This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Perturbation solutions of relativistic viscous hydrodynamics for longitudinally expanding fireballs

Ze-Fang Jiang1,2{}^{~{}1,2} [email protected]    Duan She2,3{}^{~{}2,3} [email protected]    C. B. Yang2{}^{~{}2} [email protected]    Defu Hou2{}^{~{}2} [email protected] 1 Department of Physics and Electronic-Information Engineering, Hubei Engineering University, Xiaogan 432000, China 2 Institute of Particle Physics & Key Laboratory of Quark and Lepton Physics, MOE, Central China Normal University, Wuhan 430079, China 3 Physics Department and Center for Exploration of Energy and Matter, Indiana University, 2401 N Milo B. Sampson Lane, Bloomington, IN 47408, USA.
Abstract

The solutions of relativistic viscous hydrodynamics for longitudinal expanding fireballs is investigated with the Navier-Stokes theory and Israel-Stewart theory. The energy and Euler conservation equations for the viscous fluid are derived in Rindler coordinates with the longitudinal expansion effect is small. Under the perturbation assumption, an analytical perturbation solution for the Navier-Stokes approximation and numerical solutions for the Israel-Stewart approximation are presented. The temperature evolution with both shear viscous effect and longitudinal acceleration effect in the longitudinal expanding framework are presented and specifically temperature profile shows symmetry Gaussian shape in the Rindler coordinates. In addition, in the presence of the longitudinal acceleration expanding effect, the results of the Israel-Stewart approximation are compared to the results from the Bjorken and the Navier-Stokes approximation, and it gives a good description than the Navier-Stokes theories results at the early stages of evolution.

pacs:
20.24, 20.25

I Introduction

The Relativistic hydrodynamic theory provides well description of the space-time evolution and many non-equilibrium properties of quark-gluon plasma (QGP) produced in heavy ion collisions at the Relativistic Heavy Ion Collider (RHIC) and the Large Hadron Collider (LHC) Bass1998vz ; Gyulassy:2004zy ; Shuryak:2003xe ; Heinz2013th .

There has been a lot of excellent progress in solving relativistic viscous hydrodynamics equations analytically with different approximations and special symmetries and numerically in recent decades years Romatschke:2017ejr ; Israel:1979wp ; AM:2004prc ; Koide:2006ef ; PeraltaRamos:2009kg ; Denicol:2012cn ; Landau:1953gs ; Hwa:1974gn ; Bjorken:1982qr ; Biro:2000nj ; Csorgo:2003rt ; Csorgo:2006ax ; Borshch ; Csorgo:2008prc ; Nagy:2009eq ; Csanad:2012hr ; Csorgo:2018pxh ; Gubser:2010ze ; Gubser:2010ui ; Jiang2017 ; Jiang:2014uya ; Jiang:2014wza ; Hatta:2014gqa ; Hatta:2014gga ; Wu:2016pmx ; She:2019wdt ; Schenke:2010rr ; Giacalone:2017dud ; Pang:2018zzo ; Chen:2017zte ; Wu:2018cpc ; Calzetta:2019dfr . Those analytical solutions play a very important role in understanding the evolution dynamics and are good testbeds for numerical solutions.

Recently, a series of interesting analytical solutions for longitudinally expanding relativistic perfect fluid were found by Budapest and Wuhan group Csorgo:2006ax ; Csorgo:2008prc ; Jiang2017 ; Csorgo:2018pxh ; She:2019wdt . These ideal hydrodynamics solutions combined with Buda-Lund model Csorgo:1995pr have been utilized for simulating QGP medium dynamic evolution and readily reproduce the observed final state multiplicity distribution and its dependence on beam energy, collision system, particle mass and freeze-out temperature She:2019wdt ; Biro:2000nj ; Csorgo:2006ax ; Nagy:2009eq ; Jiang2017 ; Jiang:2018qxd ; Kasza:2018qah .

However, a lot of comparisons between experimental data and viscous hydrodynamic simulations found that the picture of QGP is a nearly perfect fluid but contains a small specific shear viscosity. The shear viscosity ratio of QGP is very close to the lower bound 1/4π1/4\pi computed for 𝒩=4\mathcal{N}=4 super-Yang-Mills (SYM) theory in the AdS/CFT correspondence Policastro:2001yc ; Baier:2007ix ; Bhattacharyya:2008jc ; Arnold:2011ja . In this paper, we will go beyond both the Csörgő-Nagy-Csanád (CNC) solutions and the Csörgő-Kasza-Csanád-Jiang (CKCJ) solutions of the relativistic perfect fluid for longitudinally expanding fireballs Csorgo:2006ax ; Csorgo:2008prc ; Csorgo:2018pxh and present a perturbation analytical solution of the longitudinally expanding first order (Navier-Stokes limit) viscous hydrodynamic equations. We furthermore present the numerical results of the second-order (Israel-Stewart limit) viscous hydrodynamics equations as a piece of the longitudinally expanding fireballs theory based on assuming the relaxation time is small Paquet:2019npk . We find that small shear pressure tensor relaxation time τπ\tau_{\pi} approximation solves the unstable problem of the first order approximation, indicating the stability of the second order numerical results. This study providing us a self-consistent first-order and second-order viscous hydrodynamic with longitudinal expanding dynamics, and lead us to a better understanding of the relationship between viscosity effect and longitudinal acceleration effect for the medium evolution in future phenomenological studies.

The organization of the paper is as follows. In Sec. II, the 2nd viscous hydrodynamic equations are reconstructed in Rindler coordinates according to the Landau-Lifshitz formalism Landau:1953gs , and perturbation solutions are presented. In Sec. III, numerical results of viscous hydrodynamics for longitudinal expanding fireball are investigated. Brief summary and discussion are given in Sec. IV.

II The perturbation solutions to the longitudinally expanding flow

We work in the so-called Rindler-coordinates for which τ=t2r2\tau=\sqrt{t^{2}-r^{2}} is the proper time and ηs=0.5ln[(1+r/t)/(1r/t)]\eta_{s}=0.5\ln[(1+r/t)/(1-r/t)] is the space-time rapidity, where xμ=(t,r1,,rd)x^{\mu}=(t,r_{1},\dots,r_{d}) and r=Σiri2r=\sqrt{\Sigma_{i}r_{i}^{2}} Csorgo:2006ax ; Csorgo:2008prc ; Csorgo:2018pxh . We consider (1+1) dimensional fluid flow in (1+3) dimensions space-time since we focus on the perturbation solutions of a longitudinal expanding fireball with shear viscosity. The flow 4-velocity field uμu^{\mu} in the Cartesian coordinates (the Minkowski flat space-time) for this system is

uμ=(coshΩ,0,0,sinhΩ),\displaystyle u^{\mu}=(\cosh\Omega,0,0,\sinh\Omega), (1)

where flow rapidity Ω\Omega is a function of space-time rapidity ηs\eta_{s} and is independent of proper time τ\tau Csorgo:2008prc , with the 4-velocity normalized as uμuμ=1u^{\mu}u_{\mu}=1. The second-order hydrodynamic equations without external currents are simply given by

