This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Perverse–Hodge complexes for Lagrangian fibrations

Junliang Shen Department of Mathematics, Yale University, New Haven, CT 06511, USA [email protected]  and  Qizheng Yin BICMR, Peking University, Beijing 100871, China [email protected]
    • scAbstract. Perverse–Hodge complexes are objects in the derived category of coherent sheaves obtained from Hodge modules associated with Saito’s decomposition theorem. We study perverse–Hodge complexes for Lagrangian fibrations and propose a symmetry between them. This conjectural symmetry categorifies the authors’ “perverse = Hodge” identity and specializes to Matsushita’s theorem on the higher direct images of the structure sheaf. We verify our conjecture in several cases by making connections with variations of Hodge structures, Hilbert schemes, and Looijenga–Lunts–Verbitsky Lie algebras.


      scKeywords. Holomorphic symplectic varieties, Lagrangian fibrations, perverse sheaves, Hodge modules

      sc2020 Mathematics Subject Classification. 14J42, 14D06, 14F10

  •  
    cJune 2, 2023Received by the Editors on May 27, 2022.
    Accepted on June 18, 2023.


    Department of Mathematics, Yale University, New Haven, CT 06511, USA

    sce-mail: [email protected]

    BICMR, Peking University, Beijing 100871, China

    sce-mail: [email protected]

    J. S. is supported by the NSF grant DMS-2134315. Q. Y. is supported by the NSFC grants 11831013 and 11890661.


    © by the author(s) This work is licensed under http://creativecommons.org/licenses/by-sa/4.0/

1.  Introduction

1.1.  Perverse–Hodge symmetry

For a compact irreducible symplectic variety(1)(1)(1)We say that MM is irreducible symplectic if it is a compact Kähler manifold such that H0(M,)M2H^{0}(M,{}_{M}^{2}) is spanned by a nowhere degenerate 22-form. MM of dimension 2n2n with a Lagrangian fibration π:MB\pi\colon M\to B, the decomposition theorem, cf. [BBD82],

(1.1) RπQM[2n]i=nnPi[i],Pi=pi(RπQM[2n])Perv(B)R\pi_{*}{\mathbb{Q}}_{M}[2n]\simeq\bigoplusop\displaylimits_{i=-n}^{n}P_{i}[-i],\quad P_{i}={{p}{\mathcal{H}}}^{i}\left(R\pi_{*}{\mathbb{Q}}_{M}[2n]\right)\in\operatorname{Perv}(B)

provides important invariants for the topology of π\pi. A perverse–Hodge symmetry was proven in [SY22], connecting the cohomology of the perverse sheaves PiP_{i} with the Hodge numbers of MM.

Theorem 1.1 (cf. [SY22]).

We have

(1.2) hjn(B,Pin)=hi,j(M).h^{j-n}(B,P_{i-n})=h^{i,j}(M).

Here h()h^{*}(-) stands for dimH()\dim H^{*}(-), and hi,j()h^{i,j}(-) denotes the Hodge number.

The identity (1.2) governs the cohomology of the Lagrangian base, the invariant cohomology of a nonsingular fiber of π\pi, and the Gokapumar–Vafa theory of K3K3 surfaces; we refer to [SY22, FSY22, HLS+21, HM22] for more discussions on Theorem 1.1 and its applications.

The purpose of this paper is to explore and propose a categorification of the perverse–Hodge symmetry. It suggests that Theorem 1.1 should conceptually be viewed as a cohomological shadow of a sheaf-theoretic symmetry for Lagrangian fibrations with possibly noncompact ambient spaces MM. It is a mysterious phenomenon since all existing proofs of (1.2), cf. [SY22, HLS+21, HM22], rely heavily on the global cohomological properties of compact irreducible symplectic manifolds, and they do not “explain” why such a categorification should exist. Our formulation uses perverse–Hodge complexes constructed from Hodge modules.

1.2.  Perverse–Hodge complexes

Let (M,σ)(M,\sigma) be a nonsingular quasi-projective symplectic variety of dimension 2n2n. Here σ\sigma is a closed nowhere degenerate holomorphic 22-form on MM. Let π:MB\pi\colon M\to B be a proper Lagrangian fibration onto a nonsingular base BB; i.e., the restriction of the symplectic form σ\sigma to regular part of a fiber vanishes. Interesting examples of π\pi include Lagrangian fibrations of compact irreducible symplectic varieties, cf. [Bea91], and Hitchin’s integrable systems, cf. [Hit87a, Hit87b].

By Saito’s theory [Sai89, Sai90], the decomposition theorem (1.1) can be upgraded to an identity in the bounded derived category of Hodge modules. Let QMH[2n]{\mathbb{Q}}_{M}^{H}[2n] be the trivial Hodge module, i.e., the pure Hodge module associated with the shifted trivial local system QM[2n]{\mathbb{Q}}_{M}[2n]. We have

(1.3) π+QMH[2n]i=nnPiH[i],PiH=i(π+QMH[2n]).\pi_{+}{\mathbb{Q}}_{M}^{H}[2n]\simeq\bigoplusop\displaylimits_{i=-n}^{n}P_{i}^{H}[-i],\quad P_{i}^{H}={\mathcal{H}}^{i}\left(\pi_{+}{\mathbb{Q}}_{M}^{H}[2n]\right).

The Hodge module PiHP_{i}^{H} consists of a regular holonomic (left-)𝒟B{\mathcal{D}}_{B}-module 𝒫i{\mathcal{P}}_{i} equipped with a good filtration F𝒫iF_{\bullet}{\mathcal{P}}_{i}; it corresponds to the perverse sheaf PiP_{i} under the Riemann–Hilbert correspondence. The increasing filtration F𝒫iF_{\bullet}{\mathcal{P}}_{i} induces an increasing filtration on the de Rham complex

DR(𝒫i)=[𝒫i𝒫iB1𝒫i]Bn[n].\operatorname{DR}({\mathcal{P}}_{i})=\left[{\mathcal{P}}_{i}\longrightarrow{\mathcal{P}}_{i}\otimes{}^{1}_{B}\longrightarrow\cdots\longrightarrow{\mathcal{P}}_{i}\otimes{}^{n}_{B}\right]\![n].

The associated graded pieces are natural objects in the bounded derived category of coherent sheaves on BB,

grkFDR(𝒫i)DbCoh(B).\operatorname{gr}^{F}_{k}\operatorname{DR}({\mathcal{P}}_{i})\in D^{b}\operatorname{Coh}(B).

Up to re-indexing and shifting, we define

𝒢i,k:=grkFDR(𝒫in)[ni].{\mathcal{G}}_{i,k}:=\operatorname{gr}^{F}_{-k}\operatorname{DR}({\mathcal{P}}_{i-n})[n-i].

We call 𝒢i,k{\mathcal{G}}_{i,k} the perverse–Hodge complexes associated with the Lagrangian fibration π\pi; here ii is the perverse degree, and kk is the Hodge degree. The object 𝒢i,k{\mathcal{G}}_{i,k} is nontrivial only if 0i,k2n0\leq i,k\leq 2n.

Our main proposal is the following conjectural symmetry between perverse–Hodge complexes.

Conjecture 1.2.

Let π:MB\pi\colon M\to B be a Lagrangian fibration. We have

𝒢i,k𝒢k,iDbCoh(B).{\mathcal{G}}_{i,k}\simeq{\mathcal{G}}_{k,i}\in D^{b}\operatorname{Coh}(B).

As in Theorem 1.5, Conjecture 1.2 categorifies a refined version of Theorem 1.1 when MM is a compact irreducible symplectic variety. By Proposition 3.3, it also recovers Matsushita’s result [Mat05] on the higher direct images of 𝒪M{\mathcal{O}}_{M}.

1.3.  Main results

We provide evidence for Conjecture 1.2 and verify it in several cases.

1.3.1.  Smooth morphisms

Our first theorem verifies Conjecture 1.2 when π:MB\pi\colon M\to B is smooth. In fact, we obtain a stronger result in this case.

Theorem 1.3.

Assume that π:MB\pi\colon M\to B is smooth. The symplectic form σ\sigma on MM together with a polarization induces an isomorphism

𝒢i,k𝒢k,i{\mathcal{G}}_{i,k}\xrightarrow{\;\simeq\;}{\mathcal{G}}_{k,i}

at the level of complexes.

Theorem 1.3 is essentially a reformulation of a result of Donagi and Markman [DM96] on the polarized variation of Hodge structures associated with the family. Both complexes 𝒢i,k{\mathcal{G}}_{i,k} and 𝒢k,i{\mathcal{G}}_{k,i} have the same length, and a term-by-term isomorphism is constructed between them. The mystery of Conjecture 1.2 is an “extension” of this isomorphism to the singular fibers. As we see from Section 3.4, in general such an extension is complicated, and the derived category is essential for the formulation.

1.3.2.  Hilbert schemes

Next, we consider the Lagrangian fibration

(1.4) π[n]:S[n]S(n)B(n)\pi^{[n]}\colon S^{[n]}\longrightarrow S^{(n)}\longrightarrow B^{(n)}

induced by an elliptic fibration of a symplectic surface π:SB\pi\colon S\to B. Typical examples include:

  1. (1)

    π:SP1\pi\colon S\to{\mathbb{P}}^{1} is an elliptic K3K3, and π[n]:S[n](P1)(n)=Pn\pi^{[n]}\colon S^{[n]}\to({\mathbb{P}}^{1})^{(n)}={\mathbb{P}}^{n} is a Lagrangian fibration of the compact irreducible symplectic variety S[n]S^{[n]}; and

  2. (2)

    π:SA1\pi\colon S\to{\mathbb{A}}^{1} and the induced morphisms π[n]:S[n](A1)(n)=An\pi^{[n]}\colon S^{[n]}\to({\mathbb{A}}^{1})^{(n)}={\mathbb{A}}^{n} are the Hitchin fibrations associated with five families of moduli of parabolic Higgs bundles labeled by certain affine Dykin diagrams; cf. [Grö14, Zha17].

Theorem 1.4.

Conjecture 1.2 holds for (1.4) for any n1n\geq 1.

The decomposition theorem associated with (1.4) has many supports besides the full base B(n)B^{(n)}. In particular, the isomorphism of Conjecture 1.2 in this case is not merely an extension of the isomorphism of Theorem 1.3 for variations of Hodge structures. Semisimple objects of the decomposition theorem (1.3) supported on the “boundary” of B(n)B^{(n)} contribute nontrivially.

1.3.3.  Global cohomology

Lastly, we consider Lagrangian fibrations π:MB\pi\colon M\to B associated with compact irreducible symplectic varieties.(2)(2)(2)As the base BB is assumed to be nonsingular, by a result of Hwang [Hwa08] we know that BB is a projective space. However, this fact will not be used in this paper. Since BB is projective, the (hyper-)cohomology groups of the perverse–Hodge complexes are finite-dimensional.

The following theorem shows that in this case Conjecture 1.2 holds cohomologically.

Theorem 1.5.

Let π:MB\pi\colon M\to B be a Lagrangian fibration with MM a compact irreducible symplectic variety. Then we have

(1.5) H(B,𝒢i,k)H(B,𝒢k,i).H^{*}(B,{\mathcal{G}}_{i,k})\simeq H^{*}(B,{\mathcal{G}}_{k,i}).

We prove Theorem 1.5 following the ideas of [SY22], which connects the cohomology groups in (1.5) to the weight spaces of the Looijenga–Lunts–Verbitsky algebra; cf. [LL97, Ver90, Ver95, Ver96]. As a byproduct we deduce that (1.5) refines (1.2), which justifies that Conjecture 1.2 categorifies Theorem 1.1.

From another aspect, Theorem 1.5 suggests that, among all the symmetries encoded by the Looijenga–Lunts–Verbitsky algebra of MM, the particular one inducing (1.5) can be lifted sheaf-theoretically.

Acknowledgments

We are grateful to Davesh Maulik for his enthusiasm and for many helpful discussions. We also thank Bohan Fang, Mirko Mauri, Peng Shan, and the anonymous referee for useful comments and suggestions.

2.  Smooth morphisms and variations of Hodge structures

Throughout this section, we assume that π:MB\pi\colon M\to B is smooth, so that the Hodge modules PiHP_{i}^{H} are variations of Hodge structures.

