This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Phantom maps and rational homotopy

Hiroshi Kihara Center for Mathematical Sciences, University of Aizu, Tsuruga, Ikki-machi, Aizu-Wakamatsu City, Fukushima, 965-8580, Japan ([email protected])
Abstract.

We generalize theorems of McGibbon-Roitberg, Iriye, and Meier on the relations between phantom maps and rational homotopy, and apply them to provide new calculational examples of the homotopy sets Ph(X,Y){\mathrm{Ph}}(X,Y) of phantom maps and the subsets SPh(X,Y){\mathrm{SPh}}(X,Y) of special phantom maps.

2010 Mathematics Subject Classification:
Primary 55Q05, Secondary 55P60, 55P62

1. Introduction

The concept of a phantom map is a key to understanding maps with infinite dimensional sources, and has been an important topic in homotopy theory since its discovery ([8, 14]). In this paper, we investigate the relationship between phantom maps and rational homotopy, which is a central concern in the study of phantom maps (see [8, 14, 10, 9, 2, 3, 12])

In this section, we make a brief review of the basic notions and results on phantom maps, and present the main results of this paper.

Given two pointed CWCW-complexes XX and YY, a map f:XYf:X\longrightarrow Y is called a phantom map if for any finite complex KK and any map h:KXh:K\longrightarrow X, the composite fhfh is null homotopic. Let Ph(X,Y){\mathrm{Ph}}(X,Y) denote the subset of [X,Y][X,Y] consisting of homotopy classes of phantom maps.

We are also interested in the subset SPh(X,Y){\mathrm{SPh}}(X,Y) of Ph(X,Y){\mathrm{Ph}}(X,Y) consisting of homotopy classes of special phantom maps, defined by the exact sequence of pointed sets

(1.1) 0SPh(X,Y)Ph(X,Y)eYPh(X,Yˇ),0\longrightarrow{\mathrm{SPh}}(X,Y)\longrightarrow{\mathrm{Ph}}(X,Y)\overset{e_{Y\sharp}}{\longrightarrow}{\mathrm{Ph}}(X,\check{Y}),

where eY:YYˇ=𝑝Y(p)e_{Y}:Y\longrightarrow\check{Y}=\underset{p}{\prod}\ Y_{(p)} is a natural map called the local expansion (cf. [14, p. 150]). The target YY is usually assumed to be nilpotent of finite type.

The following theorem is due to McGibbon-Roitberg and Iriye; the statements on phantom maps and special phantom maps are Theorem 2 in [10] and Theorem 1.4 in [2] respectively. See Remark 1.1 for the basic notions used in Theorem A.

Theorem A (1) Let f:XXf:X^{\prime}\longrightarrow X be a map between finite type domains and YY a finite type target. If ff induces a monomorphism on the rational homology, then the maps

f:Ph(X,Y)Ph(X,Y),\displaystyle f^{\sharp}:{\mathrm{Ph}}(X,Y)\longrightarrow{\mathrm{Ph}}(X^{\prime},Y),
f:SPh(X,Y)SPh(X,Y)\displaystyle f^{\sharp}:{\mathrm{SPh}}(X,Y)\longrightarrow{\mathrm{SPh}}(X^{\prime},Y)

are surjective.
(2) Let XX be a finite type domain and g:YYg:Y\longrightarrow Y^{\prime} a map between finite type targets. If gg induces an epimorphism on the rational homotopy groups of degree 2\geq 2, then the maps

g:Ph(X,Y)Ph(X,Y),\displaystyle g_{\sharp}:{\mathrm{Ph}}(X,Y)\longrightarrow{\mathrm{Ph}}(X,Y^{\prime}),
g:SPh(X,Y)SPh(X,Y)\displaystyle g_{\sharp}:{\mathrm{SPh}}(X,Y)\longrightarrow{\mathrm{SPh}}(X,Y^{\prime})

are surjective.

Remark 1.1 

McGibbon-Roitberg [10] and Iriye [2] dealt with skeletally phantom maps under finite type conditions on domains and targets; recall that a connected CWCW-complex is called a finite type domain (resp. finite type target) if its integral homology groups (resp. homotopy groups) are finitely generated in each degree. (See [7, p. 30] and [8, Section 1] for the difference between the two notions of phantom maps.) However, the most important class of finite type domains is that of CWCW-complexes of finite type (i.e. CWCW-complexes with finite skeleta), for which the two notions of phantom maps coincide.

The following theorem is due to Meier ([12, Theorem 5]). Recall that a space is called an H0H_{0}-space if its rationalization is homotopy equivalent to a product of Eilenberg-MacLane spaces. Let ^\hat{{\mathbb{Z}}} denote the product Πp^p\Pi_{p}\hat{{\mathbb{Z}}}_{p} of the pp-completions of {\mathbb{Z}}, in which {\mathbb{Z}} is diagonally contained.

Theorem B Let YY be a nilpotent CWCW-complex of finite type which is an H0H_{0}-space. Suppose that there exists a finite product YY^{\prime} of copies of BUBU and UU, and a map g:YYg:Y\longrightarrow Y^{\prime} inducing a monomorphism on the rational homotopy groups. Then,

Ph(K(,n),Y)i>0Hi(K(,n);πi+1(Y)^/){\mathrm{Ph}}(K({\mathbb{Z}},n),Y)\cong\underset{i>0}{\prod}H^{i}(K({\mathbb{Z}},n);\pi_{i+1}(Y)\otimes\hat{{\mathbb{Z}}}/{\mathbb{Z}})

holds for n3n\geq 3.

We give generalizations of Theorems A and B as two main theorems, and apply them to calculations of Ph(X,Y){\mathrm{Ph}}(X,Y) and SPh(X,Y){\mathrm{SPh}}(X,Y). The proofs are based on the approach introduced in a previous paper [4], which largely extends the rationalization-completion approach developed by Meier and Zabrodsky ([8, Section 5]). Our approach is so general and enables us to give a generalization of Theorem A along with its simple proof. We also provide a generalization of Theorem B along with its dual version; the important idea of Theorem B has been largely overlooked in the literature.

