This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Pinned planar pp-elasticae

Tatsuya Miura Department of Mathematics, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8551, Japan [email protected]  and  Kensuke Yoshizawa Institute of Mathematics for Industry, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan [email protected]
Abstract.

Building on our previous work, we classify all planar pp-elasticae under the pinned boundary condition, and then obtain uniqueness and geometric properties of global minimizers. As an application we establish a Li–Yau type inequality for the pp-bending energy, and in particular discover a unique exponent p1.5728p\simeq 1.5728 for full optimality. We also prove existence of minimal pp-elastic networks, extending a recent result of Dall’Acqua–Novaga–Pluda.

Key words and phrases:
pp-Elastica, pinned boundary condition, Li–Yau inequality, network.
2020 Mathematics Subject Classification:
49Q10, 53A04, and 33E05.

1. Introduction

This paper is a continuation of our study of pp-elasticae [19], wherein we have classified all planar pp-elasticae and obtained their explicit parameterizations as well as optimal regularity. In this paper, we turn to a boundary value problem and classify all planar pp-elasticae subject to the pinned boundary condition, with some applications to a Li–Yau type inequality and minimal networks.

1.1. Classification of pinned planar pp-elasticae

For p(1,)p\in(1,\infty) and immersed curves γ\gamma in the Euclidean plane 𝐑2\mathbf{R}^{2}, the pp-bending energy is defined by

p[γ]:=γ|k|p𝑑s,\mathcal{B}_{p}[\gamma]:=\int_{\gamma}|k|^{p}\,ds,

where kk denotes the signed curvature and ss denotes the arclength parameter of γ\gamma, respectively. A critical point of the pp-bending energy under the fixed-length constraint is called pp-elastica; in other words, its signed curvature is a (weak) solution to the Euler–Lagrange equation formally given by

p(p1)|k|p2s2k+p(p1)(p2)|k|p4k(sk)2+(p1)|k|pkλk=0,\displaystyle p(p-1)|k|^{p-2}\partial_{s}^{2}k+p(p-1)(p-2)|k|^{p-4}k(\partial_{s}k)^{2}+(p-1)|k|^{p}k-\lambda k=0,

where s\partial_{s} denotes the arclength derivative and λ𝐑\lambda\in\mathbf{R} denotes a multiplier due to the fixed-length constraint. Classification of planar elasticae (p=2p=2) is classic and given by Euler in the 18th century. Planar pp-elasticae are just recently classified by the authors [19], with optimal regularity and closed formulae in terms of newly introduced pp-elliptic functions. In particular, in the degenerate case p>2p>2 the obtained family includes Watanabe’s flat-core solutions [28] (see also [25]), which are of qualitatively novel type compared to p=2p=2. See [19] and references therein for details.

Boundary value problems for (pp-)elasticae are in general more advanced because we need to detect the precise values of the multiplier or other geometric parameters for compatibility with the given boundary data, and thus need to solve the corresponding system of transcendental equations.

As a first step we focus on the so-called pinned boundary condition, which prescribes the endpoints up to zeroth order. More precisely, for given P0,P1𝐑2P_{0},P_{1}\in\mathbf{R}^{2} and L>0L>0 such that |P0P1|<L|P_{0}-P_{1}|<L, we define the admissible space by

(1.1) 𝒜P0,P1,L:={γWimm2,p(0,1;𝐑2)|γ(0)=P0,γ(1)=P1,[γ]=L},\mathcal{A}_{P_{0},P_{1},L}:=\Set{\gamma\in W^{2,p}_{\rm imm}(0,1;\mathbf{R}^{2})}{\gamma(0)=P_{0},\ \ \gamma(1)=P_{1},\ \ \mathcal{L}[\gamma]=L},

where \mathcal{L} denotes the length functional [γ]:=γ𝑑s\mathcal{L}[\gamma]:=\int_{\gamma}\,ds, and Wimm2,p(0,1;𝐑2)W^{2,p}_{\rm imm}(0,1;\mathbf{R}^{2}) denotes the set of immersed W2,pW^{2,p}-curves:

Wimm2,p(0,1;𝐑2):={γW2,p(0,1;𝐑2)||γ(t)|0 for all t[0,1]}.W^{2,p}_{\rm imm}(0,1;\mathbf{R}^{2}):=\Set{\gamma\in W^{2,p}(0,1;\mathbf{R}^{2})}{\ |\gamma^{\prime}(t)|\neq 0\text{ for all }t\in[0,1]}.

We call a critical point of p\mathcal{B}_{p} in 𝒜P0,P1,L\mathcal{A}_{P_{0},P_{1},L} pinned pp-elastica (cf. Definition 2.11).

In the case of elastica (p=2p=2) the pinned boundary value problem has been completely solved on the level of critical points and global minimizers [30, 17] (see also [15, 14, 1]). Roughly speaking, if P0=P1P_{0}=P_{1}, then all pinned elasticae are part of “figure-eight”, while if P0P1P_{0}\neq P_{1}, then the curves are “arcs” and “loops” (like Figure 1). In any case, for given boundary data there are countably many critical points but the global minimizer is uniquely given by a “single arc” up to invariances.

Our primary result here extends the known classification of pinned planar elasticae for p=2p=2 to all p(1,)p\in(1,\infty). In particular, in the degenerate case p>2p>2, we find a critical distance of the endpoints at which the number of pinned pp-elasticae changes from countable to uncountable. Following terminology in Definition 3.2, our result is summarized as follows (see also Figures 1 and 2).

Theorem 1.1 (Classification of pinned pp-elasticae).

Let p(1,)p\in(1,\infty). Let P0,P1𝐑2P_{0},P_{1}\in\mathbf{R}^{2} and L>0L>0 such that

r:=|P0P1|L[0,1).r:=\frac{|P_{0}-P_{1}|}{L}\in[0,1).

Suppose that γ𝒜P0,P1,L\gamma\in\mathcal{A}_{P_{0},P_{1},L} is a critical point of p\mathcal{B}_{p} in 𝒜P0,P1,L\mathcal{A}_{P_{0},P_{1},L}. Then the following assertions hold true.

  • (i)

    If r=0r=0, then γ\gamma is an n2\frac{n}{2}-fold figure-eight pp-elastica for some n𝐍n\in\mathbf{N}.

  • (ii)

    If r(0,1p1)r\in(0,\frac{1}{p-1}), then γ\gamma is either a (p,r,n)(p,r,n)-arc for some n𝐍n\in\mathbf{N}, or a (p,r,n)(p,r,n)-loop for some n𝐍n\in\mathbf{N}.

  • (iii)

    If r[1p1,1)r\in[\frac{1}{p-1},1), then γ\gamma is either a (p,r,n)(p,r,n)-arc for some n𝐍n\in\mathbf{N}, or a (p,r,n,𝝈,𝑳)(p,r,n,\boldsymbol{\sigma},\boldsymbol{L})-flat-core for some n𝐍n\in\mathbf{N}, 𝝈=(σ1,,σn){+,}n\boldsymbol{\sigma}=(\sigma_{1},\ldots,\sigma_{n})\in\{+,-\}^{n}, and 𝑳=(L1,,Ln+1)[0,)n+1\boldsymbol{L}=(L_{1},\ldots,L_{n+1})\in[0,\infty)^{n+1} subject to relation (3.5).

Refer to caption
Figure 1. The left γarcn\gamma^{n}_{\rm arc} represents an n2\frac{n}{2}-fold figure-eight pp-elastica, the middle γarcn\gamma^{n}_{\rm arc} a (p,r,n)(p,r,n)-arc, and the right γloopn\gamma^{n}_{\rm loop} a (p,r,n)(p,r,n)-loop, where p=4p=4 and r=15r=\tfrac{1}{5}.
Refer to caption
Figure 2. The left γflatn\gamma^{n}_{\rm flat} represents a (p,r,n,𝝈,𝑳)(p,r,n,\boldsymbol{\sigma},\boldsymbol{L})-flat-core with p=4p=4 and r=25r=\frac{2}{5}. The right two curves are also (4,25,2,𝝈,𝑳)(4,\frac{2}{5},2,\boldsymbol{\sigma},\boldsymbol{L})-flat-cores, with different choices of the direction of the loops 𝝈\boldsymbol{\sigma} and the length of the connecting segments 𝑳\boldsymbol{L}.
Remark 1.2 (Countability-uncountability transition).

If p2p\leq 2, then 1p11\frac{1}{p-1}\geq 1 so the only possible cases are (i) and (ii), and hence the classification is qualitatively parallel to the classical case p=2p=2. Case (iii) is of novel type and occurs if and only if p>2p>2 and the endpoints are sufficiently distant. In particular, if p>2p>2 and r>1p1r>\frac{1}{p-1}, then there are uncountably many critical points, and otherwise countably many (up to isometry and reparameterization). The uncountability is due to the freedom of the length 𝑳\boldsymbol{L} of the flat parts as in Figure 2.

Remark 1.3 (Loss of regularity).

Critical points in Theorem 1.1 are always of class C2C^{2} but may not CC^{\infty} in general, particularly at the points where the curvature vanishes. More precisely, if 1p1\frac{1}{p-1} is an odd integer (i.e., p{2,43,65,87,}p\in\{2,\frac{4}{3},\frac{6}{5},\frac{8}{7},\dots\}), then any arclength-parameterized critical point is always of class CC^{\infty}, but otherwise may not. For example, if 1p1\frac{1}{p-1} is not an integer, then any arclength-parameterized (p,r,n)(p,r,n)-arc and (p,r,n)(p,r,n)-loop are not of class Cmp+2C^{m_{p}+2}, where mp:=1p1m_{p}:=\lceil\frac{1}{p-1}\rceil. We emphasize that this loss of regularity occurs even for n=1n=1, since at the endpoints the curvature vanishes. In addition, if p>2p>2 and if r>1p1r>\frac{1}{p-1}, then any arclength-parameterized (p,r,n,𝝈,𝑳)(p,r,n,\boldsymbol{\sigma},\boldsymbol{L})-flat-core is not of class CMp+2C^{M_{p}+2}, where Mp:=2p2M_{p}:=\lceil\frac{2}{p-2}\rceil. For more details as well as optimal regularity in terms of Sobolev class, see [19].

Now we focus on global minimizers. Existence follows by a standard direct method. In addition, comparing the pp-bending energy of all the above critical points, we obtain uniqueness of global minimizers.

Theorem 1.4 (Unique existence of global minimizers).

Let p(1,)p\in(1,\infty), P0,P1𝐑2P_{0},P_{1}\in\mathbf{R}^{2}, and L>0L>0 such that |P0P1|<L|P_{0}-P_{1}|<L. Then there exists a global minimizer of p\mathcal{B}_{p} in 𝒜P0,P1,L\mathcal{A}_{P_{0},P_{1},L}, and in addition any global minimizer is uniquely given by a (p,r,1)(p,r,1)-arc (up to isometry and reparameterization).

A particularly useful case is where the endpoints agree P0=P1P_{0}=P_{1}. In this case, by Theorems 1.1 and 1.4 we deduce that a half-fold (i.e., 12\frac{1}{2}-fold) figure-eight pp-elastica is a unique global minimizer, extending [17, Proposition 2.6] from p=2p=2 to p(1,)p\in(1,\infty) in the planar case. Here we apply this fact to obtain a Li–Yau type inequality and existence of minimal networks in the same spirit as [17]. In view of these applications it would be informative if we could know the precise geometric properties of the figure-eight pp-elastica, in particular how the crossing angle depends on pp. Fortunately we succeed in ensuring the following key monotonicity, cf. Figure 3:

Theorem 1.5 (Monotonicity of the crossing angle).

For p(1,)p\in(1,\infty), let 2ϕ(p)2\phi^{*}(p) be the angle between the tangent vectors at the two endpoints of a half-fold figure-eight pp-elastica, cf. (4.9). Then the function pϕ(p)p\mapsto\phi^{*}(p) is continuous and strictly decreasing from π/2\pi/2 to 0.

Refer to caption
Refer to caption
Figure 3. The angle 2ϕ(p)2\phi^{*}(p), and three examples of the half-fold figure-eight pp-elasticae with p=65p=\frac{6}{5}, 22, 1010 (from left to right).

This monotonicity is easy to infer from the numerical pictures but its analytic verification seems not straightforward. Our proof involves an indirect argument.

In what follows we discuss the aforementioned applications in detail. We also expect that our classification would be useful in other contexts, e.g. to detect the limit curves of gradient flows for the pp-bending energy under the natural boundary condition. For recent developments of such flows, see e.g. [21, 22, 3, 4, 23].

1.2. Li–Yau type inequality

We first apply our result to deduce a Li–Yau type inequality involving the normalized pp-bending energy ¯p\overline{\mathcal{B}}_{p}, defined as the pp-bending energy normalized by the length to be scale-invariant:

(1.2) ¯p[γ]:=[γ]p1p[γ].\displaystyle\overline{\mathcal{B}}_{p}[\gamma]:=\mathcal{L}[\gamma]^{p-1}\mathcal{B}_{p}[\gamma].

In their celebrated study, Li and Yau obtained the sharp inequality that the Willmore energy of a closed surface is bounded below by 4π4\pi times multiplicity [12]. A one-dimensional counterpart has also been studied by several authors [24, 27, 29, 20], and recently (almost) optimized in [17]: If an immersed closed W2,2W^{2,2}-curve γ\gamma in 𝐑n\mathbf{R}^{n} (n2n\geq 2) has a point of multiplicity m2m\geq 2, then

(1.3) ¯2[γ]ϖm2.\displaystyle\overline{\mathcal{B}}_{2}[\gamma]\geq\varpi^{*}m^{2}.

Here ϖ>0\varpi^{*}>0 denotes the normalized bending energy ¯2\overline{\mathcal{B}}_{2} of a half-fold figure-eight elastica, and we say that a curve γ\gamma has a point P𝐑nP\in\mathbf{R}^{n} of multiplicity mm if the preimage γ1(P)\gamma^{-1}(P) contains at least mm distinct points.

A typical characteristic of the 1D Li–Yau type inequality (compared to 2D) is the presence of a new algebraic obstruction for optimality of the inequality. In fact, it is proven in [17] that equality in (1.3) is attained if and only if n3n\geq 3 or mm is even, and also γ\gamma is an mm-leafed elastica. In particular, for n=2n=2 and any odd multiplicity m3m\geq 3, the inequality is not optimal because of the irrationality of ϕ(2)/π\phi^{*}(2)/\pi.

In this paper we first extend inequality (1.3) to all p(1,)p\in(1,\infty) in the plane, and then reveal some new phenomena on its optimality arising from the generality of pp. Let 𝐓1:=𝐑/𝐙\mathbf{T}^{1}:=\mathbf{R}/\mathbf{Z} and Wimm2,p(𝐓1;𝐑2)W^{2,p}_{\rm imm}(\mathbf{T}^{1};\mathbf{R}^{2}) denote the set of immersed closed W2,pW^{2,p}-curves. Let ϖp>0\varpi^{*}_{p}>0 denote the normalized pp-bending energy ¯p\overline{\mathcal{B}}_{p} of a half-fold figure-eight pp-elastica, which will be given by formula (5.1); in particular, ϖ2=ϖ\varpi^{*}_{2}=\varpi^{*}. Finally, we say that γ\gamma is an mm-leafed pp-elastica if the curve γ\gamma consists of mm half-fold figure-eight pp-elasticae of same length (see Definition 5.3 for details). Then, applying Theorem 1.4, we establish the following

Theorem 1.6 (Li–Yau type inequality and rigidity).

Let p(1,)p\in(1,\infty), and m2m\geq 2 an integer. If a closed curve γWimm2,p(𝐓1;𝐑2)\gamma\in W^{2,p}_{\rm imm}(\mathbf{T}^{1};\mathbf{R}^{2}) has a point of multiplicity mm, then

(1.4) ¯p[γ]ϖpmp.\displaystyle\overline{\mathcal{B}}_{p}[\gamma]\geq\varpi^{*}_{p}m^{p}.

Equality in (1.4) is attained if and only if γ\gamma is a closed mm-leafed pp-elastica.

In addition, as in the case of p=2p=2 [17], it is easy to see that if the multiplicity mm is even, then our inequality is always optimal.

Theorem 1.7 (Optimality for even multiplicity).

Let p(1,)p\in(1,\infty). If m2m\geq 2 is an even integer, then there exists a closed curve γWimm2,p(𝐓1;𝐑2)\gamma\in W^{2,p}_{\rm imm}(\mathbf{T}^{1};\mathbf{R}^{2}) with a point of multiplicity mm such that

¯p[γ]=ϖpmp.\displaystyle\overline{\mathcal{B}}_{p}[\gamma]=\varpi^{*}_{p}m^{p}.

In particular, we can take γ\gamma to be an m2\frac{m}{2}-fold figure-eight pp-elastica.

As for odd multiplicity, the optimality is much more delicate (and does not hold for p=2p=2 as discussed). However, for p2p\neq 2 we can apply Theorem 1.5 to find many new phenomena that recover optimality, even for closed planar curves with odd multiplicity. For example, there is a dense set S(1,)S\subset(1,\infty) such that each exponent pSp\in S retrieves the optimality for all but a finite number of odd multiplicities (Theorem 5.11). In particular, as a very peculiar example, we discover a unique exponent for which inequality (1.4) becomes fully optimal.

Theorem 1.8 (Unique exponent for full optimality).

There exists a unique exponent p(1,)p\in(1,\infty) with the following property: For every integer m2m\geq 2 there exists a closed curve γWimm2,p(𝐓1;𝐑2)\gamma\in W^{2,p}_{\rm imm}(\mathbf{T}^{1};\mathbf{R}^{2}) with a point of multiplicity mm such that

¯p[γ]=ϖpmp.\displaystyle\overline{\mathcal{B}}_{p}[\gamma]=\varpi^{*}_{p}m^{p}.

The unique exponent is given by p=p3p=p_{3} defined as

(1.5) p3:=(ϕ)1(π3)1.5728.\displaystyle p_{3}:=(\phi^{*})^{-1}(\tfrac{\pi}{3})\simeq 1.5728.

Moreover, for an odd m3m\geq 3, if we define pm:=(ϕ)1(πm)p_{m}:=(\phi^{*})^{-1}(\tfrac{\pi}{m}), then the corresponding closed planar mm-leafed pmp_{m}-elastica is unique (up to invariances) and has mm-fold rotational symmetry, cf. Figure 4. These exponents can be used to ensure a “thresholding” phenomenon; for any given odd integer 2+132\ell+1\geq 3 there is an exponent p=p2+1p=p_{2\ell+1} for which optimality holds if and only if the multiplicity mm is none of 3,5,,213,5,\dots,2\ell-1 (see Theorem 5.12).

Refer to caption
Refer to caption
Figure 4. The 33-leafed p3p_{3}-elastica and 55-leafed p5p_{5}-elastica.

1.3. Minimal pp-elastic networks

Another application is about existence of planar networks composed by three curves minimizing the normalized pp-bending energy. Such a network structure is of recent interest particularly in geometric variational problems or flows as a model case with possible structural changes. See [2, 8, 6, 10, 7, 11, 21, 17] for some instances of static and dynamical studies of elastic networks.

In this paper, for given α(0,π)\alpha\in(0,\pi), a triplet of immersed curves (γ1,γ2,γ3)Wimm2,p(0,1;𝐑2)3(\gamma_{1},\gamma_{2},\gamma_{3})\in W^{2,p}_{\rm imm}(0,1;\mathbf{R}^{2})^{3} is called Θ\Theta-network with angles (α,α,2π2α)(\alpha,\alpha,2\pi-2\alpha) if γ1(0)=γ2(0)=γ3(0)\gamma_{1}(0)=\gamma_{2}(0)=\gamma_{3}(0) and γ1(1)=γ2(1)=γ3(1)\gamma_{1}(1)=\gamma_{2}(1)=\gamma_{3}(1), and if in addition the curves satisfy the angle condition

γj(0)|γj(0)|,γj+1(0)|γj+1(0)|=γj(1)|γj(1)|,γj+1(1)|γj+1(1)|={cosαifj=1,2,cos(2π2α)ifj=3,\displaystyle\left\langle\frac{\gamma_{j}^{\prime}(0)}{|\gamma_{j}^{\prime}(0)|},\frac{\gamma_{j+1}^{\prime}(0)}{|\gamma_{j+1}^{\prime}(0)|}\right\rangle=\left\langle\frac{\gamma_{j}^{\prime}(1)}{|\gamma_{j}^{\prime}(1)|},\frac{\gamma_{j+1}^{\prime}(1)}{|\gamma_{j+1}^{\prime}(1)|}\right\rangle=\begin{cases}\cos{\alpha}\quad&\text{if}\ \ j=1,2,\\ \cos{(2\pi-2\alpha)}&\text{if}\ \ j=3,\end{cases}

where we interpret γ4:=γ1\gamma_{4}:=\gamma_{1}. Let Θ(p,α)\Theta(p,\alpha) denote the class of all Θ\Theta-networks with angles (α,α,2π2α)(\alpha,\alpha,2\pi-2\alpha), and for Γ=(γ1,γ2,γ3)Θ(p,α)\Gamma=(\gamma_{1},\gamma_{2},\gamma_{3})\in\Theta(p,\alpha) we define

¯p[Γ]:=[Γ]p1p[Γ],\overline{\mathcal{B}}_{p}[\Gamma]:=\mathcal{L}[\Gamma]^{p-1}\mathcal{B}_{p}[\Gamma],

where [Γ]:=i=13[γi]\mathcal{L}[\Gamma]:=\sum_{i=1}^{3}\mathcal{L}[\gamma_{i}] and p[Γ]:=i=13p[γi]\mathcal{B}_{p}[\Gamma]:=\sum_{i=1}^{3}\mathcal{B}_{p}[\gamma_{i}]. Applying Theorems 1.4 and 1.5, we can obtain the existence of minimal Θ\Theta-networks in a certain range of the angle α\alpha:

Theorem 1.9 (Existence of minimal pp-elastic Θ\Theta-networks).

Let p(1,)p\in(1,\infty) and α(0,π)\alpha\in(0,\pi). Let ϕ(p)(0,π/2)\phi^{*}(p)\in(0,\pi/2) be the angle defined in (4.9). Suppose that

(1.6) 0<α<πϕ(p).\displaystyle 0<\alpha<\pi-\phi^{*}(p).

Then there exists a network Γ¯Θ(p,α)\bar{\Gamma}\in\Theta(p,\alpha) such that

(1.7) ¯p[Γ¯]=infΓΘ(p,α)¯p[Γ].\displaystyle\overline{\mathcal{B}}_{p}[\bar{\Gamma}]=\inf_{\Gamma\in\Theta(p,\alpha)}\overline{\mathcal{B}}_{p}[\Gamma].

In particular, focusing on the special “homogeneous” angle condition α=2π/3\alpha={2\pi}/{3}, we may rephrase Theorem 1.9 in terms of p3p_{3} defined by (1.5).

Corollary 1.10.

If p>p3p>p_{3}, then there exists a network Γ¯Θ(p,2π3)\bar{\Gamma}\in\Theta(p,\frac{2\pi}{3}) such that

¯p[Γ¯]=infΓΘ(p,2π3)¯p[Γ].\overline{\mathcal{B}}_{p}[\bar{\Gamma}]=\inf_{\Gamma\in\Theta(p,\frac{2\pi}{3})}\overline{\mathcal{B}}_{p}[\Gamma].

Corollary 1.10 directly extends Dall’Acqua–Novaga–Pluda’s existence result for p=2p=2 [7] (see also [17]) to p>p3p>p_{3}. Recall that numerically p31.5728p_{3}\simeq 1.5728. Analytically we can ensure at least p3<2p_{3}<2 thanks to Theorem 1.5 with the fact that ϕ(2)<π/3=ϕ(p3)\phi^{*}(2)<{\pi}/{3}=\phi^{*}(p_{3}) (cf. [17, Lemma 3.11]).

In general, the existence of minimal elastic networks does not follow from a standard direct method due to the lack of compactness, namely the possibility that a component-curve degenerates into a point (see Section 6 for details). Our proof of Theorem 1.9 follows the general strategy of [17] strongly inspired by [7]. Although the proof in [7] contains a numerical part, the one in [17] gives a different analytic proof. Our proof here is also fully analytic. Along the way we establish and use new monotonicity results involving pp-elliptic integrals.

We close the introduction by mentioning a few of many open problems. Concerning uniqueness of global minimizers, here we addressed the pinned boundary condition (Theorem 1.4), but as for the clamped boundary condition, only a few results are available even for p=2p=2 (see e.g. [16] for the straightened case and [18] for the cuspidal case) and in particular it is widely open for p2p\neq 2 (except for the obvious closed case). Concerning the Li–Yau type inequality, the shape of a minimizer of ¯p\overline{\mathcal{B}}_{p} among W2,pW^{2,p}-immersed closed planar curves with an odd multiplicity m3m\geq 3 is totally open unless equality in (1.4) is attained; in particular, if p=2p=2, it is open for all odd m3m\geq 3. Finally, concerning minimal pp-elastic networks, it is not clear whether the assumption p>p3p>p_{3} in Corollary 1.10 (or (1.6) in Theorem 1.9) is optimal. We expect that the same existence result would not hold at least for pp sufficiently close to 11, but even this is remained open.

1.4. Organization of the paper

This paper is organized as follows: In Section 2 we prepare notation and known results. In Section 3 we prove Theorem 1.1. In Section 4 we complete the proof of Theorems 1.4 and 1.5. Sections 5 and 6 are about applications to Li–Yau type inequalities and networks, respectively.

Acknowledgments

The first author is supported by JSPS KAKENHI Grant Numbers 18H03670, 20K14341, and 21H00990, and by Grant for Basic Science Research Projects from The Sumitomo Foundation. The second author is supported by JSPS KAKENHI Grant Number 22K20339.

2. Preliminary

In this section we first recall the definitions and fundamental properties of pp-elliptic integrals and functions introduced in [19], which we use throughout this paper. Then we rigorously define pinned pp-elasticae, and recall some known facts for pp-elasticae.

Hereafter, we always let p(1,)p\in(1,\infty) denote an arbitrary exponent unless an additional condition is specified.

2.1. pp-Elliptic integrals

Definition 2.1 (pp-Elliptic integrals of the first kind).

The incomplete pp-elliptic integrals of the first kind F1,p(x,q)\mathrm{F}_{1,p}(x,q) and F2,p(x,q)\mathrm{F}_{2,p}(x,q) of modulus q[0,1)q\in[0,1), where x𝐑x\in\mathbf{R}, are defined by

F1,p(x,q):=0x|cosθ|12p1q2sin2θ𝑑θ,F2,p(x,q):=0x11q2sin2θp𝑑θ,\displaystyle\mathrm{F}_{1,p}(x,q):=\int_{0}^{x}\frac{|\cos\theta|^{1-\frac{2}{p}}}{\sqrt[]{1-q^{2}\sin^{2}\theta}}\,d\theta,\quad\mathrm{F}_{2,p}(x,q):=\int_{0}^{x}\frac{1}{\sqrt[p]{1-q^{2}\sin^{2}\theta}}\,d\theta,

and also the corresponding complete pp-elliptic integrals K1,p(q)\mathrm{K}_{1,p}(q) and K2,p(q)\mathrm{K}_{2,p}(q) by

K1,p(q):=F1,p(π/2,q),K2,p(q):=F2,p(π/2,q).\displaystyle\mathrm{K}_{1,p}(q):=\mathrm{F}_{1,p}(\pi/2,q),\quad\mathrm{K}_{2,p}(q):=\mathrm{F}_{2,p}(\pi/2,q).

In addition, for q=1q=1,

F1,p(x,1)=F2,p(x,1):=0xdθ(cosθ)2p,where{x(π2,π2)if 1<p2,x𝐑ifp>2,\mathrm{F}_{1,p}(x,1)=\mathrm{F}_{2,p}(x,1):=\displaystyle\int_{0}^{x}\frac{d\theta}{(\cos\theta)^{\frac{2}{p}}},\quad\text{where}\ \begin{cases}x\in(-\frac{\pi}{2},\frac{\pi}{2})\quad&\text{if}\ \ 1<p\leq 2,\\ x\in\mathbf{R}&\text{if}\ \ p>2,\end{cases}

and

(2.1) K1,p(1)=K2,p(1)=Kp(1):={if 1<p2,0π2dθ(cosθ)2p<ifp>2.\displaystyle\mathrm{K}_{1,p}(1)=\mathrm{K}_{2,p}(1)=\mathrm{K}_{p}(1):=\begin{cases}\infty\quad&\text{if}\ \ 1<p\leq 2,\\ \displaystyle\int_{0}^{\frac{\pi}{2}}\frac{d\theta}{(\cos\theta)^{\frac{2}{p}}}<\infty&\text{if}\ \ p>2.\end{cases}
Definition 2.2 (pp-Elliptic integrals of the second kind).

