This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Pierce stalks in preprimal varieties

D. Vaggione and W. J. Zuluaga Botero
Abstract

An algebra ๐\mathbf{P} is called preprimal if ๐\mathbf{P} is finite and Cโ€‹lโ€‹o(๐)\mathop{\mathrm{C}lo}(\mathbf{P}) is a maximal clone. A preprimal variety is a variety generated by a preprimal algebra. After Rosenbergโ€™s classification of maximal clones [13]; we have that a finite algebra is preprimal if and only if its term operations are exactly the functions preserving a relation of one of the following seven types:

  1. 1.

    Permutations with cycles all the same prime length,

  2. 2.

    Proper subsets,

  3. 3.

    Prime-affine relations,

  4. 4.

    Bounded partial orders,

  5. 5.

    hh-adic relations,

  6. 6.

    Central relations hโ‰ฅ2h\geq 2,

  7. 7.

    Proper, non-trivial equivalence relations.

In [10] Knoebel studies the Pierce sheaf of the different preprimal varieties and he asks for a description of the Pierce stalks. He solves this problem for the cases 1.,2. and 3. and left open the remaining cases. In this paper, using central element theory we succeeded in describing the Pierce stalks of the cases 6. and 7..

1 Introduction

An algebra ๐\mathbf{P} is called preprimal if ๐\mathbf{P} is finite and Cโ€‹lโ€‹o(๐)\mathop{\mathrm{C}lo}(\mathbf{P}) is a maximal clone. A preprimal variety is a variety generated by a preprimal algebra.

After Rosenbergโ€™s classification of maximal clones [13]; we have that a finite algebra is preprimal if and only if its term operations are exactly the functions preserving a relation of one of the following seven types:

  1. 1.

    Permutations with cycles all the same prime length,

  2. 2.

    Proper subsets,

  3. 3.

    Prime-affine relations,

  4. 4.

    Bounded partial orders,

  5. 5.

    hh-adic relations,

  6. 6.

    Central relations hโ‰ฅ2h\geq 2,

  7. 7.

    Proper, non-trivial equivalence relations.

In [10] Knoebel studies the Pierce sheaf ([12], [6]) of the different preprimal varieties and he asks for a description of the Pierce stalks. He solves this problem for the cases 1.,2. and 3. and left open the remaining cases.

In this paper, using central element theory we succeeded in describing the Pierce stalks of the cases 6. and 7..


2 Notation and some basic results

Let {๐€i}iโˆˆI\{\mathbf{A}_{i}\}_{i\in I} be a family of algebras of the same type. If there is no place to confusion, we write โˆ๐€i\prod\mathbf{A}_{i} in place of โˆiโˆˆI๐€i\prod_{i\in I}\mathbf{A}_{i}. For x,yโˆˆโˆAix,y\in\prod A_{i}, let Eโ€‹(x,y)={iโˆˆI:xโ€‹(i)=yโ€‹(i)}E(x,y)=\left\{i\in I:x(i)=y(i)\right\}. A subdirect product ๐€โ‰คโˆ๐€i\mathbf{A}\leq\prod\mathbf{A}_{i} is global [11] if there is a topology ฯ„\tau on II such that Eโ€‹(x,y)โˆˆฯ„E(x,y)\in\tau, for every x,yโˆˆAx,y\in A, and

  1. -

    (Patchwork Property) For every {Ur:rโˆˆR}โІฯ„\{U_{r}:r\in R\}\subseteq\tau and {xr:rโˆˆR}โІA\{x_{r}:r\in R\}\subseteq A, if โ‹ƒ{Ur:rโˆˆR}=I\bigcup\{U_{r}:r\in R\}=I and UrโˆฉUsโІEโ€‹(xr,xs)U_{r}\cap U_{s}\subseteq E(x_{r},x_{s}), for every r,sโˆˆRr,s\in R, then there exists xโˆˆAx\in A such that UrโІEโ€‹(x,xr)U_{r}\subseteq E(x,x_{r}), for every rโˆˆRr\in R.

Global subdirect products were introduced in [11] as a universal algebra counterpart to sheaves, where it is proved that a global subdirect product and an algebra of global sections of a sheaf are the same thing.

For an algebra ๐€\mathbf{A}ย we use โˆ‡๐€\nabla^{\mathbf{A}} to denote the universal congruence on ๐€\mathbf{A} and ฮ”๐€\Delta^{\mathbf{A}} to denote the trivial congruence on ๐€\mathbf{A}. We use Conโ€‹(๐€)\mathrm{Con}(\mathbf{A}) to denote the congruence lattice of ๐€\mathbf{A}. We use ฮธ๐€โ€‹(a,b)\theta^{\mathbf{A}}(a,b) to denote the principal congruence of ๐€\mathbf{A} generated by (a,b)(a,b). If aโ†’,bโ†’โˆˆAn\vec{a},\vec{b}\in A^{n}, we use ฮธ๐€โ€‹(aโ†’,bโ†’)\theta^{\mathbf{A}}(\vec{a},\vec{b}) to denote the congruence โ‹k=1nฮธ๐€โ€‹(ak,bk)\bigvee_{k=1}^{n}\theta^{\mathbf{A}}(a_{k},b_{k}).

Lemma 1

If ฯƒ:๐€โ†’๐\sigma:\mathbf{A}\rightarrow\mathbf{B} is a homomorphism and (x,y)โˆˆฮธ๐€โ€‹(aโ†’,bโ†’)(x,y)\in\theta^{\mathbf{A}}(\vec{a},\vec{b}), then (ฯƒโ€‹(x),ฯƒโ€‹(y))โˆˆฮธ๐โ€‹(ฯƒโ€‹(aโ†’),ฯƒโ€‹(bโ†’))(\sigma(x),\sigma(y))\in\theta^{\mathbf{B}}(\sigma(\vec{a}),\sigma(\vec{b})).

Proof. Folklore. ย ย 


If ๐€โ‰คโˆ๐€i\mathbf{A}\leq\prod\mathbf{A}_{i}, for each iโˆˆIi\in I, let ฯ€i๐€:๐€โ†’๐€i\pi_{i}^{\mathbf{A}}:\mathbf{A}\rightarrow\mathbf{A}_{i} be the canonical projection. We use ฮธi๐€\theta_{i}^{\mathbf{A}} to denote the congruence kerโกฯ€i๐€\ker\pi_{i}^{\mathbf{A}}.

Given a class ๐’ฆ\mathcal{K} of algebras, we use ๐•€โ€‹(๐’ฆ)\mathbb{I}(\mathcal{K}), โ„โ€‹(๐’ฆ)\mathbb{H}(\mathcal{K}), ๐•Šโ€‹(๐’ฆ)\mathbb{S}(\mathcal{K}), โ„™uโ€‹(๐’ฆ)\mathbb{P}_{u}(\mathcal{K}) and ๐•โ€‹(๐’ฆ)\mathbb{V}(\mathcal{K}) to denote the classes of isomorphic images, homomorphic images, subalgebras, ultraproducts of elements of ๐’ฆ\mathcal{K} and the variety generated by ๐’ฆ\mathcal{K}. For a variety ๐’ฑ\mathcal{V}, we write ๐’ฑSโ€‹I\mathcal{V}_{SI} and ๐’ฑDโ€‹I\mathcal{V}_{DI} to denote the classes of subdirectly irreducible and directly indecomposable members of ๐’ฑ\mathcal{V}.

Given a variety ๐’ฑ\mathcal{V}ย and a set XX of variables we use ๐…๐’ฑโ€‹(X)\mathbf{F}_{\mathcal{V}}(X) for the free algebra of ๐’ฑ\mathcal{V} freely generated by XX.

Lemma 2

Let ๐’ฑ\mathcal{V} be a variety and let pkโ€‹(zโ†’,wโ†’),qkโ€‹(zโ†’,wโ†’)p_{k}(\vec{z},\vec{w}),q_{k}(\vec{z},\vec{w}), k=1,โ€ฆ,nk=1,...,n, be terms in the language of ๐’ฑ\mathcal{V}. Let X={x,y,zโ†’,wโ†’}X=\{x,y,\vec{z},\vec{w}\},

ฮธ=โ‹k=1nฮธ๐…๐’ฑโ€‹(X)โ€‹(pk๐…๐’ฑโ€‹(X)โ€‹(zโ†’,wโ†’),qk๐…๐’ฑโ€‹(X)โ€‹(zโ†’,wโ†’))\theta=\bigvee_{k=1}^{n}\theta^{\mathbf{F}_{\mathcal{V}}(X)}(p_{k}^{\mathbf{F}_{\mathcal{V}}(X)}(\vec{z},\vec{w}),q_{k}^{\mathbf{F}_{\mathcal{V}}(X)}(\vec{z},\vec{w}))

and ๐‡=๐…๐’ฑโ€‹(X)/ฮธ\mathbf{H}=\mathbf{F}_{\mathcal{V}}(X)/\theta. Let ๐€โˆˆ๐’ฑ\mathbf{A}\in\mathcal{V} and suppose that pk๐€โ€‹(eโ†’,aโ†’)=qk๐€โ€‹(eโ†’,aโ†’)p_{k}^{\mathbf{A}}(\vec{e},\vec{a})=q_{k}^{\mathbf{A}}(\vec{e},\vec{a}), for k=1,โ€ฆ,nk=1,...,n. Then, for every a,bโˆˆAa,b\in A, there exists a unique homomorphism ฮฉ:๐‡โ†’๐€\Omega:\mathbf{H}\rightarrow\mathbf{A}, such that ฮฉโ€‹(x/ฮธ)=a\Omega(x/\theta)=a, ฮฉโ€‹(y/ฮธ)=b\Omega(y/\theta)=b, ฮฉโ€‹(zโ†’/ฮธ)=eโ†’\Omega(\vec{z}/\theta)=\vec{e} and ฮฉโ€‹(wโ†’/ฮธ)=aโ†’\Omega(\vec{w}/\theta)=\vec{a}.

Proof. The proof is straightforward. The details are left to the reader. ย ย 


A variety ๐’ฑ\mathcal{V} has the Fraser-Horn property (FHP, for short) [8] if for every ๐€1,๐€2โˆˆ๐’ฑ\mathbf{A}_{1},\mathbf{A}_{2}\in\mathcal{V}, it is the case that every congruence ฮธ\theta in ๐€1ร—๐€2\mathbf{A}_{1}\times\mathbf{A}_{2} is the product congruence ฮธ1ร—ฮธ2\theta_{1}\times\theta_{2} for some congruences ฮธ1\theta_{1} of ๐€1\mathbf{A}_{1} and ฮธ2\theta_{2} of ๐€2\mathbf{A}_{2}.