Let 𝒞𝒲{\mathcal{C}}{\mathcal{W}} denote the category of pointed connected CWCW-complexes and homotopy classes of maps and let 𝒩{\mathcal{N}} denote the full subcategory of 𝒞𝒲{\mathcal{C}}{\mathcal{W}} consisting of nilpotent CWCW-complexes of finite type.

The first main theorem is the following.

Theorem 1.2.

Let (fop,g):(X,Y)(X,Y)(f^{op},g):(X,Y)\longrightarrow(X^{\prime},Y^{\prime}) be a morphism of 𝒞𝒲op×𝒩{\mathcal{C}}{\mathcal{W}}^{op}\times{\mathcal{N}}. If Hi(f;πi+1(g))H^{i}(f;\pi_{i+1}(g)\otimes\mathbb{Q}) is an epimorphism for any i>0i>0, then the maps

(f,g):Ph(X,Y)Ph(X,Y),\displaystyle(f^{\sharp},g_{\sharp}):{\mathrm{Ph}}(X,Y)\longrightarrow{\mathrm{Ph}}(X^{\prime},Y^{\prime}),
(f,g):SPh(X,Y)SPh(X,Y)\displaystyle(f^{\sharp},g_{\sharp}):{\mathrm{SPh}}(X,Y)\longrightarrow{\mathrm{SPh}}(X^{\prime},Y^{\prime})

are surjective.

The following corollary, and hence Theorem 1.2 can be regarded as a generalization of Theorem A.

Corollary 1.3.
  • (1)(1)

    Let f:XXf:X^{\prime}\longrightarrow X be a map of 𝒞𝒲{\mathcal{C}}{\mathcal{W}}, and YY an object of 𝒩{\mathcal{N}}. If Hi(f;)H_{i}(f;\mathbb{Q}) is a monomorphism for i>0i>0 with πi+1(Y)0\pi_{i+1}(Y)\otimes\mathbb{Q}\neq 0, then the maps

    f:Ph(X,Y)Ph(X,Y),\displaystyle f^{\sharp}:{\mathrm{Ph}}(X,Y)\longrightarrow{\mathrm{Ph}}(X^{\prime},Y),
    f:SPh(X,Y)SPh(X,Y)\displaystyle f^{\sharp}:{\mathrm{SPh}}(X,Y)\longrightarrow{\mathrm{SPh}}(X^{\prime},Y)

    are surjective.

  • (2)(2)

    Let XX be an object of 𝒞𝒲{\mathcal{C}}{\mathcal{W}} and g:YYg:Y\longrightarrow Y^{\prime} a map of 𝒩{\mathcal{N}}. If πi+1(g)\pi_{i+1}(g)\otimes\mathbb{Q} is an epimorphism for i>0i>0 with Hi(X;)0H_{i}(X;\mathbb{Q})\neq 0, then the maps

    g:Ph(X,Y)Ph(X,Y),\displaystyle g_{\sharp}:{\mathrm{Ph}}(X,Y)\longrightarrow{\mathrm{Ph}}(X,Y^{\prime}),
    g:SPh(X,Y)SPh(X,Y)\displaystyle g_{\sharp}:{\mathrm{SPh}}(X,Y)\longrightarrow{\mathrm{SPh}}(X,Y^{\prime})

    are surjective.

Corollary 1.3 is used to obtain new vanishing results for Ph(X,Y){\mathrm{Ph}}(X,Y) (see Proposition 2.1, Corollary 2.2, and Example 2.4).

Next, to state the second main theorem, we recall the basics of Ph(X,Y){\mathrm{Ph}}(X,Y) and SPh(X,Y){\mathrm{SPh}}(X,Y) from [4]. The set Ph(X,Y){\mathrm{Ph}}(X,Y) (resp. SPh(X,Y){\mathrm{SPh}}(X,Y)) can be described as the orbit space of [X,FY][X,F_{Y}] (resp. [X,FY][X,F^{\prime}_{Y}]) by the natural action of [X,ΩY^][X,\Omega\hat{Y}] (resp. [X,ΩYˇ][X,\Omega\check{Y}]), where FYF_{Y} (resp. FYF^{\prime}_{Y}) is the homotopy fiber of the profinite completion cY:YY^c_{Y}:Y\longrightarrow\hat{Y} (resp. the local expansion eY:YYˇe_{Y}:Y\longrightarrow\check{Y}). Hence, we have the exact sequence of pointed sets

[X,ΩY^][X,FY]𝜋Ph(X,Y)0,\displaystyle[X,\Omega\hat{Y}]\longrightarrow[X,F_{Y}]\overset{\pi}{\longrightarrow}{\mathrm{Ph}}(X,Y)\longrightarrow 0,
[X,ΩYˇ][X,FY]πSPh(X,Y)0\displaystyle[X,\Omega\check{Y}]\longrightarrow[X,F^{\prime}_{Y}]\overset{\pi^{\prime}}{\longrightarrow}{\mathrm{SPh}}(X,Y)\longrightarrow 0

(see [4, Lemma 3.5 and Corollary 5.3]). Further, there exist (noncanonical) bijections

[X,FY]i>0Hi(X;πi+1(Y)^/),\displaystyle[X,F_{Y}]\cong\underset{i>0}{\prod}H^{i}(X;\pi_{i+1}(Y)\otimes\hat{{\mathbb{Z}}}/{\mathbb{Z}}),
[X,FY]i>0Hi(X;πi+1(Y)ˇ/),\displaystyle[X,F^{\prime}_{Y}]\cong\underset{i>0}{\prod}H^{i}(X;\pi_{i+1}(Y)\otimes\check{{\mathbb{Z}}}/{\mathbb{Z}}),

where ˇ\check{{\mathbb{Z}}} denotes the product Πp(p)\Pi_{p}{\mathbb{Z}}_{(p)} of the pp-localizations of {\mathbb{Z}}, in which {\mathbb{Z}} is diagonally contained (see [4, Proposition 5.4 and Remark 5.6]).

Theorem 1.4.