The incomplete pp-elliptic integrals of the second kind E1,p(x,q)\mathrm{E}_{1,p}(x,q) and E2,p(x,q)\mathrm{E}_{2,p}(x,q) of modulus q[0,1]q\in[0,1], where x𝐑x\in\mathbf{R}, are defined by

E1,p(x,q):=0x1q2sin2θ|cosθ|12p𝑑θ,E2,p(x,q):=0x1q2sin2θp𝑑θ,\mathrm{E}_{1,p}(x,q):=\int_{0}^{x}\sqrt{1-q^{2}\sin^{2}\theta}\,|\cos\theta|^{1-\frac{2}{p}}\,d\theta,\quad\mathrm{E}_{2,p}(x,q):=\int_{0}^{x}\sqrt[p]{1-q^{2}\sin^{2}\theta}\,d\theta,

and also the corresponding complete pp-elliptic integrals E1,p(q)\mathrm{E}_{1,p}(q) and E2,p(q)\mathrm{E}_{2,p}(q) by

E1,p(q):=E1,p(π/2,q),E2,p(q):=E2,p(π/2,q).\displaystyle\mathrm{E}_{1,p}(q):=\mathrm{E}_{1,p}(\pi/2,q),\quad\mathrm{E}_{2,p}(q):=\mathrm{E}_{2,p}(\pi/2,q).
Remark 2.3.

Since 12p>11-\frac{2}{p}>-1, both F1,p(x,q)\mathrm{F}_{1,p}(x,q) and E1,p(x,q)\mathrm{E}_{1,p}(x,q) are well defined for each x𝐑x\in\mathbf{R} and q[0,1)q\in[0,1). By definition and periodicity of the integrand we deduce the following quasiperiodicity:

(2.2) Ei,p(x+nπ,q)=Ei,p(x,q)+2nEi,p(q),Fi,p(x+nπ,q)=Ki,p(x,q)+2nKi,p(q),\displaystyle\begin{split}\mathrm{E}_{i,p}(x+n\pi,q)&=\mathrm{E}_{i,p}(x,q)+2n\mathrm{E}_{i,p}(q),\\ \mathrm{F}_{i,p}(x+n\pi,q)&=\mathrm{K}_{i,p}(x,q)+2n\mathrm{K}_{i,p}(q),\end{split}

for any x𝐑x\in\mathbf{R}, q[0,1)q\in[0,1), n𝐙n\in\mathbf{Z}, and i=1,2i=1,2.

Remark 2.4.

In particular we also have the following alternative representations:

(2.3) K1,p(q)=0π2|cosθ|12p1q2sin2θ𝑑θ=0111q2z2(1z2)1p𝑑z,\displaystyle\mathrm{K}_{1,p}(q)=\int_{0}^{\frac{\pi}{2}}\frac{|\cos\theta|^{1-\frac{2}{p}}}{\sqrt[]{1-q^{2}\sin^{2}\theta}}\,d\theta=\int_{0}^{1}\frac{1}{\sqrt{1-q^{2}z^{2}}}(1-z^{2})^{-\frac{1}{p}}\,dz,
(2.4) E1,p(q)=0π21q2sin2θ|cosθ|12p𝑑θ=011q2z2(1z2)1p𝑑z.\displaystyle\mathrm{E}_{1,p}(q)=\int_{0}^{\frac{\pi}{2}}\sqrt{1-q^{2}\sin^{2}\theta}\,|\cos\theta|^{1-\frac{2}{p}}\,d\theta=\int_{0}^{1}\sqrt{1-q^{2}z^{2}}(1-z^{2})^{-\frac{1}{p}}\,dz.

Now we discuss some basic properties. As in the classical case p=2p=2, the complete pp-elliptic integrals E1,p(q)\mathrm{E}_{1,p}(q) and K1,p(q)\mathrm{K}_{1,p}(q) are not only monotone with respect to modulus q[0,1)q\in[0,1) but also related by explicit derivative formulae:

Proposition 2.5.

The function K1,p(q)\mathrm{K}_{1,p}(q) is strictly increasing with respect to q[0,1)q\in[0,1) (including q=1q=1 if p>2p>2), and the function E1,p(q)\mathrm{E}_{1,p}(q) is strictly decreasing with respect to q[0,1)q\in[0,1). Moreover, for q(0,1)q\in(0,1),

(2.5) ddqK1,p(q)=(22p)E1,p(q)(22pq2)K1,p(q)q(1q2),ddqE1,p(q)=E1,p(q)K1,p(q)q.\displaystyle\begin{split}&\frac{d}{dq}\mathrm{K}_{1,p}(q)=\frac{(2-\frac{2}{p})\mathrm{E}_{1,p}(q)-(2-\frac{2}{p}-q^{2})\mathrm{K}_{1,p}(q)}{q(1-q^{2})},\\ &\frac{d}{dq}\mathrm{E}_{1,p}(q)=\frac{\mathrm{E}_{1,p}(q)-\mathrm{K}_{1,p}(q)}{q}.\end{split}

In fact, the above derivative formulae are special cases of those for more general elliptic integrals obtained by Takeuchi [26]: For a,b,c(1,)a,b,c\in(1,\infty) and q[0,1)q\in[0,1), let

𝖪a,b,c(q):=0111zba1qbzbc𝑑z,𝖤a,b,c(q):=011qbzbc1zba𝑑z.\mathsf{K}_{a,b,c}(q):=\int_{0}^{1}\frac{1}{\sqrt[a]{1-z^{b}}\sqrt[c]{1-q^{b}z^{b}}}\,dz,\quad\mathsf{E}_{a,b,c}(q):=\int_{0}^{1}\frac{\sqrt[c]{1-q^{b}z^{b}}}{\sqrt[a]{1-z^{b}}}\,dz.

By [26, Proposition 2], letting c:=c/(c1)c^{\prime}:={c}/{(c-1)} and ξ:=1+b/cb/a\xi:=1+{b}/{c}-{b}/{a}, we have

(2.6) ddq𝖪a,b,c(q)=ξ𝖤a,b,c(q)(ξqb)𝖪a,b,c(q)q(1qb),ddq𝖤a,b,c(q)=b(𝖤a,b,c(q)𝖪a,b,c(q))cq.\displaystyle\begin{split}&\frac{d}{dq}\mathsf{K}_{a,b,c^{\prime}}(q)=\frac{\xi\mathsf{E}_{a,b,c}(q)-(\xi-q^{b})\mathsf{K}_{a,b,c^{\prime}}(q)}{q(1-q^{b})},\\ &\frac{d}{dq}\mathsf{E}_{a,b,c}(q)=\frac{b(\mathsf{E}_{a,b,c}(q)-\mathsf{K}_{a,b,c^{\prime}}(q))}{cq}.\end{split}
Proof of Proposition 2.5.

Monotonicity follows by differentiating in q(0,1)q\in(0,1):

(2.7) ddqK1,p(q)=0π2qsin2θ|cosθ|12p(1q2sin2θ)32𝑑θ>0,ddqE1,p(q)=0π2qsin2θ|cosθ|12p1q2sin2θ𝑑θ<0.\displaystyle\begin{split}\frac{d}{dq}\mathrm{K}_{1,p}(q)&=\int_{0}^{\frac{\pi}{2}}\frac{q\sin^{2}\theta|\cos\theta|^{1-\frac{2}{p}}}{(1-q^{2}\sin^{2}\theta)^{\frac{3}{2}}}\,d\theta>0,\\ \frac{d}{dq}\mathrm{E}_{1,p}(q)&=-\int_{0}^{\frac{\pi}{2}}\frac{q\sin^{2}\theta|\cos\theta|^{1-\frac{2}{p}}}{\sqrt{1-q^{2}\sin^{2}\theta}}\,d\theta<0.\end{split}

In addition, since E1,p(q)=𝖤p,2,2(q)\mathrm{E}_{1,p}(q)=\mathsf{E}_{p,2,2}(q) and K1,p(q)=𝖪p,2,2(q)\mathrm{K}_{1,p}(q)=\mathsf{K}_{p,2,2}(q) hold (cf. (2.3) and (2.4)), by using (2.6), we obtain (2.5). ∎

We will also consider the ratio of the first and second complete pp-elliptic integrals.

Lemma 2.6 ([28, Lemma 2]).

Let Qp:[0,1)𝐑Q_{p}:[0,1)\to\mathbf{R} be defined by

(2.8) Qp(q):=2E1,p(q)K1,p(q)1,q[0,1).\displaystyle Q_{p}(q):=2\frac{\mathrm{E}_{1,p}(q)}{\mathrm{K}_{1,p}(q)}-1,\quad q\in[0,1).

Then QpQ_{p} is strictly decreasing on [0,1)[0,1). Moreover, QpQ_{p} satisfies Qp(0)=1Q_{p}(0)=1 and

(2.9) limq1Qp(q)={1if 1<p2,1p1ifp>2.\displaystyle\lim_{q\uparrow 1}Q_{p}(q)=\begin{cases}-1\quad&\text{if}\ \ 1<p\leq 2,\\ -\dfrac{1}{p-1}&\text{if}\ \ p>2.\end{cases}

By this monotonicity of QpQ_{p} we can define the unique modulus corresponding to “figure-eight”, which we will use frequently:

Definition 2.7 (Modulus of figure-eight).

Let q=q(p)(0,1)q^{*}=q^{*}(p)\in(0,1) denote a unique solution to the equation Qp(q)=0Q_{p}(q)=0.

2.2. pp-Elliptic functions

Next we recall the pp-elliptic functions.

Definition 2.8 (pp-Elliptic functions).

Let q[0,1]q\in[0,1]. The amplitude functions am1,p(x,q)\operatorname{am}_{1,p}(x,q) and am2,p(x,q)\operatorname{am}_{2,p}(x,q) with modulus qq are defined by the inverse functions of F1,p(x,q)\mathrm{F}_{1,p}(x,q) and F2,p(x,q)\mathrm{F}_{2,p}(x,q), respectively, i.e., for x𝐑x\in\mathbf{R},

x=0am1,p(x,q)|cosθ|12p1q2sin2θ𝑑θ,x=0am2,p(x,q)11q2sin2θp𝑑θ.\displaystyle x=\int_{0}^{\operatorname{am}_{1,p}(x,q)}\frac{|\cos\theta|^{1-\frac{2}{p}}}{\sqrt[]{1-q^{2}\sin^{2}\theta}}\,d\theta,\quad x=\int_{0}^{\operatorname{am}_{2,p}(x,q)}\frac{1}{\sqrt[p]{1-q^{2}\sin^{2}\theta}}\,d\theta.

The pp-elliptic sine snp(x,q)\operatorname{sn}_{p}(x,q) and pp-elliptic cosine cnp(x,q)\operatorname{cn}_{p}(x,q) with modulus qq are defined by, for x𝐑x\in\mathbf{R},

snp(x,q)\displaystyle\operatorname{sn}_{p}(x,q) :=sinam1,p(x,q),\displaystyle:=\sin\operatorname{am}_{1,p}(x,q),
(2.10) cnp(x,q)\displaystyle\operatorname{cn}_{p}(x,q) :=|cosam1,p(x,q)|2p1cosam1,p(x,q).\displaystyle:=|\cos\operatorname{am}_{1,p}(x,q)|^{\frac{2}{p}-1}\cos\operatorname{am}_{1,p}(x,q).

The pp-delta amplitude dnp(x,q)\operatorname{dn}_{p}(x,q) with modulus qq is defined by

dnp(x,q):=1q2sin2(am2,p(x,q))p,x𝐑.\displaystyle\operatorname{dn}_{p}(x,q):=\sqrt[p]{1-q^{2}\sin^{2}\big{(}\operatorname{am}_{2,p}(x,q)\big{)}},\quad x\in\mathbf{R}.

In addition, a typical part of cnp(,1)\operatorname{cn}_{p}(\cdot,1) and dnp(,1)\operatorname{dn}_{p}(\cdot,1) is interpreted as the pp-hyperbolic secant function.

Definition 2.9 (pp-Hyperbolic functions).

The pp-hyperbolic secant sechpx\operatorname{sech}_{p}x is defined by

(2.11) sechpx:={cnp(x,1)=dnp(x,1),x(Kp(1),Kp(1)),0,x𝐑(Kp(1),Kp(1)).\displaystyle\operatorname{sech}_{p}x:=\begin{cases}\operatorname{cn}_{p}(x,1)=\operatorname{dn}_{p}(x,1),\quad&x\in(-\mathrm{K}_{p}(1),\mathrm{K}_{p}(1)),\\ 0,&x\in\mathbf{R}\setminus(-\mathrm{K}_{p}(1),\mathrm{K}_{p}(1)).\end{cases}

If 1<p21<p\leq 2, then we regard (Kp(1),Kp(1))(-\mathrm{K}_{p}(1),\mathrm{K}_{p}(1)) as 𝐑\mathbf{R}. Moreover, the pp-hyperbolic tangent tanhpx\tanh_{p}x is defined by

tanhpx:=0x(sechpt)p𝑑t,x𝐑.\tanh_{p}x:=\int_{0}^{x}(\operatorname{sech}_{p}t)^{p}dt,\quad x\in\mathbf{R}.

In general our pp-elliptic functions satisfy fundamental properties such as periodicity and monotonicity similar to the classical Jacobian elliptic functions (p=2p=2). In particular we recall some of those about cnp\operatorname{cn}_{p} and sechp\operatorname{sech}_{p} for later use.

Proposition 2.10 ([19, Proposition 3.10]).

Let cnp\operatorname{cn}_{p} and sechp\operatorname{sech}_{p} be given by (2.10) and (2.11), respectively.

  • (i)

    For q[0,1)q\in[0,1), cnp(,q)\operatorname{cn}_{p}(\cdot,q) is an even 2K1,p(q)2\mathrm{K}_{1,p}(q)-antiperiodic function on 𝐑\mathbf{R} and, in [0,2K1,p(q)][0,2\mathrm{K}_{1,p}(q)], strictly decreasing from 11 to 1-1.

  • (ii)

    If 1<p21<p\leq 2, then sechp\operatorname{sech}_{p} is an even positive function on 𝐑\mathbf{R}, and strictly decreasing in [0,)[0,\infty). Moreover, sechp0=1\operatorname{sech}_{p}0=1 and sechpx0\operatorname{sech}_{p}x\to 0 as xx\uparrow\infty.

  • (ii’)

    If p>2p>2, then sechp\operatorname{sech}_{p} is an even nonnegative function on 𝐑\mathbf{R}, and strictly decreasing in [0,Kp(1))[0,\mathrm{K}_{p}(1)). Moreover, sechp0=1\operatorname{sech}_{p}0=1 and sechpx0\operatorname{sech}_{p}x\to 0 as xKp(1)x\uparrow\mathrm{K}_{p}(1). In particular, sechp\operatorname{sech}_{p} is continuous on 𝐑\mathbf{R}.

2.3. The Euler–Lagrange equation and pinned pp-elastica

Now we rigorously define pinned (planar) pp-elasticae, and recall their known properties.

Definition 2.11 (Pinned pp-elastica).

Let P0,P1𝐑2P_{0},P_{1}\in\mathbf{R}^{2} and L>0L>0 such that |P0P1|<L|P_{0}-P_{1}|<L. Let 𝒜P0,P1,L\mathcal{A}_{P_{0},P_{1},L} be the admissible space defined in (1.1).

  • For γ𝒜P0,P1,L\gamma\in\mathcal{A}_{P_{0},P_{1},L}, we call a one-parameter family εγε𝒜P0,P1,L\varepsilon\mapsto\gamma_{\varepsilon}\in\mathcal{A}_{P_{0},P_{1},L} admissible perturbation of γ\gamma in 𝒜P0,P1,L\mathcal{A}_{P_{0},P_{1},L} if γ0=γ\gamma_{0}=\gamma and if the derivative ddεγε|ε=0\frac{d}{d\varepsilon}\gamma_{\varepsilon}\big{|}_{\varepsilon=0} exists.

  • We say that γ𝒜P0,P1,L\gamma\in\mathcal{A}_{P_{0},P_{1},L} is a critical point of p\mathcal{B}_{p} in the admissible space 𝒜P0,P1,L\mathcal{A}_{P_{0},P_{1},L} if for any admissible perturbation (εγε)(\varepsilon\mapsto\gamma_{\varepsilon}) of γ\gamma in 𝒜P0,P1,L\mathcal{A}_{P_{0},P_{1},L} the first variation of p\mathcal{B}_{p} vanishes:

    ddεp[γε]|ε=0=0.\displaystyle\frac{d}{d\varepsilon}\mathcal{B}_{p}[\gamma_{\varepsilon}]\Big{|}_{\varepsilon=0}=0.

We also call such a critical point pinned pp-elastica in general.

Let γ\gamma be a pinned pp-elastica. Then, by the Lagrange multiplier method (cf.  Proposition A.5), there is a multiplier λ𝐑\lambda\in\mathbf{R} such that

(2.12) Dp[γ]+λD[γ],h=0\displaystyle\big{\langle}D\mathcal{B}_{p}[\gamma]+\lambda D\mathcal{L}[\gamma],h\big{\rangle}=0

for hW2,p(0,1;𝐑2)h\in W^{2,p}(0,1;\mathbf{R}^{2}) with h(0)=h(1)=(0,0)h(0)=h(1)=(0,0), where Dp[γ]D\mathcal{B}_{p}[\gamma] and D[γ]D\mathcal{L}[\gamma] are the Fréchet derivatives of p\mathcal{B}_{p} and \mathcal{L} at γ\gamma, respectively. Using the arclength parameterization γ~\tilde{\gamma} of γ\gamma, we can rewrite (2.12) as

(2.13) 0L((12p)|γ~′′|p(γ~,η)+p|γ~′′|p2(γ~′′,η′′)+λ(γ~,η))𝑑s=0\displaystyle\int_{0}^{L}\Big{(}(1-2p)|\tilde{\gamma}^{\prime\prime}|^{p}(\tilde{\gamma}^{\prime},\eta^{\prime})+p|\tilde{\gamma}^{\prime\prime}|^{p-2}(\tilde{\gamma}^{\prime\prime},\eta^{\prime\prime})+\lambda(\tilde{\gamma}^{\prime},\eta^{\prime})\Big{)}ds=0

for ηW2,p(0,L;𝐑2)\eta\in W^{2,p}(0,L;\mathbf{R}^{2}) with η(0)=η(L)=(0,0)\eta(0)=\eta(L)=(0,0) (cf. Proposition A.8). Moreover, we can translate (2.13) in terms of the signed curvature; indeed, according to [19, Proposition 2.1], if γWimm2,p(0,1;𝐑2)\gamma\in W^{2,p}_{\rm imm}(0,1;\mathbf{R}^{2}) satisfies (2.13), then its signed curvature k:[0,L]𝐑k:[0,L]\to\mathbf{R} (parameterized by the arclength) belongs to L(0,L)L^{\infty}(0,L), and further kk satisfies

(EL) 0L(p|k|p2kφ′′+(p1)|k|pkφλkφ)𝑑s=0\displaystyle\int_{0}^{L}\Big{(}p|k|^{p-2}k\varphi^{\prime\prime}+(p-1)|k|^{p}k\varphi-\lambda k\varphi\Big{)}ds=0

for all φW2,p(0,L)\varphi\in W^{2,p}(0,L) with φ(0)=φ(L)=0\varphi(0)=\varphi(L)=0 (although the class of test functions is different from [19], the derivation is parallel).

In particular, we find that any pinned pp-elastica in the sense of Definition 2.11 is always a pp-elastica in the sense of [19, Definition 1.1] by restricting test functions to ηCc(0,L;𝐑2)\eta\in C^{\infty}_{\rm c}(0,L;\mathbf{R}^{2}) in (2.13). The complete classification of pp-elasticae is already known. In order to state the classification, we prepare the notation on a concatenation of curves. For γj:[aj,bj]𝐑2\gamma_{j}:[a_{j},b_{j}]\to\mathbf{R}^{2} with Lj:=bjaj0L_{j}:=b_{j}-a_{j}\geq 0, we define γ1γ2:[0,L1+L2]𝐑2\gamma_{1}\oplus\gamma_{2}:[0,L_{1}+L_{2}]\to\mathbf{R}^{2} by

(γ1γ2)(s):={γ1(s+a1),s[0,L1],γ2(s+a2L1)+γ1(b1)γ2(a2),s[L1,L1+L2],\displaystyle(\gamma_{1}\oplus\gamma_{2})(s):=\begin{cases}\gamma_{1}(s+a_{1}),\quad&s\in[0,L_{1}],\\ \gamma_{2}(s+a_{2}-L_{1})+\gamma_{1}(b_{1})-\gamma_{2}(a_{2}),&s\in[L_{1},L_{1}+L_{2}],\end{cases}

and inductively define γ1γN:=(γ1γN1)γN\gamma_{1}\oplus\dots\oplus\gamma_{N}:=(\gamma_{1}\oplus\dots\oplus\gamma_{N-1})\oplus\gamma_{N}. We also write

j=1Nγj:=γ1γN.\displaystyle\bigoplus_{j=1}^{N}\gamma_{j}:=\gamma_{1}\oplus\dots\oplus\gamma_{N}.

We now recall the classification of pp-elasticae:

Proposition 2.12 ([19, Theorems 1.2 and 1.3]).

Let γWimm2,p(0,1;𝐑2)\gamma\in W^{2,p}_{\rm imm}(0,1;\mathbf{R}^{2}) be a pp-elastica. Then up to similarity (i.e., translation, rotation, reflection, and dilation) and reparameterization, the curve γ\gamma is represented by γ(s)=γ(s+s0)\gamma(s)=\gamma_{*}(s+s_{0}) with some s0𝐑s_{0}\in\mathbf{R}, where γ:𝐑𝐑2\gamma_{*}:\mathbf{R}\to\mathbf{R}^{2} is one of the following arclength parameterizations:

  • (Case I — Linear pp-elastica) γ(s)=(s,0)\gamma_{\ell}(s)=(s,0), where k0k_{\ell}\equiv 0.

  • (Case II — Wavelike pp-elastica) For some q(0,1)q\in(0,1),

    (2.14) γw(s,q)=(2E1,p(am1,p(s,q),q)sqpp1|cnp(s,q)|p2cnp(s,q)).\gamma_{w}(s,q)=\begin{pmatrix}2\mathrm{E}_{1,p}(\operatorname{am}_{1,p}(s,q),q)-s\\ -q\frac{p}{p-1}|\operatorname{cn}_{p}(s,q)|^{p-2}\operatorname{cn}_{p}(s,q)\end{pmatrix}.

    In this case, θw(s)=2arcsin(qsnp(s,q))\theta_{w}(s)=2\arcsin(q\operatorname{sn}_{p}(s,q)) and kw(s)=2qcnp(s,q).k_{w}(s)=2q\operatorname{cn}_{p}(s,q).

  • (Case III — Borderline pp-elastica, 1<p21<p\leq 2)

    γb(s)=(2tanhpsspp1(sechps)p1).\gamma_{b}(s)=\begin{pmatrix}2\tanh_{p}{s}-s\\ -\frac{p}{p-1}(\operatorname{sech}_{p}{s})^{p-1}\end{pmatrix}.

    In this case, θb(s)=2am1,p(s,1)=2am2,p(s,1)\theta_{b}(s)=2\operatorname{am}_{1,p}(s,1)=2\operatorname{am}_{2,p}(s,1) and kb(s)=2sechps.k_{b}(s)=2\operatorname{sech}_{p}{s}.

  • (Case III’ — Flat-core pp-elastica, p>2p>2) For some integer N1N\geq 1, signs σ1,,σN{+,}\sigma_{1},\dots,\sigma_{N}\in\{+,-\}, and nonnegative numbers L1,,LN0L_{1},\dots,L_{N}\geq 0,

    (2.15) γf=j=1N(γLjγbσj),\gamma_{f}=\bigoplus_{j=1}^{N}(\gamma_{\ell}^{L_{j}}\oplus\gamma_{b}^{\sigma_{j}}),

    where γb±:[Kp(1),Kp(1)]𝐑2\gamma_{b}^{\pm}:[-\mathrm{K}_{p}(1),\mathrm{K}_{p}(1)]\to\mathbf{R}^{2} and γLj:[0,Lj]𝐑2\gamma_{\ell}^{L_{j}}:[0,L_{j}]\to\mathbf{R}^{2} are defined by

    (2.16) γb±(s)=(2tanhpsspp1(sechps)p1),γLj(s)=(s0).\displaystyle\gamma_{b}^{\pm}(s)=\begin{pmatrix}2\tanh_{p}{s}-s\\ \mp\frac{p}{p-1}(\operatorname{sech}_{p}{s})^{p-1}\end{pmatrix},\quad\gamma_{\ell}^{L_{j}}(s)=\begin{pmatrix}-s\\ 0\end{pmatrix}.

    The curves γb±(s)\gamma_{b}^{\pm}(s) have θb±(s)=±2am1,p(s,1)=±2am2,p(s,1)\theta_{b}^{\pm}(s)=\pm 2\operatorname{am}_{1,p}(s,1)=\pm 2\operatorname{am}_{2,p}(s,1) and kb±(s)=±2sechpsk_{b}^{\pm}(s)=\pm 2\operatorname{sech}_{p}{s} for s[Kp(1),Kp(1)]s\in[-\mathrm{K}_{p}(1),\mathrm{K}_{p}(1)]. In particular,

    (2.17) kf(s)=i=1Nσi2sechp(ssi),wheresi=(2i1)Kp(1)+j=1iLj.\displaystyle k_{f}(s)=\sum_{i=1}^{N}\sigma_{i}2\operatorname{sech}_{p}(s-s_{i}),\quad\text{where}\quad s_{i}=(2i-1)\mathrm{K}_{p}(1)+\sum_{j=1}^{i}L_{j}.
  • (Case IV — Orbitlike pp-elastica) For some q(0,1)q\in(0,1),

    γo(s,q)=1q2(2E2,pp1(am2,p(s,q),q)+(q22)spp1dnp(s,q)p1).\gamma_{o}(s,q)=\frac{1}{q^{2}}\begin{pmatrix}2\mathrm{E}_{2,\frac{p}{p-1}}(\operatorname{am}_{2,p}(s,q),q)+(q^{2}-2)s\\ -\frac{p}{p-1}\operatorname{dn}_{p}(s,q)^{p-1}\end{pmatrix}.

    In this case, θo(s)=2am2,p(s,q)\theta_{o}(s)=2\operatorname{am}_{2,p}(s,q) and ko(s)=2dnp(s,q).k_{o}(s)=2\operatorname{dn}_{p}(s,q).

  • (Case V — Circular pp-elastica) γc(s)=(coss,sins)\gamma_{c}(s)=(\cos{s},\sin{s}), where kc1k_{c}\equiv 1.

Here θ\theta_{*} denotes the tangential angle sγ=(cosθ,sinθ)\partial_{s}\gamma_{*}=(\cos\theta_{*},\sin\theta_{*}), and kk_{*} the (counterclockwise) signed curvature k=sθk_{*}=\partial_{s}\theta_{*}.

The optimal regularity of pp-elasticae is known to depend on pp. Here we recall a weak general regularity (independent of pp), which will be sufficient for our purpose.

Proposition 2.13 ([19, Theorem 1.7]).

Let γ\gamma be a pp-elastica. Then γ\gamma has continuous (arclength parameterized) signed curvature.

3. Classification of pinned pp-elasticae

In this section we give the complete classification of pinned pp-elasticae, thus proving Theorem 1.1.

As a key fact for reducing the possible candidates, we first deduce that any pinned pp-elastica satisfies an additional (natural) boundary condition that the curvature vanishes at the endpoints.

Lemma 3.1.

If γ\gamma is a pinned pp-elastica, then the arclength parameterized signed curvature kC([0,L])k\in C([0,L]) of γ\gamma satisfies

k(0)=k(L)=0.k(0)=k(L)=0.
Proof.

