This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Perron similarities and the nonnegative inverse eigenvalue problem

Abstract.

The longstanding nonnegative inverse eigenvalue problem (NIEP) is to determine which multisets of complex numbers occur as the spectrum of an entry-wise nonnegative matrix. Although there are some well-known necessary conditions, a solution to the NIEP is far from known.

An invertible matrix is called a Perron similarity if it diagonalizes an irreducible, nonnegative matrix. Johnson and Paparella [Linear Algebra Appl., 493 (2016), 281–300] developed the theory of real Perron similarities. Here, we fully develop the theory of complex Perron similarities.

Each Perron similarity gives a nontrivial polyhedral cone and convex polytope of realizable spectra (thought of as vectors in complex Euclidean space). The extremals of these convex sets are finite in number, and their determination for each Perron similarity would solve the diagonalizable NIEP, a major portion of the entire problem. By considering Perron similarities of certain realizing matrices of Type I Karpelevič arcs, large portions of realizable spectra are generated for a given positive integer. This is demonstrated by producing a nearly complete geometrical representation of the spectra of four-by-four stochastic matrices.

Similar to the Karpelevič region, it is shown that the subset of complex Euclidean space comprising the spectra of stochastic matrices is compact and star-shaped. Extremal elements of the set are defined and shown to be on the boundary.

It is shown that the polyhedral cone and convex polytope of the discrete Fourier transform (DFT) matrix corresponds to the conical hull and convex hull of its rows, respectively. Similar results are established for multifold Kronecker products of DFT matrices and multifold Kronecker products of DFT matrices and Walsh matrices. These polytopes are of great significance with respect to the NIEP because they are extremal in the region comprising the spectra of stochastic matrices.

Implications for further inquiry are also given.

2020 Mathematics Subject Classification:
Primary: 15A29; Secondary: 15B48, 15B51

1. Introduction

The nonnegative inverse eigenvalue problem (NIEP) asks, for each positive integer nn, which multi-sets Λ={λ1,,λn}\Lambda=\{\lambda_{1},\ldots,\lambda_{n}\} of nn complex numbers occur as the eigenvalues of an nn-by-nn entry-wise nonnegative matrix? This has proven one of the most challenging problems in mathematics, and is certainly the most sought-after question in matrix analysis. Thus, a variety of sub-questions have been worthy goals.

If A0A\geqslant 0 (entry-wise) is nn-by-nn and with spectrum Λ\Lambda, then Λ\Lambda is called realizable, and AA is called a realizing matrix. If the realizing matrix is required to be diagonalizable, then the resulting subproblem is called the diagonalizable NIEP or the DNIEP. There are differences between the two problems [16, p. 214] and both are unsolved when n>4n>4. A solution to either has appeared far off. For additional information about the NIEP, and its numerous variants, there is a recent survey [16].

It is known that if Λ={λ1,,λn}\Lambda=\{\lambda_{1},\dots,\lambda_{n}\} is realizable and AA is a realizing matrix for Λ\Lambda, then

(1.1) ρ(Λ)max1kn{|λk|}Λ,\rho\left(\Lambda\right)\coloneqq\max_{1\leqslant k\leqslant n}\left\{|\lambda_{k}|\right\}\in\Lambda,
(1.2) Λ=Λ¯{λ1¯,,λn¯},\Lambda=\overline{\Lambda}\coloneqq\left\{\overline{\lambda_{1}},\dots,\overline{\lambda_{n}}\right\},
(1.3) sk(Λ)i=1nλik=tr((Ak))0,k,s_{k}(\Lambda)\coloneqq\sum_{i=1}^{n}\lambda_{i}^{k}=\tr{(A^{k})}\geqslant 0,~{}\forall k\in\mathbb{N},

and

(1.4) [sk(Λ)]n1sk(Λ),k,.\left[s_{k}(\Lambda)\right]^{\ell}\leqslant n^{\ell-1}s_{k\ell}(\Lambda),\forall k,\ell\in\mathbb{N}.

These conditions are not independent: Loewy and London [25] showed that the moment condition (1.3) implies the self-conjugacy condition (1.2). Friedland [9, Theorem 1] showed that the eventual nonnegativity of the moments implies the spectral radius condition (1.1). Finally, if the trace is nonnegative, i.e., if s1(Λ)0s_{1}(\Lambda)\geqslant 0, then the JLL condition (1.4) (established independently by Johnson [15] and by Loewy and London [25]) implies the moment condition since

s(Λ)1n1[s1(Λ)]0,.s_{\ell}(\Lambda)\geqslant\frac{1}{n^{\ell-1}}\left[s_{1}(\Lambda)\right]^{\ell}\geqslant 0,\forall\ell\in\mathbb{N}.

Thus, the JLL condition and the nonnegativity of the trace imply the self-conjugacy, spectral radius, and moment conditions.

Holtz [11] showed that if Λ={λ1,,λn}\Lambda=\{\lambda_{1},\dots,\lambda_{n}\} is realizable, with λ1=ρ(Λ)\lambda_{1}=\rho\left(\Lambda\right), then the shifted spectrum {0,λ1λ2,,λ1λn}\{0,\lambda_{1}-\lambda_{2},\dots,\lambda_{1}-\lambda_{n}\} satisfies Newton’s inequalities. Furthermore, Holtz demonstrated that these inequalities are independent of (1.3) an (1.4).

The problem of characterizing the nonzero spectra of nonnegative matrices is due to Boyle and Handelman [3] (a constructive version of their main result was given by Laffey [23]). However, despite their remarkable achievement, and the stringent necessary conditions listed above, the NIEP and its variants are unsolved when nn is greater than four.

Our focus here is upon the DNIEP (without loss of generality, when the realizing matrix is irreducible). We are able to explicitly characterize invertible matrices that diagonalize irreducible nonnegative matrices. We call them Perron similarities. We show also that, for each Perron similarity, there is a nontrivial polyhedral cone of realizable spectra, which we call the (Perron) spectracone. When the Perron similarity is properly normalized, the cross section of the spectracone, for which the spectral radius is one, is called the (Perron) spectratope and is a convex polytope. With the mentioned normalization, each matrix may be taken to be row stochastic. This focuses attention, for each Perron similarity, upon the extreme points that are finite in number. Their determination solves a dramatic portion of the NIEP. This program is carried out for particular types of matrices, such as those that correspond to Type I Karpelevič arcs (see below) and circulant and block circulant matrices.

2. Notation & Background

For ease of notation, \mathbb{N} denotes the set of positive integers and 0{0}\mathbb{N}_{0}\coloneqq\mathbb{N}\cup\{0\}. If nn\in\mathbb{N}, then [n]{k1kn}\left[n\right]\coloneqq\{k\in\mathbb{N}\mid 1\leqslant k\leqslant n\}.

The set of mm-by-nn matrices with entries from a field 𝔽\mathbb{F} is denoted by 𝖬m×n(𝔽)\mathsf{M}_{m\times n}(\mathbb{F}). If m=nm=n, then 𝖬n×n(𝔽)\mathsf{M}_{n\times n}(\mathbb{F}) is abbreviated to 𝖬n(𝔽)\mathsf{M}_{n}(\mathbb{F}). The set of nonsingular matrices in 𝖬n(𝔽)\mathsf{M}_{n}(\mathbb{F}) is denoted by 𝖦𝖫n(𝔽)\mathsf{GL}_{n}\left(\mathbb{F}\right).

If x𝔽nx\in\mathbb{F}^{n}, then xkx_{k} or [x]k[x]_{k} denotes the kthk\textsuperscript{th}-entry of xx and Dx=Dx𝖬nD_{x}=D_{x^{\top}}\in\mathsf{M}_{n} denotes the diagonal matrix whose (i,i)(i,i)-entry is xix_{i}. Notice that

Dαx+βy=αDx+βDy,α,β𝔽,x,y𝔽n.D_{\alpha x+\beta y}=\alpha D_{x}+\beta D_{y},\ \forall\alpha,\beta\in\mathbb{F},\forall x,y\in\mathbb{F}^{n}.

Denote by II, ee, eie_{i}, and 0 the identity matrix, the all-ones vector, the ithi\textsuperscript{th} canonical basis vector, and the zero vector, respectively. The size of each aforementioned object is implied by its context.

If A𝖬m×n(𝔽)A\in\mathsf{M}_{m\times n}(\mathbb{F}), then:

  • aija_{ij}, ai,ja_{i,j}, or [A]ij[A]_{ij} denotes the (i,j)(i,j)-entry of AA;

  • AA^{\top} denotes the transpose of AA;

  • A¯=[aij¯]\overline{A}=[\overline{a_{ij}}] denotes the entrywise conjugate of AA;

  • AA¯=A¯A^{\ast}\coloneqq\overline{A^{\top}}=\overline{A}^{\top} denotes the conjugate-transpose of AA; and

  • ri(A)Aeir_{i}(A)\coloneqq A^{\top}e_{i} denotes the ithi\textsuperscript{th}-row of AA as a column vector (when the context is clear, ri(A)r_{i}(A) is abbreviated to rir_{i}).

If A𝖬n(𝔽)A\in\mathsf{M}_{n}(\mathbb{F}), then specA=spec(A)\operatorname{spec}A=\operatorname{spec}(A) denotes the spectrum of AA and ρ=ρ(A)\rho=\rho(A) denotes the spectral radius of AA.

If A𝖬n(𝔽)A\in\mathsf{M}_{n}(\mathbb{F}) and n2n\geqslant 2, then AA is called reducible if there is a permutation matrix PP such that

PAP=[A11A120A22],\displaystyle P^{\top}AP=\begin{bmatrix}A_{11}&A_{12}\\ 0&A_{22}\end{bmatrix},

where A11A_{11} and A22A_{22} are nonempty square matrices. If AA is not reducible, then A is called irreducible.

If A𝖬n(𝔽)A\in\mathsf{M}_{n}(\mathbb{F}), then the characteristic polynomial of AA, denoted by χA\chi_{A}, is defined by χA(t)=det(tIA)\chi_{A}(t)=\det(tI-A). The companion matrix C=CpC=C_{p} of a monic polynomial p(t)=tn+k=1ncktnkp(t)=t^{n}+\sum_{k=1}^{n}c_{k}t^{n-k} is the nn-by-nn matrix defined by

C=[0In1cnc],C=\left[\begin{array}[]{cc}0&I_{n-1}\\ -c_{n}&-c\end{array}\right],

where c=[cn1c1]c=[c_{n-1}~{}\cdots~{}c_{1}]. It is well-known that χCp=p\chi_{C_{p}}=p. Notice that CC is irreducible if and only if cn0c_{n}\neq 0.

If x,ynx,y\in\mathbb{C}^{n}, then x,y\langle x,y\rangle denotes the canonical inner product of xx and yy, i.e.,

x,y=yx=k=1nyk¯xk\langle x,y\rangle=y^{\ast}x=\sum_{k=1}^{n}\overline{y_{k}}\cdot x_{k}

and

x2x,x.\begin{Vmatrix}x\end{Vmatrix}_{2}\coloneqq\sqrt{\langle x,x\rangle}.

If nn\in\mathbb{N}, then

Sn{xnxmax1kn{|xk|}=1}S^{n}\coloneqq\left\{x\in\mathbb{C}^{n}\mid||x||_{\infty}\coloneqq\max_{1\leqslant k\leqslant n}\{|x_{k}|\}=1\right\}

and Bn{xnx1}B^{n}\coloneqq\{x\in\mathbb{C}^{n}\mid||x||_{\infty}\leqslant 1\}.

The Hadamard product of A=[aij]A=[a_{ij}], B=[bij]𝖬m×n(𝔽)B=[b_{ij}]\in\mathsf{M}_{m\times n}(\mathbb{F}), denoted by ABA\circ B, is the mm-by-nn matrix whose (i,j)(i,j)-entry is aijbija_{ij}b_{ij}. If x𝔽nx\in\mathbb{F}^{n} and pp\in\mathbb{N}, then xpx^{p} denotes the pthp\textsuperscript{th}-power of xx with respect to the Hadamard product, i.e., [xp]k=xkp[x^{p}]_{k}=x_{k}^{p}. If p=0p=0, then xpex^{p}\coloneqq e. If x𝔽nx\in\mathbb{F}^{n} is totally nonzero, i.e., xk0,k[n]x_{k}\neq 0,\ \forall k\in\left[n\right], then x1x^{-1} denotes the inverse of xx with respect to the Hadamard product, i.e., [x1]k=xk1[x^{-1}]_{k}=x_{k}^{-1}. Notice that if xx is totally nonzero, then (Dx)1=Dx1(D_{x})^{-1}=D_{x^{-1}}.

The direct sum of A1,,AA_{1},\dots,A_{\ell}, where Ak𝖬nk(𝔽)A_{k}\in\mathsf{M}_{n_{k}}(\mathbb{F}), denoted by A1AA_{1}\oplus\dots\oplus A_{\ell}, or k=1Ak\bigoplus_{k=1}^{\ell}A_{k}, is the nn-by-nn matrix

[A100A],n=k=1nk.\left[\begin{array}[]{ccc}A_{1}&&\hbox{\multirowsetup\Large 0}\\ \hbox{\multirowsetup\Large 0}&\ddots&\\ &&A_{\ell}\end{array}\right],\ n=\sum_{k=1}^{\ell}n_{k}.

If σ𝖲𝗒𝗆(n)\sigma\in\mathsf{Sym}(n) and xnx\in\mathbb{C}^{n}, then σ(x)\sigma(x) is the nn-by-11 vector such that [σ(x)]k=xσ(k)[\sigma(x)]_{k}=x_{\sigma(k)} and Pσ𝖬nP_{\sigma}\in\mathsf{M}_{n} denotes the permutation matrix corresponding to σ\sigma, i.e., PσP_{\sigma} is the the nn-by-nn matrix whose (i,j)(i,j)-entry is δσ(i),j\delta_{\sigma(i),j}, where δij\delta_{ij} denotes the Kronecker delta. As is well-known, (Pσ)1=Pσ1=(Pσ)\left(P_{\sigma}\right)^{-1}=P_{\sigma^{-1}}=\left(P_{\sigma}\right)^{\top}. When the context is clear, PσP_{\sigma} is abbreviated to PP. Notice that Px=σ(x)Px=\sigma(x).