Let (fop,g):(X,Y)(X,Y)(f^{op},g):(X,Y)\longrightarrow(X^{\prime},Y^{\prime}) be a morphism of 𝒞𝒲op×𝒩{\mathcal{C}}{\mathcal{W}}^{op}\times{\mathcal{N}}. If Hi(f;πi+1(g))H^{i}(f;\pi_{i+1}(g)\otimes\mathbb{Q}) is a monomorphism for any i>0i>0, then the following implications hold:

[X,FY]𝜋Ph(X,Y)[X,FY]𝜋Ph(X,Y),\displaystyle[X^{\prime},F_{Y^{\prime}}]\xrightarrow[\cong]{\pi}{\mathrm{Ph}}(X^{\prime},Y^{\prime})\Rightarrow[X,F_{Y}]\xrightarrow[\cong]{\pi}{\mathrm{Ph}}(X,Y),
[X,FY]πSPh(X,Y)[X,FY]πSPh(X,Y).\displaystyle[X^{\prime},F^{\prime}_{Y^{\prime}}]\xrightarrow[\cong]{\pi^{\prime}}{\mathrm{SPh}}(X^{\prime},Y^{\prime})\Rightarrow[X,F^{\prime}_{Y}]\xrightarrow[\cong]{\pi^{\prime}}{\mathrm{SPh}}(X,Y).

Part 2 of the following corollary is a generalization of Theorem B (see Remark 3.3) and Part 1 is its dual version.

Corollary 1.5.
  • (1)

    Let f:XXf:X^{\prime}\longrightarrow X be a map of 𝒞𝒲{\mathcal{C}}{\mathcal{W}}, and YY an object of 𝒩{\mathcal{N}}. If Hi(f;)H_{i}(f;\mathbb{Q}) is an epimorphism for i>0i>0 with πi+1(Y)0\pi_{i+1}(Y)\otimes\mathbb{Q}\neq 0, then the following implications hold:

    [X,FY]𝜋Ph(X,Y)[X,FY]𝜋Ph(X,Y),\displaystyle[X^{\prime},F_{Y}]\xrightarrow[\cong]{\pi}{\mathrm{Ph}}(X^{\prime},Y)\Rightarrow[X,F_{Y}]\xrightarrow[\cong]{\pi}{\mathrm{Ph}}(X,Y),
    [X,FY]πSPh(X,Y)[X,FY]πSPh(X,Y).\displaystyle[X^{\prime},F^{\prime}_{Y}]\xrightarrow[\cong]{\pi^{\prime}}{\mathrm{SPh}}(X^{\prime},Y)\Rightarrow[X,F^{\prime}_{Y}]\xrightarrow[\cong]{\pi^{\prime}}{\mathrm{SPh}}(X,Y).
  • (2)

    Let XX be an object of 𝒞𝒲{\mathcal{C}}{\mathcal{W}} and g:YYg:Y\longrightarrow Y^{\prime} a map of 𝒩{\mathcal{N}}. If πi+1(g)\pi_{i+1}(g)\otimes\mathbb{Q} is a monomorphism for i>0i>0 with Hi(X;)0H_{i}(X;\mathbb{Q})\neq 0, then the following implications hold:

    [X,FY]𝜋Ph(X,Y)[X,FY]𝜋Ph(X,Y),\displaystyle[X,F_{Y^{\prime}}]\xrightarrow[\cong]{\pi}{\mathrm{Ph}}(X,Y^{\prime})\Rightarrow[X,F_{Y}]\xrightarrow[\cong]{\pi}{\mathrm{Ph}}(X,Y),
    [X,FY]πSPh(X,Y)[X,FY]πSPh(X,Y).\displaystyle[X,F^{\prime}_{Y^{\prime}}]\xrightarrow[\cong]{\pi^{\prime}}{\mathrm{SPh}}(X,Y^{\prime})\Rightarrow[X,F^{\prime}_{Y}]\xrightarrow[\cong]{\pi^{\prime}}{\mathrm{SPh}}(X,Y).

Corollary 1.5 can be applied to find various pairs (X,Y)(X,Y) for which Ph(X,Y)Πi>0Hi(X;πi+1(Y)^/){\mathrm{Ph}}(X,Y)\cong\underset{i>0}{\Pi}H^{i}(X;\pi_{i+1}(Y)\otimes\hat{{\mathbb{Z}}}/{\mathbb{Z}}) hold (see Corollary 3.4, Proposition 3.5, Corollary 3.6 and Example 3.7).

The results in this section are proved in Sections 2 and 3.

2. Proof and applications of Theorem 1.2

In this section, we prove Theorem 1.2 and Corollary 1.3, and apply Corollary 1.3 to obtain new vanishing results for Ph(X,Y){\mathrm{Ph}}(X,Y). In this and next sections, the subscript (0) denotes the rationalization of a nilpotent space or a nilpotent group.

Proof of Theorem 1.2.

We can assume that the targets are in the full subcategory 11-𝒞𝒲{\mathcal{C}}{\mathcal{W}} of 𝒞𝒲{\mathcal{C}}{\mathcal{W}} consisting of 11-connected CWCW-complexes ([4, Remark 5.6]).

Recall that there exist natural bijections

Ph(X,Y)\displaystyle{\mathrm{Ph}}(X,Y) \displaystyle\cong (Ωc(0))[X,ΩY(0)]\[X,ΩY^(0)]/(Ω^r)[X,ΩY^],\displaystyle(\Omega c_{(0)})_{\sharp}[X,\Omega Y_{(0)}]\backslash[X,\Omega\hat{Y}_{(0)}]/(\Omega\ \hat{}r)_{\sharp}[X,\Omega\hat{Y}],
SPh(X,Y)\displaystyle{\mathrm{SPh}}(X,Y) \displaystyle\cong (Ωe(0))[X,ΩY(0)]\[X,ΩYˇ(0)]/(Ωˇr)[X,ΩYˇ],\displaystyle(\Omega e_{(0)})_{\sharp}[X,\Omega Y_{(0)}]\backslash[X,\Omega\check{Y}_{(0)}]/(\Omega\ \check{}r)_{\sharp}[X,\Omega\check{Y}],

where ^r\hat{\,}r and ˇr\check{\,}r denote the rationalizations of Y^\hat{Y} and Yˇ\check{Y} respectively ([4, Proposition 5.7]). Recall also that the functor [,Ω(0)]:𝒞𝒲op×1[\,\cdot\,,\Omega\,\cdot_{(0)}]:{\mathcal{C}}{\mathcal{W}}^{op}\times 1-𝒞𝒲Set{\mathcal{C}}{\mathcal{W}}\rightarrow Set is naturally isomorphic to the functor Hom(H(;),π(Ω))i>0Hi(;πi+1()){\mathrm{Hom}}_{\mathbb{Q}}(H_{\ast}(\,\cdot\,;\mathbb{Q}),\pi_{\ast}(\Omega\,\cdot\,)\otimes\mathbb{Q})\cong\underset{i>0}{\prod}H^{i}(\,\cdot\,;\pi_{i+1}(\,\cdot\,)\otimes\mathbb{Q}) ([4, Proposition 4.1]). Then, the result easily follows. ∎

Proof of Corollary 1.3.