2.1.  Variations of Hodge structures

As a consequence of the Arnold–Liouville theorem, a nonsingular fiber of a Lagrangian fibration is a complex torus. In particular, the smooth map π:MB\pi\colon M\to B is a family of abelian varieties. The key to understanding the topology of π\pi is the variation of Hodge structures

V=R1πQM;V=R^{1}\pi_{*}{\mathbb{Q}}_{M};

it is polarized of weight 11 with associated holomorphic vector bundle 𝒱=VQ𝒪B{\mathcal{V}}=V\otimes_{\mathbb{Q}}{\mathcal{O}}_{B}. The integrable connection :𝒱𝒱B1\nabla\colon{\mathcal{V}}\to{\mathcal{V}}\otimes{}_{B}^{1} and the Hodge filtration

(2.1) 0=F2𝒱F1𝒱F0𝒱=𝒱0=F^{2}{\mathcal{V}}\subset F^{1}{\mathcal{V}}\subset F^{0}{\mathcal{V}}={\mathcal{V}}

are compatible via the Griffiths transversality relation

(Fi𝒱)Fi1𝒱.B1\nabla(F^{i}{\mathcal{V}})\subset F^{i-1}{\mathcal{V}}\otimes{}_{B}^{1}.

This yields an 𝒪B{\mathcal{O}}_{B}-linear map between the graded pieces of (2.1)

(2.2) ¯:𝒱1,0𝒱 0,1.B1\overline{\nabla}\colon{\mathcal{V}}^{1,0}\longrightarrow{\mathcal{V}}^{\,0,1}\otimes{}_{B}^{1}.

Here 𝒱i,1i=grFi𝒱{\mathcal{V}}^{\,i,1-i}=\operatorname{gr}_{F}^{i}{\mathcal{V}} is a vector bundle describing the variation of Hi,1i(Mb)H^{i,1-i}({M_{b}}) of the fibers MbM_{b} with bBb\in B.

For our purpose, we also consider the variation of Hodge structures 𝒱k=kV{\mathcal{V}}^{k}=\wedge^{k}V of weight kk. Its Hodge filtration is

0=Fk+1𝒱kFk1𝒱kF0𝒱k=𝒱k,0=F^{k+1}{\mathcal{V}}^{\mkern 1.0muk}\subset F^{k-1}{\mathcal{V}}^{\mkern 1.0muk}\subset\cdots\subset F^{0}{\mathcal{V}}^{\mkern 1.0muk}={\mathcal{V}}^{\mkern 1.0muk},

where the ithi^{\mathrm{th}} piece is given by

Fi𝒱k=il+i2++ik=iFi1𝒱Fi2𝒱Fik𝒱.F^{i}{\mathcal{V}}^{\mkern 1.0muk}=\sumop\displaylimits_{{i_{l}+i_{2}+\dots+i_{k}}=i}F_{i_{1}}{\mathcal{V}}\wedge F_{i_{2}}{\mathcal{V}}\wedge\cdots\wedge F_{i_{k}}{\mathcal{V}}.

We denote by 𝒱i,j{\mathcal{V}}^{\,i,j} the graded piece griF𝒱i+j\operatorname{gr}_{i}^{F}{\mathcal{V}}^{\,i+j}.

Lemma 2.1.

We have a canonical isomorphism of vector bundles

i𝒱1,0j𝒱 0,1𝒱i,j.\wedge^{i}{\mathcal{V}}^{1,0}\otimes\wedge^{j}{\mathcal{V}}^{\,0,1}\xrightarrow{\;\simeq\;}{\mathcal{V}}^{\,i,j}.
Proof.

The morphism is induced by the cup product and the compatibility with Hodge filtrations. It suffices to check that it is an isomorphism when restricting to each bBb\in B; this follows from the fact that MbM_{b} is an abelian variety, so that we have

Hi,j(Mb)=iH1,0(Mb)jH0,1(Mb).H^{i,j}(M_{b})=\wedge^{i}H^{1,0}(M_{b})\otimes\wedge^{j}H^{0,1}(M_{b}).\qed

2.2.  Symplectic form

We discuss the interplay between the symplectic form σ\sigma and the variation of Hodge structures 𝒱{\mathcal{V}}.

By [Mat05, Lemma 2.6], the symplectic form σ\sigma and a polarization on MM induce an isomorphism

(2.3) ι:𝒱 0,1,B1\iota\colon{\mathcal{V}}^{\,0,1}\xrightarrow{\;\simeq\;}{}^{1}_{B},

which further yields

kι:𝒱 0,k=k𝒱 0,1k=B1.Bk\wedge^{k}\iota\colon{\mathcal{V}}^{\,0,k}=\wedge^{k}{\mathcal{V}}^{\,0,1}\xrightarrow{\;\simeq\;}\wedge^{k}{}_{B}^{1}={}_{B}^{k}.

Combining (2.2) and (2.3), we obtain a morphism of vector bundles as the composition:

θ=(ι1)¯:𝒱1,0𝒱 0,1B1B1.B1\theta=(\iota\otimes 1)\circ\overline{\nabla}\colon{\mathcal{V}}^{1,0}\longrightarrow{\mathcal{V}}^{\,0,1}\otimes{}_{B}^{1}\longrightarrow{}_{B}^{1}\otimes{}_{B}^{1}.
Lemma 2.2 (Donagi–Markman).

The morphism θ:𝒱1,0B1B1\theta\colon{\mathcal{V}}^{1,0}\to{}_{B}^{1}\otimes{}_{B}^{1} is symmetric with respect to the two factors of the target.

Proof.

Notice that 𝒱1,0{\mathcal{V}}^{1,0} is dual to 𝒱 0,1B1{\mathcal{V}}^{\,0,1}\simeq{}_{B}^{1} via the polarization. Hence θ\theta can be viewed as a section of B1B1B1{}_{B}^{1}\otimes{}_{B}^{1}\otimes{}_{B}^{1}. The proposition follows from the cubic condition for Lagrangian fibration [DM96, Lemma 7.5] which says that the section corresponding to θ\theta is induced by a section of Sym3B1\operatorname{Sym}^{3}{}_{B}^{1}; see also [Voi18, Theorem 4.4]. ∎

More generally, for any k1k\geq 1 we consider the morphism

¯:𝒱k,0𝒱k1,1=B1𝒱k1,0𝒱 0,1,B1\overline{\nabla}\colon{\mathcal{V}}^{\mkern 1.0muk,0}\longrightarrow{\mathcal{V}}^{\mkern 1.0muk-1,1}\otimes{}_{B}^{1}={\mathcal{V}}^{\mkern 1.0muk-1,0}\otimes{\mathcal{V}}^{\,0,1}\otimes{}_{B}^{1},

where the first map is induced by the Gauss–Manin connection :𝒱𝒱B1\nabla\colon{\mathcal{V}}\to{\mathcal{V}}\otimes{}_{B}^{1} and the second identity is given by Lemma 2.1.

Corollary 2.3.

The composition

(1ι1)¯:𝒱k,0𝒱k1,0𝒱 0,1B1𝒱k1,0B1B1(1\otimes\iota\otimes 1)\circ\overline{\nabla}\colon{\mathcal{V}}^{\mkern 1.0muk,0}\longrightarrow{\mathcal{V}}^{\mkern 1.0muk-1,0}\otimes{\mathcal{V}}^{\,0,1}\otimes{}_{B}^{1}\longrightarrow{\mathcal{V}}^{\mkern 1.0muk-1,0}\otimes{}_{B}^{1}\otimes{}_{B}^{1}

is symmetric with respect to the second and third factors of the target.

Proof.

We proceed by induction on kk. The induction base is Lemma 2.1. Now assume that the statement holds for k1k-1. We have

𝒱k,0=k1𝒱1,0𝒱1,0=𝒱k1,0𝒱1,0.{\mathcal{V}}^{\mkern 1.0muk,0}=\wedge^{k-1}{\mathcal{V}}^{1,0}\wedge{\mathcal{V}}^{1,0}={\mathcal{V}}^{\mkern 1.0muk-1,0}\wedge{\mathcal{V}}^{1,0}.

We consider a local section sks_{k} of 𝒱k,0{\mathcal{V}}^{\mkern 1.0muk,0} which can be written as sk1ts_{k-1}\wedge t with sk1s_{k-1} and tt local sections of 𝒱k1,0{\mathcal{V}}^{\mkern 1.0muk-1,0} and 𝒱1,0{\mathcal{V}}^{1,0}, respectively. The image ¯(sk)\overline{\nabla}(s_{k}) consists of two terms ¯(sk1)s1\overline{\nabla}(s_{k-1})\wedge s_{1} and sk1¯(s1)s_{k-1}\wedge\overline{\nabla}(s_{1}). We obtain from the induction hypothesis and the induction base that both of them are local sections of 𝒱k1,0Sym2B1{\mathcal{V}}^{\mkern 1.0muk-1,0}\otimes\operatorname{Sym}^{2}{}_{B}^{1}. This completes the induction. ∎

2.3.  Proof of Theorem 1.3

The main ingredients of the proof are

  1. (1)

    the isomorphism (2.3) induced by the symplectic form σ\sigma and a polarization, and

  2. (2)

    the symmetry of Corollary 2.3, which follows from the Donagi–Markman cubic condition.

We first note that by Lemma 2.1 we have a canonical isomorphism

(2.4) 𝒱i,j=Bk𝒱i,0j𝒱 0,1k.B1{\mathcal{V}}^{\,i,j}\otimes{}_{B}^{k}={\mathcal{V}}^{\,i,0}\otimes\wedge^{j}{\mathcal{V}}^{\,0,1}\otimes\wedge^{k}{}_{B}^{1}.

Hence (2.3) induces an isomorphism of vector bundles

(2.5) ιi,j,k:𝒱i,jBk𝒱i,kBj\iota_{i,j,k}\colon{\mathcal{V}}^{\,i,j}\otimes{}_{B}^{k}\xrightarrow{\;\simeq\;}{\mathcal{V}}^{\,i,k}\otimes{}_{B}^{j}

by switching the second and third factors of the right-hand side of (2.4).

Secondly, for any i,j,ki,j,k, the Gauss–Manin connection of 𝒱{\mathcal{V}} induces an 𝒪B{\mathcal{O}}_{B}-linear morphism

¯:𝒱i,jBk𝒱i1,j+1.Bk+1\overline{\nabla}\colon{\mathcal{V}}^{\,i,j}\otimes{}_{B}^{k}\longrightarrow{\mathcal{V}}^{\,i-1,j+1}\otimes{}_{B}^{k+1}.

The following proposition shows the compatibility between the isomorphisms ιi,j,k\iota_{i,j,k} and the morphisms ¯\overline{\nabla}; it relies heavily on ingredient 2.

Proposition 2.4.

We have a commutative diagram

𝒱i,jBk{{\mathcal{V}}^{\,i,j}\otimes{}_{B}^{k}}𝒱i1,j+1Bk+1{{\mathcal{V}}^{\,i-1,j+1}\otimes{}_{B}^{k+1}}𝒱i,kBj{{\mathcal{V}}^{\,i,k}\otimes{}_{B}^{j}}𝒱i1,k+1.Bj+1{{\mathcal{V}}^{\,i-1,k+1}\otimes{}_{B}^{j+1}\hbox to0.0pt{.\hss}}¯\scriptstyle{\overline{\nabla}}ιi,j,k\scriptstyle{\iota_{i,j,k}}ιi1,j+1,k+1\scriptstyle{\iota_{i-1,j+1,k+1}}¯\scriptstyle{\overline{\nabla}}
Proof.

To simplify the notation, we write the morphism of the top horizontal arrow as

(2.6) ¯:𝒱i,0BjBk𝒱i1,0Bj+1,Bk+1\overline{\nabla}\colon{\mathcal{V}}^{\,i,0}\otimes{}_{B}^{j}\otimes{}_{B}^{k}\longrightarrow{\mathcal{V}}^{\,i-1,0}\otimes{}_{B}^{j+1}\otimes{}_{B}^{k+1},

where we suppress the isomorphisms induced by (2.3) and Lemma 2.1. In particular, for a local section

(2.7) stu(𝒱i,0Bj)Bk,s\otimes t\otimes u\in\Gamma\left({\mathcal{V}}^{\,i,0}\otimes{}_{B}^{j}\otimes{}_{B}^{k}\right),

the image ¯(stu)\overline{\nabla}(s\otimes t\otimes u) is a local section of 𝒱i1,0Bj+1Bk+1{\mathcal{V}}^{\,i-1,0}\otimes{}_{B}^{j+1}\otimes{}_{B}^{k+1}. Similarly, for the same element (2.7) we have

¯(sut)(𝒱i1,0Bk+1)Bj+1.\overline{\nabla}(s\otimes u\otimes t)\in\Gamma\left({\mathcal{V}}^{\,i-1,0}\otimes{}_{B}^{k+1}\otimes{}_{B}^{j+1}\right).