If k[n]k\in\left[n\right], then PkP_{k} denotes the matrix obtained by deleting the kthk\textsuperscript{th}-row of InI_{n} and πk:𝔽n𝔽n1\pi_{k}:\mathbb{F}^{n}\longrightarrow\mathbb{F}^{n-1} is the projection map defined by πk(x)=Pkx\pi_{k}(x)=P_{k}x.

2.1. Nonnegative Matrices

If A𝖬n()A\in\mathsf{M}_{n}(\mathbb{R}) and aij0,i,j[n]a_{ij}\geqslant 0,\ \forall i,j\in\left[n\right] or aij>0,i,j[n]a_{ij}>0,\ \forall i,j\in\left[n\right], then AA is called nonnegative or positive, respectively, and we write A0A\geqslant 0 or A>0A>0, respectively. If xnx\in\mathbb{C}^{n} (A𝖬n()A\in\mathsf{M}_{n}(\mathbb{C})), then x0x\geqslant 0 (respectively, A0A\geqslant 0) if Rex0\real x\geqslant 0 and Imx=0\imaginary x=0 (respectively, ReA0\real A\geqslant 0 and ImA=0\imaginary A=0).

If A0A\geqslant 0 and

j=1naij=1,i[n],\sum_{j=1}^{n}a_{ij}=1,~{}\forall~{}i\in\left[n\right],

then AA is called (row) stochastic. If A0A\geqslant 0, then AA is stochastic if and only if Ae=eAe=e. Furthermore, if AA is stochastic, then 1spec(A)1\in\operatorname{spec}(A) and ρ(A)=1\rho(A)=1. It is known that the NIEP and the stochastic NIEP are equivalent (see, e.g., Johnson [15, p. 114]).

Observation 2.1.
\thlabel

stochasticconvex If A1,,Am𝖬n()A_{1},\ldots,A_{m}\in\mathsf{M}_{n}(\mathbb{R}) are stochastic, then the matrix

Ak=1mαkAk,k=1mαk=1,αk0,k[m],A\coloneqq\sum_{k=1}^{m}\alpha_{k}A_{k},\ \sum_{k=1}^{m}\alpha_{k}=1,\ \alpha_{k}\geqslant 0,\ \forall k\in\left[m\right],

is stochastic.

We recall the Perron–Frobenius theorem for irreducible matrices.

Theorem 2.2 ([13, Theorem 8.4.4]).
\thlabel

pftirr Let A𝖬n()A\in\mathsf{M}_{n}(\mathbb{R}) be irreducible and nonnegative, and suppose that n2n\geqslant 2. Then

  1. (i)

    ρ(A)>0\rho(A)>0;

  2. (ii)

    ρ(A)\rho(A) is an algebraically simple eigenvalue of AA;

  3. (iii)

    there is a unique positive vector xx such that Ax=ρ(A)xAx=\rho(A)x and ex=1e^{\top}x=1; and

  4. (iv)

    there is a unique positive vector yy such that yA=ρ(A)yy^{\top}A=\rho(A)y^{\top} and ey=1e^{\top}y=1.

The vector xx in part (iii) of \threfpftirr is called the (right) Perron vector of AA and the vector yy in part (iv) of \threfpftirr is called the left Perron vector of A [13].

3. Preliminary Results

In this section, we cover more background and establish some ancillary results that will be useful in the sequel.

3.1. Complex Polyhedral Regions

If SnS\subseteq\mathbb{C}^{n}, then the conical hull of SS, denoted by coniS=coni(S)\operatorname{coni}S=\operatorname{coni}(S), is defined by

coniS={{0},S={k=1mαkxknm,xkS,αk0},S.\operatorname{coni}{S}=\begin{cases}\{0\},&S=\varnothing\\ \left\{\sum_{k=1}^{m}\alpha_{k}x_{k}\in\mathbb{C}^{n}\mid m\in\mathbb{N},~{}x_{k}\in S,~{}\alpha_{k}\geqslant 0\right\},&S\neq\varnothing.\end{cases}

i.e., when SS is nonempty, coniS\operatorname{coni}{S} consists of all conical combinations. Similarly, the convex hull of SS, denoted by convS=conv(S)\operatorname{conv}{S}=\operatorname{conv}(S) is defined by

coniS={{0},S={k=1mαkxknm,xkS,k=1mαk=1,αk0},S.\operatorname{coni}{S}=\begin{cases}\{0\},&S=\varnothing\\ \left\{\sum_{k=1}^{m}\alpha_{k}x_{k}\in\mathbb{C}^{n}\mid m\in\mathbb{N},~{}x_{k}\in S,\ \sum_{k=1}^{m}\alpha_{k}=1,\ \alpha_{k}\geqslant 0\right\},&S\neq\varnothing\end{cases}.

The conical hull (convex hull) of a finite list {x1,,xn}\{x_{1},\ldots,x_{n}\} is abbreviated to coni(x1,,xn)\operatorname{coni}(x_{1},\ldots,x_{n}) (respectively, conv(x1,,xn)\operatorname{conv}(x_{1},\ldots,x_{n})).

A subset set KK of n\mathbb{C}^{n} is called

  • a cone if conixK,xK\operatorname{coni}x\subseteq K,\ \forall x\in K;

  • convex if conv(x,y)K,x,yK\operatorname{conv}(x,y)\subseteq K,\ \forall x,y\in K;

  • star-shaped at cKc\in K if conv(c,x)K,xK\operatorname{conv}(c,x)\subseteq K,\ \forall x\in K; and

  • a convex cone if coni(x,y)K,x,yK\operatorname{coni}(x,y)\subseteq K,\ \forall x,y\in K.

If S,TnS,\ T\subseteq\mathbb{C}^{n}, then S+TS+T denotes the Minkowski sum of SS and TT, i.e., S+T{xnx=s+t,sS,tT}S+T\coloneqq\{x\in\mathbb{C}^{n}\mid x=s+t,\ s\in S,\ t\in T\} and S{xnx=s,sS}-S\coloneqq\{x\in\mathbb{C}^{n}\mid x=-s,\ s\in S\}. If KK is a convex cone, then the dimension of KK is the quantity dim(K+(K))\dim(K+(-K)). If K=coni(x1,,xk)K=\operatorname{coni}(x_{1},\ldots,x_{k}), then dimK=dim(span(x1,,xk))\dim K=\dim(\operatorname{span}(x_{1},\ldots,x_{k})).

A point xx of a convex cone KK is called an extreme direction or extreme ray if uKu\notin K or vKv\notin K, whenever x=αu+(1α)vx=\alpha u+(1-\alpha)v, with α(0,1)\alpha\in(0,1) and u,vu,v linearly independent. A point xx of a convex set KK is called an extreme point (of KK) if uKu\notin K or vKv\notin K, whenever x=αu+(1α)vx=\alpha u+(1-\alpha)v, with α(0,1)\alpha\in(0,1) and uvu\neq v, i.e., xx does not lie in any open line segment contained in KK.

If ana\in\mathbb{C}^{n}, a0a\neq 0, and bb\in\mathbb{R}, then

𝖧(a,b){xnRe(a,x)b}={xnRe(x,a)b}\mathsf{H}(a,b)\coloneqq\left\{x\in\mathbb{C}^{n}\mid\real(\langle a,x\rangle)\geqslant b\right\}=\left\{x\in\mathbb{C}^{n}\mid\real(\langle x,a\rangle)\geqslant b\right\}

is a closed half-space determined by the hyperplane {xnRe(x,a)=b}\left\{x\in\mathbb{C}^{n}\mid\real(\langle x,a\rangle)=b\right\}. If b=0b=0, then the half-space 𝖧(a,b)\mathsf{H}(a,b) is abbreviated to 𝖧(a)\mathsf{H}(a) and contains the origin on its boundary.

Any set of the form

k=1m𝖧(ak,bk)=k=1m{xnRe(ak,x)bk}\bigcap_{k=1}^{m}\mathsf{H}(a_{k},b_{k})=\bigcap_{k=1}^{m}\left\{x\in\mathbb{C}^{n}\mid\real(\langle a_{k},x\rangle)\geqslant b_{k}\right\}

is called a polyhedron and a bounded polyhedron is called a polytope. Any set of the form

k=1m𝖧(ak)={xnRe(ak,x)0}\bigcap_{k=1}^{m}\mathsf{H}(a_{k})=\left\{x\in\mathbb{C}^{n}\mid\real(\langle a_{k},x\rangle)\geqslant 0\right\}

is called a polyhedral cone.

Since x,yRe(x,a)\langle\langle x,y\rangle\rangle\coloneqq\real(\langle x,a\rangle) is a real inner product and n\mathbb{C}^{n} is a 2n2n-dimensional real vector space, it follows that n\mathbb{C}^{n} is a 2n2n-dimensional Euclidean space and the following celebrated result is applicable (see, e.g., [22, Corollaries 2.13 and 2.14] and [28, pp. 170–178]; or references in [1, Remark 3.3] or [30, p. 87]).

Theorem 3.1 (Farkas–Minkowski–Weyl).

If PP is a polytope or a polyhedral cone in a Euclidean space 𝔼n\mathbb{E}^{n}, then there are vectors x1,,xkx_{1},\ldots,x_{k} such that

P=conv(x1,,xk)P=\operatorname{conv}(x_{1},\ldots,x_{k})

or

P=coni(x1,,xk),P=\operatorname{coni}(x_{1},\ldots,x_{k}),

respectively.

The following four propositions will be useful in the sequel; because they are easy to establish, their proofs are omitted.

Proposition 3.2.
\thlabel

exptball If nn\in\mathbb{N}, then ee is an extreme point of the convex set BnB^{n}.

If nn\in\mathbb{N}, then the standard (or unit) nn-simplex, denoted by Δn\Delta^{n}, is defined by

Δn={(α1,,αn+1)n+1i=1n+1αi=1,αi0}.\Delta^{n}=\left\{(\alpha_{1},\dots,\alpha_{n+1})\in\mathbb{R}^{n+1}\mid\sum_{i=1}^{n+1}\alpha_{i}=1,~{}\alpha_{i}\geqslant 0\right\}.
Proposition 3.3.
\thlabel

exptconv Let KnK\subseteq\mathbb{C}^{n} be convex and suppose that xx is an extreme point of KK. If there are vectors x1,,xmKx_{1},\dots,x_{m}\in K and a vector α=[α1αm]Δm1\alpha=[\alpha_{1}~{}\cdots~{}\alpha_{m}]^{\top}\in\Delta^{m-1} such that x=k=1mαkxkx=\sum_{k=1}^{m}\alpha_{k}x_{k}, then α{e1,,em}\alpha\in\{e_{1},\dots,e_{m}\}.

Proposition 3.4.
\thlabel

cor:allonesextreme If S={x1,,xk}BnS=\{x_{1},\dots,x_{k}\}\subseteq B^{n}, then econv(S)e\in\operatorname{conv}{(S)} if and only if eSe\in S.

Proposition 3.5.
\thlabel

conisub If SS is a finite subset of a convex cone KK, then coni(S)K\operatorname{coni}(S)\subseteq K.

Proposition 3.6.
\thlabel

conecontain Let KK and K^\hat{K} be convex cones. If K=coni(x1,,xm)K=\operatorname{coni}(x_{1},\dots,x_{m}), then KK^K\subseteq\hat{K} if and only if x1,,xmK^x_{1},\dots,x_{m}\in\hat{K}.

3.2. Region Comprising Stochastic Lists

For xnx\in\mathbb{C}^{n}, denote by Λ(x)\Lambda(x) the list {x1,,xn}\{x_{1},\dots,x_{n}\} and for every natural number nn, let

𝕃n{xnΛ(x)=spec(A),A𝖬n(),A0}\mathbb{L}^{n}\coloneqq\{x\in\mathbb{C}^{n}\mid\Lambda(x)=\operatorname{spec}(A),~{}A\in\mathsf{M}_{n}\left(\mathbb{R}\right),~{}A\geqslant 0\}

and

𝕊𝕃n{xnΛ(x)=spec(A),A𝖬n(),Astochastic}.\mathbb{SL}^{n}\coloneqq\{x\in\mathbb{C}^{n}\mid\Lambda(x)=\operatorname{spec}(A),~{}A\in\mathsf{M}_{n}\left(\mathbb{R}\right),~{}A~{}\text{stochastic}\}.

Clearly, 𝕃n\mathbb{L}^{n} is a cone that contains 𝕊𝕃n\mathbb{SL}^{n} and a characterization of either set constitutes a solution to the NIEP. As such, we catalog various properties of each set.

Recall that if x,ynx,y\in\mathbb{C}^{n}, then the angle θ=θ(x,y)\theta=\theta(x,y) between them is defined by

(3.1) θ=θ(x,y)={π2,(x=0)(y=0)arccosRe(x,y)x2y2,(x0)(y0).\theta=\theta(x,y)=\begin{cases}\frac{\pi}{2},&(x=0)\vee(y=0)\\ \arccos\frac{\real(\langle x,y\rangle)}{||x||_{2}\cdot||y||_{2}},&(x\neq 0)\wedge(y\neq 0)\end{cases}.

Because non-real eigenvalues of real matrices occur in complex conjugate pairs, it follows that x𝕃nx¯𝕃nx\in\mathbb{L}^{n}\iff\bar{x}\in\mathbb{L}^{n}. Thus, Λ(x)=Λ(x)¯=Λ(x¯)\Lambda(x)=\overline{\Lambda(x)}=\Lambda(\bar{x}) whenever x𝕃nx\in\mathbb{L}^{n} or x¯𝕃n\bar{x}\in\mathbb{L}^{n}. Furthermore, if x𝕃nx\in\mathbb{L}^{n}, then there is a nonnegative matrix AA such that specA=Λ(x)=Λ(x¯)\operatorname{spec}A=\Lambda(x)=\Lambda(\bar{x}). Consequently,

(3.2) x,e=ex=ex=k=1nxk=tr(A)0\langle x,e\rangle=e^{\ast}x=e^{\top}x=\sum_{k=1}^{n}x_{k}=\tr{A}\geqslant 0

and

(3.3) x¯,e=ex¯=k=1nxk¯=tr(A)0\langle\overline{x},e\rangle=e^{\top}\bar{x}=\sum_{k=1}^{n}\overline{x_{k}}=\tr{A}\geqslant 0

since the realizing matrix is nonnegative.