The result is immediate from Theorem 1.2

In the rest of this section, we derive vanishing results for Ph(X,Y){\mathrm{Ph}}(X,Y) from Corollary 1.3. Recall the following basic vanishing results:

  • Ph(K,Y)=0{\mathrm{Ph}}(K,Y)=0 for a finite complex KK.

  • Ph(ΩK,Y)=0{\mathrm{Ph}}(\Omega K,Y)=0 for a 11-connected finite complex KK and Y𝒩Y\in{\mathcal{N}}.

The first is obvious from the definition of a phantom map. The second is a result of Iriye [3, Theorem 1.A].

The nn-connected cover XnX\langle n\rangle of XX is called goodgood if the canonical map XnXX\langle n\rangle\longrightarrow X induces a monomorphism on the rational homology.

Proposition 2.1.

Let XX be in 𝒞𝒲{\mathcal{C}}{\mathcal{W}} and YY in 𝒩{\mathcal{N}}, and suppose that Ph(X,Y)=0{\mathrm{Ph}}(X,Y)=0. If the nn-connected cover XnX\langle n\rangle is good, then Ph(Xn,Y)=0{\mathrm{Ph}}(X\langle n\rangle,Y)=0.

Proof.

The result follows from Corollary 1.3(1). ∎

Recall the definition of an H0H_{0}-space from Section 1.

Corollary 2.2.
  • (1)(1)

    If KK is a nilpotent finite complex which is an H0H_{0}-space, then Ph(Kn,Y)=0{\mathrm{Ph}}(K\langle n\rangle,Y)=0 for any n>0n>0 and any Y𝒩Y\in{\mathcal{N}}.

  • (2)(2)

    If KK is a 11-connected finite complex, then Ph(ΩKn,Y)=0{\mathrm{Ph}}(\Omega K\langle n\rangle,Y)=0 for any n>0n>0 and any Y𝒩Y\in{\mathcal{N}}.

Proof.

As mentioned above, if XX is a finite complex or the loop space of a 11-connected finite complex, then Ph(X,Y)=0{\mathrm{Ph}}(X,Y)=0 for any Y𝒩Y\in{\mathcal{N}}. Note that if XX is an H0H_{0}-space, then the nn-connected cover XnX\langle n\rangle is good. Then, the results follow from Proposition 2.1. ∎

Remark 2.3 

Let KK be a 11-connected finite complex with π2\pi_{2} finite. Then, we can use [4, Corollary 2.9] along with Proposition 2.1 to prove that KnK\langle n\rangle is good if and only if Ph(Kn,Y)=0{\mathrm{Ph}}(K\langle n\rangle,Y)=0 for any Y𝒩Y\in{\mathcal{N}}, giving an alternative proof of [11, Theorem 6].

We end this section with an application of Corollary 1.3(2). For a GG-space XX, the homotopy orbit space XhGX_{hG} of XX (or the Borel construction on XX) is defined by

XhG=EG×GX,X_{hG}=EG\times_{G}X,

where EGEG is the total space of the universal principal GG-bundle (see [6]).

Example 2.4 

Let GG be a compact Lie group and XX a finite GG-CWCW-complex. Let 𝔾{\mathbb{G}} denote the infinite unitary group UU or the infinite orthogonal group O, and let HH be a compact Lie group which is a topological subgroup of 𝔾{\mathbb{G}}. Let kk be a nonnegative integer. If πi+1(H)πi+1(𝔾)\pi_{i+1}(H)\otimes{\mathbb{Q}}\longrightarrow\pi_{i+1}({\mathbb{G}})\otimes{\mathbb{Q}} is a monomorphism for i>0i>0 with Hi(ΣkXhG;)0H_{i}(\Sigma^{k}X_{hG};{\mathbb{Q}})\neq 0, then

Ph(XhG,Ωk𝔾/H)=0.{\mathrm{Ph}}(X_{hG},\Omega^{k}{\mathbb{G}}/H)=0.
Proof.

Recall from [5, Section 2.3] that

Ph(XhG,Ωk𝔾/H)Ph(ΣkXhG,𝔾/H){\mathrm{Ph}}(X_{hG},\Omega^{k}{\mathbb{G}}/H)\cong{\mathrm{Ph}}(\Sigma^{k}X_{hG},{\mathbb{G}}/H)

and that

Ph(ΣkXhG,𝔾)=0.{\mathrm{Ph}}(\Sigma^{k}X_{hG},{\mathbb{G}})=0.

Then, the result follows from Corollary 1.3(2). ∎

3. Proof and applications of Theorem 1.4

In this section, we prove Theorem 1.4 and Corollary 1.5, and apply Corollary 1.5 to find various pairs (X,Y)(X,Y) for which Ph(X,Y)Πi>0Hi(X;πi+1(Y)^/){\mathrm{Ph}}(X,Y)\cong\underset{i>0}{\Pi}H^{i}(X;\pi_{i+1}(Y)\otimes\hat{{\mathbb{Z}}}/{\mathbb{Z}}) hold.

For the proof of Theorem 1.4, we need the following lemma.

Lemma 3.1.

Let GG and HH be groups, and GG^{\prime} and HH^{\prime} subgroups of GG and HH respectively. Consider a morphism of short exact sequences of pointed sets

{\ast}G{G^{\prime}}G{G}G/G{G/G^{\prime}}{\ast}{\ast}H{H^{\prime}}H{H}H/H{H/H^{\prime}}{\ast}

where left and middle vertical arrows are monomorphisms of groups. Then, the right vertical arrow is injective if and only if the left square is a pullback diagram in Set.

Proof.