Recall that kC([0,L])k\in C([0,L]) by Proposition 2.13 so that kk is defined pointwise. From the fact that kk satisfies (EL) we deduce that the function

w(s):=|k(s)|p2k(s),s[0,L]w(s):=|k(s)|^{p-2}k(s),\quad s\in[0,L]

satisfies

(3.1) 0L(pwφ′′+(p1)|w|2p1wφλ|w|2pp1wφ)𝑑s=0\displaystyle\int_{0}^{L}\!\Big{(}pw\varphi^{\prime\prime}+(p-1)|w|^{\frac{2}{p-1}}w\varphi-\lambda|w|^{\frac{2-p}{p-1}}w\varphi\Big{)}\,ds=0

for any φW2,p(0,L)W01,p(0,L)\varphi\in W^{2,p}(0,L)\cap W^{1,p}_{0}(0,L). Moreover, it is shown in [19, Lemma 4.3] that ww also satisfies (3.1) in the classical sense, i.e.,

(3.2) pw′′(s)+(p1)|w(s)|2p1w(s)λ|w(s)|2pp1w(s)=0in[0,L].\displaystyle pw^{\prime\prime}(s)+(p-1)|w(s)|^{\frac{2}{p-1}}w(s)-\lambda|w(s)|^{\frac{2-p}{p-1}}w(s)=0\quad\text{in}\ [0,L].

By choosing φW2,p(0,L)W01,p(0,L)\varphi\in W^{2,p}(0,L)\cap W^{1,p}_{0}(0,L) with φ(0)=1\varphi^{\prime}(0)=-1 and φ(L)=0\varphi^{\prime}(L)=0 in (3.1), and integrating by parts, we obtain

0\displaystyle 0 =0L(pwφ′′+(p1)|w|2p1wφλ|w|2pp1wφ)𝑑s\displaystyle=\int_{0}^{L}\Big{(}pw\varphi^{\prime\prime}+(p-1)|w|^{\frac{2}{p-1}}w\varphi-\lambda|w|^{\frac{2-p}{p-1}}w\varphi\Big{)}\,ds
=[pw(s)φ(s)]s=0s=L+0L(pw′′+(p1)|w|2p1wλ|w|2pp1w)φ𝑑s=pw(0),\displaystyle=\big{[}pw(s)\varphi^{\prime}(s)\big{]}_{s=0}^{s=L}+\int_{0}^{L}\Big{(}pw^{\prime\prime}+(p-1)|w|^{\frac{2}{p-1}}w-\lambda|w|^{\frac{2-p}{p-1}}w\Big{)}\varphi\,ds=pw(0),

where we used φ(0)=φ(L)=0\varphi(0)=\varphi(L)=0, φ(0)=1\varphi^{\prime}(0)=-1, φ(L)=0\varphi^{\prime}(L)=0, and (3.2). Therefore, pw(0)=p|k(0)|p2k(0)=0pw(0)=p|k(0)|^{p-2}k(0)=0, so that k(0)=0k(0)=0 holds. In the same way we obtain k(L)=0k(L)=0. ∎

By Proposition 2.12 and Lemma 3.1, with the obvious fact that linear pp-elasticae are ruled out by |P0P1|<L|P_{0}-P_{1}|<L, if γ\gamma is a pinned pp-elastica, then γ\gamma must be

{a wavelike p-elasticaif 1<p2,a wavelike p-elasticaora flat-core p-elasticaifp>2.\displaystyle\begin{cases}\text{a wavelike $p$-elastica}\quad&\text{if}\ \ 1<p\leq 2,\\ \text{a wavelike $p$-elastica}\ \ \text{or}\ \ \text{a flat-core $p$-elastica}&\text{if}\ \ p>2.\end{cases}

This fact drastically reduces the candidates of pinned pp-elasticae. Motivated by this reduction, we prepare terminology for the following special pp-elasticae — we will later show that those curves are indeed the only possibilities.

Definition 3.2 (Arc, loop, and flat-core).

Let p(1,)p\in(1,\infty), r[0,1)r\in[0,1), and n𝐍n\in\mathbf{N}.

  • A curve γ\gamma is called (p,r,n)(p,r,n)-arc if, up to similarity and reparameterization, γ\gamma is given by

    γ(s)=γw(sK1,p(q),q)s[0,2nK1,p(q)],\gamma(s)=\gamma_{w}(s-\mathrm{K}_{1,p}(q),q)\quad s\in[0,2n\mathrm{K}_{1,p}(q)],

    where γw\gamma_{w} is defined by (2.14) and q=q(r)(0,1)q=q(r)\in(0,1) is a unique solution of

    (3.3) 2E1,p(q)K1,p(q)1=r.\displaystyle 2\frac{\mathrm{E}_{1,p}(q)}{\mathrm{K}_{1,p}(q)}-1=r.
  • A curve γ\gamma is called (p,r,n)(p,r,n)-loop if r<1p1r<\frac{1}{p-1} and, up to similarity and reparameterization, γ\gamma is given by

    γ(s)=γw(sK1,p(q),q)s[0,2nK1,p(q)],\gamma(s)=\gamma_{w}(s-\mathrm{K}_{1,p}(q),q)\quad s\in[0,2n\mathrm{K}_{1,p}(q)],

    where γw\gamma_{w} is defined by (2.14) and q=q(r)(0,1)q=q(r)\in(0,1) is a unique solution of

    (3.4) 2E1,p(q)K1,p(q)1=r.\displaystyle 2\frac{\mathrm{E}_{1,p}(q)}{\mathrm{K}_{1,p}(q)}-1=-r.
  • In particular, we call a (p,0,n)(p,0,n)-arc, or equivalently a (p,0,n)(p,0,n)-loop, n2\frac{n}{2}-fold figure-eight pp-elastica. A 12\frac{1}{2}-fold figure-eight pp-elastica is also called half-fold figure-eight pp-elastica.

  • A curve γ\gamma is called (p,r,n,𝛔,𝐋)(p,r,n,\boldsymbol{\sigma},\boldsymbol{L})-flat-core if p>2p>2, r1p1r\geq\frac{1}{p-1}, and there are 𝝈=(σ1,,σn){+,}n\boldsymbol{\sigma}=(\sigma_{1},\dots,\sigma_{n})\in\{+,-\}^{n} and 𝑳=(L1,,Ln+1)[0,)n+1\boldsymbol{L}=(L_{1},\dots,L_{n+1})\in[0,\infty)^{n+1} such that, up to similarity and reparameterization, γ\gamma is given by

    γ=(j=1n(γLjγbσj))γLn+1,\gamma=\bigg{(}\bigoplus_{j=1}^{n}\big{(}\gamma_{\ell}^{L_{j}}\oplus\gamma_{b}^{\sigma_{j}}\big{)}\bigg{)}\oplus\gamma_{\ell}^{L_{n+1}},

    where γLj\gamma_{\ell}^{L_{j}} and γb±\gamma_{b}^{\pm} are given by (2.16), and in addition p,r,np,r,n and 𝑳\boldsymbol{L} satisfy

    (3.5) j=1n+1Lj=2nr1p11rKp(1).\displaystyle\sum_{j=1}^{n+1}L_{j}=2n\frac{r-\frac{1}{p-1}}{1-r}\mathrm{K}_{p}(1).
Remark 3.3.

The monotonicity in Lemma 2.6 implies uniqueness of solutions to equations (3.3) and (3.4), respectively. By Qp(0)=1Q_{p}(0)=1 and (2.9), equation (3.3) always admits a solution, while (3.4) admits a solution if and only if r<|Qp(1)|r<|Q_{p}(1)|, or equivalently r<1p1r<\frac{1}{p-1}. In order to define the flat-core case, the condition p>2p>2 is obviously required since flat-core elasticae only appear for p>2p>2; the condition r1p1r\geq\frac{1}{p-1} is also necessary and sufficient since this is equivalent to the nonnegativity of the right-hand side of (3.5).

Remark 3.4.

For n=2Nn=2N with some N𝐍N\in\mathbf{N}, an n2\frac{n}{2}-fold figure-eight pp-elastica in the sense of Definition 3.2 is same as an NN-fold figure-eight pp-elastica introduced in [19, Definition 5.3]. It is shown in [19, Proposition 5.5] that an NN-fold figure-eight pp-elastica indeed defines a closed curve.

One can observe from the above definition that, loosely speaking, the given parameter r:=|P0P1|L[0,1)r:=\frac{|P_{0}-P_{1}|}{L}\in[0,1) characterizes the modulus q[0,1)q\in[0,1) in Proposition 2.12.

In what follows we verify that any pinned pp-elastica is either a (p,r,n)(p,r,n)-arc, a (p,r,n)(p,r,n)-loop, or a (p,r,n,𝝈,𝑳)(p,r,n,\boldsymbol{\sigma},\boldsymbol{L})-flat-core. We first obtain necessary conditions for pinned wavelike pp-elasticae:

Lemma 3.5 (Pinned wavelike pp-elasticae).

Let P0,P1𝐑2P_{0},P_{1}\in\mathbf{R}^{2} and L>0L>0 such that |P0P1|<L|P_{0}-P_{1}|<L. Let γ\gamma be a critical point of p\mathcal{B}_{p} in 𝒜P0,P1,L\mathcal{A}_{P_{0},P_{1},L}. Suppose that γ\gamma is a wavelike pp-elastica. Then, up to similarity and reparameterization, γ\gamma is given by

(3.6) γ(s)=γw(sK1,p(q),q),s[0,2nK1,p(q)]\gamma(s)=\gamma_{w}(s-\mathrm{K}_{1,p}(q),q),\quad s\in[0,2n\mathrm{K}_{1,p}(q)]

for some n𝐍n\in\mathbf{N}, where qq is a solution to either (3.3) or (3.4).

Proof.

By Proposition 2.12, up to similarity and reparameterization, the curve γ\gamma is represented by

(3.7) γ^(s)=γw(s+s0,q)\displaystyle\hat{\gamma}(s)=\gamma_{w}(s+s_{0},q)

for some q(0,1)q\in(0,1) and s0𝐑s_{0}\in\mathbf{R}, where γw\gamma_{w} is defined by (2.14). Let L^\hat{L} (resp. l^\hat{l}) denote the length (resp. the distance between the endpoints) of γ^\hat{\gamma}. Note that l^/L^=|P0P1|/L=r\hat{l}/\hat{L}=|P_{0}-P_{1}|/L=r. We see that the signed curvature of γ^\hat{\gamma} is

kw(s+s0)=2qcnp(s+s0,q),s[0,L^].k_{w}(s+s_{0})=2q\operatorname{cn}_{p}(s+s_{0},q),\quad s\in[0,\hat{L}].

By Lemma 3.1, we have kw(s0)=0k_{w}(s_{0})=0. Moreover, in view of the fact that

(3.8) cnp(s,q)=0s=(2m1)K1,p(q)for somem𝐙\displaystyle\operatorname{cn}_{p}(s,q)=0\ \iff\ s=(2m-1)\mathrm{K}_{1,p}(q)\ \ \text{for some}\ \ m\in\mathbf{Z}

and the fact that cnp(,q)\operatorname{cn}_{p}(\cdot,q) is a 2K1,p(q)2\mathrm{K}_{1,p}(q)-antiperiodic function (cf. Proposition 2.10), without loss of generality, we can choose s0=K1,p(q)s_{0}=-\mathrm{K}_{1,p}(q) in (3.7). Furthermore, since kw(L^+s0)=0k_{w}(\hat{L}+s_{0})=0 also follows from Lemma 3.1, we see that L^=2nK1,p(q)\hat{L}=2n\mathrm{K}_{1,p}(q) for some n𝐍n\in\mathbf{N}. To compute l^\hat{l}, set

(X(s),Y(s)):=γ^(s)=γw(sK1,p(q),q),s[0,L^].(X(s),Y(s))^{\top}:=\hat{\gamma}(s)=\gamma_{w}(s-\mathrm{K}_{1,p}(q),q),\quad s\in[0,\hat{L}].

It follows from (2.14) that

X(s)\displaystyle X(s) =2E1,p(am1,p(sK1,p(q),q),q)(sK1,p(q)),\displaystyle=2\mathrm{E}_{1,p}\big{(}\operatorname{am}_{1,p}(s-\mathrm{K}_{1,p}(q),q),q\big{)}-(s-\mathrm{K}_{1,p}(q)),
Y(s)\displaystyle Y(s) =qpp1|cnp(sK1,p(q),q)|p2cnp(sK1,p(q),q).\displaystyle=-q\tfrac{p}{p-1}|\operatorname{cn}_{p}(s-\mathrm{K}_{1,p}(q),q)|^{p-2}\operatorname{cn}_{p}(s-\mathrm{K}_{1,p}(q),q).

Combining this with (3.8) and L^=2nK1,p(q)\hat{L}=2n\mathrm{K}_{1,p}(q), we see that Y(0)=Y(L^)=0Y(0)=Y(\hat{L})=0. Hence l^=|X(L^)X(0)|\hat{l}=|X(\hat{L})-X(0)| holds. Since l^/L^=r\hat{l}/\hat{L}=r, we find that q(0,1)q\in(0,1) in (3.7) has to satisfy

(3.9) X(L^)X(0)2nK1,p(q)=rorX(L^)X(0)2nK1,p(q)=r.\displaystyle\frac{X(\hat{L})-X(0)}{2n\mathrm{K}_{1,p}(q)}=r\qquad\text{or}\qquad\frac{X(\hat{L})-X(0)}{2n\mathrm{K}_{1,p}(q)}=-r.

Now we compute the numerator. By (2.2) we have (2n1)K1,p(q)=F1,p(nππ2),(2n-1)\mathrm{K}_{1,p}(q)=\mathrm{F}_{1,p}(n\pi-\frac{\pi}{2}), and hence by definition of am1,p\operatorname{am}_{1,p},

am1,p((2n1)K1,p(q),q)=nππ2.\operatorname{am}_{1,p}((2n-1)\mathrm{K}_{1,p}(q),q)=n\pi-\frac{\pi}{2}.

By this fact and (2.2) we deduce

E1,p(am1,p((2n1)K1,p(q),q),q)=E1,p(nππ2,q)=(2n1)E1,p(q).\displaystyle\mathrm{E}_{1,p}(\operatorname{am}_{1,p}((2n-1)\mathrm{K}_{1,p}(q),q),q)=\mathrm{E}_{1,p}(n\pi-\tfrac{\pi}{2},q)=(2n-1)\mathrm{E}_{1,p}(q).

Consequently, we obtain

X(L^)X(0)=2n(2E1,p(q)K1,p(q)).\displaystyle X(\hat{L})-X(0)=2n\big{(}2\mathrm{E}_{1,p}(q)-\mathrm{K}_{1,p}(q)\big{)}.

Therefore, the left-hand side of both equalities in (3.9) are reduced to

2n(2E1,p(q)K1,p(q))2nK1,p(q)=2E1,p(q)K1,p(q)1,\frac{2n\big{(}2\mathrm{E}_{1,p}(q)-\mathrm{K}_{1,p}(q)\big{)}}{2n\mathrm{K}_{1,p}(q)}=2\frac{\mathrm{E}_{1,p}(q)}{\mathrm{K}_{1,p}(q)}-1,

which implies that qq in (3.7) has to satisfy (3.3) or (3.4). The proof is complete. ∎

Next we obtain necessary conditions for pinned flat-core pp-elasticae.

Lemma 3.6 (Pinned flat-core pp-elasticae).

Let P0,P1𝐑2P_{0},P_{1}\in\mathbf{R}^{2} and L>0L>0 such that r:=|P0P1|/L[0,1)r:=|P_{0}-P_{1}|/L\in[0,1). Let γ\gamma be a critical point of p\mathcal{B}_{p} in 𝒜P0,P1,L\mathcal{A}_{P_{0},P_{1},L}. Suppose that γ\gamma is a flat-core pp-elastica. Then it is necessary that

(3.10) r1p1.\displaystyle r\geq\frac{1}{p-1}.

Moreover, up to similarity and reparameterization, γ\gamma is given by

(3.11) γ=(j=1n(γLjγbσj))γLn+1\displaystyle\gamma=\bigg{(}\bigoplus_{j=1}^{n}\big{(}\gamma_{\ell}^{L_{j}}\oplus\gamma_{b}^{\sigma_{j}}\big{)}\bigg{)}\oplus\gamma_{\ell}^{L_{n+1}}

for some n𝐍n\in\mathbf{N}, {σj}j=1n{+,}\{\sigma_{j}\}_{j=1}^{n}\subset\{+,-\}, and L1,,Ln+10L_{1},\ldots,L_{n+1}\geq 0 such that (3.5) holds.

Proof.

By Proposition 2.12, clearly p>2p>2, and in addition, up to similarity and reparameterization, the curve γ\gamma is represented by γ^(s)=γf(s+s0)\hat{\gamma}(s)=\gamma_{f}(s+s_{0}) for s[0,L^]s\in[0,\hat{L}] with some s0𝐑s_{0}\in\mathbf{R}, where γf\gamma_{f} is given by (2.15) and L^\hat{L} is the length of the curve after dilation. Let k:[0,L^]𝐑k:[0,\hat{L}]\to\mathbf{R} be the signed curvature of γ^\hat{\gamma}. Since k(0)=k(L^)=0k(0)=k(\hat{L})=0 follows from Lemma 3.1, there are n𝐍n\in\mathbf{N}, {σj}j=1n{+,}\{\sigma_{j}\}_{j=1}^{n}\subset\{+,-\}, L1,,Ln+10L_{1},\ldots,L_{n+1}\geq 0 such that for s[0,L^]s\in[0,\hat{L}],

(3.12) γ^(s)=((j=1n(γLjγbσj))γLn+1)(s),\displaystyle\hat{\gamma}(s)=\left(\bigg{(}\bigoplus_{j=1}^{n}\big{(}\gamma_{\ell}^{L_{j}}\oplus\gamma_{b}^{\sigma_{j}}\big{)}\bigg{)}\oplus\gamma_{\ell}^{L_{n+1}}\right)(s),

where γb±:[Kp(1),Kp(1)]𝐑2\gamma_{b}^{\pm}:[-\mathrm{K}_{p}(1),\mathrm{K}_{p}(1)]\to\mathbf{R}^{2} and γLj:[0,Lj]𝐑2\gamma_{\ell}^{L_{j}}:[0,L_{j}]\to\mathbf{R}^{2} are defined by (2.16). Given the form of the right-hand side of (3.12), we notice that

(3.13) L^=LΣ+2nKp(1),LΣ:=j=1n+1Lj.\displaystyle\hat{L}=L_{\Sigma}+2n\mathrm{K}_{p}(1),\quad L_{\Sigma}:=\sum_{j=1}^{n+1}L_{j}.

Set l^:=|γ^(0)γ^(L^)|\hat{l}:=|\hat{\gamma}(0)-\hat{\gamma}(\hat{L})|. Similar to the proof of Lemma 3.5, we consider the condition to satisfy l^/L^=|P0P1|/L=r\hat{l}/\hat{L}=|P_{0}-P_{1}|/L=r. We infer from [19, Lemma 5.7] that the distance between the endpoints of γb±\gamma_{b}^{\pm} is 2Kp(1)/(p1)2\mathrm{K}_{p}(1)/(p-1). Therefore it follows that

l^=n2Kp(1)p1+LΣ.\hat{l}=n\frac{2\mathrm{K}_{p}(1)}{p-1}+L_{\Sigma}.

This together with (3.13) yields

LΣ+2np1Kp(1)LΣ+2nKp(1)=l^L^=r,\displaystyle\frac{L_{\Sigma}+\frac{2n}{p-1}\mathrm{K}_{p}(1)}{L_{\Sigma}+2n\mathrm{K}_{p}(1)}=\frac{\hat{l}}{\hat{L}}=r,

which is equivalent to (3.5). Thus we find that (3.10) is also necessary since the right-hand side of (3.5) must be nonnegative. ∎

Now we complete the proof of Theorem 1.1.

Proof of Theorem 1.1.

Let γ\gamma be a pinned pp-elastica. By Lemma 3.1, γ\gamma is either a wavelike pp-elastica or a flat-core pp-elastica.

We first consider the case r=0r=0. In view of (3.10), flat-core pp-elasticae are ruled out in this case, so it suffices to consider γ\gamma being a wavelike pp-elastica. Then we infer from Lemma 3.5 that, up to similarity and reparameterization, γ\gamma is given by (3.6) for some n𝐍n\in\mathbf{N}, where qq is a solution to (3.3) with r=0r=0, that is, q=q(p)q=q^{*}(p) in Definition 2.7. This implies that γ\gamma is an n2\frac{n}{2}-fold figure-eight pp-elastica.

Next we assume r(0,1p1)r\in(0,\frac{1}{p-1}). In this case, again by (3.10), γ\gamma is a wavelike pp-elastica. We infer from Lemma 2.6 that (3.3) (resp. (3.4)) has a unique solution q(0,q(p))q\in(0,q^{*}(p)) (resp. q(q(p),1)q\in(q^{*}(p),1)). Hence, by Lemma 3.5, γ\gamma is either a (p,r,n)(p,r,n)-arc or a (p,r,n)(p,r,n)-loop, for some n𝐍n\in\mathbf{N}.

The remaining case is r[1p1,1)r\in[\frac{1}{p-1},1). First we consider the case where γ\gamma is a wavelike pp-elastica. From Lemma 2.6 we infer that (3.3) has a unique solution q(0,q(p))q\in(0,q^{*}(p)) but (3.4) has no solution. Therefore, in this case γ\gamma is a (p,r,n)(p,r,n)-arc for some n𝐍n\in\mathbf{N}. If γ\gamma is a flat-core pp-elastica, then Lemma 3.6 implies the desired assertion. ∎

Remark 3.7 (Sufficiency).

Conversely, all the candidates in Theorem 1.1 are indeed pinned pp-elasticae as long as the curves are admissible.

Below we put down some geometric properties of arcs and loops, which follow by explicit formulae. Although we focus on the one-fold case, the general case is obtained by its antiperiodic extension (cf. Figure 1) and hence the symmetry is inherited in a certain sense.

Lemma 3.8.

Let p(1,)p\in(1,\infty) and r[0,1)r\in[0,1). Let γ\gamma be either a (p,r,1)(p,r,1)-arc or a (p,r,1)(p,r,1)-loop. Then γ\gamma is reflectionally symmetric in the sense that, up to similarity and reparameterization, the curve has an arclength parameterization γ=(X,Y):[0,L]𝐑2\gamma=(X,Y):[0,L]\to\mathbf{R}^{2} satisfying that

X(s)+X(Ls)=2X(L2),Y(s)=Y(Ls),fors[0,L].\displaystyle X(s)+X(L-s)=2X(\tfrac{L}{2}),\quad Y(s)=Y(L-s),\quad\text{for}\ s\in[0,L].

In addition, if r>0r>0 and γ\gamma is a (p,r,1)(p,r,1)-loop, then γ\gamma has a self-intersection, i.e., there is σ(0,L2)\sigma\in(0,\tfrac{L}{2}) such that γ(σ)=γ(Lσ)\gamma(\sigma)=\gamma(L-\sigma).

Proof.

Reflection symmetry follows since by Definition 3.2, up to similarity and reparameterization, γ\gamma is given by (Xw,Yw):=γw:[K1,p(q),K1,p(q)]𝐑2(X_{w},Y_{w}):=\gamma_{w}:[-\mathrm{K}_{1,p}(q),\mathrm{K}_{1,p}(q)]\to\mathbf{R}^{2}, cf. Proposition 2.12, for which it is easy to check that Xw(s)=Xw(s)X_{w}(s)=-X_{w}(-s) and Yw(s)=Yw(s)Y_{w}(s)=Y_{w}(s).

Now we check that a (p,r,1)(p,r,1)-loop has a self-intersection. By the above symmetry it suffices to find σ(0,K1,p(q))\sigma\in(0,\mathrm{K}_{1,p}(q)) such that Xw(σ)=0X_{w}(\sigma)=0. By the fact that Xw(0)=0X_{w}(0)=0 and Xw(0)=1>0X_{w}^{\prime}(0)=1>0, and by the intermediate value theorem, it is now sufficient to show that Xw(K1,p(q))<0X_{w}(\mathrm{K}_{1,p}(q))<0. This follows since Xw(K1,p(q))=2E1,p(q)K1,p(q)=rK1,p(q)X_{w}(\mathrm{K}_{1,p}(q))=2\mathrm{E}_{1,p}(q)-\mathrm{K}_{1,p}(q)=-r\mathrm{K}_{1,p}(q), cf. (3.4), where r>0r>0 and K1,p(q)>0\mathrm{K}_{1,p}(q)>0. ∎

A parallel argument shows that each loop of a flat-core is also a symmetric curve with a self-intersection.

4. Unique existence and geometric properties of global minimizers

In this section we compute the normalized pp-bending energy ¯p\overline{\mathcal{B}}_{p} of each pinned pp-elastica and detect a unique global minimizer, thus proving Theorem 1.4. We then investigate geometric properties of the half-fold figure-eights and prove Theorem 1.5.

4.1. Unique existence

We first prove the existence of minimizers of p\mathcal{B}_{p} in 𝒜P0,P1,L\mathcal{A}_{P_{0},P_{1},L} by the standard direct method.

Proposition 4.1.

Given P0,P1𝐑2P_{0},P_{1}\in\mathbf{R}^{2} and L>0L>0 such that |P0P1|<L|P_{0}-P_{1}|<L, there exists a solution to the following minimization problem

minγ𝒜P0,P1,Lp[γ].\min_{\gamma\in\mathcal{A}_{P_{0},P_{1},L}}\mathcal{B}_{p}[\gamma].
Proof.

Let {γj}j𝐍𝒜P0,P1,L\{\gamma_{j}\}_{j\in\mathbf{N}}\subset\mathcal{A}_{P_{0},P_{1},L} be a minimizing sequence of p\mathcal{B}_{p} in 𝒜P0,P1,L\mathcal{A}_{P_{0},P_{1},L}, i.e.,

(4.1) limjp[γj]=infγ𝒜P0,P1,Lp[γ].\displaystyle\lim_{j\to\infty}\mathcal{B}_{p}[\gamma_{j}]=\inf_{\gamma\in\mathcal{A}_{P_{0},P_{1},L}}\mathcal{B}_{p}[\gamma].

Up to reparameterization, we may suppose that γj\gamma_{j} is of constant speed so that |γj|[γj]=L|\gamma^{\prime}_{j}|\equiv\mathcal{L}[\gamma_{j}]=L. By (4.1) there is C>0C>0 such that p[γj]C\mathcal{B}_{p}[\gamma_{j}]\leq C for any j𝐍j\in\mathbf{N}, and hence the assumption of constant-speed implies that

(4.2) γj′′Lpp=0L(L2|γ~j′′(s)|)pdsL=L2p1p[γj],\displaystyle\|\gamma_{j}^{\prime\prime}\|_{L^{p}}^{p}=\int_{0}^{L}\big{(}L^{2}|\tilde{\gamma}_{j}^{\prime\prime}(s)|\big{)}^{p}\,\frac{ds}{L}=L^{2p-1}\mathcal{B}_{p}[\gamma_{j}],

where γ~j\tilde{\gamma}_{j} stands for the arclength parameterization of γj\gamma_{j}. This yields the uniform estimate of γj′′Lp\|{\gamma}_{j}^{\prime\prime}\|_{L^{p}}. Using |γj|L|\gamma_{j}^{\prime}|\equiv L and the boundary condition, we also obtain the bounds on the W1,pW^{1,p}-norm. Therefore, {γj}j𝐍\{\gamma_{j}\}_{j\in\mathbf{N}} is uniformly bounded in W2,p(0,1;𝐑2)W^{2,p}(0,1;\mathbf{R}^{2}) so that there is a subsequence (without relabeling) that converges in the senses of W2,pW^{2,p}-weak and C1C^{1} topology. Thus the limit curve γ\gamma_{\infty} satisfies γW2,p(0,1;𝐑2)\gamma_{\infty}\in W^{2,p}(0,1;\mathbf{R}^{2}), |γ|L|\gamma_{\infty}^{\prime}|\equiv L, γ(0)=P0\gamma_{\infty}(0)=P_{0}, and γ(1)=P1\gamma_{\infty}(1)=P_{1}, which implies that γ𝒜P0,P1,L\gamma_{\infty}\in\mathcal{A}_{P_{0},P_{1},L}. Moreover, similar to (4.2), we infer from |γ|L|\gamma_{\infty}^{\prime}|\equiv L that

p[γ]\displaystyle\mathcal{B}_{p}[\gamma_{\infty}] =L12pγ′′Lpp.\displaystyle=L^{1-2p}\|\gamma_{\infty}^{\prime\prime}\|_{L^{p}}^{p}.

This together with the weak lower semicontinuity for Lp\|\cdot\|_{L^{p}} ensures that

p[γ]\displaystyle\mathcal{B}_{p}[\gamma_{\infty}] lim infjL12pγj′′Lpp=lim infjp[γj].\displaystyle\leq\liminf_{j\to\infty}L^{1-2p}\|\gamma_{j}^{\prime\prime}\|_{L^{p}}^{p}=\liminf_{j\to\infty}\mathcal{B}_{p}[\gamma_{j}].