Let โ„’\mathcal{L} be a first order language. If a โ„’\mathcal{L}-formula ฯ†โ€‹(xโ†’)\varphi(\vec{x}) has the form

โˆƒwโ†’โ€‹โ‹€j=1npjโ€‹(xโ†’,wโ†’)=qjโ€‹(xโ†’,wโ†’),{\exists}{\vec{w}}\bigwedge_{j=1}^{n}p_{j}(\vec{x},\vec{w})=q_{j}(\vec{x},\vec{w}),

for some positive number nn and terms pjโ€‹(xโ†’,wโ†’)p_{j}(\vec{x},\vec{w}) and qjโ€‹(xโ†’,wโ†’)q_{j}(\vec{x},\vec{w}) in โ„’\mathcal{L}, then we say that ฯ†โ€‹(xโ†’)\varphi(\vec{x}) is a (โˆƒโ‹€p=q\exists\bigwedge p=q)-formula. In a similar manner we define (โˆ€โ‹€p=q\forall\bigwedge p=q) and (โˆ€โˆƒโ‹€p=q\forall\exists\bigwedge p=q)-formulas.

Let โ„’\mathcal{L} be a first order language and ๐’ฆ\mathcal{K} be a class of โ„’\mathcal{L}-structures. If Rโˆˆโ„’R\in\mathcal{L} is an nn-ary relation symbol, we say that a formula ฯ†โ€‹(x1,โ€ฆ,xn)\varphi(x_{1},...,x_{n}) defines RR in ๐’ฆ\mathcal{K} if

๐’ฆโŠจฯ†โ€‹(xโ†’)โ†”Rโ€‹(xโ†’)โ€‹.\mathcal{K}\vDash\varphi(\vec{x})\leftrightarrow R(\vec{x})\text{.}

If โ„’โІโ„’โ€ฒ\mathcal{L}\subseteq\mathcal{L}^{\prime} are first order languages, then for a โ„’โ€ฒ\mathcal{L}^{\prime}-structure ๐€\mathbf{A}, we use ๐€โ„’\mathbf{A}_{\mathcal{L}} to denote the reduct of ๐€\mathbf{A} to the language โ„’\mathcal{L}. If aโ†’i=(aiโ€‹1,โ€ฆ,aiโ€‹n)โˆˆAin\vec{a}_{i}=(a_{i1},...,a_{in})\in A_{i}^{n} with 1โ‰คiโ‰คm1\leq i\leq m, then we write [aโ†’1,โ€ฆ,aโ†’m][\vec{a}_{1},...,\vec{a}_{m}] to denote the nn-tuple ((a11,โ€ฆ,amโ€‹1),โ€ฆ,(a1โ€‹n,โ€ฆ,amโ€‹n))โˆˆ(โˆAi)n((a_{11},...,a_{m1}),...,(a_{1n},...,a_{mn}))\in(\prod A_{i})^{n}.

Lemma 3

Let โ„’\mathcal{L} be a language of algebras, RR be a nn-ary relation symbol and consider โ„’โ€ฒ=โ„’โˆช{R}\mathcal{L}^{\prime}=\mathcal{L}\cup\{R\}. Let ๐’ฆ\mathcal{K} be any class of โ„’โ€ฒ\mathcal{L}^{\prime}-structures. The following are equivalent:

  1. 1.

    There is an existential positive โ„’\mathcal{L}-formula which defines RR in ๐’ฆ\mathcal{K}.

  2. 2.

    For all ๐€,๐โˆˆโ„™uโ€‹(๐’ฆ)\mathbf{A},\mathbf{B}\in\mathbb{P}_{u}(\mathcal{K}) and all homomorphisms ฯƒ:๐€โ„’โ†’๐โ„’\sigma:\mathbf{A}_{\mathcal{L}}\rightarrow\mathbf{B}_{\mathcal{L}}, we have that ฯƒ:๐€โ†’๐\sigma:\mathbf{A}\rightarrow\mathbf{B} is a homomorphism.

Moreover, if ๐’ฆ\mathcal{K} is closed under the formation of finite direct products, then 1.1. and 2.2. are equivalent to

  • 3.

    RR is definable in ๐’ฆ\mathcal{K} by a (โˆƒโ‹€p=q)(\exists\bigwedge p=q)-formula.

Proof. The proof of the equivalence of 1.1. and 2.2. can be obtained from (3)(3) of Theorem 6.2 in [5]. Of course 3.3. implies 1.1.. We will show that 1.1. implies 3.3.. Suppose

ฯ•โ€‹(zโ†’)=โˆƒwโ†’โ€‹โ‹j=1mโ‹€k=1njpjโ€‹kโ€‹(zโ†’,wโ†’)=qjโ€‹kโ€‹(zโ†’,wโ†’)\phi(\vec{z})=\exists\vec{w}\bigvee_{j=1}^{m}\bigwedge_{k=1}^{n_{j}}p_{jk}(\vec{z},\vec{w})=q_{jk}(\vec{z},\vec{w})

defines RR in ๐’ฆ\mathcal{K}. We will prove that for some jโˆˆ{1,โ€ฆ,m}j\in\{1,...,m\}, the formula ฯˆjโ€‹(zโ†’)=โˆƒwโ†’โ€‹โ‹€k=1njpkโ€‹(zโ†’,wโ†’)=qkโ€‹(zโ†’,wโ†’)\psi_{j}(\vec{z})=\exists\vec{w}\bigwedge_{k=1}^{n_{j}}p_{k}(\vec{z},\vec{w})=q_{k}(\vec{z},\vec{w}) defines RR in ๐’ฆ\mathcal{K}. We proceed by contradiction. So suppose that no formula ฯˆjโ€‹(zโ†’)\psi_{j}(\vec{z}) defines RR in ๐’ฆ\mathcal{K}. Then for every jj there exists ๐€jโˆˆ๐’ฆ\mathbf{A}_{j}\in\mathcal{K} and eโ†’jโˆˆR๐€j\vec{e}_{j}\in R^{\mathbf{A}_{j}}, such that ๐€jโŠงยฌฯˆjโ€‹(eโ†’j)\mathbf{A}_{j}\models\lnot\psi_{j}(\vec{e}_{j}). Let eโ†’=[eโ†’1,โ€ฆ,eโ†’m]\vec{e}=[\vec{e}_{1},...,\vec{e}_{m}]. Since eโ†’โˆˆRฮ โ€‹๐€j\vec{e}\in R^{\Pi\mathbf{A}_{j}} and โˆ๐€jโˆˆ๐’ฆ\prod\mathbf{A}_{j}\in\mathcal{K}, we have that โˆ๐€jโŠงฯ•โ€‹(eโ†’)\prod\mathbf{A}_{j}\models\phi(\vec{e}). Naturally, this says that โˆ๐€jโŠงฯˆjโ€‹(eโ†’)\prod\mathbf{A}_{j}\models\psi_{j}(\vec{e}), for some jj and hence ๐€jโŠงฯˆjโ€‹(eโ†’j)\mathbf{A}_{j}\models\psi_{j}(\vec{e}_{j}), for some jj, which produces a contradiction. ย ย 


3 Central elements

In a universal-algebraic setting, one key concept for the study of the Pierce sheaf is that of central element. This tool can be developed fruitfully in varieties with 0โ†’\vec{0} and 1โ†’\vec{1}, which we now define.

A variety with 0โ†’\vec{0} and 1โ†’\vec{1} is a variety ๐’ฑ\mathcal{V} in which there are 0-ary terms 01,โ€ฆ,0N,0_{1},\ldots,0_{N}, 11,โ€ฆ,1N1_{1},\ldots,1_{N} such that ๐’ฑโŠจ0โ†’=1โ†’โ†’x=y\mathcal{V}\vDash\vec{0}=\vec{1}\rightarrow x=y, where 0โ†’=(01,โ€ฆ,0N)\vec{0}=(0_{1},\ldots,0_{N}) and 1โ†’=(11,โ€ฆ,1N)\vec{1}=(1_{1},\ldots,1_{N}). The terms 0โ†’\vec{0} and 1โ†’\vec{1} are analogue, in a rather general manner, to identity (top) and null (bottom) elements in rings (lattices), and its existence in a variety, when the language has at least a constant symbol, is equivalent to the fact that no non-trivial algebra in the variety has a trivial subalgebra (see Proposition 2.3 of [4]).

If ๐€โˆˆ๐’ฑ\mathbf{A}\in\mathcal{V}, then we say that eโ†’โˆˆAN\vec{e}\in A^{N} is a central element of ๐€\mathbf{A} if there exists an isomorphism ๐€โ†’๐€1ร—๐€2\mathbf{A}\rightarrow\mathbf{A}_{1}\times\mathbf{A}_{2} such that eโ†’โ†’[0โ†’,1โ†’]\vec{e}\rightarrow[\vec{0},\vec{1}]. We use Zโ€‹(๐€)Z(\mathbf{A}) to denote the set of central elements of ๐€\mathbf{A}.

Central elements are a generalization of both central idempotent elements in rings with identity and neutral complemented elements in bounded lattices. In these classical cases it is well known that the central elements concentrate the information concerning the direct product representations. This happens when ๐’ฑ\mathcal{V} has the Fraser-Horn property [17]111In [14] it is solved the problem of characterizing those varieties with 0โ†’\vec{0} and 1โ†’\vec{1} in which central elements determine the direct product representations. These are the varieties with definable factor congruences or equivalently, the varieties with Boolean factor congruences. See [1] for a non constructive short proof of this fact.. It is well known that the set of factor congruences of an algebra ๐€\mathbf{A} in a variety with the Fraser-Horn property forms a Boolean algebra Fโ€‹Cโ€‹(๐€)FC(\mathbf{A}) which is a sublattice of Conโ€‹(๐€)\mathrm{Con}(\mathbf{A}) (see [2]). In [17] it is proved that if ๐’ฑ\mathcal{V} has the Fraser-Horn property, then for ๐€โˆˆ๐’ฑ\mathbf{A}\in\mathcal{V}, the map

ฮป:Fโ€‹Cโ€‹(๐€)โ†’Zโ€‹(๐€)ฮธโ†’uniqueโ€‹eโ†’โˆˆANโ€‹suchโ€‹thateโ†’โ‰ก0โ†’โ€‹(ฮธ)โ€‹andโ€‹eโ†’โ‰ก1โ†’โ€‹(ฮธโˆ—)\begin{array}[]{rcl}\lambda:FC(\mathbf{A})&\rightarrow&Z(\mathbf{A})\\ \theta&\rightarrow&\begin{array}[t]{l}\mathrm{unique\ }\vec{e}\in A^{N}\ \mathrm{such\ that}\\ \mathrm{\ \ \ \ \ \ \ \ \ }\vec{e}\equiv\vec{0}(\theta)\ \mathrm{and\ }\vec{e}\equiv\vec{1}(\theta^{\ast})\end{array}\end{array}

(where ฮธโˆ—\theta^{\ast} is the complement of ฮธ\theta in Fโ€‹Cโ€‹(๐€)FC(\mathbf{A})) is bijective. Thus via the above bijection we can give to Zโ€‹(๐€)Z(\mathbf{A}) a Boolean algebra structure. We shall denote by ๐™โ€‹(๐€)\mathbf{Z}(\mathbf{A}) this Boolean algebra. Many of the usual properties of central elements in rings with identity or bounded lattices hold when ๐’ฑ\mathcal{V} has the FHP. We say that a set of first order formulas {ฯ†rโ€‹(zโ†’):rโˆˆR}\{\varphi_{r}(\vec{z}):r\in R\} defines the property `โ€‹`โ€‹eโ†’โˆˆZโ€‹(๐€)โ€‹"``\vec{e}\in Z(\mathbf{A})" in ๐’ฑ\mathcal{V} if for every ๐€โˆˆ๐’ฆ\mathbf{A}\in\mathcal{K} and eโ†’โˆˆAN\vec{e}\in A^{N}, we have that eโ†’โˆˆZโ€‹(๐€)\vec{e}\in Z(\mathbf{A}) iff ๐€โŠจฯ†rโ€‹(eโ†’)\mathbf{A}\vDash\varphi_{r}(\vec{e}), for every rโˆˆRr\in R.

