This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Phenomenology of Trimaximal mixing with one texture equality

S. Dev ,1, Desh Raj ,2 [email protected]@gmail.com
(1Department of Physics, School of Sciences, HNBG Central University, Srinagar, Uttarakhand 246174, INDIA.
2Department of Physics, Himachal Pradesh University, Shimla 171005, INDIA.
)
Abstract

We study neutrino mass matrices with one texture equality and the neutrino mixing matrix having either its first (TM1) or second (TM2) column identical to that of the tribimaximal mixing matrix. We found that out of total fifteen possible neutrino mass matrices with one texture equality, only six textures are compatible with TM1TM_{1} mixing and six textures are compatible with TM2TM_{2} mixing in the light of the current neutrino oscillation data. These textures have interesting implications for the presently unknown parameters such as the neutrino mass scale, effective Majorana neutrino mass, effective neutrino mass, the atmospheric mixing and the Dirac- and Majorana-type CP violating phases. We, also, present the S3S_{3} group motivation for some of these textures.

1 Introduction

In the last two decades, significant advances have been made by various neutrino oscillation experiments in determining the neutrino masses and mixings. Various neutrino parameters like three mixing (solar, atmospheric and reactor) angles and the two mass squared differences (Δm212\Delta m^{2}_{21} and |Δm312||\Delta m^{2}_{31}|) have been measured by various neutrino oscillation experiments with fairly good precision. In addition, the recent neutrino oscillation data hint towards a nonmaximal atmospheric mixing angle (θ23\theta_{23}) [1] and Dirac-type CP-violating phase (δ\delta) near 270270^{\circ} [2]. However, many other attributes like leptonic CP-violation, neutrino mass ordering (normal mass ordering (NO) or inverted mass ordering (IO)), nature of neutrinos (Dirac or Majorana) and absolute neutrino mass scale are still unknown. Furthermore, the origin of lepton flavor structure still remains an open issue. The neutrino mass matrix which encodes the neutrino properties contains several unknown physical parameters. The phenomenological approaches based on Abelian or non-Abelian flavor symmetries can play a significant role in determining the specific texture structure of the neutrino mass matrix with reduced number of independent parameters. Several predictive models such as texture zeros [3], vanishing cofactors [4], equalities among elements/cofactors [5] and hybrid textures [6] amongst others can explain the presently available neutrino oscillation data. Since, the presence of texture equalities, just like texture zeros or vanishing cofactors, reduces the number of free parameters in the neutrino mass matrix and, hence, must have a similar predictability as that of texture zeros or vanishing cofactors. In the flavor basis, neutrino mass matrices with one texture equality and two texture equalities have been studied in the literature [5]. The hybrid textures which combine a texture equality with a texture zero or a vanishing cofactor have been studied in the literature [6].
In addition, discrete non-Abelian symmetries leading to the Tri-Bi-Maximal (TBM) [7] neutrino mixing pattern have been widely studied in the literature. The TBM mixing matrix given by

UTBM=(23130161312161312)U_{TBM}=\left(\begin{array}[]{ccc}\sqrt{\frac{2}{3}}&\frac{1}{\sqrt{3}}&0\\ -\frac{1}{\sqrt{6}}&\frac{1}{\sqrt{3}}&-\frac{1}{\sqrt{2}}\\ -\frac{1}{\sqrt{6}}&\frac{1}{\sqrt{3}}&\frac{1}{\sqrt{2}}\\ \end{array}\right) (1)

predicts a vanishing reactor mixing angle (θ13=0)(\theta_{13}\!=\!0), maximal atmospheric mixing angle (θ23=π/4)(\theta_{23}\!=\!\pi/4) and the solar mixing angle is predicted to be (θ12)(\theta_{12}) is sin1(1/3)\sin^{-1}(1/\sqrt{3}). However, the nonzero value of θ13\theta_{13} confirmed by various neutrino oscillation experiments underlines the need for necessary modifications to the TBM mixing pattern to make it compatible with the present experimental data [8]. One of the simplest possibilities is to keep one of the columns of the TBM mixing matrix unchanged while modifying its remaining two columns to within the unitarity constraints. This gives rise to three mixing patterns viz. TM1TM_{1}, TM2TM_{2} and TM3TM_{3} which have their first, second and third columns identical to the TBM mixing matrix, respectively. The TM3TM_{3} mixing scheme predicts θ13=0\theta_{13}=0 and is, hence, phenomenologically unviable. The TM1TM_{1} and TM2TM_{2} mixing schemes have been, successfully, employed to explain the pattern of lepton mixing and have been, extensively, studied in the literature [9, 10, 11]. The TM1TM_{1} mixing, in particular, gives a very good fit to the present neutrino oscillation data. Recently, neutrino mass matrices with texture zero(s) in combination with TM1TM_{1} and TM2TM_{2} mixing have been studied [12].
In the present work, we study a class of neutrino mass matrices having one texture equality with TM1TM_{1} or TM2TM_{2} of the TBM in the neutrino mixing matrix. Neutrino mass matrices having one texture equality along with TM1TM_{1} or TM2TM_{2} of the TBM have a total of six free parameters and, hence, lead to very predictive textures for the neutrino mass matrices.

Table 1: Fifteen possible texture structures with one equality between two nonzero elements.
Textures Constraints on elements
Mν1M_{\nu 1} MeeM_{ee}=MeμM_{e\mu}
Mν2M_{\nu 2} MeeM_{ee}=MeτM_{e\tau}
Mν3M_{\nu 3} MeμM_{e\mu}=MμμM_{\mu\mu}
Mν4M_{\nu 4} MμμM_{\mu\mu}=MμτM_{\mu\tau}
Mν5M_{\nu 5} MeτM_{e\tau}=MττM_{\tau\tau}
Mν6M_{\nu 6} MμτM_{\mu\tau}=MττM_{\tau\tau}
Mν7M_{\nu 7} MeeM_{ee}=MμτM_{\mu\tau}
Mν8M_{\nu 8} MeτM_{e\tau}=MμμM_{\mu\mu}
Mν9M_{\nu 9} MeμM_{e\mu}=MττM_{\tau\tau}
Mν10M_{\nu 10} MeeM_{ee}=MμμM_{\mu\mu}
Mν11M_{\nu 11} MeeM_{ee}=MττM_{\tau\tau}
Mν12M_{\nu 12} MμμM_{\mu\mu}=MττM_{\tau\tau}
Mν13M_{\nu 13} MeμM_{e\mu}=MeτM_{e\tau}
Mν14M_{\nu 14} MeμM_{e\mu}=MμτM_{\mu\tau}
Mν15M_{\nu 15} MeτM_{e\tau}=MμτM_{\mu\tau}

There are a total of fifteen possible structures with one texture equality in the neutrino mass matrix and listed in Table 1. There exists a μ\mu-τ\tau permutation symmetry between different structures of neutrino mass matrices and the corresponding permutation matrix has the following form:

P23=(100001010).P_{23}=\left(\begin{array}[]{ccc}1&0&0\\ 0&0&1\\ 0&1&0\\ \end{array}\right). (2)

Neutrino mass matrices with one texture equality, therefore, are related to each other as

Mν=P23MνP23TM^{{}^{\prime}}_{\nu}=P_{23}M_{\nu}P^{T}_{23} (3)

leading to the following relations between the neutrino oscillation parameters:

θ12=θ12,θ13=θ13,θ23=π2θ23,δ=πδ.\theta^{{}^{\prime}}_{12}=\theta_{12},~{}~{}\theta^{{}^{\prime}}_{13}=\theta_{13},~{}~{}\theta^{{}^{\prime}}_{23}=\frac{\pi}{2}-\theta_{23},~{}~{}\delta^{{}^{\prime}}=\pi-\delta. (4)

Neutrino mass matrices with one texture equality related by μ\mu-τ\tau permutation operation are

Mν1Mν2,Mν3Mν5,Mν4Mν6,\displaystyle M_{\nu 1}\leftrightarrow M_{\nu 2},~{}M_{\nu 3}\leftrightarrow M_{\nu 5},~{}M_{\nu 4}\leftrightarrow M_{\nu 6},
Mν7Mν7,Mν8Mν9,Mν10Mν11,\displaystyle M_{\nu 7}\leftrightarrow M_{\nu 7},~{}M_{\nu 8}\leftrightarrow M_{\nu 9},~{}M_{\nu 10}\leftrightarrow M_{\nu 11}, (5)
Mν12Mν12,Mν13Mν13,Mν14Mν15.\displaystyle M_{\nu 12}\leftrightarrow M_{\nu 12},~{}M_{\nu 13}\leftrightarrow M_{\nu 13},~{}M_{\nu 14}\leftrightarrow M_{\nu 15}.

In the flavor basis, where the charged lepton mass matrix MlM_{l} is diagonal, the complex symmetric Majorana neutrino mass matrix MνM_{\nu} can be diagonalized by a unitary matrix VV^{\prime}:

Mν=VMνdiagVTM_{\nu}=V^{\prime}M_{\nu}^{diag}V^{\prime T} (6)

where Mνdiag=diag(m1,m2,m3)M_{\nu}^{diag}=diag(m_{1},m_{2},m_{3}). The unitary matrix VV^{\prime} can be parametrized as

V=PlVwithV=UPνV^{\prime}=P_{l}V~{}~{}\textrm{with}~{}~{}V=UP_{\nu} (7)

where

U=(c12c13c13s12eiδs13c23s12eiδc12s13s23c12c23eiδs12s13s23c13s23s12s23eiδc12c23s13eiδc23s12s13c12s23c13c23),U=\left(\begin{array}[]{ccc}c_{12}c_{13}&c_{13}s_{12}&e^{-i\delta}s_{13}\\ -c_{23}s_{12}-e^{i\delta}c_{12}s_{13}s_{23}&c_{12}c_{23}-e^{i\delta}s_{12}s_{13}s_{23}&c_{13}s_{23}\\ s_{12}s_{23}-e^{i\delta}c_{12}c_{23}s_{13}&-e^{i\delta}c_{23}s_{12}s_{13}-c_{12}s_{23}&c_{13}c_{23}\end{array}\right),\\ (8)
Pν=(1000eiα000eiβ),andPl=(eiϕe000eiϕμ000eiϕτ),P_{\nu}=\left(\begin{array}[]{ccc}1&0&0\\ 0&e^{i\alpha}&0\\ 0&0&e^{i\beta}\end{array}\right),~{}~{}\textrm{and}~{}~{}P_{l}=\left(\begin{array}[]{ccc}e^{i\phi_{e}}&0&0\\ 0&e^{i\phi_{\mu}}&0\\ 0&0&e^{i\phi_{\tau}}\end{array}\right), (9)

with cij=cosθijc_{ij}=\cos\theta_{ij}, sij=sinθijs_{ij}=\sin\theta_{ij}. PνP_{\nu} is the diagonal phase matrix containing the two Majorana-type CP-violating phases α\alpha and β\beta. δ\delta is the Dirac-type CP-violating phase. The phase matrix PlP_{l} is physically unobservable. The matrix VV is called the neutrino mixing matrix or the Pontecorvo-Maki-Nakagawa-Sakata (PMNS) [13] matrix. The effective Majorana neutrino mass matrix can be written as

Mν=PlUPνMνdiagPνTUTPlT.M_{\nu}=P_{l}UP_{\nu}M_{\nu}^{diag}P_{\nu}^{T}U^{T}P_{l}^{T}. (10)

The Dirac-type CP-violation in neutrino oscillation experiments can be described in terms of the Jarlskog rephasing invariant quantity JCPJ_{CP} [14] with