To prove the commutativity of the diagram, it suffices to show that ¯(stu)\overline{\nabla}(s\otimes t\otimes u) and ¯(sut)\overline{\nabla}(s\otimes u\otimes t) coincide under the natural isomorphism switching the second and the third factors

𝒱i1,0Bj+1Bk+1𝒱i1,0Bk+1.Bj+1{\mathcal{V}}^{\,i-1,0}\otimes{}_{B}^{j+1}\otimes{}_{B}^{k+1}\simeq{\mathcal{V}}^{\,i-1,0}\otimes{}_{B}^{k+1}\otimes{}_{B}^{j+1}.

By Griffiths transversality, the morphism ¯\overline{\nabla} of (2.6) is linear with respect to the second factor on the left-hand side as it represents 𝒱0,j{\mathcal{V}}^{0,j}. Therefore, we have

¯(stu)=¯(s)tu.\overline{\nabla}(s\otimes t\otimes u)=\overline{\nabla}(s)\wedge t\wedge u.

Here

(2.8) ¯(s)(𝒱i1,0B1)B1\overline{\nabla}(s)\in\Gamma\left({\mathcal{V}}^{\,i-1,0}\otimes{}_{B}^{1}\otimes{}_{B}^{1}\right)

and the wedge product with tt and uu are on the second and third factors, respectively. Hence the desired property is a consequence of Corollary 2.3, which states that (2.8) is symmetric with respect to the second and third factors. ∎

Lastly, we show that Theorem 1.3 follows from the commutative diagram of Proposition 2.4. Since π:MB\pi\colon M\to B is smooth, the 𝒟B\mathcal{D}_{B}-module 𝒫in\mathcal{P}_{i-n} in the Hodge module PinHP_{i-n}^{H} is the variation of Hodge structures 𝒱i{\mathcal{V}}^{\,i}, and the filtration F𝒫inF_{\bullet}{\mathcal{P}}_{i-n} is described as

Fk𝒫in=Fk𝒱i.F_{k}{\mathcal{P}}_{i-n}=F^{-k}{\mathcal{V}}^{\,i}.

In particular, the de Rham complex of 𝒫in\mathcal{P}_{i-n} is

DR(𝒫in)=[𝒱i𝒱iB1𝒱i]Bn[n],\operatorname{DR}({\mathcal{P}}_{i-n})=\left[{\mathcal{V}}^{\,i}\xrightarrow{{\;\nabla\;}}{\mathcal{V}}^{\,i}\otimes{}^{1}_{B}\xrightarrow{{\;\nabla\;}}\cdots\xrightarrow{{\;\nabla\;}}{\mathcal{V}}^{\,i}\otimes{}^{n}_{B}\right]\![n],

and the associated perverse–Hodge complexes are

𝒢i,k=[𝒱k,ik¯𝒱k1,ik+1¯B1¯𝒱kn,ik+n]Bn[2ni].{\mathcal{G}}_{i,k}=\left[{\mathcal{V}}^{\mkern 1.0muk,i-k}\xrightarrow{\;\overline{\nabla}\;}{\mathcal{V}}^{\mkern 1.0muk-1,i-k+1}\otimes{}^{1}_{B}\xrightarrow{\;\overline{\nabla}\;}\cdots\xrightarrow{\;\overline{\nabla}\;}{\mathcal{V}}^{\mkern 1.0muk-n,i-k+n}\otimes{}^{n}_{B}\right]\![2n-i].

We prove Theorem 1.3 by showing that the two complexes 𝒢i,k{\mathcal{G}}_{i,k} and 𝒢k,i{\mathcal{G}}_{k,i} match term by term via the isomorphisms (2.5). For convenience we may assume iki\leq k. As 𝒱i,j=0{\mathcal{V}}^{\,i,j}=0 for j<0j<0, we find

(2.9) 𝒢i,k=[𝒱i,0¯Bki𝒱i1,1¯Bki+1¯𝒱kn,ik+n]Bn[2nk].{\mathcal{G}}_{i,k}=\left[{\mathcal{V}}^{\,i,0}\otimes{}_{B}^{k-i}\xrightarrow{\;\overline{\nabla}\;}{\mathcal{V}}^{\,i-1,1}\otimes{}_{B}^{k-i+1}\xrightarrow{\;\overline{\nabla}\;}\cdots\xrightarrow{\;\overline{\nabla}\;}{\mathcal{V}}^{\mkern 1.0muk-n,i-k+n}\otimes{}^{n}_{B}\right]\![2n-k].

On the other hand, we have 𝒱i,j=0{\mathcal{V}}^{\,i,j}=0 for j>nj>n by the fact that π\pi is a family of abelian varieties of dimension nn. Consequently, the complex 𝒢k,i{\mathcal{G}}_{k,i} is of the form

(2.10) 𝒢k,i=[𝒱i,ki¯𝒱i1,ki+1¯B1¯𝒱kn,n]Bik+n[2nk].{\mathcal{G}}_{k,i}=\left[{\mathcal{V}}^{\,i,k-i}\xrightarrow{\;\overline{\nabla}\;}{\mathcal{V}}^{\,i-1,k-i+1}\otimes{}_{B}^{1}\xrightarrow{\;\overline{\nabla}\;}\cdots\xrightarrow{\;\overline{\nabla}\;}{\mathcal{V}}^{\mkern 1.0muk-n,n}\otimes{}^{i-k+n}_{B}\right]\![2n-k].

We see that the complexes (2.9) and (2.10) are of the same length and are both concentrated in degrees [k2n,in][k-2n,i-n]. Then Proposition 2.4 yields an isomorphism

(ιi,0,ki,ιi1,1,ki+1,,ιkn,ik+n,n):𝒢i,k𝒢k,i,(\iota_{i,0,k-i},\iota_{i-1,1,k-i+1},\dots,\iota_{k-n,i-k+n,n})\colon{\mathcal{G}}_{i,k}\xrightarrow{\;\simeq\;}{\mathcal{G}}_{k,i},

where the commutative diagram guarantees that it is indeed an isomorphism of complexes. This completes the proof. ∎

3.  Hodge modules

In order to extend the isomorphisms established in Section 2 to the singular fibers, we need to use Saito’s theory of Hodge modules [Sai89, Sai90]. We begin with some relevant properties of Hodge modules. Then we recall Matsushita’s result [Mat05] on the higher direct images of 𝒪M\mathcal{O}_{M}; we show in Proposition 3.3 that Matsushita’s result is equivalent to the case k=2nk=2n of Conjecture 1.2.

3.1.  Hodge modules

Recall that a variation of Hodge structures of weight ww on a nonsingular variety XX is a triple

(3.1) VH=(𝒱,F,V),(Fk𝒱)Fk+1𝒱,X1V^{H}=({\mathcal{V}},F_{\bullet},V),\quad\nabla(F_{k}{\mathcal{V}})\subset F_{k+1}{\mathcal{V}}\otimes{}_{X}^{1},

where VV is a (Q{\mathbb{Q}}-)local system, FF_{\bullet} is an increasing filtration, and 𝒱=VQ𝒪X{\mathcal{V}}=V\otimes_{\mathbb{Q}}{\mathcal{O}}_{X}, such that the restriction (𝒱x,F,Vx)({\mathcal{V}}_{x},F_{\bullet},V_{x}) to each xXx\in X is a pure Hodge structure of weight ww.(3)(3)(3)Traditionally the Hodge filtration is a decreasing filtration; the relation with the increasing filtration here is Fk=FkF_{-k}=F^{k}. We say that VHV^{H} is polarizable if it admits a morphism

Q:V×VQ(w)=(2πi)wQQ\colon V\times V\longrightarrow{\mathbb{Q}}(w)=(2\pi i)^{-w}{\mathbb{Q}}

inducing a polarization on each stalk VxV_{x}.

Pure Hodge modules introduced by Saito [Sai89] are vast generalizations of variations of Hodge structures. As in (3.1), a pure Hodge module on XX is a triple

(3.2) PH=(𝒫,F,P),(Fk𝒫)Fk+1𝒫,X1P^{H}=({\mathcal{P}},F_{\bullet},P),\quad\nabla(F_{k}{\mathcal{P}})\subset F_{k+1}{\mathcal{P}}\otimes{}_{X}^{1},

where 𝒫{\mathcal{P}} is a regular holonomic 𝒟X{\mathcal{D}}_{X}-module, FF_{\bullet} is a good filtration on 𝒫{\mathcal{P}}, and PP is a perverse sheaf on XX, such that 𝒫{\mathcal{P}} corresponds to PQCP\otimes_{\mathbb{Q}}{\mathbb{C}} via the Riemann–Hilbert correspondence.(4)(4)(4)For convenience, we sometimes only use the pair (𝒫,F)({\mathcal{P}},F_{\bullet}) to denote a pure Hodge module. Such triples satisfy a number of technical conditions; in particular, one can define the notions of weight and polarization.

The following theorem by Saito [Sai90] provides a concrete description of polarizable pure Hodge modules on XX as extensions of polarizable variations of Hodge structures.

Theorem 3.1 (Saito).
  1. (1)

    The category HM(X,w)\operatorname{HM}(X,w) of polarizable pure Hodge modules of weight ww on XX is abelian and semisimple.

  2. (2)

    For any closed subvariety ZXZ\subset X, a simple polarizable variation of Hodge structures of weight wdimZw-\dim Z on a nonsingular open subset of ZZ can be uniquely extended to a simple object in HM(X,w)\operatorname{HM}(X,w).

  3. (3)

    All simple objects in HM(X,w)\operatorname{HM}(X,w) arise this way.

From now on, all Hodge modules are assumed to be pure and polarizable. For any simple Hodge module (3.2), we define its support to be the support of the simple perverse sheaf PP.

Set dimX=d\dim X=d. The de Rham complex of a Hodge module PH=(𝒫,F)P^{H}=({\mathcal{P}},F_{\bullet}) is

DR(𝒫)=[𝒫𝒫X1𝒫]Xd[d]\operatorname{DR}({\mathcal{P}})=\left[{\mathcal{P}}\xrightarrow{\;\nabla\;}{\mathcal{P}}\otimes{}^{1}_{X}\xrightarrow{\;\nabla\;}\cdots\xrightarrow{\;\nabla\;}{\mathcal{P}}\otimes{}^{d}_{X}\right]\![d]

and is concentrated in degrees [d,0][-d,0]. The filtration F𝒫F_{\bullet}{\mathcal{P}} induces an increasing filtration

FkDR(𝒫)=[Fk𝒫Fk+1𝒫X1Fk+d𝒫]Xd[d]F_{k}\operatorname{DR}({\mathcal{P}})=\left[F_{k}{\mathcal{P}}\xrightarrow{\;\nabla\;}F_{k+1}{\mathcal{P}}\otimes{}^{1}_{X}\xrightarrow{\;\nabla\;}\cdots\xrightarrow{\;\nabla\;}F_{k+d}{\mathcal{P}}\otimes{}^{d}_{X}\right]\![d]

whose kthk^{\mathrm{th}} graded piece is the complex of 𝒪X{\mathcal{O}}_{X}-modules

grkFDR(𝒫)=[grkF𝒫¯grk+1F𝒫¯X1¯grk+dF𝒫]Xd[d].\operatorname{gr}^{F}_{k}\operatorname{DR}({\mathcal{P}})=\left[\operatorname{gr}^{F}_{k}{\mathcal{P}}\xrightarrow{\;\overline{\nabla}\;}\operatorname{gr}^{F}_{k+1}{\mathcal{P}}\otimes{}^{1}_{X}\xrightarrow{\;\overline{\nabla}\;}\cdots\xrightarrow{\;\overline{\nabla}\;}\operatorname{gr}^{F}_{k+d}{\mathcal{P}}\otimes{}^{d}_{X}\right]\![d].

Note that grkF𝒫=0\operatorname{gr}^{F}_{k}{\mathcal{P}}=0 for k>0k>0 when 𝒫{\mathcal{P}} is given by a variation of Hodge structures, but this is not true for general Hodge modules. The functor grkDR()\operatorname{gr}_{k}\operatorname{DR}(-) extends naturally to the bounded derived category of Hodge modules taking values in DbCoh(X)D^{b}\operatorname{Coh}(X).