This with (4.1) implies that γ\gamma_{\infty} is a minimizer of p\mathcal{B}_{p} in 𝒜P0,P1,L\mathcal{A}_{P_{0},P_{1},L}. ∎

Note that any minimizer of p\mathcal{B}_{p} in 𝒜P0,P1,L\mathcal{A}_{P_{0},P_{1},L} is a pinned pp-elastica. Thanks to the classification in the previous section, for detecting a minimizer it is sufficient to compute the pp-bending energy of each pinned pp-elastica. To this end it is sufficient to compute the normalized pp-bending energy

¯p:=p1p,\overline{\mathcal{B}}_{p}:=\mathcal{L}^{p-1}\mathcal{B}_{p},

cf. (1.2), since we compare the energy of curves of same length. The energy ¯p\overline{\mathcal{B}}_{p} has the advantage of being scale-invariant in the sense that for any curve γ\gamma and Λ>0\Lambda>0, if we define γΛ(t):=Λγ(t)\gamma_{\Lambda}(t):=\Lambda\gamma(t), then ¯p[γ]=¯p[γΛ]\overline{\mathcal{B}}_{p}[\gamma]=\overline{\mathcal{B}}_{p}[\gamma_{\Lambda}]. Thus we need not adjust the length of pinned pp-elasticae but can use their natural length involving complete pp-elliptic integrals.

First, we address the wavelike case. To this end, we prepare the following

Lemma 4.2.

For each q(0,1)q\in(0,1) (including q=1q=1 if p>2p>2),

0K1,p(q)|cnp(s,q)|p𝑑s=1q2E1,p(q)+(11q2)K1,p(q).\displaystyle\int_{0}^{\mathrm{K}_{1,p}(q)}|\operatorname{cn}_{p}(s,q)|^{p}\,ds=\frac{1}{q^{2}}\mathrm{E}_{1,p}(q)+\Big{(}1-\frac{1}{q^{2}}\Big{)}\mathrm{K}_{1,p}(q).
Proof.

Fix q(0,1)q\in(0,1) (q(0,1]q\in(0,1] if p>2p>2) arbitrarily. By definition of cnp\operatorname{cn}_{p}, we have

0K1,p(q)|cnp(s,q)|p𝑑s\displaystyle\int_{0}^{\mathrm{K}_{1,p}(q)}|\operatorname{cn}_{p}(s,q)|^{p}\,ds =0K1,p(q)|cosam1,p(s,q)|2𝑑s\displaystyle=\int_{0}^{\mathrm{K}_{1,p}(q)}|\cos\operatorname{am}_{1,p}(s,q)|^{2}\,ds
=0π2|cosξ|2|cosξ|12p1q2sin2ξ𝑑ξ,\displaystyle=\int_{0}^{\frac{\pi}{2}}|\cos\xi|^{2}\frac{|\cos\xi|^{1-\frac{2}{p}}}{\sqrt{1-q^{2}\sin^{2}\xi}}\,d\xi,

where we used the change of variables ξ=am1,p(s,q)\xi=\operatorname{am}_{1,p}(s,q). Keeping the definitions of K1,p\mathrm{K}_{1,p} and E1,p\mathrm{E}_{1,p} in mind, we compute

0π2|cosξ|2|cosξ|12p1q2sin2ξ𝑑ξ\displaystyle\int_{0}^{\frac{\pi}{2}}|\cos\xi|^{2}\frac{|\cos\xi|^{1-\frac{2}{p}}}{\sqrt{1-q^{2}\sin^{2}\xi}}\,d\xi =1q20π2q2(1sin2ξ)|cosξ|12p1q2sin2ξ𝑑ξ\displaystyle=\frac{1}{q^{2}}\int_{0}^{\frac{\pi}{2}}q^{2}(1-\sin^{2}\xi)\frac{|\cos\xi|^{1-\frac{2}{p}}}{\sqrt{1-q^{2}\sin^{2}\xi}}\,d\xi
=1q20π2(1q2sin2ξ)|cosξ|12p1q2sin2ξ𝑑ξ\displaystyle=\frac{1}{q^{2}}\int_{0}^{\frac{\pi}{2}}(1-q^{2}\sin^{2}\xi)\frac{|\cos\xi|^{1-\frac{2}{p}}}{\sqrt{1-q^{2}\sin^{2}\xi}}\,d\xi
+1q20π2(q21)|cosξ|12p1q2sin2ξ𝑑ξ\displaystyle\quad+\frac{1}{q^{2}}\int_{0}^{\frac{\pi}{2}}(q^{2}-1)\frac{|\cos\xi|^{1-\frac{2}{p}}}{\sqrt{1-q^{2}\sin^{2}\xi}}\,d\xi
=1q2E1,p(q)+(q21q2)K1,p(q).\displaystyle=\frac{1}{q^{2}}\mathrm{E}_{1,p}(q)+\Big{(}\frac{q^{2}-1}{q^{2}}\Big{)}\mathrm{K}_{1,p}(q).

The proof is complete. ∎

Using this formula, we can compute the normalized pp-bending energy of (p,r,n)(p,r,n)-arcs and (p,r,n)(p,r,n)-loops.

Proposition 4.3.

Let p(1,)p\in(1,\infty), r[0,1)r\in[0,1), and n𝐍n\in\mathbf{N}. Let γ\gamma be a (p,r,n)(p,r,n)-arc or a (p,r,n)(p,r,n)-loop. Then the normalized pp-bending energy of γ\gamma is given by

(4.3) ¯p[γ]=22pnpqpK1,p(q)p1(1q2E1,p(q)+(11q2)K1,p(q)),\displaystyle\overline{\mathcal{B}}_{p}[\gamma]=2^{2p}n^{p}q^{p}\mathrm{K}_{1,p}(q)^{p-1}\bigg{(}\frac{1}{q^{2}}\mathrm{E}_{1,p}(q)+\Big{(}1-\frac{1}{q^{2}}\Big{)}\mathrm{K}_{1,p}(q)\bigg{)},

where if γ\gamma is a (p,r,n)(p,r,n)-arc, then q(0,1)q\in(0,1) is a solution to (3.3), while if γ\gamma is a (p,r,n)(p,r,n)-loop, then q(0,1)q\in(0,1) is a solution to (3.4).

Proof.

Since the proof is completely parallel, we only consider the case that γ\gamma is a (p,r,n)(p,r,n)-arc. Since ¯p\overline{\mathcal{B}}_{p} is invariant with respect to similar transformation and reparameterization, by Definition 3.2, we may assume that

γ(s)=γw(sK1,p(q),q),[γ]=2nK1,p(q),\gamma(s)=\gamma_{w}(s-\mathrm{K}_{1,p}(q),q),\quad\mathcal{L}[\gamma]=2n\mathrm{K}_{1,p}(q),

where q(0,1)q\in(0,1) is a solution of (3.3). Then we have

p[γ]=02nK1,p(q)|2qcnp(sK1,p(q),q)|p𝑑s=2n0K1,p(q)2pqp|cnp(s,q)|p𝑑s,\displaystyle\mathcal{B}_{p}[\gamma]=\int_{0}^{2n\mathrm{K}_{1,p}(q)}\left|2q\operatorname{cn}_{p}(s-\mathrm{K}_{1,p}(q),q)\right|^{p}\,ds=2n\int_{0}^{\mathrm{K}_{1,p}(q)}2^{p}q^{p}\left|\operatorname{cn}_{p}(s,q)\right|^{p}\,ds,

where we used the fact that cnp\operatorname{cn}_{p} is an even 2K1,p(q)2\mathrm{K}_{1,p}(q)-antiperiodic function (cf. Proposition 2.10). Combining this with Lemma 4.2, we obtain (4.3). ∎

Next we turn to the flat-core case.

Proposition 4.4.

Let p>2p>2, r[0,1)r\in[0,1), and n𝐍n\in\mathbf{N} such that (3.10) holds. Let γ\gamma be a (p,r,n,𝛔,𝐋)(p,r,n,\boldsymbol{\sigma},\boldsymbol{L})-flat-core. Then the normalized pp-bending energy of γ\gamma is given by

(4.4) ¯p[γ]=22pnpK1,p(1)p1E1,p(1)(11p11r)p1.\displaystyle\overline{\mathcal{B}}_{p}[\gamma]=2^{2p}n^{p}\mathrm{K}_{1,p}(1)^{p-1}\mathrm{E}_{1,p}(1)\left(\frac{1-\frac{1}{p-1}}{1-r}\right)^{p-1}.
Proof.

Let γ\gamma be a (p,r,n,𝝈,𝑳)(p,r,n,\boldsymbol{\sigma},\boldsymbol{L})-flat-core, i.e., there are 𝑳=(L1,,Ln+1)[0,)n+1\boldsymbol{L}=(L_{1},\ldots,L_{n+1})\in[0,\infty)^{n+1} and 𝝈=(σ1,,σn){+,}n\boldsymbol{\sigma}=(\sigma_{1},\ldots,\sigma_{n})\in\{+,-\}^{n} such that γ\gamma is given by (3.11). As discussed in (3.13), it follows that [γ]=j=1n+1Lj+2nKp(1)\mathcal{L}[\gamma]=\sum_{j=1}^{n+1}L_{j}+2n\mathrm{K}_{p}(1). Noting that 𝑳\boldsymbol{L} satisfies (3.5), we obtain

(4.5) [γ]=2nr1p11rKp(1)+2nKp(1)=2n11p11rKp(1).\displaystyle\mathcal{L}[\gamma]=2n\frac{r-\frac{1}{p-1}}{1-r}\mathrm{K}_{p}(1)+2n\mathrm{K}_{p}(1)=2n\frac{1-\frac{1}{p-1}}{1-r}\mathrm{K}_{p}(1).

In view of (2.17), we have

p[γ]=0L|kf(s)|p𝑑s\displaystyle\mathcal{B}_{p}[\gamma]=\int_{0}^{L}|k_{f}(s)|^{p}\,ds =i=1nsiKp(1)si+Kp(1)2p(sechp(ssi))p𝑑s\displaystyle=\sum_{i=1}^{n}\int_{s_{i}-\mathrm{K}_{p}(1)}^{s_{i}+\mathrm{K}_{p}(1)}2^{p}(\operatorname{sech}_{p}(s-s_{i}))^{p}\,ds
=2pnKp(1)Kp(1)(sechps)p𝑑s.\displaystyle=2^{p}n\int_{-\mathrm{K}_{p}(1)}^{\mathrm{K}_{p}(1)}(\operatorname{sech}_{p}s)^{p}\,ds.

Moreover, since sechp\operatorname{sech}_{p} is even (cf. Proposition 2.10), we obtain

Kp(1)Kp(1)(sechps)p𝑑s=20Kp(1)(sechps)p𝑑s=20Kp(1)|cnp(s,1)|p𝑑s=2E1,p(1),\int_{-\mathrm{K}_{p}(1)}^{\mathrm{K}_{p}(1)}(\operatorname{sech}_{p}s)^{p}\,ds=2\int_{0}^{\mathrm{K}_{p}(1)}(\operatorname{sech}_{p}s)^{p}\,ds=2\int_{0}^{\mathrm{K}_{p}(1)}|\operatorname{cn}_{p}(s,1)|^{p}\,ds=2\mathrm{E}_{1,p}(1),

where we also used the fact that cnp(,1)=sechp\operatorname{cn}_{p}(\cdot,1)=\operatorname{sech}_{p} in [0,Kp(1)][0,\mathrm{K}_{p}(1)] and Lemma 4.2. This together with (4.5) yields (4.4). The proof is complete. ∎

The following lemma plays an important role for the quantitative comparison of the normalized pp-bending energy among pinned pp-elasticae.

Lemma 4.5.

Let b:(0,1)𝐑b:(0,1)\to\mathbf{R} be the function defined by

(4.6) b(q):=qp(1q2E1,p(q)+(11q2)K1,p(q)),q(0,1),\displaystyle b(q):=q^{p}\bigg{(}\frac{1}{q^{2}}\mathrm{E}_{1,p}(q)+\Big{(}1-\frac{1}{q^{2}}\Big{)}\mathrm{K}_{1,p}(q)\bigg{)},\quad q\in(0,1),

and let b(1):=limq1b(q)=E1,p(1)b(1):=\lim_{q\uparrow 1}b(q)=\mathrm{E}_{1,p}(1) if p>2p>2. Then, for q(0,1)q\in(0,1),

(4.7) b(q)=(p1)qp1K1,p(q)+(p1)(12p)qp3(E1,p(q)K1,p(q))>0.\displaystyle b^{\prime}(q)=(p-1)q^{p-1}\mathrm{K}_{1,p}(q)+(p-1)\big{(}1-\tfrac{2}{p}\big{)}q^{p-3}\big{(}\mathrm{E}_{1,p}(q)-\mathrm{K}_{1,p}(q)\big{)}>0.

In particular, bb is strictly increasing with respect to q(0,1)q\in(0,1) (including q=1q=1 if p>2p>2).

Proof.

In view of (2.5), we see that for q(0,1)q\in(0,1)

b(q)\displaystyle b^{\prime}(q) =(p2)qp3E1,p(q)+qp2E1,p(q)K1,p(q)q\displaystyle=(p-2)q^{p-3}\mathrm{E}_{1,p}(q)+q^{p-2}\frac{\mathrm{E}_{1,p}(q)-\mathrm{K}_{1,p}(q)}{q}
+(pqp1(p2)qp3)K1,p(q)\displaystyle\quad+\Big{(}pq^{p-1}-(p-2)q^{p-3}\Big{)}\mathrm{K}_{1,p}(q)
+(qpqp2)(22pq2q(1q2)K1,p(q)+22pq(1q2)E1,p(q))\displaystyle\quad+(q^{p}-q^{p-2})\left(-\frac{2-\frac{2}{p}-q^{2}}{q(1-q^{2})}\mathrm{K}_{1,p}(q)+\frac{2-\frac{2}{p}}{q(1-q^{2})}\mathrm{E}_{1,p}(q)\right)
=(p1)qp1K1,p(q)+(p1)(12p)qp3(E1,p(q)K1,p(q)).\displaystyle=(p-1)q^{p-1}\mathrm{K}_{1,p}(q)+(p-1)\big{(}1-\tfrac{2}{p}\big{)}q^{p-3}\big{(}\mathrm{E}_{1,p}(q)-\mathrm{K}_{1,p}(q)\big{)}.

Therefore we obtain the left equality in (4.7). Next we show the positivity of bb^{\prime}. It follows from Proposition 2.5 that

E1,p(q)K1,p(q)q=ddqE1,p(q)=0π2qsin2θ|cosθ|12p1q2sin2θ𝑑θ.\frac{\mathrm{E}_{1,p}(q)-\mathrm{K}_{1,p}(q)}{q}=\frac{d}{dq}\mathrm{E}_{1,p}(q)=-\int_{0}^{\frac{\pi}{2}}\frac{q\sin^{2}\theta|\cos\theta|^{1-\frac{2}{p}}}{\sqrt{1-q^{2}\sin^{2}\theta}}d\theta.

This together with (2.3) and (4.7) yields

b(q)\displaystyle b^{\prime}(q) =(p1)qp10π2|cosθ|12p1q2sin2θ𝑑θ\displaystyle=(p-1)q^{p-1}\int_{0}^{\frac{\pi}{2}}\frac{|\cos\theta|^{1-\frac{2}{p}}}{\sqrt{1-q^{2}\sin^{2}\theta}}d\theta
(p1)(12p)qp20π2qsin2θ|cosθ|12p1q2sin2θ𝑑θ\displaystyle\quad-(p-1)\big{(}1-\tfrac{2}{p}\big{)}q^{p-2}\int_{0}^{\frac{\pi}{2}}\frac{q\sin^{2}\theta|\cos\theta|^{1-\frac{2}{p}}}{\sqrt{1-q^{2}\sin^{2}\theta}}d\theta
=(p1)qp10π2(1(12p)sin2θ)|cosθ|12p1q2sin2θ𝑑θ>0.\displaystyle=(p-1)q^{p-1}\int_{0}^{\frac{\pi}{2}}\left(1-\big{(}1-\tfrac{2}{p}\big{)}\sin^{2}\theta\right)\frac{|\cos\theta|^{1-\frac{2}{p}}}{\sqrt{1-q^{2}\sin^{2}\theta}}\,d\theta>0.

This implies the desired monotonicity and the proof is complete. ∎

We are in a position to prove the uniqueness of minimizers in 𝒜P0,P1,L\mathcal{A}_{P_{0},P_{1},L}.

Proof of Theorem 1.4.

The existence of minimizers of p\mathcal{B}_{p} in 𝒜P0,P1,L\mathcal{A}_{P_{0},P_{1},L} follows from Proposition 4.1. Fix any minimizer γ𝒜P0,P1,L\gamma\in\mathcal{A}_{P_{0},P_{1},L}. Then γ\gamma is a pinned pp-elastica. We divide the proof into three cases along the classification in Theorem 1.1.

First we consider the case r=0r=0. Then γ\gamma is an n2\frac{n}{2}-fold figure-eight pp-elastica, i.e., a (p,0,n)(p,0,n)-arc for some n𝐍n\in\mathbf{N}. By Proposition 4.3, the normalized pp-bending energy of a (p,0,n)(p,0,n)-arc is npn^{p} times that of a (p,0,1)(p,0,1)-arc, and hence a half-fold figure-eight pp-elastica (corresponding to n=1n=1) is a unique minimizer.

Next we consider the case r(0,1p1)r\in(0,\frac{1}{p-1}). Then γ\gamma is either a (p,r,n)(p,r,n)-arc or a (p,r,n)(p,r,n)-loop for some n𝐍n\in\mathbf{N}. Let B¯arcr,n\bar{B}^{r,n}_{\rm arc} and B¯loopr,n\bar{B}^{r,n}_{\rm loop} denote the corresponding values of the normalized pp-bending energy. Then, using a solution q1(0,q(p))q_{1}\in(0,q^{*}(p)) of (3.3) and the function bb defined by (4.6), we have

B¯arcr,n=22pnpK1,p(q1)p1b(q1).\displaystyle\bar{B}^{r,n}_{\rm arc}=2^{2p}n^{p}\mathrm{K}_{1,p}(q_{1})^{p-1}b(q_{1}).

Similarly, using a solution q2(q(p),1)q_{2}\in(q^{*}(p),1) of (3.4), we obtain

B¯loopr,n=22pnpK1,p(q2)p1b(q2).\bar{B}^{r,n}_{\rm loop}=2^{2p}n^{p}\mathrm{K}_{1,p}(q_{2})^{p-1}b(q_{2}).

Therefore, we see that B¯arcr,1<B¯arcr,n\bar{B}^{r,1}_{\rm arc}<\bar{B}^{r,n}_{\rm arc} and B¯loopr,1<B¯loopr,n\bar{B}^{r,1}_{\rm loop}<\bar{B}^{r,n}_{\rm loop} for any n2n\geq 2. Furthermore, since 0<q1<q(p)<q2<10<q_{1}<q^{*}(p)<q_{2}<1, we infer from Proposition 2.5 and Lemma 4.5 that

B¯arcr,1=22pK1,p(q1)p1b(q1)<22pK1,p(q2)p1b(q2)=B¯loopr,1.\bar{B}^{r,1}_{\rm arc}=2^{2p}\mathrm{K}_{1,p}(q_{1})^{p-1}b(q_{1})<2^{2p}\mathrm{K}_{1,p}(q_{2})^{p-1}b(q_{2})=\bar{B}^{r,1}_{\rm loop}.

Consequently a (p,r,1)(p,r,1)-arc is a unique minimizer.

Finally we turn to the case r1p1r\geq\frac{1}{p-1}. In this case, γ\gamma is either a (p,r,1)(p,r,1)-arc or a (p,r,n,𝝈,𝑳)(p,r,n,\boldsymbol{\sigma},\boldsymbol{L})-flat-core. Let B¯flatr,n\bar{B}^{r,n}_{\rm flat} denote the value of the normalized pp-bending energy of a (p,r,n,𝝈,𝑳)(p,r,n,\boldsymbol{\sigma},\boldsymbol{L})-flat-core (which is independent of 𝝈,𝑳\boldsymbol{\sigma},\boldsymbol{L}, cf. Proposition 4.4). Then we infer from (4.4) that

B¯flatr,n=22pnpK1,p(1)p1b(1)(11p11r)p1.\bar{B}^{r,n}_{\rm flat}=2^{2p}n^{p}\mathrm{K}_{1,p}(1)^{p-1}b(1)\left(\frac{1-\frac{1}{p-1}}{1-r}\right)^{p-1}.

Since 11p11r1\frac{1-\frac{1}{p-1}}{1-r}\geq 1 by (3.10), using Proposition 2.5 and Lemma 4.5, we obtain

B¯arcr,1\displaystyle\bar{B}^{r,1}_{\rm arc} =22pb(q1)K1,p(q1)p1<22pb(1)K1,p(1)p1\displaystyle=2^{2p}b(q_{1})\mathrm{K}_{1,p}(q_{1})^{p-1}<2^{2p}b(1)\mathrm{K}_{1,p}(1)^{p-1}
22pb(1)K1,p(1)p1(11p11r)p1=B¯flatr,1<B¯flatr,n\displaystyle\leq 2^{2p}b(1)\mathrm{K}_{1,p}(1)^{p-1}\left(\frac{1-\frac{1}{p-1}}{1-r}\right)^{p-1}=\bar{B}^{r,1}_{\rm flat}<\bar{B}^{r,n}_{\rm flat}

for any n2n\geq 2. As a result a (p,r,1)(p,r,1)-arc is a unique minimizer. ∎

4.2. Properties of a half-fold figure-eight pp-elastica

In this subsection, we discuss some properties of a half-fold figure-eight pp-elastica, and in particular, we prove Theorem 1.5.

To begin with, we collect the basic properties of a half-fold figure-eight pp-elastica.

Proposition 4.6 (Basic properties of a half-fold figure-eight pp-elastica).

Let γ\gamma be a half-fold figure-eight pp-elastica. Then up to similarlity and reparameterization, γ\gamma is given by, for s[0,2K1,p(q(p))]s\in[0,2\mathrm{K}_{1,p}(q^{*}(p))],

(4.8) γ(s)=(2E1,p(am1,p(sK1,p(q),q),q)(sK1,p(q))qpp1|cnp(sK1,p(q),q)|p2cnp(sK1,p(q),q)),\displaystyle\begin{split}\gamma(s)&=\begin{pmatrix}2\mathrm{E}_{1,p}(\operatorname{am}_{1,p}(s-\mathrm{K}_{1,p}(q^{*}),q^{*}),q^{*})-(s-\mathrm{K}_{1,p}(q^{*}))\\ -q^{*}\frac{p}{p-1}|\operatorname{cn}_{p}(s-\mathrm{K}_{1,p}(q^{*}),q^{*})|^{p-2}\operatorname{cn}_{p}(s-\mathrm{K}_{1,p}(q^{*}),q^{*})\end{pmatrix},\end{split}

where q=q(p)q^{*}=q^{*}(p). In addition, the following properties hold.

  • (i)

    The tangential angle is θ(s)=2arcsin(q(p)snp(sK1,p(q(p)),q(p)))\theta(s)=2\arcsin{(q^{*}(p)\operatorname{sn}_{p}(s-\mathrm{K}_{1,p}(q^{*}(p)),q^{*}(p)))}.

  • (ii)

    The curve γ\gamma defined by (4.8) takes the origin if and only if s=0,2K1,p(q(p))s=0,2\mathrm{K}_{1,p}(q^{*}(p)).

  • (iii)

    Let ϕ:(1,)(0,π)\phi^{*}:(1,\infty)\to(0,\pi) be

    (4.9) ϕ(p)=π2arcsin(q(p)).\displaystyle\phi^{*}(p)=\pi-2\arcsin(q^{*}(p)).

    Then γ(2K1,p(q(p)))=R2ϕ(p)γ(0)\gamma^{\prime}(2\mathrm{K}_{1,p}(q^{*}(p)))=R_{-2\phi^{*}(p)}\gamma^{\prime}(0), where RθR_{\theta} stands for the counterclockwise rotation matrix through angle θ𝐑\theta\in\mathbf{R}.

Proof.

By Proposition 2.12 and by definition of a half-fold figure-eight pp-elastica, up to similarity and reparameterization, we have γ(s)=γw(sK1,p(q(p)),q(p))\gamma(s)=\gamma_{w}(s-\mathrm{K}_{1,p}(q^{*}(p)),q^{*}(p)) implying (4.8) and property (i). Property (ii) follows from (4.8). We finally prove property (iii). By property (i) we have θ(0)=2arcsin(q(p))\theta(0)=-2\arcsin(q^{*}(p)) and θ(2K1,p(q(p)))=2arcsin(q(p))\theta(2\mathrm{K}_{1,p}(q^{*}(p)))=2\arcsin(q^{*}(p)). By definition of ϕ\phi^{*}, it follows that θ(2K1,p(q(p)))+2ϕ(p)=2π2arcsin(q(p))=2π+θ(0)\theta(2\mathrm{K}_{1,p}(q^{*}(p)))+2\phi^{*}(p)=2\pi-2\arcsin(q^{*}(p))=2\pi+\theta(0). This together with γ(s)=(cosθ(s),sinθ(s))\gamma^{\prime}(s)=(\cos{\theta(s)},\sin{\theta(s)}) yields R2ϕ(p)γ(2K1,p(q(p)))=γ(0)R_{2\phi^{*}(p)}\gamma^{\prime}(2\mathrm{K}_{1,p}(q^{*}(p)))=\gamma^{\prime}(0) and hence property (iii). ∎

From the previous proposition we see that ϕ(p)\phi^{*}(p) characterizes the crossing angle of a figure-eight pp-elastica, cf. Figure 3. Notice that the parameterization in (4.8) rotated through angle π\pi represents the left curve in Figure 3.

Hereafter we investigate properties of ϕ(p)\phi^{*}(p) through the analysis of q(p)q^{*}(p). Noting that q(p)q^{*}(p) is a unique solution of Qp(q)=0Q_{p}(q)=0, cf. (2.8), we introduce

(4.10) Q~p(q):=K1,p(q)Qp(q)=2E1,p(q)K1,p(q),q[0,1).\displaystyle\widetilde{Q}_{p}(q):=\mathrm{K}_{1,p}(q)Q_{p}(q)=2\mathrm{E}_{1,p}(q)-\mathrm{K}_{1,p}(q),\quad q\in[0,1).

Since K1,p(q)>0\mathrm{K}_{1,p}(q)>0, the roots of Q~p\widetilde{Q}_{p} and QpQ_{p} coincide. Both Q~p\widetilde{Q}_{p} and QpQ_{p} have own advantages; in general the former is easy to compute at least for a fixed pp, but we will later discover that the latter has a remarkable monotone structure as pp varies, cf. Figure 6.

Lemma 4.7.

Let Q~p:[0,1)𝐑\widetilde{Q}_{p}:[0,1)\to\mathbf{R} be the function defined by (4.10). Then Q~p\widetilde{Q}_{p} is strictly decreasing and strictly concave. In addition, if p>2p>2, then

(4.11) Q~p(1):=limq1Q~p(q)=K1,p(1)p1(,0).\displaystyle\widetilde{Q}_{p}(1):=\lim_{q\uparrow 1}\widetilde{Q}_{p}(q)=-\frac{\mathrm{K}_{1,p}(1)}{p-1}\in(-\infty,0).
Proof.

By Proposition 2.5, 2E1,p(q)2\mathrm{E}_{1,p}(q) and K1,p(q)-\mathrm{K}_{1,p}(q) are strictly decreasing, and hence so is Q~p\widetilde{Q}_{p}. By the change of variables, we can rewrite (2.7) as

(4.12) ddqK1,p(q)=01qz2(1q2z2)32(1z2)1p𝑑z,ddqE1,p(q)=01qz2(1q2z2)12(1z2)1p𝑑z.\displaystyle\begin{split}\frac{d}{dq}\mathrm{K}_{1,p}(q)&=\int_{0}^{1}\frac{qz^{2}}{(1-q^{2}z^{2})^{\frac{3}{2}}}(1-z^{2})^{-\frac{1}{p}}dz,\\ \frac{d}{dq}\mathrm{E}_{1,p}(q)&=-\int_{0}^{1}\frac{qz^{2}}{(1-q^{2}z^{2})^{\frac{1}{2}}}(1-z^{2})^{-\frac{1}{p}}dz.\end{split}

In particular we have

(4.13) ddqQ~p(q)\displaystyle\frac{d}{dq}\widetilde{Q}_{p}(q) =2ddqE1,p(q)ddqK1,p(q)=01qz2(3+2q2z2)(1q2z2)32(1z2)1p𝑑z.\displaystyle=2\frac{d}{dq}\mathrm{E}_{1,p}(q)-\frac{d}{dq}\mathrm{K}_{1,p}(q)=\int_{0}^{1}\frac{qz^{2}(-3+2q^{2}z^{2})}{(1-q^{2}z^{2})^{\frac{3}{2}}}(1-z^{2})^{-\frac{1}{p}}dz.