In [17] it is proved

Lemma 4

Let ๐’ฑ\mathcal{V} be a variety with 0โ†’\vec{0} and 1โ†’\vec{1} with the FHP. Let โ„’\mathcal{L} be the language of ๐’ฑ\mathcal{V}. Then, there is a finite set ฮฃ0\Sigma_{0} of (โˆ€โˆƒโ‹€p=q)(\forall\exists\bigwedge p=q)-formulas in the variables z1,โ€ฆ,zNz_{1},...,z_{N} and (โˆ€โ‹€p=q)(\forall\bigwedge p=q)-formulas

Fโ€‹-โ€‹Pโ€‹Rโ€‹Eโ€‹Sโ€‹(z1,โ€ฆ,zN)โ€‹, withย โ€‹Fโˆˆโ„’F\text{-}PRES(z_{1},...,z_{N})\text{, with }F\in\mathcal{L}

such that ฮฃ0โˆช{F\Sigma_{0}\cup\{F-PRES(zโ†’):Fโˆˆโ„’}PRES(\vec{z}):F\in\mathcal{L}\} defines the property `โ€‹`โ€‹eโ†’โˆˆZโ€‹(๐€)โ€‹"``\vec{e}\in Z(\mathbf{A})".


Also in [17] it is proved that there is a (โˆƒโ‹€p=q)(\exists\bigwedge p=q)-formula ฮตโ€‹(x,y,zโ†’)\varepsilon(x,y,\vec{z}) such that for all ๐€,๐โˆˆ\mathbf{A},\mathbf{B}\in ๐’ฑ\mathcal{V},

๐€ร—๐โŠจฮตโ€‹((a,b),(c,d),[0โ†’,1โ†’])โ€‹ย if and only ifย โ€‹a=cโ€‹.\mathbf{A}\times\mathbf{B}\vDash\varepsilon((a,b),(c,d),[\vec{0},\vec{1}])\text{ if and only if }a=c\text{.}

The formula ฮตโ€‹(_,_,eโ†’)\varepsilon(\_,\_,\vec{e}) defines the factor congruence associated (via the map ฮปโˆ’1\lambda^{-1}) with the central element eโ†’\vec{e}. We stress that the existence of ฮตโ€‹(x,y,zโ†’)\varepsilon(x,y,\vec{z}) and the set ฮฃ0โˆช{F\Sigma_{0}\cup\{F-PRES(zโ†’):Fโˆˆโ„’}PRES(\vec{z}):F\in\mathcal{L}\} imply that the central elements (and its Boolean algebra structure) are preserved by surjective homomorphisms and products. That is to say:

Lemma 5

Let ๐’ฑ\mathcal{V} be a variety with 0โ†’\vec{0} and 1โ†’\vec{1} with the FHP and let ๐€,๐โˆˆ๐’ฑ\mathbf{A},\mathbf{B}\in\mathcal{V}. If f:๐€โ†’๐f:\mathbf{A}\rightarrow\mathbf{B} is a surjective homomorphism, then the map Zโ€‹(๐€)โ†’Zโ€‹(๐)Z(\mathbf{A})\rightarrow Z(\mathbf{B}) defined by eโ†’โ†ฆ(fโ€‹(e1),โ€ฆ,fโ€‹(eN))\vec{e}\mapsto(f(e_{1}),...,f(e_{N})), is a homomorphism from ๐™โ€‹(๐€)\mathbf{Z}(\mathbf{A}) to ๐™โ€‹(๐)\mathbf{Z}(\mathbf{B}).

Lemma 6

Let ๐’ฑ\mathcal{V} be a variety with 0โ†’\vec{0} and 1โ†’\vec{1} with the FHP, {๐€i}iโˆˆI\{\mathbf{A}_{i}\}_{i\in I} be a family of members of ๐’ฑ\mathcal{V} and eโ†’โˆˆ(โˆ๐€i)N\vec{e}\in(\prod\mathbf{A}_{i})^{N}. Then, eโ†’โˆˆZโ€‹(โˆ๐€i)\vec{e}\in Z(\prod\mathbf{A}_{i}) if and only if eโ†’โ€‹(i)โˆˆZโ€‹(๐€i)\vec{e}(i)\in Z(\mathbf{A}_{i}) for every iโˆˆIi\in I. Moreover, ๐™โ€‹(โˆ๐€i)\mathbf{Z}(\prod\mathbf{A}_{i}) is naturally isomorphic to โˆ๐™โ€‹(๐€i)\prod\mathbf{Z}(\mathbf{A}_{i}).


For the details of the proofs of Lemmas 5 and 6, the reader may consult the proofs of the items (a)(a) and (b)(b) of Lemma 4 in [16].


3.1 Key theorem

Next, we will prove a series of lemmas in order to demonstrate a result (Theorem 12) which will be fundamental in our study of the Pierce stalks.

Lemma 7

Let ๐’ฑ\mathcal{V} be a variety with 0โ†’\vec{0} and 1โ†’\vec{1} with the FHP such that โ„™uโ€‹(๐’ฑSโ€‹I)โІ๐’ฑDโ€‹I\mathbb{P}_{u}(\mathcal{V}_{SI})\subseteq\mathcal{V}_{DI}. Then, the property `โ€‹`โ€‹eโ†’โˆˆZโ€‹(๐€)โ€‹"``\vec{e}\in Z(\mathbf{A})" is definable in ๐’ฑ\mathcal{V} by a single first order formula.

Proof. By Lemma 4, there is a finite set ฮฃ0\Sigma_{0} of (โˆ€โˆƒโ‹€p=q)(\forall\exists\bigwedge p=q)-formulas in the variables z1,โ€ฆ,zNz_{1},...,z_{N} and (โˆ€โ‹€p=q)(\forall\bigwedge p=q)-formulas

Fโ€‹-โ€‹Pโ€‹Rโ€‹Eโ€‹Sโ€‹(z1,โ€ฆ,zN)โ€‹, withย โ€‹Fโˆˆโ„’F\text{-}PRES(z_{1},...,z_{N})\text{, with }F\in\mathcal{L}

such that ฮฃ0โˆช{F\Sigma_{0}\cup\{F-PRES(zโ†’):Fโˆˆโ„’}PRES(\vec{z}):F\in\mathcal{L}\} defines the property `โ€‹`โ€‹eโ†’โˆˆZโ€‹(๐€)โ€‹"``\vec{e}\in Z(\mathbf{A})". Since โ„™uโ€‹(๐’ฑSโ€‹I)โІ๐’ฑDโ€‹I\mathbb{P}_{u}(\mathcal{V}_{SI})\subseteq\mathcal{V}_{DI} we have that

โ„™uโ€‹(๐’ฑSโ€‹I)โŠง(โ‹€ฯ†โˆˆฮฃ0ฯ†โ€‹(zโ†’)โˆงโ‹€Fโˆˆโ„’Fโ€‹-โ€‹Pโ€‹Rโ€‹Eโ€‹Sโ€‹(zโ†’))โ†’((zโ†’=0โ†’)โˆจ(zโ†’=1โ†’))\mathbb{P}_{u}(\mathcal{V}_{SI})\models\left(\bigwedge_{\varphi\in\Sigma_{0}}\varphi(\vec{z})\wedge\bigwedge_{F\in\mathcal{L}}F\text{-}PRES(\vec{z})\right)\rightarrow\left((\vec{z}=\vec{0})\vee(\vec{z}=\vec{1})\right)

So, by compactness there exists a finite subset โ„’0โІโ„’\mathcal{L}_{0}\subseteq\mathcal{L} such that:

โ„™uโ€‹(๐’ฑSโ€‹I)โŠง(โ‹€ฯ†โˆˆฮฃ0ฯ†โ€‹(zโ†’)โˆงโ‹€Fโˆˆโ„’0Fโ€‹-โ€‹Pโ€‹Rโ€‹Eโ€‹Sโ€‹(zโ†’))โ†’((zโ†’=0โ†’)โˆจ(zโ†’=1โ†’))\mathbb{P}_{u}(\mathcal{V}_{SI})\models\left(\bigwedge_{\varphi\in\Sigma_{0}}\varphi(\vec{z})\wedge\bigwedge_{F\in\mathcal{L}_{0}}F\text{-}PRES(\vec{z})\right)\rightarrow\left((\vec{z}=\vec{0})\vee(\vec{z}=\vec{1})\right) (1)

We will see that the formula ฯˆโ€‹(zโ†’)=โ‹€ฯ†โˆˆฮฃ0ฯ†โ€‹(zโ†’)โˆงโ‹€Fโˆˆโ„’0F\psi(\vec{z})=\bigwedge_{\varphi\in\Sigma_{0}}\varphi(\vec{z})\wedge\bigwedge_{F\in\mathcal{L}_{0}}F-Pโ€‹Rโ€‹Eโ€‹Sโ€‹(zโ†’)PRES(\vec{z}) defines the property `โ€‹`โ€‹eโ†’โˆˆZโ€‹(๐€)โ€‹"``\vec{e}\in Z(\mathbf{A})" in ๐’ฑ\mathcal{V}. To do so, it is enough to check that if ๐€โˆˆ๐’ฑ\mathbf{A}\in\mathcal{V} and ๐€โŠงฯˆโ€‹(eโ†’)\mathbf{A}\models\psi(\vec{e}), then ๐€โŠงFโ€‹-โ€‹Pโ€‹Rโ€‹Eโ€‹Sโ€‹(eโ†’)\mathbf{A}\models F\text{-}PRES(\vec{e}), for every Fโˆˆโ„’โˆ’โ„’0F\in\mathcal{L}-\mathcal{L}_{0}. From Birkhoffโ€™s subdirect representation theorem, we can assume that ๐€โ‰คโˆ๐€i\mathbf{A}\leq\prod\mathbf{A}_{i} is a subdirect product with subdirectly irreducible factors. Since the formula ฯˆ\psi is positive and the ๐€i\mathbf{A}_{i} are quotients of ๐€\mathbf{A}, we obtain that ๐€iโŠงฯˆโ€‹(eโ†’โ€‹(i))\mathbf{A}_{i}\models\psi(\vec{e}(i)), for every iโˆˆIi\in I. But every ๐€i\mathbf{A}_{i} belongs to โ„™uโ€‹(๐’ฑSโ€‹I)\mathbb{P}_{u}(\mathcal{V}_{SI}) so, from (1) we have that eโ†’โ€‹(i)โˆˆ{0โ†’๐€i,1โ†’๐€i}\vec{e}(i)\in\{\vec{0}^{\mathbf{A}_{i}},\vec{1}^{\mathbf{A}_{i}}\}, for every iโˆˆIi\in I. Since 0โ†’๐€i,1โ†’๐€iโˆˆZโ€‹(๐€i)\vec{0}^{\mathbf{A}_{i}},\vec{1}^{\mathbf{A}_{i}}\in Z(\mathbf{A}_{i}) we have that