3.2.  Decomposition theorem, Saito’s formula, and duality

Let f:XYf\colon X\to Y be a projective morphism between nonsingular varieties. For a Hodge module PH=(𝒫,F)HM(X,w)P^{H}=(\mathcal{P},F_{\bullet})\in\operatorname{HM}(X,w), Saito’s decomposition theorem [Sai89] states that there is a decomposition in the bounded derived category of Hodge modules on YY,

(3.3) f+PHii(f+PH)[i],f_{+}P^{H}\simeq\bigoplusop\displaylimits_{i}\mathcal{H}^{i}\left(f_{+}P^{H}\right)[-i],

with i(f+PH)HM(Y,w+i)\mathcal{H}^{i}(f_{+}P^{H})\in\operatorname{HM}(Y,w+i). Its compatibility with the functor grkFDR()\operatorname{gr}^{F}_{k}\operatorname{DR}(-) is given by the following formula (often known as Saito’s formula; see [Sai89, Section 2.3.7]):

(3.4) RfgrkFDR(𝒫)grkFDR(f+𝒫)igrkFDR(i(f+𝒫))[i].Rf_{*}\operatorname{gr}^{F}_{k}\operatorname{DR}(\mathcal{P})\simeq\operatorname{gr}^{F}_{k}\operatorname{DR}(f_{+}{\mathcal{P}})\simeq\bigoplusop\displaylimits_{i}\operatorname{gr}^{F}_{k}\operatorname{DR}(\mathcal{H}^{i}(f_{+}{\mathcal{P}}))[-i].

The functor grkFDR()\operatorname{gr}^{F}_{k}\operatorname{DR}(-) is also compatible with Serre duality. Recall that dimX=d\dim X=d. For a Hodge module PH=(𝒫,F)HM(X,w)P^{H}=({\mathcal{P}},F_{\bullet})\in\operatorname{HM}(X,w), we have

(3.5) Rom𝒪X(grkFDR(𝒫),ωX[d])grkwFDR(𝒫),R\mathcal{H}\mathrm{om}_{{\mathcal{O}}_{X}}\left(\operatorname{gr}^{F}_{k}\operatorname{DR}({\mathcal{P}}),\omega_{X}[d]\right)\simeq\operatorname{gr}^{F}_{-k-w}\operatorname{DR}({\mathcal{P}}),

where ωX\omega_{X} is the dualizing sheaf of XX; see [Sch16, Lemma 7.4].

Now we consider a Lagrangian fibration π:MB\pi\colon M\to B with dimM=2n\dim M=2n. For our purpose, we study the direct image π+QMH[2n]\pi_{+}{\mathbb{Q}}_{M}^{H}[2n] of the trivial Hodge module

QMH[2n]=(𝒪M,F),F1𝒪M=0F0𝒪M=𝒪M.{\mathbb{Q}}_{M}^{H}[2n]=({\mathcal{O}}_{M},F_{\bullet}),\quad F_{-1}{\mathcal{O}}_{M}=0\subset F_{0}{\mathcal{O}}_{M}={\mathcal{O}}_{M}.

A direct calculation yields

(3.6) grkFDR(𝒪M)[2nk]Mk.\operatorname{gr}^{F}_{-k}\operatorname{DR}({\mathcal{O}}_{M})\simeq{}_{M}^{k}[2n-k].

Here conventionally =Mk0{}_{M}^{k}=0 for k<0k<0. Formulas (3.3) and (3.4) then read

π+QMH[2n]i=nnPiH[i],PiH=(𝒫i,F)HM(B,2n+i)\pi_{+}{\mathbb{Q}}_{M}^{H}[2n]\simeq\bigoplusop\displaylimits_{i=-n}^{n}P^{H}_{i}[-i],\quad P^{H}_{i}=(\mathcal{P}_{i},F_{\bullet})\in\operatorname{HM}(B,2n+i)

and

(3.7) Rπ[2nk]MkgrkFDR(f+𝒪M)i=nngrkFDR(𝒫i)[i].R\pi_{*}{}_{M}^{k}[2n-k]\simeq\operatorname{gr}^{F}_{-k}\operatorname{DR}(f_{+}{\mathcal{O}}_{M})\simeq\bigoplusop\displaylimits_{i=-n}^{n}\operatorname{gr}^{F}_{-k}\operatorname{DR}({\mathcal{P}}_{i})[-i].

Finally, since dimB=n\dim B=n and all the fibers of π:MB\pi\colon M\to B have dimension nn, we have grkFDR(𝒫i)=0\operatorname{gr}_{k}^{F}\operatorname{DR}({\mathcal{P}}_{i})=0 for k<max{2n,2ni}k<\max\{-2n,-2n-i\}. Applying the duality (3.5), we also have grkFDR(𝒫i)=0\operatorname{gr}_{k}^{F}\operatorname{DR}({\mathcal{P}}_{i})=0 for k>min{0,i}k>\min\{0,-i\}.

3.3.  Matsushita’s theorem revisited

Let π:MB\pi\colon M\to B be a Lagrangian fibration with dimM=2n\dim M=2n. Matsushita [Mat05] calculated the higher direct images of 𝒪M{\mathcal{O}}_{M}.

Theorem 3.2 (Matsushita).

For 0in0\leq i\leq n, we have

(3.8) Riπ𝒪M.BiR^{i}\pi_{*}{\mathcal{O}}_{M}\simeq{}_{B}^{i}.
Proof.

Matsushita’s proof assumes that MM is projective. However, as he explained in [Mat05, Remark 2.10], the projectivity for MM is only used for Kollár’s decomposition [Kol86]

RπωMiRiπωM[i].R\pi_{*}\omega_{M}\simeq\bigoplusop\displaylimits_{i}R^{i}\pi_{*}\omega_{M}[-i].

Since the decomposition now holds for any projective morphism as a consequence of Saito’s theory of Hodge modules [Sai91], we may safely remove the projectivity assumption for MM in Matsushita’s theorem. ∎

Proposition 3.3.

The case k=2nk=2n of Conjecture 1.2 is equivalent to (3.8). In particular, Conjecture 1.2 holds when k=2nk=2n.

Proof.

When k=2nk=2n, the desired isomorphism of Conjecture 1.2 is

(3.9) gr2nFDR(𝒫in)[ni]griFDR(𝒫n)[n].\operatorname{gr}^{F}_{-2n}\operatorname{DR}({\mathcal{P}}_{i-n})[n-i]\simeq\operatorname{gr}^{F}_{-i}\operatorname{DR}({\mathcal{P}}_{n})[-n].

On one hand, the Hodge module PnHP_{n}^{H} is the (n)th(-n)^{\mathrm{th}} Tate twist of QBH[n]{\mathbb{Q}}_{B}^{H}[n]

PnHQBH[n](n)=(𝒪B,Fn),P^{H}_{n}\simeq{\mathbb{Q}}_{B}^{H}[n](-n)=({\mathcal{O}}_{B},F_{\bullet-n}),

so the right-hand side of (3.9) is

griFDR(𝒫n)[n][ni]Bin.\operatorname{gr}^{F}_{-i}\operatorname{DR}({\mathcal{P}}_{n})[-n]\simeq{}_{B}^{i-n}[n-i].

On the other hand, since gr2nFDR(𝒫in)\operatorname{gr}^{F}_{-2n}\operatorname{DR}({\mathcal{P}}_{i-n}) is always a sheaf (concentrated in degree 0), combining (3.6) and (3.7), we obtain that the left-hand side of (3.9) is

(3.10) gr2nFDR(𝒫in)[ni]RinπωM[ni]Rinπ𝒪M[ni].\operatorname{gr}^{F}_{-2n}\operatorname{DR}({\mathcal{P}}_{i-n})[n-i]\simeq R^{i-n}\pi_{*}\omega_{M}[n-i]\simeq R^{i-n}\pi_{*}{\mathcal{O}}_{M}[n-i].

Consequently, (3.9) is equivalent to (3.8). ∎

Remark 3.4.

In view of (3.7), Conjecture 1.2 would provide a new recipe for calculating the higher direct images of Mk{}^{k}_{M} for all kk, extending Matsushita’s work. We could use the perverse–Hodge symmetry to trade the contributions of grkFDR(𝒫i)\operatorname{gr}_{-k}^{F}\operatorname{DR}({\mathcal{P}}_{i}) for all ii for the contributions of griFDR(𝒫kn)\operatorname{gr}_{-i}^{F}\operatorname{DR}({\mathcal{P}}_{k-n}) for all ii. The latter has the advantage of only involving a single Hodge module PknHP_{k-n}^{H}.

3.4.  An example

To illustrate the subtleties when extending Theorem 1.3 to the singular fibers, we consider the following basic example.

Let π:SB\pi\colon S\to B be an elliptic fibration of a symplectic surface. We assume that π\pi only has singular fibers with a double point, over a finite set DBD\subset B. Let j:U=B\DBj\colon U=B\backslash D\hookrightarrow B be the open embedding.

We look at the symmetry

(3.11) gr1FDR(𝒫1)[1]gr0FDR(𝒫0)\operatorname{gr}^{F}_{-1}\operatorname{DR}({\mathcal{P}}_{-1})[1]\simeq\operatorname{gr}^{F}_{0}\operatorname{DR}({\mathcal{P}}_{0})

proposed by Conjecture 1.2. Since the Hodge module P1HP_{-1}^{H} is the trivial Hodge module QBH[1]{\mathbb{Q}}_{B}^{H}[1], the left-hand side of (3.11) is [1]B1{}_{B}^{1}[1]. For the right-hand side, let (𝒱,F,V)({\mathcal{V}},F_{\bullet},V) denote the variation of Hodge structures R1πUQSUR^{1}\pi_{U*}{\mathbb{Q}}_{S_{U}} on UU. Then the Hodge module P0HP_{0}^{H} on BB is the minimal extension (j!𝒱,F)(j_{!*}{\mathcal{V}},F_{\bullet}), which can be described concretely using Deligne’s canonical extension.

Recall that the canonical extension depends on a real interval [a,a+1)[a,a+1) or (a,a+1](a,a+1] where the eigenvalues of the residue endomorphism should lie. In our situation, the monodromy around each point of DD is unipotent (given by the matrix (1101)(\begin{smallmatrix}1&1\\ 0&1\end{smallmatrix}) in local coordinates), so the eigenvalues are necessarily integers. Let 𝒱¯\overline{{\mathcal{V}}} be the canonical extension of 𝒱{\mathcal{V}} with respect to either [0,1)[0,1) or (1,0](-1,0]; it is locally free of rank 22 on BB. Schmid’s theorem says that F𝒱¯:=jF𝒱𝒱¯F_{\bullet}\overline{{\mathcal{V}}}:=j_{*}F_{\bullet}{\mathcal{V}}\cap\overline{{\mathcal{V}}} is a filtration by locally free subsheaves. By [Sai90, Section 3.10], we have

j!𝒱=𝒟B𝒱¯𝒱¯(D),j_{!*}{\mathcal{V}}={\mathcal{D}}_{B}\cdot\overline{{\mathcal{V}}}\subset\overline{{\mathcal{V}}}(*D),

where the 𝒟B{\mathcal{D}}_{B}-action is induced by Deligne’s meromorphic connection on 𝒱¯(D)\overline{{\mathcal{V}}}(*D), and

Fkj!𝒱=i0Fi𝒟BFki𝒱¯.F_{k}j_{!*}{\mathcal{V}}=\sumop\displaylimits_{i\geq 0}F_{i}{\mathcal{D}}_{B}\cdot F_{k-i}\overline{{\mathcal{V}}}.

It follows that for the right-hand side of (3.11), we have

(3.12) gr0FDR(𝒫0)=[𝒱¯+F1𝒟BF1𝒱¯F1𝒱¯¯F1𝒟B𝒱¯+F2𝒟BF1𝒱¯𝒱¯+F1𝒟BF1𝒱¯]B1[1].\operatorname{gr}_{0}^{F}\operatorname{DR}({\mathcal{P}}_{0})=\left[\frac{\overline{{\mathcal{V}}}+F_{1}{\mathcal{D}}_{B}\cdot F_{-1}\overline{{\mathcal{V}}}}{F_{-1}\overline{{\mathcal{V}}}}\xrightarrow{\;\overline{\nabla}\;}\frac{F_{1}{\mathcal{D}}_{B}\cdot\overline{{\mathcal{V}}}+F_{2}{\mathcal{D}}_{B}\cdot F_{-1}\overline{{\mathcal{V}}}}{\overline{{\mathcal{V}}}+F_{1}{\mathcal{D}}_{B}\cdot F_{-1}\overline{{\mathcal{V}}}}\otimes{}_{B}^{1}\right]\![1].