JCP=Im{U11U22U12U21}=sinθ12sinθ23sinθ13cosθ12cosθ23cos2θ13sinδ.J_{CP}=\textrm{Im}\{U_{11}U_{22}U^{*}_{12}U^{*}_{21}\}=\sin\theta_{12}\sin\theta_{23}\sin\theta_{13}\cos\theta_{12}\cos\theta_{23}\cos^{2}\theta_{13}\sin\delta. (11)

The effective Majorana neutrino mass |Mee||M_{ee}|, which determines the rate of neutrinoless double beta decay, is given by

|Mee|=|m1Ue12+m2Ue22+m3Ue32|.|M_{ee}|=|m_{1}U^{2}_{e1}+m_{2}U^{2}_{e2}+m_{3}U^{2}_{e3}|. (12)

There are many experiments such as CUORICINO [15], CUORE [16], MAJORANA [17], SuperNEMO [18], EXO [19] which aim to achieve a sensitivity upto 0.010.01 eV for |Mee||M_{ee}|. KamLAND-Zen experiment [20] provide the upper limits on the effective Majorana neutrino mass which is given by

|Mee|<(0.36-0.156)eV|M_{ee}|<(0.36\textrm{-}0.156)~{}\textrm{eV} (13)

at 90%\% confidence level (C.L.).
The measurement of the absolute neutrino mass scale via the decay kinematics is usually described by the effective neutrino mass [21]

mβm12|Ue1|2+m22|Ue2|2+m32|Ue3|2m_{\beta}\equiv\sqrt{m_{1}^{2}|U_{e1}|^{2}+m_{2}^{2}|U_{e2}|^{2}+m_{3}^{2}|U_{e3}|^{2}} (14)

Recently, the KATRIN [22] experiment has reported the upper limit of mβ<0.8m_{\beta}<0.8 eV at 90%\% C.L.
Further, cosmological observations provide more stringent constraints on absolute neutrino mass scale by putting an upper bound on the sum of neutrino masses:

=i=13mi.\displaystyle\sum=\sum\limits_{i=1}^{3}m_{i}. (15)

Recent Planck data [23] in combination with baryon acoustic oscillation (BAO) measurements provide a tight bound on the sum of neutrino masses mi0.12\sum m_{i}\leq 0.12 eV at 95%\% C.L.

Table 2: Current Neutrino oscillation parameters from global fits [24] with Δm3l2Δm312>0\Delta m^{2}_{3l}\equiv\Delta m^{2}_{31}>0 for NO and Δm3l2Δm322=Δm232<0\Delta m^{2}_{3l}\equiv\Delta m^{2}_{32}=-\Delta m^{2}_{23}<0 for IO.
Neutrino Parameter Normal Ordering (best fit) Inverted Ordering (Δχ2=2.6\Delta\chi^{2}=2.6)
bfp ±1σ\pm 1\sigma           3σ3\sigma range bfp ±1σ\pm 1\sigma           3σ3\sigma range
θ12\theta_{12}^{\circ} 33.440.74+0.7733.44^{+0.77}_{-0.74}        31.2735.8631.27\rightarrow 35.86 33.450.74+0.7733.45^{+0.77}_{-0.74}         31.2735.8731.27\rightarrow 35.87
θ23\theta_{23}^{\circ} 49.21.3+1.049.2^{+1.0}_{-1.3}            39.552.039.5\rightarrow 52.0 49.51.2+1.049.5^{+1.0}_{-1.2}           39.852.139.8\rightarrow 52.1
θ13\theta_{13}^{\circ} 8.570.12+0.138.57^{+0.13}_{-0.12}           8.208.978.20\rightarrow 8.97 8.600.12+0.128.60^{+0.12}_{-0.12}          8.248.988.24\rightarrow 8.98
δCP\delta_{CP}^{\circ} 19425+52194^{+52}_{-25}              105405105\rightarrow 405 28732+27287^{+27}_{-32}             192361192\rightarrow 361
Δm212/105eV2\Delta m^{2}_{21}/10^{-5}eV^{2} 7.420.20+0.217.42^{+0.21}_{-0.20}           6.828.046.82\rightarrow 8.04 7.420.20+0.217.42^{+0.21}_{-0.20}          6.828.046.82\rightarrow 8.04
Δm3l2/103eV2\Delta m^{2}_{3l}/10^{-3}eV^{2} +2.5150.028+0.028+2.515^{+0.028}_{-0.028}   +2.431+2.599+2.431\rightarrow+2.599 2.4980.029+0.028-2.498^{+0.028}_{-0.029}  2.5842.413-2.584\rightarrow-2.413

2 TM2TM_{2} mixing and one texture equality

A neutrino mass matrix with TM2TM_{2} mixing can be written as

MTM2=PlUTM2PνMνdiagPνTUTM2TPlTM_{TM_{2}}=P_{l}U_{TM_{2}}P_{\nu}M_{\nu}^{diag}P_{\nu}^{T}U_{TM_{2}}^{T}P_{l}^{T} (16)

where the mixing matrix TM2TM_{2}, also known as trimaximal mixing, can be parametrized [11] as

UTM2=(23cosθ1323sinθeiϕsinθ2cosθ613eiϕcosθ2sinθ6cosθ6eiϕsinθ213eiϕcosθ2sinθ6).U_{TM_{2}}=\left(\begin{array}[]{ccc}\sqrt{\frac{2}{3}}\cos\theta&\frac{1}{\sqrt{3}}&\sqrt{\frac{2}{3}}\sin\theta\\ \frac{e^{i\phi}\sin\theta}{\sqrt{2}}-\frac{\cos\theta}{\sqrt{6}}&\frac{1}{\sqrt{3}}&-\frac{e^{i\phi}\cos\theta}{\sqrt{2}}-\frac{\sin\theta}{\sqrt{6}}\\ -\frac{\cos\theta}{\sqrt{6}}-\frac{e^{i\phi}\sin\theta}{\sqrt{2}}&\frac{1}{\sqrt{3}}&\frac{e^{i\phi}\cos\theta}{\sqrt{2}}-\frac{\sin\theta}{\sqrt{6}}\\ \end{array}\right). (17)

The mass matrix MTM2M_{TM_{2}} is invariant under the transformation G2TMTM2G2=MTM2G_{2}^{T}M_{TM_{2}}G_{2}=M_{TM_{2}} with G2=UTM2diag(1,1,1)UTM2G_{2}=U_{TM_{2}}diag(-1,1,-1)U^{\dagger}_{TM_{2}}, as the generator of Z2Z_{2} symmetry [25]. Invariance of MTM2M_{TM_{2}} under G2G_{2} when combined with one texture equality leads to the equality of three unphysical phases in MTM2M_{TM_{2}} i.e., ϕe=ϕμ=ϕτϕl\phi_{e}=\phi_{\mu}=\phi_{\tau}\equiv\phi_{l}.
The most general neutrino mass matrix with TM2TM_{2} as the mixing matrix can be parametrized as

MTM2=(u+2x3vx3wx3vx3w+2x3ux3wx3ux3v+2x3)(abcbc+dadcadb+d).\displaystyle M_{TM_{2}}=\left(\begin{array}[]{ccc}u+\frac{2x}{3}&v-\frac{x}{3}&w-\frac{x}{3}\\ v-\frac{x}{3}&w+\frac{2x}{3}&u-\frac{x}{3}\\ w-\frac{x}{3}&u-\frac{x}{3}&v+\frac{2x}{3}\\ \end{array}\right)\approx\left(\begin{array}[]{ccc}a&b&c\\ b&c+d&a-d\\ c&a-d&b+d\\ \end{array}\right). (24)

The neutrino mass matrix MTM2M_{TM_{2}} can be realized within the framework of an A4A_{4} model where the A4A_{4} flavor symmetry is spontaneously broken by two real A4A_{4} triplets ϕ,ϕ\phi,\phi^{\prime}, and three real A4A_{4} singlets, ξ,ξ,ξ′′\xi,\xi^{\prime},\xi^{\prime\prime} which are SU(2)LSU(2)_{L} gauge singlets [26]. Upon symmetry breaking, the VEVs of the flavon singlets and triplets take the alignments

ξ=ua,ξ=uc,ξ=ub,ϕ=(v,v,v),ϕ=(v,0,0).\displaystyle\langle\xi\rangle=u_{a},\langle\xi^{\prime}\rangle=u_{c},\langle\xi^{\prime^{\prime}}\rangle=u_{b},\langle\phi\rangle=(v,v,v),\langle\phi^{\prime}\rangle=(v^{\prime},0,0). (25)

The neutrino mass matrix, in the flavor basis, is given by

(u+2x3vx3wx3vx3w+2x3ux3wx3ux3v+2x3)\displaystyle\left(\begin{array}[]{ccc}u+\frac{2x}{3}&v-\frac{x}{3}&w-\frac{x}{3}\\ v-\frac{x}{3}&w+\frac{2x}{3}&u-\frac{x}{3}\\ w-\frac{x}{3}&u-\frac{x}{3}&v+\frac{2x}{3}\\ \end{array}\right) (29)

The above mass matrix leads to the TM2TM_{2} neutrino mixing matrix. For v=wv=w, the above mass matrix leads to the TBM neutrino mixing matrix. The equality among the elements of mass matrix in Eq. (18) does not arise naturally and, hence, we assume additional constraints on the elements of mass matrix e.g. u=vxu=v-x which leads to one equality between the (1,1) and (1,2)-elements of MTM2M_{TM_{2}} in Eq.(18). Therefore, all possible textures of neutrino mass matrices with TM2TM_{2} mixing and one texture equality are given by

MTM21\displaystyle M_{TM_{2}}^{1} =\displaystyle= (aabab+dadbada+d),MTM22=(ababa+dadaadb+d),\displaystyle\left(\begin{array}[]{ccc}a&a&b\\ a&b+d&a-d\\ b&a-d&a+d\\ \end{array}\right),~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}M_{TM_{2}}^{2}=\left(\begin{array}[]{ccc}a&b&a\\ b&a+d&a-d\\ a&a-d&b+d\\ \end{array}\right), (36)
MTM23\displaystyle M_{TM_{2}}^{3} =\displaystyle= (b+daadaabadba+d),MTM25=(b+dadaada+dbaba),\displaystyle\left(\begin{array}[]{ccc}b+d&a&a-d\\ a&a&b\\ a-d&b&a+d\\ \end{array}\right),~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}M_{TM_{2}}^{5}=\left(\begin{array}[]{ccc}b+d&a-d&a\\ a-d&a+d&b\\ a&b&a\\ \end{array}\right), (43)
MTM24\displaystyle M_{TM_{2}}^{4} =\displaystyle= (a+dbadbaaadab+d),MTM26=(a+dadbadb+dabaa),\displaystyle\left(\begin{array}[]{ccc}a+d&b&a-d\\ b&a&a\\ a-d&a&b+d\\ \end{array}\right),~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}M_{TM_{2}}^{6}=\left(\begin{array}[]{ccc}a+d&a-d&b\\ a-d&b+d&a\\ b&a&a\\ \end{array}\right), (50)
MTM27\displaystyle M_{TM_{2}}^{7} =\displaystyle= MTM28=MTM29=(abdbdadab),\displaystyle M_{TM_{2}}^{8}=M_{TM_{2}}^{9}=\left(\begin{array}[]{ccc}a&b&d\\ b&d&a\\ d&a&b\\ \end{array}\right), (54)
MTM210\displaystyle M_{TM_{2}}^{10} =\displaystyle= MTM215=(abbdbabdbdbda+d),MTM211=MTM214=(abb+dba+dbb+dba),\displaystyle M_{TM_{2}}^{15}=\left(\begin{array}[]{ccc}a&b&b-d\\ b&a&b-d\\ b-d&b-d&a+d\\ \end{array}\right),~{}~{}~{}~{}M_{TM_{2}}^{11}=M_{TM_{2}}^{14}=\left(\begin{array}[]{ccc}a&b&b+d\\ b&a+d&b\\ b+d&b&a\\ \end{array}\right), (61)
MTM212\displaystyle M_{TM_{2}}^{12} =\displaystyle= MTM213=(abbbb+dadbadb+d)\displaystyle M_{TM_{2}}^{13}=\left(\begin{array}[]{ccc}a&b&b\\ b&b+d&a-d\\ b&a-d&b+d\\ \end{array}\right) (65)

where the neutrino mass matrices in each equation are related by μ\mu-τ\tau symmetry. The neutrino mixing angles can be calculated by using the following relations:

sin2θ13=|U13|2,sin2θ12=|U12|21|U13|2,andsin2θ23=|U23|21|U13|2.\sin^{2}\theta_{13}=|U_{13}|^{2},~{}~{}~{}\sin^{2}\theta_{12}=\frac{|U_{12}|^{2}}{1-|U_{13}|^{2}},~{}~{}\textrm{and}~{}~{}\sin^{2}\theta_{23}=\frac{|U_{23}|^{2}}{1-|U_{13}|^{2}}. (66)

