) Resw=w΢±​[g΢​(w)]=βˆ’f​(1/wΒ―ΞΆΒ±)Β―=βˆ’a+b2​1wΞΆΒ±βˆ’aβˆ’b2​wΞΆΒ±.\underset{w=w_{\zeta}^{\pm}}{\textrm{Res}}\,\Big{[}g_{\zeta}(w)\Big{]}=-\overline{f(1/\bar{w}_{\zeta}^{\pm})}=-\frac{a+b}{2}\frac{1}{w_{\zeta}^{\pm}}-\frac{a-b}{2}w_{\zeta}^{\pm}.

In particular,

(2.22) Resw=wΞΆ+​[g΢​(w)]+Resw=wΞΆβˆ’β€‹[g΢​(w)]=βˆ’2​a2+b2a2βˆ’b2​΢.\underset{w=w_{\zeta}^{+}}{\textrm{Res}}\,\Big{[}g_{\zeta}(w)\Big{]}+\underset{w=w_{\zeta}^{-}}{\textrm{Res}}\,\Big{[}g_{\zeta}(w)\Big{]}=-2\frac{a^{2}+b^{2}}{a^{2}-b^{2}}\,\zeta.

Combining all of the above, we obtain the desired identity (2.13). The second assertion immediately follows from (2.13) and the real-valuedness of ΞΆβ†¦βˆ«Klog⁑|ΞΆβˆ’z|2​d​A​(z)\zeta\mapsto\int_{K}\log|\zeta-z|^{2}\,dA(z). ∎

Lemma 2.6.

For R>0R>0 and pβˆˆβ„‚p\in\mathbb{C} we have

(2.23) βˆ«π”»β€‹(p,R)log⁑|ΞΆβˆ’z|​d​A​(z)={R2​log⁑|ΞΆβˆ’p|if β€‹ΞΆβˆ‰π”»β€‹(p,R),R2​log⁑Rβˆ’R22+|ΞΆβˆ’p|22otherwise.\int_{\mathbb{D}(p,R)}\log|\zeta-z|\,dA(z)=\begin{cases}\displaystyle R^{2}\log|\zeta-p|&\text{if }\zeta\notin\mathbb{D}(p,R),\vskip 3.0pt plus 1.0pt minus 1.0pt\\ \displaystyle R^{2}\log R-\frac{R^{2}}{2}+\frac{|\zeta-p|^{2}}{2}&\text{otherwise}.\end{cases}
Proof.

First, recall the well-known Jensen’s formula: for r>0r>0,

(2.24) 12β€‹Ο€β€‹βˆ«02​πlog⁑|ΞΆβˆ’r​ei​θ|​d​θ={log⁑rif β€‹r>|ΞΆ|,log⁑|ΞΆ|otherwise.\frac{1}{2\pi}\int_{0}^{2\pi}\log|\zeta-re^{i\theta}|\,d\theta=\begin{cases}\log r&\text{if }r>|\zeta|,\vskip 3.0pt plus 1.0pt minus 1.0pt\\ \log|\zeta|&\text{otherwise}.\end{cases}

By the change of variables, we have

βˆ«π”»β€‹(p,R)log⁑|ΞΆβˆ’z|​d​A​(z)\displaystyle\int_{\mathbb{D}(p,R)}\log|\zeta-z|\,dA(z) =βˆ«π”»β€‹(0,R)log⁑|ΞΆβˆ’pβˆ’z|​d​A​(z)=1Ο€β€‹βˆ«0Rrβ€‹βˆ«02​πlog⁑|ΞΆβˆ’pβˆ’r​ei​θ|​d​θ​d​r.\displaystyle=\int_{\mathbb{D}(0,R)}\log|\zeta-p-z|\,dA(z)=\frac{1}{\pi}\int_{0}^{R}r\int_{0}^{2\pi}\log|\zeta-p-re^{i\theta}|\,d\theta\,dr.

Suppose that ΞΆβˆ‰π”»β€‹(p,R)\zeta\notin\mathbb{D}(p,R). Then by applying (2.24), we have

1Ο€β€‹βˆ«0Rrβ€‹βˆ«02​πlog⁑|ΞΆβˆ’pβˆ’r​ei​θ|​d​θ​d​r\displaystyle\frac{1}{\pi}\int_{0}^{R}r\int_{0}^{2\pi}\log|\zeta-p-re^{i\theta}|\,d\theta\,dr =2β€‹βˆ«0Rr​log⁑|ΞΆβˆ’p|​d​r=R2​log⁑|ΞΆβˆ’p|.\displaystyle=2\int_{0}^{R}r\,\log|\zeta-p|\,dr=R^{2}\log|\zeta-p|.

On the other hand if ΞΆβˆˆπ”»β€‹(p,R)\zeta\in\mathbb{D}(p,R), we have

1Ο€β€‹βˆ«0Rrβ€‹βˆ«02​πlog⁑|ΞΆβˆ’pβˆ’r​ei​θ|​d​θ​d​r\displaystyle\frac{1}{\pi}\int_{0}^{R}r\int_{0}^{2\pi}\log|\zeta-p-re^{i\theta}|\,d\theta\,dr =2β€‹βˆ«0|ΞΆβˆ’p|r​log⁑|ΞΆβˆ’p|​d​r+2β€‹βˆ«|ΞΆβˆ’p|Rr​log⁑r​d​r\displaystyle=2\int_{0}^{|\zeta-p|}r\,\log|\zeta-p|\,dr+2\int_{|\zeta-p|}^{R}r\,\log r\,dr
=R2​log⁑Rβˆ’R22+|ΞΆβˆ’p|22,\displaystyle=R^{2}\log R-\frac{R^{2}}{2}+\frac{|\zeta-p|^{2}}{2},

which completes the proof. ∎

We are now ready to complete the proof of Proposition 2.1.

Proof of Proposition 2.1.

Note that by (1.5), the equilibrium measure ΞΌ\mu associated with QpQ_{p} is of the form

(2.25) d​μ​(z):=Δ​Qp​(z)β‹…πŸ™S​(z)​d​A​(z)=11βˆ’Ο„2β‹…πŸ™S​(z)​d​A​(z).d\mu(z):=\Delta Q_{p}(z)\cdot\mathbbm{1}_{S}(z)\,dA(z)=\frac{1}{1-\tau^{2}}\cdot\mathbbm{1}_{S}(z)\,dA(z).

Due to the assumption (2.5), we have

∫log⁑1|ΞΆβˆ’z|2​d​μ​(z)=11βˆ’Ο„2​(∫S1log⁑1|ΞΆβˆ’z|2​d​A​(z)βˆ’βˆ«S2log⁑1|ΞΆβˆ’z|2​d​A​(z)).\displaystyle\int\log\frac{1}{|\zeta-z|^{2}}\,d\mu(z)=\frac{1}{1-\tau^{2}}\Big{(}\int_{S_{1}}\log\frac{1}{|\zeta-z|^{2}}\,dA(z)-\int_{S_{2}}\log\frac{1}{|\zeta-z|^{2}}\,dA(z)\Big{)}.

Note that by Lemma 2.4, there exists a constant c0c_{0} such that

(2.26) ∫S1log⁑1|ΞΆβˆ’z|2​d​A​(z)=βˆ’|ΞΆ|2+τ​Re⁑΢2βˆ’c0.\int_{S_{1}}\log\frac{1}{|\zeta-z|^{2}}\,dA(z)=-|\zeta|^{2}+\tau\operatorname{Re}\zeta^{2}-c_{0}.

On the other hand, by Lemma 2.6, we have

(2.27) ∫S2log⁑1|ΞΆβˆ’z|2​d​A​(z)=βˆ’2​(1βˆ’Ο„2)​c​log⁑|ΞΆβˆ’p|.\int_{S_{2}}\log\frac{1}{|\zeta-z|^{2}}\,dA(z)=-2(1-\tau^{2})c\,\log|\zeta-p|.

Combining (2.26), (2.27) and (2.1), we obtain

(2.28) ∫log⁑1|ΞΆβˆ’z|2​d​μ​(z)=βˆ’Qp​(ΞΆ)βˆ’c01βˆ’Ο„2,\int\log\frac{1}{|\zeta-z|^{2}}\,d\mu(z)=-Q_{p}(\zeta)-\frac{c_{0}}{1-\tau^{2}},

which leads to (1.29).