()(\Leftarrow) Let g1¯\bar{g_{1}} and g2¯\bar{g_{2}} be elements of G/GG/G^{\prime} such that g1¯=g2¯\bar{g_{1}}=\bar{g_{2}} in H/HH/H^{\prime}. Then, g1h=g2g_{1}h^{\prime}=g_{2} for some hHh^{\prime}\in H^{\prime}. Since h=g11g2Gh^{\prime}=g_{1}^{-1}g_{2}\in G, hHG=Gh^{\prime}\in H^{\prime}\cap G=G^{\prime}, and hence g1¯=g2¯\bar{g_{1}}=\bar{g_{2}} in G/GG/G^{\prime}.
()(\Rightarrow) Suppose that the left square is not a pullback diagram in SetSet. Then, we can choose an element hHG\Gh^{\prime}\in H^{\prime}\cap G\backslash G^{\prime}. Since h¯e¯\bar{h^{\prime}}\neq\bar{e} in G/GG/G^{\prime} and h¯=e¯\bar{h^{\prime}}=\bar{e} in H/HH/H^{\prime}, the right vertical arrow is not injective. ∎

Proof of Theorem 1.4.

We prove the first implication; the proof of the second implication is similar.

By [4, Remark 5.6], we assume that YY and YY^{\prime} are 11-connected.

For a 11-connected CWCW-complex ZZ of finite type, we have the fibration sequence

FZZcZZ^.F_{Z}\longrightarrow Z\overset{c_{Z}}{\longrightarrow}\hat{Z}.

Since FZF_{Z} is a simple rational space ([4, Proposition 5.4]), we obtain from this the fibration sequence

ΩZ(0)ΩZ^(0)FZ.\Omega Z_{(0)}\longrightarrow\Omega\hat{Z}_{(0)}\longrightarrow F_{Z}.

Since this is a trivial principal fibration ([4, Proposition 3.1]), the map [A,ΩZ(0)][A,ΩZ^(0)][A,\Omega Z_{(0)}]\longrightarrow[A,\Omega\hat{Z}_{(0)}] is a monomorphism of groups and the map [A,ΩZ^(0)][A,FY][A,\Omega\hat{Z}_{(0)}]\longrightarrow[A,F_{Y}] can be identified with the quotient map for the action of [A,ΩZ(0)][A,\Omega Z_{(0)}] for any A𝒞𝒲A\in{\mathcal{C}}{\mathcal{W}}.

Thus, we consider the morphism of short exact sequences of pointed sets

{\ast}[X,ΩY(0)]{\,[X,\Omega Y_{(0)}]}[X,ΩY^(0)]{\,[X,\Omega\hat{Y}_{(0)}]}[X,FY]{\,[X,F_{Y}]}{\ast}{\ast}[X,ΩY(0)]{\,[X^{\prime},\Omega Y^{\prime}_{(0)}]}[X,ΩY^(0)]{\,[X^{\prime},\Omega\hat{Y^{\prime}}_{(0)}]}[X,FY]{\,[X^{\prime},F_{Y^{\prime}}]}{\ast}(fop,Ωg(0))\scriptstyle{(f^{op},\Omega g_{(0)})_{\sharp}}(fop,Ωg^(0))\scriptstyle{(f^{op},\Omega\hat{g}_{(0)})_{\sharp}}(fop,Fg)\scriptstyle{(f^{op},F_{g})_{\sharp}}

Recall that the functor [,Ω(0)]:𝒞𝒲op×1[\,\cdot\,,\Omega\,\cdot_{(0)}]:{\mathcal{C}}{\mathcal{W}}^{op}\times 1-𝒞𝒲Set{\mathcal{C}}{\mathcal{W}}\rightarrow Set is naturally isomorphic to the functor i>0Hi(;πi+1())\underset{i>0}{\prod}H^{i}(\,\cdot\,;\pi_{i+1}(\,\cdot\,)\otimes\mathbb{Q}) ([4, Proposition 4.1]) and identify the left square in (3.1) with the square

i>0Hi(X;πi+1(Y)(0)){\underset{i>0}{\prod}H^{i}(X;\pi_{i+1}(Y)_{(0)})}i>0Hi(X;πi+1(Y)^(0)){\underset{i>0}{\prod}H^{i}(X;\pi_{i+1}(Y)\otimes\hat{{\mathbb{Z}}}_{(0)})}i>0Hi(X;πi+1(Y)(0)){\underset{i>0}{\prod}H^{i}(X^{\prime};\pi_{i+1}(Y^{\prime})_{(0)})}i>0Hi(X;πi+1(Y)^(0)){\underset{i>0}{\prod}H^{i}(X^{\prime};\pi_{i+1}(Y^{\prime})\otimes\hat{{\mathbb{Z}}}_{(0)})}i>0Hi(f;πi+1(g)(0))\scriptstyle{\underset{i>0}{\prod}H^{i}(f;\pi_{i+1}(g)_{(0)})}i>0Hi(f;πi+1(g)^(0))\scriptstyle{\underset{i>0}{\prod}H^{i}(f;\pi_{i+1}(g)\otimes\hat{{\mathbb{Z}}}_{(0)})}

in the category of sets. Then, we see from the assumption that the two vertical arrows in (3.2), and hence the left and middle vertical arrows in (3.1) are injective.

