This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Phonon Boltzmann equation non-local in space and time: the partial failure of the generalized Fourier law

Philip B. Allen philip.allen@stonybrook.edu Department of Physics and Astronomy, Stony Brook University, Stony Brook, New York 11794-3800, USA
Abstract

The purpose of this note is to clarify the solution of the non-local Peierls Boltzmann equation found by Hua and Lindsay (Phys. Rev. B 102, 104310 (2020)). They used methods of Cepellotti and Marzari. The response function “thermal distributor” is discussed. The new, “non-Fourier” term B\vec{B} [Jth=κT+B]\vec{J}_{\rm th}=-\kappa\vec{\nabla}T+\vec{B}] that occurs in non-local situations, gives rise also to a new term in the thermal distributor.

I Fourier law and nonlocal correction

Transport in bulk systems, with currents small enough to linearize, is given by simple linear response functions, such as the Fourier law for thermal conductivity, Jth=κT\vec{J}_{\rm th}=-\kappa\vec{\nabla}T, where the temperature is close to a background temperature T0T_{0}, deviating by a small correction rT\vec{r}\cdot\vec{\nabla}T, with T\vec{\nabla}T uniform in space. However, in small systems, the current and temperature need to be studied on distance scales less than the mean free paths of heat carriers. A sensible assumption is that a non-local Fourier law, JF(r)=𝑑rκ(r,r)T(r)\vec{J}_{\rm F}(\vec{r})=-\int d\vec{r}^{\ \prime}\kappa(\vec{r},\vec{r}^{\ \prime})\vec{\nabla}T(\vec{r}^{\ \prime}) should describe the linear response. However, for non-uniform heat driving, a correction has been noticed recently. An additional, non-Fourier term JnonF(r)\vec{J}_{\rm non-F}(\vec{r}) appears. This was found recently by Hua and Lindsay Hua et al. (2019); Hua and Lindsay (2020). Hints of this can be found in earlier literature. Boltzmann theory shows how this happens. The derivation given below assumes heat carried by phonons in insulators. Similar results are expected for heat carried by electrons in metals, and also for electrical conduction. The derivation includes time-dependent driving of phonon heat.

II Non-local Peierls Boltzmann equation

The phonon, or Peierls, Boltzmann equation Peierls (1929); Ziman (1960) (PBE), linearized for small deviations from equilibrium, says that the phonon distribution NQ(r,t)N_{Q}(\vec{r},t) evolves according to

dNQdt\displaystyle\frac{dN_{Q}}{dt} =\displaystyle= (dNQdt)drift+(dNQdt)coll+(dNQdt)ext,\displaystyle\left(\frac{dN_{Q}}{dt}\right)_{\rm drift}+\left(\frac{dN_{Q}}{dt}\right)_{\rm coll}+\left(\frac{dN_{Q}}{dt}\right)_{\rm ext},
where(dNQdt)drift=vQrNQ,\displaystyle{\rm where}\ \left(\frac{dN_{Q}}{dt}\right)_{\rm drift}=-\vec{v}_{Q}\cdot\vec{\nabla}_{\vec{r}}N_{Q},
and(dNQdt)coll=QRQQΔNQ(r,t),\displaystyle{\rm and}\ \left(\frac{dN_{Q}}{dt}\right)_{\rm coll}=-\sum_{Q^{\prime}}R_{QQ^{\prime}}\Delta N_{Q^{\prime}}(\vec{r},t),
and(dNQdt)ext=1C(T0)(dnQdT)T0PQ(r,t).\displaystyle{\rm and}\ \left(\frac{dN_{Q}}{dt}\right)_{\rm ext}=\frac{1}{C(T_{0})}\left(\frac{dn_{Q}}{dT}\right)_{T_{0}}P_{Q}(\vec{r},t).
(1)

The symbol Q=(q,j)Q=(\vec{q},j) enumerates the N=3nNcellN=3nN_{\rm cell} eigenstates of the harmonic vibrational sustem. The scattering operator RQQR_{QQ^{\prime}} is linearized for small deviations ΔNQ\Delta N_{Q} from the local equilibrium distribution, a Bose-Einstein distribution nQn_{Q} at the local temperature T(r,t)T(\vec{r},t); PQ(r,t)P_{Q}(\vec{r},t) is the rate per unit volume of energy input into mode QQ, and T0T_{0} is the background temperature. The specific heat C(T0)C(T_{0}) has units energy divided by temperature×\timesvolume, and PQP_{Q} has units power per volume. The external power input PQP_{Q} causes mode QQ to increase in energy per unit time by an amount which would increase its effective temperature by dΔTQ(r,t)/dt=PQ(r,t)/Cd\Delta T_{Q}(\vec{r},t)/dt=P_{Q}(\vec{r},t)/C. For simple driving, with PQP_{Q} independent of QQ, the modal temperature increase ΔTQ\Delta T_{Q} is the same for all modes QQ.