μTμν\displaystyle\partial_{\mu}T^{\mu\nu} =\displaystyle= 0,\displaystyle 0, (2)

with the energy-momentum tensor Tμν=εuμuνpΔμν+πμνT^{\mu\nu}=\varepsilon u^{\mu}u^{\nu}-p\Delta^{\mu\nu}+\pi^{\mu\nu}, where ε\varepsilon is the energy density, pp the pressure, gμνg_{\mu\nu}=𝐝𝐢𝐚𝐠\mathbf{diag}(1,1,1,1)(1,-1,-1,-1) the metric tensor, and Δμν=gμνuμuν\Delta^{\mu\nu}=g^{\mu\nu}-u^{\mu}u^{\nu} the projection operator which is orthogonal to the fluid velocity. The shear pressure tensor πμν\pi^{\mu\nu} represents the deviation from ideal hydrodynamics and local equilibrium, and it satisfies uμπμν=0u^{\mu}\pi_{\mu\nu}=0 and is traceless πμμ=0\pi^{\mu}_{~{}\mu}=0 in the Landau Frame.

The energy density and pressure are related to each other by the equation of state (EoS),

ε=κp,\displaystyle\varepsilon=\kappa p, (3)

where κ\kappa is usually related to the local temperature Paquet:2019npk , in this case we assume κ\kappa to be a constant and independent of the temperature.

The fundamental equations of viscous fluid dynamics are established by projecting appropriately the conservation equations of the energy momentum tensor Eq. (2). The conservation equations can be rewritten as,

Dε=(ε+p)θ+σμνπμν,\displaystyle D\varepsilon=-(\varepsilon+p)\theta+\sigma_{\mu\nu}\pi^{\mu\nu}, (4)

and

(ε+p)Duα=αp+παμDuμΔανμπμν,\displaystyle(\varepsilon+p)Du^{\alpha}=\nabla^{\alpha}p+\pi^{\alpha\mu}Du_{\mu}-\Delta^{\alpha\nu}\nabla^{\mu}\pi_{\mu\nu}, (5)

respectively, where D=uμμD=u^{\mu}\partial_{\mu} is the comoving derivative and θ=μuμ\theta=\partial_{\mu}u^{\mu} is the expansion rate.

In terms of the 14-moment approximation result from AM:2004prc ; DTeaney , μsμ0\partial_{\mu}s^{\mu}\geq 0 reduce the corresponding thermodynamic forces. The general traceless shear tensor πμν\pi^{\mu\nu} is AM:2004prc ; Baier:2007ix ,

πμν\displaystyle\pi^{\mu\nu} =\displaystyle= 2ησμντπ[ΔαμΔβνuλλπαβ+13πμνθ]λ1πλμπνλλ2πλμΩνλλ3ΩλμΩνλ,\displaystyle 2\eta\sigma^{\mu\nu}-\tau_{\pi}\left[\Delta^{\mu}_{\alpha}\Delta^{\nu}_{\beta}u^{\lambda}\nabla_{\lambda}\pi^{\alpha\beta}+\frac{1}{3}\pi^{\mu\nu}\theta\right]-\lambda_{1}\pi^{\langle\mu}_{\ \ \lambda}\pi^{\nu\rangle\lambda}-\lambda_{2}\pi^{\langle\mu}_{\ \ \lambda}\Omega^{\nu\rangle\lambda}-\lambda_{3}\Omega^{\langle\mu}_{\ \ \lambda}\Omega^{\nu\rangle\lambda},

with the symmetric shear tensor σμν\sigma^{\mu\nu} and the antisymmetric vorticity tensor Ωμν\Omega^{\mu\nu} defined as

σμν\displaystyle\sigma^{\mu\nu} (12(ΔαμΔβν+ΔβμΔαν)13ΔμνΔαβ)αuβ,\displaystyle\equiv\left(\frac{1}{2}(\Delta^{\mu}_{\alpha}\Delta^{\nu}_{\beta}+\Delta^{\mu}_{\beta}\Delta^{\nu}_{\alpha})-\frac{1}{3}\Delta^{\mu\nu}\Delta_{\alpha\beta}\right)\partial^{\alpha}u^{\beta}, (6)
Ωμν\displaystyle\Omega^{\mu\nu} 12ΔμαΔνβ(αuββuα),\displaystyle\equiv\frac{1}{2}\Delta^{\mu\alpha}\Delta^{\nu\beta}(\nabla_{\alpha}u_{\beta}-\nabla_{\beta}u_{\alpha}), (7)

where η\eta, τπ\tau_{\pi}, λ1\lambda_{1}, λ2\lambda_{2}, λ3\lambda_{3} are positive transport coefficients in the flat space time. η\eta is the shear viscosity coefficient and τπ\tau_{\pi} is the relaxation time for shear pressure tensor corresponding to the dissipative currents, respectively. Shear viscosity ratio η/s\eta/s of the QGP is very close to the lower bound 1/4π1/4\pi computed for a strongly coupled gauge theory (𝒩=4\mathcal{N}=4 SYM) in the AdS/CFT correspondence. And relaxation time τπ\tau_{\pi} is in fact approximately (2ln2)/(2πT)(2-\ln 2)/(2\pi T) Policastro:2001yc ; Baier:2007ix ; Bhattacharyya:2008jc ; Arnold:2011ja , where ss is the entropy, sμs^{\mu} the entropy four-current, TT the temperature. It is customary to split πμν\pi^{\mu\nu} order-by-order in terms of σμν\sigma^{\mu\nu} into a traceless part and the contribution form higher-order term is suppressed by the relaxation time τπ\tau_{\pi}, and assuming transport coefficients λ1=λ2=λ3=0\lambda_{1}=\lambda_{2}=\lambda_{3}=0 AM:2004prc ; DTeaney , and neglect the contribution from higher order τπ\tau_{\pi} terms, one shows that Eqs. (4-5) can be cast into,

Dε\displaystyle D\varepsilon =(ε+p)θ+2ησμνσμν2ητπσμν[ΔαμΔβνDσαβ+13σμνθ],\displaystyle=-(\varepsilon+p)\theta+2\eta\sigma^{\mu\nu}\sigma_{\mu\nu}-2\eta\tau_{\pi}\sigma_{\mu\nu}\left[\Delta_{\alpha}^{\mu}\Delta_{\beta}^{\nu}D\sigma^{\alpha\beta}+\frac{1}{3}\sigma^{\mu\nu}\theta\right], (8)

and

(ε+p)Duα\displaystyle(\varepsilon+p)Du^{\alpha} =αp+2η(σαμτπ[ΔγαΔρμDσγρ+13σαμθ])Duμ\displaystyle=\nabla^{\alpha}p+2\eta\left(\sigma^{\alpha\mu}-\tau_{\pi}\left[\Delta_{\gamma}^{\alpha}\Delta_{\rho}^{\mu}D\sigma^{\gamma\rho}+\frac{1}{3}\sigma^{\alpha\mu}\theta\right]\right)Du_{\mu} (9)
2ηΔανμ(σμντπ[ΔμγΔνρDσγρ+13σμνθ]).\displaystyle~{}~{}-2\eta\Delta^{\alpha\nu}\nabla^{\mu}\left(\sigma_{\mu\nu}-\tau_{\pi}\left[\Delta_{\mu}^{\gamma}\Delta_{\nu}^{\rho}D\sigma_{\gamma\rho}+\frac{1}{3}\sigma_{\mu\nu}\theta\right]\right).