Now, consider the morphism of short exact sequences of {\mathbb{Q}}-modules

0{0}i>0Hi(X;πi+1(Y)(0)){\underset{i>0}{\prod}H^{i}(X;\pi_{i+1}(Y)_{(0)})}i>0Hi(X;πi+1(Y)^(0)){\underset{i>0}{\prod}H^{i}(X;\pi_{i+1}(Y)\otimes\hat{{\mathbb{Z}}}_{(0)})}i>0Hi(X;πi+1(Y)^/){\underset{i>0}{\prod}H^{i}(X;\pi_{i+1}(Y)\otimes\hat{{\mathbb{Z}}}/{\mathbb{Z}})}0{0}0{0}i>0Hi(X;πi+1(Y)(0)){\underset{i>0}{\prod}H^{i}(X^{\prime};\pi_{i+1}(Y^{\prime})_{(0)})}i>0Hi(X;πi+1(Y)^(0)){\underset{i>0}{\prod}H^{i}(X^{\prime};\pi_{i+1}(Y^{\prime})\otimes\hat{{\mathbb{Z}}}_{(0)})}i>0Hi(X;πi+1(Y)^/){\underset{i>0}{\prod}H^{i}(X^{\prime};\pi_{i+1}(Y^{\prime})\otimes\hat{{\mathbb{Z}}}/{\mathbb{Z}})}0{0}i>0Hi(f;πi+1(g)(0))\scriptstyle{\underset{i>0}{\prod}H^{i}(f;\pi_{i+1}(g)_{(0)})}i>0Hi(f;πi+1(g)^(0))\scriptstyle{\underset{i>0}{\prod}H^{i}(f;\pi_{i+1}(g)\otimes\hat{{\mathbb{Z}}}_{(0)})}i>0Hi(f;πi+1(g)^/)\scriptstyle{\underset{i>0}{\prod}H^{i}(f;\pi_{i+1}(g)\otimes\hat{{\mathbb{Z}}}/{\mathbb{Z}})}

which extends (3.2). Since the right vertical arrow is injective by the assumption, the left square is a pullback diagram in SetSet (Lemma 3.1). Thus, the right vertical arrow in (3.1) is injective by Lemma 3.1.

Next consider the commutative diagram

[X,FY]{\ [X,F_{Y}]}[X,FY]{\ [X^{\prime},F_{Y^{\prime}}]}Ph(X,Y){{\mathrm{Ph}}(X,Y)}Ph(X,Y){{\mathrm{Ph}}(X^{\prime},Y^{\prime})}(fop,Fg)\scriptstyle{(f^{op},F_{g})_{\sharp}}π\scriptstyle{\pi}π\scriptstyle{\pi}(fop,g)\scriptstyle{(f^{op},g)_{\sharp}}

and recall that the vertical arrows are quotient maps. Since the upper horizontal arrow (fop,Fg)(f^{op},F_{g})_{\sharp} is injective, the implication in question is obvious. ∎

Proof of Corollary 1.5.

The result is immediate from Theorem 1.4. ∎

Remark 3.2 

For (X,Y)𝒞𝒲op×𝒩(X,Y)\in{\mathcal{C}}{\mathcal{W}}^{\rm op}\times{\mathcal{N}}, there exist no natural bijections

[X,FY]i>0Hi(X;πi+1(Y)^/),\displaystyle[X,F_{Y}]\cong\underset{i>0}{\prod}H^{i}(X;\pi_{i+1}(Y)\otimes\hat{{\mathbb{Z}}}/{\mathbb{Z}}),
[X,FY]i>0Hi(X;πi+1(Y)ˇ/).\displaystyle[X,F^{\prime}_{Y}]\cong\underset{i>0}{\prod}H^{i}(X;\pi_{i+1}(Y)\otimes\check{{\mathbb{Z}}}/{\mathbb{Z}}).

However, if we restrict ourselves to the subclass 𝒬{\mathcal{Q}} of 𝒞𝒲op×𝒩{\mathcal{C}}{\mathcal{W}}^{\rm op}\times{\mathcal{N}}, then the above bijections can be taken to be natural ones ([4, Proposition 5.10]), which induce natural divisible abelian group structures on Ph(X,Y){\mathrm{Ph}}(X,Y) and SPh(X,Y){\mathrm{SPh}}(X,Y) ([4, Theorem 2.3]). Here, the subclass 𝒬{\mathcal{Q}} is defined by the following condition:

  • (Q)

    For each pair i,j>0i,j>0, the rational cup product

    :Hi(X;)Hj(X;)Hi+j(X;)\ \cup:\ H^{i}(X;{\mathbb{Q}})\otimes H^{j}(X;{\mathbb{Q}})\longrightarrow H^{i+j}(X;{\mathbb{Q}})

    or the rational Whitehead product

    [,]:(πi+1(Y))(πj+1(Y))πi+j+1(Y)[\ ,\ ]:\ (\pi_{i+1}(Y)\otimes{\mathbb{Q}})\otimes(\pi_{j+1}(Y)\otimes{\mathbb{Q}})\longrightarrow\pi_{i+j+1}(Y)\otimes{\mathbb{Q}}

    is trivial.

Let us recall the generalizations of Miller’s theorem [13] and Anderson-Hodgkin’s theorem [1] to obtain many pairs (X,Y)(X,Y^{\prime}) with [X,FY]𝜋Ph(X,Y)[X,F_{Y^{\prime}}]\xrightarrow[\cong]{\pi}{\mathrm{Ph}}(X,Y^{\prime}). A space whose ithi^{\rm th} homotopy group is zero for ini\leq n and locally finite for i=n+1i=n+1 is said to be n12n\frac{1}{2}-connected. Define the classes 𝒜\mathcal{A}, \mathcal{B}, 𝒜\mathcal{A}^{\prime} and \mathcal{B}^{\prime} by

  1. 𝒜\mathcal{A} =

    the class of 12\frac{1}{2}-connected Postnikov spaces, the classifying spaces of compact Lie groups, 12\frac{1}{2}-connected infinite loop spaces and their iterated suspensions.

  2. \mathcal{B} =

    the class of nilpotent finite complexes, the classifying spaces of compact Lie groups and their iterated loop spaces.

  3. 𝒜\mathcal{A}^{\prime} =

    the class of 112{1}\frac{1}{2}-connected Postnikov spaces of finite type and their iterated suspensions.

  4. \mathcal{B}^{\prime} =

    the class of BUBU, BOBO, BSpBSp, BSOBSO, U/SpU/Sp, Sp/USp/U, SO/USO/U, U/SOU/SO, and their iterated loop spaces.

If (X,Y)(X,Y^{\prime}) is in 𝒜×{\mathcal{A}}\times{\mathcal{B}} or 𝒜×{\mathcal{A}}^{{}^{\prime}}\times{\mathcal{B}}^{{}^{\prime}}, then [X,ΩY^]=0{[X,\Omega\hat{Y^{\prime}}]=0} ([4, Corollary 6.4]), and hence [X,FY]𝜋Ph(X,Y)[X,F_{Y^{\prime}}]\xrightarrow[\cong]{\pi}{\mathrm{Ph}}(X,Y^{\prime}) and [X,FY]πSPh(X,Y)[X,F^{\prime}_{Y^{\prime}}]\xrightarrow[\cong]{\pi^{\prime}}{\mathrm{SPh}}(X,Y^{\prime}) ([4, Propositions 6.1 and 2.5]).