Non-local Boltzmann theories require a definition of local temperature; the one that works in Boltzmann theory is that the local energy density u(r,t)u(\vec{r},t) is (1/V)QωQnQ(T(r,t))(1/V)\sum_{Q}\hbar\omega_{Q}n_{Q}(T(\vec{r},t)). This means that there is no energy in the deviation ΔNQNQ(r,t)nQ(T(r,t))\Delta N_{Q}\equiv N_{Q}(\vec{r},t)-n_{Q}(T(\vec{r},t)). The sum (1/V)QωQΔNQ=0(1/V)\sum_{Q}\hbar\omega_{Q}\Delta N_{Q}=0 defines T(r,t)T(\vec{r},t).

III Scattering and Temperature

Each scattering event conserves phonon energy: QωQ(dΔNQ/dt)scatt=0\sum_{Q}\hbar\omega_{Q}(d\Delta N_{Q}/dt)_{\rm scatt}=0, whether linearized in ΔNQ\Delta N_{Q} or not. In linear approximation, this is equivalent to the sum rule QωQRQQ=0\sum_{Q}\hbar\omega_{Q}R_{QQ^{\prime}}=0. The operator R^\hat{R} (where RQQ=Q|R^|QR_{QQ^{\prime}}=\langle Q|\hat{R}|Q^{\prime}\rangle) has a left null eigenvector ω|R^=0\langle\hbar\omega|\hat{R}=0, where ωQ=ω|Q\hbar\omega_{Q}=\langle\hbar\omega|Q\rangle. The vector ||\cdot\rangle lies in the space of harmonic eigenstates. The states |Q|Q\rangle are a complete orthonormal basis. In the coordinate space enumerated by unit cell \ell at R\vec{R}_{\ell}, and atom number nn, and Cartesian coordinate ii,

ni|Q=1NcellseiqRϵQ(n,i),\langle\ell ni|Q\rangle=\frac{1}{\sqrt{N_{\rm cells}}}e^{i\vec{q}\cdot\vec{R}_{\ell}}\epsilon_{Q}(n,i), (2)

where the polarization vector ϵ^Q\hat{\epsilon}_{Q} is normalized, n,i|ϵQ(n,i)|2=1\sum_{n,i}|\epsilon_{Q}(n,i)|^{2}=1. But R^\hat{R} is not symmetric. The corresponding null right eigenvector is |n(n+1)ω|n(n+1)\hbar\omega\rangle. This is equivalent to the statement that if the distribution NQ=nQ(T(r,t))+ΔNQ(r,t)N_{Q}=n_{Q}(T(\vec{r},t))+\Delta N_{Q}(\vec{r},t) consists of shifting the occupancy of every mode QQ away from local equilbrium T(r,t)T(\vec{r},t) by ΔNQ=(dnQ/dT)ΔT(r,t)\Delta N_{Q}=(dn_{Q}/dT)\Delta T(\vec{r},t) with the same ΔT(r,t)\Delta T(\vec{r},t) for each mode, the shifted distribution is already locally thermalized and doesn’t experience net scattering.

A symmetrized scattering operator Ω^\hat{\Omega} is Simons (1960); Krumhansl (1965)

Ω^\displaystyle\hat{\Omega} =\displaystyle= [n^(n^+1)]1/2R^[n^(n^+1)]1/2\displaystyle[\hat{n}(\hat{n}+1)]^{-1/2}\hat{R}[\hat{n}(\hat{n}+1)]^{1/2}
ΩQQ\displaystyle\Omega_{QQ^{\prime}} =\displaystyle= [nQ(nQ+1)]1/2RQQ[nQ(nQ+1)]1/2.\displaystyle[n_{Q}(n_{Q}+1)]^{-1/2}R_{QQ^{\prime}}[n_{Q^{\prime}}(n_{Q^{\prime}}+1)]^{1/2}. (3)