Substituting the elements of UU form Eq.(17) into Eq.(27), we get

sin2θ13=23sin2θ,sin2θ12=132sin2θ,\displaystyle\sin^{2}\theta_{13}=\frac{2}{3}\sin^{2}\theta,~{}~{}~{}\sin^{2}\theta_{12}=\frac{1}{3-2\sin^{2}\theta}, (67)
andsin2θ23=12(1+3sin2θcosϕ32sin2θ).\displaystyle\textrm{and}~{}~{}\sin^{2}\theta_{23}=\frac{1}{2}\left(1+\frac{\sqrt{3}\sin 2\theta\cos\phi}{3-2\sin^{2}\theta}\right).

Using Eqs.(11) and (17), the Jarlskog rephasing invariant is given by

JCP=163sin2θsinϕ,J_{CP}=\frac{1}{6\sqrt{3}}\sin 2\theta\sin\phi, (68)

and the Dirac-type CP-violating phase can be calculated by using the equation [12]

tanδ=cos2θ+22cos2θ+1tanϕ.\tan\delta=\frac{\cos 2\theta+2}{2\cos 2\theta+1}\tan\phi. (69)

From Eqs.(12) and (17), the effective Majorana mass for TM2TM_{2} mixing is given by

|Mee|=13|2m1cos2θ+m2e2iα+2m3sin2θe2iβ|,|M_{ee}|=\frac{1}{3}|2m_{1}\cos^{2}\theta+m_{2}e^{2i\alpha}+2m_{3}\sin^{2}\theta e^{2i\beta}|, (70)

and the effective neutrino mass for TM2TM_{2} mixing can be calculated by using Eqs.(13) and (17) as

mβ13(2m12cos2θ+m22+2m32sin2θ)m_{\beta}\equiv\sqrt{\frac{1}{3}(2m_{1}^{2}\cos^{2}\theta+m_{2}^{2}+2m_{3}^{2}\sin^{2}\theta)} (71)

The existence of one equality between the elements (a,b) and (c,d) of the neutrino mass matrix MTM2M_{TM_{2}} implies

MTM2(ab)MTM2(cd)=0M_{TM_{2}(ab)}-M_{TM_{2}(cd)}=0 (72)

which yields the complex equation

(QVaiVbiVciVdi)mi=0\sum(QV_{ai}V_{bi}-V_{ci}V_{di})~{}m_{i}=0 (73)

where Q=ei(ϕa+ϕb(ϕc+ϕd))Q=e^{i(\phi_{a}+\phi_{b}-(\phi_{c}+\phi_{d}))} and VV is PMNS matrix given in Eq. (7). The above equation can be rewritten as

m1A1+m2A2e2iα+m3A3e2iβ=0m_{1}A_{1}+m_{2}A_{2}e^{2i\alpha}+m_{3}A_{3}e^{2i\beta}=0 (74)

where

Ai=(QUaiUbiUciUdi)A_{i}=(QU_{ai}U_{bi}-U_{ci}U_{di}) (75)

with (i=1,2,3)(i=1,2,3) and a,b,c,da,b,c,d can take values e,μe,\mu and τ\tau. Since the TM2TM_{2} mixing has equal elements in the second column it leads to A2(QUa2Ub2Uc2Ud2)=0A_{2}\equiv(QU_{a2}U_{b2}-U_{c2}U_{d2})=0. Therefore, using Eq. (17) in Eq. (35), we have

m1A1+m3A3e2iβ=0.m_{1}A_{1}+m_{3}A_{3}e^{2i\beta}=0. (76)

Simultaneous solution of the real and imaginary parts of Eq. (37) leads to

ξ\displaystyle\xi \displaystyle\equiv m3m1=Re(A1)Im(A3)sin2βRe(A3)cos2β=|A1||A3|,\displaystyle\frac{m_{3}}{m_{1}}=\frac{Re(A_{1})}{Im(A_{3})\sin 2\beta-Re(A_{3})\cos 2\beta}=\frac{|A_{1}|}{|A_{3}|}, (77)
β\displaystyle\beta =\displaystyle= 12tan1Re(A3)Im(A1)Re(A1)Im(A3)Re(A1)Re(A3)+Im(A1)Im(A3).\displaystyle\frac{1}{2}\tan^{-1}\frac{Re(A_{3})Im(A_{1})-Re(A_{1})Im(A_{3})}{Re(A_{1})Re(A_{3})+Im(A_{1})Im(A_{3})}. (78)

Using experimentally available mass squared differences Δm212\Delta m^{2}_{21} and Δm312(Δm232)\Delta m^{2}_{31}~{}(\Delta m^{2}_{23}) for NO (IO) with Eq. (38), the three neutrino mass eigenvalues are given by

m1=Δm312ξ21,m2=Δm212+m12,m3=ξm1for NO,\displaystyle m_{1}=\sqrt{\frac{\Delta m^{2}_{31}}{\xi^{2}-1}},~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}m_{2}=\sqrt{\Delta m^{2}_{21}+m^{2}_{1}},~{}m_{3}=\xi m_{1}~{}~{}~{}~{}~{}~{}~{}\textrm{for NO}, (79)
and m1=Δm232Δm2121ξ2,m2=Δm212+m12,m3=ξm1for IO\displaystyle m_{1}=\sqrt{\frac{\Delta m^{2}_{23}-\Delta m^{2}_{21}}{1-\xi^{2}}},~{}m_{2}=\sqrt{\Delta m^{2}_{21}+m^{2}_{1}},~{}m_{3}=\xi m_{1}~{}~{}~{}~{}~{}~{}~{}\textrm{for IO} (80)

where Δmij2=mi2mj2\Delta m_{ij}^{2}=m^{2}_{i}-m^{2}_{j}, m1<m2<m3m_{1}<m_{2}<m_{3} for NO and m3<m1<m2m_{3}<m_{1}<m_{2} for IO.
For the numerical analysis, we generate 107\sim 10^{7}-10910^{9} points. The mass squared differences Δm212\Delta m^{2}_{21} and Δm312(Δm232)\Delta m^{2}_{31}(\Delta m^{2}_{23}) for NO (IO) are varied randomly within their 3σ\sigma experimental ranges given in Table 2. Parameters θ,ϕ\theta,\phi, and α\alpha are, also, varied randomly within their full ranges (0-9090^{\circ}), (0-360360^{\circ}) and (0-360360^{\circ}), respectively. Eqs. (39), (40) and (41) are used to calculate the Majorana-type CP-violating phase β\beta and three mass eigenvalues (m1,m2m_{1},m_{2} and m3m_{3}) for both mass orderings. In addition, the mixing angles θ12,θ13\theta_{12},\theta_{13} and θ23\theta_{23} are calculated by using Eq. (28) and must satisfy the experimental data given in Table 2. The Jarlskog invariant (JCPJ_{CP}), Dirac-type CP-violating phase (δ\delta), effective Majorana mass (|Mee||M_{ee}|), effective neutrino mass (mβm_{\beta}) and the sum of neutrino masses (\sum) are calculated by using Eqs. (29), (30), (31), (32) and (15), respectively.

The numerical predictions for various neutrino parameters are given in Table 3 and Table 4. Table 3 provided numerical predictions for viable textures under the constrains from neutrino oscillation data, whereas, Table 4 provided numerical predictions for viable textures under the constrains from cosmological and neutrinoless double beta decay bounds along with neutrino oscillation data. The allowed range of parameter α\alpha is (0-360360^{\circ}) for all viable textures. JCPJ_{CP} lies in the range (-0.037-0.037) for all viable textures except MTM23(MTM25)M_{TM_{2}}^{3}(M_{TM_{2}}^{5}) with NO(IO) and for these textures the range of JCPJ_{CP} is ±(0.011\pm(0.011-0.037)0.037). The parameter θ\theta is constrained to lie within the ranges (10.010.0^{\circ}-11.111.1^{\circ}) for all viable textures. The solar mixing angle (θ12\theta_{12}) is constrained to lie in the ranges (35.6835.68^{\circ}-35.7735.77^{\circ}) for all allowed textures. Figures 1 and 2 show correlations among various neutrino oscillation parameters. The Dirac CP-violating phase δ\delta and phase ϕ\phi are linearly correlated as shown in Fig. 2(e). Figure 1(h) depicts the correlation between θ12\theta_{12} and θ13\theta_{13}. The Dirac-type CP-violating phase δ\delta strongly depends on the Majorana-type CP-violating phase β\beta as shown in Fig. 1(a).

Table 3: Numerical predictions for viable textures having one equality in MνM_{\nu} with TM2TM_{2} mixing at 3σ3\sigma C.L. (only neutrino oscillation data are incorporated)
Texture Ordering mlowestm_{\textrm{lowest}} (eV) |Mee||M_{ee}| (eV) \sum (eV) mβm_{\beta} θ23\theta_{23}^{\circ} δ\delta^{\circ} β\beta^{\circ}
MTM21M_{TM_{2}}^{1} NO 0.003-0.0087 0.0-0.0083 0.062-0.073 0.009-0.0128 39.5-51.41 0-155\oplus205-360 16-90\oplus270-344
MTM22M_{TM_{2}}^{2} NO 0.003-0.0083 0.0-0.0082 0.061-0.072 0.009-0.0124 39.5-51.4 0-160\oplus202-360 0-81\oplus279-360
MTM23M_{TM_{2}}^{3} NO 0.025-0.5 0.006-0.5 0.10-1.51 0.026-0.5 39.5-45 90-160\oplus200-270 0-68\oplus292-360
IO 0.02-0.48 0.015-0.5 0.12-1.45 0.05-0.5 45-51.4 0-90\oplus270-360 0-90\oplus270-360
MTM24M_{TM_{2}}^{4} IO 0.003-0.008 0.014-0.05 0.1-0.11 0.048-0.051 39.8-51.4 0-150\oplus210-360 0-77\oplus283-360
MTM25M_{TM_{2}}^{5} NO 0.02-0.5 0.005-0.5 0.09-1.5 0.02-0.5 45-51.4 0-90\oplus270-360 0-90\oplus270-360
IO 0.027-0.5 0.017-0.47 0.13-1.48 0.05-0.5 39.8-45 90-150\oplus209-270 0-59\oplus303-360
MTM26M_{TM_{2}}^{6} IO 0.003-0.009 0.014-0.05 0.101-0.111 0.048-0.051 39.8-51.4 0-151\oplus211-360 19-90\oplus270-340
Table 4: Numerical predictions for viable textures having one equality in MνM_{\nu} with TM2TM_{2} mixing at 3σ3\sigma C.L. (cosmological and neutrinoless double beta decay bounds along with neutrino oscillation data are incorporated)
Texture Ordering mlowestm_{\textrm{lowest}} (eV) |Mee||M_{ee}| (eV) \sum (eV) mβm_{\beta} θ23\theta_{23}^{\circ} δ\delta^{\circ} β\beta^{\circ}
MTM21M_{TM_{2}}^{1} NO 0.003-0.0087 0.0-0.0083 0.062-0.073 0.009-0.0128 39.5-51.41 0-155\oplus205-360 16-90\oplus270-344
MTM22M_{TM_{2}}^{2} NO 0.003-0.0083 0.0-0.0082 0.061-0.072 0.009-0.0124 39.5-51.4 0-160\oplus202-360 0-81\oplus279-360
MTM23M_{TM_{2}}^{3} NO 0.025-0.031 0.006-0.03 0.10-0.12 0.026-0.032 39.5-40.34 137-160\oplus200-222 45-68\oplus 292-316
MTM24M_{TM_{2}}^{4} IO 0.003-0.008 0.014-0.05 0.1-0.111 0.048-0.051 39.8-51.4 0-150\oplus210-360 0-77\oplus283-360
MTM25M_{TM_{2}}^{5} NO 0.021-0.031 0.005-0.03 0.098-0.12 0.023-0.032 49.7-51.4 0-42\oplus317-360 45-90\oplus270-316
MTM26M_{TM_{2}}^{6} IO 0.003-0.009 0.014-0.05 0.101-0.111 0.048-0.051 39.8-51.4 0-151\oplus211-360 19-90\oplus270-340