In particular, as a complex it has two nontrivial terms. But ¯\overline{\nabla} is clearly surjective; to see its kernel, we do a calculation in local coordinates. Let tt be the local coordinate of BB near 0D0\in D, and let α,β\alpha,\beta be a local trivialization of 𝒱¯\overline{{\mathcal{V}}}. Since the monodromy matrix around 0 is (1101)(\begin{smallmatrix}1&1\\ 0&1\end{smallmatrix}), the residue matrix for 𝒱¯\overline{{\mathcal{V}}} is (01/2π100)(\begin{smallmatrix}0&1/2\pi\sqrt{-1}\\ 0&0\end{smallmatrix}). In other words, we have

α=0,β=12π1αdtt.\nabla\alpha=0,\quad\nabla\beta=\frac{1}{2\pi\sqrt{-1}}\alpha\otimes\frac{dt}{t}.

We also have

F1𝒱¯=f(t)α+g(t)β,F_{-1}\overline{{\mathcal{V}}}=\langle f(t)\alpha+g(t)\beta\rangle,

where f(t),g(t)f(t),g(t) are holomorphic functions with g(t)g(t) nonvanishing. From this we see that

F1𝒟B𝒱¯=𝒱¯+F1𝒟BF1𝒱¯,F_{1}{\mathcal{D}}_{B}\cdot\overline{{\mathcal{V}}}=\overline{{\mathcal{V}}}+F_{1}{\mathcal{D}}_{B}\cdot F_{-1}\overline{{\mathcal{V}}},

hence

(3.13) ¯(𝒱¯F1𝒱¯)=0.\overline{\nabla}\left(\frac{\overline{{\mathcal{V}}}}{F_{-1}\overline{{\mathcal{V}}}}\right)=0.

On the other hand, the map ¯\overline{\nabla} induces an isomorphism

(3.14) ¯:𝒱¯+F1𝒟BF1𝒱¯𝒱¯F1𝒟B𝒱¯+F2𝒟BF1𝒱¯F1𝒟B𝒱¯B1\overline{\nabla}\colon\frac{\overline{{\mathcal{V}}}+F_{1}{\mathcal{D}}_{B}\cdot F_{-1}\overline{{\mathcal{V}}}}{\overline{{\mathcal{V}}}}\xrightarrow{\;\simeq\;}\frac{F_{1}{\mathcal{D}}_{B}\cdot\overline{{\mathcal{V}}}+F_{2}{\mathcal{D}}_{B}\cdot F_{-1}\overline{{\mathcal{V}}}}{F_{1}{\mathcal{D}}_{B}\cdot\overline{{\mathcal{V}}}}\otimes{}_{B}^{1}

sending 1tα\frac{1}{t}\alpha to 1t2αdt-\frac{1}{t^{2}}\alpha\otimes dt. Combining (3.13) and (3.14), we deduce that the kernel of ¯\overline{\nabla} in (3.12) is

ker(¯)=𝒱¯F1𝒱¯=gr0F𝒱¯.\ker(\overline{\nabla})=\frac{\overline{{\mathcal{V}}}}{F_{-1}\overline{{\mathcal{V}}}}=\operatorname{gr}_{0}^{F}\overline{{\mathcal{V}}}.

Finally, by [Kol86, Theorem 2.6] and (3.8), we have

gr0F𝒱¯R1π𝒪S,B1\operatorname{gr}_{0}^{F}\overline{{\mathcal{V}}}\simeq R^{1}\pi_{*}{\mathcal{O}}_{S}\simeq{}_{B}^{1},

which yields the desired isomorphism (3.11) only(!) in the derived category DbCoh(B)D^{b}\operatorname{Coh}(B).

Note that the proof in Section 4.1 works for all symplectic surfaces SS with π:SB\pi\colon S\to B and does not rely on information about the singular fibers.

4.  Hilbert schemes of points

In this section we prove Theorem 1.4; it is completed by a series of compatibility results regarding the perverse–Hodge symmetry and natural geometric operations.

4.1.  Surfaces

We first verify Theorem 1.4 for n=1n=1, where the Lagrangian fibration is an elliptic surface π:SB\pi\colon S\to B. It suffices to prove Conjecture 1.2 for

0i<k2.0\leq i<k\leq 2.

The cases when k=2k=2 were covered by Proposition 3.3. Therefore, it remains to show the symmetry (3.11) for SS, whose left-hand side is

gr1FDR(𝒫1)[1][1]B1.\operatorname{gr}_{-1}^{F}\operatorname{DR}({\mathcal{P}}_{-1})[1]\simeq{}_{B}^{1}[1].

The right-hand side can be computed via the duality (3.5):

gr0FDR(𝒫0)Rom𝒪B(gr2FDR(𝒫0),ωB[1])[1]B1,\operatorname{gr}^{F}_{0}\operatorname{DR}({\mathcal{P}}_{0})\simeq R\mathcal{H}\mathrm{om}_{{\mathcal{O}}_{B}}\left(\operatorname{gr}^{F}_{-2}\operatorname{DR}({\mathcal{P}}_{0}),\omega_{B}[1]\right)\simeq{}_{B}^{1}[1],

where the last isomorphism follows from (3.10).

4.2.  Closed embeddings and finite morphisms

Let XX be an irreducible quasi-projective variety of dimension dd. Let

(4.1) {QiH=(𝒬i,F)}iZ\left\{Q^{H}_{i}=({\mathcal{Q}}_{i},F_{\bullet})\right\}_{i\in{\mathbb{Z}}}

be a finite sequence of Hodge modules on XX. We say that the Hodge modules in (4.1) are perverse–Hodge symmetric (PHS for short) on XX if for any i,kZi,k\in{\mathbb{Z}} we have

grkFDR(𝒬id)[di]griFDR(𝒬kd)[dk].\operatorname{gr}^{F}_{-k}\operatorname{DR}({\mathcal{Q}}_{i-d})[d-i]\simeq\operatorname{gr}^{F}_{-i}\operatorname{DR}({\mathcal{Q}}_{k-d})[d-k].

Clearly Conjecture 1.2 is equivalent to the statement that the Hodge modules PiHP^{H}_{i} given by the decomposition theorem (1.3) are PHS on BB. In general we say that a morphism f:XYf\colon X\to Y is PHS if the trivial Hodge module QXH[dimX]{\mathbb{Q}}^{H}_{X}[\dim X] is pure on XX and the Hodge modules obtained from the decomposition theorem of f+QXH[dimX]f_{+}{\mathbb{Q}}^{H}_{X}[\dim X] are PHS on YY.

The following proposition shows the compatibility between the perverse–Hodge symmetry and push-forwards along closed embeddings and finite morphisms.

Proposition 4.1.

Assume that the Hodge modules QiH=(𝒬i,F)Q^{H}_{i}=({\mathcal{Q}}_{i},F_{\bullet}) are PHS on ZZ.

  1. (1)

    Let ι:ZX\iota\colon Z\hookrightarrow X be a closed embedding of codimension cc. Then the Hodge modules

    QiH=ι+QiH(c)Q_{i}^{\prime H}=\iota_{+}Q^{H}_{i}(-c)

    are PHS on XX.

  2. (2)

    If f:ZXf\colon Z\to X is a finite surjective morphism with dimX=dimZ\dim X=\dim Z, then the Hodge modules

    QiH=f+QiHQ_{i}^{\prime H}=f_{+}Q^{H}_{i}

    are PHS on XX.

Proof.

We only prove (1) as (2) is completely parallel. For a closed embedding ι:ZX\iota\colon Z\hookrightarrow X, we have

grkFDR(𝒬id)[di]ιgrkFDR(𝒬id(c))[di]ιgr(kc)FDR(𝒬(ic)dimZ)[dimZ(ic)].\begin{split}\operatorname{gr}^{F}_{-k}\operatorname{DR}({\mathcal{Q}}_{i-d}^{\prime})[d-i]&\simeq\iota_{*}\operatorname{gr}^{F}_{-k}\operatorname{DR}({\mathcal{Q}}_{i-d}(-c))[d-i]\\ &\simeq\iota_{*}\operatorname{gr}^{F}_{-{(k-c)}}\operatorname{DR}({\mathcal{Q}}_{(i-c)-\dim Z})[\dim Z-(i-c)].\end{split}

Similarly,

griFDR(𝒬kd)[dk]ιgr(ic)FDR(𝒬(kc)dimZ)[dimZ(kc)].\operatorname{gr}^{F}_{-i}\operatorname{DR}({\mathcal{Q}}_{k-d}^{\prime})[d-k]\simeq\iota_{*}\operatorname{gr}^{F}_{-{(i-c)}}\operatorname{DR}({\mathcal{Q}}_{(k-c)-\dim Z})[\dim Z-(k-c)].

The proposition then follows from the isomorphism

gr(kc)FDR(𝒬(ic)dimZ)[dimZ(ic)]gr(ic)FDR(𝒬(kc)dimZ)[dimZ(kc)]\operatorname{gr}^{F}_{-{(k-c)}}\operatorname{DR}({\mathcal{Q}}_{(i-c)-\dim Z})[\dim Z-(i-c)]\simeq\operatorname{gr}^{F}_{-{(i-c)}}\operatorname{DR}({\mathcal{Q}}_{(k-c)-\dim Z})[\dim Z-(k-c)]

given by the assumption. ∎

4.3.  External products

Let XX and YY be quasi-projective varieties, and let

PH=(𝒫,F),QH=(𝒬,F)P^{H}=({\mathcal{P}},F_{\bullet}),\quad Q^{H}=({\mathcal{Q}},F_{\bullet})

be Hodge modules on XX and YY, respectively. We recall the following standard lemma concerning the external product

𝒫𝒬=prX𝒫prY𝒬{\mathcal{P}}\boxtimes{\mathcal{Q}}=\operatorname{pr}_{X}^{*}{\mathcal{P}}\otimes\operatorname{pr}_{Y}^{*}{\mathcal{Q}}

on X×YX\times Y.

Lemma 4.2.

We have

grkFDR(𝒫𝒬)i+j=kgriFDR(𝒫)grjFDR(𝒬)DbCoh(X×Y).\operatorname{gr}^{F}_{k}\operatorname{DR}({\mathcal{P}}\boxtimes{\mathcal{Q}})\simeq\bigoplusop\displaylimits_{i+j=k}\operatorname{gr}^{F}_{i}\operatorname{DR}({\mathcal{P}})\boxtimes\operatorname{gr}^{F}_{j}\operatorname{DR}({\mathcal{Q}})\in D^{b}\operatorname{Coh}(X\times Y).
Proof.

This follows from the fact that the (filtered) de Rham functor is compatible with taking external product (cf. [MSS11, Equation (1.4.1)]). ∎

Now we consider projective morphisms

(4.2) fj:XjYj,j=1,2,,nf_{j}\colon X_{j}\longrightarrow Y_{j},\quad j=1,2,\dots,n

with XjX_{j} nonsingular. For each fjf_{j}, we have the Hodge modules Qi,jHQ^{H}_{i,j} obtained from the decomposition theorem

f+QXjH[dimXj]iQi,jH[i],Qi,jH=i(f+QXjH[dimXj]).f_{+}{\mathbb{Q}}^{H}_{X_{j}}[\dim X_{j}]\simeq\bigoplusop\displaylimits_{i}Q^{H}_{i,j}[-i],\quad Q^{H}_{i,j}={\mathcal{H}}^{i}\left(f_{+}{\mathbb{Q}}_{X_{j}}^{H}[\dim X_{j}]\right).

We show the compatibility between the perverse–Hodge symmetry and products of varieties.

Proposition 4.3.

If the morphisms (4.2) are PHS, then the product morphism

f=fjj:X=X1×X2××XnY=Y1×Y2××Ynf={}_{j}f_{j}\colon X=X_{1}\times X_{2}\times\cdots\times X_{n}\to Y=Y_{1}\times Y_{2}\times\cdots\times Y_{n}

is also PHS.

Proof.