Proposition 3.7.
\thlabel

SLangle If x𝕃nx\in\mathbb{L}^{n}, then θ(x,e)[0,π/2]\theta(x,e)\in[0,\pi/2] and θ(x¯,e)[0,π/2]\theta(\bar{x},e)\in[0,\pi/2].

Proof.

Immediate from (3.1), (3.2), and (3.3). ∎

Lemma 3.8.
\thlabel

seq If {Ak}k=1\{A_{k}\}_{k=1}^{\infty} is a convergent sequence of stochastic nn-by-nn matrices with limit LL, then LL is stochastic.

Proof.

Routine analysis exercise. ∎

Theorem 3.9.

If nn is a positive integer, then 𝕊𝕃n\mathbb{SL}^{n} is compact.

Proof.

Following \threfseq and the fact that the eigenvalues of a matrix are topologically continuous [24, pp. 620–621], it follows that 𝕊𝕃n\mathbb{SL}^{n} is closed. Because the spectral radius of a stochastic matrix is one, we obtain 𝕊𝕃nSn\mathbb{SL}^{n}\subseteq S^{n}, i.e., 𝕊𝕃n\mathbb{SL}^{n} is bounded. ∎

Theorem 3.10.

If nn is a positive integer, then 𝕊𝕃n\mathbb{SL}^{n} is star-shaped at ee.

Proof.

If x𝕊𝕃nx\in\mathbb{SL}^{n}, then there is a stochastic matrix AA such that Λ(x)=spec(A)\Lambda(x)=\operatorname{spec}(A). Write spec(A)={1,x2,,xn}\operatorname{spec}(A)=\{1,x_{2},\ldots,x_{n}\} and let SS be an invertible matrix such that J=S1ASJ=S^{-1}AS is a Jordan canonical form of AA. If α[0,1]\alpha\in[0,1] and β1α\beta\coloneqq 1-\alpha, then the matrix αA+βI\alpha A+\beta I is stochastic (\threfstochasticconvex) and since S1(αA+βI)S=αJ+βIS^{-1}\left(\alpha A+\beta I\right)S=\alpha J+\beta I is upper-triangular, it follows that spec(αA+βI)={1,αx2+β,,αxn+β}\operatorname{spec}(\alpha A+\beta I)=\{1,\alpha x_{2}+\beta,\ldots,\alpha x_{n}+\beta\}, i.e., αx+βe𝕊𝕃n\alpha x+\beta e\in\mathbb{SL}^{n}, α[0,1]\forall\alpha\in[0,1]. ∎

If x𝕊𝕃nx\in\mathbb{SL}^{n}, then 1=ρ(Λ(x))Λ(x)1=\rho\left(\Lambda(x)\right)\in\Lambda(x) and if PP is a permutation matrix corresponding to the permutation σ\sigma, then Λ(Px)=Λ(σ(x))=Λ(x)\Lambda(Px)=\Lambda(\sigma(x))=\Lambda(x). In light of these two facts, there is no loss in generality in restricting attention to 𝕊𝕃1n{x𝕊𝕃nx1=1}\mathbb{SL}_{1}^{n}\coloneqq\left\{x\in\mathbb{SL}^{n}\mid x_{1}=1\right\}.

The following eigenvalue-perturbation result is due to Brauer [4, Theorem 27] (for more proofs, see [26] and references therein).

Theorem 3.11 (Brauer).
\thlabel

Brauer Let A𝖬n()A\in\mathsf{M}_{n}(\mathbb{C}) and suppose that

spec(A)={λ1,,λk,,λn}.\operatorname{spec}(A)=\{\lambda_{1},\ldots,\lambda_{k},\dots,\lambda_{n}\}.

If xx is an eigenvector associated with λk\lambda_{k} and yny\in\mathbb{C}^{n}, then spec(A+xy)={λ1,,λk+yx,,λn}\operatorname{spec}(A+xy^{*})=\{\lambda_{1},\ldots,\lambda_{k}+y^{*}x,\ldots,\lambda_{n}\}.

Theorem 3.12.

If n>1n>1, then π1(𝕊𝕃1n)\pi_{1}(\mathbb{SL}_{1}^{n}) is star-shaped at the origin.

Proof.

If x𝕊𝕃nx\in\mathbb{SL}_{n}, then there is a stochastic matrix AA such that Λ(x)=specA\Lambda(x)=\operatorname{spec}A. If specA={1,x2,,xn}\operatorname{spec}A=\{1,x_{2},\ldots,x_{n}\} and α\alpha\in\mathbb{C}, then spec(αA)={α,αx2,,αxn}\operatorname{spec}(\alpha A)=\{\alpha,\alpha x_{2},\ldots,\alpha x_{n}\}. By \threfstochasticconvex, the matrix

αA+1αnee\alpha A+\frac{1-\alpha}{n}ee^{\top}

is stochastic. Since (αA)e=αe(\alpha A)e=\alpha e, it follows that

spec(αA+1αnee)\displaystyle\operatorname{spec}\left(\alpha A+\frac{1-\alpha}{n}ee^{\top}\right) =spec(αA+e(1αne))\displaystyle=\operatorname{spec}\left(\alpha A+e\left(\frac{1-\alpha}{n}e^{\top}\right)\right)
(\threfBrauer) ={α+1αn(ee),αx2,,αxn}\displaystyle=\left\{\alpha+\frac{1-\alpha}{n}(e^{\top}e),\alpha x_{2},\ldots,\alpha x_{n}\right\}
={α+(1α),αx2,,αxn}\displaystyle=\{\alpha+(1-\alpha),\alpha x_{2},\ldots,\alpha x_{n}\}
={1,αx2,,αxn}.\displaystyle=\{1,\alpha x_{2},\ldots,\alpha x_{n}\}.

Thus, απ1(x)π1(𝕊𝕃n),α[0,1]\alpha\pi_{1}(x)\in\pi_{1}(\mathbb{SL}^{n}),\forall\alpha\in[0,1]. ∎

3.3. The Karpelevič Region

In 1938, Kolmogorov posed the question of characterizing the region in the complex plane, denoted by Θn\Theta_{n}, that occur as an eigenvalue of a stochastic matrix [32, p. 2]. Dmitriev and Dynkin [6] (see [32, Appendix A] or [31] for an English translation) obtained a partial solution, and Karpelevič [21] (see [31] for an English translation) solved the problem by showing that the boundary of Θn\Theta_{n} consists of curvilinear arcs (hereinafter, Karpelevič arcs or K-arcs), whose points satisfy a polynomial equation that depends on the endpoints of the arc.

If nn\in\mathbb{N}, then n{p/q0pqn,gcd(p,q)=1}\mathcal{F}_{n}\coloneqq\{p/q\mid 0\leq p\leqslant q\leq n,~{}\gcd(p,q)=1\} denotes the set of Farey fractions. The following result is the celebrated Karpelevič theorem in a form due to Ito [14].

Theorem 3.13 (Karpelevič theorem).
\thlabel

karpito The region Θn\Theta_{n} is symmetric with respect to the real axis, is included in the unit-disc {z|z|1}\{z\in\mathbb{C}\mid|z|\leq 1\}, and intersects the unit-circle {z|z|=1}\{z\in\mathbb{C}\mid|z|=1\} at the points {e2πpq𝗂p/qn}\left\{e^{\frac{2\pi p}{q}\mathsf{i}}\mid p/q\in\mathcal{F}_{n}\right\}. The boundary of Θn\Theta_{n} consists of these points and of curvilinear arcs connecting them in circular order.

Let the endpoints of an arc be e2πpq𝗂e^{\frac{2\pi p}{q}\mathsf{i}} and e2πrs𝗂e^{\frac{2\pi r}{s}\mathsf{i}} (qsq\leqslant s). Each of these arcs is given by the following parametric equation:

(3.4) ts(tqβ)n/q=αn/qtqn/q,α[0,1],β1α.t^{s}\left(t^{q}-\beta\right)^{\left\lfloor n/q\right\rfloor}=\alpha^{\left\lfloor n/q\right\rfloor}t^{q\left\lfloor n/q\right\rfloor},\ \alpha\in[0,1],~{}\beta\coloneqq 1-\alpha.

Following [18], equation (3.4) is called the Ito equation and the polynomial

(3.5) fα(t)ts(tqβ)n/qαn/qtqn/q,α[0,1],β1αf_{\alpha}(t)\coloneqq t^{s}(t^{q}-\beta)^{\left\lfloor n/q\right\rfloor}-\alpha^{\left\lfloor n/q\right\rfloor}t^{q\left\lfloor n/q\right\rfloor},\ \alpha\in[0,1],\ \beta\coloneqq 1-\alpha

is called the Ito polynomial. The Ito polynomials are divided into four types as follows (note that sqn/qs\neq q\left\lfloor n/q\right\rfloor since gcd(q,s)=1\gcd{(q,s)}=1):

  • If n/q=n\left\lfloor n/q\right\rfloor=n, then

    (3.6) fα𝟢(t)=(tβ)nαn,α[0,1],β1α.f_{\alpha}^{\mathsf{0}}(t)=(t-\beta)^{n}-\alpha^{n},~{}\alpha\in[0,1],\ \beta\coloneqq 1-\alpha.

    is called a Type 0 (Ito) polynomial and corresponds to the Farey pair (0/1,1/n)(0/1,1/n).

  • If n/q=1\left\lfloor n/q\right\rfloor=1, then

    (3.7) fα𝖨(t)=tsβtsqα,α[0,1],β1α.f_{\alpha}^{\mathsf{I}}(t)=t^{s}-\beta t^{s-q}-\alpha,\ \alpha\in[0,1],\ \beta\coloneqq 1-\alpha.

    is called a Type I (Ito) polynomial.

  • If 1<n/q<n1<\left\lfloor n/q\right\rfloor<n and s>qn/qs>q\left\lfloor n/q\right\rfloor, then

    (3.8) fα𝖨𝖨(t)=(tqβ)n/qαn/qtqn/qs,α[0,1],β1α.f_{\alpha}^{\mathsf{II}}(t)=(t^{q}-\beta)^{\left\lfloor n/q\right\rfloor}-\alpha^{\left\lfloor n/q\right\rfloor}t^{q\left\lfloor n/q\right\rfloor-s},\ \alpha\in[0,1],\ \beta\coloneqq 1-\alpha.

    is called a Type II (Ito) polynomial.

  • If 1<n/q<n1<\left\lfloor n/q\right\rfloor<n and s<qn/qs<q\left\lfloor n/q\right\rfloor, then

    (3.9) fα𝖨𝖨𝖨(t)=tsqn/q(tqβ)n/qαn/q,α[0,1],β1α.f_{\alpha}^{\mathsf{III}}(t)=t^{s-q\left\lfloor n/q\right\rfloor}(t^{q}-\beta)^{\left\lfloor n/q\right\rfloor}-\alpha^{\left\lfloor n/q\right\rfloor},\ \alpha\in[0,1],\ \beta\coloneqq 1-\alpha.

    is called a Type III (Ito) polynomial.

The polynomials given by equations (3.6)–(3.9) are called the reduced Ito polynomials. Johnson and Paparella [18, Theorem 3.2] showed that if α[0,1]\alpha\in[0,1], then there is a stochastic matrix M=M(α)M=M(\alpha) such that χM=fα𝖷\chi_{M}=f_{\alpha}^{\mathsf{X}}, where 𝖷{𝟢,𝖨,𝖨𝖨,𝖨𝖨𝖨}\mathsf{X}\in\{\mathsf{0},\mathsf{I},\mathsf{II},\mathsf{III}\}.

Remark 3.14.

If pp is a polynomial and pp^{\prime} denotes its derivative, then pp has a multiple root if and only if the resultant R(p,p)det(S(p,p))R(p,p^{\prime})\coloneqq\det(S(p,p^{\prime})^{\top}) vanishes (here S(p,p)S(p,p^{\prime}) denotes the Sylvester matrix). Since the coefficients of the polynomials fαf_{\alpha} and fαf_{\alpha}^{\prime} depend on the single parameter α\alpha, it follows that π(α)det(S(fα,fα))\pi(\alpha)\coloneqq\det(S(f_{\alpha},f_{\alpha}^{\prime})^{\top}) is a univariate polynomial in α\alpha of degree at most

degfα+(degfα1)=2degfα1.\deg f_{\alpha}+(\deg f_{\alpha}-1)=2\deg f_{\alpha}-1.

Hence, there are at most 2degfα12\deg f_{\alpha}-1 zeros and at most 2degfα12\deg f_{\alpha}-1 values in [0,1][0,1] such that fαf_{\alpha} does not have distinct zeros.

More is known about the number of zeros of fαf_{\alpha} corresponding to the Type I arc Kn(1/n,1/(n1))K_{n}({1}/{n},{1}/{(n-1)}).

Proposition 3.15.

[17, Proposition 4.1] For n4n\geqslant 4, let

(3.10) fα(t)tnβtα,α[0,1],β1α.f_{\alpha}(t)\coloneqq t^{n}-\beta t-\alpha,~{}\alpha\in[0,1],~{}\beta\coloneqq 1-\alpha.
  1. (i)

    If nn is even, then fαf_{\alpha} has nn distinct roots.

  2. (ii)

    If nn is odd and αβ\alpha\geqslant\beta, then fαf_{\alpha} has nn distinct roots.

  3. (iii)

    If nn is odd and α<β\alpha<\beta, then fαf_{\alpha} has a multiple root if and only if nnαn1(n1)n1βn=0n^{n}\alpha^{n-1}-(n-1)^{n-1}\beta^{n}=0.

If fαf_{\alpha} is defined as in (3.10), nn is odd, α<β\alpha<\beta, and π(α)=(n1)n1βnnnαn1\pi(\alpha)=(n-1)^{n-1}\beta^{n}-n^{n}\alpha^{n-1}, then it is known that the polynomial π\pi has only one zero in the interval [0,1][0,1] [18, Remark 4.3].

3.4. Extremal and Boundary Points

If λΘn\lambda\in\Theta_{n}, then λ\lambda is called extremal if αλΘn\alpha\lambda\not\in\Theta_{n} whenever α>1\alpha>1. It is an easy exercise to show that if λ\lambda is extremal, then λΘn\lambda\in\partial\Theta_{n}. Karpelevič asserted that the converse follows from the closure of Θn\Theta_{n} but this is incorrect in view of the two- and three-dimensional cases. However, an elementary proof was given recently by Munger et al. [27, Section 6].