The main results for the neutrino mass matrices with one texture equality and TM2TM_{2} mixing are listed in the following:

  • i)

    Textures MTM27,MTM28M_{TM_{2}}^{7},M_{TM_{2}}^{8} and MTM29M_{TM_{2}}^{9} lead to two degenerate eigenvalues and are, hence, experimentally ruled out at 3σ3\sigma C.L.

  • ii)

    Textures MTM210,MTM211,MTM212,MTM213,MTM214M_{TM_{2}}^{10},M_{TM_{2}}^{11},M_{TM_{2}}^{12},M_{TM_{2}}^{13},M_{TM_{2}}^{14} and MTM215M_{TM_{2}}^{15} lead to vanishing reactor mixing angle and, hence, not viable at 3σ3\sigma C.L.

  • iii)

    Textures MTM23M_{TM_{2}}^{3} and MTM25M_{TM_{2}}^{5} for IO are not consistent with the experimental data if cosmological and neutrinoless double beta decay bounds along with neutrino oscillation data are incorporated.

  • iv)

    Textures MTM21M_{TM_{2}}^{1} and MTM22M_{TM_{2}}^{2} are consistent with NO only whereas textures MTM24M_{TM_{2}}^{4} and MTM26M_{TM_{2}}^{6} are consistent with IO only.

  • v)

    For NO, textures MTM24M_{TM_{2}}^{4} and MTM26M_{TM_{2}}^{6} are not consistent with the experimental data as the mixing angles θ12\theta_{12} and θ13\theta_{13} are not within the 3σ3\sigma range.

  • vi)

    All viable textures cannot have zero lowest mass eigenvalue for both mass orderings.

  • vii)

    The atmospheric mixing angle θ23\theta_{23} is below (above) maximal for textures MTM23M_{TM_{2}}^{3} (MTM25M_{TM_{2}}^{5}) and MTM25M_{TM_{2}}^{5} (MTM23M_{TM_{2}}^{3}) with NO and IO, respectively.

  • viii)

    θ23\theta_{23} is maximal for δπ2\delta\sim\frac{\pi}{2} or 3π2\frac{3\pi}{2} for textures MTM21M_{TM_{2}}^{1} (MTM26M_{TM_{2}}^{6}) and MTM22M_{TM_{2}}^{2}(MTM24M_{TM_{2}}^{4}) with NO (IO).

  • ix)

    The parameter |Mee||M_{ee}| is found to be nonzero for all viable textures except MTM21M_{TM_{2}}^{1} and MTM22M_{TM_{2}}^{2}. |Mee||M_{ee}| get its largest value when δπ2\delta\sim\frac{\pi}{2} or 3π2\frac{3\pi}{2} for textures MTM23M_{TM_{2}}^{3} and MTM25M_{TM_{2}}^{5}.

  • x)

    For all viable textures, the effective neutrino mass (mβm_{\beta}) is well within the range provided by KATRIN experiment [22]

  • xi)

    The parameters m1(m3)m_{1}~{}(m_{3}), |Mee||M_{ee}| and \sum get their largest value when θ2345\theta_{23}\sim 45^{\circ} for textures MTM23M_{TM_{2}}^{3} and MTM25M_{TM_{2}}^{5} with NO (IO).

Refer to caption
Refer to caption
Refer to caption
Figure 1: Correlation plots among various parameters for textures (a) MTM21M_{TM_{2}}^{1}, (b) MTM21M_{TM_{2}}^{1}, (c) MTM22M_{TM_{2}}^{2}, (d) MTM25M_{TM_{2}}^{5}, (e) MTM22M_{TM_{2}}^{2} and (f) MTM25M_{TM_{2}}^{5}, (g) MTM21M_{TM_{2}}^{1}, (h) MTM23M_{TM_{2}}^{3} and (i) MTM25M_{TM_{2}}^{5} with NO.
Refer to caption
Refer to caption
Figure 2: Correlation plots among various parameters for textures (a) MTM24M_{TM_{2}}^{4}, (b) MTM24M_{TM_{2}}^{4}, (c) MTM24M_{TM_{2}}^{4}, (d) MTM26M_{TM_{2}}^{6}, (e) MTM26M_{TM_{2}}^{6} and (f) MTM26M_{TM_{2}}^{6} with IO.

2.1 S3S_{3} Group Motivation

The S3S_{3}, permutation group of three objects, is the smallest discrete non-Abelian group. The permutation matrices in the three dimensional reducible representation are

S(1)\displaystyle S^{(1)} =\displaystyle= (100010001),\displaystyle\left(\begin{array}[]{ccc}1&0&0\\ 0&1&0\\ 0&0&1\\ \end{array}\right), (84)
S(123)\displaystyle S^{(123)} =\displaystyle= (001100010),S(132)=(010001100),\displaystyle\left(\begin{array}[]{ccc}0&0&1\\ 1&0&0\\ 0&1&0\\ \end{array}\right),~{}S^{(132)}=\left(\begin{array}[]{ccc}0&1&0\\ 0&0&1\\ 1&0&0\\ \end{array}\right), (91)
S(12)\displaystyle S^{(12)} =\displaystyle= (010100001),S(13)=(001010100),S(23)=(100001010),\displaystyle\left(\begin{array}[]{ccc}0&1&0\\ 1&0&0\\ 0&0&1\\ \end{array}\right),~{}S^{(13)}=\left(\begin{array}[]{ccc}0&0&1\\ 0&1&0\\ 1&0&0\\ \end{array}\right),~{}S^{(23)}=\left(\begin{array}[]{ccc}1&0&0\\ 0&0&1\\ 0&1&0\\ \end{array}\right), (101)

where matrices in each equation belong to the same class of S3S_{3}. The most general neutrino mass matrix invariant under S3S_{3} group is proportional to the democratic matrix and is given by

Mν=aDwithD=(111111111)\displaystyle M_{\nu}=aD~{}~{}\textrm{with}~{}~{}D=\left(\begin{array}[]{ccc}1&1&1\\ 1&1&1\\ 1&1&1\\ \end{array}\right) (105)

where aa is a complex number and DD is called the Democratic matrix. The exact S3S_{3} symmetry does not satisfy the current neutrino oscillation data and, hence, symmetry must be broken. Various models based on the S3S_{3} symmetry have been presented in Refs. [27, 28]. In Ref. [29], the S3S_{3} symmetry is broken by the linear combination of S3S_{3} group matrices and successfully generates the nonzero θ13\theta_{13}.
The mass matrices MTM2M_{TM_{2}} in Eqs. (21)-(26) can be seen as the linear combination of a democratic part and a symmetry breaking part. The symmetry breaking matrix is the sum of two symmetric matrices out of which one is the S3S_{3} group matrix which can be any of the S(12),S(13),S(23)S^{(12)},S^{(13)},S^{(23)} matrices and the other part is chosen in such a way that the resultant neutrino mass matrix still satisfies the magic symmetry [30] and remains invariant under Z2Z_{2} symmetry. The mass matrix MTM21M_{TM_{2}}^{1} can be rewritten as

MTM21=(aabab+dadbada+d)aD+cS(13)+dΔ\displaystyle M_{TM_{2}}^{1}=\left(\begin{array}[]{ccc}a&a&b\\ a&b+d&a-d\\ b&a-d&a+d\\ \end{array}\right)\equiv a~{}D+c~{}S^{(13)}+d~{}\Delta (109)

where

D=(111111111),S(13)=(001010100),Δ=(000011011),\displaystyle D=\left(\begin{array}[]{ccc}1&1&1\\ 1&1&1\\ 1&1&1\\ \end{array}\right),~{}S^{(13)}=\left(\begin{array}[]{ccc}0&0&1\\ 0&1&0\\ 1&0&0\\ \end{array}\right),~{}\Delta=\left(\begin{array}[]{ccc}0&0&0\\ 0&1&-1\\ 0&-1&1\\ \end{array}\right), (119)

and a,c,da,c,d are arbitrary parameters with b=c+ab=c+a.
The S3S_{3} symmetry of the neutrino mass matrix is broken and the resultant neutrino mass matrix still satisfies S3S_{3} invariant constraints

MνiiMνjj=MνkjMνkiwithijk.M_{\nu_{ii}}-M_{\nu_{jj}}=M_{\nu_{kj}}-M_{\nu_{ki}}~{}~{}\textrm{with}~{}~{}i\neq j\neq k. (120)

This leads to a trimaximal eigenvector for the resultant neutrino mass matrix. For example, a typical form of MTM21M_{TM_{2}}^{1} neutrino mass matrix is given by

MTM21=(0.0044060.005578i0.0044060.005578i0.002587+0.006938i0.0044060.005578i0.003415+0.027066i0.0104080.025705i0.002587+0.006938i0.0104080.025705i0.001597+0.014550i).M_{TM_{2}}^{1}=\left(\begin{array}[]{ccc}0.004406\,-0.005578~{}i&0.004406\,-0.005578~{}i&0.002587\,+0.006938~{}i\\ 0.004406\,-0.005578~{}i&-0.003415+0.027066~{}i&0.010408\,-0.025705~{}i\\ 0.002587\,+0.006938~{}i&0.010408\,-0.025705~{}i&-0.001597\,+0.014550~{}i\\ \end{array}\right). (121)

In this analysis, we take the charged lepton mass matrix to be diagonal. If a horizontal symmetry exists it must, simultaneously, be a symmetry of the neutrinos as well as the charged leptons before the gauge symmetry breaking. After the symmetry breaking when the fermions acquire nonzero masses, the neutrino sector and the charged lepton sector should be governed by different subgroups of the symmetry group in order to have nonzero mixing. Here, we consider S3S_{3} to be the residual symmetry in the neutrino sector and Z3Z_{3} symmetry as the residual symmetry in the charged lepton sector which yields nondegenerate diagonal charged lepton mass matrix [31].
Similarly, other viable textures in Eqs. (21)-(23) can, also, be decomposed into the democratic S3S_{3} invariant part and the symmetry breaking part. The phenomenologically viable mass matrices in Eq. (21)-(23) are related as follows by S3S_{3} permutation symmetry :