๐€iโŠงFโ€‹-โ€‹Pโ€‹Rโ€‹Eโ€‹Sโ€‹(0โ†’๐€i)โˆงFโ€‹-โ€‹Pโ€‹Rโ€‹Eโ€‹Sโ€‹(1โ†’๐€i)โ€‹, for everyย โ€‹Fโˆˆโ„’\mathbf{A}_{i}\models F\text{-}PRES(\vec{0}^{\mathbf{A}_{i}})\wedge F\text{-}PRES(\vec{1}^{\mathbf{A}_{i}})\text{, for every }F\in\mathcal{L}

therefore, we get that

๐€iโŠงFโ€‹-โ€‹Pโ€‹Rโ€‹Eโ€‹Sโ€‹(eโ†’โ€‹(i))โ€‹, for everyย โ€‹Fโˆˆโ„’โˆ’โ„’0\mathbf{A}_{i}\models F\text{-}PRES(\vec{e}(i))\text{, for every }F\in\mathcal{L}-\mathcal{L}_{0}

for every iโˆˆIi\in I. But the formulas Fโ€‹-โ€‹Pโ€‹Rโ€‹Eโ€‹Sโ€‹(z1,โ€ฆ,zN)F\text{-}PRES(z_{1},...,z_{N}) are (โˆ€โ‹€p=q)(\forall\bigwedge p=q)-formulas, so they are preserved by subdirect products. Therefore, we can conclude that

๐€โŠงFโ€‹-โ€‹Pโ€‹Rโ€‹Eโ€‹Sโ€‹(eโ†’)โ€‹, for everyย โ€‹Fโˆˆโ„’โˆ’โ„’0.\mathbf{A}\models F\text{-}PRES(\vec{e})\text{, for every }F\in\mathcal{L}-\mathcal{L}_{0}.

ย 

Lemma 8

Let ๐’ฑ\mathcal{V} be a variety with 0โ†’\vec{0} and 1โ†’\vec{1} with the FHP, such that โ„™uโ€‹(๐’ฑSโ€‹I)โІ๐’ฑDโ€‹I\mathbb{P}_{u}(\mathcal{V}_{SI})\subseteq\mathcal{V}_{DI}. Then, the following are equivalent:

  1. 1.

    The property `โ€‹`โ€‹eโ†’โˆˆZโ€‹(๐€)โ€‹"``\vec{e}\in Z(\mathbf{A})" is definable in ๐’ฑ\mathcal{V} by an existential positive formula.

  2. 2.

    The homomorphisms in ๐’ฑ\mathcal{V} preserve central elements. I.e. if ฯƒ:๐€โ†’๐\sigma:\mathbf{A}\rightarrow\mathbf{B} is a homomorphism between elements of ๐’ฑ\mathcal{V} and eโ†’โˆˆZโ€‹(๐€)\vec{e}\in Z(\mathbf{A}), then ฯƒโ€‹(eโ†’)โˆˆZโ€‹(๐)\sigma(\vec{e})\in Z(\mathbf{B}).

  3. 3.

    The property `โ€‹`โ€‹eโ†’โˆˆZโ€‹(๐€)โ€‹"``\vec{e}\in Z(\mathbf{A})" is definable in ๐’ฑ\mathcal{V} by a (โˆƒโ‹€p=q)(\exists\bigwedge p=q)-formula.

Proof. Let โ„’\mathcal{L} be the language of ๐’ฑ\mathcal{V} and let โ„’โ€ฒ=โ„’โˆช{R}\mathcal{L}^{\prime}=\mathcal{L}\cup\{R\} where RR is a NN-ary relation symbol. Given an algebra ๐€โˆˆ๐’ฑ\mathbf{A}\in\mathcal{V} we define:

R๐€=Zโ€‹(๐€)R^{\mathbf{A}}=Z(\mathbf{A})

Let ๐’ฆ\mathcal{K} be the following class of โ„’โ€ฒ\mathcal{L}^{\prime}-structures

๐’ฆ={(๐€,R๐€):๐€โˆˆ๐’ฑ}\mathcal{K}=\{(\mathbf{A},R^{\mathbf{A}}):\mathbf{A}\in\mathcal{V}\}

From Lemma 7, there exists a first order formula ฯƒโ€‹(z1,โ€ฆ,zN)\sigma(z_{1},...,z_{N}), in the language of ๐’ฑ\mathcal{V}, such that for every ๐€โˆˆ๐’ฑ\mathbf{A}\in\mathcal{V}, we have that eโ†’โˆˆZโ€‹(๐€)\vec{e}\in Z(\mathbf{A}) if and only if ๐€โŠงฯƒโ€‹(eโ†’)\mathbf{A}\models\sigma(\vec{e}). That is to say, for every ๐€โˆˆ๐’ฑ\mathbf{A}\in\mathcal{V}, we have that (e1,โ€ฆ,eN)โˆˆR๐€(e_{1},...,e_{N})\in R^{\mathbf{A}} if and only if ๐€โŠงฯƒโ€‹(eโ†’)\mathbf{A}\models\sigma(\vec{e}). It is easy to see that the class ๐’ฆ\mathcal{K} is axiomatizable by the set of sentences

ฮฃโˆช{โˆ€z1โ€ฆzN(R(z1,โ€ฆ,zN)โ†”ฯƒ(z1,โ€ฆ,zN))}\Sigma\cup\{\forall z_{1}...z_{N}\ \ \left(R(z_{1},...,z_{N})\leftrightarrow\sigma(z_{1},...,z_{N})\right)\}

where ฮฃ\Sigma is any set of axioms defining ๐’ฑ\mathcal{V}. Observe that since ๐’ฆ\mathcal{K} is a first order class, it is closed by ultraproducts; and furthermore, from Lemma 6, ๐’ฆ\mathcal{K} is closed under the formation of direct products. Hence, from Lemma 3 we obtain that the following are equivalent:

  1. (a)

    There is an existential positive โ„’\mathcal{L}-formula which defines RR in ๐’ฆ\mathcal{K}.

  2. (b)

    If (๐€,R๐€),(๐,R๐)โˆˆ๐’ฆ(\mathbf{A},R^{\mathbf{A}}),(\mathbf{B},R^{\mathbf{B}})\in\mathcal{K} and ฯƒ:๐€โ†’๐\sigma:\mathbf{A}\rightarrow\mathbf{B} is a homomorphism, then ฯƒ:(๐€,R๐€)โ†’(๐,R๐)\sigma:(\mathbf{A},R^{\mathbf{A}})\rightarrow(\mathbf{B},R^{\mathbf{B}}) is a homomorphism

  3. (c)

    There is a (โˆƒโ‹€p=q)(\exists\bigwedge p=q)-formula which defines RR in ๐’ฆ\mathcal{K}.

But 1.1., 2.2. and 3.3. are restatements of (a)(a), (b)(b) and (c)(c), respectively. That is to say, 1.1., 2.2. and 3.3. are equivalent as required. ย ย 

Lemma 9

Let ๐’ฑ\mathcal{V} be a variety with 0โ†’\vec{0} and 1โ†’\vec{1} with the FHP and ๐€โˆˆ๐’ฑ\mathbf{A}\in\mathcal{V}. Let eโ†’โˆˆAN\vec{e}\in A^{N}. Then, eโ†’โˆˆZโ€‹(๐€)\vec{e}\in Z(\mathbf{A}) if and only if ฮธ๐€โ€‹(0โ†’๐€,eโ†’)\theta^{\mathbf{A}}(\vec{0}^{\mathbf{A}},\vec{e}) and ฮธ๐€โ€‹(1โ†’๐€,eโ†’)\theta^{\mathbf{A}}(\vec{1}^{\mathbf{A}},\vec{e}) are a pair of complementary factor congruences of ๐€\mathbf{A}.

Proof. For details of the proof, the reader may consult Corollary 4 of [17]. ย ย 

Lemma 10

Let ๐’ฑ\mathcal{V} be a variety with 0โ†’\vec{0} and 1โ†’\vec{1} with the FHP and let {๐€i}iโˆˆI\{\mathbf{A}_{i}\}_{i\in I} be a family of non-trivial members of ๐’ฑ\mathcal{V}. Suppose ๐€โ‰คโˆ๐€i\mathbf{A}\leq\prod\mathbf{A}_{i} is a global subdirect product. If eโ†’โˆˆAN\vec{e}\in A^{N} is such that eโ†’โ€‹(i)โˆˆ{0โ†’๐€i,1โ†’๐€i}\vec{e}(i)\in\{\vec{0}^{\mathbf{A}_{i}},\vec{1}^{\mathbf{A}_{i}}\}, for every iโˆˆIi\in I, then eโ†’โˆˆZโ€‹(๐€)\vec{e}\in Z(\mathbf{A}).