The CKCJ solutions Csorgo:2018pxh and perturbation solutions here are both characterized by the flow velocity field Eq. (1) in the Rindler coordinates. It is straightforward to find that comoving derivative DD and expansion rate θ\theta can be expressed as She:2019wdt ,

D\displaystyle D =\displaystyle= cosh(Ωηs)τ+1τsinh(Ωηs)ηs,\displaystyle{\rm cosh}(\Omega-\eta_{s})\frac{\partial}{\partial\tau}+\frac{1}{\tau}{\rm sinh}(\Omega-\eta_{s})\frac{\partial}{\partial\eta_{s}}, (10)

and

θ\displaystyle\theta =\displaystyle= sinh(Ωηs)Ωτ+1τcosh(Ωηs)Ωηs,\displaystyle{\rm sinh}(\Omega-\eta_{s})\frac{\partial\Omega}{\partial\tau}+\frac{1}{\tau}{\rm cosh}(\Omega-\eta_{s})\frac{\partial\Omega}{\partial\eta_{s}}, (11)

respectively.

With the help of the Gibbs thermodynamic relation and CNC solutions Csorgo:2006ax , for systems without bulk viscosity and net charge current (net baryon, net electric charge or net strangeness), the hydrodynamic conservation equations Eqs. (8,9) for a longitudinal expanding fireball in the presence of shear viscosity in the Rindler coordinate can be written as,

τTτ+tanh(Ωηs)Tηs+ΩκT\displaystyle\tau\frac{\partial T}{\partial\tau}+\tanh(\Omega-\eta_{s})\frac{\partial T}{\partial\eta_{s}}+\frac{\Omega^{\prime}}{\kappa}T =ΠdκΩ2τcosh(Ωηs)Πdτπ6κτ2Ω[6cosh(2(Ωηs))Ω\displaystyle=\frac{\Pi_{d}}{\kappa}\frac{\Omega^{\prime 2}}{\tau}\cosh(\Omega-\eta_{s})-\frac{\Pi_{d}\tau_{\pi}}{6\kappa\tau^{2}}\Omega^{\prime}[-6\cosh(2(\Omega-\eta_{s}))\Omega^{\prime} (12)
+(1+7cosh(2(Ωηs)))Ω2+sinh(2(Ωηs))Ω′′],\displaystyle~{}~{}~{}~{}+(1+7\cosh(2(\Omega-\eta_{s})))\Omega^{\prime 2}+\sinh(2(\Omega-\eta_{s}))\Omega^{\prime\prime}],

and

tanh(Ωηs)[τTτ+TΩ]+Tηs\displaystyle\tanh(\Omega-\eta_{s})\left[\tau\frac{\partial T}{\partial\tau}+T\Omega^{\prime}\right]+\frac{\partial T}{\partial\eta_{s}} =Πdτ(2Ω(Ω1)+Ω′′coth(Ωηs))sinh(Ωηs)\displaystyle=\frac{\Pi_{d}}{\tau}(2\Omega^{\prime}(\Omega^{\prime}-1)+\Omega^{\prime\prime}\coth(\Omega-\eta_{s}))\sinh(\Omega-\eta_{s}) (13)
+Πdτπ6κτ2(tanh(Ωηs)Ω(12+24cosh(2(Ωηs))\displaystyle~{}~{}~{}~{}+\frac{\Pi_{d}\tau_{\pi}}{6\kappa\tau^{2}}(-\tanh(\Omega-\eta_{s})\Omega^{\prime}(12+24\cosh(2(\Omega-\eta_{s}))
+Ω(2846cosh(2(Ωηs))+3(5+7cosh(2(Ωηs)))Ω))\displaystyle~{}~{}~{}~{}+\Omega^{\prime}(-28-46\cosh(2(\Omega-\eta_{s}))+3(5+7\cosh(2(\Omega-\eta_{s})))\Omega^{\prime}))
+(18cosh(2(Ωηs))+(123cosh(2(Ωηs)))Ω)Ω′′\displaystyle~{}~{}~{}~{}+(18\cosh(2(\Omega-\eta_{s}))+(1-23\cosh(2(\Omega-\eta_{s})))\Omega^{\prime})\Omega^{\prime\prime}
6Ω′′3sinh(2(Ωηs))Ω(3)),\displaystyle~{}~{}~{}~{}-6\Omega^{\prime\prime}-3\sinh(2(\Omega-\eta_{s}))\Omega^{(3)}),

where Πd=4η3s\Pi_{d}=\frac{4\eta}{3s} is related to the shear viscosity ratio, Ω\Omega^{\prime} approximately characterizes the longitudinal acceleration of flow element in the medium, Ω,Ω′′,Ω(3)\Omega^{\prime},~{}\Omega^{\prime\prime},~{}\Omega^{(3)} are derivative function of flow rapidity, Ω=Ωηs\Omega^{\prime}=\frac{\partial\Omega}{\partial\eta_{s}}, Ω′′=2Ωηs2\Omega^{\prime\prime}=\frac{\partial^{2}\Omega}{\partial\eta_{s}^{2}}, Ω(3)=3Ωηs3\Omega^{(3)}=\frac{\partial^{3}\Omega}{\partial\eta_{s}^{3}}.

Case A. Bjorken solution, CNC solution, CKCJ solution under the velocity field Ω=ληs\Omega=\lambda\eta_{s}.

A comprehensive study of the longitudinally expanding fireballs for ideal hydrodynamics has been undertaken by Csörgő, Nagy, and Csanád ( or CNC family of solutions) in Refs. Csorgo:2006ax ; Csorgo:2008prc . According to the results from CNC solutions, the fluid rapidity Ω(τ,ηs)\Omega(\tau,\eta_{s}) depends on space-time rapidity ηs\eta_{s} alone. For ideal hydrodynamics, one finds Ω′′=0\Omega^{\prime\prime}=0, Ω(3)=0\Omega^{(3)}=0, Πd=0\Pi_{d}=0 and τπ=0\tau_{\pi}=0, the conservation equations Eqs. (12, 13) reduce to,

τTτ+tanh(Ωηs)Tηs+ΩκT=0,\displaystyle\tau\frac{\partial T}{\partial\tau}+\tanh(\Omega-\eta_{s})\frac{\partial T}{\partial\eta_{s}}+\frac{\Omega^{\prime}}{\kappa}T=0, (14)

and

tanh(Ωηs)[τTτ+TΩ]+Tηs=0.\displaystyle\tanh(\Omega-\eta_{s})\left[\tau\frac{\partial T}{\partial\tau}+T\Omega^{\prime}\right]+\frac{\partial T}{\partial\eta_{s}}=0. (15)

(a) For boost-invariant Hwa-Bjorken flow where Ω=ηs\Omega=\eta_{s}, tanh(Ωηs)=0\tanh(\Omega-\eta_{s})=0, and Eqs. (14, 15) have following exact solution,

T(τ)=T0(τ0τ)1κ,\displaystyle T(\tau)=T_{0}\left(\frac{\tau_{0}}{\tau}\right)^{\frac{1}{\kappa}}, (16)

where T0T_{0} define the values for temperature at the proper time τ0\tau_{0} and coordinate rapidity ηs=0\eta_{s}=0. This is the famous boost-invariant Hwa-Bjorken solution Hwa:1974gn ; Bjorken:1982qr and other hydrodynamics variables are functions of the proper time τ\tau.