Next, we show the variational inequality (1.30). Note that if ΢∈S2\zeta\in S_{2}, it immediately follows from Lemma 2.6. Thus it is enough to verify (1.30) for the case ΢∈S1c\zeta\in S_{1}^{c}. Let

(2.29) Hp​(ΞΆ):=∫log⁑1|ΞΆβˆ’z|2​d​μ​(z)+Qp​(ΞΆ).H_{p}(\zeta):=\int\log\frac{1}{|\zeta-z|^{2}}\,d\mu(z)+Q_{p}(\zeta).

Suppose that the variational inequality (1.30) does not hold. Then since Hp​(ΞΆ)β†’βˆžH_{p}(\zeta)\to\infty as ΞΆβ†’βˆž\zeta\to\infty, there exists ΞΆβˆ—βˆˆS1c\zeta_{*}\in S_{1}^{c} such that

(2.30) βˆ‚ΞΆHp​(ΞΆ)|ΞΆ=ΞΆβˆ—=0.\partial_{\zeta}H_{p}(\zeta)|_{\zeta=\zeta_{*}}=0.

On the other hand, by Lemmas 2.4 and 2.6, if ΢∈S1c\zeta\in S_{1}^{c}, the Cauchy transform of the measure ΞΌ\mu is computed as

(2.31) ∫d​μ​(z)ΞΆβˆ’z=12​τ​(ΞΆβˆ’ΞΆ2βˆ’4​τ​(1+c))βˆ’cΞΆβˆ’p.\int\frac{d\mu(z)}{\zeta-z}=\frac{1}{2\tau}\Big{(}\zeta-\sqrt{\zeta^{2}-4\tau(1+c)}\Big{)}-\frac{c}{\zeta-p}.

Together with (2.1), this gives rise to

(2.32) βˆ‚ΞΆQp​(ΞΆ)βˆ’βˆ«d​μ​(z)ΞΆβˆ’z=11βˆ’Ο„2​(ΞΆΒ―βˆ’Ο„β€‹ΞΆ)βˆ’12​τ​(ΞΆβˆ’ΞΆ2βˆ’4​τ​(1+c)).\displaystyle\partial_{\zeta}Q_{p}(\zeta)-\int\frac{d\mu(z)}{\zeta-z}=\frac{1}{1-\tau^{2}}\Big{(}\bar{\zeta}-\tau\zeta\Big{)}-\frac{1}{2\tau}\Big{(}\zeta-\sqrt{\zeta^{2}-4\tau(1+c)}\Big{)}.

Then it follows that the condition βˆ‚ΞΆHp​(ΞΆ)=0\partial_{\zeta}H_{p}(\zeta)=0 is equivalent to

(2.33) (1+Ο„2)​|ΞΆ|2βˆ’Ο„β€‹(ΞΆ2+ΞΆΒ―2)=(1βˆ’Ο„2)2​(1+c).(1+\tau^{2})|\zeta|^{2}-\tau(\zeta^{2}+\bar{\zeta}^{2})=(1-\tau^{2})^{2}(1+c).

Therefore, by (2.3), one can notice that βˆ‚ΞΆHp​(ΞΆ)=0\partial_{\zeta}H_{p}(\zeta)=0 if and only if ΞΆβˆˆβˆ‚S1\zeta\in\partial S_{1}. This yields a contradiction with the assumption ΞΆβˆ—βˆˆS1c.\zeta_{*}\in S_{1}^{c}. Therefore we conclude that the variational inequality (1.30) holds for ΢∈Sc\zeta\in S^{c}, which completes the proof. ∎

Remark 2.7.

Let us denote by

(2.34) mk:=∫zk​𝑑μ​(z)m_{k}:=\int z^{k}\,d\mu(z)

the kk-th moment of the equilibrium measure. Notice that the Cauchy transform of ΞΌ\mu satisfies the asymptotic expansion

(2.35) ∫d​μ​(z)ΞΆβˆ’z=1ΞΆβ€‹βˆ‘k=0∞mkΞΆk,ΞΆβ†’βˆž.\int\frac{d\mu(z)}{\zeta-z}=\frac{1}{\zeta}\sum_{k=0}^{\infty}\frac{m_{k}}{\zeta^{k}},\qquad\zeta\to\infty.

Using this property and (2.31), after straightforward computations, one can verify that the equilibrium measure ΞΌ\mu in Proposition 2.1 has the moments

(2.36) m2​k=2​(2​kβˆ’1)!(kβˆ’1)!​(k+1)!​τk​(1+c)k+1βˆ’c​p2​k,m2​k+1=βˆ’c​p2​k+1.m_{2k}=2\frac{(2k-1)!}{(k-1)!(k+1)!}\tau^{k}(1+c)^{k+1}-c\,p^{2k},\qquad m_{2k+1}=-c\,p^{2k+1}.

Notice in particular that if p=0p=0, all odd moments vanish.

2.2. Pre-critical case

In this subsection, we show Theorem 1.4 (ii). Then by (1.16), Theorem 1.1 (ii) follows.

Proof of Theorem 1.4 (ii).

Recall that Q^\widehat{Q} is given by (1.14) and that all we need to show is the variational principles (1.29) and (1.30) for W=Q^.W=\widehat{Q}. For this, similar to above, let

(2.37) H​(ΞΆ):=∫log⁑1|ΞΆβˆ’z|2​d​μ^​(z)+Q^​(ΞΆ),H(\zeta):=\int\log\frac{1}{|\zeta-z|^{2}}\,d\widehat{\mu}(z)+\widehat{Q}(\zeta),

where ΞΌ^\widehat{\mu} is the equilibrium measure associated with Q^\widehat{Q}. Then

(2.38) βˆ‚ΞΆH​(ΞΆ)=βˆ‚ΞΆQ^​(ΞΆ)βˆ’C​(ΞΆ)=11βˆ’Ο„2​(ΞΆΒ―ΞΆβˆ’Ο„)βˆ’cΞΆβˆ’C​(ΞΆ),\partial_{\zeta}H(\zeta)=\partial_{\zeta}\widehat{Q}(\zeta)-C(\zeta)=\frac{1}{1-\tau^{2}}\Big{(}\sqrt{\frac{\bar{\zeta}}{\zeta}}-\tau\Big{)}-\frac{c}{\zeta}-C(\zeta),

where C​(ΞΆ)C(\zeta) is the Cauchy transform of ΞΌ^\widehat{\mu} given by

(2.39) C​(ΞΆ)=12​(1βˆ’Ο„)2β€‹βˆ«S^1ΞΆβˆ’z​1|z|​𝑑A​(z).C(\zeta)=\frac{1}{2(1-\tau)^{2}}\int_{\widehat{S}}\frac{1}{\zeta-z}\frac{1}{|z|}\,dA(z).

Here, we have used (1.5).

Applying Green’s formula, we have

(2.40) (1βˆ’Ο„2)​C​(ΞΆ)=12​π​iβ€‹βˆ«βˆ‚S^1ΞΆβˆ’z​zΒ―z​𝑑z+ΞΆΒ―ΞΆβ‹…πŸ™{΢∈Int⁑(S^)}.\displaystyle\begin{split}(1-\tau^{2})C(\zeta)&=\frac{1}{2\pi i}\int_{\partial\widehat{S}}\frac{1}{\zeta-z}\sqrt{\frac{\bar{z}}{z}}\,dz+\sqrt{\frac{\bar{\zeta}}{\zeta}}\cdot\mathbbm{1}_{\{\zeta\in\operatorname{Int}(\widehat{S})\}}.\end{split}

Recall that ff is given by (1.11). Let

(2.41) g​(w):=f​(1/wΒ―)Β―f​(w)​f′​(w).\displaystyle\begin{split}g(w)&:=\sqrt{\frac{\overline{f(1/\bar{w})}}{f(w)}}\,f^{\prime}(w).\end{split}

Since f′​(a​τ)=0,f^{\prime}(a\tau)=0, the function g​(w)g(w) has poles only at 0,1/a,a0,1/a,a. We also write

(2.42) h΢​(w):=g​(w)ΞΆβˆ’f​(w).h_{\zeta}(w):=\frac{g(w)}{\zeta-f(w)}.