Differentiating once more, we obtain for q(0,1)q\in(0,1)

d2dq2Q~p(q)\displaystyle\frac{d^{2}}{dq^{2}}\widetilde{Q}_{p}(q) =301z2(1q2z2)52(1z2)1p𝑑z<0.\displaystyle=-3\int_{0}^{1}\frac{z^{2}}{(1-q^{2}z^{2})^{\frac{5}{2}}}(1-z^{2})^{-\frac{1}{p}}dz<0.

This implies the concavity of Q~p\widetilde{Q}_{p}. It remains to show (4.11) for p>2p>2. Combining (2.9) with the fact that K1,p(1)<\mathrm{K}_{1,p}(1)<\infty (cf. (2.1)), we obtain (4.11). ∎

In what follows we prove that ϕ(p)\phi^{*}(p) is continuously decreasing from π/2\pi/2 to 0 as pp varies from 11 to \infty (cf. Figure 5). First we prepare some basic properties of ϕ(p)\phi^{*}(p).

Refer to caption
Figure 5. The graph of pϕ(p)/πp\mapsto\phi^{*}(p)/\pi.
Proposition 4.8.

Let ϕ:(1,)𝐑\phi^{*}:(1,\infty)\to\mathbf{R} be given by (4.9). Then ϕ(p)\phi^{*}(p) satisfies the following properties.

  1. (i)

    0<ϕ(p)<π/20<\phi^{*}(p)<\pi/2  for any   p(1,)p\in(1,\infty).

  2. (ii)

    ϕ(p)π/2\phi^{*}(p)\to\pi/2  as  p1p\downarrow 1.

  3. (iii)

    ϕ(p)0\phi^{*}(p)\to 0  as  pp\to\infty.

  4. (iv)

    ϕ\phi^{*} is continuously differentiable on (1,)(1,\infty).

Proof.

First we check property (i). To this end, by (4.9) it suffices to show that 1/2<q(p)<11/\sqrt{2}<q^{*}(p)<1 for any p(1,)p\in(1,\infty). From the fact that

Qp(12)=K1,p(12)10π21sin2θ112sin2θ|cosθ|12p𝑑θ>0=Qp(q(p))Q_{p}(\tfrac{1}{\sqrt{2}})=\mathrm{K}_{1,p}(\tfrac{1}{\sqrt{2}})^{-1}\int_{0}^{\frac{\pi}{2}}\frac{1-\sin^{2}\theta}{\sqrt{1-\frac{1}{2}\sin^{2}\theta}}|\cos\theta|^{1-\frac{2}{p}}\,d\theta>0=Q_{p}(q^{*}(p))

and monotonicity of QpQ_{p} (cf. Lemma 2.6), it follows that q(p)>1/2q^{*}(p)>1/\sqrt{2}. By definition of q(p)q^{*}(p), it also follows that q(p)<1q^{*}(p)<1.

Next we show property (ii). In view of (4.9), it suffices to show that q(p)1/2q^{*}(p)\to 1/\sqrt{2} as p1p\downarrow 1. By concavity of Q~p\widetilde{Q}_{p} (cf. Lemma 4.7), it turns out that

(4.14) Q~p(q(p))Q~p(12)q(p)12<Q~p(12).\displaystyle\frac{\widetilde{Q}_{p}(q^{*}(p))-\widetilde{Q}_{p}(\tfrac{1}{\sqrt{2}})}{q^{*}(p)-\tfrac{1}{\sqrt{2}}}<\widetilde{Q}_{p}^{\prime}(\tfrac{1}{\sqrt{2}}).

By definition we have

Q~p(q)=0112q2z21q2z2(1z2)1p𝑑z,q[0,1),\displaystyle\widetilde{Q}_{p}(q)=\int_{0}^{1}\frac{1-2q^{2}z^{2}}{\sqrt{1-q^{2}z^{2}}}(1-z^{2})^{-\frac{1}{p}}\,dz,\quad q\in[0,1),

from which it follows that

(4.15) 0<Q~p(12)\displaystyle 0<\widetilde{Q}_{p}(\tfrac{1}{\sqrt{2}}) =011z2112z2(1z2)1pdz011112z2dz=:C1.\displaystyle=\int_{0}^{1}\frac{1-z^{2}}{\sqrt{1-\frac{1}{2}z^{2}}}(1-z^{2})^{-\frac{1}{p}}\,dz\leq\int_{0}^{1}\frac{1}{\sqrt{1-\frac{1}{2}z^{2}}}\,dz=:C_{1}.

In addition, using (4.13), we obtain

(4.16) Q~p(12)=01z2(3z2)2(112z2)32(1z2)1p𝑑z2201z2(1z)1p𝑑z212114(1z)1p𝑑z142pp1.\displaystyle\begin{split}-\,\widetilde{Q}_{p}^{\prime}(\tfrac{1}{\sqrt{2}})&=\int_{0}^{1}\frac{z^{2}(3-z^{2})}{\sqrt{2}(1-\frac{1}{2}z^{2})^{\frac{3}{2}}}(1-z^{2})^{-\frac{1}{p}}\,dz\geq\frac{2}{\sqrt{2}}\int_{0}^{1}z^{2}(1-z)^{-\frac{1}{p}}\,dz\\ &\geq\sqrt{2}\int_{\frac{1}{2}}^{1}\frac{1}{4}(1-z)^{-\frac{1}{p}}\,dz\geq\frac{1}{4\sqrt{2}}\frac{p}{p-1}.\end{split}

Combining this with (4.14) and (4.15), we have

0<q(p)12<Q~p(12)Q~p(12)42C1p1p,0<q^{*}(p)-\tfrac{1}{\sqrt{2}}<\frac{\widetilde{Q}_{p}(\tfrac{1}{\sqrt{2}})}{-\widetilde{Q}_{p}^{\prime}(\tfrac{1}{\sqrt{2}})}\leq 4\sqrt{2}C_{1}\frac{p-1}{p},

which yields q(p)1/2q^{*}(p)\to 1/\sqrt{2} as p1p\downarrow 1.

We turn to property (iii). To this end, we show that q(p)1q^{*}(p)\to 1 as pp\to\infty. By Lemma 4.7, if p>2p>2, then Q~p(1)\widetilde{Q}_{p}(1) is well defined, and we infer from concavity of Q~p\widetilde{Q}_{p} that

(4.17) Q~p(1)Q~p(q(p))1q(p)<Q~p(q(p)).\displaystyle\frac{\widetilde{Q}_{p}(1)-\widetilde{Q}_{p}(q^{*}(p))}{1-q^{*}(p)}<\widetilde{Q}_{p}^{\prime}(q^{*}(p)).

Moreover, concavity of Q~p\widetilde{Q}_{p} and q(p)>1/2q^{*}(p)>1/\sqrt{2} also imply that

(4.18) Q~p(q(p))<Q~p(12)<0.\displaystyle\widetilde{Q}_{p}^{\prime}(q^{*}(p))<\widetilde{Q}_{p}^{\prime}(\tfrac{1}{\sqrt{2}})<0.

This together with (4.11) and (4.17) gives

0<1q(p)<Q~p(1)Q~p(q(p))K1,p(1)p11Q~p(12)42K1,p(1)1p,0<1-q^{*}(p)<\frac{\widetilde{Q}_{p}(1)}{\widetilde{Q}_{p}^{\prime}(q^{*}(p))}\leq\frac{\mathrm{K}_{1,p}(1)}{p-1}\frac{1}{-\widetilde{Q}_{p}^{\prime}(\tfrac{1}{\sqrt{2}})}\leq 4\sqrt{2}\mathrm{K}_{1,p}(1)\frac{1}{p},

where we also used (4.16). The right-hand side tends to be zero since

K1,p(1)=01(1z2)121p𝑑z=O(1),asp.\mathrm{K}_{1,p}(1)=\int_{0}^{1}(1-z^{2})^{-\frac{1}{2}-\frac{1}{p}}\,dz=O(1),\quad\text{as}\quad p\to\infty.

Consequently, we obtain q(p)1q^{*}(p)\to 1 as pp\to\infty.

It remains to prove property (iv). Let FF be a function defined by F:(1,)×(0,1)𝐑;(p,q)Q~p(q)F:(1,\infty)\times(0,1)\to\mathbf{R};(p,q)\mapsto\widetilde{Q}_{p}(q). Then, FF is continuously differentiable with respect to pp and qq. Indeed, it follows that

Fp(p,q)\displaystyle\frac{\partial F}{\partial p}(p,q) =0112q2z21q2z21p2(1z2)1plog(1z2)𝑑z,\displaystyle=\int_{0}^{1}\frac{1-2q^{2}z^{2}}{\sqrt{1-q^{2}z^{2}}}\frac{1}{p^{2}}(1-z^{2})^{-\frac{1}{p}}\log(1-z^{2})\,dz,
Fq(p,q)\displaystyle\frac{\partial F}{\partial q}(p,q) =01qz2(3+2q2z2)(1q2z2)32(1z2)1p𝑑z.\displaystyle=\int_{0}^{1}\frac{qz^{2}(-3+2q^{2}z^{2})}{(1-q^{2}z^{2})^{\frac{3}{2}}}(1-z^{2})^{-\frac{1}{p}}\,dz.

From definition of q(p)q^{*}(p) and (4.18), we infer that

F(p,q(p))=Q~p(q(p))=0,Fq(p,q(p))=Q~p(q(p))<0.F(p,q^{*}(p))=\widetilde{Q}_{p}(q^{*}(p))=0,\quad\frac{\partial F}{\partial q}(p,q^{*}(p))=\widetilde{Q}_{p}^{\prime}(q^{*}(p))<0.

Hence, by the implicit function theorem, for each p(1,)p\in(1,\infty) there exists a neighborhood UU of (p,q(p))(p,q^{*}(p)) and a function f:U𝐑f:U\to\mathbf{R} such that F(p,f(p))=0F(p,f(p))=0. Moreover, Lemma 2.6 implies uniqueness of solutions qq to F(p,q)=Q~p(q)=0F(p,q)=\widetilde{Q}_{p}(q)=0 for each p(1,)p\in(1,\infty), and hence we see that q(p)=f(p)q^{*}(p)=f(p) in UU. Furthermore, by differentiability of FF, we notice that fC1(U)f\in C^{1}(U). Consequently the map pq(p)p\mapsto q^{*}(p) is continuously differentiable with respect to p(1,)p\in(1,\infty). The proof is complete. ∎

In order to obtain monotonicity of ϕ\phi^{*}, we here prove the key fact that QpQ_{p} has a remarkable monotone structure with respect to pp as in the left of Figure 6, in contrast to Q~p\widetilde{Q}_{p} as in the right of Figure 6.

Refer to caption
Refer to caption
Figure 6. Graphs of QpQ_{p} (left) and graphs of Q~p\widetilde{Q}_{p} (right).
Proposition 4.9.

If 1<p1<p2<1<p_{1}<p_{2}<\infty, then

(4.19) Qp1(q)<Qp2(q)for anyq(0,1).\displaystyle Q_{p_{1}}(q)<Q_{p_{2}}(q)\quad\text{for any}\ \ q\in(0,1).
Proof.

Fix 1<p1<p2<1<p_{1}<p_{2}<\infty arbitrarily and define

g(q):=Qp1(q)Qp2(q),q[0,1).g(q):=Q_{p_{1}}(q)-Q_{p_{2}}(q),\quad q\in[0,1).

First we show that there is δ>0\delta>0 such that

(4.20) g(q)<0for allq(0,δ].\displaystyle g(q)<0\quad\text{for all}\quad q\in(0,\delta].

Note that (4.12) yields K1,p(0)=E1,p(0)=0\mathrm{K}^{\prime}_{1,p}(0)=\mathrm{E}^{\prime}_{1,p}(0)=0, where =ddq{}^{\prime}=\frac{d}{dq}. Combining this with

Qp′′(q)=2E1,p′′(q)K1,p(q)4E1,p(q)K1,p(q)K1,p(q)2+4E1,p(q)K1,p(q)2K1,p(q)32E1,p(q)K1,p′′(q)K1,p(q)2,Q^{\prime\prime}_{p}(q)=2\frac{\mathrm{E}_{1,p}^{\prime\prime}(q)}{\mathrm{K}_{1,p}(q)}-4\frac{\mathrm{E}_{1,p}^{\prime}(q)\mathrm{K}_{1,p}^{\prime}(q)}{\mathrm{K}_{1,p}(q)^{2}}+4\frac{\mathrm{E}_{1,p}(q)\mathrm{K}_{1,p}^{\prime}(q)^{2}}{\mathrm{K}_{1,p}(q)^{3}}-2\frac{\mathrm{E}_{1,p}(q)\mathrm{K}_{1,p}^{\prime\prime}(q)}{\mathrm{K}_{1,p}(q)^{2}},

we obtain

Qp′′(0)=2K1,p(0)(E1,p′′(0)K1,p′′(0)),Q^{\prime\prime}_{p}(0)=\frac{2}{\mathrm{K}_{1,p}(0)}\Big{(}\mathrm{E}_{1,p}^{\prime\prime}(0)-\mathrm{K}_{1,p}^{\prime\prime}(0)\Big{)},

where we also used K1,p(0)=E1,p(0)\mathrm{K}_{1,p}(0)=\mathrm{E}_{1,p}(0). Moreover, it follows from (4.12) that

E1,p′′(0)=01z2(1z2)1p𝑑z,K1,p′′(0)=01z2(1z2)1p𝑑z.\mathrm{E}_{1,p}^{\prime\prime}(0)=-\int_{0}^{1}z^{2}(1-z^{2})^{-\frac{1}{p}}\,dz,\quad\mathrm{K}_{1,p}^{\prime\prime}(0)=\int_{0}^{1}z^{2}(1-z^{2})^{-\frac{1}{p}}\,dz.

Therefore, using the Beta function B(x,y)=01tx1(1t)y1𝑑t\mathrm{B}(x,y)=\int_{0}^{1}t^{x-1}(1-t)^{y-1}\,dt, we see that

Qp′′(0)=401z2(1z2)1p𝑑z01(1z2)1p𝑑z=401t(1t)1pdt2t01(1t)1pdt2t=4B(32,11p)B(12,11p).Q^{\prime\prime}_{p}(0)=-4\dfrac{\int_{0}^{1}z^{2}(1-z^{2})^{-\frac{1}{p}}\,dz}{\int_{0}^{1}(1-z^{2})^{-\frac{1}{p}}\,dz}=-4\dfrac{\int_{0}^{1}t(1-t)^{-\frac{1}{p}}\,\frac{dt}{2\sqrt{t}}}{\int_{0}^{1}(1-t)^{-\frac{1}{p}}\,\frac{dt}{2\sqrt{t}}}=-4\frac{\mathrm{B}\big{(}\frac{3}{2},1-\frac{1}{p}\big{)}}{\mathrm{B}\big{(}\frac{1}{2},1-\frac{1}{p}\big{)}}.

By the well-known relations B(x,y)=Γ(x)Γ(y)Γ(x+y)\mathrm{B}(x,y)=\frac{\Gamma(x)\Gamma(y)}{\Gamma(x+y)} and Γ(x+1)=xΓ(x)\Gamma(x+1)=x\Gamma(x), where Γ\Gamma denotes the Gamma function, we obtain

Qp′′(0)=4Γ(32)Γ(321p)Γ(521p)Γ(12)=4p23p.Q^{\prime\prime}_{p}(0)=-4\,\frac{\Gamma\big{(}\frac{3}{2}\big{)}\Gamma\big{(}\frac{3}{2}-\frac{1}{p}\big{)}}{\Gamma\big{(}\frac{5}{2}-\frac{1}{p}\big{)}\Gamma\big{(}\frac{1}{2}\big{)}}=\frac{4p}{2-3p}.

This implies that Qp′′(0)Q^{\prime\prime}_{p}(0) is strictly increasing with respect to p(1,)p\in(1,\infty), so we have g′′(0)=Qp1′′(0)Qp2′′(0)<0g^{\prime\prime}(0)=Q^{\prime\prime}_{p_{1}}(0)-Q^{\prime\prime}_{p_{2}}(0)<0. This together with g(0)=g(0)=0g(0)=g^{\prime}(0)=0 yields (4.20).

Next we calculate the derivative of gg. Using (2.5), we obtain

Qp(q)\displaystyle Q^{\prime}_{p}(q) =2E1,p(q)K1,p(q)2E1,p(q)K1,p(q)K1,p(q)2\displaystyle=2\frac{\mathrm{E}_{1,p}^{\prime}(q)}{\mathrm{K}_{1,p}(q)}-2\frac{\mathrm{E}_{1,p}(q)\mathrm{K}_{1,p}^{\prime}(q)}{\mathrm{K}_{1,p}(q)^{2}}
=2q+2(12q2q(1q2)+2p^q(1q2))E1,p(q)K1,p(q)4p^q(1q2)E1,p(q)2K1,p(q)2,\displaystyle=-\frac{2}{q}+2\left(\frac{1-2q^{2}}{q(1-q^{2})}+\frac{2\hat{p}}{q(1-q^{2})}\right)\frac{\mathrm{E}_{1,p}(q)}{\mathrm{K}_{1,p}(q)}-\frac{4\hat{p}}{q(1-q^{2})}\frac{\mathrm{E}_{1,p}(q)^{2}}{\mathrm{K}_{1,p}(q)^{2}},

where we put p^:=11p\hat{p}:=1-\frac{1}{p}. Therefore,

(4.21) g(q)=Qp1(q)Qp2(q)=2(12q2q(1q2)+2p^1q(1q2))E1,p1(q)K1,p1(q)4p1^q(1q2)E1,p1(q)2K1,p1(q)22(12q2q(1q2)+2p^2q(1q2))E1,p2(q)K1,p2(q)+4p2^q(1q2)E1,p2(q)2K1,p2(q)2=12q2q(1q2)g(q)+2p^2q(1q2)g(q)2p^2q(1q2)g(q)(E1,p1(q)K1,p1(q)+E1,p2(q)K1,p2(q))+4q(1q2)(p^1p^2)E1,p1(q)K1,p1(q)(1E1,p1(q)K1,p1(q)).\displaystyle\begin{split}g^{\prime}(q)&=Q^{\prime}_{p_{1}}(q)-Q^{\prime}_{p_{2}}(q)\\ &=2\left(\frac{1-2q^{2}}{q(1-q^{2})}+\frac{2\hat{p}_{1}}{q(1-q^{2})}\right)\frac{\mathrm{E}_{1,p_{1}}(q)}{\mathrm{K}_{1,p_{1}}(q)}-\frac{4\hat{p_{1}}}{q(1-q^{2})}\frac{\mathrm{E}_{1,p_{1}}(q)^{2}}{\mathrm{K}_{1,p_{1}}(q)^{2}}\\ &\qquad-2\left(\frac{1-2q^{2}}{q(1-q^{2})}+\frac{2\hat{p}_{2}}{q(1-q^{2})}\right)\frac{\mathrm{E}_{1,p_{2}}(q)}{\mathrm{K}_{1,p_{2}}(q)}+\frac{4\hat{p_{2}}}{q(1-q^{2})}\frac{\mathrm{E}_{1,p_{2}}(q)^{2}}{\mathrm{K}_{1,p_{2}}(q)^{2}}\\ &=\frac{1-2q^{2}}{q(1-q^{2})}g(q)+\frac{2\hat{p}_{2}}{q(1-q^{2})}g(q)-\frac{2\hat{p}_{2}}{q(1-q^{2})}g(q)\left(\frac{\mathrm{E}_{1,p_{1}}(q)}{\mathrm{K}_{1,p_{1}}(q)}+\frac{\mathrm{E}_{1,p_{2}}(q)}{\mathrm{K}_{1,p_{2}}(q)}\right)\\ &\qquad+\frac{4}{q(1-q^{2})}(\hat{p}_{1}-\hat{p}_{2})\frac{\mathrm{E}_{1,p_{1}}(q)}{\mathrm{K}_{1,p_{1}}(q)}\left(1-\frac{\mathrm{E}_{1,p_{1}}(q)}{\mathrm{K}_{1,p_{1}}(q)}\right).\end{split}

Now we are ready to prove (4.19), i.e.,

(4.22) g(q)<0for anyq(0,1).\displaystyle g(q)<0\quad\text{for any}\quad q\in(0,1).

With the help of (4.20), in order to obtain (4.22), it suffices to show that g(q)0g(q)\neq 0 for any q(0,1)q\in(0,1). We prove this by contradiction. Suppose that there is q0(0,1)q_{0}\in(0,1) such that g(q0)=0g(q_{0})=0. In view of (4.20) we may assume that q0=inf{q(0,1)|g(q)=0}>0q_{0}=\inf\Set{q\in(0,1)}{g(q)=0}>0. Combining g(q0)=0g(q_{0})=0 with (4.21), we have

(4.23) g(q0)=4q0(1q02)(p^1p^2)E1,p1(q0)K1,p1(q0)(1E1,p1(q0)K1,p1(q0)).\displaystyle g^{\prime}(q_{0})=\frac{4}{q_{0}(1-q_{0}^{2})}(\hat{p}_{1}-\hat{p}_{2})\frac{\mathrm{E}_{1,p_{1}}(q_{0})}{\mathrm{K}_{1,p_{1}}(q_{0})}\left(1-\frac{\mathrm{E}_{1,p_{1}}(q_{0})}{\mathrm{K}_{1,p_{1}}(q_{0})}\right).

Note that Proposition 2.5 and K1,p(0)=E1,p(0)\mathrm{K}_{1,p}(0)=\mathrm{E}_{1,p}(0) yield 0<E1,p(q0)<K1,p(q0)0<\mathrm{E}_{1,p}(q_{0})<\mathrm{K}_{1,p}(q_{0}). Since p^1<p^2\hat{p}_{1}<\hat{p}_{2}, we infer from (4.23) that g(q0)<0g^{\prime}(q_{0})<0. However, this together with the fact that g<0g<0 in (0,q0)(0,q_{0}) contradicts g(q0)=0g(q_{0})=0. Thus we obtain (4.22). ∎

Theorem 1.5 now follows by Propositions 4.8 and 4.9.

Proof of Theorem 1.5.

Recall from Proposition 4.8 that pϕ(p)p\mapsto\phi^{*}(p) is continuous and satisfies ϕ(p)π/2\phi^{*}(p)\to\pi/2 as p1p\downarrow 1, and ϕ(p)0\phi^{*}(p)\to 0 as pp\to\infty. Then, in view of (4.9), it suffices to prove that q(p1)<q(p2)q^{*}(p_{1})<q^{*}(p_{2}) for any 1<p1<p2<1<p_{1}<p_{2}<\infty. We infer from (4.19) that

Qp2(q(p2))=0=Qp1(q(p1))<Qp2(q(p1)),Q_{p_{2}}(q^{*}(p_{2}))=0=Q_{p_{1}}(q^{*}(p_{1}))<Q_{p_{2}}(q^{*}(p_{1})),

which in combination with monotonicity of Qp2Q_{p_{2}} (cf. Lemma 2.6) yields the desired monotonicity of q(p)q^{*}(p). ∎

5. Li–Yau type multiplicity inequality

This section is devoted to discussing the Li–Yau type multiplicity inequality of the form (1.4). In Subsection 5.1 we first prove Theorem 1.6. The key fact to prove Theorem 1.6 is that a half-fold figure-eight pp-elastica is a unique minimizer of p\mathcal{B}_{p} in 𝒜P0,P0,L\mathcal{A}_{P_{0},P_{0},L}. From the proof we observe that whether the equality in (1.4) is attained is equivalent to whether there exists a closed mm-leafed pp-elastica, i.e., a C1C^{1}-concatenation of mm half-fold figure-eight pp-elasticae. Then we discuss existence of closed mm-leafed pp-elasticae in Subsection 5.2, and observe new phenomena related to optimality in Subsection 5.3. Here the angle monotonicity in Theorem 1.5 plays a key role.

5.1. Multiplicity inequality

Theorems 1.1 and 1.4 imply

Corollary 5.1.

Let ϖp>0\varpi^{*}_{p}>0 be a constant given by

(5.1) ϖp=23p1(q(p))p2(2(q(p))21)E1,p(q(p))p,\displaystyle\varpi^{*}_{p}=2^{3p-1}(q^{*}(p))^{p-2}\big{(}2(q^{*}(p))^{2}-1\big{)}\mathrm{E}_{1,p}(q^{*}(p))^{p},

and γWimm2,p(0,1;𝐑2)\gamma\in W^{2,p}_{\rm imm}(0,1;\mathbf{R}^{2}) satisfy γ(0)=γ(1)\gamma(0)=\gamma(1). Then

¯p[γ]ϖp,\displaystyle\overline{\mathcal{B}}_{p}[\gamma]\geq\varpi^{*}_{p},

where equality is attained if and only if γ\gamma is a half-fold figure-eight pp-elastica.

Proof.

Fix an arbitrary γWimm2,p(0,1;𝐑2)\gamma\in W^{2,p}_{\rm imm}(0,1;\mathbf{R}^{2}) such that γ(0)=γ(1)\gamma(0)=\gamma(1) and let γ¯\bar{\gamma} be a half-fold figure-eight pp-elastica. It follows from Theorem 1.4 that ¯p[γ]¯p[γ¯]\overline{\mathcal{B}}_{p}[\gamma]\geq\overline{\mathcal{B}}_{p}[\bar{\gamma}], and equality is attained if and only if γ\gamma is also a half-fold figure-eight elastica. Recalling the fact that 2E1,p(q(p))=K1,p(q(p))2\mathrm{E}_{1,p}(q^{*}(p))=\mathrm{K}_{1,p}(q^{*}(p)), we infer from (4.3) with q=q(p)q=q^{*}(p) and n=1n=1 that

¯p[γ¯]=23p1q(p)p2(2q(p)21)E1,p(q(p))p,\displaystyle\overline{\mathcal{B}}_{p}[\bar{\gamma}]=2^{3p-1}q^{*}(p)^{p-2}\big{(}2q^{*}(p)^{2}-1\big{)}\mathrm{E}_{1,p}(q^{*}(p))^{p},

which coincides with (5.1). The proof is complete. ∎

In order to prove inequality (1.4), we first prove its open-curve counterpart.

Theorem 5.2 (Multiplicity inequality for open curves).

Let γWimm2,p(0,1;𝐑2)\gamma\in W^{2,p}_{\rm imm}(0,1;\mathbf{R}^{2}) be a curve with a point of multiplicity m2m\geq 2. Then

(5.2) ¯p[γ]ϖp(m1)p.\displaystyle\overline{\mathcal{B}}_{p}[\gamma]\geq\varpi^{*}_{p}(m-1)^{p}.
Proof.

By the assumption on multiplicity, there are 0a1<<am10\leq a_{1}<\cdots<a_{m}\leq 1 such that γ(a1)==γ(am)\gamma(a_{1})=\cdots=\gamma(a_{m}). If a10a_{1}\neq 0, then ¯p[γ]>¯p[γ|[a1,1]]\overline{\mathcal{B}}_{p}[\gamma]>\overline{\mathcal{B}}_{p}[\gamma|_{[a_{1},1]}] follows and it suffices to show that ¯p[γ|[a1,1]]ϖp(m1)p\overline{\mathcal{B}}_{p}[\gamma|_{[a_{1},1]}]\geq\varpi^{*}_{p}(m-1)^{p}. Therefore we may assume that a1=0a_{1}=0. Similarly, we may assume that am=1a_{m}=1. Set γi:=γ|[ai,ai+1]\gamma_{i}:=\gamma|_{[a_{i},a_{i+1}]} for i=1,,m1i=1,\ldots,m-1. Then we infer from Corollary 5.1 that

(5.3) ¯p[γi]=[γi]p1p[γi]ϖp.\displaystyle\overline{\mathcal{B}}_{p}[\gamma_{i}]=\mathcal{L}[\gamma_{i}]^{p-1}\mathcal{B}_{p}[\gamma_{i}]\geq\varpi^{*}_{p}.