(b) For a perfect fluid with longitudinal acceleration, Ω(ηs)\Omega(\eta_{s}), shear viscosity Πd=0\Pi_{d}=0. Eqs. (14, 15) reduce to ,

tanh(Ωηs)[τTTτ+Ω]+TTηs=0,\displaystyle\tanh(\Omega-\eta_{s})\left[\frac{\tau\partial T}{T\partial\tau}+\Omega^{\prime}\right]+\frac{\partial T}{T\partial\eta_{s}}=0, (17)
\displaystyle\Rightarrow{}{}{}{} lnTlnτ=1κtanh2(Ωηs)1tanh2(Ωηs)Ωκ.\displaystyle\frac{\partial\ln T}{\partial\ln\tau}=-\frac{1-\kappa\tanh^{2}(\Omega-\eta_{s})}{1-\tanh^{2}(\Omega-\eta_{s})}\frac{\Omega^{\prime}}{\kappa}.

For κ=1\kappa=1, one finds that the Ω\Omega^{\prime} could be either an arbitrary constant Csorgo:2006ax or a function of ηs\eta_{s} Csorgo:2018pxh ; Kasza:2018qah . For the former case, one finds that Ω(ηs)=ληs+η0\Omega(\eta_{s})=\lambda\eta_{s}+\eta_{0}, here λ\lambda is an arbitrary constant and λ=Ω\lambda=\Omega^{\prime}, η0\eta_{0} is a space-time rapidity shift. The solution of Eq. (17) case is

lnTlnτ=Ω,T(τ)=T0(τ0τ)λ1𝒱(S),\displaystyle\frac{\partial\ln T}{\partial\ln\tau}=-\Omega^{\prime},~{}~{}~{}\Rightarrow~{}~{}~{}T(\tau)=T_{0}\left(\frac{\tau_{0}}{\tau}\right)^{\lambda}\frac{1}{\mathcal{V}(S)}, (18)

this is the well-known CNC exact solutions case (e) that presented by Csörgő, Nagy, and Csanád in Refs. Csorgo:2006ax ; Csorgo:2008prc . Here 𝒱(S)\mathcal{V}(S) is an arbitrary function of scaling function SS, where SS can be obtained from the scaling function definition uμμS=0u^{\mu}\partial_{\mu}S=0, the properties and detailed discussion of this SS can be found in Ref. Csorgo:2008prc for CNC exact solutions and in Ref. Csorgo:2020iug for Hubble-type viscous flow.

(c) A finite and accelerating, realistic 1+1 dimensional solution of relativistic hydrodynamics was recently given by Csörgő, Kasza,  Csanád and Jiang (CKCJ) with the condition H(ηs)=Ω(ηs)ηsH(\eta_{s})=\Omega(\eta_{s})-\eta_{s}, for details, see review in Ref. Csorgo:2018pxh ; Kasza:2018qah .

Case B. Perturbation solution with Navier-Stokes approximation.

For a relativistic hydrodynamic in the Navier-Stokes (first order) approximation, fluid flow rapidity Ω=ληs=(1+λ)ηs\Omega=\lambda\eta_{s}=(1+\lambda^{*})\eta_{s}, shear viscosity tensor πμν=2ησμν\pi^{\mu\nu}=2\eta\sigma^{\mu\nu}, shear viscosity ratio Πd=4η/3s\Pi_{d}=4\eta/3s, the relaxation time τπ=0\tau_{\pi}=0. The last terms in the right of Eqs. (1213) disappear automatically as follow,

τTτ+tanh(ληs)Tηs+1+λκT\displaystyle\tau\frac{\partial T}{\partial\tau}+\tanh(\lambda^{*}\eta_{s})\frac{\partial T}{\partial\eta_{s}}+\frac{1+\lambda^{*}}{\kappa}T =Πdκ1+2λ+λ2τcosh(ληs),\displaystyle=\frac{\Pi_{d}}{\kappa}\frac{1+2\lambda^{*}+\lambda^{*2}}{\tau}\cosh(\lambda^{*}\eta_{s}), (19)

and

tanh(ληs)[τTτ+T(1+λ)]+Tηs\displaystyle\tanh(\lambda^{*}\eta_{s})\left[\tau\frac{\partial T}{\partial\tau}+T(1+\lambda^{*})\right]+\frac{\partial T}{\partial\eta_{s}} =Πdτ(2(1+λ)λ)sinh(ληs).\displaystyle=\frac{\Pi_{d}}{\tau}(2(1+\lambda^{*})\lambda^{*})\sinh(\lambda^{*}\eta_{s}). (20)

However, the reduced conservation equations Eqs. (1920) including first order approximation are still a set of nonlinear differential equations, which are notoriously hard to solve analytically. Fortunately, based on the results from the ideal hydro Jiang2017 ; Jiang:2018qxd , we found that the longitudinal acceleration parameter λ\lambda^{*} extracted from the experimental data is pretty small (0<λ10<\lambda^{*}\ll 1), which resulting in a simply antsaz or perturbation solution here.

We assume the longitudinal rapidity perturbation ληs\lambda^{*}\eta_{s} is a pretty small numbers here. Using the Taylor series expansion tanh(ληs)ληs(ληs)33\tanh(\lambda^{*}\eta_{s})\approx\lambda^{*}\eta_{s}-\frac{(\lambda^{*}\eta_{s})^{3}}{3}, cosh(ληs)1+(ληs)22\cosh(\lambda^{*}\eta_{s})\approx 1+\frac{(\lambda^{*}\eta_{s})^{2}}{2} and sinh(ληs)ληs+(ληs)36\sinh(\lambda^{*}\eta_{s})\approx\lambda^{*}\eta_{s}+\frac{(\lambda^{*}\eta_{s})^{3}}{6}, up to the leading order 𝒪(λ){\mathcal{O}}(\lambda^{*}), Eqs. (1920) yields a partial differential equation depending on τ\tau only,