S(123)MTM21S(123)T=MTM24,S(132)MTM21S(132)T=MTM25,S(12)MTM21S(12)T=MTM23,\displaystyle S^{(123)}M_{TM_{2}}^{1}S^{(123)^{T}}=M_{TM_{2}}^{4},~{}~{}S^{(132)}M_{TM_{2}}^{1}S^{(132)^{T}}=M_{TM_{2}}^{5},~{}~{}S^{(12)}M_{TM_{2}}^{1}S^{(12)^{T}}=M_{TM_{2}}^{3},
S(13)MTM21S(13)T=MTM26,S(23)MTM21S(23)T=MTM22.\displaystyle S^{(13)}M_{TM_{2}}^{1}S^{(13)^{T}}=M_{TM_{2}}^{6},~{}~{}S^{(23)}M_{TM_{2}}^{1}S^{(23)^{T}}=M_{TM_{2}}^{2}. (122)

3 TM1TM_{1} mixing and one texture equality

The neutrino mixing matrix with first column identical to TBM can be parametrized [10] as

UTM1=(23cosθ3sinθ316cosθ3+eiϕsinθ2sinθ3eiϕcosθ216cosθ3eiϕsinθ2eiϕcosθ2+sinθ3)U_{TM_{1}}=\left(\begin{array}[]{ccc}\sqrt{\frac{2}{3}}&\frac{\cos\theta}{\sqrt{3}}&\frac{\sin\theta}{\sqrt{3}}\\ -\frac{1}{\sqrt{6}}&\frac{\cos\theta}{\sqrt{3}}+\frac{e^{i\phi}\sin\theta}{\sqrt{2}}&\frac{\sin\theta}{\sqrt{3}}-\frac{e^{i\phi}\cos\theta}{\sqrt{2}}\\ -\frac{1}{\sqrt{6}}&\frac{\cos\theta}{\sqrt{3}}-\frac{e^{i\phi}\sin\theta}{\sqrt{2}}&\frac{e^{i\phi}\cos\theta}{\sqrt{2}}+\frac{\sin\theta}{\sqrt{3}}\\ \end{array}\right) (123)

and the corresponding neutrino mass matrix is given by

MTM1=PlUTM1PνMνdiagPνTUTM1TPlT.M_{TM_{1}}=P_{l}U_{TM_{1}}P_{\nu}M_{\nu}^{diag}P_{\nu}^{T}U_{TM_{1}}^{T}P_{l}^{T}. (124)

The most general neutrino mass matrix with TM1TM_{1} mixing can be written as

MTM1=(a2b2c2b4b+dabcd2cabcd4c+d).M_{TM_{1}}=\left(\begin{array}[]{ccc}a&2b&2c\\ 2b&4b+d&a-b-c-d\\ 2c&a-b-c-d&4c+d\\ \end{array}\right). (125)

The mass matrix MTM1M_{TM_{1}} is invariant under the transformation G1TMTM1G1=MTM1G_{1}^{T}M_{TM_{1}}G_{1}=M_{TM_{1}} where G1=UTM1diag(1,1,1)UTM1G_{1}=U_{TM_{1}}diag(1,-1,-1)U^{\dagger}_{TM_{1}} is the generator of Z2Z_{2} symmetry. This along with equality condition restricts the three unphysical phase angles to ϕe=ϕμ=ϕτϕl\phi_{e}=\phi_{\mu}=\phi_{\tau}\equiv\phi_{l}.
All possible textures of neutrino mass matrices with TM1TM_{1} mixing and one texture equality are given by

MTM11\displaystyle M_{TM_{1}}^{1} =\displaystyle= (2b2b2c2b4b+dbcd2cbcd4c+d),MTM12=(2c2b2c2b4b+db+cd2cb+cd4c+d),\displaystyle\left(\begin{array}[]{ccc}2b&2b&2c\\ 2b&4b+d&b-c-d\\ 2c&b-c-d&4c+d\\ \end{array}\right),~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}M_{TM_{1}}^{2}=\left(\begin{array}[]{ccc}2c&2b&2c\\ 2b&4b+d&-b+c-d\\ 2c&-b+c-d&4c+d\\ \end{array}\right), (132)
MTM13\displaystyle M_{TM_{1}}^{3} =\displaystyle= (a2b2c2b2ba+bc2ca+bc4c2b),MTM15=(a2b2c2b4b2cab+c2cab+c2c),\displaystyle\left(\begin{array}[]{ccc}a&2b&2c\\ 2b&2b&a+b-c\\ 2c&a+b-c&4c-2b\\ \end{array}\right),~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}M_{TM_{1}}^{5}=\left(\begin{array}[]{ccc}a&2b&2c\\ 2b&4b-2c&a-b+c\\ 2c&a-b+c&2c\\ \end{array}\right), (139)
MTM14\displaystyle M_{TM_{1}}^{4} =\displaystyle= (a2b2c2b12(a+3bc)12(a+3bc)2c12(a+3bc)12(a5b+7c)),MTM16=(a2b2c2b12(a+7b5c)12(ab+3c)2c12(ab+3c)12(ab+3c)),\displaystyle\left(\begin{array}[]{ccc}a&2b&2c\\ 2b&\frac{1}{2}(a+3b-c)&\frac{1}{2}(a+3b-c)\\ 2c&\frac{1}{2}(a+3b-c)&\frac{1}{2}(a-5b+7c)\\ \end{array}\right),~{}~{}M_{TM_{1}}^{6}=\left(\begin{array}[]{ccc}a&2b&2c\\ 2b&\frac{1}{2}(a+7b-5c)&\frac{1}{2}(a-b+3c)\\ 2c&\frac{1}{2}(a-b+3c)&\frac{1}{2}(a-b+3c)\\ \end{array}\right), (146)
MTM17\displaystyle M_{TM_{1}}^{7} =\displaystyle= (a2b2c2b3bca2ca3cb),\displaystyle\left(\begin{array}[]{ccc}a&2b&2c\\ 2b&3b-c&a\\ 2c&a&3c-b\\ \end{array}\right), (150)
MTM18\displaystyle M_{TM_{1}}^{8} =\displaystyle= (a2b2c2b2ca+3b3c2ca+3b3c6c4b),MTM19=(a2b2c2b6b4ca3b+3c2ca3b+3c2b),\displaystyle\left(\begin{array}[]{ccc}a&2b&2c\\ 2b&2c&a+3b-3c\\ 2c&a+3b-3c&6c-4b\\ \end{array}\right),~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}M_{TM_{1}}^{9}=\left(\begin{array}[]{ccc}a&2b&2c\\ 2b&6b-4c&a-3b+3c\\ 2c&a-3b+3c&2b\\ \end{array}\right), (157)
MTM110\displaystyle M_{TM_{1}}^{10} =\displaystyle= (a2b2c2ba3bc2c3bca4b+4c),MTM111=(a2b2c2ba+4b4c3cb2c3cba),\displaystyle\left(\begin{array}[]{ccc}a&2b&2c\\ 2b&a&3b-c\\ 2c&3b-c&a-4b+4c\\ \end{array}\right),~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}M_{TM_{1}}^{11}=\left(\begin{array}[]{ccc}a&2b&2c\\ 2b&a+4b-4c&3c-b\\ 2c&3c-b&a\\ \end{array}\right), (164)
MTM112\displaystyle M_{TM_{1}}^{12} =\displaystyle= MTM113=(a2b2b2b4b+da2bd2ba2bd4b+d),\displaystyle M_{TM_{1}}^{13}=\left(\begin{array}[]{ccc}a&2b&2b\\ 2b&4b+d&a-2b-d\\ 2b&a-2b-d&4b+d\\ \end{array}\right), (168)
MTM114\displaystyle M_{TM_{1}}^{14} =\displaystyle= (a2b2c2ba+bc2b2c2ba3b+3c),MTM115=(a2b2c2ba+3b3c2c2c2cab+c),\displaystyle\left(\begin{array}[]{ccc}a&2b&2c\\ 2b&a+b-c&2b\\ 2c&2b&a-3b+3c\\ \end{array}\right),~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}M_{TM_{1}}^{15}=\left(\begin{array}[]{ccc}a&2b&2c\\ 2b&a+3b-3c&2c\\ 2c&2c&a-b+c\\ \end{array}\right), (175)

where textures represented in each equation are related by μ\mu-τ\tau permutation symmetry. The neutrino mixing angles for TM1TM_{1} mixing in terms of parameters θ\theta and ϕ\phi are [12] given by

sin2θ13=13sin2θ,sin2θ12=123sin2θ,\displaystyle\sin^{2}\theta_{13}=\frac{1}{3}\sin^{2}\theta,~{}~{}\sin^{2}\theta_{12}=1-\frac{2}{3-\sin^{2}\theta}, (176)
andsin2θ23=12(1+6sin2θcosϕ3sin2θ).\displaystyle\textrm{and}~{}~{}\sin^{2}\theta_{23}=\frac{1}{2}\left(1+\frac{\sqrt{6}\sin 2\theta\cos\phi}{3-\sin^{2}\theta}\right).

For TM1TM_{1} mixing, the Jarlskog rephasing invariant [12] is

JCP=166sin2θsinϕ,J_{CP}=\frac{1}{6\sqrt{6}}\sin 2\theta\sin\phi, (177)

and the Dirac-type CP-violating phase [12] is given by

tanδ=cos2θ+55cos2θ+1tanϕ.\tan\delta=\frac{\cos 2\theta+5}{5\cos 2\theta+1}\tan\phi. (178)

The effective Majorana mass for TM1TM_{1} mixing can be calculated by using Eqs. (12) and (51) as

|Mee|=13|2m1+m2cos2θe2iα+m3sin2θe2iβ|,|M_{ee}|=\frac{1}{3}|2m_{1}+m_{2}\cos^{2}\theta e^{2i\alpha}+m_{3}\sin^{2}\theta e^{2i\beta}|, (179)

and the effective neutrino mass for TM1TM_{1} by using Eqs.(13) and (51) is given by

mβ=13|2m12+m22cos2θ+m32sin2θm_{\beta}=\sqrt{\frac{1}{3}|2m_{1}^{2}+m_{2}^{2}\cos^{2}\theta+m_{3}^{2}\sin^{2}\theta} (180)

The existence of one equality between the elements of the neutrino mass matrix implies

MTM1(ab)MTM1(cd)=0M_{TM_{1}(ab)}-M_{TM_{1}(cd)}=0 (181)

which yields the following complex equation:

(QVaiVbiVciVdi)mi=0\sum(QV_{ai}V_{bi}-V_{ci}V_{di})~{}m_{i}=0 (182)

where Q=ei(ϕa+ϕb(ϕc+ϕd))Q=e^{i(\phi_{a}+\phi_{b}-(\phi_{c}+\phi_{d}))}. The above equation can be rewritten as

m1A1+m2A2e2iα+m3A3e2iβ=0m_{1}A_{1}+m_{2}A_{2}e^{2i\alpha}+m_{3}A_{3}e^{2i\beta}=0 (183)

where

Ai=(QUaiUbiUciUdi)A_{i}=(QU_{ai}U_{bi}-U_{ci}U_{di}) (184)

with (i=1,2,3)(i=1,2,3) and a,ba,b can take values e,μe,\mu and τ\tau. Solving the real and imaginary parts of Eq.(69) simultaneously, we obtain the following two mass ratios:

ζm2m1\displaystyle\zeta\equiv\frac{m_{2}}{m_{1}} =\displaystyle= (Re(A1)Im(A3)Re(A3)Im(A1))cos2β+(Re(A1)Re(A3)+Im(A1)Im(A3))sin2β(Re(A3)Im(A2)Re(A2)Im(A3))cos2(αβ)+(Re(A2)Re(A3)+Im(A2)Im(A3))sin2(αβ),\displaystyle\frac{(Re(A_{1})Im(A_{3})-Re(A_{3})Im(A_{1}))\cos 2\beta+(Re(A_{1})Re(A_{3})+Im(A_{1})Im(A_{3}))\sin 2\beta}{(Re(A_{3})Im(A_{2})-Re(A_{2})Im(A_{3}))\cos 2(\alpha-\beta)+(Re(A_{2})Re(A_{3})+Im(A_{2})Im(A_{3}))\sin 2(\alpha-\beta)}, (185)
ξm3m1\displaystyle\xi\equiv\frac{m_{3}}{m_{1}} =\displaystyle= (Re(A2)Im(A1)Re(A1)Im(A2))cos2α(Re(A1)Re(A2)+Im(A1)Im(A2))sin2α(Re(A3)Im(A2)Re(A2)Im(A3))cos2(αβ)+(Re(A2)Re(A3)+Im(A2)Im(A3))sin2(αβ).\displaystyle\frac{(Re(A_{2})Im(A_{1})-Re(A_{1})Im(A_{2}))\cos 2\alpha-(Re(A_{1})Re(A_{2})+Im(A_{1})Im(A_{2}))\sin 2\alpha}{(Re(A_{3})Im(A_{2})-Re(A_{2})Im(A_{3}))\cos 2(\alpha-\beta)+(Re(A_{2})Re(A_{3})+Im(A_{2})Im(A_{3}))\sin 2(\alpha-\beta)}. (186)

These mass ratios can be used to calculate the ratio of mass squared differences (RνR_{\nu}) which is given by

RνΔm212Δm312=ζ21ξ21andRνΔm212Δm232=ζ21ζ2ξ2R_{\nu}\equiv\frac{\Delta m^{2}_{21}}{\Delta m^{2}_{31}}=\frac{\zeta^{2}-1}{\xi^{2}-1}~{}~{}\textrm{and}~{}~{}R_{\nu}\equiv\frac{\Delta m^{2}_{21}}{\Delta m^{2}_{23}}=\frac{\zeta^{2}-1}{\zeta^{2}-\xi^{2}} (187)

for NO and IO, respectively. Since, Δm212\Delta m^{2}_{21} and Δm312(Δm232)\Delta m^{2}_{31}(\Delta m^{2}_{23}) for NO(IO) are experimentally known, the parameter RνR_{\nu} should lie within its experimentally allowed range for a texture equality to be compatible with the current neutrino oscillation data. The neutrino mass eigenvalues can be calculated by using the relations

m2=m12+Δm212,m3=m12+Δm312,\displaystyle m_{2}=\sqrt{m_{1}^{2}+\Delta m^{2}_{21}},~{}~{}~{}m_{3}=\sqrt{m_{1}^{2}+\Delta m^{2}_{31}},
and m2=m12+Δm212,m3=m12+Δm212Δm232\displaystyle m_{2}=\sqrt{m_{1}^{2}+\Delta m^{2}_{21}},~{}~{}~{}m_{3}=\sqrt{m_{1}^{2}+\Delta m^{2}_{21}-\Delta m^{2}_{23}} (188)

for NO and IO, respectively.
For numerical analysis, we follow the same procedure as in TM2TM_{2} mixing except that the parameters β\beta and m1m_{1} are generated randomly within their allowed ranges. The mass eigenvalues are calculated by using Eq. (74) and texture equality is imposed by requiring the parameter RνR_{\nu} in Eq. (73) to lie within its 3σ3\sigma experimental range.
The numerical predictions for unknown parameters are summarized in Table 5 (where constrains only from neutrino oscillation data are used) and Table 6 (where the constrains from cosmological and neutrinoless double beta decay bounds along with neutrino oscillation data are used). The allowed ranges of the parameter θ12\theta_{12} are (34.2434.24^{\circ}-34.4234.42^{\circ}) for all viable textures. The parameter θ\theta is constrained to lie in the ranges (14.314.3^{\circ}-15.715.7^{\circ}) whereas JCPJ_{CP} lies in the ranges ±(0.026\pm(0.026-0.036)0.036) for all viable textures. The Majorana phase α\alpha varies in the range (0-360360^{\circ}) for all viable textures with NO only. Correlation plots among various neutrino oscillating parameters are shown in Fig. 3 and Fig. 4 for NO and IO, respectively. |Mee||M_{ee}| strongly depends on the Majorana phase α\alpha as shown in Fig. 3(a) for NO and Fig. 4(b) for IO. As shown in Fig. 3(d), θ12\theta_{12} is inversely proportional to θ13\theta_{13} which is the classical prediction of TM1TM_{1} mixing. The Dirac-type CP-violating phase is constrained to lie in the regions around 9090^{\circ} and 270270^{\circ} which is consistent with the recent observations in the long-baseline neutrino oscillation experiments such as T2K and NOvA [2] which shows a preference for the Dirac-type CP-violating phase δ\delta to lie around δ270\delta\sim 270^{\circ}. The main implications for textures having TM1TM_{1} mixing with one texture equality are summarized in the following:

  • i)

    For IO, textures MTM11M_{TM_{1}}^{1}, MTM12M_{TM_{1}}^{2} and MTM17M_{TM_{1}}^{7} are not consistent with the neutrino oscillation data at 3σ3\sigma C.L.

  • ii)

    For NO, textures MTM14M_{TM_{1}}^{4} and MTM16M_{TM_{1}}^{6} predict large θ13\theta_{13} and small θ12\theta_{12} and are, hence, experimentally ruled out at 3σ3\sigma C.L.

  • iii)

    Textures MTM112M_{TM_{1}}^{12} and MTM113M_{TM_{1}}^{13} predict a vanishing reactor mixing angle and degenerate mass eigenvalues and are, hence, not viable for both mass orderings.

  • iv

    Textures MTM13M_{TM_{1}}^{3}, MTM15M_{TM_{1}}^{5}, MTM110M_{TM_{1}}^{10}, MTM114M_{TM_{1}}^{14}, MTM115M_{TM_{1}}^{15}, MTM111M_{TM_{1}}^{11} for both mass orderings and textures MTM17M_{TM_{1}}^{7}, MTM18M_{TM_{1}}^{8} for NO predict large mi\sum m_{i}, and are, hence, not viable with experimental data when cosmological and neutrinoless double beta decay bounds along with neutrino oscillation data are incorporated.

  • v)

    All viable textures cannot have zero lowest mass eigenvalue for both mass orderings.

  • vi)

    The atmospheric mixing angle θ23\theta_{23} is maximal for δπ2\delta\sim\frac{\pi}{2} or 3π2\frac{3\pi}{2} for all viable textures.

  • vii)

    The parameter |Mee||M_{ee}| is found to be bounded from below for all viable textures except MTM11M_{TM_{1}}^{1} and MTM12M_{TM_{1}}^{2} with NO.

  • viii)

    The parameter mβm_{\beta} is found to lie within the current experimental range for all viable textures.

  • ix)

    The Dirac-type CP-violating phase δ\delta is directly proportional to the parameter ϕ\phi for all viable textures.

Table 5: Numerical predictions for viable textures having one equality in MνM_{\nu} with TM1TM_{1} mixing at 3σ3\sigma C.L. (only neutrino oscillation data are incorporated)
Texture Ordering mlowestm_{\textrm{lowest}} (eV) |Mee||M_{ee}| (eV) \sum (eV) mβm_{\beta} δ\delta^{\circ} β\beta^{\circ}
MTM11M_{TM_{1}}^{1} NO 0.0039-0.0066 0.0-0.0072 0.062-0.069 0.009-0.012 63-125\oplus235-297 21-65\oplus116-159
\oplus202-244\oplus296-339
MTM12M_{TM_{1}}^{2} NO 0.0039-0.0066 0.0-0.0072 0.062-0.069 0.009-0.012 64-125\oplus235-296 26-68\oplus112-154
\oplus206-249\oplus291-334
MTM13M_{TM_{1}}^{3} NO 0.046-0.67 0.027-0.55 0.16-2.0 0.002-0.003 64-122\oplus235-297 0-43\oplus137-222
\oplus318-360
IO 0.05-0.42 0.06-0.41 0.21-1.25 0.077-0.42 67-125\oplus235-294 0-44\oplus136-227
\oplus314-360
MTM14M_{TM_{1}}^{4} IO 0.007-0.016 0.017-0.051 0.107-0.121 0.048-0.052 65-124\oplus235-295 0-324
MTM15M_{TM_{1}}^{5} NO 0.04-0.92 0.02-0.88 0.15-2.8 0.045-0.92 64-124\oplus235-296 0-36\oplus143-218
\oplus322-360
IO 0.062-0.36 0.064-0.29 0.22-1.1 0.079-0.37 66-125\oplus236-293 0-35\oplus144-213
\oplus324-360
MTM16M_{TM_{1}}^{6} IO 0.008-0.017 0.017-0.052 0.108-0.123 0.049-0.524 65-125\oplus234-294 0-324
MTM17M_{TM_{1}}^{7} NO 0.085-0.72 0.032-0.7 0.26-2.2 0.085-0.72 63-125\oplus236-297 0-37\oplus143-218
\oplus323-360
MTM18M_{TM_{1}}^{8} NO 0.03-0.32 0.02-0.31 0.118-0.98 0.031-0.32 63-124\oplus236-297 0-53\oplus128-235
\oplus308-360
IO 0.014-0.23 0.03-0.22 0.116-0.7 0.05-0.24 66-125\oplus235-294 0-65\oplus115-244
\oplus296-360
MTM19M_{TM_{1}}^{9} NO 0.025-0.31 0.018-0.19 0.107-0.93 0.025-0.32 67-125\oplus235-297 0-50\oplus130-224
\oplus312-360
IO 0.0148-0.33 0.028-0.26 0.117-1.0 0.05-0.33 66-125\oplus235-294 0-56 \oplus124-236
\oplus306-360
MTM110M_{TM_{1}}^{10} NO 0.034-0.7 0.014-0.65 0.13-2.1 0.034-0.7 63-124\oplus237-297 43-141\oplus221-314
IO 0.028-0.4 0.021-0.27 0.14-1.2 0.05-0.41 66-125\oplus235-295 34-145\oplus215-325
MTM111M_{TM_{1}}^{11} NO 0.031-0.3 0.011-0.27 0.122-0.86 0.032-0.29 65-125\oplus235-295 47-128\oplus229-313
IO 0.03-0.51 0.023-0.48 0.14-1.52 0.05-0.51 65-124\oplus236-295 44-136\oplus224-316
MTM114M_{TM_{1}}^{14} NO 0.04-0.48 0.02-0.36 0.16-1.43 0.04-0.48 63-123\oplus237-297 47-132\oplus230-314
IO 0.06-0.4 0.028-0.38 0.21-1.2 0.07-0.41 65-126\oplus234-294 43-135\oplus225-316
MTM115M_{TM_{1}}^{15} NO 0.04-0.55 0.01-0.5 0.15-1.7 0.04-0.55 64-123\oplus236-295 53-125\oplus237-307
IO 0.06-0.52 0.03-0.5 0.22-1.6 0.07-0.52 65-125\oplus235-295 54-126\oplus234-305
Table 6: Numerical predictions for viable textures having one equality in MνM_{\nu} with TM1TM_{1} mixing at 3σ3\sigma C.L. (cosmological and neutrinoless double beta decay bounds along with neutrino oscillation data are incorporated)
Texture Ordering mlowestm_{\textrm{lowest}} (eV) |Mee||M_{ee}| (eV) \sum (eV) mβm_{\beta} δ\delta^{\circ} β\beta^{\circ}
MTM11M_{TM_{1}}^{1} NO 0.0039-0.0066 0.0-0.0072 0.062-0.069 0.009-0.012 64-125\oplus235-296 21-65\oplus116-158
\oplus201-245\oplus295-339
MTM12M_{TM_{1}}^{2} NO 0.0039-0.0066 0.0-0.0072 0.062-0.069 0.009-0.012 64-125\oplus235-296 26-68\oplus112-154
\oplus206-249\oplus291-334
MTM14M_{TM_{1}}^{4} IO 0.007-0.016 0.017-0.051 0.107-0.12 0.048-0.052 66-125\oplus235-295 0-322
MTM16M_{TM_{1}}^{6} IO 0.008-0.017 0.017-0.051 0.108-0.12 0.049-0.052 65-125\oplus235-295 0-320
MTM18M_{TM_{1}}^{8} IO 0.014-0.017 0.038-0.049 0.116-0.12 0.05-0.052 84-124\oplus236-273 11-53\oplus125-170
\oplus193-235\oplus307-347
MTM19M_{TM_{1}}^{9} NO 0.025-0.031 0.018-0.031 0.107-0.12 0.026-0.32 112-125\oplus235-247 1-29\oplus152-208
\oplus332-359
IO 0.0148-0.0167 0.037-0.047 0.117-0.12 0.05-0.052 67-95\oplus269-293 16-44\oplus135-168
\oplus191-225\oplus316-348
Refer to caption
Refer to caption
Figure 3: Correlation plots among various parameters for textures (a) MTM11M_{TM_{1}}^{1}, (b) MTM11M_{TM_{1}}^{1}, (c) MTM12M_{TM_{1}}^{2}, (d) MTM12M_{TM_{1}}^{2}, (e) MTM12M_{TM_{1}}^{2} and (f) MTM19M_{TM_{1}}^{9} with NO.
Refer to caption
Refer to caption
Figure 4: Correlation plots among various parameters for textures (a) MTM14M_{TM_{1}}^{4}, (b) MTM14M_{TM_{1}}^{4}, (c) MTM16M_{TM_{1}}^{6}, (d) MTM18M_{TM_{1}}^{8}, (e) MTM19M_{TM_{1}}^{9} and (f) MTM16M_{TM_{1}}^{6} with IO.