Using the change of variable z=f​(w)z=f(w),

(2.43) 12​π​iβ€‹βˆ«βˆ‚S^1ΞΆβˆ’z​zΒ―z​𝑑z=12​π​iβ€‹βˆ«βˆ‚π”»1ΞΆβˆ’f​(w)​f​(1/wΒ―)Β―f​(w)​f′​(w)​𝑑w=12​π​iβ€‹βˆ«βˆ‚π”»h΢​(w)​𝑑w.\displaystyle\begin{split}\frac{1}{2\pi i}\int_{\partial\widehat{S}}\frac{1}{\zeta-z}\sqrt{\frac{\bar{z}}{z}}\,dz&=\frac{1}{2\pi i}\int_{\partial\mathbb{D}}\frac{1}{\zeta-f(w)}\sqrt{\frac{\overline{f(1/\bar{w})}}{f(w)}}\,f^{\prime}(w)\,dw=\frac{1}{2\pi i}\int_{\partial\mathbb{D}}h_{\zeta}(w)\,dw.\end{split}

By the residue calculus, we have

(2.44) Resw=0​[h΢​(w)]=1Ο„,Resw=a​[h΢​(w)]=0.\underset{w=0}{\textrm{Res}}\,\Big{[}h_{\zeta}(w)\Big{]}=\frac{1}{\tau},\qquad\underset{w=a}{\textrm{Res}}\,\Big{[}h_{\zeta}(w)\Big{]}=0.

Note that ΞΆ=f​(w)\zeta=f(w) is equivalent to

(2.45) d​(1βˆ’a​w)​(wβˆ’a​τ)2=w​(wβˆ’a)​΢,d=(1+Ο„)​(1+2​c)2,d(1-aw)(w-a\tau)^{2}=w(w-a)\zeta,\qquad d=\frac{(1+\tau)(1+2c)}{2},

which can be rewritten as a cubic equation

(2.46) a​d​w3βˆ’(d+2​a2​dβ€‹Ο„βˆ’ΞΆ)​w2+a​(2​d​τ+a2​τ2​dβˆ’ΞΆ)​wβˆ’a2​τ2​d=0.adw^{3}-(d+2a^{2}d\tau-\zeta)w^{2}+a(2d\tau+a^{2}\tau^{2}d-\zeta)w-a^{2}\tau^{2}d=0.

For given ΞΆβˆˆβ„‚\zeta\in\mathbb{C}, there exist wΞΆ(j)w_{\zeta}^{(j)} (j=1,2,3)(j=1,2,3) such that f​(wΞΆ(j))=ΞΆ.f(w_{\zeta}^{(j)})=\zeta. Note that by (2.46), we have

(2.47) wΞΆ(1)​wΞΆ(2)​wΞΆ(3)=a​τ2∈(βˆ’1,0).w_{\zeta}^{(1)}w_{\zeta}^{(2)}w_{\zeta}^{(3)}=a\tau^{2}\in(-1,0).

Furthermore, since ff is a conformal map from 𝔻c\mathbb{D}^{c} onto S^c\widehat{S}^{c}, we have the following:

  1. (1)

    If ΢∈Int⁑(S^)\zeta\in\operatorname{Int}(\widehat{S}), then all wΞΆ(j)w_{\zeta}^{(j)}’s are in 𝔻\mathbb{D};

  2. (2)

    If ΢∈S^c\zeta\in\widehat{S}^{c}, then two of wΞΆ(j)w_{\zeta}^{(j)}’s are in 𝔻\mathbb{D}.

By the residue calculus using (1.11) and (2.41), for each j,j,

(2.48) Resw=wΞΆ(j)​[h΢​(w)]=βˆ’g​(wΞΆ(j))f′​(wΞΆ(j))=βˆ’(wΞΆ(j)βˆ’a)​(1βˆ’a​τ​wΞΆ(j))(wΞΆ(j)βˆ’a​τ)​(1βˆ’a​wΞΆ(j))=d΢​(a​τ​wΞΆ(j)βˆ’1)​(wΞΆ(j)βˆ’a​τ)wΞΆ(j)=d΢​(a​τ​wΞΆ(j)βˆ’(a2​τ2+1)+a​τwΞΆ(j)),\displaystyle\begin{split}\underset{w=w_{\zeta}^{(j)}}{\textrm{Res}}\,\Big{[}h_{\zeta}(w)\Big{]}&=-\frac{g(w_{\zeta}^{(j)})}{f^{\prime}(w_{\zeta}^{(j)})}=-\frac{(w^{(j)}_{\zeta}-a)(1-a\tau w^{(j)}_{\zeta})}{(w^{(j)}_{\zeta}-a\tau)(1-aw^{(j)}_{\zeta})}\\ &=\frac{d}{\zeta}\frac{(a\tau w_{\zeta}^{(j)}-1)(w_{\zeta}^{(j)}-a\tau)}{w_{\zeta}^{(j)}}=\frac{d}{\zeta}\Big{(}a\tau w_{\zeta}^{(j)}-(a^{2}\tau^{2}+1)+\frac{a\tau}{w_{\zeta}^{(j)}}\Big{)},\end{split}

where we have used (2.45). On the other hand, it follows from (2.46) that

(2.49) βˆ‘j=13wΞΆ(j)=d+2​a2​dβ€‹Ο„βˆ’ΞΆa​d,βˆ‘j=131wΞΆ(j)=βˆ’ΞΆ+2​d​τ+a2​τ2​da​τ2​d.\sum_{j=1}^{3}w_{\zeta}^{(j)}=\frac{d+2a^{2}d\tau-\zeta}{ad},\qquad\sum_{j=1}^{3}\frac{1}{w_{\zeta}^{(j)}}=\frac{-\zeta+2d\tau+a^{2}\tau^{2}d}{a\tau^{2}d}.

These relations give rise to

(2.50) dβ€‹βˆ‘j=13(a​τ​wΞΆ(j)βˆ’(a2​τ2+1)+a​τwΞΆ(j))=d​τ+2​a2​d​τ2βˆ’Ο„β€‹ΞΆβˆ’ΞΆΟ„+2​d+a2​τ​dβˆ’3​d​(a2​τ2+1)=βˆ’(Ο„+1Ο„)β€‹ΞΆβˆ’c​(1βˆ’Ο„2).\displaystyle\begin{split}d\sum_{j=1}^{3}\Big{(}a\tau w_{\zeta}^{(j)}-(a^{2}\tau^{2}+1)+\frac{a\tau}{w_{\zeta}^{(j)}}\Big{)}&=d\tau+2a^{2}d\tau^{2}-\tau\zeta-\frac{\zeta}{\tau}+2d+a^{2}\tau d-3d(a^{2}\tau^{2}+1)\\ &=-\Big{(}\tau+\frac{1}{\tau}\Big{)}\zeta-c(1-\tau^{2}).\end{split}

Combining all of the above, we have shown that if ΢∈Int⁑(S^)\zeta\in\operatorname{Int}(\widehat{S}),

(2.51) βˆ‘j=13Resw=wΞΆ(j)​[h΢​(w)]=βˆ’(Ο„+1Ο„)βˆ’c​(1βˆ’Ο„2)ΞΆ.\sum_{j=1}^{3}\underset{w=w_{\zeta}^{(j)}}{\textrm{Res}}\,\Big{[}h_{\zeta}(w)\Big{]}=-\Big{(}\tau+\frac{1}{\tau}\Big{)}-\frac{c(1-\tau^{2})}{\zeta}.

Therefore if ΢∈Int⁑(S^)\zeta\in\operatorname{Int}(\widehat{S}), we obtain

(2.52) (1βˆ’Ο„2)​C​(ΞΆ)=ΞΆΒ―ΞΆβˆ’1Ο„βˆ’c​(1βˆ’Ο„2)=(1βˆ’Ο„2)β€‹βˆ‚ΞΆQ^​(ΞΆ).\displaystyle\begin{split}(1-\tau^{2})C(\zeta)&=\sqrt{\frac{\bar{\zeta}}{\zeta}}-\frac{1}{\tau}-c(1-\tau^{2})=(1-\tau^{2})\partial_{\zeta}\widehat{Q}(\zeta).\end{split}

Then by (2.40), the variational equality (1.29) follows.

Now it remains to show the variational inequality (1.30). Note that by definition, H​(ΞΆ)β†’βˆžH(\zeta)\to\infty as ΞΆβ†’βˆž\zeta\to\infty. Suppose that the variational inequality (1.30) does not hold. Then there exists ΞΆβˆ—βˆˆS^c\zeta_{*}\in\widehat{S}^{c} such that

(2.53) βˆ‚ΞΆH​(ΞΆ)|ΞΆ=ΞΆβˆ—=βˆ‚Q^​(ΞΆβˆ—)βˆ’C​(ΞΆβˆ—)=0.\partial_{\zeta}H(\zeta)|_{\zeta=\zeta_{*}}=\partial\widehat{Q}(\zeta_{*})-C(\zeta_{*})=0.