Definition 3.16.

If x=[1x2xn]𝕊𝕃1nx=\begin{bmatrix}1&x_{2}&\cdots&x_{n}\end{bmatrix}^{\top}\in\mathbb{SL}_{1}^{n}, then xx is called extremal (in 𝕊𝕃1n\mathbb{SL}_{1}^{n}) if απ1(x)π1(𝕊𝕃1n)\alpha\pi_{1}(x)\not\in\pi_{1}(\mathbb{SL}_{1}^{n}), α>1\forall\alpha>1. The set of extremal points in 𝕊𝕃1n\mathbb{SL}_{1}^{n} is denoted by 𝔼n\mathbb{E}_{n}.

Theorem 3.17.

If nn is a positive integer, then 𝔼n𝕊𝕃1n\mathbb{E}_{n}\subseteq\partial\mathbb{SL}_{1}^{n}.

Proof.

If n=1n=1, then 𝕊𝕃1n={1}\mathbb{SL}_{1}^{n}=\{1\} and the result is clear.

Otherwise, assume that n>1n>1 and, for contradiction, that x𝔼nx\in\mathbb{E}_{n}, but x𝕊𝕃1nx\notin\partial\mathbb{SL}_{1}^{n}. By definition, ε>0\exists\varepsilon>0 such that Nε(x){ynyx<ε}𝕊𝕃1nN_{\varepsilon}(x)\coloneqq\{y\in\mathbb{C}^{n}\mid\begin{Vmatrix}y-x\end{Vmatrix}_{\infty}<\varepsilon\}\subseteq\mathbb{SL}_{1}^{n}. If α1+ε\alpha\coloneqq 1+\varepsilon and

y[1π1(αx)]=[1αx2αxn],y\coloneqq\begin{bmatrix}1\\ \pi_{1}(\alpha x)\end{bmatrix}=\begin{bmatrix}1\\ \alpha x_{2}\\ \vdots\\ \alpha x_{n}\end{bmatrix},

then

yx=[0(α1)x2(α1)xn]=ε[0x2xn].y-x=\begin{bmatrix}0\\ (\alpha-1)x_{2}\\ \vdots\\ (\alpha-1)x_{n}\end{bmatrix}=\varepsilon\begin{bmatrix}0\\ x_{2}\\ \vdots\\ x_{n}\end{bmatrix}.

Because x=1\begin{Vmatrix}x\end{Vmatrix}_{\infty}=1, it follows that π1(x)1\begin{Vmatrix}\pi_{1}(x)\end{Vmatrix}_{\infty}\leqslant 1 and yx=επ1(x)ε\begin{Vmatrix}y-x\end{Vmatrix}_{\infty}=\varepsilon\begin{Vmatrix}\pi_{1}(x)\end{Vmatrix}_{\infty}\leqslant\varepsilon, i.e., yNε(x)y\in N_{\varepsilon}(x). Since α>1\alpha>1, it follows that xx is not extremal, a contradiction. ∎

Observation 3.18.

If x𝕊𝕃1nx\in\mathbb{SL}_{1}^{n} and xkx_{k} is extremal in Θn\Theta_{n}, where 1<kn1<k\leqslant n, then x𝔼nx\in\mathbb{E}_{n}.

Proof.

For contradiction, if x𝔼nx\notin\mathbb{E}_{n}, then α>1\exists\alpha>1 such that π1(x)π1(𝕊𝕃1n)\pi_{1}(x)\in\pi_{1}(\mathbb{SL}_{1}^{n}). Thus, there is a stochastic matrix AA with spectrum {1,αx2,,αnxn}\{1,\alpha x_{2},\ldots,\alpha_{n}x_{n}\}. Consequently, αxkΘn\alpha x_{k}\in\Theta_{n}, a contradiction. ∎

4. Spectral Polyhedra

Although the following results are specified for complex matrices, many of the definitions and results apply, with minimal alteration, to real matrices.

Definition 4.1.
\thlabel

spectratope If S𝖦𝖫n()S\in\mathsf{GL}_{n}(\mathbb{C}), then:

  1. (i)

    𝒞(S){xnMxSDxS10}\mathcal{C}(S)\coloneqq\{x\in\mathbb{C}^{n}\mid M_{x}\coloneqq SD_{x}S^{-1}\geqslant 0\} is called the (Perron) spectracone of SS;

  2. (ii)

    𝒫(S){x𝒞(S)Mxe=e}\mathcal{P}(S)\coloneqq\{x\in\mathcal{C}(S)\mid M_{x}e=e\} is called the (Perron) spectratope of SS;

  3. (iii)

    𝒜(S){Mx𝖬n()x𝒞(S)}\mathcal{A}(S)\coloneqq\{M_{x}\in\mathsf{M}_{n}(\mathbb{R})\mid x\in\mathcal{C}(S)\}.

Remark 4.2.

Although the spectratope definitions that appeared in the literature previously ([17, Definition 3.5] and [7, p. 114]) differ from what appears in \threfspectratope, the definition above subsumes the previous definitions and captures the notion in its fullest generality.

Observation 4.3.
\thlabel

prodstochequalsstoch The product of stochastic matrices is stochastic.

Theorem 4.4.
\thlabel

hadamardcones If S𝖦𝖫n()S\in\mathsf{GL}_{n}(\mathbb{C}), then:

  1. (i)

    𝒞(S)\mathcal{C}(S) is a nonempty convex cone that is closed with respect to the Hadamard product;

  2. (ii)

    𝒫(S)\mathcal{P}(S) is a nonempty convex set that is closed with respect to the Hadamard product; and

  3. (iii)

    𝒜(S)\mathcal{A}(S) is a nonempty convex cone that is closed with respect to matrix multiplication.

Proof.

Since Me=SDeS1=SInS1=In0M_{e}=SD_{e}S^{-1}=SI_{n}S^{-1}=I_{n}\geqslant 0 and InI_{n} is stochastic, it follows that e𝒫(S)𝒞(S)e\in\mathcal{P}(S)\subset\mathcal{C}(S) and all three sets are nonempty.

  1. (i)

    If x,y𝒞(S)x,y\in\mathcal{C}(S) and α\alpha, β0\beta\geqslant 0, then

    (4.1) Mαx+βy=SDαx+βyS1=S(αDx+βDy)S1=αMx+βMy0,M_{\alpha x+\beta y}=SD_{\alpha x+\beta y}S^{-1}=S(\alpha D_{x}+\beta D_{y})S^{-1}=\alpha M_{x}+\beta M_{y}\geqslant 0,

    i.e., 𝒞(S)\mathcal{C}(S) is a convex cone.

    Furthermore,

    (4.2) Mxy=SDxyS1=SDxDyS1=(SDxS1)(SDyS1)=MxMy0,M_{x\circ y}=SD_{x\circ y}S^{-1}=SD_{x}D_{y}S^{-1}=(SD_{x}S^{-1})(SD_{y}S^{-1})=M_{x}M_{y}\geqslant 0,

    i.e., the convex cone 𝒞(S)\mathcal{C}(S) is closed with respect to the Hadamard product.

  2. (ii)

    The convexity of 𝒫(S)\mathcal{P}(S) follows from (4.1) and \threfstochasticconvex; closure with respect to the Hadamard product is a consequence of (4.2) and \threfprodstochequalsstoch.

  3. (iii)

    Follows from (4.1) and (4.2). ∎

Remark 4.5.

If 𝒞(S)=coni(e)\mathcal{C}(S)=\operatorname{coni}(e), 𝒫(S)={e}\mathcal{P}(S)=\{e\}, or 𝒜(S)=coni(In)\mathcal{A}(S)=\operatorname{coni}(I_{n}), then 𝒞(S)\mathcal{C}(S), 𝒫(S)\mathcal{P}(S), and 𝒜(S)\mathcal{A}(S) are called trivial; otherwise, they are called nontrivial.

Before we prove our next result, we note the following: if xnx\in\mathbb{C}^{n}, then

Rex[Rex1Rexn]n\real x\coloneqq\begin{bmatrix}\real x_{1}\\ \vdots\\ \real x_{n}\end{bmatrix}\in\mathbb{R}^{n}

and

Imx[Imx1Imxn]n.\imaginary x\coloneqq\begin{bmatrix}\imaginary x_{1}\\ \vdots\\ \imaginary x_{n}\end{bmatrix}\in\mathbb{R}^{n}.

Since 𝗂x=Imx+𝗂Rex\mathsf{i}x=-\imaginary x+\mathsf{i}\real x and 𝗂x=Imx𝗂Rex-\mathsf{i}x=\imaginary x-\mathsf{i}\real x, it follows that

(4.3) Imx=0(Re(𝗂x)0)(Re(𝗂x)0).\imaginary x=0\iff(\real(\mathsf{i}x)\geqslant 0)\wedge(\real(-\mathsf{i}x)\geqslant 0).

Similarly, if A𝖬n()A\in\mathsf{M}_{n}(\mathbb{C}), then ReA[Reaij]𝖬n()\real A\coloneqq\begin{bmatrix}\real a_{ij}\end{bmatrix}\in\mathsf{M}_{n}(\mathbb{R}) and ImA[Imaij]𝖬n()\imaginary A\coloneqq\begin{bmatrix}\imaginary a_{ij}\end{bmatrix}\in\mathsf{M}_{n}(\mathbb{R}).

Theorem 4.6.
\thlabel

CSpolyconePSpolytope If S𝖦𝖫n()S\in\mathsf{GL}_{n}(\mathbb{C}), then 𝒞(S)\mathcal{C}(S) is a polyhedral cone and 𝒫(S)\mathcal{P}(S) is a polytope.

Proof.

In what follows, we let tijt_{ij} denote the (i,j)(i,j)-entry of S1S^{-1}. Via the mechanics of matrix multiplication and the complex inner product,

(4.4) [Mx]ij=[SDxS1]ij=k=1n(siktkj)xk=(sitj)x=x,sitj¯,\left[M_{x}\right]_{ij}=\left[SD_{x}S^{-1}\right]_{ij}=\sum_{k=1}^{n}\left(s_{ik}t_{kj}\right)x_{k}=\left(s_{i}\circ t_{j}\right)^{\top}x=\langle x,\overline{s_{i}\circ t_{j}}\rangle,

where sis_{i} denotes the ithi\textsuperscript{th}-row of SS (as a column vector) and tjt_{j} denotes the jthj\textsuperscript{th}-column of S1S^{-1}. Consequently,

x𝒞(S)\displaystyle x\in\mathcal{C}(S) (ReMx0)(ImMx=0)\displaystyle\iff(\real M_{x}\geqslant 0)\wedge(\imaginary M_{x}=0)
x𝖧(sitj¯)𝖧(𝗂sitj¯)𝖧(𝗂sitj¯),(i,j)[n]2.\displaystyle\iff x\in\mathsf{H}\left(\overline{s_{i}\circ t_{j}}\right)\cap\mathsf{H}\left(\mathsf{i}\cdot\overline{s_{i}\circ t_{j}}\right)\cap\mathsf{H}\left(-\mathsf{i}\cdot\overline{s_{i}\circ t_{j}}\right),\ \forall(i,j)\in\left[n\right]^{2}.

Via the mechanics of matrix multiplication and the complex inner product, notice that

[Mxe]i=j=1nk=1n(siktkj)xk=k=1n(sikj=1ntkj)xk=(siTe)x=x,siTe¯.\displaystyle\left[M_{x}e\right]_{i}=\sum_{j=1}^{n}\sum_{k=1}^{n}\left(s_{ik}t_{kj}\right)x_{k}=\sum_{k=1}^{n}\left(s_{ik}\cdot\sum_{j=1}^{n}t_{kj}\right)x_{k}=\left(s_{i}\circ Te\right)^{\top}x=\langle x,\overline{s_{i}\circ Te}\rangle.

Thus, x𝒫(S)x\in\mathcal{P}(S) if and only if

x𝖧(sitj¯)𝖧(𝗂sitj¯)𝖧(𝗂sitj¯),(i,j)[n]2x\in\mathsf{H}\left(\overline{s_{i}\circ t_{j}}\right)\cap\mathsf{H}\left(\mathsf{i}\cdot\overline{s_{i}\circ t_{j}}\right)\cap\mathsf{H}\left(-\mathsf{i}\cdot\overline{s_{i}\circ t_{j}}\right),\ \forall(i,j)\in\left[n\right]^{2}

and

x𝖧(siTe¯,1)𝖧(siTe¯,1)𝖧(𝗂siTe¯)𝖧(𝗂siTe¯).x\in\mathsf{H}\left(\overline{s_{i}\circ Te},1\right)\cap\mathsf{H}\left(\overline{s_{i}\circ Te},-1\right)\cap\mathsf{H}\left(\mathsf{i}\cdot\overline{s_{i}\circ Te}\right)\cap\mathsf{H}\left(-\mathsf{i}\cdot\overline{s_{i}\circ Te}\right).

Thus, 𝒫(S)\mathcal{P}(S) is a polyhedron and since x=1||x||_{\infty}=1, it follows that 𝒫(S)\mathcal{P}(S) is a polytope. ∎

Theorem 4.7.

If x,y𝒞(S)x,y\in\mathcal{C}(S), then θ(x,y)[0,π/2]\theta(x,y)\in[0,\pi/2].

Proof.

If x,y𝒞(S)x,y\in\mathcal{C}(S), then, since y¯𝒞(S)\overline{y}\in\mathcal{C}(S), it follows that xy¯𝒞(S)x\circ\overline{y}\in\mathcal{C}(S) by part (i) of \threfhadamardcones. Since

x,y=yx=k=1nyk¯xk=k=1n1(xkyk¯)=e(xy¯)=e(xy¯)=xy¯,e,\langle x,y\rangle=y^{\ast}x=\sum_{k=1}^{n}\overline{y_{k}}\cdot x_{k}=\sum_{k=1}^{n}1\left(x_{k}\cdot\overline{y_{k}}\right)=e^{\top}(x\circ\overline{y})=e^{\ast}(x\circ\overline{y})=\langle x\circ\overline{y},e\rangle,

the result follows from \threfSLangle. ∎

4.1. Basic Transformations

As detailed in the sequel, the set 𝒞(S)\mathcal{C}(S) is unchanged, or changes predictably, by certain basic transformations of SS.