The operator n^\hat{n} is defined as Q|n|Q=nQδQQ\langle Q|n|Q^{\prime}\rangle=n_{Q}\delta_{QQ^{\prime}}. The Bose factors nQn_{Q} in Eq. 3 are taken at the background temperature T0T_{0}, not the local equilibrium temperature T(r,t)T(\vec{r},t). Similarly the operator n^\hat{n} is defined at T=T0T=T_{0} unless explicitly written as n^(r,t)\hat{n}(\vec{r},t). The Boltzmann Eq. 1 is now

dN(r,t)dt\displaystyle\frac{dN(\vec{r},t)\rangle}{dt} =\displaystyle= v^r|N(r,t)\displaystyle-\hat{\vec{v}}\cdot\vec{\nabla}_{\vec{r}}|N(\vec{r},t)\rangle (4)
\displaystyle- n^(n^+1)Ω^1n^(n^+1)|ΔN(r,t)\displaystyle\sqrt{\hat{n}(\hat{n}+1)}\hat{\Omega}\frac{1}{\sqrt{\hat{n}(\hat{n}+1)}}|\Delta N(\vec{r},t)\rangle
+\displaystyle+ n^(n^+1)ω^CkBT2|P(r,t),\displaystyle\hat{n}(\hat{n}+1)\frac{\hbar\hat{\omega}}{Ck_{B}T^{2}}|P(\vec{r},t)\rangle,

where Q|P=PQ\langle Q|P\rangle=P_{Q} The operators v^\hat{\vec{v}} and ω^\hat{\omega} are diagonal in QQ-representation, Q|v^|Q=vQδQQ\langle Q|\hat{\vec{v}}|Q^{\prime}\rangle=\vec{v}_{Q}\delta_{QQ^{\prime}} and Q|ω^|Q=ωQδQQ\langle Q|\hat{\omega}|Q^{\prime}\rangle=\omega_{Q}\delta_{QQ^{\prime}}.

Now define from ΔNQ\Delta N_{Q} a deviation function ΦQ\Phi_{Q},

ΔNQ\displaystyle\Delta N_{Q} =\displaystyle= NQnQ(r,t)nQ(nQ+1)ΦQ(r,t)\displaystyle N_{Q}-n_{Q}(\vec{r},t)\equiv\sqrt{n_{Q}(n_{Q}+1)}\Phi_{Q}(\vec{r},t)
|ΔN\displaystyle|\Delta N\rangle =\displaystyle= |N|n(r,t)n^(n^+1)|Φ(r,t)\displaystyle|N\rangle-|n(\vec{r},t)\rangle\equiv\sqrt{\hat{n}(\hat{n}+1)}|\Phi(\vec{r},t)\rangle (5)

Then Eq. 4 becomes

|Φ(r,t)t+v^r|Φ(r,t)+Ω^|Φ(r,t)=|A(r,t),\frac{\partial|\Phi(\vec{r},t)\rangle}{\partial t}+\hat{\vec{v}}\cdot\vec{\nabla}_{\vec{r}}|\Phi(\vec{r},t)\rangle+\hat{\Omega}|\Phi(\vec{r},t)\rangle=|A(\vec{r},t)\rangle, (6)
|A(r,t)\displaystyle|A(\vec{r},t)\rangle =\displaystyle= [n^(n^+1)]1/2[(t+v^r)ΔT(r,t)]|dndT\displaystyle-[\hat{n}(\hat{n}+1)]^{-1/2}\left[\left(\frac{\partial}{\partial t}+\hat{\vec{v}}\cdot\vec{\nabla}_{\vec{r}}\right)\Delta T(\vec{r},t)\right]\left|\frac{dn}{dT}\right\rangle (7)
+\displaystyle+ [n^(n^+1)]1/2ω^CkBT2|P(r,t),\displaystyle[\hat{n}(\hat{n}+1)]^{1/2}\frac{\hbar\hat{\omega}}{Ck_{B}T^{2}}|P(\vec{r},t)\rangle,

The inhomogeneous part |A|A\rangle has been separated. It drives the deviation |Φ|\Phi\rangle from local equilibrium, |Φ=0|\Phi\rangle=0. Because of linearization, the equation is simplified by a Fourier transform,

|X(k,ω)\displaystyle|X(\vec{k},\omega)\rangle =\displaystyle= 1VV𝑑r𝑑t|X(r,t)exp[i(krωt)]\displaystyle\frac{1}{V}\int^{V}d\vec{r}\int_{-\infty}^{\infty}dt|X(\vec{r},t)\rangle\exp[-i(\vec{k}\cdot\vec{r}-\omega t)]
|X(r,t)\displaystyle|X(\vec{r},t)\rangle =\displaystyle= k𝑑ω|X(k,ω)exp[i(krωt)]\displaystyle\sum_{\vec{k}}\int_{-\infty}^{\infty}d\omega|X(\vec{k},\omega)\rangle\exp[i(\vec{k}\cdot\vec{r}-\omega t)] (8)