Proof. Let ๐€โˆˆ๐’ฑ\mathbf{A}\in\mathcal{V} and eโ†’โˆˆAN\vec{e}\in A^{N} satisfying the hypothesis of the statement. Since ๐’ฑ\mathcal{V} has FHP, in order to prove that eโ†’โˆˆZโ€‹(๐€)\vec{e}\in Z(\mathbf{A}), from Lemma 9, we must verify that ฮธ๐€โ€‹(0โ†’๐€,eโ†’)\theta^{\mathbf{A}}(\vec{0}^{\mathbf{A}},\vec{e}) and ฮธ๐€โ€‹(1โ†’๐€,eโ†’)\theta^{\mathbf{A}}(\vec{1}^{\mathbf{A}},\vec{e}) are a pair complementary factor congruences of ๐€\mathbf{A}. So, let J={iโˆˆI:eโ†’โ€‹(i)=0โ†’๐€i}J=\{i\in I:\vec{e}(i)=\vec{0}^{\mathbf{A}_{i}}\}. Notice that, since ๐€i\mathbf{A}_{i} is not trivial, for every iโˆˆIi\in I, then we obtain that Iโˆ’J={iโˆˆI:eโ†’โ€‹(i)=1โ†’๐€i}I-J=\{i\in I:\vec{e}(i)=\vec{1}^{\mathbf{A}_{i}}\}. Let iโˆˆIi\in I. Then, it follows that ฮธi๐€={(a,b)โˆˆAร—A:iโˆˆEโ€‹(a,b)}\theta_{i}^{\mathbf{A}}=\{(a,b)\in A\times A:i\in E(a,b)\}. Moreover, for every FโІIF\subseteq I, it is clear that โ‹‚iโˆˆFฮธi๐€={(a,b)โˆˆAร—A:FโІEโ€‹(a,b)}\bigcap_{i\in F}\theta_{i}^{\mathbf{A}}=\{(a,b)\in A\times A:F\subseteq E(a,b)\}. Now let us to consider ฮธ=โ‹‚iโˆˆJฮธi๐€\theta=\bigcap_{i\in J}\theta_{i}^{\mathbf{A}} and ฮด=โ‹‚iโˆˆIโˆ’Jฮธi๐€\delta=\bigcap_{i\in I-J}\theta_{i}^{\mathbf{A}}. We will prove that ฮธ\theta and ฮด\delta are a pair of complementary factor congruences of ๐€\mathbf{A}. If (a,b)โˆˆฮธโˆฉฮด(a,b)\in\theta\cap\delta, then JโІEโ€‹(a,b)J\subseteq E(a,b) and Iโˆ’JโІEโ€‹(a,b)I-J\subseteq E(a,b), thus Eโ€‹(a,b)=IE(a,b)=I. Hence, ฮธโˆฉฮด=ฮ”๐€\theta\cap\delta=\Delta^{\mathbf{A}}. In order to show that ฮธโˆ˜ฮด=โˆ‡๐€\theta\circ\delta=\nabla^{\mathbf{A}}, let (a,b)โˆˆโˆ‡๐€(a,b)\in\nabla^{\mathbf{A}}. By assumption, ๐€\mathbf{A} is a global subdirect product of {๐€i}iโˆˆI\{\mathbf{A}_{i}\}_{i\in I}. So, since J=โ‹‚k=1NEโ€‹(ek,0k๐€)J=\bigcap_{k=1}^{N}E(e_{k},0_{k}^{\mathbf{A}}) and Iโˆ’J=โ‹‚k=1NEโ€‹(ek,1k๐€)I-J=\bigcap_{k=1}^{N}E(e_{k},1_{k}^{\mathbf{A}}), then JJ and Iโˆ’JI-J are open sets of the topology over II which contains all the equalizers of elements of AA. Therefore, because โˆ…=Jโˆฉ(Iโˆ’J)โІEโ€‹(a,b)\emptyset=J\cap(I-J)\subseteq E(a,b), from the Patchwork Property it follows that there is a zโˆˆAz\in A, such that JโІEโ€‹(a,z)J\subseteq E(a,z) and Iโˆ’JโІEโ€‹(z,b)I-J\subseteq E(z,b). I.e., (a,z)โˆˆฮธ(a,z)\in\theta and (z,b)โˆˆฮด(z,b)\in\delta. In consequence, (a,b)โˆˆฮธโˆ˜ฮด(a,b)\in\theta\circ\delta.

Now we will see that ฮธ=ฮธ๐€โ€‹(0โ†’๐€,eโ†’)\theta=\theta^{\mathbf{A}}(\vec{0}^{\mathbf{A}},\vec{e}). Since ฮธ={(a,b)โˆˆAร—A:JโІEโ€‹(a,b)}\theta=\{(a,b)\in A\times A:J\subseteq E(a,b)\} and eโ†’โ€‹(i)โˆˆ{0โ†’๐€i,1โ†’๐€i}\vec{e}(i)\in\{\vec{0}^{\mathbf{A}_{i}},\vec{1}^{\mathbf{A}_{i}}\}, then (0k๐€,ek)โˆˆฮธi๐€(0_{k}^{\mathbf{A}},e_{k})\in\theta_{i}^{\mathbf{A}} for every 1โ‰คkโ‰คN1\leq k\leq N, so ฮธ๐€โ€‹(0โ†’๐€,eโ†’)โІฮธ\theta^{\mathbf{A}}(\vec{0}^{\mathbf{A}},\vec{e})\subseteq\theta. In order to prove the other inclusion, notice that ฮธ๐€โ€‹(1k๐€,ek)โІฮด\theta^{\mathbf{A}}(1_{k}^{\mathbf{A}},e_{k})\subseteq\delta for every kk. Therefore ฮธโˆฉฮธ๐€โ€‹(1โ†’๐€,eโ†’)=ฮ”๐€\theta\cap\theta^{\mathbf{A}}(\vec{1}^{\mathbf{A}},\vec{e})=\Delta^{\mathbf{A}}. Because ๐’ฑ\mathcal{V} has the FHP, thus factor congruences distribute with any other (c.f.ย [2]) and since โˆ‡๐€=ฮธ๐€โ€‹(0โ†’๐€,eโ†’)โˆจฮธ๐€โ€‹(1โ†’๐€,eโ†’)\nabla^{\mathbf{A}}=\theta^{\mathbf{A}}(\vec{0}^{\mathbf{A}},\vec{e})\vee\theta^{\mathbf{A}}(\vec{1}^{\mathbf{A}},\vec{e}), we obtain that

ฮธ\displaystyle\theta =ฮธโˆฉโˆ‡๐€\displaystyle=\theta\cap\nabla^{\mathbf{A}}
=ฮธโˆฉ(ฮธ๐€โ€‹(0โ†’๐€,eโ†’)โˆจฮธ๐€โ€‹(1โ†’๐€,eโ†’))\displaystyle=\theta\cap(\theta^{\mathbf{A}}(\vec{0}^{\mathbf{A}},\vec{e})\vee\theta^{\mathbf{A}}(\vec{1}^{\mathbf{A}},\vec{e}))
=(ฮธโˆฉฮธ๐€โ€‹(0โ†’๐€,eโ†’))โˆจ(ฮธโˆฉฮธ๐€โ€‹(1โ†’๐€,eโ†’))\displaystyle=(\theta\cap\theta^{\mathbf{A}}(\vec{0}^{\mathbf{A}},\vec{e}))\vee(\theta\cap\theta^{\mathbf{A}}(\vec{1}^{\mathbf{A}},\vec{e}))
=ฮธ๐€โ€‹(0โ†’๐€,eโ†’)โˆจฮ”๐€\displaystyle=\theta^{\mathbf{A}}(\vec{0}^{\mathbf{A}},\vec{e})\vee\Delta^{\mathbf{A}}
=ฮธ๐€โ€‹(0โ†’๐€,eโ†’).\displaystyle=\theta^{\mathbf{A}}(\vec{0}^{\mathbf{A}},\vec{e}).

The proof for ฮด=ฮธ๐€โ€‹(1โ†’๐€,eโ†’)\delta=\theta^{\mathbf{A}}(\vec{1}^{\mathbf{A}},\vec{e}) is similar. This completes the proof. ย ย 

Lemma 11

Let ๐’ฑ\mathcal{V} be a variety with 0โ†’\vec{0} and 1โ†’\vec{1} with the FHP and let {๐i}iโˆˆI\{\mathbf{B}_{i}\}_{i\in I} be a family of members of ๐’ฑ\mathcal{V} such that every subalgebra of each ๐i\mathbf{B}_{i} is directly indecomposable. Suppose ๐โ‰คโˆ๐i\mathbf{B}\leq\prod\mathbf{B}_{i} is a global subdirect product, and let ๐€โ‰ค๐\mathbf{A}\leq\mathbf{B}. Then Zโ€‹(๐€)โІZโ€‹(๐)Z(\mathbf{A})\subseteq Z(\mathbf{B}).

Proof. Let us assume that eโ†’โˆˆZโ€‹(๐€)\vec{e}\in Z(\mathbf{A}). Then eโ†’โˆˆBN\vec{e}\in B^{N}. Let Ai={aโ€‹(i):aโˆˆA}A_{i}=\{a(i):a\in A\} and let ๐€i\mathbf{A}_{i} denotes the algebra whose universe is AiA_{i}. Since ๐€i\mathbf{A}_{i} is subalgebra of ๐i\mathbf{B}_{i} for every iโˆˆIi\in I, then it follows that ๐€iโˆˆ๐’ฑDโ€‹I\mathbf{A}_{i}\in\mathcal{V}_{DI}. Consider the canonical projection ฯ€i๐€:๐€โ†’๐€i\pi_{i}^{\mathbf{A}}:\mathbf{A}\rightarrow\mathbf{A}_{i}. Because ฯ€i๐€\pi_{i}^{\mathbf{A}} is onto ๐€i\mathbf{A}_{i} and ๐’ฑ\mathcal{V} has the FHP, from Lemma 5 we obtain that ฯ€i๐€โ€‹(eโ†’)โˆˆZโ€‹(๐€i)\pi_{i}^{\mathbf{A}}(\vec{e})\in Z(\mathbf{A}_{i}), for every eโ†’โˆˆZโ€‹(๐€)\vec{e}\in Z(\mathbf{A}). But Zโ€‹(๐€i)={0โ†’๐€i,1โ†’๐€i}Z(\mathbf{A}_{i})=\{\vec{0}^{\mathbf{A}_{i}},\vec{1}^{\mathbf{A}_{i}}\}, therefore eโ†’โ€‹(i)โˆˆ{0โ†’๐€i,1โ†’๐€i}={0โ†’๐i,1โ†’๐i}\vec{e}(i)\in\{\vec{0}^{\mathbf{A}_{i}},\vec{1}^{\mathbf{A}_{i}}\}=\{\vec{0}^{\mathbf{B}_{i}},\vec{1}^{\mathbf{B}_{i}}\}. Since ๐\mathbf{B} is a global subdirect product of non trivial algebras, from Lemma 10 we conclude that eโ†’โˆˆZโ€‹(๐)\vec{e}\in Z(\mathbf{B}). ย ย 


Now we can prove the key result.