4 Summary

We studied the phenomenological implications of one texture equality in the neutrino mass matrix with TM1TM_{1} or TM2TM_{2} mixing. The presence of one texture equality in MνM_{\nu} with TM1TM_{1} or TM2TM_{2} as the mixing matrix reduces the number of free parameters significantly and, hence, leads to very predictive neutrino mass matrices. Out of total fifteen possible textures of MνM_{\nu}, thirteen textures are phenomenologically allowed with TM1TM_{1} mixing and only six textures are allowed with TM2TM_{2} mixing in the light of current neutrino oscillation data at 3σ3\sigma C.L. However, the number of viable textures reduced to six for TM1TM_{1} mixing if the constrains from cosmology and neutrinoless double beta decay experiments along with neutrino oscillation data are used. Since, the TM2TM_{2} mixing predicts a value of θ12\theta_{12} away from its best fit value, TM1TM_{1} mixing is phenomenologically more appealing. In this analysis, we have obtained interesting predictions for unknown parameters such as the Dirac- and Majorana-type CP-violating phases, effective Majorana neutrino mass, effective neutrino mass, Jarlskog rephasing invariant, neutrino mass scale and the sum of neutrino masses. For TM1TM_{1} mixing, the Dirac-type CP-violating phase (δ)(\delta) is restricted to the regions around π2\frac{\pi}{2} and 3π2\frac{3\pi}{2}, the atmospheric mixing angle (θ23)(\theta_{23}) is maximal for δπ2\delta\sim\frac{\pi}{2} or 3π2\frac{3\pi}{2} and the lowest neutrino mass eigenvalue cannot be zero for all viable textures. For TM2TM_{2} mixing, the CP-violating phases δ\delta and β\beta are strongly correlated, θ23\theta_{23} is below (above) maximal for textures MTM23(MTM25)M_{TM_{2}}^{3}(M_{TM_{2}}^{5}) and MTM25(MTM23)M_{TM_{2}}^{5}(M_{TM_{2}}^{3}) with NO and IO, respectively and the lowest mass eigenvalue cannot be zero for all viable textures. For MTM2M_{TM_{2}} mass matrices with one texture equality, the residual S3S_{3} symmetry is broken and resulting neutrino mass matrix is invariant under Z2Z_{2} symmetry.

5 Acknowledgements

The research work of S. D. is supported by the Council of Scientific and Industrial Research (CSIR), Government of India, New Delhi vide grant No. 03(1333)/15/EMR-II. S. D. gratefully acknowledges the kind hospitality provided by IUCAA, Pune. Authors thank Radha Raman Gautam and Lal Singh for carefully reading the manuscript. A previous version of this manuscript was presented in arXiv.org with identifier 2202.13070.