Note that p[γ]=i=1m1p[γi]\mathcal{B}_{p}[\gamma]=\sum_{i=1}^{m-1}\mathcal{B}_{p}[\gamma_{i}] and [γ]=i=1m1[γi]\mathcal{L}[\gamma]=\sum_{i=1}^{m-1}\mathcal{L}[\gamma_{i}]. It follows from (5.3) that

(5.4) ¯p[γ]\displaystyle\overline{\mathcal{B}}_{p}[\gamma] =(i=1m1[γi])p1i=1m1p[γi](i=1m1[γi])p1i=1m1ϖp[γi]p1.\displaystyle=\left(\sum_{i=1}^{m-1}\mathcal{L}[\gamma_{i}]\right)^{p-1}\sum_{i=1}^{m-1}\mathcal{B}_{p}[\gamma_{i}]\geq\left(\sum_{i=1}^{m-1}\mathcal{L}[\gamma_{i}]\right)^{p-1}\sum_{i=1}^{m-1}\frac{\varpi^{*}_{p}}{\mathcal{L}[\gamma_{i}]^{p-1}}.

For the case p>2p>2, it follows from Hölder’s inequality that

(i=1m11[γi])p1(m1)p2i=1m1(1[γi])p1.\left(\sum_{i=1}^{m-1}\frac{1}{\mathcal{L}[\gamma_{i}]}\right)^{p-1}\leq(m-1)^{p-2}\sum_{i=1}^{m-1}\left(\frac{1}{\mathcal{L}[\gamma_{i}]}\right)^{p-1}.

This together with (5.4) yields

(5.5) ¯p[γ](i=1m1[γi])p1ϖp(m1)2p(i=1m11[γi])p1ϖp(m1)2p(m1)2(p1)=ϖp(m1)p,\displaystyle\begin{split}\overline{\mathcal{B}}_{p}[\gamma]&\geq\left(\sum_{i=1}^{m-1}\mathcal{L}[\gamma_{i}]\right)^{p-1}\varpi^{*}_{p}(m-1)^{2-p}\left(\sum_{i=1}^{m-1}\frac{1}{\mathcal{L}[\gamma_{i}]}\right)^{p-1}\\ &\geq\varpi^{*}_{p}(m-1)^{2-p}(m-1)^{2(p-1)}=\varpi^{*}_{p}(m-1)^{p},\end{split}

where we used the HM-AM inequality. For the case 1<p21<p\leq 2, it follows from Hölder’s inequality that

(i=1m1[γi])p1(m1)p2i=1m1[γi]p1.\left(\sum_{i=1}^{m-1}\mathcal{L}[\gamma_{i}]\right)^{p-1}\geq(m-1)^{p-2}\sum_{i=1}^{m-1}\mathcal{L}[\gamma_{i}]^{p-1}.

Combining this with (5.4), we see that

(5.6) ¯p[γ](m1)p2(i=1m1[γi]p1)ϖp(i=1m11[γi]p1)ϖp(m1)p2(m1)2=ϖp(m1)p,\displaystyle\begin{split}\overline{\mathcal{B}}_{p}[\gamma]&\geq(m-1)^{p-2}\left(\sum_{i=1}^{m-1}\mathcal{L}[\gamma_{i}]^{p-1}\right)\varpi^{*}_{p}\left(\sum_{i=1}^{m-1}\frac{1}{\mathcal{L}[\gamma_{i}]^{p-1}}\right)\\ &\geq\varpi^{*}_{p}(m-1)^{p-2}(m-1)^{2}=\varpi^{*}_{p}(m-1)^{p},\end{split}

where we used the HM-AM inequality. The proof is complete. ∎

We later show that inequality (1.4) follows from a special consequence of Theorem 5.2. In order to discuss optimality, we introduce leafed pp-elasticae as in [17].

Definition 5.3 (Leafed pp-elastica).

Let p(1,)p\in(1,\infty) and m𝐍m\in\mathbf{N}.

  • (1)

    We call γWimm2,p(0,1;𝐑2)\gamma\in W^{2,p}_{\rm imm}(0,1;\mathbf{R}^{2}) mm-leafed pp-elastica if there are 0=a0<a1<<am=10=a_{0}<a_{1}<\cdots<a_{m}=1 such that for each i=1,,mi=1,\ldots,m the curve γi:=γ|[ai1,ai]\gamma_{i}:=\gamma|_{[a_{i-1},a_{i}]} is a half-fold figure-eight pp-elastica, and also [γ1]==[γm]\mathcal{L}[\gamma_{1}]=\cdots=\mathcal{L}[\gamma_{m}].

  • (2)

    We call γWimm2,p(𝐓1;𝐑2)\gamma\in W^{2,p}_{\rm imm}(\mathbf{T}^{1};\mathbf{R}^{2}) closed mm-leafed pp-elastica if there is t0𝐓1t_{0}\in\mathbf{T}^{1} such that the curve γ¯:[0,1]𝐑2\bar{\gamma}:[0,1]\to\mathbf{R}^{2} defined by γ¯(t):=γ(t+t0)\bar{\gamma}(t):=\gamma(t+t_{0}) is an mm-leafed pp-elastica.

We mention an obvious example in the following lemma. The proof is safely omitted since it follows immediately by definition.

Lemma 5.4 (Closed mm-leafed pp-elasticae for even mm).

For any p(1,)p\in(1,\infty) and any even m2m\geq 2, an m2\frac{m}{2}-fold figure-eight pp-elastica is a closed mm-leafed pp-elastica.

It is also easy to see that leafed pp-elasticae indeed attain equality in (5.2).

Proposition 5.5 (Energy of mm-leafed pp-elastica).

Let m𝐍m\in\mathbf{N}. Then any mm-leafed (resp. closed mm-leafed) elastica has a point of multiplicity m+1m+1 (resp. mm), and its normalized pp-bending energy is ϖpmp\varpi^{*}_{p}m^{p}.

Proof.

Let γ\gamma be an mm-leafed pp-elastica. Let L>0L>0 denote the length of each half-fold figure-eight elastica γi\gamma_{i}, cf. Definition 5.3. Then [γ]=mL\mathcal{L}[\gamma]=mL. In addition, since Lp1p[γi]=¯p[γi]=ϖpL^{p-1}\mathcal{B}_{p}[\gamma_{i}]=\overline{\mathcal{B}}_{p}[\gamma_{i}]=\varpi^{*}_{p}, the additivity of \mathcal{B} yields p[γ]=i=1mp[γi]=mL1pϖp\mathcal{B}_{p}[\gamma]=\sum_{i=1}^{m}\mathcal{B}_{p}[\gamma_{i}]=mL^{1-p}\varpi^{*}_{p}. Thus we get ¯p[γ]=(mL)p1(mL1pϖp)=ϖpmp\overline{\mathcal{B}}_{p}[\gamma]=(mL)^{p-1}(mL^{1-p}\varpi^{*}_{p})=\varpi^{*}_{p}m^{p}. ∎

We now prove that for open curves, not only rigidity but also optimality always holds.

Theorem 5.6 (Optimality and rigidity for open curves).

Let p(1,)p\in(1,\infty) and m2m\geq 2. Then there exists γWimm2,p(0,1;𝐑2)\gamma\in W^{2,p}_{\rm imm}(0,1;\mathbf{R}^{2}) with a point of multiplicity mm such that

(5.7) ¯p[γ]=ϖp(m1)p.\displaystyle\overline{\mathcal{B}}_{p}[\gamma]=\varpi^{*}_{p}(m-1)^{p}.

In addition, equality (5.7) is attained if and only if γ\gamma is an (m1)(m-1)-leafed pp-elastica.

Proof.

By definition, an m12\frac{m-1}{2}-fold figure-eight pp-elastica is an open curve with a point of multiplicity mm, and attains equality. From this fact the existence of an optimal curve follows. In addition, any (m1)(m-1)-leafed pp-elastica attains equality (5.7) by Proposition 5.5.

We now prove rigidity. Suppose that γ\gamma attains (5.7). As in the proof of Theorem 5.2, there are 0a1<<am10\leq a_{1}<\cdots<a_{m}\leq 1 such that γ(a1)==γ(am)\gamma(a_{1})=\cdots=\gamma(a_{m}). Then a1a_{1} and ama_{m} must be 0 and 11, respectively. Set γi:=γ|[ai,ai+1]\gamma_{i}:=\gamma|_{[a_{i},a_{i+1}]} for i=1,,m1i=1,\ldots,m-1. Then equality holds for all the inequalities in the proof of Theorem 5.2, i.e., (5.4), (5.5), and (5.6). Focusing on Hölder’s inequality and the HM-AM inequality, we have [γ1]==[γm1]\mathcal{L}[\gamma_{1}]=\cdots=\mathcal{L}[\gamma_{m-1}]. Moreover, in view of (5.4), we also have ¯p[γi]=ϖp\overline{\mathcal{B}}_{p}[\gamma_{i}]=\varpi^{*}_{p} for all ii, and hence by Corollary 5.1 each curve γi\gamma_{i} needs to be a half-fold figure-eight pp-elastica. This means that γ\gamma is an (m1)(m-1)-leafed pp-elastica. ∎

We are in a position to prove Theorems 1.6 and 1.7.

Proof of Theorem 1.6.

First, we prove inequality (1.4). Let γWimm2,p(𝐓1;𝐑2)\gamma\in W^{2,p}_{\rm imm}(\mathbf{T}^{1};\mathbf{R}^{2}) be a curve with a point of multiplicity m2m\geq 2. Then we can create an open curve γ¯\bar{\gamma} with a point of multiplicity m+1m+1 after cutting γ\gamma at the original point of multiplicity and opening the domain 𝐓1\mathbf{T}^{1} to [0,1][0,1]. Applying Theorem 5.2 to the curve γ¯\bar{\gamma}, we obtain (1.4).

We turn to optimality and rigidity. By Proposition 5.5, any closed mm-leafed pp-elastica attains equality in (1.4). Conversely, suppose that γWimm2,p(𝐓1;𝐑2)\gamma\in W^{2,p}_{\rm imm}(\mathbf{T}^{1};\mathbf{R}^{2}) attains equality in (1.4). As in the previous procedure, by creating an open curve γ¯\bar{\gamma} with a point of multiplicity m+1m+1, and applying Theorem 5.6 to γ¯\bar{\gamma}, we see that γ\gamma must be a closed mm-leafed pp-elastica. ∎

Proof of Theorem 1.7.

For any even integer m2m\geq 2, let γ\gamma be an m2\frac{m}{2}-fold figure-eight pp-elastica. Then γ\gamma is also a closed mm-leafed pp-elastica as mentioned in Lemma 5.4, and this together with Theorem 1.6 completes the proof. ∎

5.2. Closed mm-leafed pp-elasticae

Here we seek for exponents pp admitting closed leafed pp-elasticae with odd multiplicities.

We first prepare the following lemma in the same spirit of [17, Lemma 3.7], which states that whether there exists a closed mm-leafed pp-elastica can be characterized by whether the leaves can be joined up to first order. By Proposition 4.6 (iii), the angle 2ϕ(p)2\phi^{*}(p) plays a fundamental role.

Lemma 5.7 (Characterization of closed mm-leafed pp-elasticae).

Let m2m\geq 2 be an integer and p(1,)p\in(1,\infty). Let Ω(m,p)\Omega^{*}(m,p) be the set of all mm-tuples (ω1,,ωm)(\omega_{1},\ldots,\omega_{m}) of unit-vectors ω1,,ωm𝐒1𝐑2\omega_{1},\ldots,\omega_{m}\in\mathbf{S}^{1}\subset\mathbf{R}^{2} such that ωi,ωi1=cos2ϕ(p)\langle\omega_{i},\omega_{i-1}\rangle=\cos{2\phi^{*}(p)} holds for any i=1,,mi=1,\ldots,m, where we interpret ω0=ωm\omega_{0}=\omega_{m}.

If γ:𝐓1𝐑2\gamma:\mathbf{T}^{1}\to\mathbf{R}^{2} is a unit-speed closed mm-leafed pp-elastica, then (ω1,,ωm)Ω(m,p)(\omega_{1},\ldots,\omega_{m})\in\Omega^{*}(m,p) holds for ωi:=γ(im+t0)\omega_{i}:=\gamma^{\prime}(\frac{i}{m}+t_{0}) and i=1,,mi=1,\ldots,m, where t0𝐓1t_{0}\in\mathbf{T}^{1} is a point of multiplicity mm.

Conversely, for any element (ω1,,ωm)Ω(m,p)(\omega_{1},\ldots,\omega_{m})\in\Omega^{*}(m,p), there exists a unique unit-speed closed mm-leafed pp-elastica γ:𝐓1𝐑2\gamma:\mathbf{T}^{1}\to\mathbf{R}^{2} such that γ(0)=0\gamma(0)=0 and γ(im)=ωi\gamma^{\prime}(\frac{i}{m})=\omega_{i} for i=1,,mi=1,\ldots,m.

The proof of Lemma 5.7 is straightforward and safely omitted. Instead, we discuss a typical example: Let γ\gamma be a closed m2\frac{m}{2}-fold figure-eight pp-elastica. Up to similarity and reparameterization we may assume that γ\gamma is of unit-speed and γ(0)=0\gamma(0)=0 is a point of multiplicity mm. Then setting ωi:=γ(im)\omega_{i}:=\gamma^{\prime}(\frac{i}{m}) for i=1,,mi=1,\ldots,m, we see that ωi=γ(0)\omega_{i}=\gamma^{\prime}(0) if ii is even, and (up to reflection) ωi=R2ϕγ(0)\omega_{i}=R_{2\phi^{*}}\gamma^{\prime}(0) if ii is odd. Hence, clearly (ω1,,ωm)Ω(m,p)(\omega_{1},\ldots,\omega_{m})\in\Omega^{*}(m,p).

Now we discuss the existence issue for special exponents. For an odd integer m3m\geq 3, and n𝐍n\in\mathbf{N} with n<m/2n<{m}/{2} so that nmπ(0,π2)\frac{n}{m}\pi\in(0,\frac{\pi}{2}), we define pm,n(1,)p_{m,n}\in(1,\infty) by

(5.8) pm,n:=(ϕ)1(nmπ).\displaystyle p_{m,n}:=\left(\phi^{*}\right)^{-1}(\tfrac{n}{m}\pi).

Such an exponent pm,np_{m,n} uniquely exists by Theorem 1.5. If n=1n=1 we also write

(5.9) pm:=pm,1=(ϕ)1(πm).p_{m}:=p_{m,1}=\left(\phi^{*}\right)^{-1}(\tfrac{\pi}{m}).

For this pm,np_{m,n} we will create closed leafed elasticae with odd multiplicities.

To gain insight, we first discuss the special exponent p3=p3,1p_{3}=p_{3,1} for which we can construct closed leafed elasticae even for all odd multiplicities.

Example 5.8 (Closed mm-leafed p3p_{3}-elasticae).

Let γ\gamma be a half-fold figure-eight p3p_{3}-elastica. Then, by 2ϕ(p3)=2π/32\phi^{*}(p_{3})=2\pi/3, cf. (5.9), and by Proposition 4.6 (iii), (up to reflection) the concatenation γR2π/3γR4π/3γ\gamma\oplus R_{-2\pi/3}\gamma\oplus R_{-4\pi/3}\gamma is a closed 33-leafed p3p_{3}-elastica, unique up to invariances. For a general m=3+2m=3+2\ell with 𝐍\ell\in\mathbf{N}, we can construct a closed mm-leafed p3p_{3}-elastica by concatenating a closed 33-leafed p3p_{3}-elastica and an \ell-fold figure-eight p3p_{3}-elastica.

This kind of construction extends to a general multiplicity:

Proposition 5.9 (Closed mm-leafed pp-elasticae for odd mm).

Let mm and nn be integers such that m3m\geq 3 is odd and 1n<m/21\leq n<m/2, and let pm,np_{m,n} be defined by (5.8). Let mm^{\prime} be an odd integer. If mmm^{\prime}\geq m, then there exists a closed mm^{\prime}-leafed pm,np_{m,n}-elastica. In addition, in the case of n=1n=1, there exists a closed mm^{\prime}-leafed pmp_{m}-elastica if and only if mmm^{\prime}\geq m.

Proof.

First, we show existence of a closed mm-leafed pm,np_{m,n}-elastica. For simplicity, hereafter we write ϕ:=ϕ(pm,n)=nmπ\phi^{*}:=\phi^{*}(p_{m,n})=\frac{n}{m}\pi, cf. (5.8). Fix any ω1𝐒1\omega_{1}\in\mathbf{S}^{1}, and inductively define ωi:=R2ϕωi1\omega_{i}:=R_{2\phi^{*}}\omega_{i-1} for i=2,,mi=2,\ldots,m. Then ωm=R2(m1)ϕω1=R2nπ2ϕω1=R2ϕω1\omega_{m}=R_{2(m-1)\phi^{*}}\omega_{1}=R_{2n\pi-2\phi^{*}}\omega_{1}=R_{-2\phi^{*}}\omega_{1} and hence the mm-tuple (ω1,,ωm)(\omega_{1},\ldots,\omega_{m}) is an element of Ω(m,pm)\Omega^{*}(m,p_{m}). Therefore, Lemma 5.7 ensures existence of a closed mm-leafed pmp_{m}-elastica (corresponding to the case of m=mm^{\prime}=m).

Next let mm^{\prime} be an odd integer with m>mm^{\prime}>m. Fix any ω1𝐒1\omega_{1}\in\mathbf{S}^{1}, and inductively define ωi:=R2ϕωi1\omega_{i}:=R_{2\phi^{*}}\omega_{i-1} for i=2,,mi=2,\ldots,m. For m<imm<i\leq m^{\prime}, we define ωi:=ω1\omega_{i}:=\omega_{1} if ii is even and ωi:=R2ϕω1\omega_{i}:=R_{2\phi^{*}}\omega_{1} if ii is odd. Then we see that (ω1,,ωm)Ω(m,pm,n)(\omega_{1},\ldots,\omega_{m^{\prime}})\in\Omega^{*}(m^{\prime},p_{m,n}), and hence thanks to Lemma 5.7 there exists a closed mm^{\prime}-leafed pm,np_{m,n}-elastica.

In the rest of the proof, provided that n=1n=1 so that pm,1=pmp_{m,1}=p_{m}, we show nonexistence of closed mm^{\prime}-leafed pmp_{m}-elasticae if m<mm^{\prime}<m. We argue by contradiction. Suppose that there exists a closed mm^{\prime}-leafed pmp_{m}-elastica for an odd integer m<mm^{\prime}<m. Then, by Lemma 5.7, there is an mm^{\prime}-tuple (ω1,,ωm)Ω(m,pm)(\omega_{1},\ldots,\omega_{m^{\prime}})\in\Omega^{*}(m^{\prime},p_{m}) of unit-vectors ω1,,ωm𝐒1\omega_{1},\ldots,\omega_{m^{\prime}}\in\mathbf{S}^{1}. Here we note that ω,ω=cos2ϕ\langle\omega,\omega^{\prime}\rangle=\cos{2\phi^{*}} holds for ω,ω𝐒1\omega,\omega^{\prime}\in\mathbf{S}^{1} if and only if ω=R2ϕω\omega=R_{2\phi^{*}}\omega^{\prime} or ω=R2ϕω\omega=R_{-2\phi^{*}}\omega^{\prime}. From this fact there is an mm^{\prime}-tuple of rotation matrices A1,,AmA_{1},\cdots,A_{m^{\prime}} such that AiA_{i} is either R2ϕR_{2\phi^{*}} or R2ϕR_{-2\phi^{*}} and A1Am=IA_{1}\cdots A_{m^{\prime}}=I, where II denotes the identity matrices. In particular, there is a sequence σ1,,σm{1,1}\sigma_{1},\ldots,\sigma_{m^{\prime}}\in\{-1,1\} such that i=1mσi2ϕ2π𝐙\sum_{i=1}^{m^{\prime}}\sigma_{i}2\phi^{*}\in 2\pi\mathbf{Z}. However, we infer from (5.9) and m<mm^{\prime}<m that |i=1mσi2ϕ|2mϕ<2mϕ=2π|\sum_{i=1}^{m^{\prime}}\sigma_{i}2\phi^{*}|\leq 2m^{\prime}\phi^{*}<2m\phi^{*}=2\pi, and also infer from oddness of mm^{\prime} that |i=1mσi2ϕ|>2ϕ>0|\sum_{i=1}^{m^{\prime}}\sigma_{i}2\phi^{*}|>2\phi^{*}>0. This contradicts i=1mσi2ϕ2π𝐙\sum_{i=1}^{m^{\prime}}\sigma_{i}2\phi^{*}\in 2\pi\mathbf{Z}, and the proof is complete. ∎

In general, for a given integer mm, there may be multiple exponents pp that admit mm-leafed pp-elasticae. For example, there exist 55-leafed pp-elasticae if pp is p3p_{3} (cf. Remark 5.8), p5p_{5}, or p5,2p_{5,2}, see Figure 7.

Refer to caption
Refer to caption
Refer to caption
Figure 7. 55-leafed figure-eight pp-elasticae with p=p3p=p_{3} (left), p=p5p=p_{5} (middle), and p=p5,2p=p_{5,2} (right). In the left curve the top leaf is covered twice.

However, the exponent admitting a 33-leafed pp-elastica is uniquely determined:

Proposition 5.10.

Let p(1,)p\in(1,\infty). There exists a closed 33-leafed pp-elastica if and only if p=p3p=p_{3}, where p3:=(ϕ)1(π3)p_{3}:=(\phi^{*})^{-1}(\frac{\pi}{3}).

Proof.

Existence of closed 33-leafed p3p_{3}-elasticae follows from Proposition 5.9. Fix any p(1,)p\in(1,\infty) and assume that a closed 33-leafed pp-elastica exists. Then, by Lemma 5.7, there are ω1,ω2,ω3𝐒1\omega_{1},\omega_{2},\omega_{3}\in\mathbf{S}^{1} such that ω1,ω2=ω2,ω3=ω3,ω1=cos2ϕ(p)\langle\omega_{1},\omega_{2}\rangle=\langle\omega_{2},\omega_{3}\rangle=\langle\omega_{3},\omega_{1}\rangle=\cos 2\phi^{*}(p). Since 0<2ϕ(p)<π0<2\phi^{*}(p)<\pi holds by Proposition 4.8, ϕ(p)\phi^{*}(p) must be π/3\pi/3. This together with Theorem 1.5 implies that p=p3p=p_{3}. The proof is complete. ∎

5.3. Optimality for odd multiplicity

Now we translate the phenomena observed above into optimality of our Li–Yau type multiplicity inequality.

Theorem 5.11 (Optimality for pm,np_{m,n}).

Let S(1,)S\subset(1,\infty) be the set of all exponents pm,n(1,)p_{m,n}\in(1,\infty) with integers mm and nn such that m3m\geq 3 is odd and 0<n<m/20<n<m/2, cf. (5.8). Then SS is dense in (1,)(1,\infty). In addition, for any p=pm,nSp=p_{m,n}\in S, and for any odd integer mmm^{\prime}\geq m, there exists a curve γWimm2,p(𝐓1;𝐑2)\gamma\in W^{2,p}_{\rm imm}(\mathbf{T}^{1};\mathbf{R}^{2}) with a point of multiplicity mm^{\prime} such that ¯p[γ]=ϖp(m)p\overline{\mathcal{B}}_{p}[\gamma]=\varpi^{*}_{p}(m^{\prime})^{p}.

Proof.

Note that the set R(0,π2)R\subset(0,\frac{\pi}{2}) of all angles nmπ(0,π2)\frac{n}{m}\pi\in(0,\tfrac{\pi}{2}) with m,nm,n under consideration is dense in (0,π2)(0,\frac{\pi}{2}). Since SS is the preimage of RR under the continuous and bijective map ϕ\phi^{*} (cf. Theorem 1.5), the set SS is also dense in (1,)(1,\infty).

For optimality, in view of Theorem 1.6, it suffices to check existence of mm^{\prime}-leafed pm,np_{m,n}-elasticae, and this follows from Proposition 5.9. ∎

In particular, if p=pmp=p_{m}, then we can obtain a complete classification of multiplicity which ensures optimality.

Theorem 5.12 (Thresholding phenomenon).

Let m3m\geq 3 be an odd integer and pm(1,)p_{m}\in(1,\infty) be defined by (5.9). Let m2m^{\prime}\geq 2 be an integer. Then there exists a curve γWimm2,pm(𝐓1;𝐑2)\gamma\in W^{2,p_{m}}_{\rm imm}(\mathbf{T}^{1};\mathbf{R}^{2}) with a point of multiplicity mm^{\prime} such that ¯pm[γ]=ϖpm(m)pm\overline{\mathcal{B}}_{p_{m}}[\gamma]=\varpi^{*}_{p_{m}}(m^{\prime})^{p_{m}} if and only if mm^{\prime} is even or mmm^{\prime}\geq m.

Proof.

The existence of closed mm^{\prime}-leafed pmp_{m}-elasticae for even mm^{\prime} and for odd mmm^{\prime}\geq m follows from Lemma 5.4 and Proposition 5.9, respectively, while Proposition 5.9 also implies that there is no closed mm^{\prime}-leafed pmp_{m}-elastica if m<mm^{\prime}<m and mm^{\prime} is odd. This fact with Theorem 1.6 completes the proof. ∎

We close this section by completing the proof of Theorem 1.8, i.e., showing that an exponent which can recover optimality for every multiplicity is unique.

Proof of Theorem 1.8.

If an integer m2m\geq 2 is even (resp. odd), then by Lemma 5.4 (resp. Proposition 5.9) there exists a closed mm-leafed p3p_{3}-elastica. Hence the assertion holds for p=p3p=p_{3}. We turn to uniqueness. Assume that an exponent p(1,)p\in(1,\infty) satisfies the assertion of the theorem. Then, by the rigidity part of Theorem 1.6, there exists a closed mm-leafed pp-elastica for any odd m3m\geq 3, in particular for m=3m=3. Therefore, Proposition 5.10 implies p=p3p=p_{3}. ∎

Proof of Corollary 1.10.

This immediately follows from Theorem 1.8 with the choice of α=23π\alpha=\frac{2}{3}\pi, combined with Theorem 1.5 and the fact that ϕ(p3)=π3\phi^{*}(p_{3})=\frac{\pi}{3}. ∎

6. Existence of minimal pp-elastic networks

In this final section we prove Theorem 1.9. Note that, up to rescaling, our problem (1.7) is equivalent to minimizing p+\mathcal{B}_{p}+\mathcal{L} (as is done in [7, 17]). Indeed, for Λ>0\Lambda>0 and a curve γ\gamma, if we set γΛ(t):=Λγ(t)\gamma_{\Lambda}(t):=\Lambda\gamma(t), then [γΛ]=Λ[γ]\mathcal{L}[\gamma_{\Lambda}]=\Lambda\mathcal{L}[\gamma] and p[γΛ]=Λ1pp[γ]\mathcal{B}_{p}[\gamma_{\Lambda}]=\Lambda^{1-p}\mathcal{B}_{p}[\gamma]. Hence, with the choice of Λ=p[γ]1p[γ]1p\Lambda=\mathcal{B}_{p}[\gamma]^{\frac{1}{p}}\mathcal{L}[\gamma]^{-\frac{1}{p}}, we find that

(6.1) p[γΛ]+[γΛ]=2([γ]p1p[γ])1p=2¯p[γ]1p.\displaystyle\mathcal{B}_{p}[\gamma_{\Lambda}]+\mathcal{L}[\gamma_{\Lambda}]=2\left(\mathcal{L}[\gamma]^{p-1}\mathcal{B}_{p}[\gamma]\right)^{\frac{1}{p}}=2\overline{\mathcal{B}}_{p}[\gamma]^{\frac{1}{p}}.

Clearly, the same is true for γ\gamma replaced by a network ΓΘ(p,α)\Gamma\in\Theta(p,\alpha), and the set Θ(p,α)\Theta(p,\alpha) is closed under rescaling, so that the desired equivalency holds.

The main concern here is the lack of compactness of the set Θ(p,α)\Theta(p,\alpha) (cf. [7, 9, 17] for the case p=2p=2). More precisely, the length of one component-curve of a minimizing sequence may vanish; in other words, a family of networks composed by three curves may converge to “two-component network” (cf. Lemma 6.2). In order to prevent such a phenomenon, in this paper, we construct a certain Θ\Theta-network whose energy is less than the minimal energy among the class of “two-component network”. The assumption (1.6) is needed to construct such a Θ\Theta-network which consists of exactly three curves (cf. Lemma 6.4).