τTτ+(1+λ)Tκ=Πdκ1+2λτ,\displaystyle\tau\frac{\partial T}{\partial\tau}+\frac{(1+\lambda^{*})T}{\kappa}=\frac{\Pi_{d}}{\kappa}\frac{1+2\lambda^{*}}{\tau}, (21)

and the exact temperature solution T(τ,ηs)T(\tau,\eta_{s}) of above equation is

T(τ,ηs)\displaystyle T(\tau,\eta_{s}) =T1(ηs)(τ0τ)1+λκ+(2λ+1)Πd(κ1)τ0(τ0τ)1+λκ[1(τ0τ)11+λκ],\displaystyle=T_{1}(\eta_{s})\left(\frac{\tau_{0}}{\tau}\right)^{\frac{1+\lambda^{*}}{\kappa}}+\frac{(2\lambda^{*}+1)\Pi_{d}}{(\kappa-1)\tau_{0}}\left(\frac{\tau_{0}}{\tau}\right)^{\frac{1+\lambda^{*}}{\kappa}}\left[1-\left(\frac{\tau_{0}}{\tau}\right)^{1-\frac{1+\lambda^{*}}{\kappa}}\right], (22)

where τ0\tau_{0} is the value of proper time, T1(ηs)T_{1}(\eta_{s}) is an unknown function constrained by Eq. (20).

Putting Eq. (22) back to the Euler equation Eq. (20), up to the leading order 𝒪(λ){\mathcal{O}}(\lambda^{*}), one gets the exact expression of T1(ηs)T_{1}(\eta_{s}) as follow,

T1(ηs)\displaystyle T_{1}(\eta_{s}) =T0exp[12λ(11κ)ηs2](1exp[12λ(11κ)ηs2])Πd(κ1)τ0,\displaystyle=T_{0}\exp[-\frac{1}{2}\lambda^{*}(1-\frac{1}{\kappa})\eta_{s}^{2}]-\frac{\left(1-\exp[-\frac{1}{2}\lambda^{*}(1-\frac{1}{\kappa})\eta_{s}^{2}]\right)\Pi_{d}}{(\kappa-1)\tau_{0}}, (23)

where T0T_{0} define the values for temperature at the proper time τ0\tau_{0} and coordinate rapidity ηs=0\eta_{s}=0. Here if one puts the perturbation solution Eq. (22) back to the energy conservation equation Eq. (19), up to the leading order 𝒪(λ){\mathcal{O}}(\lambda^{*}), one can obtain the same results.

Finally, inputting Eq. (23) into Eq. (22), the perturbation solution of the 1+11+1 D embeding 1+31+3 D relativistic viscous hydrodynamics can be written as,

T(τ,ηs)\displaystyle T(\tau,\eta_{s}) =T0(τ0τ)1+λκ[exp(12λ(11κ)ηs2)+R01κ1(2λ+exp[12λ(11κ)ηs2](2λ+1)(τ0τ)κλ1κ)],\displaystyle=T_{0}\left(\frac{\tau_{0}}{\tau}\right)^{\frac{1+\lambda^{*}}{\kappa}}{\bigg{[}}\exp(-\frac{1}{2}\lambda^{*}(1-\frac{1}{\kappa})\eta_{s}^{2})+\frac{R_{0}^{-1}}{\kappa-1}{\bigg{(}}2\lambda^{*}+\exp[-\frac{1}{2}\lambda^{*}(1-\frac{1}{\kappa})\eta_{s}^{2}]-(2\lambda^{*}+1)\left(\frac{\tau_{0}}{\tau}\right)^{\frac{\kappa-\lambda^{*}-1}{\kappa}}{\bigg{)}}{\bigg{]}}, (24)

where the Reynolds number is R01=ΠdT0τ0R^{-1}_{0}=\frac{\Pi_{d}}{T_{0}\tau_{0}} AM:2004prc ; Kouno:1989ps .

From a perspective of the perturbation solution’s structure, one finds above conditional perturbation solution is very nontrivial since it only satisfied when the longitudinal accelerating parameter λ1\lambda^{*}\ll 1 and ηs\eta_{s} is not very large (|ηs|5|\eta_{s}|\ll 5), furthermore, it involves two different transport coefficients and many nonvanishing components of the longitudinal expanding properties. In order to investigate the stability of perturbation solution Eq. (24), we furthermore numerically solved the energy equation Eq. (19) and Euler equation Eq. (20) with conditions Πd=0\Pi_{d}=0 and τπ=0\tau_{\pi}=0, the longitudinal accelerating parameter λ=0.05\lambda^{*}=0.05, the grid length of proper time Δτ=0.05\Delta\tau=0.05, the grid of space-time rapidity Δηs=0.05\Delta\eta_{s}=0.05, and the range space-time rapidity ηs\eta_{s} from 0.0 to 5.0. The comparison of the perturbation solution and the numerical solution are presented in Fig.1 left panel, the difference between above two solutions appears to be small, which means the perturbation solution is a special but stable one.

The profile of Eq. (24) is a (1+1) dimensional scaling solution in (1+3) dimensions and the ηs\eta_{s} dependence of temperature density is of the Gaussian form, see Fig. 1 right panel. Such perturbation solutions implies that for a non-vanishing longitudinal acceleration parameter λ\lambda^{*}, the cooling rate is larger than for the ideal case. Meanwhile, a non-zero shear viscosity η\eta makes the cooling rate smaller than for the ideal case Jiang:2018qxd , see Fig. 1 left panel. Note that when λ=0\lambda^{*}=0 and R01=0R_{0}^{-1}=0, one obtains the same solutions as same as the ideal hydrodynamic Bjorken solution Bjorken:1982qr , when λ=0\lambda^{*}=0 and R010R_{0}^{-1}\neq 0, one obtains the first order Bjorken solutions AM:2004prc ; DTeaney , if λ0\lambda^{*}\neq 0 and R01=0R_{0}^{-1}=0, one obtains a special solution which is consistent with the CNC solutions’ case (e) in Csorgo:2006ax ; Csorgo:2008prc , and when one solve the Eqs. (1415) directly with R01=0R_{0}^{-1}=0 and λ0\lambda^{*}\neq 0, one obtains the CKCJ solutions Csorgo:2018pxh .

Case C. Perturbation equations with Israel-Stewart approximation.

The temperature profile Eq. (24) shows a peak at earlier proper time τ\tau in the Navier Stokes approximation, see Fig.1. The source of this acausality can be understood from the constitutive relations satisfied by the dissipative currents πμν=2ησμν\pi^{\mu\nu}=2\eta\sigma^{\mu\nu}. The linear relationship between dissipative currents and gradients of the primary fluid-dynamical variables imply that any inhomogenity of uμu^{\mu}, immediately results in dissipative currents. This instantaneous effect causes the first order theory to be unstable at earlier times.