References

  • [1] G. L. Fogli and E. Lisi, Phys. Rev. D 54, 3667 (1996).
  • [2] K. Iwamoto, Recent results from T2K and future prospects, in Proc. Sci., ICHEP2016 (2016) 517; P. Vahle, New results from NOvA, in Proceedings of XXVII International Conference on Neutrino Physics and Astrophysics, London, UK, July 4-9, 2016 (IOP Publishing, London, 2016).
  • [3] P. H. Frampton, S. L. Glashow, and D. Marfatia,Phys. Lett. B 536, 79 (2002), arXiv:hep-ph/0201008; Z.-z. Xing, Phys. Lett. B 530, 159 (2002), arXiv:hep-ph/0201151; B. R. Desai, D. P. Roy, and A. R. Vaucher, Mod. Phys. Lett. A 18, 1355 (2003), arXiv:hep-ph/0209035; A. Merle and W. Rodejohann, Phys. Rev. D 73, 073012 (2006), arXiv:hep-ph/0603111; M. Randhawa, G. Ahuja, and M. Gupta, Phys. Lett. B 643, 175 (2006), arXiv:hep-ph/0607074; S. Dev, S. Kumar, S. Verma, and S. Gupta, Phys. Rev. D 76, 013002 (2007), arXiv:hep-ph/0612102; S. Dev, S. Kumar, S. Verma, and S. Gupta, Nucl. Phys. B 784, 103 (2007), arXiv:hep-ph/0611313; G. Ahuja, S. Kumar, M. Randhawa, M. Gupta, and S. Dev, Phys. Rev. D 76, 013006 (2007), arXiv:hep-ph/0703005; G. C. Branco, D. Emmannuel-Costa, R. Gonzalez Felipe, and H. Serodio, Phys. Lett. B 670, 340 (2009), arXiv:0711.1613 [hep-ph]; H. Fritzsch, Z.-z. Xing, and S. Zhou, J. High Energy Phys. 09 (2011) 083, arXiv:1108.4534 [hep-ph]; S. Kumar, Phys. Rev. D 84, 077301 (2011), arXiv:1108.2137 [hep-ph]; M. Gupta and G. Ahuja, Int. J. Mod. Phys. A 27, 1230033 (2012), arXiv:1302.4823 [hep-ph]; P. O. Ludl, S. Morisi, and E. Peinado, Nucl. Phys. B 857, 411 (2012), arXiv:1109.3393 [hep-ph]; W. Grimus and P. O. Ludl, J. Phys. G 40, 055003 (2013), arXiv:1208.4515 [hep-ph]; D. Meloni and G. Blanken-burg, Nucl. Phys. B 867, 749 (2013), arXiv:1204.2706 [hep-ph]; S. Dev, L. Singh, and D. Raj, Eur. Phys. J. C 75 (2015) no.8, 394, arXiv:1506.04951 [hep-ph]; J. Liao, D. Marfatia, K. Whisnant, J. High Energy Phys. 09 (2014) 013, arXiv:1311.2639 [hep-ph]; D. Meloni, A. Meroni, E. Peinado, Phys. Rev. D 89 (2014) 053009, arXiv:1401.3207 [hep-ph]; S. Dev, R. R. Gautam, L. Singh and M. Gupta, Phys. Rev. D 90, no. 1, 013021 (2014), arXiv:1405.0566 [hep-ph]; G. Ahuja, S. Sharma, P. Fakay and M. Gupta, Mod. Phys. Lett. A 30, 1530025 (2015), arXiv:1604.03339 [hep-ph]; M. Singh, G. Ahuja and M. Gupta, PTEP 2016, no. 12, 123B08 (2016), arXiv:1603.08083 [hep-ph]; D. Borah, M. Ghosh, S. Gupta and S. K. Raut, Phys. Rev. D 96, 055017 (2017), arXiv:1706.02017 [hep-ph].
  • [4] L. Lavoura, Phys. Lett. B 609, 317 (2005), arXiv:hep-ph/0411232; E. I. Lashin and N. Chamoun, Phys. Rev. D 78, 073002 (2008), arXiv:0708.2423 [hep-ph]; E. I. Lashin and N. Chamoun, Phys. Rev. D 80, 093004 (2009), arXiv:0909.2669 [hep-ph]; S. Dev, S. Verma, S. Gupta, and R. R. Gautam, Phys. Rev. D 81, 053010 (2010), arXiv:1003.1006 [hep-ph]; S. Dev, S. Gupta, and R. R. Gautam, Mod. Phys. Lett. A 26, 501 (2011), arXiv:1011.5587 [hep-ph]; S. Dev, S. Gupta, R. R. Gautam, and L. Singh, Phys. Lett. B 706, 168 (2011), arXiv:1111.1300 [hep-ph]; T. Araki, J. Heeck, and J. Kubo, J. High Energy Phys. 07 (2012) 083, arXiv:1203.4951 [hep-ph]; J. Liao, D. Marfatia and K. Whisnant, Phys. Rev. D 88, 033011 (2013), arXiv:1306.4659 [hep-ph]; W. Wang, Phys. Lett. B 733, 320 (2014), Erratum: [Phys. Lett. B 738, 524 (2014)], arXiv:1401.3949 [hep-ph]; W. Wang, Phys. Rev. D 90, no. 3, 033014 (2014), arXiv:1402.6808 [hep-ph]; Radha Raman Gautam, Madan Singh, Manmohan Gupta, Phys. Rev. D 92 (2015) 1, 013006, arXiv:1506.04868 [hep-ph]; S. Dev, D. Raj, and R. R. Gautam, Phys. Rev. D 96, 095002 (2017), arXiv:1709.09084 [hep-ph].
  • [5] S. Dev, R. R. Gautam, and L. Singh, Phys. Rev. D 87, 073011 (2013), arXiv:1303.3092 [hep-ph]; J. Han, R. Wang, W. Wang, and X. N. Wei, Phys. Rev. D 96, 075043 (2017), arXiv:1705.05725.
  • [6] S. Kaneko, H. Sawanaka, and M. Tanimoto, J. High Energy Phys. 08 (2005) 073, arXiv:hep-ph/0504074; S. Dev, S. Verma, and S. Gupta, Phys. Lett. B 687, 53 (2010), arXiv:0909.3182 [hep-ph]; S. Dev, S. Gupta, and R. R. Gautam, Phys. Rev. D 82, 073015 (2010), arXiv:1009.5501 [hep-ph]; J.-Y. Liu, S. Zhou, Phys. Rev. D 87, 093010 (2013), arXiv:1304.2334 [hep-ph]; W. Wang, Eur. Phys. J. C 73, 2551 (2013), arXiv:1306.3556 [hep-ph]; S. Dev, R. R. Gautam and Lal Singh, Phys. Rev. D 88, 033008 (2013), arXiv:1306.4281 [hep-ph]; S. Dev and D. Raj, Nucl. Phys. B 957, 115081 (2020), arXiv:2006.12019 [hep-ph].
  • [7] P. F. Harrison, D. H. Perkins and W. G. Scott, Phys. Lett. B 530, 167 (2002), hep-ph/0202074; Z.-z. Xing, Phys. Lett. B 533, 85 (2002), hep-ph/0204049; P. F. Harrison and W. G. Scott, Phys. Lett. B 535, 163 (2002), hep-ph/0203209].
  • [8] K. Abe et al. (T2K Collaboration), Phys. Rev. Lett. 107, 041801(2011), arXiv:1106.2822 [hep-ex]; P. Adamson et al. (MINOS Collaboration), Phys. Rev. Lett. 107, 181802 (2011), arXiv:1108.0015 [hep-ex]; Y. Abe et al. (Double Chooz Collaboration), Phys. Rev. Lett. 108, 131801 (2012), arXiv:1112.6353 [hep-ex]; F. P. An et al. (Daya Bay Collaboration), Phys. Rev. Lett. 108, 171803 (2012), arXiv:1203.1669 [hep-ex]; J. K. Ahn et al. (RENO Collaboration), Phys. Rev. Lett. 108, 191802 (2012), arXiv:1204.0626 [hep-ex].
  • [9] P.F. Harrison and W.G. Scott, Phys. Lett. B 535 (2002) 163, arXiv:hep-ph/0203209; J. D. Bjorken, P. F. Harrison and W. G. Scott, Phys. Rev. D 74 (2006) 073012, arXiv:hep-ph/0511201; C. S. Lam, Phys. Rev. D 74 (2006) 113004, arXiv:hep-ph/0611017; X. G. He and A. Zee, Phys. Lett. B 645 (2007) 427, arXiv:hep-ph/0607163; W. Grimus and L. Lavoura, J. High Energy Phys. 09 (2008) 106, arXiv:0809.0226 [hep-ph]; C. H. Albright, W. Rodejohann, Eur. Phys. J. C 62 (2009) 599-608, arXiv:0812.0436 [hep-ph]; C. H. Albright, A. Dueck and W. Rodejohann, Eur. Phys. J. C 70 (2010) 1099, arXiv:1004.2798 [hep-ph]; S. Gupta, A. S. Joshipura and K. M. Patel, Phys. Rev. D 85, 031903 (2012), arXiv:1112.6113 [hep-ph].
  • [10] I. K. Cooper, S. F. King and C. Luhn, J. High Energy Phys. 06 (2012) 130, arXiv:1203.1324 [hep-ph]; C. Luhn, K. Mohan Parattu, and A. Wingerter, J. High Energy Phys. 12 (2012) 096, arXiv:1210.1197 [hep-ph]; C. Luhn, Nucl. Phys. B 875 (2013) 80, arXiv:1306.2358 [hep-ph]; S. Kumar, Phys. Rev. D 88 (2013) 016009, arXiv:1305.0692 [hep-ph]; Z. Zhao, J. High Energy Phys. 1411 (2014) 143, arXiv:1405.3022 [hep-ph]; Y. Shimizu, M. Tanimoto, and K. Yamamoto, Mod. Phys. Lett. A 30 (2015) 1550002, arXiv:1405.1521 [hep-ph]; M. Sruthilaya, and Srinu Gollu, Mod. Phys. Lett. A 31 38 (2016) 1650207, arXiv:1609.09609 [hep-ph]; S. Dev, D. Raj and R. R. Gautam, Nucl. Phys. B 911 (2016) 744, arXiv:1607.08051 [hep-ph].
  • [11] X. G. He and A. Zee, Phys. Rev. D 84 (2011) 053004, arXiv:1106.4359 [hep-ph]; S. F. King and C. Luhn, J. High Energy Phys. 09 (2011) 042, arXiv:1107.5332 [hep-ph]; S. Antusch, S. F. King, C. Luhn, and M. Spinrath, Nucl. Phys. B 856 (2012) 328, arXiv:1108.4278 [hep-ph]; W. Rodejohann and H. Zhang, Phys. Rev. D 86 (2012) 093008, arXiv:1207.1225 [hep-ph].
  • [12] R. R. Gautam and S. Kumar, Phys. Rev. D 94, no. 3, 036004 (2016), arXiv:1607.08328 [hep-ph]; S. Kumar and R. R. Gautam, Phys. Rev. D 96, no. 1, 015020 (2017), arXiv:1706.03258 [hep-ph]; Radha Raman Gautam, Phys.Rev. D 97 (2018) no.5, 055022, arXiv:1802.00425 [hep-ph].
  • [13] B. Pontecorvo, Zh. Eksp. Teor. Fiz. 33, 549 (1957); 34, 247 (1958); 53, 1717 (1967); Z. Maki, M. Nakagawa, and S. Sakata, Prog. Theor. Phys. 28, 870 (1962).
  • [14] C. Jarlskog, Phys. Rev. Lett. 55, 1039 (1985).
  • [15] C. Arnaboldi et al. (CUORICINO Collaboration), Phys. Lett. B 584, 260 (2004).
  • [16] C. Arnaboldi et al., Nucl. Instrum. Methods Phys. Res., Sect. A 518, 775 (2004).
  • [17] R. Gaitskell et al. (Majorana Collaboration), arXiv:hep-ex/0311013.
  • [18] A. S. Barabash (NEMO Collaboration), Czech. J. Phys. 52, 567 (2002).
  • [19] M. Danilov et al., Phys. Lett. B 480, 12 (2000).
  • [20] S. Abe (et al.), (KamLAND-Zen Collaboration), arXiv:2203.02139 [hep-ex].
  • [21] R. E. Shrock, Phys. Lett. 96 B, 159-164 (1980).
  • [22] M. Aker et al. (KATRIN Collaboration), Nature Phys. 18 (2022) 2, 160-166, arXiv:2105.08533 [hep-ex].
  • [23] N. Aghanim et al. (Planck Collaboration), arXiv:1807.06209 [astro-ph.CO].
  • [24] Maria Concepcion Gonzalez-Garcia, Michele Maltoni and Thomas Schwetz, Universe 7 (2021) 12, 459, arXiv:2111.03086 [hep-ph].
  • [25] S.-F. Ge, D. A. Dicus, and W. W. Repko, Phys. Rev. Lett. 108 (2012) 041801, arXiv:1108.0964 [hep-ph]; A. Y. Smirnov, J. Phys. Conf. Ser. 447 (2013) 012004, arXiv:1305.4827 [hep-ph].
  • [26] E. Ma, Phys. Rev. D 70 (2004) 031901, [hep-ph/0404199]; G. Altarelli and F. Feruglio, Nucl. Phys. B 720 (2005) 64-88, hep-ph/0504165; M. Honda and M. Tanimoto, Prog. Theor. Phys. 119 (2008) 583, arXiv:0801.0181 [hep-ph].
  • [27] L. Wolfenstein, Phys. Rev. D 18, 958 (1978); S. Pakvasa and H. Sugawara, Phys. Lett. B 73, 61 (1978); 82, 105 (1979); E. Derman, Phys. Rev. D 19, 317 (1979); E. Durman and H. S. Tsao, Phys. Rev. D 20, 1207 (1979); M. Fukugita, M. Tanimoto and T. Yanagida, Phys. Rev. D 57, 4429 (1998), hep-ph/9709388; H. Fritzsch and Z. Z. Xing, Phys. Rev. D 61, 073016 (2000), hep-ph/9909304; E. Ma, Phys. Rev. D 61, 033012 (2000), hep-ph/9909249; M. Tanimoto, Phys. Lett. B 483, 417 (2000), hep-ph/0001306; E. Ma and G. Rajasekaran, Phys. Rev. D 64, 113012 (2001), hep-ph/0106291; P. F. Harrison and W. G. Scott, Phys. Lett. B 557, 76 (2003), hep-ph/0302025; S. L. Chen, M. Frigerio and E. Ma, Phys. Rev. D 70, 073008 (2004), [Erratum-ibid. 70, 079905 (2004)], hep-ph/0404084; F. Caravaglios and S. Morisi, arXiv: hep-ph/0503234; W. Grimus and L. Lavoura, J. High Energy Phys. 08, 013 (2005), hep-ph/0504153; R. N. Mohapatra, S. Nasri and H. B. Yu, Phys. Lett. B 639, 318 (2006), hep-ph/0605020; N. Haba and K. Yoshioka, Nucl. Phys. B 739, 254 (2006), hep-ph/0511108; M. Picariello, Int. J. Mod. Phys. A 23, 4435 (2008), hep-ph/0611189; Y. Koide, Eur. Phys. J. C 50, 809 (2007), hep-ph/0612058; A. Mondragon, M. Mondragon and E. Peinado, Phys. Rev. D 76, 076003 (2007), arXiv:0706.0354 [hep-ph]; C. Y. Chen and L. Wolfenstein, Phys. Rev. D 77, 093009 (2008), arXiv:0709.3767 [hep-ph]; F. Feruglio and Y. Lin, Nucl. Phys. B 800, 77 (2008), arXiv:0712.1528 [hep-ph]; M. Mitra and S. Choubey, Phys. Rev. D 78, 115014 (2008), arXiv:0806.3254 [hep-ph]; D. A. Dicus, S.-F. Ge, and W. W. Repko, Phys. Rev. D 82, 033005 (2010), arXiv:1004.3266 [hep-ph]; Z.-z. Xing, D. Yang, and S. Zhou, Phys. Lett. B 690, 304 (2010), arXiv:1004.4234 [hep-ph]; D. Meloni, S. Morisi, and E. Peinado, J. Phys. G 38, 015003 (2011), arXiv:1005.3482 [hep-ph]; S. Zhou, Phys. Lett. B 704, 291 (2011), arXiv:1106.4808 [hep-ph].
  • [28] R. Jora, S. Nasri and J. Schechter, Int. J. Mod. Phys. A 21, 5875 (2006), hep-ph/0605069; R. Jora, J. Schechter and M. Naeem Shahid, Phys. Rev. D 80, 093007 (2009), [Erratum-ibid. 82, 079902 (2010)], arXiv:0909.4414 [hep-ph]; R. Jora, J. Schechter and M. N. Shahid, Phys. Rev. D 82, 053006 (2010) arXiv:1006.3307 [hep-ph].
  • [29] S. Dev, S. Gupta, and R. R. Gautam, Phys. Lett. B 702 (2011) 28, arXiv:1106.3873 [hep-ph]; S. Dev, R. R. Gautam, and L. Singh, Phys. Lett. B 708 (2012) 284, arXiv:1201.3755 [hep-ph].
  • [30] P. F. Harrison and W. G. Scott, Phys. Lett. B 557, 76 (2003), hep-ph/0302025; C. S. Lam, Phys. Lett. B 640, 260 (2006), hep-ph/0606220; W. Grimus, L. Lavoura, J. High Energy Phys., 09, 106 (2008), arXiv:0809.0226 [hep-ph]; C. H. Albright and W. Rodejohann Eur. Phys. J. C 62, 599 (2009), arXiv:0812.0436 [hep-ph]; S. Kumar, Phys. Rev. D 82, 013010 (2010), arXiv:1007.0808 [hep-ph].
  • [31] C. S. Lam, Phys. Rev. D 78, 073015 (2008), arXiv:0809.1185 [hep-ph].