The different Fourier components are not coupled, and are treated one at a time, as if |X(r,t)=|X(k,ω)exp[i(krωt)]|X(\vec{r},t)\rangle=|X(\vec{k},\omega)\rangle\exp[i(\vec{k}\cdot\vec{r}-\omega t)]. The symbol ω\omega is the external frequency, not to be confused with ω^\hat{\omega} which is the operator version of the phonon frequency ωQ\omega_{Q}. Equations 6 and 7 become

[Ω^+i(kv^ω1^)]|Φ=|A(k,ω)\left[\hat{\Omega}+i(\vec{k}\cdot\hat{\vec{v}}-\omega\hat{1})\right]|\Phi\rangle=|A(\vec{k},\omega)\rangle (9)
|A=n^(n^+1)kBT2[i(kv^ω1^)ΔT|ω+ω^C|P]|A\rangle=\frac{\sqrt{\hat{n}(\hat{n}+1)}}{k_{B}T^{2}}\left[-i(\vec{k}\cdot\hat{\vec{v}}-\omega\hat{1})\Delta T|\hbar\omega\rangle+\frac{\hbar\hat{\omega}}{C}|P\rangle\right] (10)

Mode space has so far been described in QQ-representation by harmonic eigenstates |Q|Q\rangle. It is convenient to also use the “relaxon”-representation |α|\alpha\rangle of eigenstates Guyer and Krumhansl (1966); Maris (1969); Cepellotti and Marzari (2016) of Ω^\hat{\Omega}.

Ω^|α=γα|α\hat{\Omega}|\alpha\rangle=\gamma_{\alpha}|\alpha\rangle (11)

where

α|β=δαβandα|αα|=1^.\langle\alpha|\beta\rangle=\delta_{\alpha\beta}\ \ {\rm and}\ \ \sum_{\alpha}|\alpha\rangle\langle\alpha|=\hat{1}. (12)

The eigenvalues γα\gamma_{\alpha} are relaxation rates, γα=1/τα\gamma_{\alpha}=1/\tau_{\alpha}. In this basis, Eq. 9 has the form

β[γαδαβ+i(kvαβωδαβ)]Φβ=Aα,\sum_{\beta}\left[\gamma_{\alpha}\delta_{\alpha\beta}+i(\vec{k}\cdot\vec{v}_{\alpha\beta}-\omega\delta_{\alpha\beta})\right]\Phi_{\beta}=A_{\alpha}, (13)

where Φβ=β|Φ\Phi_{\beta}=\langle\beta|\Phi\rangle and Aα=α|AA_{\alpha}=\langle\alpha|A\rangle. There are NN modes QQ (N=3NcellsnatN=3N_{\rm cells}n_{\rm at} where natn_{\rm at} is the number of atoms in the unit cell), and Eq. 13 gives NN equations for the NN unknown components Φα\Phi_{\alpha} of the deviation function. But there are two fields (|ΔT|\Delta T\rangle and |P|P\rangle) driving the distribution out of equilibrium, of which one (typically |ΔT|\Delta T\rangle) is unknown. An extra equation is needed. That equation is the definition of local temperature.

There is one null eigenvector, |α=0|0|\alpha=0\rangle\equiv|0\rangle with eigenvalue γ0=0\gamma_{0}=0. The vectors 0|\langle 0| and |0|0\rangle deviate only by factors [n^(n^+1)]±1/2[\hat{n}(\hat{n}+1)]^{\pm 1/2} from the null left (ω|)(\langle\hbar\omega|) and right |dn/dT|dn/dT\rangle eigenvectors of R^\hat{R}. In QQ-representation, the null eigenvector is

Q|0=nQ(nQ+1)ωQCVkBT2\langle Q|0\rangle=\sqrt{n_{Q}(n_{Q}+1)}\frac{\hbar\omega_{Q}}{\sqrt{CVk_{B}T^{2}}} (14)

The factor 1/VCkBT21/\sqrt{VCk_{B}T^{2}} normalizes the state, 0|0=1\langle 0|0\rangle=1. The definition of temperature takes the form

1VQ\displaystyle\frac{1}{V}\sum_{Q} ωQΔNQ=0=1VQωQnQ(nQ+1)ΦQ\displaystyle\hbar\omega_{Q}\Delta N_{Q}=0=\frac{1}{V}\sum_{Q}\hbar\omega_{Q}\sqrt{n_{Q}(n_{Q}+1)}\Phi_{Q} (15)
=CkBT2V0|Φ=CkBT2VΦ0=0.\displaystyle=\sqrt{\frac{Ck_{B}T^{2}}{V}}\langle 0|\Phi\rangle=\sqrt{\frac{Ck_{B}T^{2}}{V}}\Phi_{0}=0.