Fortunately, people found that the Israel-Stewart (second order) approximation are suitable in describing the physical process happening at earlier times, and it describes the counteract of acceleration effect and viscosity effect well. However, it’s hard to solve the the differential equations Eqs. (1213) analytically with the Israel-Stewart approximation. So we numerically solve the temperature time dependence Eq. (12) first at ηs=0.0\eta_{s}=0.0 with the initial condition T(0.2,0.0)=0.65T(0.2,0.0)=0.65 GeV first, here the grid length of τ\tau is Δτ=0.05\Delta\tau=0.05 fm. Then, for each ηs\eta_{s}, we solve the temperature rapidity dependence Eq. (13) step by step with the results from the Eq. (12), and solve these equations together, the grid length of τ\tau is Δτ=0.05\Delta\tau=0.05, too. The temperature distribution of thermodynamic quantities (ε,T,p\varepsilon,~{}T,~{}p) in whole (τ,ηs)(\tau,~{}\eta_{s}) coordinates with initial condition T(τ0,ηs0)T(\tau_{0},~{}\eta_{s0}) now is a Gaussian shape, see Fig. 2. Furthermore, in order to compare with the perturbation results from the first order approximation, the Eqs. (1213) can be rewritten up to the leading order 𝒪(λ){\mathcal{O}}(\lambda^{*}) as follow,

τTτ\displaystyle\tau\frac{\partial T}{\partial\tau} =\displaystyle= (2λ+1)Πd3τ(λ+1)T3(2ln2)Πd(1+6λ)9πTτ2,\displaystyle\frac{(2\lambda^{*}+1)\Pi_{d}}{3\tau}-\frac{(\lambda^{*}+1)T}{3}-\frac{(2-\ln 2)\Pi_{d}(1+6\lambda^{*})}{9\pi T\tau^{2}}, (25)
Tηs\displaystyle\frac{\partial T}{\partial\eta_{s}} =\displaystyle= ληs[2T3Πd3τ+(2ln2)Πd9πTτ2].\displaystyle\lambda^{*}\eta_{s}\left[-\frac{2T}{3}-\frac{\Pi_{d}}{3\tau}+\frac{(2-\ln 2)\Pi_{d}}{9\pi T\tau^{2}}\right]. (26)

Above differential equations (2526) can not be solved analytically, we using the same numerically method as for the Eqs. (1415), we solve the above second-order viscous hydrodynamic equations (2526) with the conformal equation of state ε=3p\varepsilon~{}=~{}3p and relaxation time τπ=2ln22πT\tau_{\pi}=\frac{2-\ln 2}{2\pi T} Policastro:2001yc ; Baier:2007ix ; Bhattacharyya:2008jc ; Arnold:2011ja directly in the Rindler coordinates, the numerical results are presented in Fig. 3 .

III Results and discussion

The temperature profiles obtained in the previous section are now applied to study the longitudinal expanding dynamics, the initial condition T(τ0,ηs0)T(\tau_{0},~{}\eta_{s0}) can be arbitrarily chosen. Following the result from AM:2004prc , the initial proper time τ0=0.2\tau_{0}=0.2 fm/cc, and initial temperature T0(0.2,0.0)=0.65T_{0}(0.2,~{}0.0)=0.65 GeV are used in the calculation.

Fig. 1 show the longitudinal expanding effect dependence of temperature evolution in the Navier-Stokes approximation. In the left panel of Fig. 1 shows the time-dependence of the temperature for different viscosity and the longitudinal acceleration parameter λ\lambda^{*}. The black curve is the ideal Bjorken flow. It is seen that the larger the longitudinal acceleration parameter λ\lambda^{*}, the faster the medium cool down. However, the viscosity effect slow down the medium cooling. It is important to note that there is a peak at early time in TT in the case of first order approximation. In the right panel of Fig. 1 shows the space-time rapidity dependence of the temperature at τ=\tau= 2 fm/cc. The temperature distribution of ideal Bjorken flow (black curve) and the Bjorken flow under Navier-Stokes limit (blue curve) show a flat-plateau shape. The effect of the longitudinal accelerating expanding, however, make temperature distribution to a Gaussian shape (red and orange curve). In addition, the difference between the numerical solution (purple solid curve) and the perturbation solution (purple dashed curve) for Πd=τπ=0\Pi_{d}=\tau_{\pi}=0 are presented, one finds that the difference in the range 0.0ηs5.00.0\leq\eta_{s}\leq 5.0 is acceptable.

Refer to caption
Refer to caption
Figure 1: (Color online) Temperature profile in the Navier-Stokes approximation for different longitudinal acceleration parameters λ\lambda^{*}. Equation of state ε=3p\varepsilon=3p, shear viscosity ratio η/s=1/4π\eta/s=1/4\pi. Black solid curve is the ideal Bjorken flow for reference, blue solid curve is the 1st order Bjorken flow. Left panel: The proper time τ\tau evolution of temperature for ηs=0\eta_{s}=0. Right panel: The space rapidity ηs\eta_{s} evolution of temperature for τ=2\tau=2 fm/cc. Purple curve show the comparison between perturbation solution (dashed) and numerical solution (solid) for ideal flow with λ=0.05\lambda^{*}=0.05, the accuracy is acceptable in the range 0.0ηs5.00.0\leq\eta_{s}\leq 5.0. Results from the perturbation solution Eq.(24) and numerical solution for Eqs. (12,13).

Fig. 2 show the completely temperature evolution for different longitudinal acceleration parameter λ\lambda^{*} in the Israel-Stewart approximation. In the left panel of Fig. 2 shows the time-dependence of the temperature, one finds no peak at the early time of TT, the first order theory significantly underpredicts the work done during the expansion relative to the Israel-Stewart approximation. One also finds the effect of viscous compensates the effect from longitudinal acceleration when η/s=1/4π\eta/s=1/4\pi and λ=0.05\lambda^{*}=0.05 at larger proper time of evolution, the viscous curve (red dashed) almost overlaps with the Bjorken flow (black solid). The longitudinal expanding effect make the medium cool down fast and there is no peak at early time in TT. In the right panel of Fig. 2 shows the temperature distribution in (τ,ηs\tau,\eta_{s}) coordinates with λ=0.1\lambda^{*}=0.1.

Refer to caption
Refer to caption
Figure 2: (Color online) Temperature profile in the Israel-Stewart approximation. Left panel: The proper time τ\tau evolution of temperature for ηs=0\eta_{s}=0. Black solid curve is the ideal Bjorken flow for reference. Right panel: The space-time evolution of temperature in (τηs\tau-\eta_{s}) coordinates, the longitudinal acceleration parameter λ=0.1\lambda^{*}=0.1. Numerical results from Eqs. (1415).

So far our focus has been on study the temperature evolution of perturbation solutions through the Navier-Stokes theories and Israel-Stewart theories independently. Now we analyze the difference between these two theories under the same longitudinal acceleration effect. We numerically solve the differential equations Eqs. (2526) together with the initial condition T0(0.2,0.0)=0.65T_{0}(0.2,~{}0.0)=0.65 GeV first. In the left panel of Fig. 3 show the comparison of the second order perturbation solutions, the first order perturbation solutions and Bjorken solution. In the right panel of Fig. 3 show the comparison between the second order perturbation solutions and the completely numerical results. For small λ\lambda^{*}, we find that the perturbation solutions are stable and show good agreement with completely numerical results at large time.