Remark 3.3 

Note that K(,n)K({\mathbb{Z}},n) is in 𝒜{\mathcal{A}}^{\prime} for n3n\geq 3 and that UU and BUBU are in {\mathcal{B}}^{\prime}. Also note that a space YY as in Theorem B has trivial rational Whitehead products. Then, we see that Corollary 1.5(2) implies Theorem B (see Remark 3.2).

Part 1 of the following corollary is a direct generalization of [12, Corollary 2 in Section 2]. For a connected CWCW-complex KK, Q(K)Q(K) denotes the infinite loop space defined by Q(K)=colim𝑛ΩnΣnKQ(K)=\underset{n}{\rm colim}\,\Omega^{n}\Sigma^{n}K.

Corollary 3.4.
  • (1)

    Let XX be a space in 𝒜{\mathcal{A}}^{\prime}. Then, there exist natural isomorphisms of abelian groups

    Ph(X,QSp)Hp1(X;^/),\displaystyle{\mathrm{Ph}}(X,QS^{p})\cong H^{p-1}(X;\hat{{\mathbb{Z}}}/{\mathbb{Z}}),
    SPh(X,QSp)Hp1(X;ˇ/).\displaystyle{\mathrm{SPh}}(X,QS^{p})\cong H^{p-1}(X;\check{{\mathbb{Z}}}/{\mathbb{Z}}).
  • (2)

    Let KK be a 2122\frac{1}{2}-connected finite complex. If ndimKn\geq\dim K, then there exist natural isomorphisms of abelian groups

    Ph(Kn,QSp)Hp1(Kn;^/),\displaystyle{\mathrm{Ph}}(K\langle n\rangle,QS^{p})\cong H^{p-1}(K\langle n\rangle;\hat{{\mathbb{Z}}}/{\mathbb{Z}}),
    SPh(Kn,QSp)Hp1(Kn;ˇ/).\displaystyle{\mathrm{SPh}}(K\langle n\rangle,QS^{p})\cong H^{p-1}(K\langle n\rangle;\check{{\mathbb{Z}}}/{\mathbb{Z}}).
Proof.

See Remark 3.2 for the natural abelian group structures on Ph(A,QSp){\mathrm{Ph}}(A,QS^{p}) and SPh(A,QSp){\mathrm{SPh}}(A,QS^{p}).

  • (1)

    QSpQS^{p} admits a map to UU (resp. BUBU) which induces monomorphisms on the rational homotopy groups for pp odd (resp. even); see [12, p. 476]. Thus, the result follows from [4, Proposition 2.5] and Corollary 1.5(2).

  • (2)

    We see from [4, Corollary 2.9] that

    [Kn,FY]𝜋Ph(Kn,Y) and [Kn,FY]πSPh(Kn,Y)[K\langle n\rangle,F_{Y^{\prime}}]\overset{\pi}{\longrightarrow}{\mathrm{Ph}}(K\langle n\rangle,Y^{\prime})\text{ and }[K\langle n\rangle,F^{\prime}_{Y^{\prime}}]\overset{\pi^{\prime}}{\longrightarrow}{\mathrm{SPh}}(K\langle n\rangle,Y^{\prime})

    are bijective for YY^{\prime}\in{\mathcal{B}}^{\prime}. Thus, the result follows from Corollary 1.5(2) (see the proof of Part 1).∎

Proposition 3.5.

Let XX be in 𝒞𝒲{\mathcal{C}}{\mathcal{W}} and YY^{\prime} in 𝒩{\mathcal{N}}. Then, the following implications hold for any m>0m>0;

[X,FY]𝜋Ph(X,Y)[X,FYm]𝜋Ph(X,Ym),\displaystyle[X,F_{Y^{\prime}}]\xrightarrow[\cong]{\pi}{\mathrm{Ph}}(X,Y^{\prime})\Rightarrow[X,F_{Y^{\prime}\langle m\rangle}]\xrightarrow[\cong]{\pi}{\mathrm{Ph}}(X,Y^{\prime}\langle m\rangle),
[X,FY]𝜋SPh(X,Y)[X,FYm]𝜋SPh(X,Ym).\displaystyle[X,F^{\prime}_{Y^{\prime}}]\xrightarrow[\cong]{\pi}{\mathrm{SPh}}(X,Y^{\prime})\Rightarrow[X,F^{\prime}_{Y^{\prime}\langle m\rangle}]\xrightarrow[\cong]{\pi}{\mathrm{SPh}}(X,Y^{\prime}\langle m\rangle).
Proof.

The result follows from Corollary 1.5(2). ∎

Corollary 3.6.

Let (X,Y)(X,Y^{\prime}) be in 𝒜×\mathcal{A}\times\mathcal{B} or 𝒜×\mathcal{A}^{\prime}\times\mathcal{B}^{\prime}, and let mm be a positive integer. Then there exist (noncanonical) bijections

Ph(X,Ym)\displaystyle{\mathrm{Ph}}(X,Y^{\prime}\langle m\rangle) \displaystyle\cong i>0Hi(X;πi+1(Ym)^/),\displaystyle\underset{i>0}{\prod}\ H^{i}(X;\pi_{i+1}(Y^{\prime}\langle m\rangle)\otimes\hat{\mathbb{Z}}/\mathbb{Z}),
SPh(X,Ym)\displaystyle{\mathrm{SPh}}(X,Y^{\prime}\langle m\rangle) \displaystyle\cong i>0Hi(X;πi+1(Ym)ˇ/).\displaystyle\underset{i>0}{\prod}\ H^{i}(X;\pi_{i+1}(Y^{\prime}\langle m\rangle)\otimes\check{\mathbb{Z}}/{\mathbb{Z}}).
Proof.

The result follows from Proposition 3.5. ∎

Corollary 3.6, and hence Proposition 3.5 can be regarded as a generalization of [5, Corollary 1.2] (see Remark 3.2).