We will use Fenchel’s theorem for piecewise W2,1W^{2,1} closed curves obtained in [7, Theorem A.1] or [17, Lemma 5.2].

Lemma 6.1 ([7, Theorem A.1], [17, Lemma 5.2]).

Let γ1,,γNW2,1(0,1;𝐑2)\gamma_{1},\ldots,\gamma_{N}\in W^{2,1}(0,1;\mathbf{R}^{2}) be immersed curves such that γj(1)=γj+1(0)=:Vj\gamma_{j}(1)=\gamma_{j+1}(0)=:V_{j} for j=1,,Nj=1,\ldots,N, where we interpret γN+1=γ1\gamma_{N+1}=\gamma_{1}. For all j=1,,Nj=1,\ldots,N, let θj[0,π]\theta_{j}\in[0,\pi] denote the external angle at the vertex VjV_{j}, i.e.,

cosθj=γj(1)|γj(1)|,γj+1(0)|γj+1(0)|.\cos{\theta_{j}}=\left\langle\frac{\gamma_{j}^{\prime}(1)}{|\gamma_{j}^{\prime}(1)|},\frac{\gamma_{j+1}^{\prime}(0)}{|\gamma_{j+1}^{\prime}(0)|}\right\rangle.

Then

j=1NTC[γj]:=j=1Nγj|k|𝑑s2πj=1Nθj.\sum_{j=1}^{N}TC[\gamma_{j}]:=\sum_{j=1}^{N}\int_{\gamma_{j}}|k|\,ds\geq 2\pi-\sum_{j=1}^{N}\theta_{j}.

Using this lemma, we prove the following key dichotomy result as in [7, 17].

Lemma 6.2.

Let {Γj}={(γ1,j,γ2,j,γ3,j)}Θ(p,α)\{\Gamma_{j}\}=\{(\gamma_{1,j},\gamma_{2,j},\gamma_{3,j})\}\subset\Theta(p,\alpha) be a sequence such that supj¯p[Γj]<\sup_{j}\overline{\mathcal{B}}_{p}[\Gamma_{j}]<\infty. Then, up to reparameterization, translation, dilation, and taking a subsequence (all without relabeling), either of the following two assertions holds:

  • (i)

    There exists a Θ\Theta-network Γ=(γ1,γ2,γ3)Θ(p,α)\Gamma=(\gamma_{1},\gamma_{2},\gamma_{3})\in\Theta(p,\alpha) such that for each i=1,2,3i=1,2,3, the sequence {γi,j}j\{\gamma_{i,j}\}_{j} converges to γi\gamma_{i} as jj\to\infty in the W2,pW^{2,p}-weak and C1C^{1} topology. In particular, lim infj¯p[Γj]¯p[Γ]\liminf_{j\to\infty}\overline{\mathcal{B}}_{p}[\Gamma_{j}]\geq\overline{\mathcal{B}}_{p}[\Gamma].

  • (ii)

    Up to permutations of the index ii, [γ3,j]0\mathcal{L}[\gamma_{3,j}]\to 0 as jj\to\infty. In addition, there are γ1,γ2Wimm2,p(0,1;𝐑2)\gamma_{1},\gamma_{2}\in W^{2,p}_{\rm imm}(0,1;\mathbf{R}^{2}) such that γ1(0)=γ1(1)=γ2(0)=γ2(1)\gamma_{1}(0)=\gamma_{1}(1)=\gamma_{2}(0)=\gamma_{2}(1) and such that the sequence {γ1,j}j\{\gamma_{1,j}\}_{j} (resp. {γ2,j}j\{\gamma_{2,j}\}_{j}) converges to γ1\gamma_{1} (resp. γ2\gamma_{2}) as jj\to\infty in the W2,pW^{2,p}-weak and C1C^{1} topology. In particular,

    (6.2) lim infj(i=12[γi,j])p1(i=12p[γi,j])(i=12[γi])p1(i=12p[γi]).\displaystyle\liminf_{j\to\infty}\left(\sum_{i=1}^{2}\mathcal{L}[\gamma_{i,j}]\right)^{p-1}\left(\sum_{i=1}^{2}\mathcal{B}_{p}[\gamma_{i,j}]\right)\geq\left(\sum_{i=1}^{2}\mathcal{L}[\gamma_{i}]\right)^{p-1}\left(\sum_{i=1}^{2}\mathcal{B}_{p}[\gamma_{i}]\right).
Proof.

Throughout the proof we may suppose that, after translation, γi,j(0)=0\gamma_{i,j}(0)=0, and also, after rescaling as in (6.1) (i.e., replacing Γj\Gamma_{j} with p[Γj]1p[Γj]1pΓj\mathcal{B}_{p}[\Gamma_{j}]^{\frac{1}{p}}\mathcal{L}[\Gamma_{j}]^{-\frac{1}{p}}\Gamma_{j}),

(6.3) supj(p[Γj]+[Γj])=2supj¯p[Γj]1p<.\displaystyle\sup_{j}\left(\mathcal{B}_{p}[\Gamma_{j}]+\mathcal{L}[\Gamma_{j}]\right)=2\sup_{j}\overline{\mathcal{B}}_{p}[\Gamma_{j}]^{\frac{1}{p}}<\infty.

In addition, we may suppose that after reparameterization, each curve γi,j\gamma_{i,j} is of constant speed. Furthermore, all of these transformations do not change ¯p\overline{\mathcal{B}}_{p}. In what follows we adopt ideas from [7, 17].

We first consider the case where infjmini=1,2,3[γi,j]>0\inf_{j}\min_{i=1,2,3}\mathcal{L}[\gamma_{i,j}]>0. Then, as discussed in (4.2), the assumption of constant-speed implies that

i=1,2,3γi,j′′Lpp=i=1,2,3[γi,j]2p1p[γi,j].\sum_{i=1,2,3}\|\gamma_{i,j}^{\prime\prime}\|_{L^{p}}^{p}=\sum_{i=1,2,3}\mathcal{L}[\gamma_{i,j}]^{2p-1}\mathcal{B}_{p}[\gamma_{i,j}].

This together with (6.3) yields the LpL^{p}-boundedness of {γi,j′′}j\{\gamma_{i,j}^{\prime\prime}\}_{j} for each i=1,2,3i=1,2,3. By the assumption of the constant-speed and γi,j(0)=0\gamma_{i,j}(0)=0, the W1,W^{1,\infty}-boundedness of {γi,j}j\{\gamma_{i,j}\}_{j} also follows. Therefore, for each i=1,2,3i=1,2,3, there exists γiW2,p(0,1;𝐑2)\gamma_{i}\in W^{2,p}(0,1;\mathbf{R}^{2}) such that, up to a subsequence, the sequence {γi,j}j\{\gamma_{i,j}\}_{j} converges to γi\gamma_{i} in the W2,pW^{2,p}-weak and C1C^{1} topology. In particular, the C1C^{1}-convergence and the assumption that infjmini=1,2,3[γi,j]>0\inf_{j}\min_{i=1,2,3}\mathcal{L}[\gamma_{i,j}]>0 ensure that Γ:=(γ1,γ2,γ3)\Gamma:=(\gamma_{1},\gamma_{2},\gamma_{3}) satisfies the angle condition to be a Θ\Theta-network with angles (α,α,2π2α)(\alpha,\alpha,2\pi-2\alpha). Since p[γi,j]=[γi,j]12pγi,j′′Lpp\mathcal{B}_{p}[\gamma_{i,j}]=\mathcal{L}[\gamma_{i,j}]^{1-2p}\|\gamma_{i,j}^{\prime\prime}\|_{L^{p}}^{p} (cf. (4.2)), since [γi,j]\mathcal{L}[\gamma_{i,j}] converges to a positive value, and since the weak lower semicontinuity holds for γi,j′′Lpp\|\gamma_{i,j}^{\prime\prime}\|_{L^{p}}^{p}, we deduce that lim infj¯p[Γj]¯p[Γ]\liminf_{j\to\infty}\overline{\mathcal{B}}_{p}[\Gamma_{j}]\geq\overline{\mathcal{B}}_{p}[\Gamma].

Next, we consider the case that, after permutations, infj[γ3,j]=0\inf_{j}\mathcal{L}[\gamma_{3,j}]=0 holds but we still have infjmini=1,2[γi,j]>0\inf_{j}\min_{i=1,2}\mathcal{L}[\gamma_{i,j}]>0. In this case, the same argument as above ensures the desired convergence of γ1,j\gamma_{1,j} and γ2,j\gamma_{2,j} so that the assertion (ii) holds.

We finally prove that only the above cases are possible to occur. For each pair of i,i{1,2,3}i,i^{\prime}\in\{1,2,3\} with iii\neq i^{\prime}, the angle condition (α,α,2π2α)(\alpha,\alpha,2\pi-2\alpha) implies that the curves γi\gamma_{i} and γi\gamma_{i^{\prime}} form a piecewise closed curve with exactly two jumps of angle θ1=θ2=πα\theta_{1}=\theta_{2}=\pi-\alpha or θ1=θ2=2απ\theta_{1}=\theta_{2}=2\alpha-\pi, and hence by Lemma 6.1 we have TC[γi,j]+TC[γi,j]min{2α,4π4α}=:cα>0TC[\gamma_{i,j}]+TC[\gamma_{i^{\prime},j}]\geq\min\{2\alpha,4\pi-4\alpha\}=:c_{\alpha}>0. Noting that TC[γi,j]p[γi,j]1p[γi,j]p1pTC[\gamma_{i,j}]\leq\mathcal{B}_{p}[\gamma_{i,j}]^{\frac{1}{p}}\mathcal{L}[\gamma_{i,j}]^{\frac{p-1}{p}} follows from Hölder’s inequality, we obtain

l=i,ip[γl,j]1pl=i,i[γl,j]p1pTC[γl,j]minl=i,i[γl,j]p1pcα.\sum_{l=i,i^{\prime}}\mathcal{B}_{p}[\gamma_{l,j}]^{\frac{1}{p}}\geq\sum_{l=i,i^{\prime}}\mathcal{L}[\gamma_{l,j}]^{-\frac{p-1}{p}}TC[\gamma_{l,j}]\geq\min_{l=i,i^{\prime}}\mathcal{L}[\gamma_{l,j}]^{-\frac{p-1}{p}}c_{\alpha}.

Then energy-boundedness (6.3) implies that infjmaxl=i,i[γl,j]>0\inf_{j}\max_{l=i,i^{\prime}}\mathcal{L}[\gamma_{l,j}]>0. By the arbitrariness of the choice of ii and ii^{\prime}, up to taking a subsequence, there are at least two indices i{1,2,3}i\in\{1,2,3\} such that infj[γi,j]>0\inf_{j}\mathcal{L}[\gamma_{i,j}]>0. ∎

Next, applying our new Li–Yau type inequality, we give a lower bound on ¯p\overline{\mathcal{B}}_{p} when the assertion (ii) holds in Lemma 6.2.

Lemma 6.3.

Let γ1,γ2Wimm2,p(0,1;𝐑2)\gamma_{1},\gamma_{2}\in W^{2,p}_{\rm imm}(0,1;\mathbf{R}^{2}) satisfy γ1(0)=γ1(1)=γ2(0)=γ2(1)\gamma_{1}(0)=\gamma_{1}(1)=\gamma_{2}(0)=\gamma_{2}(1). Then

(6.4) (i=12[γi])p1(i=12p[γi])2pϖp,\left(\sum_{i=1}^{2}\mathcal{L}[\gamma_{i}]\right)^{p-1}\left(\sum_{i=1}^{2}\mathcal{B}_{p}[\gamma_{i}]\right)\geq 2^{p}\varpi_{p}^{*},

where equality is attained if and only if the curves γ1,γ2\gamma_{1},\gamma_{2} are half-fold figure-eight pp-elasticae of same length.

Proof.

Up to a rigid motion for γ2\gamma_{2}, we may assume that γ1(1)\gamma_{1}^{\prime}(1) and γ2(0)\gamma_{2}^{\prime}(0) are parallel. Then up to reparametrization we may regard the concatenation γ\gamma of γ1\gamma_{1} and γ2\gamma_{2} as a single W2,pW^{2,p} open curve with a point of multiplicity 33, whose normalized pp-bending energy is equal to the right-hand side of (6.4). The assertion follows by applying Theorem 5.2 to γ\gamma. ∎

Now the main issue is reduced to showing that there exists a Θ\Theta-network of less energy than the minimal energy 2pϖp2^{p}\varpi_{p}^{*} of degenerate networks. More precisely, we prove

Lemma 6.4.

Suppose (1.6) holds. Then there exists a Θ\Theta-network ΓΘ(p,α)\Gamma\in\Theta(p,\alpha) such that ¯p[Γ]<2pϖp\overline{\mathcal{B}}_{p}[\Gamma]<2^{p}\varpi_{p}^{*}.

Proof.

Let γhalfp,q\gamma_{\rm half}^{p,q} be a half-period of a wavelike pp-elastica given by γw(s,q)\gamma_{w}(s,q) in (2.14) with s[K1,p(q),K1,p(q)]s\in[-\mathrm{K}_{1,p}(q),\mathrm{K}_{1,p}(q)]. Then it follows that

(6.5) [γhalfp,q]=2K1,p(q).\displaystyle\mathcal{L}[\gamma_{\rm half}^{p,q}]=2\mathrm{K}_{1,p}(q).

In addition, since the curvature kk of γhalfp,q\gamma_{\rm half}^{p,q} is k(s)=2qcnp(s,q)k(s)=2q\operatorname{cn}_{p}(s,q), we infer from Lemma 4.2 that

(6.6) p[γhalfp,q]=K1,p(q)K1,p(q)2pqp|cnp(s,q)|p𝑑s=2p+1qp(1q2E1,p(q)+(11q2)K1,p(q))=2p+1b(q),\displaystyle\begin{split}\mathcal{B}_{p}[\gamma_{\rm half}^{p,q}]&=\int_{-\mathrm{K}_{1,p}(q)}^{\mathrm{K}_{1,p}(q)}2^{p}q^{p}|\operatorname{cn}_{p}(s,q)|^{p}\,ds\\ &=2^{p+1}q^{p}\left(\tfrac{1}{q^{2}}\mathrm{E}_{1,p}(q)+\big{(}1-\tfrac{1}{q^{2}}\big{)}\mathrm{K}_{1,p}(q)\right)=2^{p+1}b(q),\end{split}

where b(q)b(q) is given by (4.6).

We define (up to reparameterization) a triplet of curves Γwavep,q\Gamma^{p,q}_{\rm wave} for q(0,1)q\in(0,1) by

Γwavep,q:=(γhalfp,q,γsegp,q,Rγhalfp,q),\Gamma^{p,q}_{\rm wave}:=\left(\gamma_{\rm half}^{p,q},\gamma_{\rm seg}^{p,q},R\gamma_{\rm half}^{p,q}\right),

where RR denotes the refection with respect to the e1e^{1}-axis and γsegp,q(x):=((2E1,p(q)K1,p(q))x,0)\gamma_{\rm seg}^{p,q}(x):=\big{(}(2\mathrm{E}_{1,p}(q)-\mathrm{K}_{1,p}(q))x,0\big{)}{}^{\top} for x(1,1)x\in(-1,1). It is clear that [γsegp,q]=2(2E1,p(q)K1,p(q))\mathcal{L}[\gamma_{\rm seg}^{p,q}]=2(2\mathrm{E}_{1,p}(q)-\mathrm{K}_{1,p}(q)) and p[γsegp,q]=0\mathcal{B}_{p}[\gamma_{\rm seg}^{p,q}]=0. Combining this with (6.5) and (6.6), we see that

[Γwavep,q]\displaystyle\mathcal{L}[\Gamma^{p,q}_{\rm wave}] =2[γhalfp,q]+[γsegp,q]=2(2E1,p(q)+K1,p(q)),\displaystyle=2\mathcal{L}[\gamma_{\rm half}^{p,q}]+\mathcal{L}[\gamma_{\rm seg}^{p,q}]=2\big{(}2\mathrm{E}_{1,p}(q)+\mathrm{K}_{1,p}(q)\big{)},
p[Γwavep,q]\displaystyle\mathcal{B}_{p}[\Gamma^{p,q}_{\rm wave}] =2p[γhalfp,q]+p[γsegp,q]=2p+2b(q),\displaystyle=2\mathcal{B}_{p}[\gamma_{\rm half}^{p,q}]+\mathcal{B}_{p}[\gamma_{\rm seg}^{p,q}]=2^{p+2}b(q),

which yields

(6.7) ¯p[Γwavep,q]=22p+1(2E1,p(q)+K1,p(q))p1b(q).\displaystyle\overline{\mathcal{B}}_{p}[\Gamma^{p,q}_{\rm wave}]=2^{2p+1}\big{(}2\mathrm{E}_{1,p}(q)+\mathrm{K}_{1,p}(q)\big{)}^{p-1}b(q).

In particular, by this representation, and by definition of ϖp\varpi_{p}^{*} and q(p)q^{*}(p), we have

limqq(p)¯p[Γwavep,q]=2pϖp.\displaystyle\lim_{q\to q^{*}(p)}\overline{\mathcal{B}}_{p}[\Gamma^{p,q}_{\rm wave}]=2^{p}\varpi_{p}^{*}.

Let q=qα(0,1)q=q_{\alpha}\in(0,1) be a constant satisfying 2arcsinq=α2\arcsin{q}=\alpha. We now prove that Γwavep,qα\Gamma^{p,q_{\alpha}}_{\rm wave} gives the desired Θ\Theta-network with angles (α,α,2π2α)(\alpha,\alpha,2\pi-2\alpha).

First we check that qα<q(p)q_{\alpha}<q^{*}(p). By (4.9) and assumption (1.6), we see that

2arcsinqα=α<πϕ(p)=2arcsinq(p),2\arcsin{q_{\alpha}}=\alpha<\pi-\phi^{*}(p)=2\arcsin{q^{*}(p)},

which implies that qα<q(p)q_{\alpha}<q^{*}(p).

Next, we show that Γwavep,qαΘ(p,α)\Gamma^{p,q_{\alpha}}_{\rm wave}\in\Theta(p,\alpha). In view of Case II in Proposition 2.12, the tangential angles of γhalfp,q\gamma_{\rm half}^{p,q} at two endpoints are 2arcsinq-2\arcsin{q} and 2arcsinq2\arcsin{q}. This together with 2arcsinqα=α2\arcsin{q_{\alpha}}=\alpha ensures the angle condition.

It remains to show that

¯p[Γwavep,qα]<2pϖp.\displaystyle\overline{\mathcal{B}}_{p}\big{[}\Gamma^{p,q_{\alpha}}_{\rm wave}\big{]}<2^{p}\varpi_{p}^{*}.

To this end, by the fact that qα<q(p)q_{\alpha}<q^{*}(p), it is sufficient to prove that the energy in (6.7) is strictly increasing with respect to q(0,1)q\in(0,1). We calculate

(6.8) ddq((2E1,p(q)+K1,p(q))p1b(q))=(2E1,p(q)+K1,p(q))p2×((p1)(2E1,p(q)+K1,p(q))b(q)+(2E1,p(q)+K1,p(q))b(q)).\displaystyle\begin{split}&\frac{d}{dq}\Big{(}\big{(}2\mathrm{E}_{1,p}(q)+\mathrm{K}_{1,p}(q)\big{)}^{p-1}b(q)\Big{)}\\ &\quad=\big{(}2\mathrm{E}_{1,p}(q)+\mathrm{K}_{1,p}(q)\big{)}^{p-2}\\ &\quad\qquad\times\Big{(}(p-1)\big{(}2\mathrm{E}^{\prime}_{1,p}(q)+\mathrm{K}^{\prime}_{1,p}(q)\big{)}b(q)+(2\mathrm{E}_{1,p}(q)+\mathrm{K}_{1,p}(q)\big{)}b^{\prime}(q)\Big{)}.\end{split}

It follows from Proposition 2.5 and Lemma 4.5 that

(6.9) (p1)K1,p(q)b(q)+K1,p(q)b(q)>0.\displaystyle(p-1)\mathrm{K}_{1,p}^{\prime}(q)b(q)+\mathrm{K}_{1,p}(q)b^{\prime}(q)>0.

We now show that

(6.10) (p1)E1,p(q)b(q)+E1,p(q)b(q)>0.\displaystyle(p-1)\mathrm{E}^{\prime}_{1,p}(q)b(q)+\mathrm{E}_{1,p}(q)b^{\prime}(q)>0.

In view of (2.5) and (4.7), we see that

E1,p(q)b(q)+(p1)E1,p(q)b(q)\displaystyle\mathrm{E}_{1,p}(q)b^{\prime}(q)+(p-1)\mathrm{E}^{\prime}_{1,p}(q)b(q)
=\displaystyle=\, (p1)E1,p(q)(qp1K1,p(q)+(12p)qp3(E1,p(q)K1,p(q)))\displaystyle(p-1)\mathrm{E}_{1,p}(q)\Big{(}q^{p-1}\mathrm{K}_{1,p}(q)+(1-\tfrac{2}{p})q^{p-3}\big{(}\mathrm{E}_{1,p}(q)-\mathrm{K}_{1,p}(q)\big{)}\Big{)}
+(p1)E1,p(q)K1,p(q)q(qp2E1,p(q)+(qpqp2)K1,p(q))\displaystyle\quad\,+(p-1)\frac{\mathrm{E}_{1,p}(q)-\mathrm{K}_{1,p}(q)}{q}\Big{(}q^{p-2}\mathrm{E}_{1,p}(q)+(q^{p}-q^{p-2})\mathrm{K}_{1,p}(q)\Big{)}
=\displaystyle=\, (p1)qp3((22p)E1,p(q)2+(2q2+2p3)E1,p(q)K1,p(q)+(1q2)K1,p(q)2).\displaystyle(p-1)q^{p-3}\Big{(}(2-\tfrac{2}{p})\mathrm{E}_{1,p}(q)^{2}+(2q^{2}+\tfrac{2}{p}-3)\mathrm{E}_{1,p}(q)\mathrm{K}_{1,p}(q)+(1-q^{2})\mathrm{K}_{1,p}(q)^{2}\Big{)}.

Here, we infer from Proposition 2.5 that

(22p)E1,p(q)(22pq2)K1,p(q)=q(1q2)K1,p(q)>0.(2-\tfrac{2}{p})\mathrm{E}_{1,p}(q)-(2-\tfrac{2}{p}-q^{2})\mathrm{K}_{1,p}(q)=q(1-q^{2})\mathrm{K}_{1,p}^{\prime}(q)>0.

Therefore we obtain

E1,p(q)b(q)+(p1)E1,p(q)b(q)\displaystyle\mathrm{E}_{1,p}(q)b^{\prime}(q)+(p-1)\mathrm{E}^{\prime}_{1,p}(q)b(q)
>\displaystyle>\, (p1)qp3(E1,p(q)(22pq2)K1,p(q)\displaystyle(p-1)q^{p-3}\Big{(}\mathrm{E}_{1,p}(q)(2-\tfrac{2}{p}-q^{2})\mathrm{K}_{1,p}(q)
+(2q2+2p3)E1,p(q)K1,p(q)+(1q2)K1,p(q)2)\displaystyle\quad\quad\quad\quad\quad\quad\quad+(2q^{2}+\tfrac{2}{p}-3)\mathrm{E}_{1,p}(q)\mathrm{K}_{1,p}(q)+(1-q^{2})\mathrm{K}_{1,p}(q)^{2}\Big{)}
=\displaystyle=\, (p1)qp3(1q2)(K1,p(q)E1,p(q))K1,p(q)>0,\displaystyle(p-1)q^{p-3}(1-q^{2})\big{(}\mathrm{K}_{1,p}(q)-\mathrm{E}_{1,p}(q)\big{)}\mathrm{K}_{1,p}(q)>0,

which ensures (6.10). Combining (6.8) with (6.9) and (6.10), we see that ¯p[Γwavep,q]\overline{\mathcal{B}}_{p}[\Gamma^{p,q}_{\rm wave}] is strictly increasing in q(0,1)q\in(0,1). ∎

We are now ready to complete the proof of Theorem 1.9.

Proof of Theorem 1.9.

Let {Γj}={(γ1,j,γ2,j,γ3,j)}Θ(p,α)\{\Gamma_{j}\}=\{(\gamma_{1,j},\gamma_{2,j},\gamma_{3,j})\}\subset\Theta(p,\alpha) be a minimizing sequence such that limj¯p[Γj]=infΓΘ(p,α)¯p[Γ]\lim_{j\to\infty}\overline{\mathcal{B}}_{p}[\Gamma_{j}]=\inf_{\Gamma\in\Theta(p,\alpha)}\overline{\mathcal{B}}_{p}[\Gamma]. Then, possibly after rescaling, translation, reparameterization, and taking a subsequence, either assertion (i) or (ii) in Lemma 6.2 holds. However, assertion (ii) does not occur in view of (6.2). Indeed, since the curves γ1\gamma_{1} and γ2\gamma_{2} in (ii) satisfy the assumption of Lemma 6.3, we have limj(i=12[γi,j])p1(i=12p[γi,j])2pϖp\lim_{j\to\infty}(\sum_{i=1}^{2}\mathcal{L}[\gamma_{i,j}])^{p-1}(\sum_{i=1}^{2}\mathcal{B}_{p}[\gamma_{i,j}])\geq 2^{p}\varpi^{*}_{p}; on the other hand, Lemma 6.4 implies that

limj¯p[Γj]=infΓΘ(p,α)¯p[Γ]<2pϖp.\lim_{j\to\infty}\overline{\mathcal{B}}_{p}[\Gamma_{j}]=\inf_{\Gamma\in\Theta(p,\alpha)}\overline{\mathcal{B}}_{p}[\Gamma]<2^{p}\varpi^{*}_{p}.

Therefore we have assertion (i). Then the limit network Γ\Gamma is a desired minimizer in view of the fact that ¯p[Γ]limj¯p[Γj]=infΓΘ(p,α)¯p[Γ]\overline{\mathcal{B}}_{p}[\Gamma]\leq\lim_{j\to\infty}\overline{\mathcal{B}}_{p}[\Gamma_{j}]=\inf_{\Gamma\in\Theta(p,\alpha)}\overline{\mathcal{B}}_{p}[\Gamma]. ∎

Appendix A First variation and multiplier method

A.1. Preliminary estimates

We collect elementary inequalities of power type.

Lemma A.1.

Let p(1,)p\in(1,\infty) and a,b𝐑na,b\in\mathbf{R}^{n} (n𝐍)(n\in\mathbf{N}). Then

(A.1) ||a|p|b|p|p|ab|(|a|p1+|b|p1),\displaystyle\big{|}|a|^{p}-|b|^{p}\big{|}\leq p|a-b|\Big{(}|a|^{p-1}+|b|^{p-1}\Big{)},
(A.2) ||a|p2a|b|p2b|{C|ab|p1(1<p2),C|ab|(|a|p2+|b|p2)(p>2),\displaystyle\big{|}|a|^{p-2}a-|b|^{p-2}b\big{|}\leq\begin{cases}C|a-b|^{p-1}&(1<p\leq 2),\\ C|a-b|\Big{(}|a|^{p-2}+|b|^{p-2}\Big{)}\ \ &(p>2),\end{cases}

where C>0C>0 is a constant depending only on pp.

Proof.

By the convexity of the function 𝐑nx|x|p\mathbf{R}^{n}\ni x\mapsto|x|^{p}, it follows that

|b|p|a|p+p(|a|p2a,ba),|b|^{p}\geq|a|^{p}+p\big{(}|a|^{p-2}a,b-a\big{)},

which implies that

||b|p|a|p|\displaystyle\big{|}|b|^{p}-|a|^{p}\big{|} pmax{|(|a|p2a,ba)|,|(|b|p2b,ab)|}\displaystyle\leq p\max\Big{\{}\big{|}(|a|^{p-2}a,b-a)\big{|},\big{|}(|b|^{p-2}b,a-b)\big{|}\Big{\}}
p(|a|p1|ba|+|b|p1|ba|).\displaystyle\leq p\Big{(}|a|^{p-1}|b-a|+|b|^{p-1}|b-a|\Big{)}.

Therefore we obtain (A.1).