Refer to caption
Refer to caption
Figure 3: (Color online) The proper time evolution of temperature density for given primary initial conditions. Left panel: Perturbation results of temperature profile in the Navier-Stokes approximation (1st) and in the Israel-Stewart theory (2nd). The longitudinal acceleration parameter λ=0.10\lambda^{*}=0.10. Black solid curve is the ideal Bjorken flow for reference. Right panel: Temperature profile comparsion between the completely solution (solid curve) with perturbation solutions (dashed curve) in the Israel-Stewart theory for different λ\lambda^{*}, the grid of τ\tau is Δτ=0.05\Delta\tau=0.05 in the numerical code.

IV Summary

We have investigated the relativistic viscous hydrodynamics for longitudinal expanding fireballs in terms of the Navier-Stokes theory and Israel-Stewart theory by embedding 1+1 D fluid into a 1+3 D space-time. The results obtained in this paper are summarized as follows.

(1) We expand the current knowledge of accelerating hydrodynamics Csorgo:2006ax ; Csorgo:2008prc ; Csorgo:2018pxh by including the second-order viscous corrections in the relativistic hydrodynamics fluid with longitudinal expanding fireballs and general equation of state. The effect of longitudinal acceleration accelerates the thermodynamics evolution of medium while the viscosity effect decelerates the evolution in the Minkowski space-time.

(2) The perturbation solution from the Navier-Stokes approximation is explicit and simple in mathematical structure, and it is consistent with the results from Refs.Jiang:2018qxd . Furthermore, the comparison between the perturbation solution and the full numerical solution are investigated, as we presented in Fig. 1 right panel, and it shows that perturbation approximation for ληs\lambda\eta_{s} are valid in the leading order accuracy of the longitudinal acceleration parameter λ\lambda^{*}. The temperature distribution here indicates a Gaussian shape in the ηs\eta_{s} direction.

(3) For small perturbations along the longitudinal directions, as we presented in Fig. 1 right panel, the perturbation solution from the Navier-Stokes approximation is stable in region ττ0\tau\geq\tau_{0} of while it is unstable in region ττ0\tau\leq\tau_{0}.

(4) The numerical results from the Israel-Stewart approximation in longitudinal expansion relativistic viscous hydrodynamics solve the causal problem and the temperature profile in the Rindler coordinate are presented.

There are still many open questions about such perturbation solutions and results.

(1) For consistency and stability, the perturbation solution is meaningful when λ\lambda^{*} is pretty small and |ληs|1|\lambda^{*}\eta_{s}|\ll 1, for arbitrary longitudinal acceleration parameter λ\lambda^{*}, e.g. |λ|1|\lambda^{*}|\gg 1, such perturbation approximation become unsuitable and we need to solve the differential equations completely by other numerical method, such as 3+1D CLvisc Pang:2018zzo . In addition, if one treats the fluid rapidity Ω\Omega as an unknown function of both the proper time τ\tau and space-time rapidity ηs\eta_{s}, the conservation equations will be extremely complicated than current Eqs. (12,13) even for the Navier-Stokes approximation, and the analytical solution is hard to get, for more discussion about this issue, see Csorgo:2008prc . (2) To find new exact solution of hydrodynamics, it is possible to use the method from the AdS/CFT theory Janik:2005zt ; Janik:2006ft , which provides a method that search the exact solutions by expanding in the small and large proper time τ\tau limit. (3) The shear pressure tensor relaxation time τπ\tau_{\pi} assumed above for the second theory is definitely oversimplified, and it is only valid for smaller values of τπ\tau_{\pi}. While physically motivated, we acknowledge that this method is imperfect. (4) Transverse expansion cannot be neglected, especially during the later stages of the fireball, significantly changing the observables at RHIC and LHC. In reality the expansion of the system will not be purely longitudinal, the system will also expand transversally Gubser:2010ui ; Hatta:2014gqa . (5) It is important to note that the QGP bulk viscosity ratio ζ/s\zeta/s is not zero from the lattice QCD calculation, the effect of bulk viscosity property play a curial role when temperature is larger than 3TcT_{c} Meyer:2007dy ; Kharzeev:2007wb . Recently, new solutions of first order viscous hydrodynamics for Hubble-type flow are presented to study the bulk viscosity Csanad:2019lcl , however, the second order theory of such fluid is still unknown. (6) In principle, the second order approximation should depend on a larger number of independent transport coefficient, e.g. η\eta, τπ\tau_{\pi}, λ1\lambda_{1}, λ2\lambda_{2}, λ3\lambda_{3}, and, the direction extension results Eqs. (89) from the μsμ0\partial_{\mu}s^{\mu}\geq 0 are, in fact, incomplete and ad-hoc. In order to determine these transport coefficients, microscopic theories, such as kinetic theory should be studied Baier:2006um . (7) Chapman-Enskog expansion and completely Grid’s 14-moment methods Bhalerao:2013pza could be used to study the higher order correction. (8) Recently, Duke group presented a novel method to study the effective viscosities Paquet:2019npk , which points a new way to study the shear viscosity and bulk viscosity for QGP. As a next step, we try to study above parts in more accurate studies in the future.

Acknowledgements.
We especially thank Xin-Nian Wang, M. Csanád, T. Csörgő, N. I. Nagy and Chao Wu for valuable comments at the initial stage of this study. This work was in part supported by the Ministry of Science and Technology of China (MSTC) under the ”973” Project No. 2015CB856904(4), by NSFC Grant Nos. 11735007, 11890711. This work was supported by the Sino-Hungarian bilateral cooperation program, under the Grand No.Te’T 12CN-1-2012-0016. D. She is supported by the China Scholarship Council (CSC) Contract No.201906770027. Z-F. Jiang would like to thank T. Csörgő, M. Csanád, Lévai Péter and Gergely Gábor Barnafoldi for kind hospitality during his stay at Winger RCP, Budapest, Hungary.