This shows that there are actually only N1N-1 unknown parts of |Φ|\Phi\rangle, because the α=0\alpha=0 component, 0|Φ=Φ0\langle 0|\Phi\rangle=\Phi_{0} must be zero by the definition of local temperature.

Now we can rewrite the formula for |A|A\rangle using Eqs. 10 and 14,

|A=VCkBT2[i(kv^ω1^)CΔT(k,ω)+P^(k,ω)]|0|A\rangle=\sqrt{\frac{V}{Ck_{B}T^{2}}}\left[-i(\vec{k}\cdot\hat{\vec{v}}-\omega\hat{1})C\Delta T(\vec{k},\omega)+\hat{P}(\vec{k},\omega)\right]|0\rangle (16)

where Q|P^|Q=PQδQQ\langle Q|\hat{P}|Q^{\prime}\rangle=P_{Q}\delta_{QQ^{\prime}}. Now look at the α=0\alpha=0 component of Eq. 13,

ikβ0v0βΦβ=A0i\vec{k}\cdot\sum_{\beta}^{\neq 0}\vec{v}_{0\beta}\Phi_{\beta}=A_{0} (17)

The left hand side of Eq. 17 is

0|ikv|Φ=VCkBT2ikJ\langle 0|i\vec{k}\cdot\vec{v}|\Phi\rangle=\sqrt{\frac{V}{Ck_{B}T^{2}}}i\vec{k}\cdot\vec{J} (18)

where J(k,ω)\vec{J}(\vec{k},\omega) is the energy (or heat) current density, (1/V)QωQvQ[NQ(k,ω)nQ(k,ω)](1/V)\sum_{Q}\hbar\omega_{Q}\vec{v}_{Q}[N_{Q}(\vec{k},\omega)-n_{Q}(\vec{k},\omega)]. The right hand side of Eq. 17 is

0|A=VCkBT2(iωCΔT+P¯),\langle 0|A\rangle=\sqrt{\frac{V}{Ck_{B}T^{2}}}\left(i\omega C\Delta T+\bar{P}\right), (19)

where P¯=0|P^|0\bar{P}=\langle 0|\hat{P}|0\rangle, or

P¯QCQCPQandCQ=1VωQdnQdT,\bar{P}\equiv\sum_{Q}\frac{C_{Q}}{C}P_{Q}\ \ {\rm and}\ \ C_{Q}=\frac{1}{V}\hbar\omega_{Q}\frac{dn_{Q}}{dT}, (20)

and C=QCQC=\sum_{Q}C_{Q} is the total specific heat. If PQP_{Q} is independent of QQ, then PQ=P¯P_{Q}=\bar{P} for all modes QQ. Thus the α=0\alpha=0 part of the Boltzmann equation expresses energy conservation. In (r,t)(\vec{r},t) representation,

rJ=ut+P¯.\vec{\nabla}_{\vec{r}}\cdot\vec{J}=-\frac{\partial u}{\partial t}+\bar{P}. (21)

where u/t=CΔT/tiωCΔT\partial u/\partial t=C\partial\Delta T/\partial t\rightarrow-i\omega C\Delta T.

We can now “reinterpret” Eq. 13 as a system of N1N-1 linear equations (the sum over β\beta does not include β=0\beta=0 because Φ0=0\Phi_{0}=0). The (N1)×(N1)(N-1)\times(N-1) matrix Ωαβ=γαδαβ\Omega_{\alpha\beta}=\gamma_{\alpha}\delta_{\alpha\beta} is now positive-definite. We still need to invert the non-Hermitean matrix on the left side of Eq. 13 in order to solve for |Φ|\Phi\rangle.