Recall that if ΢∈S^c\zeta\in\widehat{S}^{c}, then only one of wΞΆ(j)w_{\zeta}^{(j)}’s, say wΞΆw_{\zeta}, is in 𝔻c\mathbb{D}^{c}. By combining the above computations, we have that for ΢∈S^c\zeta\in\widehat{S}^{c},

(2.54) (1βˆ’Ο„2)​(βˆ‚ΞΆQ^​(ΞΆ)βˆ’C​(ΞΆ))=ΞΆΒ―ΞΆβˆ’Resw=w΢​[h΢​(w)]=ΞΆΒ―ΞΆβˆ’d΢​(a​τ​wΞΆβˆ’(a2​τ2+1)+a​τwΞΆ).\displaystyle\begin{split}(1-\tau^{2})\Big{(}\partial_{\zeta}\widehat{Q}(\zeta)-C(\zeta)\Big{)}=\sqrt{\frac{\bar{\zeta}}{\zeta}}-\underset{w=w_{\zeta}}{\textrm{Res}}\,\Big{[}h_{\zeta}(w)\Big{]}=\sqrt{\frac{\bar{\zeta}}{\zeta}}-\frac{d}{\zeta}\Big{(}a\tau w_{\zeta}-(a^{2}\tau^{2}+1)+\frac{a\tau}{w_{\zeta}}\Big{)}.\end{split}

Therefore the identity (2.53) holds if and only if

(2.55) |ΞΆβˆ—|=d​(a​τ​wΞΆβˆ—βˆ’(a2​τ2+1)+a​τwΞΆβˆ—).|\zeta_{*}|=d\Big{(}a\tau w_{\zeta_{*}}-(a^{2}\tau^{2}+1)+\frac{a\tau}{w_{\zeta_{*}}}\Big{)}.

Note that by (1.11),

βˆ’df​(x)​(a​τ​xβˆ’(a2​τ2+1)+a​τx)\displaystyle-\frac{d}{f(x)}\Big{(}a\tau x-(a^{2}\tau^{2}+1)+\frac{a\tau}{x}\Big{)} =βˆ’1f​(x)​(1+Ο„)​(1+2​c)2​(a​τ​xβˆ’1)​(xβˆ’a​τ)x=(a​τ​xβˆ’1)​(xβˆ’a)(a​xβˆ’1)​(xβˆ’a​τ).\displaystyle=-\frac{1}{f(x)}\frac{(1+\tau)(1+2c)}{2}\frac{(a\tau x-1)(x-a\tau)}{x}=\frac{(a\tau x-1)(x-a)}{(ax-1)(x-a\tau)}.

Therefore if x<1/(a​τ)x<1/(a\tau),

d​(a​τ​xβˆ’(a2​τ2+1)+a​τx)<τ​|f​(x)|<|f​(x)|.\displaystyle d\Big{(}a\tau x-(a^{2}\tau^{2}+1)+\frac{a\tau}{x}\Big{)}<\tau|f(x)|<|f(x)|.

From this, we notice that (2.55) does not hold for wΞΆβˆ—βˆˆβ„w_{\zeta_{*}}\in{\mathbb{R}}. Furthermore, this implies that the right-hand side of (2.55) is real-valued if and only if wΞΆβˆ—βˆˆβˆ‚π”»w_{\zeta_{*}}\in\partial\mathbb{D}, equivalently, ΞΆβˆ—βˆˆβˆ‚S^.\zeta_{*}\in\partial\widehat{S}. This contradicts with the assumption that ΞΆβˆ—βˆˆS^c\zeta_{*}\in\widehat{S}^{c}. Now the proof is complete. ∎

Appendix A Conformal mapping method: the pre-critical case

In this appendix, we present the conformal mapping method, which is helpful to derive the candidate of the droplet given in terms of the rational function (1.11).

Proposition A.1.

Let Ο„βˆˆ(Ο„c,1)\tau\in(\tau_{c},1). Suppose that S^\widehat{S} in (1.18) is simply connected. Let ff be a unique conformal map (𝔻¯c,∞)β†’(S^c,∞)(\bar{\mathbb{D}}^{c},\infty)\to(\widehat{S}^{c},\infty), which satisfies

(A.1) f​(z)=r1​z+r2+O​(1z),zβ†’βˆž.f(z)=r_{1}\,z+r_{2}+O\Big{(}\frac{1}{z}\Big{)},\qquad z\to\infty.

Then the following holds.

  1. (i)

    The conformal map ff is a rational function of the form

    (A.2) f​(z)=r1​z+r2+r3z+r4zβˆ’a,a∈(βˆ’1,0),f(z)=r_{1}z+r_{2}+\frac{r_{3}}{z}+\frac{r_{4}}{z-a},\qquad a\in(-1,0),

    which satisfies

    (A.3) f​(1/a)=r1a+r2+r3​a+a​r41βˆ’a2=0.f(1/a)=\frac{r_{1}}{a}+r_{2}+r_{3}a+\frac{ar_{4}}{1-a^{2}}=0.
  2. (ii)

    The parameters rjr_{j} (j=1,…,4)(j=1,\dots,4) are given by

    (A.4) r1=1+Ο„2​1+2​cΟ„,r2=1+Ο„2​τ​(τ​(1+2​c)+2β€‹Ο„βˆ’1),r3=1+Ο„2​τ​τ​(1+2​c),r4=(1βˆ’Ο„)2​(1+Ο„)​(1βˆ’(1+2​c)​τ)2​τ​τ​(1+2​c)\displaystyle\begin{split}&r_{1}=\frac{1+\tau}{2}\sqrt{\frac{1+2c}{\tau}},\qquad\quad r_{2}=\frac{1+\tau}{2\tau}(\tau(1+2c)+2\tau-1),\\ &r_{3}=\frac{1+\tau}{2}\tau\sqrt{\tau(1+2c)},\qquad r_{4}=\frac{(1-\tau)^{2}(1+\tau)(1-(1+2c)\tau)}{2\tau\sqrt{\tau(1+2c)}}\end{split}

    and

    (A.5) a=βˆ’1τ​(1+2​c).a=-\frac{1}{\sqrt{\tau(1+2c)}}.

Note that the rational function ff with the choice of parameters (LABEL:r1_r2_r3_r4) corresponds to (1.11). Therefore Proposition A.1 gives rise to Theorem 1.4 (ii) under the assumption that S^\widehat{S} is simply connected. However, there is no general theory characterising the connectivity of the droplet. (Nevertheless, we refer the reader to [49, 48] for sharp connectivity bounds of the droplets associated with a class of potentials.) Thus we need to directly verify the variational principles as in Subsection 2.2.

Proof of Proposition A.1 (i).

By differentiating the variational equality (1.29), we have

(A.6) βˆ‚ΞΆQ^​(ΞΆ)=C​(ΞΆ):=∫d​μ^​(z)ΞΆβˆ’z,΢∈S^.\partial_{\zeta}\widehat{Q}(\zeta)=C(\zeta):=\int\frac{d\widehat{\mu}(z)}{\zeta-z},\qquad\zeta\in\widehat{S}.

Using (1.14), this can be rewritten as

(A.7) ΞΆΒ―=΢​[(1βˆ’Ο„2)​(C​(ΞΆ)+cΞΆ)+Ο„]2.\bar{\zeta}=\zeta\Big{[}(1-\tau^{2})\Big{(}C(\zeta)+\frac{c}{\zeta}\Big{)}+\tau\Big{]}^{2}.

Therefore the Schwarz function FF associated with the droplet S^\widehat{S} exists. Furthermore, it is expressed in terms of CC as

(A.8) F​(ΞΆ)=΢​[(1βˆ’Ο„2)​(C​(ΞΆ)+cΞΆ)+Ο„]2.F(\zeta)=\zeta\Big{[}(1-\tau^{2})\Big{(}C(\zeta)+\frac{c}{\zeta}\Big{)}+\tau\Big{]}^{2}.

Note that for zβˆˆβˆ‚π”»,z\in\partial\mathbb{D},

(A.9) f​(1/zΒ―)Β―=f​(z)Β―=f​(z)​[(1βˆ’Ο„2)​(C​(f​(z))+cf​(z))+Ο„]2.\overline{f(1/\bar{z})}=\overline{f(z)}=f(z)\Big{[}(1-\tau^{2})\Big{(}C(f(z))+\frac{c}{f(z)}\Big{)}+\tau\Big{]}^{2}.