References

  • (1) S. A. Bass, M. Gyulassy, H. Stöecker, and W. Greiner, J. Phys. G 25, R1-R57 (1999), arXiv: 9810281 [hep-ph].
  • (2) M. Gyulassy, and L. McLerran, Nucl. Phys. A 750, 30-63, arXiv: 0405013 [nucl-th].
  • (3) Edward Shuryak, Prog. Part. Nucl. Phys. 53, 273-303 (2004).
  • (4) U. Heinz, and R. Snellings, Ann. Rev. Nucl. Part. Sci. 63, 123-151 (2013), arXiv: 1301.2826 [nucl-th].
  • (5) P. Romatschke, and U. Romatschke, Cambridge Monographs on Mathematical Physics, Cambridge University Press, Cambridge, England (2019), arXiv: 1712.08515 [nucl-th].
  • (6) W. Israel, and J. M. Stewart, Annals Phys. 118, 341-372 (1979).
  • (7) A. Muronga, Phys. Rev. C 69(2004), 034904, arXiv: 0309055 [nucl-th].
  • (8) T. Koide, G. S. Denicol, P. Mota, and T. Kodama, Phys. Rev. C 75, 034909 (2007), arXiv: 0609117 [hep-ph].
  • (9) J. Peralta-Ramos, and E. Calzetta, Phys. Rev. D 80, 126002 (2009), arXiv: 0908.2646 [hep-ph].
  • (10) G. S. Denicol, H. Niemi, E. Molnár, and D. H. Rischke, Phys. Rev. D 85, 114047 (2012), arXiv: 1202.4551 [nucl-th].
  • (11) L. D. Landau, Izv. Akad. Nauk Ser. Fiz. 17, 51 (1953).
  • (12) R. C. Hwa, Phys. Rev. D10, 2260 (1974).
  • (13) J. D. Bjorken, Phys. Rev. D 27, 140 (1983).
  • (14) T. S. Biró, Phys. Lett. B 487, 133 (2000), arXiv: 0003027 [nucl-th].
  • (15) T. Csörgő, F. Grassi, Y. Hama, and T. Kodama, Phys. Lett. B 565, 107 (2003), arXiv: 0305059 [nucl-th].
  • (16) T. Csörgő, M. I. Nagy, and M. Csanád, Phys. Lett. B 663, 306 (2008), arXiv: 0605070 [nucl-th].
  • (17) M.S. Borshch, V.I. Zhdanov, Symmetry Integr. Geom. Methods Appl. 3, 116 (2007).
  • (18) M. I. Nagy, T. Csörgő , and M. Csanád, Phys. Rev. C77, 024908(2008).
  • (19) M. I. Nagy, Phys. Rev. C 83, 054901 (2011), arXiv: 0909.4286 [nucl-th].
  • (20) M. Csanád, M. I. Nagy, and S. Lökös, Eur. Phys. J. A48, 173 (2012).
  • (21) Ze-Fang. Jiang, C. B. Yang, M. Csanád, and T. Csörgő, Phys. Rev. C 97. 064906 (2018), arXiv: 1711. 10740.
  • (22) T. Csörgő, G. Kasza, M. Csanád and Ze-Fang Jiang, Universe 4, no. 4 69 (2018), arXiv: 1805.01427 [nucl-th].
  • (23) Duan She, Ze-Fang Jiang, Defu Hou, and C. B. Yang, Phys. Rev. D 100, 116014 (2019), arXiv: 1907.01250 [hep-ph].
  • (24) S. S. Gubser, Phys. Rev. D 82, 085027 (2010), arXiv: 1006.0006 [hep-th].
  • (25) S. S. Gubser and A. Yarom, Nucl. Phys. B 846, 469 (2011), arXiv: 1012.1314 [hep-th].
  • (26) Jiang, Z.J.; Ma, K., Zhang, H.L.; Cai, L.M. Chin. Phys. C 38, 084103 (2014).
  • (27) Jiang, Z.J.; Wang, J.; Zhang, H.L.; Ma, K. Chin. Phys. C 39, 044102 (2015).
  • (28) Y. Hatta, J. Noronha, and Bo-Wen Xiao, Phys. Rev. D 89, 051702 (2014), arXiv: 1401.6248 [nucl-th].
  • (29) Y. Hatta, J. Noronha, and Bo-Wen Xiao, Phys. Rev. D 89, 114011 (2014), arXiv: 1403.7693 [nucl-th].
  • (30) Chao Wu, Yidian Chen, and Mei Huang, JHEP 03 (2017), 082, arXiv: 1608.04922 [hep-th].
  • (31) Schenke, Bjorn, Jeon, Sangyong and Gale, Charles, Phys. Rev. Lett. 106, 042301 (2011), arXiv: 1009.3244 [hep-ph].
  • (32) G. Giacalone, J. Noronha-Hostler, M. Luzum, and J. Ollitrault, Phys. Rev. C 97. 034904 (2018), arXiv: 1711.08499. [nucl-th]
  • (33) Pang Long-Gang, Petersen Hannah and Wang Xin-Nian, Phys. Rev. C97, no.6 064918 (2018), arXiv: 1802.04449 [nucl-th].
  • (34) Chen Wei, Cao Shanshan, Luo Tan, Pang Long-Gang and Wang Xin-Nian, Phys. Let. B 777. 86 (2018), arXiv: 1704.03648 [nucl-th].
  • (35) Xiang-Yu Wu, Long-Gang Pang, Guang-You Qin, and Xin-Nian Wang, Phys. Rev. C98, no.2 024913 (2018),
  • (36) E. Calzetta, and L. Cantarutti, arXiv: 1912.10562 [nucl-th].
  • (37) T. Csörgő and B. Lorstad, Phys. Rev. C 54, 1390 (1996).
  • (38) Ze-Fang Jiang, C. B. Yang, Chi Ding, and Xiang-Yu Wu, Chin. Phys. C42 123103 (2018), arXiv: 1808.10287.
  • (39) G. Kasza and T. Csörgő, Int. J. Mod. Phys. A34, (26) 1950147 (2019), arXiv:1811.09990[nucl-th].
  • (40) G. Policastro, Dan T. Son, and Andrei O. Starinets, Phys. Rev. Lett. 87, 081601 (2001).
  • (41) R. Baier, P. Romatschke, D. T. Son, A. O. Starinets, and M. A. Stephanov, JHEP. 04, 100 (2008), arXiv:0712.2451 [hep-th].
  • (42) S. Bhattacharyya, V. E. Hubeny, S. Minwalla, M. Rangamani, JHEP. 02, 045 (2008), arXiv:0712.2456 [hep-th].
  • (43) P. Arnold, D. Vaman, Chaolun Wu, Wei Xiao, JHEP. 10, 033 (2011), arXiv:1105.4645 [hep-th].
  • (44) J. F. Paquet, Steffen A. Bass, arXiv:1912.06287 [nucl-th].
  • (45) D.Teaney, Phys. Rev. C 68, 034913 (2003), arXiv: 0301099 [nucl-th]; 0209024 [nucl-th].
  • (46) T. Csörgő and G. Kasza, arXiv:2003.08859 [nucl-th].
  • (47) H. Kouno, M. Maruyama, F. Takagi, and K. Saito, Phys. Rev. D 41, 2903 (1990).
  • (48) R. A. Janik and R. B.Peschanski, Phys. Rev. D 73, 045013 (2006), arXiv: 045013.
  • (49) R. A. Janik, Phys. Rev. Lett. 98, 022302 (2007), arXiv: 0610144 [hep-th].
  • (50) H. B. Meyer, Phys. Rev. Lett. 100, 162001 (2008).
  • (51) D. Kharzeev, and K. Tuchin, JHEP 09, 093 (2008).
  • (52) M. Csanád, M. I. Nagy, Ze-Fang Jiang and T. Csörgő, arXiv:1909.02498 [nucl-th].
  • (53) R. Baier, P. Romatschke, and U. A. Wiedemann, Phys. Rev. C 73, 064903 (2006), arXiv: 064903 [hep-ph].
  • (54) R. S. Bhalerao, A. Jaiswal, S. Pal, and V. Sreekanth, Phys. Rev. C 89, 054903 (2014), arXiv: 1312.1864 [nucl-th].