The following result is a routine exercise.

Lemma 4.8.
\thlabel

nonnegsims If A𝖬n()A\in\mathsf{M}_{n}(\mathbb{R}), PP is a permutation matrix, and v>0v>0, then

  1. (i)

    A0A\geqslant 0 if and only if PAP0PAP^{\top}\geqslant 0; and

  2. (ii)

    A0A\geqslant 0 if and only if DvADv10D_{v}AD_{v^{-1}}\geqslant 0.

The relative gain array was used to give a short proof of the following useful result [17, Lemma 3.3].

Lemma 4.9.
\thlabel

jplemma If P=PσP=P_{\sigma} is a permutation matrix and xnx\in\mathbb{C}^{n}, then PDxP=Dσ(x)PD_{x}P^{\top}=D_{\sigma(x)}.

Theorem 4.10.
\thlabel

conetransforms If S𝖦𝖫n()S\in\mathsf{GL}_{n}(\mathbb{C}), P=PσP=P_{\sigma} is a permutation matrix, and vv is a totally nonzero vector, then

  1. (i)

    𝒞(PS)=𝒞(S)\mathcal{C}(PS)=\mathcal{C}(S);

  2. (ii)

    𝒞(SP)=σ1(𝒞(S)){xnx=σ1(y),y𝒞(S)}\mathcal{C}(SP)=\sigma^{-1}(\mathcal{C}(S))\coloneqq\{x\in\mathbb{C}^{n}\mid x=\sigma^{-1}(y),~{}y\in\mathcal{C}(S)\};

  3. (iii)

    𝒞(DvS)=𝒞(S)\mathcal{C}(D_{v}S)=\mathcal{C}(S), v>0\forall v>0;

  4. (iv)

    𝒞(SDv)=𝒞(S)\mathcal{C}(SD_{v})=\mathcal{C}(S);

  5. (v)

    𝒞(αS)=𝒞(S)\mathcal{C}(\alpha S)=\mathcal{C}(S), α0\forall\alpha\neq 0;

  6. (vi)

    𝒞(S¯)=𝒞(S)¯{yny=x¯,x𝒞(S)}\mathcal{C}(\bar{S})=\overline{\mathcal{C}(S)}\coloneqq\{y\in\mathbb{C}^{n}\mid y=\bar{x},~{}x\in\mathcal{C}(S)\};

  7. (vii)

    𝒞(S1)=𝒞(S)\mathcal{C}(S^{-1})=\mathcal{C}(S^{\top}). In particular, 𝒞(S)=𝒞(S)\mathcal{C}(S)=\mathcal{C}(S^{-\top}), where S(S)1=(S1)S^{-\top}\coloneqq(S^{\top})^{-1}=(S^{-1})^{\top}; and

  8. (viii)

    𝒞(S)=𝒞(S1)¯\mathcal{C}(S^{\ast})=\overline{\mathcal{C}(S^{-1})}. In particular, 𝒞(S)=𝒞(S)¯\mathcal{C}(S)=\overline{\mathcal{C}(S^{-\ast})}, where S(S)1=(S1)S^{-\ast}\coloneqq(S^{\ast})^{-1}=(S^{-1})^{\ast}.

Proof.
  1. (i)

    Follows from part (i) of \threfnonnegsims.

  2. (ii)

    If σ\sigma is the permutation corresponding to PP, then

    x𝒞(SP)\displaystyle x\in\mathcal{C}(SP) (SP)Dx(SP)10\displaystyle\Longleftrightarrow(SP)D_{x}(SP)^{-1}\geqslant 0
    S(PDxP)S10\displaystyle\Longleftrightarrow S(PD_{x}P^{\top})S^{-1}\geqslant 0
    (\threfjplemma) SDyS10,y=σ(x)\displaystyle\Longleftrightarrow SD_{y}S^{-1}\geqslant 0,\ y=\sigma(x)
    x=σ1(y),y𝒞(S),\displaystyle\Longleftrightarrow x=\sigma^{-1}(y),\ y\in\mathcal{C}(S),
    xσ1(𝒞(S)).\displaystyle\Longleftrightarrow x\in\sigma^{-1}\left(\mathcal{C}(S)\right).
  3. (iii)

    Follows from part (ii) of \threfnonnegsims.

  4. (iv)

    Follows from the fact that

    SDxS1=SDvxv1S1=S(DvDxDv1)S1=(SDv)Dx(SDv)1.SD_{x}S^{-1}=SD_{v\circ x\circ v^{-1}}S^{-1}=S(D_{v}D_{x}D_{v^{-1}})S^{-1}=(SD_{v})D_{x}(SD_{v})^{-1}.
  5. (v)

    Immediate from part (iv) since αS=SDαe\alpha S=SD_{\alpha e}.

  6. (vi)

    Follows from the fact that

    SDxS1¯=S¯Dx¯S1¯=S¯Dx¯S¯1.\overline{SD_{x}S^{-1}}=\overline{S}\cdot\overline{D_{x}}\cdot\overline{S^{-1}}=\overline{S}\cdot D_{\bar{x}}\cdot\overline{S}^{-1}.
  7. (vii)

    Follows from the fact that (S1DxS)=SDxS\left(S^{-1}D_{x}S\right)^{\top}=S^{\top}D_{x}S^{-\top}.

  8. (viii)

    Immediate from parts (vi) and (vii). ∎

Definition 4.11.
\thlabel

equivrel If S,T𝖦𝖫n()S,T\in\mathsf{GL}_{n}(\mathbb{C}), then SS is equivalent to TT, denoted by STS\sim T, if S=PDvTDwQS=PD_{v}TD_{w}Q, where P=PσP=P_{\sigma} is a permutation matrix; Q=QγQ=Q_{\gamma} is a permutation matrix; vv is a positive vector; and ww is a totally nonzero vector.

Theorem 4.12.
\thlabel

thmequivrel If \sim is defined as in \threfequivrel, then \sim is an equivalence relation on 𝖦𝖫n()\mathsf{GL}_{n}(\mathbb{C}).

Proof.

If S𝖦𝖫n()S\in\mathsf{GL}_{n}(\mathbb{C}), then it is clear that SSS\sim S.

If S=PDvTDwQS=PD_{v}TD_{w}Q, then, by \threfjplemma,

T=(PDv)1S(DwQ)1=Dv1PSQDw1=Pσ1Dσ(v1)SDγ1(w1)Qγ1.\displaystyle T=\left(PD_{v}\right)^{-1}S\left(D_{w}Q\right)^{-1}=D_{v^{-1}}P^{\top}SQ^{\top}D_{w^{-1}}=P_{\sigma^{-1}}D_{\sigma(v^{-1})}SD_{\gamma^{-1}(w^{-1})}Q_{\gamma^{-1}}.

Thus, TST\sim S whenever STS\sim T.

If S=PDvTDwQS=PD_{v}TD_{w}Q and T=P^Dv^UDw^Q^T=\hat{P}D_{\hat{v}}UD_{\hat{w}}\hat{Q}, then, by \threfjplemma,

S=PDvTDwQ=(PDv)(P^Dv^UDw^Q^)(DwQ)=(PP^)Dσ^1(v)v^UDw^γ^(w)(Q^Q).\displaystyle S=PD_{v}TD_{w}Q=(PD_{v})(\hat{P}D_{\hat{v}}UD_{\hat{w}}\hat{Q})(D_{w}Q)=(P\hat{P})D_{\hat{\sigma}^{-1}(v)\circ\hat{v}}UD_{\hat{w}\circ\hat{\gamma}(w)}(\hat{Q}Q).

Thus, SUS\sim U whenever STS\sim T and TUT\sim U. ∎

4.2. Complex Perron Similarities

Definition 4.13.

If S𝖦𝖫n()S\in\mathsf{GL}_{n}(\mathbb{C}), then SS is called a Perron similarity if there is an irreducible, nonnegative matrix AA and a diagonal matrix DD such that A=SDS1A=SDS^{-1}.

Theorem 4.14.
\thlabel

perronsimcharacterization If S𝖦𝖫n()S\in\mathsf{GL}_{n}(\mathbb{C}), then SS is a Perron similarity if and only if there is a unique positive integer k[n]k\in\left[n\right] such that Sek=αxSe_{k}=\alpha x and ekS1=βye_{k}^{\top}S^{-1}=\beta y^{\top}, where α\alpha and β\beta are nonzero complex numbers such that αβ>0\alpha\beta>0, and xx and yy are positive vectors. Furthermore, if SS is a Perron similarity, then 𝒞(S)\mathcal{C}(S) is nontrivial.

Proof.

If SS is a Perron similarity, then there is an irreducible, nonnegative matrix AA and a diagonal matrix DD such that A=SDS1A=SDS^{-1}. In view of \threfpftirr, there are (possibly empty) diagonal matrices D^\hat{D} and D~\tilde{D} such that

D= [\@arstrutk\\^D\\kρ(A)\\~D] , 1kn,D=\hbox{}\vbox{\kern 0.86108pt\hbox{$\kern 0.0pt\kern 2.5pt\kern-5.0pt\left[\kern 0.0pt\kern-2.5pt\kern-5.55557pt\vbox{\kern-0.86108pt\vbox{\vbox{ \halign{\kern\arraycolsep\hfil\@arstrut$\kbcolstyle#$\hfil\kern\arraycolsep& \kern\arraycolsep\hfil$\@kbrowstyle#$\ifkbalignright\relax\else\hfil\fi\kern\arraycolsep&& \kern\arraycolsep\hfil$\@kbrowstyle#$\ifkbalignright\relax\else\hfil\fi\kern\arraycolsep\cr 5.0pt\hfil\@arstrut$\scriptstyle$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle k$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle\\$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle\hat{{D}}$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle\\k$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle\rho(A)$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle\\$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle\tilde{D}$\hfil\kern 5.0pt\crcr}}}}\right]$}},\ 1\leqslant k\leqslant n,

where ρ(A)σ(D^)\rho(A)\notin\sigma(\hat{D}) and ρ(A)σ(D~)\rho(A)\notin\sigma(\tilde{D}). If skSeks_{k}\coloneqq Se_{k}, then Ask=ρ(A)skAs_{k}=\rho(A)s_{k} since AS=SDAS=SD. Because the geometric multiplicity of an eigenvalue is less than or equal to its algebraic multiplicity [13, p. 181], it follows that dim𝖤ρ(A)=1\dim\mathsf{E}_{\rho(A)}=1. Hence, there is a nonzero complex number α\alpha such that sk=αxs_{k}=\alpha x, where xx denotes the unique right Perron vector of AA.

Because the line of reasoning above applies to A=(S)DSA^{\top}=(S^{-\top})DS^{\top}, it follows that there is a nonzero complex number β\beta such that tk=βyt_{k}=\beta y, where tkekS1t_{k}^{\top}\coloneqq e_{k}^{\top}S^{-1} and yy denotes the unique left Perron vector of AA.

Since S1S=IS^{-1}S=I, it follows that 1=(ekS1)(Sek)=tksk=(αβ)yx1=\left(e_{k}^{\top}S^{-1}\right)\left(Se_{k}\right)=t_{k}^{\top}s_{k}=(\alpha\beta)y^{\top}x. As xx and yy are positive, we obtain αβ=(yx)1>0\alpha\beta=(y^{\top}x)^{-1}>0.

Conversely, if there is a positive integer kk such that Sek=αxSe_{k}=\alpha x and ekS1=βye_{k}^{\top}S^{-1}=\beta y^{\top}, where α\alpha and β\beta are nonzero complex numbers such that αβ>0\alpha\beta>0, and xx and yy are positive vectors, then Mek=SDekS1=S(ekek)S1=(Sek)(ekS1)=(αx)(βy)=(αβ)xy>0M_{e_{k}}=SD_{e_{k}}S^{-1}=S(e_{k}e_{k}^{\top})S^{-1}=(Se_{k})(e_{k}^{\top}S^{-1})=(\alpha x)(\beta y^{\top})=(\alpha\beta)xy^{\top}>0. Thus, SS is a Perron similarity.

For uniqueness, suppose, for contradiction, that there is a positive integer k\ell\neq k such that sSe=γus_{\ell}\coloneqq Se_{\ell}=\gamma u and teS1=δvt_{\ell}^{\top}\coloneqq e_{\ell}^{\top}S^{-1}=\delta v^{\top}, where γ\gamma and δ\delta are nonzero complex numbers such that γδ>0\gamma\delta>0, and uu and vv are positive vectors. Since AS=SDAS=SD, it follows that ss_{\ell} and tt_{\ell} are right and left eigenvectors corresponding to an eigenvalue λρ(A)\lambda\neq\rho(A). By the principle of biorthogonality [13, Theorem 1.4.7(a)], tsk=0t_{\ell}^{\ast}s_{k}=0. However,

tsk=t¯sk=δv¯(αx)=(δ¯α)vx0,t_{\ell}^{\ast}s_{k}=\overline{t_{\ell}^{\top}}s_{k}=\overline{\delta v^{\top}}(\alpha x)=(\bar{\delta}\alpha)v^{\top}x\neq 0,

a contradiction.

Finally, suppose that SS is a Perron similarity. For contradiction, if 𝒞(S)\mathcal{C}(S) is trivial, then 𝒜(S)\mathcal{A}(S) is trivial and only contains nonnegative matrices of the form αI\alpha I, a contradiction if SS is a Perron similarity. ∎

Remark 4.15.

It is known that if 𝒞(S)\mathcal{C}(S) is nontrivial, then SS is not necessarily a Perron similarity (see Dockter et al. [7, Example 11]).

4.3. Normalization

If AA is a real matrix, then any eigenvector associated with a real eigenvalue of AA may be taken to be real ([13, p. 48, Problem 1.1.P3]), and if vv is an eigenvector corresponding to a nonreal eigenvalue λ\lambda of AA, then v¯\bar{v} is an eigenvector corresponding to λ¯\bar{\lambda} ([13, p. 45]). In view of these elementary facts, and taking into account parts (i)–(iv) of \threfconetransforms and \threfthmequivrel, if SS is a Perron similarity, then

(4.5) S[es2srsr+1s¯r+1scs¯c],S\sim\begin{bmatrix}e&s_{2}&\cdots&s_{r}&s_{r+1}&\bar{s}_{r+1}&\cdots&s_{c}&\bar{s}_{c}\end{bmatrix},

where siSns_{i}\in S^{n}, i=2,,ci=2,\dots,c; Im(si)=0\imaginary(s_{i})=0, for i=2,,ri=2,\dots,r; and Im(si)0\imaginary(s_{i})\neq 0, for i=r+1,,ci=r+1,\dots,c. Hereinafter it is assumed that every Perron similarity is normalized.