Using this, we define f:𝔻¯\{0}β†’β„‚f:\bar{\mathbb{D}}\backslash\{0\}\to\mathbb{C} by analytic continuation as

(A.10) f​(z):=f​(1/zΒ―)​[(1βˆ’Ο„2)​(C​(f​(1/zΒ―))+cf​(1/zΒ―))+Ο„]2Β―.f(z):=\overline{f(1/\bar{z})\Big{[}(1-\tau^{2})\Big{(}C(f(1/\bar{z}))+\frac{c}{f(1/\bar{z})}\Big{)}+\tau\Big{]}^{2}}.

Therefore ff has simple poles only at 0,∞0,\infty and the point aβˆˆβ„a\in{\mathbb{R}} such that f​(1/a)=0f(1/a)=0, which leads to (A.2). ∎

Next, we need to specify the constants rjr_{j} and a.a. For this, we shall find interrelations among the parameters.

Lemma A.2.

We have

(A.11) r3=r1​τ2r_{3}=r_{1}\tau^{2}

and

(A.12) r4=a​(1βˆ’Ο„2)​(r2βˆ’2​τ​(1+c)).r_{4}=a(1-\tau^{2})\Big{(}r_{2}-2\tau(1+c)\Big{)}.

Furthermore, we have

(A.13) r2=r1​1+a2​τ21βˆ’a2​τ2​a2βˆ’1a+2​a2​(1βˆ’Ο„2)​τ​(1+c)1βˆ’a2​τ2.r_{2}=r_{1}\frac{1+a^{2}\tau^{2}}{1-a^{2}\tau^{2}}\frac{a^{2}-1}{a}+\frac{2a^{2}(1-\tau^{2})\tau(1+c)}{1-a^{2}\tau^{2}}.
Proof.

Note that

(A.14) f​(1/zΒ―)Β―=r1z+r2+r3​z+r4​z1βˆ’a​z.\overline{f(1/\bar{z})}=\frac{r_{1}}{z}+r_{2}+r_{3}z+\frac{r_{4}z}{1-az}.

Therefore, we have

(A.15) 1f​(1/zΒ―)Β―=1r1​zβˆ’r2r12​z2+r22βˆ’r1​r3βˆ’r1​r4r13​z3+O​(z4),zβ†’0.\frac{1}{\overline{f(1/\bar{z})}}=\frac{1}{r_{1}}\,z-\frac{r_{2}}{r_{1}^{2}}\,z^{2}+\frac{r_{2}^{2}-r_{1}r_{3}-r_{1}r_{4}}{r_{1}^{3}}\,z^{3}+O(z^{4}),\qquad z\to 0.

Since the Cauchy transform CC satisfies the asymptotic behaviour

(A.16) C​(ΞΆ)=1ΞΆ+O​(1ΞΆ2),ΞΆβ†’βˆž,C(\zeta)=\frac{1}{\zeta}+O(\frac{1}{\zeta^{2}}),\qquad\zeta\to\infty,

we have

(A.17) C​(f​(1/zΒ―))Β―=1r1​z+O​(z2),zβ†’0.\overline{C(f(1/\bar{z}))}=\frac{1}{r_{1}}\,z+O(z^{2}),\qquad z\to 0.

Combining these equations with (A.10), we obtain

(A.18) f​(z)=r1​τ2z+(r2​τ2+2​τ​(1βˆ’Ο„2)​(1+c))+O​(z),zβ†’0.\displaystyle f(z)=\frac{r_{1}\tau^{2}}{z}+\Big{(}r_{2}\tau^{2}+2\tau(1-\tau^{2})(1+c)\Big{)}+O(z),\qquad z\to 0.

On the other hand, by using (A.2), we have

(A.19) f​(z)=r3z+(r2βˆ’r4a)+O​(z),zβ†’0.f(z)=\frac{r_{3}}{z}+\Big{(}r_{2}-\frac{r_{4}}{a}\Big{)}+O(z),\qquad z\to 0.

Then by comparing the coefficients in (A.18) and (A.19), we obtain (A.11) and (A.12).

Note that by (A.3), we have

(A.20) r4=a2βˆ’1a​(r1a+r2+r3​a).r_{4}=\frac{a^{2}-1}{a}\Big{(}\frac{r_{1}}{a}+r_{2}+r_{3}a\Big{)}.

Then by (A.11), we have

(A.21) r4=a2βˆ’1a​(r1a+r2+r1​a​τ2)=r1​(1+a2​τ2)​(a2βˆ’1)a2+r2​a2βˆ’1a.r_{4}=\frac{a^{2}-1}{a}\Big{(}\frac{r_{1}}{a}+r_{2}+r_{1}a\tau^{2}\Big{)}=r_{1}\frac{(1+a^{2}\tau^{2})(a^{2}-1)}{a^{2}}+r_{2}\frac{a^{2}-1}{a}.

Combining this identity with (A.12), we obtain

(A.22) a​(1βˆ’Ο„2)​r2βˆ’2​a​(1βˆ’Ο„2)​τ​(1+c)=r1​(1+a2​τ2)​(a2βˆ’1)a2+r2​a2βˆ’1a,a(1-\tau^{2})r_{2}-2a(1-\tau^{2})\tau(1+c)=r_{1}\frac{(1+a^{2}\tau^{2})(a^{2}-1)}{a^{2}}+r_{2}\frac{a^{2}-1}{a},

which leads to (A.13). ∎

Lemma A.3.

We have

(A.23) ((2βˆ’a2+a4​τ2)​r1+a​r2)​(r2βˆ’2​τ​(1+c))=(1βˆ’Ο„2)​c2​a​(a2βˆ’1).\Big{(}(2-a^{2}+a^{4}\tau^{2})r_{1}+ar_{2}\Big{)}\Big{(}r_{2}-2\tau(1+c)\Big{)}=(1-\tau^{2})c^{2}a(a^{2}-1).
Proof.

Using (A.3), we have

(A.24) 1f​(1/zΒ―)Β―=a2​(a2βˆ’1)(2βˆ’a2)​r1+a​r2+a4​r3​1zβˆ’a+O​(1),zβ†’a.\frac{1}{\overline{f(1/\bar{z})}}=\frac{a^{2}(a^{2}-1)}{(2-a^{2})r_{1}+ar_{2}+a^{4}r_{3}}\,\frac{1}{z-a}+O(1),\qquad z\to a.

Then by (A.10) and (A.11), we obtain

(A.25) r4=(1βˆ’Ο„2)2​c2​a2​(a2βˆ’1)(2βˆ’a2)​r1+a​r2+a4​r3=(1βˆ’Ο„2)2​c2​a2​(1βˆ’a2)2r1​(a2​τ2βˆ’1)​(1βˆ’a2)2+r4​a2.r_{4}=\frac{(1-\tau^{2})^{2}c^{2}\,a^{2}(a^{2}-1)}{(2-a^{2})r_{1}+ar_{2}+a^{4}r_{3}}=\frac{(1-\tau^{2})^{2}c^{2}\,a^{2}(1-a^{2})^{2}}{r_{1}(a^{2}\tau^{2}-1)(1-a^{2})^{2}+r_{4}a^{2}}.

Now lemma follows from (A.12). ∎

Proof of Proposition A.1 (ii).

Since ΞΌ^\widehat{\mu} is a probability measure, we have

(A.26) 1=∫S^12​(1βˆ’Ο„2)​1|z|​𝑑A​(z)=12​π​iβ€‹βˆ«βˆ‚S^11βˆ’Ο„2​zΒ―z​𝑑z,1=\int_{\widehat{S}}\frac{1}{2(1-\tau^{2})}\frac{1}{|z|}\,dA(z)=\frac{1}{2\pi i}\int_{\partial\widehat{S}}\frac{1}{1-\tau^{2}}\sqrt{\frac{\bar{z}}{z}}\,dz,

where we have used Green’s formula for the second identity. Using the change of variable z=f​(w)z=f(w), where ff is of the form (A.2), this can be rewritten as

(A.27) 12​π​iβ€‹βˆ«βˆ‚π”»f​(1/wΒ―)¯​f​(w)​f′​(w)f​(w)​𝑑w=1βˆ’Ο„2.\frac{1}{2\pi i}\int_{\partial\mathbb{D}}\sqrt{\overline{f(1/\bar{w})}f(w)}\,\frac{f^{\prime}(w)}{f(w)}\,dw=1-\tau^{2}.