We end this section with an application of Corollary 1.5(1). The Grassmannians Gn(𝔽)G_{n}(\mathbb{F}) and G(𝔽)G_{\infty}(\mathbb{F}) are defined by Gn(𝔽)=limmGn,m(𝔽)G_{n}(\mathbb{F})=\underset{\longrightarrow}{\lim}_{m}\ G_{n,m}(\mathbb{F}) and G(𝔽)=limnGn(𝔽)G_{\infty}(\mathbb{F})=\underset{\longrightarrow}{\lim}_{n}\ G_{n}(\mathbb{F}) for 𝔽=,,\mathbb{F}=\mathbb{R},\mathbb{C},\mathbb{H}, where the finite Grassmannian Gn,m(𝔽)G_{n,m}(\mathbb{F}) is the space of nn-dimensional subspaces in 𝔽n+m\mathbb{F}^{n+m}.

Example 3.7 

Let Gn(𝔽)/Gn,m(𝔽)G_{n}({\mathbb{F}})/G_{n^{\prime},m^{\prime}}({\mathbb{F}}) be the quotient complex of Gn(𝔽)G_{n}({\mathbb{F}}) by Gn,m(𝔽)G_{n^{\prime},m^{\prime}}({\mathbb{F}}) (n,m<,nn)(n^{\prime},m^{\prime}<\infty,\ n^{\prime}\leq n\leq\infty). Let YY be a space in {\mathcal{B}}. If 𝔽=\mathbb{F}=\mathbb{C} or \mathbb{H}, then there exist (noncanonical) bijections

Ph(Gn(𝔽)/Gn,m(𝔽),Y)\displaystyle{\mathrm{Ph}}(G_{n}(\mathbb{F})/G_{n^{\prime},m^{\prime}}(\mathbb{F}),Y) \displaystyle\cong i>0Hi(Gn(𝔽)/Gn,m(𝔽);πi+1(Y)^/),\displaystyle\underset{i>0}{\prod}\,H^{i}(G_{n}(\mathbb{F})/G_{n^{\prime},m^{\prime}}(\mathbb{F});\pi_{i+1}(Y)\otimes\hat{\mathbb{Z}}/\mathbb{Z}),
SPh(Gn(𝔽)/Gn,m(𝔽),Y)\displaystyle{\mathrm{SPh}}(G_{n}(\mathbb{F})/G_{n^{\prime},m^{\prime}}(\mathbb{F}),Y) \displaystyle\cong i>0Hi(Gn(𝔽)/Gn,m(𝔽);πi+1(Y)ˇ/).\displaystyle\underset{i>0}{\prod}\,H^{i}(G_{n}(\mathbb{F})/G_{n^{\prime},m^{\prime}}(\mathbb{F});\pi_{i+1}(Y)\otimes\check{\mathbb{Z}}/\mathbb{Z}).
Proof.

Note that the quotient map Gn(𝔽)Gn(𝔽)/Gn,m(𝔽)G_{n}(\mathbb{F})\longrightarrow G_{n}(\mathbb{F})/G_{n^{\prime},m^{\prime}}(\mathbb{F}) induces an epimorphism on the rational homology. Since Gn(𝔽)G_{n}(\mathbb{F}) is in 𝒜{\mathcal{A}}, the maps

[Gn(𝔽),FY]𝜋Ph(Gn(𝔽),Y) and [Gn(𝔽),FY]πSPh(Gn(𝔽),Y)[G_{n}(\mathbb{F}),F_{Y}]\overset{\pi}{\longrightarrow}{\mathrm{Ph}}(G_{n}(\mathbb{F}),Y)\text{ and }[G_{n}(\mathbb{F}),F^{\prime}_{Y}]\overset{\pi^{\prime}}{\longrightarrow}{\mathrm{SPh}}(G_{n}(\mathbb{F}),Y)

are bijective ([4, Proposition 2.5]). Thus, the result follows from Corollary 1.5(1). ∎

If (Gn(𝔽)/Gn,m(𝔽),Y)(G_{n}(\mathbb{F})/G_{n^{\prime},m^{\prime}}(\mathbb{F}),Y) is in 𝒬{\mathcal{Q}}, then we can obtain a more precise result (see [4, Example 6.6]).

References

  • [1] D.W. Anderson and L. Hodgkin: The K-theory of Eilenberg-MacLane complexes, Topology 7 (1968), 317-329.
  • [2] K. Iriye: The first derived functor of the inverse limit and localization., Journal of Pure and Applied Algebra 173.1 (2002): 7-14.
  • [3] K. Iriye: Rational equivalence and phantom map out of a loop space, II, J. Math. Kyoto Univ. 44 (2004), 595-601.
  • [4] H. Kihara: Groups of homotopy classes of phantom maps, Algebraic & geometric topology 18.1 (2018), 583-612.
  • [5] H. Kihara: Phantom maps and fibrations, preprint, available at http://arxiv.org/abs/2004.00290.
  • [6] J. P. May, et al: Equivariant homotopy and cohomology theory: Dedicated to the memory of Robert J, Piacenza. No. 91. American Mathematical Soc., 1996.
  • [7] J. P. May and K. Ponto: More Concise Algebraic Topology: localization, completion, and model categories, University of Chicago Press (2012).
  • [8] C. A. McGibbon: Phantom maps, in : Handbook of Algebraic Topology, North-Holland, Amsterdam (1995), 1209-1257.
  • [9] C A McGibbon and J Roitberg: Phantom maps and rational equivalences, II, Bol. Soc. Mat. Mexicana 37 (1992) 367–381.
  • [10] C. A. McGibbon and J. Roitberg: Phantom maps and rational equivalences, American Journal of Mathematics 116.6 (1994), 1365-1379.
  • [11] C.A. McGibbon and J. Roitberg: Connective coverings, phantom maps and genus sets, Indiana University mathematics journal (1998), 1433-1458.
  • [12] W. Meier: Pullback theorems and phantom maps, Quart. J. Math. Oxford Ser. (2) 29 (1978), no. 116, 469-481.
  • [13] H. Miller: The Sullivan conjecture on maps from classifying spaces, Ann. Math. 120 (1984), 39–87.
  • [14] J. Roitberg: Computing homotopy classes of phantom maps, CRM Proceedings and Lecture Notes, 6(1994), pp. 141-168