The following simple, but useful fact was shown for real matrices [19, Lemma 2.1]. Although the proof extends to complex matrices without alteration, a demonstration is included for completeness.

Proposition 4.16.
\thlabel

simple If S𝖦𝖫n()S\in\mathsf{GL}_{n}(\mathbb{C}), then xS10x^{\top}S^{-1}\geqslant 0 if and only if x𝒞r(S)x\in\mathcal{C}_{r}(S).

Proof.

Notice that

yxS10x=yS,y0x𝒞r(S).y^{\top}\coloneqq x^{\top}S^{-1}\geqslant 0\Longleftrightarrow x^{\top}=y^{\top}S,~{}y\geqslant 0\Longleftrightarrow x\in\mathcal{C}_{r}(S).\qed
Definition 4.17.

Given an mm-by-nn matrix SS, the row cone of SS [19] denoted by 𝒞r(S)\mathcal{C}_{r}(S), is the the polyhedral cone generated by the rows of SS, i.e., 𝒞r(S)coni(r1,,rm)\mathcal{C}_{r}(S)\coloneqq\operatorname{coni}(r_{1},\dots,r_{m}) and the row polytope of SS, denoted by 𝒫r(S)\mathcal{P}_{r}(S), is the polytope generated by the rows of SS, i.e., 𝒫r(S)conv(r1,,rm)\mathcal{P}_{r}(S)\coloneqq\operatorname{conv}(r_{1},\dots,r_{m}).

Johnson and Paparella [17] demonstrated that 𝒞(S)\mathcal{C}(S) can coincide with 𝒞r(S)\mathcal{C}_{r}(S) for a class of Hadamard matrices called Walsh matrices (see \threfwalshmatrices below). We extend and generalize these results for complex matrices.

Definition 4.18.

If SS is a Perron similarity, then SS is called ideal if 𝒞(S)=𝒞r(S)\mathcal{C}(S)=\mathcal{C}_{r}(S).

Lemma 4.19.
\thlabel

realizablerows If S𝖦𝖫n()S\in\mathsf{GL}_{n}(\mathbb{C}), then 𝒞r(S)𝒞(S)\mathcal{C}_{r}(S)\subseteq\mathcal{C}(S) if and only if ri𝒞(S),i[n]r_{i}\in\mathcal{C}(S),\ \forall i\in\left[n\right].

Proof.

Immediate from \threfconecontain. ∎

Lemma 4.20.
\thlabel

allonesrow If S𝖦𝖫n()S\in\mathsf{GL}_{n}(\mathbb{C}), then 𝒞(S)𝒞r(S)\mathcal{C}(S)\subseteq\mathcal{C}_{r}(S) if and only if e𝒞r(S)e\in\mathcal{C}_{r}(S).

Proof.

The necessity of the condition is trivial given that e𝒞(S)e\in\mathcal{C}(S).

For sufficiency, assume that e𝒞r(S)e\in\mathcal{C}_{r}(S) and let x𝒞(S)x\in\mathcal{C}(S). By definition, there is a nonnegative vector yy such that e=ySe^{\top}=y^{\top}S and SDxS10SD_{x}S^{-1}\geqslant 0. Since

xS1=(eDx)S1=((yS)Dx)S1=y(SDxS1)0,x^{\top}S^{-1}=(e^{\top}D_{x})S^{-1}=((y^{\top}S)D_{x})S^{-1}=y^{\top}(SD_{x}S^{-1})\geqslant 0,

it follows that x𝒞r(S)x\in\mathcal{C}_{r}(S) by \threfsimple . ∎

Theorem 4.21.
\thlabel

thm:idealsims If SS is a Perron similarity, then SS is ideal if and only if e𝒞r(S)e\in\mathcal{C}_{r}(S) and ri𝒞(S),i[n]r_{i}\in\mathcal{C}(S),\ \forall i\in\left[n\right].

Proof.

Immediate from Lemmas LABEL:realizablerows and LABEL:allonesrow. ∎

Theorem 4.22.
\thlabel

coneandpoly If SS is a Perron similarity, then SS is ideal if and only if 𝒫r(S)=𝒫(S)\mathcal{P}_{r}(S)=\mathcal{P}(S).

Proof.

If SS is ideal, then 𝒞r(S)=𝒞(S)\mathcal{C}_{r}(S)=\mathcal{C}(S). If x𝒫r(S)x\in\mathcal{P}_{r}(S), then x𝒞r(S)x\in\mathcal{C}_{r}(S) and, by hypothesis, x𝒞(S)x\in\mathcal{C}(S). Thus, Mx0M_{x}\geqslant 0 and it suffices to demonstrate that Mxe=eM_{x}e=e. Since Se1=eSe_{1}=e, it follows that S1e=e1S^{-1}e=e_{1}. Furthermore, any convex combination of the rows of SS produces a vector whose first entry is 1. Thus, x1=1x_{1}=1 and

Mxe=(SDxS1)e=SDxe1=Se1=e,\displaystyle M_{x}e=(SD_{x}S^{-1})e=SD_{x}e_{1}=Se_{1}=e,

i.e., x𝒫(S)x\in\mathcal{P}(S). If x𝒫(S)x\in\mathcal{P}(S), then Mx0M_{x}\geqslant 0 and Mxe=eM_{x}e=e. Since Se1=eSe_{1}=e and MxM_{x} has a positive eigenvector, it follows that x1=ρ(Mx)=1x_{1}=\rho(M_{x})=1 [13, Corollary 8.1.30]. Notice that x𝒫(S)x𝒞(S)x𝒞r(S)x\in\mathcal{P}(S)\implies x\in\mathcal{C}(S)\implies x\in\mathcal{C}_{r}(S), i.e., y0\exists y\geqslant 0 such that x=ySx^{\top}=y^{\top}S. Thus,

ye=(xS1)e=x(S1e)=xe1=x1=1,y^{\top}e=(x^{\top}S^{-1})e=x^{\top}(S^{-1}e)=x^{\top}e_{1}=x_{1}=1,

i.e., x𝒫r(S)x\in\mathcal{P}_{r}(S).

Conversely, suppose that 𝒫r(S)=𝒫(S)\mathcal{P}_{r}(S)=\mathcal{P}(S). Since e𝒞(S)e\in\mathcal{C}(S), it follows from Propositions LABEL:exptball and LABEL:exptconv that one of the rows of SS must be ee^{\top}. Thus, 𝒞(S)𝒞r(S)\mathcal{C}(S)\subseteq\mathcal{C}_{r}(S) by \threfallonesrow. By hypothesis, every row of SS is realizable so that, following Lemma LABEL:realizablerows, 𝒞r(S)𝒞(S)\mathcal{C}_{r}(S)\subseteq\mathcal{C}(S). ∎

Corollary 4.23.

If SS is a Perron similarity, then SS is ideal if and only if ri𝒞(S)r_{i}\in\mathcal{C}(S), i[n]\forall i\in\left[n\right], and k[n]\exists k\in\left[n\right] such that ekS=ee_{k}^{\top}S=e^{\top}.

Proof.

Immediate from \threfcor:allonesextreme and \threfthm:idealsims. ∎

Definition 4.24.

If SS is a Perron similarity, then SS is called extremal if 𝒫(S)\mathcal{P}(S) contains an extremal point other than ee.

4.4. Kronecker Product & Walsh Matrices

If A𝖬m×n(𝔽)A\in\mathsf{M}_{m\times n}(\mathbb{F}) and B𝖬p×q(𝔽)B\in\mathsf{M}_{p\times q}(\mathbb{F}), then the Kronecker product of AA and BB, denoted by ABA\otimes B, is the mpmp-by-nqnq matrix defined blockwise by AB=[aijB]A\otimes B=\begin{bmatrix}a_{ij}B\end{bmatrix}.

If A𝖬m×n(𝔽)A\in\mathsf{M}_{m\times n}(\mathbb{F}) and p0p\in\mathbb{N}_{0}, then

Ap{[1],p=0A(p1)A=AA(p1),p>1.A^{\otimes p}\coloneqq\begin{cases}[1],&p=0\\ A^{\otimes(p-1)}\otimes A=A\otimes A^{\otimes(p-1)},&p>1.\end{cases}

Although some of the definitions differ, the proofs for the following results, established by Dockter et al. [7], can be retooled to obtain the following.

Theorem 4.25 ([7, Theorem 7]).
\thlabel

kronPS If SS and TT are Perron similarities, then STS\otimes T is a Perron similarity.

Theorem 4.26 ([7, Theorem 13]).
\thlabel

kronideal If SS and TT are ideal, then STS\otimes T is ideal.

Definition 4.27.

If H=[hij]𝖬n({±1})H=[h_{ij}]\in\mathsf{M}_{n}(\{\pm 1\}), then HH is called a Hadamard matrix if HH=nInHH^{\top}=nI_{n}.

Definition 4.28.
\thlabel

walshmatrices If n0n\in\mathbb{N}_{0}, then the matrix

H2n[1111]nH_{2^{n}}\coloneqq\begin{bmatrix}1&1\\ 1&-1\end{bmatrix}^{\otimes n}

is called Sylvester’s Hadamard matrix or, for brevity, the Walsh matrix (of order 2n2^{n}).

It is well-known that H2nH_{2^{n}} is a Hadamard matrix. Notice that H1=[1]H_{1}=[1], H2=[1111]H_{2}=\left[\begin{array}[]{rr}1&1\\ 1&-1\end{array}\right] and

H4=[1111111111111111].H_{4}=\left[\begin{array}[]{*{4}{r}}1&1&1&1\\ 1&-1&1&-1\\ 1&1&-1&-1\\ 1&-1&-1&1\end{array}\right].

The theory of association schemes was used to prove that these matrices are ideal [17, Proposition 5.1 and Theorem 5.2]. However, a proof of this is readily available via induction coupled with Theorems LABEL:kronPS and LABEL:kronideal.

Theorem 4.29.

If n0n\in\mathbb{N}_{0}, then H2nH_{2^{n}} is ideal, extremal, and dim(𝒞(H2n))=2n\dim(\mathcal{C}(H_{2^{n}}))=2^{n}.

Although every normalized Hadamard matrix is a Perron similarity, not every Hadamard matrix is ideal (it can be verified via the MATLAB-command hadamard(12) that only the first row, i.e., the all-ones vector, of the normalized Hadamard matrix of order twelve is realizable). However, it is known that if HH is a Hadamard matrix, then conv(e,e1e2,,e1en)𝒫(H)\operatorname{conv}(e,e_{1}-e_{2},\ldots,e_{1}-e_{n})\subseteq\mathcal{P}(H) [17, Remark 6.4]. Furthermore, in view of \threfallonesrow, we have

conv(e,e1e2,,e1en)𝒫(H)𝒫r(H).\operatorname{conv}(e,e_{1}-e_{2},\ldots,e_{1}-e_{n})\subseteq\mathcal{P}(H)\subseteq\mathcal{P}_{r}(H).

Thus, every Hadamard matrix is extremal.

If xnx\in\mathbb{C}^{n} and σ1,,σn𝖲𝗒𝗆(n)\sigma_{1},\ldots,\sigma_{n}\in\mathsf{Sym}(n), then a matrix of the form

X=[σ1(x)σn(x)]X=\begin{bmatrix}\sigma_{1}(x)^{\top}\\ \vdots\\ \sigma_{n}(x)^{\top}\end{bmatrix}

is called a permutative matrix. Notice that permutation matrices and circulant matrices are permutative matrices.

If y=Hxy=Hx and My=2nH2nDyH2nM_{y}=2^{-n}H_{2^{n}}D_{y}H_{2^{n}}, then AA is a permutative matrix [17, p. 295]. For example, if n=2n=2, then

My=[x1x2x2x1]M_{y}=\begin{bmatrix}x_{1}&x_{2}\\ x_{2}&x_{1}\end{bmatrix}

and when n=4n=4,

(4.6) My=[x1x2x3x4x2x1x4x3x3x4x1x2x4x3x2x1].M_{y}=\begin{bmatrix}x_{1}&x_{2}&x_{3}&x_{4}\\ x_{2}&x_{1}&x_{4}&x_{3}\\ x_{3}&x_{4}&x_{1}&x_{2}\\ x_{4}&x_{3}&x_{2}&x_{1}\end{bmatrix}.

In general, let

P1(1):=[1001] and P2(1):=[0110].P_{1}^{(1)}:=\begin{bmatrix}1&0\\ 0&1\end{bmatrix}\mbox{ and }P_{2}^{(1)}:=\begin{bmatrix}0&1\\ 1&0\end{bmatrix}.

and for n2n\geq 2, let

Pn,k:={[P(n1),k00P(n1),k]𝖬2n(),k[2n1][0P(n1),k2n1P(n1),k2n10]𝖬2n(),k[2n]\[2n1],P_{n,k}:=\left\{\begin{array}[]{rl}\begin{bmatrix}P_{(n-1),k}&0\\ 0&P_{(n-1),k}\end{bmatrix}\in\mathsf{M}_{2^{n}}(\mathbb{R}),&k\in\left[2^{n-1}\right]\\ \\ \begin{bmatrix}0&P_{(n-1),k-2^{n-1}}\\ P_{(n-1),k-2^{n-1}}&0\end{bmatrix}\in\mathsf{M}_{2^{n}}(\mathbb{R}),&k\in\left[2^{n}\right]\backslash\left[2^{n-1}\right],\end{array}\right.

If y=Hxy=Hx, then

(4.7) My=[xPn,1xPn,2k].M_{y}=\begin{bmatrix}x^{\top}P_{n,1}\\ \vdots\\ x^{\top}P_{n,2^{k}}\end{bmatrix}.

Kalman and White [20] called the matrix (4.6) a Klein matrix. As such, we call any matrix of the form given in (4.7) a Klein matrix of order 2n2^{n}.