IV The Solution

The method of solution is given by Hua and Lindsay Hua and Lindsay (2020). A earlier version is in a paper by Cepellotti and Marzari Cepellotti and Marzari (2017). Rewrite Eq. 13 by rescaling the distribution function Φα\Phi_{\alpha} and driving term AαA_{\alpha}:

Ψβγβ1/2ΦβandBαγα1/2Aα.\Psi_{\beta}\equiv\gamma_{\beta}^{1/2}\Phi_{\beta}\ {\rm and}\ B_{\alpha}\equiv\gamma_{\alpha}^{-1/2}A_{\alpha}. (22)

Equation 13 then becomes [1^+iΓ^]|Ψ=|B[\hat{1}+i\hat{\Gamma}]|\Psi\rangle=|B\rangle, or

β[δαβ+iΓαβ]Ψβ=Bα\displaystyle\sum_{\beta}\left[\delta_{\alpha\beta}+i\Gamma_{\alpha\beta}\right]\Psi_{\beta}=B_{\alpha}
Γαβ\displaystyle\Gamma_{\alpha\beta} =\displaystyle= k(γα1/2vαβγβ1/2)γα1ωδαβ\displaystyle\vec{k}\cdot\left(\gamma_{\alpha}^{-1/2}\vec{v}_{\alpha\beta}\gamma_{\beta}^{-1/2}\right)-\gamma_{\alpha}^{-1}\omega\delta_{\alpha\beta} (23)

The matrix Γ^\hat{\Gamma} is real-symmetric, so it has real eigenvalues, λm\lambda_{m}:

Γ^(k,ω)|m=λm(k,ω)|m.\hat{\Gamma}(\vec{k},\omega)|m\rangle=\lambda_{m}(\vec{k},\omega)|m\rangle. (24)

In this basis, Eq. 23 is (1+iλm)Ψm=Bm(1+i\lambda_{m})\Psi_{m}=B_{m}, where Ψm=m|Ψ\Psi_{m}=\langle m|\Psi\rangle, etc. Then the distribution function in the relaxon basis (the eigenbasis of Ω^\hat{\Omega}) is

Ψα=βSαβBβ,orΦα=β(γα1/2Sαβγβ1/2)Aβ,\displaystyle\Psi_{\alpha}=\sum_{\beta}S_{\alpha\beta}B_{\beta},\ {\rm or}\ \ \Phi_{\alpha}=\sum_{\beta}\left(\gamma_{\alpha}^{-1/2}S_{\alpha\beta}\gamma_{\beta}^{-1/2}\right)A_{\beta},
whereα|S^|β=Sαβ=mα|m11+iλm(k,ω)m|β.\displaystyle{\rm where}\ \ \langle\alpha|\hat{S}|\beta\rangle=S_{\alpha\beta}=\sum_{m}\langle\alpha|m\rangle\frac{1}{1+i\lambda_{m}(\vec{k},\omega)}\langle m|\beta\rangle.
(25)

This is the desired solution. In the spatially homogeneous (k=0\vec{k}=0) and static (ω=0\omega=0) case, Γ^=0\hat{\Gamma}=0 and λm=0\lambda_{m}=0, so Sαβ=δαβS_{\alpha\beta}=\delta_{\alpha\beta} and the bulk solution Φα=γα1Aα\Phi_{\alpha}=\gamma_{\alpha}^{-1}A_{\alpha} is recovered.

V Heat current

The operator Ω^\hat{\Omega} is positive if we exclude the null space. The operator S^=(1^+iΓ^)1\hat{S}=(\hat{1}+i\hat{\Gamma})^{-1} is defined in this “positive” or pp-space. It is convenient to define another operator in the same pp-space,

W^\displaystyle\hat{W} \displaystyle\equiv Ω^1/2S^Ω^1/2\displaystyle\hat{\Omega}^{-1/2}\hat{S}\hat{\Omega}^{-1/2}
Wαβ\displaystyle W_{\alpha\beta} =\displaystyle= γα1/2Sαβγβ1/2\displaystyle\gamma_{\alpha}^{-1/2}S_{\alpha\beta}\gamma_{\beta}^{-1/2} (26)

The solution of the Boltzmann equation is then

|Φ=W^|Ap|\Phi\rangle=\hat{W}|A\rangle_{p} (27)

where |Ap|A\rangle_{p} is the part of the driving term that is orthogonal to |0|0\rangle (and thus lies in pp-space),

|Ap=VCkBT2[ikv^CΔT+(P^P¯1^)]|0.|A\rangle_{p}=\sqrt{\frac{V}{Ck_{B}T^{2}}}\left[-i\vec{k}\cdot\hat{\vec{v}}C\Delta T+(\hat{P}-\bar{P}\hat{1})\right]|0\rangle. (28)

As required, the inner product 0|Ap\langle 0|A\rangle_{p} vanishes, because it has a term proportional to 0|v^|0\langle 0|\hat{\vec{v}}|0\rangle which is zero because v^\hat{\vec{v}} is an odd operator, and a term proportional to 0|(P^P¯1^)|0\langle 0|(\hat{P}-\bar{P}\hat{1})|0\rangle that is zero because 0|P^|0P¯\langle 0|\hat{P}|0\rangle\equiv\bar{P}. From |Φ|\Phi\rangle we get the heat current density J\vec{J},