Theorem 12

Let โ„’\mathcal{L} be a language of algebras with at least a constant symbol. Let ๐’ฑ\mathcal{V} be a variety of โ„’\mathcal{L}-algebras with the FHP. Suppose that there is a universal class โ„ฑโІ๐’ฑDโ€‹I\mathcal{F}\subseteq\mathcal{V}_{DI} such that every member of ๐’ฑ\mathcal{V} is isomorphic to a global subdirect product with factors in โ„ฑ\mathcal{F}. Then there exists a (M+2)(M+2)-ary term Uโ€‹(x,y,zโ†’)U(x,y,\vec{z}) and 0-ary terms 01,โ€ฆ,0M,11,โ€ฆ,1M0_{1},\ldots,0_{M},1_{1},\ldots,1_{M} such that

๐’ฑโŠจUโ€‹(x,y,0โ†’)=xโˆงUโ€‹(x,y,1โ†’)=y\mathcal{V}\vDash U(x,y,\vec{0})=x\wedge U(x,y,\vec{1})=y

Proof. First notice that, since no algebra of โ„ฑ\mathcal{F} has a trivial subalgebra and every member of ๐’ฑ\mathcal{V} is a subdirect product with factors in โ„ฑ\mathcal{F}, then no non-trivial algebra of ๐’ฑ\mathcal{V} has a trivial subalgebra. So, from Proposition 2.3 of [4] we get that there are unary terms 01โ€‹(w),โ€ฆ,0Nโ€‹(w),11โ€‹(w),โ€ฆ,1Nโ€‹(w)0_{1}(w),...,0_{N}(w),1_{1}(w),...,1_{N}(w) such that

๐’ฑโŠจ0โ†’โ€‹(w)=1โ†’โ€‹(w)โ†’x=yโ€‹,\mathcal{V}\vDash\vec{0}(w)=\vec{1}(w)\rightarrow x=y\text{,}

where w,x,yw,x,y are distinct variables. Let cโˆˆโ„’c\in\mathcal{L} be a constant symbol. Since ๐’ฑโŠจ0โ†’โ€‹(c)=1โ†’โ€‹(c)โ†’x=y\mathcal{V}\vDash\vec{0}(c)=\vec{1}(c)\rightarrow x=y, we can redefine 0โ†’=0โ†’โ€‹(c)\vec{0}=\vec{0}(c) and 1โ†’=1โ†’โ€‹(c)\vec{1}=\vec{1}(c) to get that ๐’ฑ\mathcal{V} is a variety with 0โ†’\vec{0} and 1โ†’\vec{1}.

Next, we will prove that

  1. (1)

    โ„™uโ€‹(๐’ฑSโ€‹I)โІ๐’ฑDโ€‹I\mathbb{P}_{u}(\mathcal{V}_{SI})\subseteq\mathcal{V}_{DI}.

Since every algebra of ๐’ฑ\mathcal{V} is a subdirect product with factors in โ„ฑ\mathcal{F}, we have that ๐’ฑSโ€‹IโІโ„ฑ\mathcal{V}_{SI}\subseteq\mathcal{F}. So we have that โ„™uโ€‹(๐’ฑSโ€‹I)โІโ„™uโ€‹(โ„ฑ)โІโ„ฑโІ๐’ฑDโ€‹I\mathbb{P}_{u}(\mathcal{V}_{SI})\subseteq\mathbb{P}_{u}(\mathcal{F})\subseteq\mathcal{F}\subseteq\mathcal{V}_{DI}, which proves (1).

Since by hypothesis we have that every member of ๐’ฑ\mathcal{V} is isomorphic to a global subdirect product with factors in โ„ฑ\mathcal{F} and ๐•Šโ€‹(โ„ฑ)โІโ„ฑโІ๐’ฑDโ€‹I\mathbb{S}(\mathcal{F})\subseteq\mathcal{F}\subseteq\mathcal{V}_{DI}, Lemma 11 says that

  1. (2)

    If ๐€โ‰ค๐โˆˆ\mathbf{A}\leq\mathbf{B}\in ๐’ฑ\mathcal{V}, then Zโ€‹(๐€)โІZโ€‹(๐)Z(\mathbf{A})\subseteq Z(\mathbf{B}).

But (2) and Lemma 5 say that 2. of Lemma 8 holds, which implies that the property "โ€‹eโ†’โˆˆZโ€‹(๐€)โ€‹""\vec{e}\in Z(\mathbf{A})" is definable in ๐’ฑ\mathcal{V} by a (โˆƒโ‹€p=q)(\exists\bigwedge p=q)-formula. Let

ฯ•โ€‹(zโ†’)=โˆƒwโ†’โ€‹โ‹€k=1npkโ€‹(zโ†’,wโ†’)=qkโ€‹(zโ†’,wโ†’)\phi(\vec{z})=\exists\vec{w}\bigwedge_{k=1}^{n}p_{k}(\vec{z},\vec{w})=q_{k}(\vec{z},\vec{w})

define the property `โ€‹`โ€‹eโ†’โˆˆZโ€‹(๐€)โ€‹"``\vec{e}\in Z(\mathbf{A})" in ๐’ฑ\mathcal{V}.

Due to in โ„’\mathcal{L} there is at least a constant symbol, there exists ๐…๐’ฑโ€‹(โˆ…)\mathbf{F}_{\mathcal{V}}\mathbf{(\emptyset)}. Since 0โ†’,1โ†’โˆˆZโ€‹(๐…๐’ฑโ€‹(โˆ…))\vec{0},\vec{1}\in Z(\mathbf{F}_{\mathcal{V}}\mathbf{(\emptyset)}), there are 0-ary terms c1,โ€ฆ,cN,d1,โ€ฆโ€‹dNc_{1},...,c_{N},d_{1},...d_{N}, such that ๐…๐’ฑโ€‹(โˆ…)โŠงโ‹€k=1npkโ€‹(0โ†’,cโ†’)=qkโ€‹(0โ†’,cโ†’)\mathbf{F}_{\mathcal{V}}\mathbf{(\emptyset)}\models\bigwedge_{k=1}^{n}p_{k}(\vec{0},\vec{c})=q_{k}(\vec{0},\vec{c}) and ๐…๐’ฑโ€‹(โˆ…)โŠงโ‹€k=1npkโ€‹(1โ†’,dโ†’)=qkโ€‹(1โ†’,dโ†’)\mathbf{F}_{\mathcal{V}}\mathbf{(\emptyset)}\models\bigwedge_{k=1}^{n}p_{k}(\vec{1},\vec{d})=q_{k}(\vec{1},\vec{d}). This says that

  1. (3)

    For every ๐€โˆˆ๐’ฑ\mathbf{A}\in\mathcal{V},

    pkโ€‹(0โ†’๐€,cโ†’๐€)\displaystyle p_{k}(\vec{0}^{\mathbf{A}},\vec{c}^{\mathbf{A}}) =\displaystyle= qkโ€‹(0โ†’๐€,cโ†’๐€)โ€‹,ย โ€‹k=1,โ€ฆ,n\displaystyle q_{k}(\vec{0}^{\mathbf{A}},\vec{c}^{\mathbf{A}})\text{, }k=1,...,n
    pkโ€‹(1โ†’๐€,dโ†’๐€)\displaystyle p_{k}(\vec{1}^{\mathbf{A}},\vec{d}^{\mathbf{A}}) =\displaystyle= qkโ€‹(1โ†’๐€,dโ†’๐€)โ€‹,ย โ€‹k=1,โ€ฆ,n\displaystyle q_{k}(\vec{1}^{\mathbf{A}},\vec{d}^{\mathbf{A}})\text{, }k=1,...,n

Let X={x,y,zโ†’,wโ†’}X=\{x,y,\vec{z},\vec{w}\} and ฮธ=โ‹k=1nฮธ๐…๐’ฑโ€‹(X)โ€‹(pkโ€‹(zโ†’,wโ†’),qkโ€‹(zโ†’,wโ†’))\theta=\bigvee_{k=1}^{n}\theta^{\mathbf{\mathbf{F}_{\mathcal{V}}}(X)}(p_{k}(\vec{z},\vec{w}),q_{k}(\vec{z},\vec{w})). Let ๐‡=๐…๐’ฑโ€‹(X)/ฮธ\mathbf{H}=\mathbf{F}_{\mathcal{V}}(X)/\theta. Since pk๐‡โ€‹(zโ†’/ฮธ,wโ†’/ฮธ)=qk๐‡โ€‹(zโ†’/ฮธ,wโ†’/ฮธ)p_{k}^{\mathbf{H}}(\vec{z}/\theta,\vec{w}/\theta)=q_{k}^{\mathbf{H}}(\vec{z}/\theta,\vec{w}/\theta), for k=1,โ€ฆ,nk=1,...,n, we have that ๐‡โŠงฯ•โ€‹(zโ†’/ฮธ)\mathbf{H}\models\phi(\vec{z}/\theta). That is to say, zโ†’/ฮธโˆˆZโ€‹(๐‡)\vec{z}/\theta\in Z(\mathbf{H}).

Thereby, since (x/ฮธ,y/ฮธ)โˆˆโˆ‡๐‡=ฮธ๐‡โ€‹(zโ†’/ฮธ,0โ†’/ฮธ)โˆ˜ฮธ๐‡โ€‹(zโ†’/ฮธ,1โ†’/ฮธ)(x/\theta,y/\theta)\in\nabla^{\mathbf{H}}=\theta^{\mathbf{H}}(\vec{z}/\theta,\vec{0}/\theta)\circ\theta^{\mathbf{H}}(\vec{z}/\theta,\vec{1}/\theta), there is a term tโ€‹(x,y,zโ†’,wโ†’)t(x,y,\vec{z},\vec{w}), such that

(x/ฮธ,t๐…๐’ฑโ€‹(X)โ€‹(x,y,zโ†’,wโ†’)/ฮธ)โˆˆฮธ๐‡โ€‹(zโ†’/ฮธ,0โ†’/ฮธ)(x/\theta,t^{\mathbf{\mathbf{F}_{\mathcal{V}}}(X)}(x,y,\vec{z},\vec{w})/\theta)\in\theta^{\mathbf{H}}(\vec{z}/\theta,\vec{0}/\theta)

and

(t๐…๐’ฑโ€‹(X)โ€‹(x,y,zโ†’,wโ†’)/ฮธ,y/ฮธ)โˆˆฮธ๐‡โ€‹(zโ†’/ฮธ,1โ†’/ฮธ).(t^{\mathbf{\mathbf{F}_{\mathcal{V}}}(X)}(x,y,\vec{z},\vec{w})/\theta,y/\theta)\in\theta^{\mathbf{H}}(\vec{z}/\theta,\vec{1}/\theta).