By Lemma A.2 and (A.2), we have

(A.28) f​(z)\displaystyle f(z) =1βˆ’a​zz​(zβˆ’a)​(βˆ’r1a​z2+(a2βˆ’1a2​r1βˆ’r2a)​zβˆ’a​τ2​r1),\displaystyle=\frac{1-az}{z(z-a)}\Big{(}-\frac{r_{1}}{a}z^{2}+\Big{(}\frac{a^{2}-1}{a^{2}}r_{1}-\frac{r_{2}}{a}\Big{)}z-a\tau^{2}r_{1}\Big{)},
(A.29) f​(1/zΒ―)Β―\displaystyle\overline{f(1/\bar{z})} =zβˆ’az​(1βˆ’a​z)​(βˆ’a​τ2​r1​z2+(a2βˆ’1a2​r1βˆ’r2a)​zβˆ’r1a).\displaystyle=\frac{z-a}{z(1-az)}\Big{(}-a\tau^{2}r_{1}z^{2}+\Big{(}\frac{a^{2}-1}{a^{2}}r_{1}-\frac{r_{2}}{a}\Big{)}z-\frac{r_{1}}{a}\Big{)}.

Note here that by construction, two zeros of ff other than 1/a1/a are contained in the unit disc. Using these together with straightforward residue calculus, we obtain

(A.30) Resw=0​[f​(1/wΒ―)¯​f​(w)​f′​(w)f​(w)]=(1+c)​(1βˆ’Ο„2)\textup{Res}_{w=0}\Big{[}\sqrt{\overline{f(1/\bar{w})}f(w)}\,\frac{f^{\prime}(w)}{f(w)}\Big{]}=(1+c)(1-\tau^{2})

and

(A.31) Resw=a​[f​(1/wΒ―)¯​f​(w)​f′​(w)f​(w)]=βˆ’1a​[(1+a2​τ2a​r1+r2)​(a4​τ2βˆ’a2+2a​r1+r2)]1/2.\textup{Res}_{w=a}\Big{[}\sqrt{\overline{f(1/\bar{w})}f(w)}\,\frac{f^{\prime}(w)}{f(w)}\Big{]}=-\frac{1}{a}\Big{[}\Big{(}\frac{1+a^{2}\tau^{2}}{a}r_{1}+r_{2}\Big{)}\Big{(}\frac{a^{4}\tau^{2}-a^{2}+2}{a}r_{1}+r_{2}\Big{)}\Big{]}^{1/2}.

Furthermore, it follows from Lemma A.3 that

(A.32) Resw=a​[f​(1/wΒ―)¯​f​(w)​f′​(w)f​(w)]=βˆ’c​(1βˆ’Ο„2).\textup{Res}_{w=a}\Big{[}\sqrt{\overline{f(1/\bar{w})}f(w)}\,\frac{f^{\prime}(w)}{f(w)}\Big{]}=-c(1-\tau^{2}).

Combining (A.27), (A.30) and (A.32), one can notice that the function ff has a double zero, which implies that

(A.33) a2βˆ’1a2​r1βˆ’r2a=2​r1​τ.\frac{a^{2}-1}{a^{2}}r_{1}-\frac{r_{2}}{a}=2r_{1}\tau.

By solving the system of equations given in Lemmas A.2,  A.3 and (A.33), the desired result follows. ∎

Remark A.4 (The use of higher moments of the equilibrium measure).

In a more complicated case, for instance for the case with multiple point charges such as (2.7), the mass-one condition (A.26) may not be enough to characterise the parameters. In this case, one can further use the higher order asymptotic expansions appearing in the above lemmas, which involve the kk-th moments of the equilibrium measure; cf. (2.35). Thus in principle, one can always find enough (algebraic) interrelations to characterise the parameters appearing in the conformal map.

Remark A.5.

For the case Ο„=0\tau=0 and p>0p>0, it was shown in [12] that if

c>(1βˆ’p2)24​p2,c>\frac{(1-p^{2})^{2}}{4p^{2}},

the droplet associated with (2.1) is a simply connected domain whose boundary is given by the image of the conformal map

f​(z)=R​zβˆ’ΞΊzβˆ’qβˆ’ΞΊq,R=1+p2​q22​p​q,ΞΊ=(1βˆ’q2)​(1βˆ’p2​q2)2​p​q.f(z)=R\,z-\frac{\kappa}{z-q}-\frac{\kappa}{q},\qquad R=\frac{1+p^{2}q^{2}}{2pq},\qquad\kappa=\frac{(1-q^{2})(1-p^{2}q^{2})}{2pq}.

Here, qq is given by the unique solution of P​(q2)=0P(q^{2})=0, where

P​(x):=x3βˆ’(p2+4​c+22​p2)​x2+12​p4P(x):=x^{3}-\Big{(}\frac{p^{2}+4c+2}{2p^{2}}\Big{)}x^{2}+\frac{1}{2p^{4}}

such that 0<q<10<q<1 and ΞΊ>0.\kappa>0.

Beyond the case Ο„=0\tau=0, the conformal mapping method described above also works for the potential (2.1) with general Ο„βˆˆ[0,1),cβˆˆβ„\tau\in[0,1),c\in{\mathbb{R}} and pβˆˆβ„‚p\in\mathbb{C} under the assumption that the associated droplet is simply connected. Under this assumption, one can show that the boundary of the droplet is given by the image of the rational conformal map ff of the form

(A.34) f​(z)=R1​z+R2+R3z+R4zβˆ’q,qβˆˆπ”»,f(z)=R_{1}\,z+R_{2}+\frac{R_{3}}{z}+\frac{R_{4}}{z-q},\qquad q\in\mathbb{D},

which satisfies f​(1/q)=0f(1/q)=0. Furthermore, following the strategy above, one can characterise the coefficients RjR_{j} (j=1,…,4j=1,\dots,4) of this rational map as well as the position of the pole qβˆˆπ”»q\in\mathbb{D}.

However, as previously mentioned, it is far from being obvious to characterise a condition for which the droplet is simply connected. Nevertheless, since the radius of curvature of the ellipse (2.3) at the point (1+Ο„)​1+c(1+\tau)\sqrt{1+c} is given by

(1βˆ’Ο„)21+τ​1+c,\frac{(1-\tau)^{2}}{1+\tau}\,\sqrt{1+c},

one can expect that if

(A.35) p>max⁑{4​τ1+τ​1+c,(1+Ο„)​1+cβˆ’1βˆ’Ο„2​c}p>\max\Big{\{}\frac{4\tau}{1+\tau}\sqrt{1+c}\,,\,(1+\tau)\sqrt{1+c}-\sqrt{1-\tau^{2}}\sqrt{c}\Big{\}}

then the droplet is a simply connected domain.

Appendix B One-dimensional equilibrium measure problem in the Hermitian limit

In this appendix, we present a proof of (2.10). Let us write

(B.1) V​(z)≑Vp​(z)=z22βˆ’2​c​log⁑|zβˆ’p|.V(z)\equiv V_{p}(z)=\frac{z^{2}}{2}-2c\log|z-p|.

Recall that ΞΌV≑μVp\mu_{V}\equiv\mu_{V_{p}} is the equilibrium measure associated with Vp​(x)V_{p}(x) (xβˆˆβ„x\in{\mathbb{R}}).

We define

(B.2) R​(z):=(V′​(z)2)2βˆ’βˆ«β„V′​(z)βˆ’V′​(s)zβˆ’s​𝑑μV​(s).R(z):=\Big{(}\frac{V^{\prime}(z)}{2}\Big{)}^{2}-\int_{{\mathbb{R}}}\frac{V^{\prime}(z)-V^{\prime}(s)}{z-s}\,d\mu_{V}(s).

By applying Schiffer variations (see e.g. [35, Section 3]), we have

(B.3) R​(z)=(∫d​μV​(s)zβˆ’sβˆ’V′​(z)2)2,zβˆˆβ„‚βˆ–supp⁑(ΞΌV).R(z)=\Big{(}\int\frac{d\mu_{V}(s)}{z-s}-\frac{V^{\prime}(z)}{2}\Big{)}^{2},\qquad z\in\mathbb{C}\setminus\operatorname{supp}(\mu_{V}).

Combining the asymptotic behaviour

∫d​μV​(s)zβˆ’s∼1z,zβ†’βˆž,\int\frac{d\mu_{V}(s)}{z-s}\sim\frac{1}{z},\qquad z\to\infty,

with (B.3), we obtain

(B.4) R​(z)=14​z2βˆ’(c+1)βˆ’c​pz+O​(1z2),zβ†’βˆž.R(z)=\frac{1}{4}z^{2}-(c+1)-\frac{cp}{z}+O\Big{(}\frac{1}{z^{2}}\Big{)},\qquad z\to\infty.