J=CkBT2V0|v^|Φ=JF+JnonF.\vec{J}=\sqrt{\frac{Ck_{B}T^{2}}{V}}\langle 0|\hat{\vec{v}}|\Phi\rangle=\vec{J}_{\rm F}+\vec{J}_{\rm non-F}. (29)

The “generalized Fourier” component JF\vec{J}_{\rm F} is

JF(k,ω)=κ(k,ω)(ik)ΔT(k,ω),\vec{J}_{\rm F}(\vec{k},\omega)=-\kappa(\vec{k},\omega)\cdot(i\vec{k})\Delta T(\vec{k},\omega), (30)
κ(k,ω)=C0|v^W^(k,ω)v^|0.\kappa(\vec{k},\omega)=C\ \langle 0|\hat{\vec{v}}\ \hat{W}(\vec{k},\omega)\ \hat{\vec{v}}|0\rangle. (31)

The “non-Fourier” term is

JnonF(k,ω)=0|v^W^[P^(k,ω)P¯(k,ω)1^]|0.\vec{J}_{\rm non-F}(\vec{k},\omega)=\langle 0|\vec{\hat{v}}\hat{W}[\hat{P}(\vec{k},\omega)-\bar{P}(\vec{k},\omega)\hat{1}]|0\rangle. (32)

This extra, non-Fourier, component of the current was found by Hua et al. Hua et al. (2019) in an RTA treatment. A version is in the paper by Mahan and Claro Mahan and Claro (1988). In their version, there was no external insertion PP except via boundary conditions. It was rederived by Hua and Lindsay Hua and Lindsay (2020) in a more complete treatment (not using RTA). Reference Hua et al., 2019 gives additional parts of the non-Fourier term that arise from boundary conditions, but solved only in RTA. Boundary terms do not appear here; the present derivation, like ref. Hua and Lindsay, 2020, assumes an infinite homogeneous sample.

In a d.c. situation (ω=0\omega=0), the insertion term P^(r)\hat{P}(\vec{r}) should have a zero spatial average: P(k=0,ω=0)=0P(\vec{k}=0,\omega=0)=0. Otherwise, the sample experiences net heating or cooling. The spatially homogeneous (k=0\vec{k}=0) part of the “non-Fourier” current is zero. Also, when k=0\vec{k}=0 and ω=0\omega=0, W^(0,0)=Ω^1\hat{W}(0,0)=\hat{\Omega}^{-1} and the bulk static thermal conductivity is recovered,

κ(k=0,ω=0)=C0|v^Ω^1v^|0.\kappa(\vec{k}=0,\omega=0)=C\ \langle 0|\hat{\vec{v}}\ \hat{\Omega}^{-1}\ \hat{\vec{v}}|0\rangle. (33)

VI Thermal distributor

The local temperature distribution T(r,t)T(\vec{r},t) can be found from energy conservation (Eq. 21),

ΔT(k,ω)=1iωC[ik(JF(k,ω)+JnonF(k,ω))P¯(k,ω)].\Delta T(\vec{k},\omega)=\frac{1}{i\omega C}\left[i\vec{k}\cdot\left(\vec{J}_{\rm F}(\vec{k},\omega)+\vec{J}_{\rm non-F}(\vec{k},\omega)\right)-\bar{P}(\vec{k},\omega)\right]. (34)

If PQ(k,ω)P_{Q}(\vec{k},\omega) is independent of QQ (i.e. P^=P¯\hat{P}=\bar{P}), the non-Fourier current is zero, and the local temperature variation is given by a simple nonlocal response function, the “thermal distributor” Θ(k,ω)\Theta(\vec{k},\omega),

ΔT(k,ω)=Θ(k,ω)P¯(k,ω)\Delta T(\vec{k},\omega)=\Theta(\vec{k},\omega)\bar{P}(\vec{k},\omega) (35)

where

Θ(k,ω)=1kκ(k,ω)kiωC\Theta(\vec{k},\omega)=\frac{1}{\vec{k}\cdot\kappa(\vec{k},\omega)\cdot\vec{k}-i\omega C} (36)

This is Eq. 38 of ref. Hua and Lindsay, 2020. The function Θ\Theta was defined in ref. Allen and Perebeinos, 2018. The name “thermal distributor,” has been changed from the previous name “thermal susceptibility,” and a factor of C has been removed from the definition. When P^P¯\hat{P}\neq\bar{P}, there is another term,