5. Circulant Matrices

In what follows, we let F=FnF=F_{n} denote the nn-by-nn discrete Fourier transform matrix, i.e., FF is the nn-by-nn matrix such that

fij=1nω(i1)(j1),f_{ij}=\frac{1}{\sqrt{n}}\omega^{(i-1)(j-1)},

with

ω=ωncos(2πn)sin(2πn)𝗂.\omega=\omega_{n}\coloneqq\cos\left(\frac{2\pi}{n}\right)-\sin\left(\frac{2\pi}{n}\right)\mathsf{i}.

If n>1n>1, then

F\displaystyle F =1n [\@arstrut12kn\\11111\\21ωω-k1ω-n1\\\\k1ω-k1ω(-k1)2ω(-k1)(-n1)\\\\n1ω-n1ω(-k1)(-n1)ω(-n1)(-n1)] \\\displaystyle=\frac{1}{\sqrt{n}}\hbox{}\vbox{\kern 0.86108pt\hbox{$\kern 0.0pt\kern 2.5pt\kern-5.0pt\left[\kern 0.0pt\kern-2.5pt\kern-5.55557pt\vbox{\kern-0.86108pt\vbox{\vbox{ \halign{\kern\arraycolsep\hfil\@arstrut$\kbcolstyle#$\hfil\kern\arraycolsep& \kern\arraycolsep\hfil$\@kbrowstyle#$\ifkbalignright\relax\else\hfil\fi\kern\arraycolsep&& \kern\arraycolsep\hfil$\@kbrowstyle#$\ifkbalignright\relax\else\hfil\fi\kern\arraycolsep\cr 5.0pt\hfil\@arstrut$\scriptstyle$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle 1$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle 2$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle\cdots$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle k$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle\cdots$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle n\\1$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle 1$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle 1$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle\cdots$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle 1$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle\cdots$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle 1\\2$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle 1$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle\omega$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle\cdots$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle\omega^{k-1}$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle\cdots$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle\omega^{n-1}\\\vdots$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle\vdots$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle\vdots$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle\ddots$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle\vdots$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle\vdots\\k$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle 1$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle\omega^{k-1}$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle\cdots$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle\omega^{(k-1)^{2}}$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle\cdots$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle\omega^{(k-1)(n-1)}\\\vdots$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle\vdots$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle\vdots$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle\vdots$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle\ddots$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle\vdots\\n$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle 1$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle\omega^{n-1}$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle\cdots$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle\omega^{(k-1)(n-1)}$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle\cdots$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle\omega^{(n-1)(n-1)}$\hfil\kern 5.0pt\crcr}}}}\right]$}}\\ =1n [ \@arstrut12kn\\evωvω-k1vω-n1] ,\displaystyle=\frac{1}{\sqrt{n}}\hbox{}\vbox{\kern 0.86108pt\hbox{$\kern 0.0pt\kern 2.5pt\kern-5.0pt\left[\kern 0.0pt\kern-2.5pt\kern-5.55557pt\vbox{\kern-0.86108pt\vbox{\vbox{ \halign{\kern\arraycolsep\hfil\@arstrut$\kbcolstyle#$\hfil\kern\arraycolsep& \kern\arraycolsep\hfil$\@kbrowstyle#$\ifkbalignright\relax\else\hfil\fi\kern\arraycolsep&& \kern\arraycolsep\hfil$\@kbrowstyle#$\ifkbalignright\relax\else\hfil\fi\kern\arraycolsep\cr 5.0pt\hfil\@arstrut$\scriptstyle$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle 1$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle 2$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle\cdots$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle k$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle\cdots$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle n\\$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle e$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle v_{\omega}$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle\cdots$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle v_{\omega}^{k-1}$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle\cdots$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle v_{\omega}^{n-1}$\hfil\kern 5.0pt\crcr}}}}\right]$}},

with

vω [\@arstrut\\11\\2ω\\\\kω-k1\\\\nω-n1] .v_{\omega}\coloneqq\hbox{}\vbox{\kern 0.86108pt\hbox{$\kern 0.0pt\kern 2.5pt\kern-5.0pt\left[\kern 0.0pt\kern-2.5pt\kern-5.55557pt\vbox{\kern-0.86108pt\vbox{\vbox{ \halign{\kern\arraycolsep\hfil\@arstrut$\kbcolstyle#$\hfil\kern\arraycolsep& \kern\arraycolsep\hfil$\@kbrowstyle#$\ifkbalignright\relax\else\hfil\fi\kern\arraycolsep&& \kern\arraycolsep\hfil$\@kbrowstyle#$\ifkbalignright\relax\else\hfil\fi\kern\arraycolsep\cr 5.0pt\hfil\@arstrut$\scriptstyle$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle\\1$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle 1\\2$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle\omega\\\vdots$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle\vdots\\k$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle\omega^{k-1}\\\vdots$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle\vdots\\n$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle\omega^{n-1}$\hfil\kern 5.0pt\crcr}}}}\right]$}}.

Because FF is symmetric and unitary [5, Theorem 2.5.1], it follows that F1=F=F¯=F¯F^{-1}=F^{\ast}=\overline{F^{\top}}=\overline{F}.

Since ωkωnk=1=ωkωk¯\omega^{k}\cdot\omega^{n-k}=1=\omega^{k}\cdot\overline{\omega^{k}}, it follows that ωnk=ωk¯\omega^{n-k}=\overline{\omega^{k}}. Consequently,

(5.1) vωnk=vwk¯, 1kn1.v_{\omega}^{n-k}=\overline{v_{w}^{k}},\ 1\leqslant k\leqslant n-1.

Thus,

F=1n [ \@arstrut123n-1n\\evωvω2¯vw2¯vw] .F=\frac{1}{\sqrt{n}}\hbox{}\vbox{\kern 0.86108pt\hbox{$\kern 0.0pt\kern 2.5pt\kern-5.0pt\left[\kern 0.0pt\kern-2.5pt\kern-5.55557pt\vbox{\kern-0.86108pt\vbox{\vbox{ \halign{\kern\arraycolsep\hfil\@arstrut$\kbcolstyle#$\hfil\kern\arraycolsep& \kern\arraycolsep\hfil$\@kbrowstyle#$\ifkbalignright\relax\else\hfil\fi\kern\arraycolsep&& \kern\arraycolsep\hfil$\@kbrowstyle#$\ifkbalignright\relax\else\hfil\fi\kern\arraycolsep\cr 5.0pt\hfil\@arstrut$\scriptstyle$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle 1$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle 2$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle 3$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle\cdots$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle n-1$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle n\\$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle e$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle v_{\omega}$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle v_{\omega}^{2}$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle\cdots$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle\overline{v_{w}^{2}}$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle\overline{v_{w}}$\hfil\kern 5.0pt\crcr}}}}\right]$}}.
Definition 5.1 ([5, p. 66]).

If c=[c1cn]nc=\begin{bmatrix}c_{1}&\cdots&c_{n}\end{bmatrix}^{\top}\in\mathbb{C}^{n} and C𝖬n()C\in\mathsf{M}_{n}(\mathbb{C}) is a matrix such that

cij=c((ji)modn)+1,(i,j)[n]2,c_{ij}=c_{((j-i)\bmod{n})+1},\ \forall(i,j)\in\left[n\right]^{2},

then CC is called a circulant or a circulant matrix with reference vector cc. In such a case, we write C=circ(c)=circ(c1,,cn)C=\operatorname{circ}(c)=\operatorname{circ}(c_{1},\ldots,c_{n}).

If C𝖬n()C\in\mathsf{M}_{n}(\mathbb{C}), then CC is circulant if and only if there is a diagonal matrix DD such that C=FDF=FDF¯C=FDF^{\ast}=FD\overline{F} [5, Theorems 3.2.2 and 3.2.3].

Recall that A=[Aij]A=[A_{ij}], with Aij𝖬n()A_{ij}\in\mathsf{M}_{n}(\mathbb{C}) is called (an mm-by-mm) block matrix. If C=circ(C1,,Cm)C=\operatorname{circ}(C_{1},\ldots,C_{m}) with Ck𝖬n(),k[m]C_{k}\in\mathsf{M}_{n}(\mathbb{C}),\ \forall k\in\left[m\right], then the block matrix CC is called block-circulant or a block-circulant matrix of type (m,n)(m,n) [5, §5.6]. The set of block-circulant matrices of type (m,n)(m,n) is denoted by 𝒞mn\mathcal{BC}_{mn}.

If C=[Cij]C=[C_{ij}] is an mm-by-mm block matrix and CijC_{ij} is circulant, then CC is called a circulant block matrix and the set of such matrices is denoted by 𝒞mn\mathcal{CB}_{mn} [5, §5.7].

Combining the previous sets yields the class of block circulant matrices with circulant blocks, i.e., block matrices of the form C=circ(C1,,Cm)C=\operatorname{circ}(C_{1},\ldots,C_{m}), where C1,,CmC_{1},\ldots,C_{m} are circulant. The set of such matrices is denoted by 𝒞𝒞mn\mathcal{BCCB}_{mn}. All matrices in 𝒞𝒞mn\mathcal{BCCB}_{mn} are simultaneously diagonalizable by the unitary matrix FmFnF_{m}\otimes F_{n} and any matrix of the form

(FmFn)D(Fm¯Fn¯),(F_{m}\otimes F_{n})D(\overline{F_{m}}\otimes\overline{F_{n}}),

with DD diagonal, belongs to 𝒞𝒞mn\mathcal{BCCB}_{mn} [5, Theorem 5.8.1].

6. Perron Similarities arising from K-arcs

In this section, we examine Perron similarities from realizing matrices of points on Type I K-arcs. Attention is focused on Type I K-arcs because many Type II arcs and Type III arcs are pointwise powers of Type I arcs (see, e.g., Munger et al. [27, Section 5]).

6.1. Type 0

Points on the Type 0 arc are zeros of the reduced Ito polynomial fα(t)=(tβ)nαnf_{\alpha}(t)=(t-\beta)^{n}-\alpha^{n}, where α[0,1]\alpha\in[0,1] and β1α\beta\coloneqq 1-\alpha. In [18] it was showed (and it is easy to verify otherwise) that the matrix

M=M(α)[βαβαβααβ]M=M(\alpha)\coloneqq\begin{bmatrix}\beta&\alpha&\\ &\beta&\alpha\\ &&\ddots&\ddots\\ &&&\beta&\alpha\\ \alpha&&&&\beta\end{bmatrix}

realizes this arc, i.e., χM=fα\chi_{M}=f_{\alpha}. Because MM is a circulant, there is a diagonal matrix DD such that M=FDFM=FDF^{\ast}. As FF is a scaled Vandermonde matrix, we defer its discussion to the subsequent section.

6.2. Type I

For Type I arcs, the reduced Ito polynomial is fα(t)=tsβtsqαf_{\alpha}(t)=t^{s}-\beta t^{s-q}-\alpha, with α[0,1]\alpha\in[0,1] and β1α\beta\coloneqq 1-\alpha. If

M=M(α)[0Iαβesq],M=M(\alpha)\coloneqq\begin{bmatrix}0&I\\ \alpha&\beta e_{s-q}^{\top}\end{bmatrix},

then MM is a nonnegative irreducible companion matrix and χM=fα\chi_{M}=f_{\alpha}. Following Remark 3.14, there are at most 2s12s-1 complex values, and hence at most 2s12s-1 values in [0,1][0,1], such that fαf_{\alpha} does not have distinct roots. Notice that fα(1)=0f_{\alpha}(1)=0 and if 1,λ2,,λs1,\lambda_{2},\dots,\lambda_{s} are the distinct zeros of fαf_{\alpha}, then the Vandermonde matrix

(6.1) S=S(α)=[1111λ2λs1λ2s1λss1]𝖦𝖫s()S=S(\alpha)=\begin{bmatrix}1&1&\cdots&1\\ 1&\lambda_{2}&\cdots&\lambda_{s}\\ \vdots&\vdots&\ddots&\vdots\\ 1&\lambda_{2}^{s-1}&\cdots&\lambda_{s}^{s-1}\end{bmatrix}\in\mathsf{GL}_{s}(\mathbb{C})

is a Perron similarity satisfying M=Sdiag(1,λ2,,λs)S1M=S\operatorname{diag}{\left(1,\lambda_{2},\dots,\lambda_{s}\right)}S^{-1}. The Perron similarity SS is ideal because every row is realizable (the kthk\textsuperscript{th}-row forms the spectrum of Mk0M^{k}\geqslant 0) and the first row is ee. Furthermore, it is extremal because the second row is extremal.

Corollary 6.1.
\thlabel

TypeIsims Let fαf_{\alpha} be defined as in (3.10), and let S=S(α)S=S(\alpha) be the Vandermonde matrix defined as in (6.1)\eqref{vandermonde} corresponding to the zeros of fαf_{\alpha}.

  1. (i)

    If nn is even, then SS is ideal and extremal.

  2. (ii)

    If nn is odd and αβ\alpha\geqslant\beta, then SS is ideal and extremal.

  3. (iii)

    If nn is odd, α<β\alpha<\beta, and (n1)n1βnnnαn10(n-1)^{n-1}\beta^{n}-n^{n}\alpha^{n-1}\neq 0, then SS is ideal and extremal.