On the other hand, since

V′​(z)=zβˆ’2​czβˆ’p,V′​(z)βˆ’V′​(s)zβˆ’s=1+2​czβˆ’p​1sβˆ’p,\displaystyle V^{\prime}(z)=z-\frac{2c}{z-p},\qquad\frac{V^{\prime}(z)-V^{\prime}(s)}{z-s}=1+\frac{2c}{z-p}\frac{1}{s-p},

we have

(B.5) R​(z)=14​(zβˆ’2​czβˆ’p)2βˆ’1βˆ’2​czβˆ’pβ€‹βˆ«β„d​μV​(s)sβˆ’p.\displaystyle R(z)=\frac{1}{4}\Big{(}z-\frac{2c}{z-p}\Big{)}^{2}-1-\frac{2c}{z-p}\int_{{\mathbb{R}}}\frac{d\mu_{V}(s)}{s-p}.

Thus we obtain

(B.6) R​(z)=c2(zβˆ’p)2+O​(1zβˆ’p),zβ†’p.R(z)=\frac{c^{2}}{(z-p)^{2}}+O\Big{(}\frac{1}{z-p}\Big{)},\qquad z\to p.

In the expression (B.5), one can observe that RR is a rational function with a double pole at z=pz=p. Therefore it is of the form

(B.7) R​(z)=14​z2+A​z2+B​z+C(zβˆ’p)2R(z)=\frac{1}{4}z^{2}+\frac{Az^{2}+Bz+C}{(z-p)^{2}}

for some constants A,BA,B and CC. As in the previous subsection, we need to specify these parameters.

By direct computations, we have

(B.8) R​(z)=14​z2+A+2​A​p+Bz+O​(1z2),zβ†’βˆž,R(z)=\frac{1}{4}z^{2}+A+\frac{2Ap+B}{z}+O\Big{(}\frac{1}{z^{2}}\Big{)},\qquad z\to\infty,

and

(B.9) R​(z)=A​p2+B​p+C(zβˆ’p)2+O​(1zβˆ’p),zβ†’p.R(z)=\frac{Ap^{2}+Bp+C}{(z-p)^{2}}+O\Big{(}\frac{1}{z-p}\Big{)},\qquad z\to p.

By comparing coefficients in (B.4) and (B.8), we have

(B.10) A=βˆ’cβˆ’1,βˆ’c​p=2​A​p+B.A=-c-1,\qquad-cp=2Ap+B.

Similarly, by (B.6) and (B.9),

(B.11) A​p2+B​p+C=c2.Ap^{2}+Bp+C=c^{2}.

By solving these algebraic equations, we obtain

(B.12) B=p​(c+2),C=c2βˆ’p2.B=p(c+2),\qquad C=c^{2}-p^{2}.

Combining all of the above with (B.7), we have shown that

(B.13) R​(z)=14​z2+βˆ’(c+1)​z2+p​(c+2)​z+(c2βˆ’p2)(zβˆ’p)2=((zβˆ’p)​(zβˆ’2)βˆ’2​c)​((zβˆ’p)​(z+2)βˆ’2​c)4​(zβˆ’p)2=∏j=14(zβˆ’Ξ»j)4​(zβˆ’p)2,\displaystyle\begin{split}R(z)&=\frac{1}{4}z^{2}+\frac{-(c+1)z^{2}+p(c+2)z+(c^{2}-p^{2})}{(z-p)^{2}}\\ &=\frac{((z-p)(z-2)-2c)((z-p)(z+2)-2c)}{4(z-p)^{2}}=\frac{\prod_{j=1}^{4}(z-\lambda_{j})}{4(z-p)^{2}},\end{split}

where Ξ»j\lambda_{j}’s are given by (2.11) and (2.12). Therefore by (B.3), the Stieltjes transform of ΞΌV\mu_{V} is given by

(B.14) ∫d​μV​(s)zβˆ’s=V′​(z)2βˆ’R​(z)1/2=z2βˆ’czβˆ’pβˆ’12β€‹βˆj=14(zβˆ’Ξ»j)(zβˆ’p)2.\displaystyle\begin{split}\int\frac{d\mu_{V}(s)}{z-s}&=\frac{V^{\prime}(z)}{2}-R(z)^{1/2}=\frac{z}{2}-\frac{c}{z-p}-\frac{1}{2}\sqrt{\frac{\prod_{j=1}^{4}(z-\lambda_{j})}{(z-p)^{2}}}.\end{split}

Letting z=x+i​Ρ→xβˆˆβ„z=x+i{\varepsilon}\to x\in{\mathbb{R}}, we find

limΞ΅β†’0+Imβ€‹βˆ«d​μV​(s)(x+i​Ρ)βˆ’s={βˆ’βˆj=14(xβˆ’Ξ»j)2​|xβˆ’p|if β€‹x∈[Ξ»1,Ξ»2]βˆͺ[Ξ»3,Ξ»4],0otherwise.\lim_{{\varepsilon}\to 0+}\operatorname{Im}\int\frac{d\mu_{V}(s)}{(x+i{\varepsilon})-s}=\begin{cases}\displaystyle\frac{\sqrt{-\prod_{j=1}^{4}(x-\lambda_{j})}}{2|x-p|}&\text{if }x\in[\lambda_{1},\lambda_{2}]\cup[\lambda_{3},\lambda_{4}],\vskip 3.0pt plus 1.0pt minus 1.0pt\\ 0&\text{otherwise}.\end{cases}

Now the desired identity (2.10) follows from the Sokhotski-Plemelj inversion formula, see e.g. [39, Section I.4.2].

Acknowledgements

The author is greatly indebted to Yongwoo Lee for the figures and numerical simulations.