Hence we have

  1. (4)

    (x/ฮธ,t๐‡โ€‹(x/ฮธ,y/ฮธ,zโ†’/ฮธ,wโ†’/ฮธ))โˆˆฮธ๐‡โ€‹(zโ†’/ฮธ,0โ†’/ฮธ)(x/\theta,t^{\mathbf{H}}(x/\theta,y/\theta,\vec{z}/\theta,\vec{w}/\theta))\in\theta^{\mathbf{H}}(\vec{z}/\theta,\vec{0}/\theta)

  2. (5)

    (t๐‡โ€‹(x/ฮธ,y/ฮธ,zโ†’/ฮธ,wโ†’/ฮธ),y/ฮธ)โˆˆฮธ๐‡โ€‹(zโ†’/ฮธ,1โ†’/ฮธ)(t^{\mathbf{H}}(x/\theta,y/\theta,\vec{z}/\theta,\vec{w}/\theta),y/\theta)\in\theta^{\mathbf{H}}(\vec{z}/\theta,\vec{1}/\theta)

We will prove that

  1. (6)

    ๐’ฑโŠจtโ€‹(x,y,0โ†’,cโ†’)=xโˆงtโ€‹(x,y,1โ†’,dโ†’)=y\mathcal{V}\vDash t(x,y,\vec{0},\vec{c})=x\wedge t(x,y,\vec{1},\vec{d})=y

Let ๐€โˆˆ๐’ฑ\mathbf{A}\in\mathcal{V} and a,bโˆˆAa,b\in A. From (3) and Lemma 2, there exists a unique ฮฉ:๐‡โ†’๐€\Omega:\mathbf{H}\rightarrow\mathbf{A} such that ฮฉโ€‹(x/ฮธ)=a\Omega(x/\theta)=a, ฮฉโ€‹(y/ฮธ)=b\Omega(y/\theta)=b, ฮฉโ€‹(zโ†’/ฮธ)=0โ†’๐€\Omega(\vec{z}/\theta)=\vec{0}^{\mathbf{A}} and ฮฉโ€‹(wโ†’/ฮธ)=cโ†’๐€\Omega(\vec{w}/\theta)=\vec{c}^{\mathbf{A}}. Hence, from (4) and Lemma 1, we obtain that t๐€โ€‹(a,b,0โ†’๐€,cโ†’๐€)=at^{\mathbf{A}}(a,b,\vec{0}^{\mathbf{A}},\vec{c}^{\mathbf{A}})=a. In a similar fashion, again from (3) and Lemma 2 applied to (5) together with Lemma 1, we obtain that t๐€โ€‹(a,b,1โ†’๐€,dโ†’๐€)=bt^{\mathbf{A}}(a,b,\vec{1}^{\mathbf{A}},\vec{d}^{\mathbf{A}})=b and so (6) is proved.

To conclude the proof we can redefine 0โ†’=(01,โ€ฆ,0N,c1,โ€ฆ,cN)\vec{0}=(0_{1},...,0_{N},c_{1},...,c_{N}) and 1โ†’=(11,โ€ฆ,1N,d1,โ€ฆ,dN)\vec{1}=(1_{1},...,1_{N},d_{1},...,d_{N}) and take Uโ€‹(x,y,z1,โ€ฆ,z2โ€‹N)=tโ€‹(x,y,z1,โ€ฆ,z2โ€‹N)U(x,y,z_{1},...,z_{2N})=t(x,y,z_{1},...,z_{2N}). ย ย 


4 Pierce stalks

We shall use the above theorem and some results of [16] to give important information on the Pierce stalks for preprimal varieties corresponding to Rosemberg types 6. and 7. of the introduction. An hh-ary relation ฯƒ\sigma on a finite set PP is central if

  1. -

    it is totally symmetric, that is, for all aโ†’โˆˆฯƒ\vec{a}\in\sigma, if ฯ€\pi is a permutation of {1,โ€ฆ,h}\{1,\ldots,h\}, then (aฯ€โ€‹(1),โ€ฆ,aฯ€โ€‹(h))โˆˆฯƒ(a_{\pi(1)},\ldots,a_{\pi(h)})\in\sigma.

  2. -

    it is totally reflexive, that is, for all aโ†’โˆˆPh\vec{a}\in P^{h} with at least two of the aia_{i} equal, we have that aโ†’โˆˆฯƒ\vec{a}\in\sigma.

  3. -

    there is an a1a_{1} such that for all a2,โ€ฆ,aha_{2},\ldots,a_{h} in PP we have aโ†’โˆˆฯƒ\vec{a}\in\sigma; and

  4. -

    ฯƒโ‰ Ph\sigma\neq P^{h}.

If ฯƒ\sigma is a central relation on a set PP, let ๐ฯƒ\mathbf{P}_{\sigma} be the preprimal algebra whose universe is PP and whose fundamental operations are all the operations preserving ฯƒ\sigma. We use ๐•โ€‹(๐ฯƒ)\mathbb{V}(\mathbf{P}_{\sigma}) to denote the variety generated by ๐ฯƒ\mathbf{P}_{\sigma}.

Proposition 13

Let ฯƒ\sigma be a hh-ary central relation on PP, with hโ‰ฅ3h\geq 3. There is no universal class โ„ฑโІ๐•โ€‹(๐ฯƒ)Dโ€‹I\mathcal{F}\subseteq\mathbb{V}(\mathbf{P}_{\sigma})_{DI} such that every member of ๐•โ€‹(๐ฯƒ)\mathbb{V}(\mathbf{P}_{\sigma}) is isomorphic to a global subdirect product with factors in โ„ฑ\mathcal{F}. There are Pierce stalks in ๐•โ€‹(๐ฯƒ)\mathbb{V}(\mathbf{P}_{\sigma}) which are not directly indecomposable.

Proof. First, we note that by [7] the variety ๐•โ€‹(๐ฯƒ)\mathbb{V}(\mathbf{P}_{\sigma}) is congruence distributive, hence it has the FHP (see [8]). Let a1,โ€ฆ,aN,b1,โ€ฆ,bNโˆˆPa_{1},\ldots,a_{N},b_{1},\ldots,b_{N}\in P be such that (a1,โ€ฆ,aN)โ‰ (b1,โ€ฆ,bN)(a_{1},\ldots,a_{N})\neq(b_{1},\ldots,b_{N}). Let U:PN+2โ†’PU:P^{N+2}\rightarrow P be such that

Uโ€‹(x,y,a1,โ€ฆ,aN)=xUโ€‹(x,y,b1,โ€ฆ,bN)=y\begin{array}[]{ccc}U(x,y,a_{1},\ldots,a_{N})&=&x\vskip 6.0pt plus 2.0pt minus 2.0pt\\ U(x,y,b_{1},\ldots,b_{N})&=&y\end{array}

for any x,yโˆˆPx,y\in P. It is easy to check that UU does not preserve ฯƒ\sigma. For example, if hh is odd, we can take (c1,โ€ฆ,ch)โˆ‰ฯƒ(c_{1},\ldots,c_{h})\notin\sigma and note that

Uโ€‹(c1,c2,a1,โ€ฆ,aN)=c1Uโ€‹(c1,c2,b1,โ€ฆ,bN)=c2Uโ€‹(c3,c4,a1,โ€ฆ,aN)=c3Uโ€‹(c3,c4,b1,โ€ฆ,bN)=c4โ‹ฎโ‹ฎUโ€‹(chโˆ’1,ch,a1,โ€ฆ,aN)=chโˆ’1Uโ€‹(chโˆ’1,ch,b1,โ€ฆ,bN)=ch\begin{array}[]{rcl}U(c_{1},c_{2},a_{1},\ldots,a_{N})&=&c_{1}\vskip 6.0pt plus 2.0pt minus 2.0pt\\ U(c_{1},c_{2},b_{1},\ldots,b_{N})&=&c_{2}\vskip 6.0pt plus 2.0pt minus 2.0pt\\ U(c_{3},c_{4},a_{1},\ldots,a_{N})&=&c_{3}\vskip 6.0pt plus 2.0pt minus 2.0pt\\ U(c_{3},c_{4},b_{1},\ldots,b_{N})&=&c_{4}\vskip 6.0pt plus 2.0pt minus 2.0pt\\ \vdots&&\ \vdots\vskip 6.0pt plus 2.0pt minus 2.0pt\\ U(c_{h-1},c_{h},a_{1},\ldots,a_{N})&=&c_{h-1}\vskip 6.0pt plus 2.0pt minus 2.0pt\\ U(c_{h-1},c_{h},b_{1},\ldots,b_{N})&=&c_{h}\end{array}

which, since ฯƒ\sigma is totally reflexive, says that UU does not preserve ฯƒ\sigma. Thus the conclusion of Theorem 12 does not hold and hence there is no universal class โ„ฑโІ๐•โ€‹(๐ฯƒ)Dโ€‹I\mathcal{F}\subseteq\mathbb{V}(\mathbf{P}_{\sigma})_{DI} such that every member of ๐•โ€‹(๐ฯƒ)\mathbb{V}(\mathbf{P}_{\sigma}) is isomorphic to a global subdirect product with factors in โ„ฑ\mathcal{F}. In [2] it is proved that if every Pierce stalk is in ๐•โ€‹(๐ฯƒ)Dโ€‹I\mathbb{V}(\mathbf{P}_{\sigma})_{DI}, then the class ๐•โ€‹(๐ฯƒ)Dโ€‹I\mathbb{V}(\mathbf{P}_{\sigma})_{DI} is universal. Since the Pierce representation is always a global subdirect representation, there are Pierce stalks in ๐•โ€‹(๐ฯƒ)\mathbb{V}(\mathbf{P}_{\sigma}) which are not directly indecomposable. ย ย 


In order to analyze the case of a 22-ary central relation we need the following lemma from [15].

Lemma 14

Let ๐’ฑ\mathcal{V} be a congruence distributive variety. If each member of ๐’ฑ\mathcal{V} is isomorphic to a global subdirect product with factors in ๐’ฑSโ€‹I\mathcal{V}_{SI}, then ๐’ฑ\mathcal{V} is congruence permutable.

Proof. It follows from (1)โ‡’\Rightarrow(2) of [15, Corollary. 1 of Thm. 3.4]. ย ย 

Proposition 15

Let ฯƒ\sigma be a 22-ary central relation on a set PP. Every Pierce stalk in ๐•โ€‹(๐ฯƒ)\mathbb{V}(\mathbf{P}_{\sigma}) is directly indecomposable. There are Pierce stalks in ๐•โ€‹(๐ฯƒ)\mathbb{V}(\mathbf{P}_{\sigma}) which are not subdirectly irreducible.