Since

QXH[dimX]j=1nQXiH[dimXi],{\mathbb{Q}}_{X}^{H}[\dim X]\simeq\boxtimes_{j=1}^{n}{\mathbb{Q}}^{H}_{X_{i}}[\dim X_{i}],

we have

f+QXH[dimX]j=1nfj+QXjH[dimXj].f_{+}{\mathbb{Q}}_{X}^{H}[\dim X]\simeq\boxtimes_{j=1}^{n}f_{j+}{\mathbb{Q}}^{H}_{X_{j}}[\dim X_{j}].

Therefore, from the decomposition theorem

f+QXH[dimX]iWiH[i],WiH=i(f+QXH[dimX]),f_{+}{\mathbb{Q}}_{X}^{H}[\dim X]\simeq\bigoplusop\displaylimits_{i}W^{H}_{i}[-i],\quad W^{H}_{i}={\mathcal{H}}^{i}\left(f_{+}{\mathbb{Q}}_{X}^{H}[\dim X]\right),

we obtain each summand

WiHi1++in=iQi1,1HQi2,2HQin,nH.W^{H}_{i}\simeq\bigoplusop\displaylimits_{i_{1}+\dots+i_{n}=i}Q^{H}_{i_{1},1}\boxtimes Q^{H}_{i_{2},2}\boxtimes\cdots\boxtimes Q^{H}_{i_{n},n}.

By Lemma 4.2 this further yields

grkFDR(𝒲idimY)i1++in=ik1++kn=kgrk1FDR(𝒬i1dimY1,1)grknFDR(𝒬indimYn,n).\operatorname{gr}_{-k}^{F}\operatorname{DR}({\mathcal{W}}_{i-\dim Y})\simeq\bigoplusop\displaylimits_{\begin{subarray}{c}i_{1}+\cdots+i_{n}=i\\ k_{1}+\dots+k_{n}=k\end{subarray}}\operatorname{gr}_{-k_{1}}^{F}\operatorname{DR}({\mathcal{Q}}_{i_{1}-\dim Y_{1},1})\boxtimes\cdots\boxtimes\operatorname{gr}_{-k_{n}}^{F}\operatorname{DR}({\mathcal{Q}}_{i_{n}-\dim Y_{n},n}).

Using this decomposition and the fact that the Qi,jHQ^{H}_{i,j} are PHS, we see that there is a one-to-one correspondence between the summands in the decompositions of

grkFDR(𝒲idimY)[dimYi],griFDR(𝒲kdimY)[dimYk],\operatorname{gr}_{-k}^{F}\operatorname{DR}({\mathcal{W}}_{i-\dim Y})[\dim Y-i],\quad\operatorname{gr}_{-i}^{F}\operatorname{DR}({\mathcal{W}}_{k-\dim Y})[\dim Y-k],

respectively. This completes the proof. ∎

Remark 4.4.

If each fj:XjYjf_{j}\colon X_{j}\to Y_{j} is a Lagrangian fibration, then the product f:XYf\colon X\to Y is also a Lagrangian fibration. Hence Proposition 4.3 provides consistency checks for Conjecture 1.2; it shows that if each fjf_{j} satisfies Conjecture 1.2, then their product satisfies it as well.

Remark 4.5.

We note that the only use of the nonsingular assumption in Proposition 4.3 is that the trivial Hodge modules QXjH[dimXj]{\mathbb{Q}}_{X_{j}}^{H}[\dim X_{j}] on XjX_{j} are pure.

4.4.  Symmetric products

Let QH=(𝒬,F)Q^{H}=({\mathcal{Q}},F_{\bullet}) be a Hodge module on XX. Its symmetric product (QH)(n)(Q^{H})^{(n)} was introduced in [MSS11], which defines a Hodge module on the symmetric product X(n)X^{(n)} of the variety. Furthermore, such an operation is extended to the bounded derived category of Hodge modules on XX.

Proposition 4.6.

If the QiHQ^{H}_{i} are PHS on XX, then the (QiH)(n)(Q^{H}_{i})^{(n)} are PHS on X(n)X^{(n)}.

Proof.

Let q:XnX(n)q\colon X^{n}\to X^{(n)} be the Sn\mathfrak{S}_{n}-quotient map. For an object DbCoh(X){\mathcal{F}}^{\bullet}\in D^{b}\operatorname{Coh}(X), we similarly consider the symmetric product

()(n)=(qn)SnDbCoh(X(n)).({\mathcal{F}}^{\bullet})^{(n)}=\left(q_{*}{{\mathcal{F}}^{\bullet}}^{\boxtimes n}\right)^{\mathfrak{S}_{n}}\in D^{b}\operatorname{Coh}(X^{(n)}).

Now by Proposition 4.3, we know that the Hodge modules (QiH)n(Q_{i}^{H})^{\boxtimes n} are PHS on XnX^{n}. Proposition 4.1(2) further implies that the Hodge modules q+(QiH)nq_{+}(Q_{i}^{H})^{\boxtimes n} are PHS on X(n)X^{(n)}. To prove the corresponding property for

(QiH)(n)=(q+(QiH)n)Sn(Q^{H}_{i})^{(n)}=\left(q_{+}(Q_{i}^{H})^{\boxtimes n}\right){S_{n}}

on X(n)X^{(n)}, it suffices to show that the natural isomorphism

qgrkDR((QiH)n)grkDR(q+(QiH)n)q_{*}\operatorname{gr}_{k}\operatorname{DR}\left((Q_{i}^{H})^{\boxtimes n}\right)\simeq\operatorname{gr}_{k}\operatorname{DR}\left(q_{+}(Q_{i}^{H})^{\boxtimes n}\right)

is equivariant with respect to the Sn\mathfrak{S}_{n}-actions. It follows from [MSS11] that the (filtered) de Rham functor is compatible with the symmetric group action on XnX^{n}; more precisely, see [MSS11, proof of Proposition 1.5]. ∎

4.5.  Proof of Theorem 1.4

For our purpose, we describe the decomposition theorem associated with the morphism

π[n]:S[n]𝑓S(n)π(n)C(n).\pi^{[n]}\colon S^{[n]}\xrightarrow{\;\,f\;}S^{(n)}\xrightarrow{\pi^{(n)}}C^{(n)}.

The first map f:S[n]S(n)f\colon S^{[n]}\to S^{(n)} of the composition is semismall, and the associated decomposition theorem is calculated in [GS93], which we now review. For a partition

(4.3) ν=1a12a2nan\nu=1^{a_{1}}2^{a_{2}}\cdots n^{a_{n}}

of nn, we use S(ν)S^{(\nu)} to denote the variety

S(ν)=S(a1)×S(a2)××S(an).S^{(\nu)}=S^{(a_{1})}\times S^{(a_{2})}\times\cdots\times S^{(a_{n})}.

We consider the stratification of the target variety S(n)S^{(n)} by the combinatorial types of the points:

S(n)=νSν(n);S^{(n)}=\bigsqcupop\displaylimits_{\nu}S^{(n)}_{\nu};

there is a canonical finite surjective morphism

κν:S(ν)Sν(n)¯;\kappa_{\nu}\colon S^{(\nu)}\longrightarrow\overline{S^{(n)}_{\nu}};

see [GS93, Section 3]. We use |ν||\nu| to denote the length iai\sumop\displaylimits_{i}a_{i} of the partition (4.3). Then we have

codimS(n)(Sν(n)¯)=2(n|ν|).\operatorname{codim}_{S^{(n)}}\left(\overline{S_{\nu}^{(n)}}\right)=2(n-|\nu|).

The main result of [GS93] is the decomposition theorem

f+QS[n]H[2n]νκν+QS(ν)H[2|ν|](|ν|n).f_{+}{\mathbb{Q}}^{H}_{S^{[n]}}[2n]\simeq\bigoplusop\displaylimits_{\nu}{\kappa_{\nu}}_{+}{\mathbb{Q}}^{H}_{S^{(\nu)}}[2|\nu|](|\nu|-n).

Composing with the symmetric product map π(n):S(n)C(n)\pi^{(n)}\colon S^{(n)}\to C^{(n)} induced by π:SC\pi\colon S\to C, we have

(4.4) π+[n]QS[n]H[2n]νπ+(n)κν+QS(ν)H[2|ν|](|ν|n).\pi^{[n]}_{+}{\mathbb{Q}}^{H}_{S^{[n]}}[2n]\simeq\bigoplusop\displaylimits_{\nu}\pi^{(n)}_{+}{\kappa_{\nu}}_{+}{\mathbb{Q}}^{H}_{S^{(\nu)}}[2|\nu|](|\nu|-n).

Now we consider the commutative diagram

S(ν){S^{(\nu)}}Sν(n)¯{\overline{S^{(n)}_{\nu}}}C(ν){C^{(\nu)}}Cν(n)¯,{\overline{C^{(n)}_{\nu}}\hbox to0.0pt{,\hss}}π(ν)\scriptstyle{\pi^{(\nu)}}κν\scriptstyle{\kappa_{\nu}}π(n)\scriptstyle{\pi^{(n)}}κν\scriptstyle{\kappa^{\prime}_{\nu}}

where κν:C(ν)Cν(n)¯\kappa^{\prime}_{\nu}\colon C^{(\nu)}\to\overline{C^{(n)}_{\nu}} is defined analogously to κν\kappa_{\nu}, π(ν)\pi^{(\nu)} is induced by π\pi, and the right vertical arrow is the restriction of π(n):S(n)C(n)\pi^{(n)}\colon S^{(n)}\to C^{(n)}. Since

codimC(n)(Cν(n)¯)=12codimS(n)(Sν(n)¯)=n|ν|,\operatorname{codim}_{C^{(n)}}\left(\overline{C_{\nu}^{(n)}}\right)=\frac{1}{2}\operatorname{codim}_{S^{(n)}}\left(\overline{S_{\nu}^{(n)}}\right)=n-|\nu|,

the right-hand side of (4.4) can be expressed as

(4.5) νκν+(π+(ν)QS(ν)H[dimS(ν)](codimC(n)(Cν(n)¯))).\bigoplusop\displaylimits_{\nu}{\kappa^{\prime}_{\nu}}_{+}\left(\pi^{(\nu)}_{+}{\mathbb{Q}}^{H}_{S^{(\nu)}}[\dim S^{(\nu)}]\left(-\operatorname{codim}_{C^{(n)}}\left(\overline{C_{\nu}^{(n)}}\right)\right)\right).

We complete the proof of Theorem 1.4 by showing that the Hodge modules given by each term in (4.5) are PHS on C(n)C^{(n)}.

Since π:SC\pi\colon S\to C is PHS, by Proposition 4.3, πk:SkCk\pi^{k}\colon S^{k}\to C^{k} is PHS for any k1k\geq 1. Combining with Proposition 4.6, we obtain that each symmetric product π(k):S(k)C(k)\pi^{(k)}\colon S^{(k)}\to C^{(k)} is PHS, which further yields that π(ν):S(ν)C(ν)\pi^{(\nu)}\colon S^{(\nu)}\to C^{(\nu)} is PHS by taking products. Equivalently, the Hodge modules Qi,νHQ^{H}_{i,\nu} obtained from the decomposition theorem

π+(ν)QS(ν)H[dimS(ν)]iQi,νH[i],Qi,νH=i(π+(ν)QS(ν)H[dimS(ν)])\pi^{(\nu)}_{+}{\mathbb{Q}}^{H}_{S^{(\nu)}}\left[\dim S^{(\nu)}\right]\simeq\bigoplusop\displaylimits_{i}Q^{H}_{i,\nu}[-i],\quad Q^{H}_{i,\nu}={\mathcal{H}}^{i}\left(\pi^{(\nu)}_{+}{\mathbb{Q}}^{H}_{S^{(\nu)}}\left[\dim S^{(\nu)}\right]\right)

are PHS on C(ν)C^{(\nu)}. Finally, we push forward the Tate-twisted Hodge modules

(4.6) Qi,νH(codimC(n)(Cν(n)¯))Q^{H}_{i,\nu}\left(-\operatorname{codim}_{C^{(n)}}\left(\overline{C_{\nu}^{(n)}}\right)\right)

along the composition of the finite surjective map C(ν)Cν(n)¯C^{(\nu)}\to\overline{C^{(n)}_{\nu}} with the closed embedding Cν(n)¯C(n)\overline{C^{(n)}_{\nu}}\hookrightarrow C^{(n)}. By Proposition 4.1, the Hodge modules (4.6) are PHS on C(n)C^{(n)} as desired, where the Tate twist in (4.6) is crucial. ∎

5.  Global cohomology and LLV algebras

We specialize to Lagrangian fibrations π:MB\pi\colon M\to B associated with compact irreducible symplectic varieties. We prove Theorem 1.5, which is the perverse–Hodge symmetry at the level of global cohomology. Our main tool is the Looijenga–Lunts–Verbitsky (LLV for short) Lie algebra [Ver95, Ver96, LL97], a structure that is unique to compact irreducible symplectic varieties.