Next we prove (A.2) for 1<p21<p\leq 2. The idea comes from [5, Remark 2.3]. We assume, without loss of generality, that 0<|b||a|0<|b|\leq|a| and aba\neq b. We see that

(A.3) ||a|p2a|b|p2b|||a|p2a|a|p1b|b|+|a|p1b|b||b|p2b||a|p1|a|a|b|b||+||a|p1|b|p1|.\displaystyle\begin{split}\big{|}|a|^{p-2}a-|b|^{p-2}b\big{|}&\leq\left||a|^{p-2}a-|a|^{p-1}\frac{b}{|b|}+|a|^{p-1}\frac{b}{|b|}-|b|^{p-2}b\right|\\ &\leq|a|^{p-1}\left|\frac{a}{|a|}-\frac{b}{|b|}\right|+\left||a|^{p-1}-|b|^{p-1}\right|.\end{split}

Since x|x|p1x\mapsto|x|^{p-1} is (p1)(p-1)-Hölder continuous, we have

||a|p1|b|p1|C||a||b||p1C|ab|p1.\left||a|^{p-1}-|b|^{p-1}\right|\leq C\big{|}|a|-|b|\big{|}^{p-1}\leq C\left|a-b\right|^{p-1}.

Next,

|a|p1|a|a|b|b||\displaystyle|a|^{p-1}\left|\frac{a}{|a|}-\frac{b}{|b|}\right| =|a|p2|a|a||b|b+|b||b|b|b||b|b|\displaystyle=|a|^{p-2}\left|a-\frac{|a|}{|b|}b+\frac{|b|}{|b|}b-\frac{|b|}{|b|}b\right|
|a|p2(|ab|+||b||b|b|a||b|b|)2|a|p2|ab|.\displaystyle\leq|a|^{p-2}\bigg{(}|a-b|+\left|\frac{|b|}{|b|}b-\frac{|a|}{|b|}b\right|\bigg{)}\leq 2|a|^{p-2}|a-b|.

In the case |ab||a||a-b|\leq|a|, we infer from 1<p<21<p<2 that |a|p2|ab|p2|a|^{p-2}\leq|a-b|^{p-2}, and hence

|a|p2|ab||ab|p1.|a|^{p-2}|a-b|\leq|a-b|^{p-1}.

In the case |ab||a||a-b|\geq|a|, since |ab||a|+|b|2|a||a-b|\leq|a|+|b|\leq 2|a| holds, we see that

|a|p2|ab|2|ab|p1.|a|^{p-2}|a-b|\leq 2|a-b|^{p-1}.

Therefore, we infer from (A.3) that

||a|p2a|b|p2b|C|ab|p1.\displaystyle\big{|}|a|^{p-2}a-|b|^{p-2}b\big{|}\leq C|a-b|^{p-1}.

We turn to (A.2) for the case p>2p>2. According to [13, page 73], it follows that for p>2p>2

||a|p2a|b|p2b|(p1)|ba|01|a+t(ba)|p2dt,\big{|}|a|^{p-2}a-|b|^{p-2}b\big{|}\leq(p-1)|b-a|\int_{0}^{1}|a+t(b-a)|^{p-2}dt,

from which the desired estimate follows immediately. ∎

Remark A.2.

Let f,g,hLp(0,1;𝐑n)f,g,h\in L^{p}(0,1;\mathbf{R}^{n}). Thanks to (A.1), it follows from Hölder’s inequality that

01||f(t)|p|g(t)|p|𝑑tpfgLp(0,1)(fLp(0,1)p1+gLp(0,1)p1).\displaystyle\int_{0}^{1}\Big{|}|f(t)|^{p}-|g(t)|^{p}\Big{|}\,dt\leq p\|f-g\|_{L^{p}(0,1)}\Big{(}\|f\|^{p-1}_{L^{p}(0,1)}+\|g\|^{p-1}_{L^{p}(0,1)}\Big{)}.

In the case 1<p21<p\leq 2, it follows from Hölder’s inequality and (A.2) that

01||f(t)|p2f(t)\displaystyle\int_{0}^{1}\Big{|}|f(t)|^{p-2}f(t) |g(t)|p2g(t)||h(t)|dtCfgLp(0,1)p1hLp(0,1).\displaystyle-|g(t)|^{p-2}g(t)\Big{|}|h(t)|\,dt\leq C\|f-g\|^{p-1}_{L^{p}(0,1)}\|h\|_{L^{p}(0,1)}.

In the case p>2p>2, noting that 1/p+1/p+(p2)/p=11/p+1/p+(p-2)/p=1, we observe from Hölder’s inequality and (A.2) that

01||f(t)|p2f(t)\displaystyle\int_{0}^{1}\Big{|}|f(t)|^{p-2}f(t) |g(t)|p2g(t)||h(t)|dt\displaystyle-|g(t)|^{p-2}g(t)\Big{|}|h(t)|\,dt
CfgLp(0,1)hLp(0,1)(fLp(0,1)p2+gLp(0,1)p2).\displaystyle\leq C\|f-g\|_{L^{p}(0,1)}\|h\|_{L^{p}(0,1)}\Big{(}\|f\|^{p-2}_{L^{p}(0,1)}+\|g\|^{p-2}_{L^{p}(0,1)}\Big{)}.

A.2. First variation of the pp-bending energy

In this subsection we compute the Fréchet derivative DpD\mathcal{B}_{p} of p\mathcal{B}_{p}. Note that the Fréchet differentiability is nontrivial due to the strong nonlinearity of p\mathcal{B}_{p}. First, let us mention a known formula for the Gâteaux derivative dpd\mathcal{B}_{p} of p\mathcal{B}_{p} (see [19, Lemma A.1] for a rigorous derivation). Let I:=(0,1)I:=(0,1). For an immersed curve γ:I𝐑n\gamma:I\to\mathbf{R}^{n} (tIt\in I), let ds:=|γ|dtds:=|\gamma^{\prime}|\,dt be the line element in the sense of a weighted measure on II. Let s\partial_{s} denote the arclength derivative along γ\gamma, i.e., sψ=1|γ|ψ\partial_{s}\psi=\frac{1}{|\gamma^{\prime}|}\psi^{\prime}. In particular, the curvature vector is then represented by

κ:=s2γ=γ′′|γ|2(γ,γ′′)γ|γ|4.\kappa:=\partial_{s}^{2}\gamma=\frac{\gamma^{\prime\prime}}{|\gamma^{\prime}|^{2}}-\frac{(\gamma^{\prime},\gamma^{\prime\prime})\gamma^{\prime}}{|\gamma^{\prime}|^{4}}.
Lemma A.3.

Let p(1,)p\in(1,\infty) and n𝐍n\in\mathbf{N}. For an immersed curve γWimm2,p(I;𝐑n)\gamma\in W_{\mathrm{imm}}^{2,p}(I;\mathbf{R}^{n}), let p\mathcal{B}_{p} be the pp-bending energy defined by

p[γ]:=I|κ|p𝑑s.\mathcal{B}_{p}[\gamma]:=\int_{I}|\kappa|^{p}ds.

Then the Gâteaux derivative dpd\mathcal{B}_{p} of p\mathcal{B}_{p} at γ\gamma is given by, for hW2,p(I;𝐑n)h\in W^{2,p}(I;\mathbf{R}^{n}),

dp[γ],h\displaystyle\langle d\mathcal{B}_{p}[\gamma],h\rangle =I((12p)|κ|p(sγ,sh)+p|κ|p2(κ,s2h))𝑑s.\displaystyle=\int_{I}\Big{(}(1-2p)|\kappa|^{p}(\partial_{s}\gamma,\partial_{s}h)+p|\kappa|^{p-2}(\kappa,\partial_{s}^{2}h)\Big{)}\,ds.

In the following we prove that p[γ]\mathcal{B}_{p}[\gamma] is Fréchet differentiable by showing the sufficient condition that dp[γ]d\mathcal{B}_{p}[\gamma] is continuous with respect to γ\gamma (cf. [32, Proposition 4.8]). For a Banach space XX, let (X,𝐑):={F:X𝐑|F is linear and continuous}\mathscr{L}(X,\mathbf{R}):=\Set{F:X\to\mathbf{R}}{F\text{ is linear and continuous}} and (X,𝐑)\|\cdot\|_{\mathscr{L}(X,\mathbf{R})} denote the operator norm

F(X,𝐑):=suphX1|F,h|.\|F\|_{\mathscr{L}(X,\mathbf{R})}:=\sup_{\|h\|_{X}\leq 1}\big{|}\langle F,h\rangle\big{|}.
Lemma A.4.

Let p(1,)p\in(1,\infty) and n𝐍n\in\mathbf{N}. Let X:=W2,p(I;𝐑n)X:=W^{2,p}(I;\mathbf{R}^{n}). Then the Gâteaux derivative dpd\mathcal{B}_{p} of p\mathcal{B}_{p} is continuous at every γWimm2,p(I;𝐑n)\gamma\in W^{2,p}_{\rm imm}(I;\mathbf{R}^{n}) in XX.

Proof.

Fix an arbitrary {γj}j𝐍X\{\gamma_{j}\}_{j\in\mathbf{N}}\subset X satisfying γjγ{\gamma}_{j}\to\gamma in XX. Then γjγ{\gamma}_{j}\to\gamma in C1([0,1])C^{1}([0,1]) also follows, and hence there is c>0c>0 independent of jj such that |γj|>c|\gamma^{\prime}_{j}|>c for sufficiently large j𝐍j\in\mathbf{N}. The proof is completed by showing that

(A.4) dp[γ]dp[γj](X,𝐑)0ifγjγinX.\displaystyle\big{\|}d\mathcal{B}_{p}[\gamma]-d\mathcal{B}_{p}[\gamma_{j}]\big{\|}_{\mathscr{L}(X,\mathbf{R})}\to 0\quad\text{if}\quad\gamma_{j}\to\gamma\ \ \text{in}\ \ X.

In what follows, we use the same notation CC for positive constants depending only on pp and γ\gamma.

Fix an arbitrary hXh\in X such that hX1\|h\|_{X}\leq 1. Let sj\partial_{s_{j}} denote the arclength derivative along γj\gamma_{j}. Let κj:=sj2γj=γj′′|γj|2(γj,γj′′)γj|γj|4.\kappa_{j}:=\partial_{s_{j}}^{2}\gamma_{j}=\frac{\gamma_{j}^{\prime\prime}}{|\gamma_{j}^{\prime}|^{2}}-\frac{(\gamma_{j}^{\prime},\gamma_{j}^{\prime\prime})\gamma_{j}^{\prime}}{|\gamma_{j}^{\prime}|^{4}}. First we compute

(A.5) |dp[γj],hdp[γ],h|(2p1)I||κ|p(sγ,h)|κj|p(sjγj,h)|𝑑t+pI||κ|p2(κ,|γ|s2h)|κj|p2(κj,|γj|sj2h)|𝑑t=:𝐈+𝐉.\displaystyle\begin{split}\Big{|}\big{\langle}d\mathcal{B}_{p}[\gamma_{j}],h\big{\rangle}-\big{\langle}d\mathcal{B}_{p}[\gamma],h\big{\rangle}\Big{|}&\leq(2p-1)\int_{I}\Big{|}|\kappa|^{p}(\partial_{s}\gamma,h^{\prime})-|\kappa_{j}|^{p}(\partial_{s_{j}}\gamma_{j},h^{\prime})\Big{|}\,dt\\ &\quad+p\int_{I}\Big{|}|\kappa|^{p-2}(\kappa,|\gamma^{\prime}|\partial_{s}^{2}h)-|\kappa_{j}|^{p-2}(\kappa_{j},|\gamma_{j}^{\prime}|\partial_{s_{j}}^{2}h)\Big{|}\,dt\\ &\ \ =:\mathbf{I}+\mathbf{J}.\end{split}

We demonstrate the estimate of 𝐉\mathbf{J} in the right hand side. It follows that

𝐉\displaystyle\mathbf{J} p01||κ|p2κ|κj|p2κj|γ|s2h|dt+p01|κj|p1γ|s2h|γj|sj2h|𝑑t\displaystyle\leq p\int_{0}^{1}\big{|}|\kappa|^{p-2}\kappa-|\kappa_{j}|^{p-2}\kappa_{j}\big{|}\big{|}|\gamma^{\prime}|\partial_{s}^{2}h\big{|}\,dt+p\int_{0}^{1}|\kappa_{j}|^{p-1}\big{|}|\gamma^{\prime}|\partial_{s}^{2}h-|\gamma_{j}^{\prime}|\partial_{s_{j}}^{2}h\big{|}\,dt
=:𝐉1+𝐉2.\displaystyle\ \ =:\mathbf{J}_{1}+\mathbf{J}_{2}.

We apply Lemma A.1 and Hölder’s inequality, as in Remark A.2, to obtain

𝐉1{CκκjLpp1|γ|s2hLp(1<p2),CκκjLp(κLpp2+κjLpp2)|γ|s2hLp(p>2).\displaystyle\mathbf{J}_{1}\leq\begin{cases}C\|\kappa-\kappa_{j}\|^{p-1}_{L^{p}}\big{\|}|\gamma^{\prime}|\partial_{s}^{2}h\big{\|}_{L^{p}}&(1<p\leq 2),\\ C\|\kappa-\kappa_{j}\|_{L^{p}}\Big{(}\|\kappa\|_{L^{p}}^{p-2}+\|\kappa_{j}\|_{L^{p}}^{p-2}\Big{)}\big{\|}|\gamma^{\prime}|\partial_{s}^{2}h\big{\|}_{L^{p}}&(p>2).\end{cases}

Since hX1\|h\|_{X}\leq 1 and γWimm2,p(I;𝐑n)\gamma\in W^{2,p}_{\rm imm}(I;\mathbf{R}^{n}), we have |γ|s2hLpC\||\gamma^{\prime}|\partial_{s}^{2}h\|_{L^{p}}\leq C. On the other hand, since s2h=1|γ|((γ,γ′′)|γ|3h+1|γ|h′′)\partial_{s}^{2}h=\frac{1}{|\gamma^{\prime}|}(-\frac{(\gamma^{\prime},\gamma^{\prime\prime})}{|\gamma^{\prime}|^{3}}h^{\prime}+\frac{1}{|\gamma^{\prime}|}h^{\prime\prime}), Hölder’s inequality combined with some LL^{\infty}-estimates for first derivatives and hX1\|h\|_{X}\leq 1 implies that

𝐉2CκjLpp1(γ′′γj′′Lp+γγjL).\mathbf{J}_{2}\leq C\|\kappa_{j}\|_{L^{p}}^{p-1}\Big{(}\|\gamma^{\prime\prime}-\gamma_{j}^{\prime\prime}\|_{L^{p}}+\|\gamma^{\prime}-\gamma_{j}^{\prime}\|_{L^{\infty}}\Big{)}.

Similarly, we obtain

𝐈C(κLpγγjL+κκjLp(κLpp1+κjLpp1)).\mathbf{I}\leq C\Big{(}\|\kappa\|_{L^{p}}\|\gamma^{\prime}-\gamma_{j}^{\prime}\|_{L^{\infty}}+\|\kappa-\kappa_{j}\|_{L^{p}}\big{(}\|\kappa\|_{L^{p}}^{p-1}+\|\kappa_{j}\|_{L^{p}}^{p-1}\big{)}\Big{)}.

From the facts that γjγ\gamma_{j}\to\gamma in W2,pW^{2,p} and that κLp,κjLpC\|\kappa\|_{L^{p}},\|\kappa_{j}\|_{L^{p}}\leq C and κjκLpCγj′′γ′′Lp\|\kappa_{j}-\kappa\|_{L^{p}}\leq C\|\gamma^{\prime\prime}_{j}-\gamma^{\prime\prime}\|_{L^{p}}, it follows that

𝐈+𝐉C(γγjL+γ′′γj′′Lp).\mathbf{I}+\mathbf{J}\leq C\Big{(}\|\gamma^{\prime}-\gamma_{j}^{\prime}\|_{L^{\infty}}+\|\gamma^{\prime\prime}-\gamma_{j}^{\prime\prime}\|_{L^{p}}\Big{)}.

Combining this with (A.5) and a well-known embedding W1,W2,pW^{1,\infty}\hookrightarrow W^{2,p}, we obtain

suphX1|dp[γj],hdp[γ],h|{CγγjXp1(1<p2),CγγjX(p>2),\displaystyle\sup_{\|h\|_{X}\leq 1}\Big{|}\big{\langle}d\mathcal{B}_{p}[\gamma_{j}],h\big{\rangle}-\big{\langle}d\mathcal{B}_{p}[\gamma],h\big{\rangle}\Big{|}\leq\begin{cases}C\|\gamma-\gamma_{j}\|^{p-1}_{X}&(1<p\leq 2),\\ C\|\gamma-\gamma_{j}\|_{X}&(p>2),\end{cases}

which implies (A.4). ∎

By Lemma A.4, the Fréchet derivative Dp[γ]D\mathcal{B}_{p}[\gamma] coincides with dp[γ]d\mathcal{B}_{p}[\gamma].

A.3. Lagrange multiplier theorem

Since our problem involves a non-local constraint, we use a Lagrange multiplier method (see e.g. [31, Proposition 43.21]). In the following, for P0,P1𝐑nP_{0},P_{1}\in\mathbf{R}^{n} let

𝒜P0,P1:=\displaystyle\mathcal{A}_{P_{0},P_{1}}:= {uWimm2,p(0,1;𝐑n)|u(0)=P0,u(1)=P1},\displaystyle\Set{u\in W^{2,p}_{\rm imm}(0,1;\mathbf{R}^{n})}{u(0)=P_{0},\ \ u(1)=P_{1}},
X:=\displaystyle X:= {hW2,p(0,1;𝐑n)|h(0)=h(1)=0}.\displaystyle\Set{h\in W^{2,p}(0,1;\mathbf{R}^{n})}{h(0)=h(1)=0}.
Proposition A.5.

Let u0𝒜P0,P1u_{0}\in\mathcal{A}_{P_{0},P_{1}}. Let U(u0)U(u_{0}) be an open neighborhood of u0u_{0} and F,G:U(u0)𝐑F,G:U(u_{0})\to\mathbf{R} be Fréchet differentiable at u0u_{0}, and denote

M:={u𝒜P0,P1|G(u)=0}.M:=\Set{u\in\mathcal{A}_{P_{0},P_{1}}}{G(u)=0}.

Let u0Mu_{0}\in M. Then either of the following holds:

  • (a)

    DG(u0),h=0\big{\langle}DG(u_{0}),h\big{\rangle}=0   for all hXh\in X,

  • (b)

    u0u_{0} is a critical point of FF in MM if and only if there exists λ𝐑\lambda\in\mathbf{R} such that

    (A.6) DF(u0),h+λDG(u0),h=0for allhX.\displaystyle\big{\langle}DF(u_{0}),h\big{\rangle}+\lambda\big{\langle}DG(u_{0}),h\big{\rangle}=0\quad\text{for all}\ \ h\in X.
Remark A.6.

In the case of F(γ)=p[γ]F(\gamma)=\mathcal{B}_{p}[\gamma] and G(γ)=[γ]LG(\gamma)=\mathcal{L}[\gamma]-L, when (a) is satisfied, i.e., D[γ0]=0D\mathcal{L}[\gamma_{0}]=0, then γ0\gamma_{0} is nothing but a line segment, which also satisfies Dp[γ0]=0D\mathcal{B}_{p}[\gamma_{0}]=0. Therefore in our setting it suffices to consider (b) only.

Remark A.7 (Clamped boundary condition).

Given P0,P1,T0,T1𝐑nP_{0},P_{1},T_{0},T_{1}\in\mathbf{R}^{n} with |T0|=|T1|=1|T_{0}|=|T_{1}|=1, let

𝒜P0,P1,T0,T1:={γ𝒜P0,P1|sγ(0)=T0,sγ(1)=T1}.\displaystyle\mathcal{A}_{P_{0},P_{1},T_{0},T_{1}}:=\Set{\gamma\in\mathcal{A}_{P_{0},P_{1}}}{\partial_{s}\gamma(0)=T_{0},\ \partial_{s}\gamma(1)=T_{1}}.

When we consider 𝒜P0,P1,T0,T1\mathcal{A}_{P_{0},P_{1},T_{0},T_{1}} instead of 𝒜P0,P1\mathcal{A}_{P_{0},P_{1}}, then the assertion in Proposition A.5 holds by replacing XX in (A.6) with

{hW2,p(0,1;𝐑n)|h(0)=h(1)=0,h(0)=h(1)=0}.\Set{h\in W^{2,p}(0,1;\mathbf{R}^{n})}{h(0)=h(1)=0,\ \ h^{\prime}(0)=h^{\prime}(1)=0}.

Thanks to Lemmata A.3 and A.4, we can explicitly calculate (A.6) for the case F(γ)=p[γ]F(\gamma)=\mathcal{B}_{p}[\gamma] and G(γ)=[γ]LG(\gamma)=\mathcal{L}[\gamma]-L. Note that for any γWimm2,p(0,1;𝐑n)\gamma\in W^{2,p}_{\mathrm{imm}}(0,1;\mathbf{R}^{n}) the arclength function σ(t):=0t|γ|\sigma(t):=\int_{0}^{t}|\gamma^{\prime}| is of class W2,pW^{2,p}, has strictly positive derivative, and maps [0,1][0,1] to [0,[γ]][0,\mathcal{L}[\gamma]]. Hence the arclength reparameterization γ~:=γσ1\tilde{\gamma}:=\gamma\circ\sigma^{-1} is an element of Wimm2,p(0,[γ];𝐑n)W^{2,p}_{\mathrm{imm}}(0,\mathcal{L}[\gamma];\mathbf{R}^{n}) with |γ~|1|\tilde{\gamma}^{\prime}|\equiv 1. Applying the change of variables s=σ(t)s=\sigma(t) to Lemma A.3 combined with Lemma A.4, and setting η=hσ1W2,p(0,L;𝐑n)\eta=h\circ\sigma^{-1}\in W^{2,p}(0,L;\mathbf{R}^{n}) for hXh\in X, we obtain the representation of (A.6) in terms of the arclength parameterization:

Proposition A.8.

Let λ𝐑\lambda\in\mathbf{R}. A curve γWimm2,p(0,1;𝐑n)\gamma\in W^{2,p}_{\rm imm}(0,1;\mathbf{R}^{n}) satisfies

Dp[γ]+λD[γ],h=0\displaystyle\big{\langle}D\mathcal{B}_{p}[\gamma]+\lambda D\mathcal{L}[\gamma],h\big{\rangle}=0

for any hW2,p(0,1;𝐑n)h\in W^{2,p}(0,1;\mathbf{R}^{n}) with h(0)=h(1)=0h(0)=h(1)=0 if and only if the arclength parametrization γ~W2,p(0,L;𝐑n)\tilde{\gamma}\in W^{2,p}(0,L;\mathbf{R}^{n}) of γ\gamma satisfies

0L((12p)|γ~′′|p(γ~,η)+p|γ~′′|p2(γ~′′,η′′)+λ(γ~,η))𝑑s=0\displaystyle\int_{0}^{L}\Big{(}(1-2p)|\tilde{\gamma}^{\prime\prime}|^{p}(\tilde{\gamma}^{\prime},\eta^{\prime})+p|\tilde{\gamma}^{\prime\prime}|^{p-2}(\tilde{\gamma}^{\prime\prime},\eta^{\prime\prime})+\lambda(\tilde{\gamma}^{\prime},\eta^{\prime})\Big{)}ds=0

for any ηW2,p(0,L;𝐑n)\eta\in W^{2,p}(0,L;\mathbf{R}^{n}) with η(0)=η(L)=0\eta(0)=\eta(L)=0.

References

  • [1] J. J. Arroyo, O. J. Garay, and A. Pámpano. Boundary value problems for Euler-Bernoulli planar elastica. A solution construction procedure. J. Elasticity, 139(2):359–388, 2020.
  • [2] J. W. Barrett, H. Garcke, and R. Nürnberg. Elastic flow with junctions: variational approximation and applications to nonlinear splines. Math. Models Methods Appl. Sci., 22(11):1250037, 57, 2012.
  • [3] S. Blatt, C. Hopper, and N. Vorderobermeier. A regularized gradient flow for the pp-elastic energy. Adv. Nonlinear Anal., 11(1):1383–1411, 2022.
  • [4] S. Blatt, C. P. Hopper, and N. Vorderobermeier. A minimising movement scheme for the pp-elastic energy of curves. J. Evol. Equ., 22(2):Paper No. 41, 25, 2022.
  • [5] T. Cazenave, D. Fang, and Z. Han. Continuous dependence for NLS in fractional order spaces. Ann. Inst. H. Poincaré C Anal. Non Linéaire, 28(1):135–147, 2011.
  • [6] A. Dall’Acqua, C.-C. Lin, and P. Pozzi. Elastic flow of networks: long-time existence result. Geom. Flows, 4(1):83–136, 2019.
  • [7] A. Dall’Acqua, M. Novaga, and A. Pluda. Minimal elastic networks. Indiana Univ. Math. J., 69(6):1909–1932, 2020.
  • [8] A. Dall’Acqua and A. Pluda. Some minimization problems for planar networks of elastic curves. Geom. Flows, 2(1):105–124, 2017.
  • [9] G. Del Nin, A. Pluda, and M. Pozzetta. Degenerate elastic networks. J. Geom. Anal., 31(6):6128–6170, 2021.
  • [10] H. Garcke, J. Menzel, and A. Pluda. Willmore flow of planar networks. J. Differential Equations, 266(4):2019–2051, 2019.
  • [11] H. Garcke, J. Menzel, and A. Pluda. Long time existence of solutions to an elastic flow of networks. Comm. Partial Differential Equations, 45(10):1253–1305, 2020.
  • [12] P. Li and S. T. Yau. A new conformal invariant and its applications to the Willmore conjecture and the first eigenvalue of compact surfaces. Invent. Math., 69(2):269–291, 1982.
  • [13] P. Lindqvist. Notes on the pp-Laplace equation (second edition). University Jyväskylä, Department of Mathematics and Statistics, Report 161, 2017.
  • [14] A. Linnér. Explicit elastic curves. Ann. Global Anal. Geom., 16(5):445–475, 1998.
  • [15] A. E. H. Love. A treatise on the Mathematical Theory of Elasticity. Dover Publications, New York, 1944. Fourth Ed.
  • [16] T. Miura. Elastic curves and phase transitions. Math. Ann., 376(3-4):1629–1674, 2020.
  • [17] T. Miura. Li–Yau type inequality for curves in any codimension, arXiv:2102.06597.
  • [18] T. Miura, M. Müller, and F. Rupp. Optimal thresholds for preserving embeddedness of elastic flows. to appear in Amer. J. Math., arXiv:2106.09549.
  • [19] T. Miura and K. Yoshizawa. Complete classification of planar pp-elasticae, arXiv:2203.08535v2.
  • [20] M. Müller and F. Rupp. A Li-Yau inequality for the 1-dimensional Willmore energy. Adv. Calc. Var., 16(2):337–362, 2023.
  • [21] M. Novaga and P. Pozzi. A second order gradient flow of pp-elastic planar networks. SIAM J. Math. Anal., 52(1):682–708, 2020.
  • [22] S. Okabe, P. Pozzi, and G. Wheeler. A gradient flow for the pp-elastic energy defined on closed planar curves. Math. Ann., 378(1-2):777–828, 2020.
  • [23] S. Okabe and G. Wheeler. The pp-elastic flow for planar closed curves with constant parametrization. J. Math. Pures Appl. (9), 173:1–42, 2023.
  • [24] A. Polden. Curves and surfaces of least total curvature and fouth-order flows. PhD thesis, Universität Tübingen, 1996.
  • [25] N. Shioji and K. Watanabe. Total pp-powered curvature of closed curves and flat-core closed pp-curves in 𝐒2(G){\bf S}^{2}(G). Comm. Anal. Geom., 28(6):1451–1487, 2020.
  • [26] S. Takeuchi. Legendre-type relations for generalized complete elliptic integrals. J. Class. Anal., 9(1):35–42, 2016.
  • [27] H. von der Mosel. Minimizing the elastic energy of knots. Asymptot. Anal., 18(1-2):49–65, 1998.
  • [28] K. Watanabe. Planar pp-elastic curves and related generalized complete elliptic integrals. Kodai Math. J., 37(2):453–474, 2014.
  • [29] G. Wheeler. On the curve diffusion flow of closed plane curves. Ann. Mat. Pura Appl. (4), 192(5):931–950, 2013.
  • [30] K. Yoshizawa. The critical points of the elastic energy among curves pinned at endpoints. Discrete Contin. Dyn. Syst., 42(1):403–423, 2022.
  • [31] E. Zeidler. Nonlinear functional analysis and its applications. III. Springer-Verlag, New York, 1985.
  • [32] E. Zeidler. Nonlinear functional analysis and its applications. I. Springer-Verlag, New York, 1986.