Proof. It is an exercise [10, X.5.4] to check that there are term-operations ++ and ร—\times on ๐ฯƒ\mathbf{P}_{\sigma}, and elements 0,1โˆˆP0,1\in P such that ๐ฯƒ\mathbf{P}_{\sigma} satisfies the following identities

xร—0=0ร—x=0xร—1=1ร—x=xx+0=0+x=x\begin{array}[]{r}x\times 0=0\times x=0\vskip 6.0pt plus 2.0pt minus 2.0pt\\ x\times 1=1\times x=x\vskip 6.0pt plus 2.0pt minus 2.0pt\\ x+0=0+x=x\vskip 6.0pt plus 2.0pt minus 2.0pt\end{array}

Since ฯƒ\sigma is reflexive, all constant functions on PP preserve ฯƒ\sigma, which says that there are terms 0โ€‹(w)0(w) and 1โ€‹(w)1(w) such that 0๐ฯƒโ€‹(a)=00^{\mathbf{P}_{\sigma}}(a)=0 and 1๐ฯƒโ€‹(a)=11^{\mathbf{P}_{\sigma}}(a)=1, for every aโˆˆPa\in P. Let Uโ€‹(x,y,z,w)U(x,y,z,w) be the term (xร—w)+(yร—z)(x\times w)+(y\times z). Note that

Uโ€‹(x,y,0โ€‹(w),1โ€‹(w))=xUโ€‹(x,y,1โ€‹(w),0โ€‹(w))=y\begin{array}[]{ccc}U(x,y,0(w),1(w))&=&x\vskip 6.0pt plus 2.0pt minus 2.0pt\\ U(x,y,1(w),0(w))&=&y\end{array}

are identities of ๐•โ€‹(๐ฯƒ)\mathbb{V}(\mathbf{P}_{\sigma}). Thus, in the terminology of [16], ๐•โ€‹(๐ฯƒ)\mathbb{V}(\mathbf{P}_{\sigma}) is a Pierce variety. Also we note that, since all constant functions on PP are term-operations, we have that ๐•Šโ€‹(๐ฯƒ)={๐ฯƒ}\mathbb{S(}\mathbf{P}_{\sigma})=\{\mathbf{P}_{\sigma}\}. By [7] ๐ฯƒ\mathbf{P}_{\sigma} is the only subdirectly irreducible algebra in ๐•โ€‹(๐ฯƒ)\mathbb{V}(\mathbf{P}_{\sigma}). Now, (2)โ‡’\Rightarrow(1) of [16, Theorem 8] says that every Pierce stalk is directly indecomposable.

Suppose every Pierce stalk of ๐•โ€‹(๐ฯƒ)\mathbb{V}(\mathbf{P}_{\sigma}) is subdirectly irreducible. We will arrive to a contradiction. Since ๐ฯƒ\mathbf{P}_{\sigma} is the only subdirectly irreducible algebra in ๐•โ€‹(๐ฯƒ)\mathbb{V}(\mathbf{P}_{\sigma}), we have that ๐ฯƒ\mathbf{P}_{\sigma} is hereditarily simple. By [7] the variety ๐•โ€‹(๐ฯƒ)\mathbb{V}(\mathbf{P}_{\sigma}) is congruence distributive. By Lemma 14 we have that ๐•โ€‹(๐ฯƒ)\mathbb{V}(\mathbf{P}_{\sigma}) is arithmetical. Pixley theorem [3, IV.10.7] says that ๐ฯƒ\mathbf{P}_{\sigma} is quasiprimal, i.e. the ternary discriminator is a term-function of ๐ฯƒ\mathbf{P}_{\sigma}. It is easy to check that the ternary discriminator does not preserve ฯƒ\sigma. Thus we have arrived to a contradiction and hence we have proved that there are Pierce stalks in ๐•โ€‹(๐ฯƒ)\mathbb{V}(\mathbf{P}_{\sigma}) which are not subdirectly irreducible. ย ย 


Next, we analyze the preprimal variety given by a non-trivial proper equivalence relation ฯƒ\sigma on a finite set PP. Let ๐ฯƒ\mathbf{P}_{\sigma} be the preprimal algebra whose universe is PP and whose fundamental operations are all the operations preserving ฯƒ\sigma.

Proposition 16

Let ฯƒ\sigma be a non-trivial proper equivalence relation on a finite set PP. Every Pierce stalk in ๐•โ€‹(๐ฯƒ)\mathbb{V}(\mathbf{P}_{\sigma}) is directly indecomposable. There are Pierce stalks in ๐•โ€‹(๐ฯƒ)\mathbb{V}(\mathbf{P}_{\sigma}) which are not subdirectly irreducible.

Proof. Since ฯƒ\sigma is reflexive, we have that the constant operations on PP are term-operations of ๐ฯƒ\mathbf{P}_{\sigma}. Take 0,1โˆˆP0,1\in P such that 0/ฯƒโ‰ 1/ฯƒ0/\sigma\neq 1/\sigma. Let 0โ€‹(w)0(w) and 1โ€‹(w)1(w) be terms such that 0๐ฯƒโ€‹(a)=00^{\mathbf{P}_{\sigma}}(a)=0 and 1๐ฯƒโ€‹(a)=11^{\mathbf{P}_{\sigma}}(a)=1, for every aโˆˆPa\in P. Define f:P4โ†’Pf:P^{4}\rightarrow P as follows

fโ€‹(x,y,z,w)={xifย โ€‹(z,0)โˆˆฯƒโ€‹ย andย โ€‹(w,1)โˆˆฯƒyifย โ€‹(z,1)โˆˆฯƒโ€‹ย andย โ€‹(w,0)โˆˆฯƒ0otherwisef(x,y,z,w)=\left\{\begin{array}[]{ccl}x&&\text{if }(z,0)\in\sigma\text{ and }(w,1)\in\sigma\\ y&&\text{if }(z,1)\in\sigma\text{ and }(w,0)\in\sigma\\ 0&&\text{otherwise}\end{array}\right.

Since ff preserves ฯƒ\sigma we have that there is a term Uโ€‹(x,y,z,w)U(x,y,z,w) such that U๐ฯƒ=fU^{\mathbf{P}_{\sigma}}=f. Note that

Uโ€‹(x,y,0โ€‹(w),1โ€‹(w))=xUโ€‹(x,y,1โ€‹(w),0โ€‹(w))=y\begin{array}[]{ccc}U(x,y,0(w),1(w))&=&x\vskip 6.0pt plus 2.0pt minus 2.0pt\\ U(x,y,1(w),0(w))&=&y\end{array}

are identities of ๐•โ€‹(๐ฯƒ)\mathbb{V}(\mathbf{P}_{\sigma}). Thus, in the terminology of [16], ๐•โ€‹(๐ฯƒ)\mathbb{V}(\mathbf{P}_{\sigma}) is a Pierce variety. Note that Conโ€‹(๐ฯƒ)={ฮ”๐ฯƒ,ฯƒ,โˆ‡๐ฯƒ}\mathrm{Con}(\mathbf{P}_{\sigma})=\{\Delta^{\mathbf{P}_{\sigma}},\sigma,\nabla^{\mathbf{P}_{\sigma}}\}. Since ๐•โ€‹(๐ฯƒ)\mathbb{V}(\mathbf{P}_{\sigma}) is congruence distributive [9] and ๐•Šโ€‹(๐ฯƒ)={๐ฯƒ}\mathbb{S(}\mathbf{P}_{\sigma})=\{\mathbf{P}_{\sigma}\}, the subdirectly irreducibles of ๐•โ€‹(๐ฯƒ)\mathbb{V}(\mathbf{P}_{\sigma}) are ๐ฯƒ\mathbf{P}_{\sigma} and ๐ฯƒ/ฯƒ\mathbf{P}_{\sigma}/\sigma. Note that ๐ฯƒ/ฯƒ\mathbf{P}_{\sigma}/\sigma is primal. Thus โ„™uโ€‹๐•Šโ€‹๐•โ€‹(๐ฯƒ)Sโ€‹IโІ๐•โ€‹(๐ฯƒ)Dโ€‹I\mathbb{P}_{u}\mathbb{SV}(\mathbf{P}_{\sigma})_{SI}\subseteq\mathbb{V}(\mathbf{P}_{\sigma})_{DI} and hence (2)โ‡’\Rightarrow(1) of [16, Theorem 8] says that every Pierce stalk is directly indecomposable.

Suppose every Pierce stalk of ๐•โ€‹(๐ฯƒ)\mathbb{V}(\mathbf{P}_{\sigma}) is subdirectly irreducible. We will arrive to a contradiction. Since every directly indecomposable algebra of ๐•โ€‹(๐ฯƒ)\mathbb{V}(\mathbf{P}_{\sigma}) is a Pierce stalk of itself we have that every directly indecomposable member of ๐•โ€‹(๐ฯƒ)\mathbb{V}(\mathbf{P}_{\sigma}) is subdirectly irreducible. By [3, IV.12.5] we have that ๐•โ€‹(๐ฯƒ)\mathbb{V}(\mathbf{P}_{\sigma}) is semisimple which is impossible since ฯƒโˆˆConโ€‹(๐ฯƒ)\sigma\in\mathrm{Con}(\mathbf{P}_{\sigma}). Thus we have arrived to an absurd and hence we have proved that there are Pierce stalks which are not subdirectly irreducible. ย ย 


References

  • [1] M. Badano and D. Vaggione, The fundamental theorem of central element theory, submitted.
  • [2] D. Bigelow and S. Burris, Boolean algebras of factor congruences, Acta Sci. Math. (Szeged) 54:1-2(1990).
  • [3] S. Burris and H. Sankappanavar, A course in Universal Algebra, Springer-Verlag, New York, 1981.
  • [4] M. Campercholi and D. Vaggione, Implicit definition of the quaternary discriminator, Algebra Universalis 68 (2012), no 1, 1-p16.
  • [5] M. Campercholi and D. Vaggione, Semantical conditions for the definability of functions and relations, Algebra Universalis 76 no. 1 (2016), 71โ€“98.
  • [6] S. Comer, Representations by algebras of sections over Boolean spaces, Pacific Journal of Mathematics 38 (1971), no. 1, 29โ€“38.
  • [7] K. Deneke, Algebraische Fragen Nitchtklassicher Aussagenkalkule. Doctoral Dissertation. Padagogischen Hochschule โ€Karl Liebknechtโ€, Potsdam, 1978.
  • [8] G. A. Fraser & A. Horn, Congruence relations in direct products. Proc. Amer. Math. 26, 390-394, 1970.
  • [9] A. Knoebel, The equational classes generated by simple functionally precomplete algebras, Amer. Math. Soc. Mem. 332 (1985).
  • [10] A. Knoebel, Sheaves of algebras over Boolean spaces, Birkhauser, (2012), 329 p..
  • [11] P. Krauss and D. Clark, Global subdirect Products, Amer. Math. Soc. Mem. 210 (1979).
  • [12] R. S. Pierce, Modules over commutative regular rings, Memoirs AMS 70 (1967).
  • [13] I. Rosemberg, Uber die funktionale Vollstandigkeit in den mehrwertigen Logiken, Rozpr. CSAV Rada Mat. Pfir. Ved, 80 (1970), 3-93.
  • [14] P. Sanchez Terraf and D. Vaggione, Varieties with definable factor congruences, Transactions of the Amer. Math. Soc. 361 (2009), 5061-5088.
  • [15] D. Vaggione, Sheaf Representation and Chinese Remainder Theorems, Algebra Universalis, 29 (1992), 232-272.
  • [16] D. Vaggione, Varieties in which the Pierce stalks are directly indecomposable, Journal of Algebra 184 (1996), 424-434.
  • [17] D. Vaggione, Central elements in varieties with the Fraser-Horn property, Advances in Mathematics 148, 193-202, 1999.