5.1.  LLV (sub)algebras

Let MM be a compact irreducible symplectic variety or, equivalently, a projective hyper-Kähler manifold. Assume dimM=2n\dim M=2n. We call an element αH2(M,C)\alpha\in H^{2}(M,{\mathbb{C}}) of Lefschetz type if for any k0k\geq 0, cupping with αk\alpha^{k} gives an isomorphism

αk:H2nk(M,C)H2n+k(M,C).\alpha^{k}\cup\colon H^{2n-k}(M,{\mathbb{C}})\xrightarrow{\;\simeq\;}H^{2n+k}(M,{\mathbb{C}}).

Such a class α\alpha induces an sl2\mathfrak{sl}_{2}-triple (Lα,H,)α(L_{\alpha},H,{}_{\alpha}) acting on H(M,C)H^{*}(M,{\mathbb{C}}). The LLV algebra g(M)\mathfrak{g}(M) is generated by all sl2\mathfrak{sl}_{2}-triples associated with Lefschetz type classes. As is shown in [Ver95, Ver96] and [LL97] independently, there is a natural isomorphism

g(M)so(b2(M)+2),\mathfrak{g}(M)\simeq\mathfrak{so}(b_{2}(M)+2),

where b2(M)b_{2}(M) is the second Betti number of MM.

Two subalgebras of g(M)\mathfrak{g}(M) played a crucial role in establishing Theorem 1.1. The first is Verbitsky’s so(5)\mathfrak{so}(5) generated by the sl2\mathfrak{sl}_{2}-triples associated with the three Kähler classes ωI,ωJ,ωK\omega_{I},\omega_{J},\omega_{K}. By [Ver90], the weight decomposition of H(M,C)H^{*}(M,{\mathbb{C}}) under Verbitsky’s so(5)\mathfrak{so}(5) coincides with the Hodge decomposition. Consider the Cartan subalgebra of this so(5)\mathfrak{so}(5) spanned by

H,HF:=1[LωJ,]ωK.H,H_{F}:=-\sqrt{-1}[L_{\omega_{J}},{}_{\omega_{K}}].

Then the Hodge decomposition

(5.1) H(M,C)=i,jHi,j(M)=i,jHj(M,)MiH^{*}(M,{\mathbb{C}})=\bigoplusop\displaylimits_{i,j}H^{i,j}(M)=\bigoplusop\displaylimits_{i,j}H^{j}(M,{}_{M}^{i})

satisfies

H|Hi,j(M)=(i+j2n)id,HF|Hi,j(M)=(ij)id.H|_{H^{i,j}(M)}=(i+j-2n)\operatorname{id},\quad H_{F}|_{H^{i,j}(M)}=(i-j)\operatorname{id}.

The second is the perverse so(5)\mathfrak{so}(5) introduced in [SY22], which concerns a Lagrangian fibration π:MB\pi\colon M\to B. Let βH2(M,C)\beta\in H^{2}(M,{\mathbb{C}}) be the pull-back of an ample class on BB, and let ηH2(M,C)\eta\in H^{2}(M,{\mathbb{C}}) be a relatively ample class satisfying qM(η)=0q_{M}(\eta)=0; here qM()q_{M}(-) is the Beauville–Bogomolov–Fujiki form on H2(M,C)H^{2}(M,{\mathbb{C}}). The perverse so(5)\mathfrak{so}(5) is generated by the sl2\mathfrak{sl}_{2}-triples associated with

η+β,1(ηβ)\eta+\beta,\;-\sqrt{-1}(\eta-\beta)

and a third element ρH2(M,C)\rho\in H^{2}(M,{\mathbb{C}}) satisfying

qM(ρ)=qM(η+β),(ρ,η)M=(ρ,β)M=0;q_{M}(\rho)=q_{M}(\eta+\beta),\quad(\rho,\eta)_{M}=(\rho,\beta)_{M}=0;

here (,)M(-,-)_{M} is the bilinear form associated with qM()q_{M}(-).

By [SY22, Theorem 3.1], the weight decomposition of H(M,C)H^{*}(M,{\mathbb{C}}) under the perverse so(5)\mathfrak{so}(5) takes the form

(5.2) H(M,C)=i,jpHi,j(M)=i,jHjn(B,PinQC),H^{*}(M,{\mathbb{C}})=\bigoplusop\displaylimits_{i,j}{{p}H}^{i,j}(M)=\bigoplusop\displaylimits_{i,j}H^{j-n}(B,P_{i-n}\otimes_{\mathbb{Q}}{\mathbb{C}}),

where the PiP_{i} are as in (1.1). In terms of the Cartan subalgebra spanned by

H,HP:=1[Lη+β,]1(ηβ),H,H_{P}:=-\sqrt{-1}\left[L_{\eta+\beta},{}_{-\sqrt{-1}(\eta-\beta)}\right],

we have

H|pHi,j(M)=(i+j2n)id,HP|pHi,j(M)=(ij)id.H|_{{{p}H}^{i,j}(M)}=(i+j-2n)\operatorname{id},\quad H_{P}|_{{{p}H}^{i,j}(M)}=(i-j)\operatorname{id}.

5.2.  Perverse–Hodge algebra

Let π:MB\pi\colon M\to B be a Lagrangian fibration with MM a compact irreducible symplectic variety of dimension 2n2n. Since BB is of Picard rank 11, the ample class ωIH2(M,C)\omega_{I}\in H^{2}(M,{\mathbb{C}}) admits a unique decomposition ωI=η+β\omega_{I}=\eta+\beta with η,β\eta,\beta as in the previous section. We also have ωJ=σ+σ¯\omega_{J}=\sigma+\overline{\sigma}, where σ\sigma is the symplectic form; hence (ωJ,η)M=(ωJ,β)M=0(\omega_{J},\eta)_{M}=(\omega_{J},\beta)_{M}=0. In particular, the perverse so(5)\mathfrak{so}(5) can be generated by the sl2\mathfrak{sl}_{2}-triples associated with ωI=η+β,1(ηβ)\omega_{I}=\eta+\beta,-\sqrt{-1}(\eta-\beta), and ωJ\omega_{J}.

We now consider the subalgebra gg(M)\mathfrak{g}\subset\mathfrak{g}(M) generated by the sl2\mathfrak{sl}_{2}-triples associated with

(5.3) ωI=η+β,1(ηβ),ωJ,ωK.\omega_{I}=\eta+\beta,\;-\sqrt{-1}(\eta-\beta),\;\omega_{J},\;\omega_{K}.

We call it the perverse–Hodge algebra; it is naturally isomorphic to so(6)\mathfrak{so}(6) by the description of g(M)\mathfrak{g}(M) in [Ver95, Theorem 11.1]. A Cartan subalgebra hg\mathfrak{h}\subset\mathfrak{g} is spanned by

(5.4) H,HP=1[Lη+β,]1(ηβ),HF=1[LωJ,]ωK.H,\;H_{P}=-\sqrt{-1}\left[L_{\eta+\beta},{}_{-\sqrt{-1}(\eta-\beta)}\right],\;H_{F}=-\sqrt{-1}\left[L_{\omega_{J}},{}_{\omega_{K}}\right].

We have the weight decomposition

(5.5) H(M,C)=i,k,dHi,k,d(M),H^{*}(M,{\mathbb{C}})=\bigoplusop\displaylimits_{i,k,d}H^{i,k,d}(M),

so that

H|Hi,k,d(M)=(d2n)id,HP|Hi,k,d(M)=(2id)id,HF|Hi,k,d(M)=(2kd)id.H|_{H^{i,k,d}(M)}=(d-2n)\operatorname{id},\quad H_{P}|_{H^{i,k,d}(M)}=(2i-d)\operatorname{id},\quad H_{F}|_{H^{i,k,d}(M)}=(2k-d)\operatorname{id}.

The perverse–Hodge algebra g\mathfrak{g} contains both the perverse so(5)\mathfrak{so}(5) and Verbitsky’s so(5)\mathfrak{so}(5) as subalgebras. Comparing (5.5) with (5.2) and (5.1), we find

Hi,k,d(M)=grkFHd2n(B,PinQC[ni]),H^{i,k,d}(M)=\operatorname{gr}_{-k}^{F}H^{d-2n}(B,P_{i-n}\otimes_{\mathbb{Q}}{\mathbb{C}}[n-i]),

where Fk=FkF_{-k}=F^{k} is the Hodge filtration on the pure Hodge structure Hd2n(B,Pin[ni])H^{d-2n}(B,P_{i-n}[n-i]).

On the other hand, by Saito’s formula (3.4) applied to the Hodge module PinHP_{i-n}^{H} under the projection f:Bptf\colon B\to\mathrm{pt}, we have

Hd2n(B,grkFDR(𝒫in)[ni])grkFHd2n(B,PinQC[ni]).H^{d-2n}\left(B,\operatorname{gr}_{-k}^{F}\operatorname{DR}({\mathcal{P}}_{i-n})[n-i]\right)\simeq\operatorname{gr}_{-k}^{F}H^{d-2n}\left(B,P_{i-n}\otimes_{\mathbb{Q}}{\mathbb{C}}[n-i]\right).

The left-hand side is precisely the cohomology of the perverse–Hodge complex 𝒢i,k{\mathcal{G}}_{i,k}. We conclude that

(5.6) Hi,k,d(M)Hd2n(B,𝒢i,k).H^{i,k,d}(M)\simeq H^{d-2n}(B,{\mathcal{G}}_{i,k}).

5.3.  Proof of Theorem 1.5

Via (5.6), we have identified the cohomology groups H(B,𝒢i,k)H^{*}(B,{\mathcal{G}}_{i,k}) with the weight spaces of H(M,C)H^{*}(M,{\mathbb{C}}) under the perverse–Hodge algebra g\mathfrak{g}. Theorem 1.5 is then equivalent to the symmetry of the weight spaces

(5.7) Hi,k,d(M)Hk,i,d(M).H^{i,k,d}(M)\simeq H^{k,i,d}(M).

The symmetry is a feature of so(6)\mathfrak{so}(6)-representations. More concretely, consider the subspace

V=ωI=η+β,1(ηβ),ωJ,ωKH2(M,C)V=\langle\omega_{I}=\eta+\beta,-\sqrt{-1}(\eta-\beta),\omega_{J},\omega_{K}\rangle\subset H^{2}(M,{\mathbb{C}})

equipped with the quadratic form qV=qM|Vq_{V}=q_{M}|_{V}. Set

V~=V𝟏,qV~=qV(0110).\widetilde{V}=V\oplus\langle\mathbf{1}\rangle\oplus\langle\Omega\rangle,\quad q_{\widetilde{V}}=q_{V}\oplus\begin{pmatrix}0&-1\\ -1&0\end{pmatrix}.

By [Ver95, Theorem 11.1] we have a natural isomorphism gso(V~)\mathfrak{g}\simeq\mathfrak{so}(\widetilde{V}). Up to renormalization, we may assume

(,𝟏)V~=(η,β)V~=(σ,σ¯)V~=1,(-\Omega,\mathbf{1})_{\widetilde{V}}=(\eta,\beta)_{\widetilde{V}}=(\sigma,\overline{\sigma})_{\widetilde{V}}=1,

so that ,η,σ,𝟏,β,σ¯-\Omega,\eta,\sigma,\mathbf{1},\beta,\overline{\sigma} form a standard isotropic basis of V~\widetilde{V}. Under this basis, the three elements H,HP,HFH,H_{P},H_{F} in (5.4) are precisely (twice) the basis of hg\mathfrak{h}\subset\mathfrak{g} described in [FH91, Section 18.1]. Let H,HP,HFH^{*},H^{*}_{P},H^{*}_{F} denote the dual basis of h\mathfrak{h}^{*}. By [FH91, Section 18.1, p. 271], the Weyl group of g\mathfrak{g} is isomorphic to (Z/2Z)2S3({\mathbb{Z}}/2{\mathbb{Z}})^{2}\rtimes\mathfrak{S}_{3}, where the symmetric group S3\mathfrak{S}_{3} permutes the three coordinate axes of h\mathfrak{h}^{*} and the generators of (Z/2Z)2({\mathbb{Z}}/2{\mathbb{Z}})^{2} act diagonally by (1,1,1)(1,-1,-1) and (1,1,1)(-1,-1,1). In particular, there is an element of the Weyl group exchanging HP,HFH^{*}_{P},H^{*}_{F} while fixing HH^{*}. Consequently, we obtain the symmetry of the weight spaces (5.7) through the Weyl group action. ∎

Remark 5.1.