References

  • [1] G. Akemann. Microscopic correlations for non-hermitian Dirac operators in three-dimensional QCD. Phys. Rev. D, 64(11):114021, 2001.
  • [2] G. Akemann and S.-S. Byun. The high temperature crossover for general 2D Coulomb gases. J. Stat. Phys., 175(6):1043–1065, 2019.
  • [3] G. Akemann, S.-S. Byun, and N.-G. Kang. A non-Hermitian generalisation of the Marchenko-Pastur distribution: From the circular law to multi-criticality. Ann. Henri PoincarΓ©, 22(4):1035–1068, 2021.
  • [4] G. Akemann, S.-S. Byun, and N.-G. Kang. Scaling limits of planar symplectic ensembles. SIGMA Symmetry Integrability Geom. Methods Appl., 18:Paper No. 007, 40, 2022.
  • [5] G. Akemann, M. Duits, and L. Molag. The elliptic Ginibre ensemble: A unifying approach to local and global statistics for higher dimensions. preprint arXiv:2203.00287, 2022.
  • [6] G. Akemann, M. Ebke, and I. Parra. Skew-orthogonal polynomials in the complex plane and their Bergman-like kernels. Comm. Math. Phys., 389(1):621–659, 2022.
  • [7] Y. Ameur. Repulsion in low temperature Ξ²\beta-ensembles. Comm. Math. Phys., 359(3):1079–1089, 2018.
  • [8] Y. Ameur and S.-S. Byun. Almost-Hermitian random matrices and bandlimited point processes. preprint arXiv:2101.03832, 2021.
  • [9] Y. Ameur, C. Charlier, and J. Cronvall. The two-dimensional Coulomb gas: fluctuations through a spectral gap. preprint arXiv:2210.13959, 2022.
  • [10] Y. Ameur, C. Charlier, J. Cronvall, and J. Lenells. Disk counting statistics near hard edges of random normal matrices: the multi-component regime. preprint arXiv:2210.13962, 2022.
  • [11] Y. Ameur and J. L. Romero. The planar low temperature Coulomb gas: separation and equidistribution. Rev. Mat. Iberoam. (Online), arXiv:2010.10179, 2022.
  • [12] F. Balogh, M. Bertola, S.-Y. Lee, and K. D. T.-R. McLaughlin. Strong asymptotics of the orthogonal polynomials with respect to a measure supported on the plane. Comm. Pure Appl. Math., 68(1):112–172, 2015.
  • [13] F. Balogh, T. Grava, and D. Merzi. Orthogonal polynomials for a class of measures with discrete rotational symmetries in the complex plane. Constr. Approx., 46(1):109–169, 2017.
  • [14] F. Balogh and D. Merzi. Equilibrium measures for a class of potentials with discrete rotational symmetries. Constr. Approx., 42(3):399–424, 2015.
  • [15] F. Benaych-Georges and F. Chapon. Random right eigenvalues of Gaussian quaternionic matrices. Random Matrices Theory Appl., 1(2):1150009, 18, 2012.
  • [16] S. Berezin, A. B. Kuijlaars, and I. Parra. Planar orthogonal polynomials as type I multiple orthogonal polynomials. preprint arXiv:2212.06526, 2022.
  • [17] M. Bertola, J. G. Elias Rebelo, and T. Grava. PainlevΓ© IV critical asymptotics for orthogonal polynomials in the complex plane. SIGMA Symmetry Integrability Geom. Methods Appl., 14:Paper No. 091, 34, 2018.
  • [18] P. M. Bleher and A. B. J. Kuijlaars. Orthogonal polynomials in the normal matrix model with a cubic potential. Adv. Math., 230(3):1272–1321, 2012.
  • [19] T. Bothner and A. Little. The complex elliptic Ginibre ensemble at weak non-Hermiticity: bulk spacing distributions. preprint arXiv:2212.00525, 2022.
  • [20] T. Bothner and A. Little. The complex elliptic Ginibre ensemble at weak non-Hermiticity: edge spacing distributions. arXiv:2208.04684, 2022.
  • [21] J. S. Brauchart, P. D. Dragnev, E. B. Saff, and R. S. Womersley. Logarithmic and Riesz equilibrium for multiple sources on the sphere: the exceptional case. In Contemporary Computational Mathematics-A Celebration of the 80th Birthday of Ian Sloan, pages 179–203. Springer, 2018.
  • [22] S.-S. Byun and C. Charlier. On the almost-circular symplectic induced Ginibre ensemble. Stud. Appl. Math. (Online), arXiv:2206.06021, 2022.
  • [23] S.-S. Byun and C. Charlier. On the characteristic polynomial of the eigenvalue moduli of random normal matrices. preprint arXiv:2205.04298, 2022.
  • [24] S.-S. Byun and M. Ebke. Universal scaling limits of the symplectic elliptic Ginibre ensembles. Random Matrices Theory Appl. (Online) arXiv:2108.05541, 2021.
  • [25] S.-S. Byun, M. Ebke, and S.-M. Seo. Wronskian structures of planar symplectic ensembles. Nonlinearity, 36(2):809–844, 2023.
  • [26] S.-S. Byun and P. J. Forrester. Progress on the study of the Ginibre ensembles I: GinUE. preprint arXiv:2211.16223, 2022.
  • [27] S.-S. Byun and P. J. Forrester. Spherical induced ensembles with symplectic symmetry. preprint arXiv:2209.01934, 2022.
  • [28] S.-S. Byun and P. J. Forrester. Progress on the study of the Ginibre ensembles II: GinOE and GinSE. In preparation, 2023.
  • [29] S.-S. Byun, N.-G. Kang, and S.-M. Seo. Partition functions of determinantal and Pfaffian coulomb gases with radially symmetric potentials. preprint arXiv:2210.02799, 2022.
  • [30] S.-S. Byun and M. Yang. Determinantal Coulomb gas ensembles with a class of discrete rotational symmetric potentials. preprint arXiv:2210.04019, 2022.
  • [31] D. ChafaΓ―, N. Gozlan, and P.-A. Zitt. First-order global asymptotics for confined particles with singular pair repulsion. Ann. Appl. Probab., 24(6):2371–2413, 2014.
  • [32] C. Charlier. Large gap asymptotics on annuli in the random normal matrix model. preprint arXiv:2110.06908, 2021.
  • [33] C. Charlier. Asymptotics of determinants with a rotation-invariant weight and discontinuities along circles. Adv. Math., 408:108600, 2022.
  • [34] P. Choquard, B. Piller, and R. Rentsch. On the dielectric susceptibility of classical Coulomb systems. II. J. Stat. Phys., 46(3):599–633, 1987.
  • [35] J. G. Criado del Rey and A. B. Kuijlaars. An equilibrium problem on the sphere with two equal charges. preprint arXiv:1907.04801, 2019.
  • [36] J. G. Criado del Rey and A. B. Kuijlaars. A vector equilibrium problem for symmetrically located point charges on a sphere. Constr. Approx., pages 1–53, 2022.
  • [37] P. Forrester and B. Jancovici. Two-dimensional one-component plasma in a quadrupolar field. Int. J. Mod. Phys. A, 11(05):941–949, 1996.
  • [38] P. J. Forrester. Log-gases and Random Matrices (LMS-34). Princeton University Press, Princeton, 2010.
  • [39] F. D. Gakhov. Boundary value problems. Dover Publications, Inc., New York, 1990. Translated from the Russian, Reprint of the 1966 translation.
  • [40] J. Ginibre. Statistical ensembles of complex, quaternion, and real matrices. J. Math. Phys., 6(3):440–449, 1965.
  • [41] H. Hedenmalm and N. Makarov. Coulomb gas ensembles and Laplacian growth. Proc. Lond. Math. Soc. (3), 106(4):859–907, 2013.
  • [42] B. Jancovici, G. Manificat, and C. Pisani. Coulomb systems seen as critical systems: finite-size effects in two dimensions. J. Stat. Phys., 76(1):307–329, 1994.
  • [43] E. Kanzieper. Eigenvalue correlations in non-Hermitean symplectic random matrices. J. Phys. A, 35(31):6631–6644, 2002.
  • [44] A. B. J. Kuijlaars and A. LΓ³pez-GarcΓ­a. The normal matrix model with a monomial potential, a vector equilibrium problem, and multiple orthogonal polynomials on a star. Nonlinearity, 28(2):347–406, 2015.
  • [45] A. B. J. Kuijlaars and K. T.-R. McLaughlin. Asymptotic zero behavior of Laguerre polynomials with negative parameter. Constr. Approx., 20(4):497–523, 2004.
  • [46] A. B. J. Kuijlaars and G. L. F. Silva. S-curves in polynomial external fields. J. Approx. Theory, 191:1–37, 2015.
  • [47] A. B. J. Kuijlaars and A. Tovbis. The supercritical regime in the normal matrix model with cubic potential. Adv. Math., 283:530–587, 2015.
  • [48] S.-Y. Lee and N. Makarov. Sharpness of connectivity bounds for quadrature domains. preprint arXiv:1411.3415, 2014.
  • [49] S.-Y. Lee and N. G. Makarov. Topology of quadrature domains. J. Amer. Math. Soc., 29(2):333–369, 2016.
  • [50] S.-Y. Lee and R. Riser. Fine asymptotic behavior for eigenvalues of random normal matrices: Ellipse case. J. Math. Phys., 57(2):023302, 2016.
  • [51] S.-Y. Lee and M. Yang. Discontinuity in the asymptotic behavior of planar orthogonal polynomials under a perturbation of the Gaussian weight. Comm. Math. Phys., 355(1):303–338, 2017.
  • [52] S.-Y. Lee and M. Yang. Planar orthogonal polynomials as Type II multiple orthogonal polynomials. J. Phys. A, 52(27):275202, 14, 2019.
  • [53] S.-Y. Lee and M. Yang. Strong asymptotics of planar orthogonal polynomials: Gaussian weight perturbed by finite number of point charges. Comm. Pure Appl. Math. (to appear), arXiv:2003.04401, 2020.
  • [54] A. Legg and P. Dragnev. Logarithmic equilibrium on the sphere in the presence of multiple point charges. Constr. Approx., 54(2):237–257, 2021.
  • [55] M. Lewin. Coulomb and Riesz gases: the known and the unknown. J. Math. Phys., 63(6):Paper No. 061101, 77, 2022.
  • [56] A. MartΓ­nez-Finkelshtein and G. L. F. Silva. Critical measures for vector energy: asymptotics of non-diagonal multiple orthogonal polynomials for a cubic weight. Adv. Math., 349:246–315, 2019.
  • [57] L. Molag. Edge universality of random normal matrices generalizing to higher dimensions. preprint arXiv:2208.12676, 2022.
  • [58] S. R. Nodari and S. Serfaty. Renormalized energy equidistribution and local charge balance in 2D Coulomb systems. Int. Math. Res. Not., 2015(11):3035–3093, 2015.
  • [59] E. B. Saff and V. Totik. Logarithmic potentials with external fields, volume 316 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag, Berlin, 1997. Appendix B by Thomas Bloom.
  • [60] M. Sakai. Regularity of a boundary having a Schwarz function. Acta Math., 166(3-4):263–297, 1991.
  • [61] E. Sandier and S. Serfaty. From the Ginzburg-Landau model to vortex lattice problems. Comm. Math. Phys., 313(3):635–743, 2012.
  • [62] S. Serfaty. Microscopic description of Log and Coulomb gases. In Random matrices, volume 26 of IAS/Park City Math. Ser., pages 341–387. Amer. Math. Soc., Providence, RI, 2019.