ΔT(k,ω)=Θ(k,ω)P¯(k,ω)ikJnonF(k,ω)kκ(k,ω)kiωC\Delta T(\vec{k},\omega)=\Theta(\vec{k},\omega)\bar{P}(\vec{k},\omega)-\frac{i\vec{k}\cdot\vec{J}_{\rm non-F}(\vec{k},\omega)}{\vec{k}\cdot\kappa(\vec{k},\omega)\cdot\vec{k}-i\omega C} (37)

Griffin Griffin (1965) makes an interesting argument that may be related to thermal distributors. Guyer and Krumhansl Guyer and Krumhansl (1966) noticed that Griffin’s argument is related to the mean-field method relating non-interacting to interacting electrical susceptibility.

VII appendix: terminology

Various names are given to the operator vQr-\vec{v}_{Q}\cdot\vec{\nabla}_{\vec{r}}: (a) “drift operator”, (b) “advection operator”, (c) “convection operator”, or (d) “diffusion operator”. Sometimes the combination /t+vQr\partial/\partial t+\vec{v}_{Q}\cdot\vec{\nabla}_{\vec{r}} is called the “drifting operator” . The process these words are describing is that the occupancy NQ(r,t+Δt)N_{Q}(\vec{r},t+\Delta t), in a completely ballistic system, is the same as NQ(rvQΔt,t)N_{Q}(\vec{r}-\vec{v}_{Q}\Delta t,t), so that

(dNQdt)drift\displaystyle\left(\frac{dN_{Q}}{dt}\right)_{\rm drift} =\displaystyle= limΔt0[NQ(r,t+Δt)NQ(r,t)Δt]ballistic\displaystyle\lim_{\Delta t\rightarrow 0}\left[\frac{N_{Q}(\vec{r},t+\Delta t)-N_{Q}(\vec{r},t)}{\Delta t}\right]_{\rm ballistic}
=\displaystyle= vQrNQ.\displaystyle-\vec{v}_{Q}\cdot\vec{\nabla}_{\vec{r}}N_{Q}.

The term I use, “drift operator”, makes sense; “diffusion operator” does not.

References

  • Hua et al. (2019) Chengyun Hua, L. Lindsay, Xiangwen Chen,  and A. J. Minnich, “Generalized Fourier’s law for nondiffusive thermal transport: Theory and experiment,” Phys. Rev. B 100, 085203 (2019).
  • Hua and Lindsay (2020) Chengyun Hua and Lucas Lindsay, “Space-time dependent thermal conductivity in nonlocal thermal transport,” Phys. Rev. B 102, 104310 (2020).
  • Peierls (1929) R. E. Peierls, “Zur kinetischen Theorie der Wärmeleitung in Kristallen,” Ann. Phys. 395, 1055–1101 (1929).
  • Ziman (1960) J. M. Ziman, Electrons and Phonons (Oxford, London, 1960).
  • Simons (1960) S. Simons, “The Boltzmann equation for a bounded medium I. General theory,” Phil. Trans. Roy. Soc. London, Series A, Math. Phys. Sci. 253, 137–184 (1960).
  • Krumhansl (1965) J A Krumhansl, “Thermal conductivity of insulating crystals in the presence of normal processes,” Proc. Phys. Soc. London 85, 921 (1965).
  • Guyer and Krumhansl (1966) R. A. Guyer and J. A. Krumhansl, “Solution of the linearized phonon Boltzmann equation,” Phys. Rev. 148, 766–778 (1966).
  • Maris (1969) H. J. Maris, “Phonon viscosity,” Phys. Rev. 188, 1303–1307 (1969).
  • Cepellotti and Marzari (2016) A. Cepellotti and N. Marzari, “Thermal transport in crystals as a kinetic theory of relaxons,” Phys. Rev. X 6, 041013 (2016).
  • Cepellotti and Marzari (2017) A. Cepellotti and N. Marzari, “Boltzmann transport in nanostructures as a friction effect,” Nano Letters 17, 4675–4682 (2017).
  • Mahan and Claro (1988) G. D. Mahan and F. Claro, “Nonlocal theory of thermal conductivity,” Phys. Rev. B 38, 1963–1969 (1988).
  • Allen and Perebeinos (2018) P. B. Allen and V. Perebeinos, “Temperature in a Peierls-Boltzmann treatment of nonlocal phonon heat transport,” Phys. Rev. B 98, 085427 (2018).
  • Griffin (1965) A. Griffin, “On the detection of second sound in crystals by light scattering,” Physics Letters 17, 208–210 (1965).