We have been kindly informed by Mirko Mauri that the isomorphism (5.7) can be obtained by combining Verbitsky’s so(5)\mathfrak{so}(5)-action and the monodromy symmetry; see the proof of [HM23, Corollary 3.5].

Remark 5.2.

Starting from the isomorphism Hi+j2n(B,𝒢i,k)Hi+j2n(B,𝒢k,i)H^{i+j-2n}(B,{\mathcal{G}}_{i,k})\simeq H^{i+j-2n}(B,{\mathcal{G}}_{k,i}), we may sum over the index kk. On one hand, we get

k=02nHi+j2n(B,𝒢i,k)k=02ngrkFHi+j2n(B,PinQC[ni])Hi+j2n(B,PinQC[ni])Hjn(B,PinQC).\begin{split}\bigoplusop\displaylimits_{k=0}^{2n}H^{i+j-2n}(B,{\mathcal{G}}_{i,k})&\simeq\bigoplusop\displaylimits_{k=0}^{2n}\operatorname{gr}_{-k}^{F}H^{i+j-2n}(B,P_{i-n}\otimes_{\mathbb{Q}}{\mathbb{C}}[n-i])\\ &\simeq H^{i+j-2n}(B,P_{i-n}\otimes_{\mathbb{Q}}{\mathbb{C}}[n-i])\\ &\simeq H^{j-n}(B,P_{i-n}\otimes_{\mathbb{Q}}{\mathbb{C}}).\end{split}

On the other hand, by (3.7) we have

k=02nHi+j2n(B,𝒢k,i)Hi+j2n(B,k=02ngriFDR(𝒫kn)[nk])Hi+j2n(B,Rπ[2ni]Mi)Hj(M,)Mi.\begin{split}\bigoplusop\displaylimits_{k=0}^{2n}H^{i+j-2n}(B,{\mathcal{G}}_{k,i})&\simeq H^{i+j-2n}\left(B,\bigoplusop\displaylimits_{k=0}^{2n}\operatorname{gr}_{-i}^{F}\operatorname{DR}({\mathcal{P}}_{k-n})[n-k]\right)\\ &\simeq H^{i+j-2n}\left(B,R\pi_{*}{}_{M}^{i}[2n-i]\right)\\ &\simeq H^{j}(M,{}_{M}^{i}).\end{split}

We see that Theorem 1.5 refines Theorem 1.1.

Remark 5.3.

One can collect the numbers hi,k,d:=dimHi,k,d(M)h^{i,k,d}:=\dim H^{i,k,d}(M) and depict them in a 33-space. We call it the perverse–Hodge diamond of π:MB\pi\colon M\to B. For example, the (d=2n)(d=2n)-plane has the shape

hn,2n,2n... . . . ...h0,n,2nhn,n,2nh2n,n,2n.... . . . ...hn,0,2n\begin{matrix}&&h^{n,2n,2n}\\ &\reflectbox{$\mathinner{\mkern 1.0mu\raise 7.0pt\vbox{\kern 7.0pt\hbox{$.$}}\mkern 2.0mu\raise 4.0pt\hbox{$.$}\mkern 2.0mu\raise 1.0pt\hbox{$.$}\mkern 1.0mu}$}&\vbox{\kern 6.0pt\hbox{$.$}\hbox{$.$}\hbox{$.$}}&\mathinner{\mkern 1.0mu\raise 7.0pt\vbox{\kern 7.0pt\hbox{$.$}}\mkern 2.0mu\raise 4.0pt\hbox{$.$}\mkern 2.0mu\raise 1.0pt\hbox{$.$}\mkern 1.0mu}\\ h^{0,n,2n}&\cdots&h^{n,n,2n}&\cdots&h^{2n,n,2n}.\\ &\mathinner{\mkern 1.0mu\raise 7.0pt\vbox{\kern 7.0pt\hbox{$.$}}\mkern 2.0mu\raise 4.0pt\hbox{$.$}\mkern 2.0mu\raise 1.0pt\hbox{$.$}\mkern 1.0mu}&\vbox{\kern 6.0pt\hbox{$.$}\hbox{$.$}\hbox{$.$}}&\reflectbox{$\mathinner{\mkern 1.0mu\raise 7.0pt\vbox{\kern 7.0pt\hbox{$.$}}\mkern 2.0mu\raise 4.0pt\hbox{$.$}\mkern 2.0mu\raise 1.0pt\hbox{$.$}\mkern 1.0mu}$}\\ &&h^{n,0,2n}\end{matrix}

To simplify the discussion we assume b2(M)5b_{2}(M)\geq 5. Then the perverse–Hodge algebra g\mathfrak{g} can be upgraded to an so(7)\mathfrak{so}(7) by adding one more sl2\mathfrak{sl}_{2}-triple, namely the one associated with an element ρH2(M,C)\rho\in H^{2}(M,{\mathbb{C}}) which is orthogonal to the four classes in (5.3) with respect to qM()q_{M}(-) and shares the same norm. The Weyl group of so(7)\mathfrak{so}(7) is the full symmetry group of the regular octahedron, and as such it acts on the perverse–Hodge diamond (whereas the Weyl group of so(6)\mathfrak{so}(6) acts as the subgroup of rotational symmetries). Meanwhile, it is expected that the perverse–Hodge diamond has precisely the shape of a regular octahedron, meaning that no nonzero numbers hi,k,dh^{i,k,d} lie outside the convex hull of the six vertices

h0,0,0,h0,n,2n,hn,0,2n,hn,2n,2n,h2n,n,2n,h2n,2n,4n.h^{0,0,0},\;h^{0,n,2n},\;h^{n,0,2n},\;h^{n,2n,2n},\;h^{2n,n,2n},\;h^{2n,2n,4n}.

See also [GKL+22, Conjecture 1.19] for an even stronger conjecture. This expectation is verified for all known families of compact irreducible symplectic varieties in [GKL+22, Theorem 1.23]. For even cohomology Heven(M,C)H^{\operatorname{even}}(M,{\mathbb{C}}), the expectation is shown in [GKL+22, Theorem 5.2] and [HM23, Corollary 3.4] to be equivalent to Nagai’s conjecture for type II degenerations of hyper-Kähler manifolds deformation equivalent to MM. It is verified for 2n82n\leq 8 in [GKL+22, Proposition 6.5]; more generally, the (d=2n)(d=2n)-plane and (d=2n2)(d=2n-2)-plane cases are proven in [HM23, Theorem 1.2]. (Alternatively, one can show the two cases using octahedral symmetry and the knowledge that the border of the Hodge diamond of MM only has 11’s and 0’s.)

References

  • [Bea91] A. Beauville, Systèmes hamiltoniens complètement intégrables associés aux surfaces K3K3, in: Problems in the theory of surfaces and their classification (Cortona, 1988), pp. 25–31, Sympos. Math., XXXII, Academic Press, London, 1991.
  • [BBD82] A. A. Beĭlinson, J. Bernstein, and P. Deligne, Faisceaux pervers, in: Analysis and topology on singular spaces, I (Luminy, 1981), pp. 5–171, Astérisque 100, 1982.
  • [DM96] R. Donagi and E. Markman, Spectral covers, algebraically completely integrable, Hamiltonian systems, and moduli of bundles, in: Integrable systems and quantum groups (Montecatini Terme, 1993), pp. 1–119, Lecture Notes in Math., vol. 1620, Springer, Berlin, 1996.
  • [FSY22] C. Felisetti, J. Shen, and Q. Yin, On intersection cohomology and Lagrangian fibrations of irreducible symplectic varieties, Trans. Amer. Math. Soc. 375 (2022), no. 4, 2987–3001.
  • [FH91] W. Fulton and J. Harris, Representation theory. A first course, Grad. Texts in Math., vol. 129, Readings in Mathematics, Springer-Verlag, New York, 1991.
  • [GS93] L. Göttsche and W. Sörgel, Perverse sheaves and the cohomology of Hilbert schemes of smooth algebraic surfaces, Math. Ann. 296 (1993), 235–245.
  • [GKL+22] M. Green, Y.-J. Kim, R. Laza, and C. Robles, The LLV decomposition of hyper-Kähler cohomology (the known cases and the general conjectural behavior), Math. Ann. 382 (2022), no. 3-4, 1517–1590.
  • [Grö14] M. Gröchenig, Hilbert schemes as moduli of Higgs bundles and local systems, Int. Math. Res. Not. 2014 (2014) (23), 6523–6575.
  • [HLS+21] A. Harder, Z. Li, J. Shen, and Q. Yin, P = W for Lagrangian fibrations and degenerations of hyper-Kähler manifolds, Forum Math. Sigma 9 (2021), e50.
  • [Hit87a] N. J. Hitchin, The self-duality equations on a Riemann surface, Proc. London Math. Soc. (3) 55 (1987), no. 1, 59–126.
  • [Hit87b] by same author, Stable bundles and integrable systems, Duke Math. J. 54 (1987), no. 1, 91–114.
  • [HM22] D. Huybrechts and M. Mauri, Lagrangian fibrations, Milan J. Math. 90 (2022), no. 2, 459–483.
  • [HM23] by same author, On type II degenerations of hyperkähler manifolds, Math. Res. Lett. 30 (2023), no. 1, 125–141.
  • [Hwa08] J.-M. Hwang, Base manifolds for fibrations of projective irreducible symplectic manifolds, Invent. Math. 174 (2008), no. 3, 625–644.
  • [Kol86] J. Kollár, Higher direct images of dualizing sheaves. II, Ann. of Math. (2) 124 (1986), no. 1, 171–202.
  • [LL97] E. Looijenga and V. A. Lunts, A Lie algebra attached to a projective variety, Invent. Math. 129 (1997), no. 2, 361–412.
  • [Mat05] D. Matsushita, Higher direct images of dualizing sheaves of Lagrangian fibrations, Amer. J. Math. 127 (2005), no. 2, 243–259.
  • [MSS11] L. Maxim, M. Saito, and J. Schürmann, Symmetric products of mixed Hodge modules, J. Math. Pures Appl. (9) 96 (2011), no. 5, 462–483.
  • [Sai89] M. Saito, Modules de Hodge polarisables, Publ. Res. Inst. Math. Sci. 24 (1988), no. 6, 849–995 (1989).
  • [Sai90] by same author, Mixed Hodge modules, Publ. Res. Inst. Math. Sci. 26 (1990), no. 2, 221–333.
  • [Sai91] by same author, On Kollár’s conjecture, in: Several complex variables and complex geometry (Santa Cruz, CA, 1989), pp. 509–517, Proc. Sympos. Pure Math. vol. 52, Part 2, Amer. Math. Soc., Providence, RI, 1991.
  • [Sch16] C. Schnell, On Saito’s vanishing theorem, Math. Res. Lett. 23 (2016), no. 2, 499–527.
  • [SY22] J. Shen and Q. Yin, Topology of Lagrangian fibrations and Hodge theory of hyper-Kähler manifolds (with an appendix by C. Voisin), Duke Math. J. 171 (2022), no. 1, 209–241.
  • [Ver90] M. S. Verbitskiĭ, Action of the Lie algebra of SO(5)SO(5) on the cohomology of a hyper-Kähler manifold, Funct. Anal. Appl. 24 (1990), no. 3, 229–230.
  • [Ver95] M. Verbitsky, Cohomology of compact hyperkaehler manifolds, Ph.D. thesis, Harvard University, 1995, arXiv:alg-geom/9501001.
  • [Ver96] by same author, Cohomology of compact hyper-Kähler manifolds and its applications, Geom. Funct. Anal. 6 (1996), no. 4, 601–611.
  • [Voi18] C. Voisin, Torsion points of sections of Lagrangian torus fibrations and the Chow ring of hyper-Kähler manifolds, in: Geometry of moduli, pp. 295–326, Abel Symp. vol. 14, Springer, Cham, 2018.
  • [Zha17] Z. Zhang, Multiplicativity of perverse filtration for Hilbert schemes of fibered surfaces, Adv. Math. 312 (2017), 636–679.