7. Circulant and Block-Circulant NIEP

Since SαSS\sim\alpha S, with a slight abuse of notation we let F=Fn=[fij]F=F_{n}=[f_{ij}] denote the nn-by-nn matrix such that fij=ω(i1)(j1)f_{ij}=\omega^{(i-1)(j-1)}. Notice that FF is a Vandermonde matrix corresponding to the nn distinct nthn\textsuperscript{th}-roots of unity, i.e,

F\displaystyle F = [\@arstrut12kn\\11111\\21ωω-k1ω-n1\\\\k1ω-k1ω(-k1)2ω(-k1)(-n1)\\\\n1ω-n1ω(-k1)(-n1)ω(-n1)2] \\\displaystyle=\hbox{}\vbox{\kern 0.86108pt\hbox{$\kern 0.0pt\kern 2.5pt\kern-5.0pt\left[\kern 0.0pt\kern-2.5pt\kern-5.55557pt\vbox{\kern-0.86108pt\vbox{\vbox{ \halign{\kern\arraycolsep\hfil\@arstrut$\kbcolstyle#$\hfil\kern\arraycolsep& \kern\arraycolsep\hfil$\@kbrowstyle#$\ifkbalignright\relax\else\hfil\fi\kern\arraycolsep&& \kern\arraycolsep\hfil$\@kbrowstyle#$\ifkbalignright\relax\else\hfil\fi\kern\arraycolsep\cr 5.0pt\hfil\@arstrut$\scriptstyle$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle 1$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle 2$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle\cdots$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle k$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle\cdots$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle n\\1$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle 1$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle 1$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle\cdots$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle 1$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle\cdots$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle 1\\2$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle 1$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle\omega$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle\cdots$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle\omega^{k-1}$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle\cdots$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle\omega^{n-1}\\\vdots$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle\vdots$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle\vdots$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle\ddots$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle\vdots$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle\vdots\\k$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle 1$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle\omega^{k-1}$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle\cdots$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle\omega^{(k-1)^{2}}$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle\cdots$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle\omega^{(k-1)(n-1)}\\\vdots$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle\vdots$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle\vdots$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle\vdots$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle\ddots$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle\vdots\\n$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle 1$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle\omega^{n-1}$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle\cdots$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle\omega^{(k-1)(n-1)}$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle\cdots$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle\omega^{(n-1)^{2}}$\hfil\kern 5.0pt\crcr}}}}\right]$}}\\ = [\@arstrut123n-1n\\evωvω2¯vw2¯vw] ,n>1.\displaystyle=\hbox{}\vbox{\kern 0.86108pt\hbox{$\kern 0.0pt\kern 2.5pt\kern-5.0pt\left[\kern 0.0pt\kern-2.5pt\kern-5.55557pt\vbox{\kern-0.86108pt\vbox{\vbox{ \halign{\kern\arraycolsep\hfil\@arstrut$\kbcolstyle#$\hfil\kern\arraycolsep& \kern\arraycolsep\hfil$\@kbrowstyle#$\ifkbalignright\relax\else\hfil\fi\kern\arraycolsep&& \kern\arraycolsep\hfil$\@kbrowstyle#$\ifkbalignright\relax\else\hfil\fi\kern\arraycolsep\cr 5.0pt\hfil\@arstrut$\scriptstyle$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle 1$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle 2$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle 3$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle\cdots$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle n-1$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle n\\$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle e$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle v_{\omega}$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle v_{\omega}^{2}$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle\cdots$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle\overline{v_{w}^{2}}$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle\overline{v_{w}}$\hfil\kern 5.0pt\crcr}}}}\right]$}},\ n>1.

It is easy to show that

(7.1) F1=1nF¯,F^{-1}=\frac{1}{n}\overline{F},
(7.2) (FmFn)1=1mn(Fm¯Fn¯),(F_{m}\otimes F_{n})^{-1}=\frac{1}{mn}\left(\overline{F_{m}}\otimes\overline{F_{n}}\right),

and C𝖬n()C\in\mathsf{M}_{n}(\mathbb{C}) is circulant if and only if there is a diagonal matrix DD such that C=FDF1C=FDF^{-1}.

Furthermore, if yny\in\mathbb{C}^{n}, x=Fyx=Fy, and Mx=FDxF1M_{x}=FD_{x}F^{-1}, then, following (4.4),

(7.3) [Mx]1,j=x,efj¯n¯=x,fjn=1nfj¯(Fy)=yj,j[n][M_{x}]_{1,j}=\left\langle x,\overline{e\circ\frac{\overline{f_{j}}}{n}}\right\rangle=\left\langle x,\frac{f_{j}}{n}\right\rangle=\frac{1}{n}\overline{f_{j}}^{\top}(Fy)=y_{j},\ \forall j\in\left[n\right]

i.e., Mx=circyM_{x}=\operatorname{circ}y.

Corollary 7.1 (extreme ray and vertex representation).
\thlabel

dftconetope If nn\in\mathbb{N}, then FF is ideal, extremal, and dim𝒞(F)=n\dim\mathcal{C}(F)=n.

Proof.

The claim that FF is ideal is immediate from \threfTypeIsims or (7.3). Clearly, FF is extremal since every entry of FF is extremal in Θn\Theta_{n}. Finally, dim𝒞(F)=n\dim\mathcal{C}(F)=n because FF is invertible. ∎

Theorem 7.2 (half-space description).

If nn is a positive integer, then

𝒞(F)=k[n]𝖧k,\mathcal{C}(F)=\bigcap_{k\in\left[n\right]}\mathsf{H}_{k},

where

𝖧k𝖧(fk)𝖧(𝗂fk)𝖧(𝗂fk)\mathsf{H}_{k}\coloneqq\mathsf{H}({f_{k}})\cap\mathsf{H}(\mathsf{i}{f_{k}})\cap\mathsf{H}(-\mathsf{i}{f_{k}})

and fkFekf_{k}\coloneqq Fe_{k}, k[n]k\in\left[n\right].

Proof.

If x𝒞(F)x\in\mathcal{C}(F), then, by \threfdftconetope, there is a nonnegative vector yy such that x=yFx^{\top}=y^{\top}F. Since FF is symmetric, it follows that x=Fyx=Fy. Since

(7.4) x,fk=(Fek)(Fy)=(ekF¯)(Fy)=ek((F¯F)y)=ek((nIn)y)=nyk,\langle x,f_{k}\rangle=\left(Fe_{k}\right)^{\ast}(Fy)=\left(e_{k}^{\top}\overline{F}\right)(Fy)=e_{k}^{\top}\left(\left(\overline{F}F\right)y\right)=e_{k}^{\top}((nI_{n})y)=ny_{k},

it follows that Re(x,fk)0\real(\langle x,{f_{k}}\rangle)\geqslant 0 and x𝖧(fk)x\in\mathsf{H}(f_{k}). Because x,±𝗂fk=𝗂x,fk=𝗂nyk\langle x,\pm\mathsf{i}f_{k}\rangle=\mp\mathsf{i}\langle x,f_{k}\rangle=\mp\mathsf{i}ny_{k}, it follows that Re(x,±𝗂fk)0\real(\langle x,\pm\mathsf{i}f_{k}\rangle)\geqslant 0, i.e., x𝖧(±𝗂fk)x\in\mathsf{H}(\pm\mathsf{i}f_{k}). As kk and xx were arbitrary, 𝒞(F)k[n]𝖧k\mathcal{C}(F)\subseteq\bigcap_{k\in\left[n\right]}\mathsf{H}_{k}.

Let xk[n]𝖧kx\in\bigcap_{k\in\left[n\right]}\mathsf{H}_{k} and suppose, for contradiction, that x𝒞(F)x\notin\mathcal{C}(F). Because FF is invertible, there is a unique complex vector yy such that x=Fyx=Fy, and since FF is symmetric, we have x=yFx^{\top}=y^{\top}F. As x𝒞(F)x\notin\mathcal{C}(F), it follows that aRey⩾̸0a\coloneqq\real y\not\geqslant 0 or bImy0b\coloneqq\imaginary y\neq 0. Thus, k[n]\exists k\in\left[n\right] such that Reyk=ak<0\real y_{k}=a_{k}<0 or Imyk=bk0\imaginary y_{k}=b_{k}\neq 0. Notice that x,fk=nyk,k[n]\langle x,f_{k}\rangle=ny_{k},\ \forall k\in\left[n\right] because the calculations in (7.4) do not rely on the nonnegativity of yy. If ak<0a_{k}<0, then x,fk=nyk=n(ak+𝗂bk)\langle x,f_{k}\rangle=ny_{k}=n(a_{k}+\mathsf{i}b_{k}) implies Re(x,fk)=nak<0\real(\langle x,f_{k}\rangle)=na_{k}<0, a contradiction since x𝖧(fk)x\in\mathsf{H}(f_{k}). Otherwise, if bk0b_{k}\neq 0, then bk<0b_{k}<0 or bk>0b_{k}>0; if bk<0b_{k}<0, then the equation

x,𝗂fk=𝗂x,fk=𝗂ny=n(bk𝗂ak)\langle x,\mathsf{i}f_{k}\rangle=-\mathsf{i}\langle x,f_{k}\rangle=-\mathsf{i}ny=n(b_{k}-\mathsf{i}a_{k})

implies Re(x,𝗂fk)=nbk<0\real(\langle x,\mathsf{i}f_{k}\rangle)=nb_{k}<0, a contradiction since x𝖧(𝗂fk)x\in\mathsf{H}(\mathsf{i}f_{k}); if bk>0b_{k}>0, then the equation

x,𝗂fk=𝗂x,fk=𝗂ny=n(bk+𝗂ak)\langle x,-\mathsf{i}f_{k}\rangle=\mathsf{i}\langle x,f_{k}\rangle=\mathsf{i}ny=n(-b_{k}+\mathsf{i}a_{k})

implies Re(x,𝗂fk)=nbk<0\real(\langle x,-\mathsf{i}f_{k}\rangle)=-nb_{k}<0, a contradiction since x𝖧(𝗂fk)x\in\mathsf{H}(-\mathsf{i}f_{k}). Thus, 𝒞(F)k[n]𝖧k\mathcal{C}(F)\supseteq\bigcap_{k\in\left[n\right]}\mathsf{H}_{k} and the demonstration is complete. ∎

Proposition 7.3.
\thlabel

propF If nn\in\mathbb{N}, then:

  1. (i)

    𝒞(F)=𝒞(F¯)\mathcal{C}(F)=\mathcal{C}\left(\overline{F}\right);

  2. (ii)

    F¯\overline{F} is ideal; and

  3. (iii)

    𝒫(F¯)=𝒫r(F¯)\mathcal{P}(\overline{F})=\mathcal{P}_{r}(\overline{F}).

Proof.
  1. (i)

    Notice that

    𝒞(F¯)=𝒞(1nF¯)=𝒞(F1)=𝒞(F)=𝒞(F).\displaystyle\mathcal{C}\left(\overline{F}\right)=\mathcal{C}\left(\frac{1}{n}\overline{F}\right)=\mathcal{C}(F^{-1})=\mathcal{C}(F^{\top})=\mathcal{C}(F).
  2. (ii)

    Follows from the observation that

    y𝒞(F¯)\displaystyle y\in\mathcal{C}\left(\overline{F}\right) y𝒞(F)¯\displaystyle\iff y\in\overline{\mathcal{C}(F)}
    y=x¯,x𝒞(F)\displaystyle\iff y=\overline{x},\ x\in\mathcal{C}(F)
    y=x¯,x=Fz,z0\displaystyle\iff y=\overline{x},\ x=Fz,\ z\geqslant 0
    y=F¯z,z0\displaystyle\iff y=\overline{F}z,\ z\geqslant 0
    y𝒞r(F¯).\displaystyle\iff y\in\mathcal{C}_{r}(\overline{F}).
  3. (iii)

    The assertion that 𝒫(F¯)=𝒫r(F¯)\mathcal{P}(\overline{F})=\mathcal{P}_{r}(\overline{F}) is an immediate consequence of part (ii) and \threfconeandpoly. ∎

There is an easier test for feasibility, as follows.

Theorem 7.4.

If xnx\in\mathbb{C}^{n}, then Λ(x)\Lambda(x) is realizable by an nn-by-nn circulant matrix if and only if Fx0Fx\geqslant 0.

Proof.

If Λ(x)\Lambda(x) is realizable by an nn-by-nn circulant matrix CC, then x𝒞(F)x\in\mathcal{C}(F). By parts (i) and (ii) of \threfpropF, there is a nonnegative vector yy such that x=yF¯x^{\top}=y^{\top}\overline{F}. Note that x=F¯yx=\overline{F}y since F¯\overline{F} is symmetric and because FF¯=nInF\overline{F}=nI_{n}, we have Fx=ny0Fx=ny\geqslant 0.

Conversely, if yFx0y\coloneqq Fx\geqslant 0, then

x=1nF¯yx=\frac{1}{n}\overline{F}y

and since F¯\overline{F} is symmetric, it follows that

x=1nyF¯.x^{\top}=\frac{1}{n}y^{\top}\overline{F}.

By parts (i) and (ii) of \threfpropF, x𝒞(G)x\in\mathcal{C}({G}), i.e., Λ(x)\Lambda(x) is realizable by an nn-by-nn circulant matrix. ∎

Corollary 7.5.

If xnx\in\mathbb{C}^{n}, then Λ(x)\Lambda(x) is realizable by an nn-by-nn circulant matrix if and only if

(7.5) j=1nω(i1)(j1)xj0,i[n].\sum_{j=1}^{n}\omega^{(i-1)(j-1)}x_{j}\geqslant 0,\ \forall i\in\left[n\right].

If xnx\in\mathbb{C}^{n} satisfies the inequalities in (7.5), then the inequality corresponding to i=1i=1 in yields

k=1nxk0\sum_{k=1}^{n}x_{k}\geqslant 0

corresponding to the trace-condition.

Remark 7.6.
\thlabel

rem_symm For n2n\geqslant 2, let

symn{xnImx1=0,xk¯=xnk+2, 2kn}.\mathbb{C}_{\rm sym}^{n}\coloneqq\{x\in\mathbb{C}^{n}\mid\imaginary x_{1}=0,\ \overline{x_{k}}=x_{n-k+2},\ 2\leqslant k\leqslant n\}.

In the light of (5.1), notice that

gnk+2=vωnk+1=vωk1¯=fk¯, 2kn.g_{n-k+2}=v_{\omega}^{n-k+1}=\overline{v_{\omega}^{k-1}}=\overline{f_{k}},\ 2\leqslant k\leqslant n.

As such, the vector GxGx is real if and only if xsymnx\in\mathbb{C}_{\rm sym}^{n}.

Example 7.7.

In view of the inequalities given by (7.5) and \threfrem_symm, if x2x\in\mathbb{C}^{2} and Λ(x)={x1,x2}\Lambda(x)=\{x_{1},x_{2}\}, then Λ\Lambda is realizable by a circulant matrix if and only if x1,x2x_{1},x_{2}\in\mathbb{R} and

{x1+x20x1x20.\displaystyle\left\{\begin{array}[]{l}x_{1}+x_{2}\geqslant 0\\ x_{1}-x_{2}\geqslant 0\end{array}\right..

If x4x\in\mathbb{C}^{4} and Λ(x)={x1,x2,x3,x4}\Lambda(x)=\{x_{1},x_{2},x_{3},x_{4}\}, then Λ\Lambda is realizable by a circulant matrix if and only if x1,x3x_{1},x_{3}\in\mathbb{R}, x4=x2¯x_{4}=\overline{x_{2}}, and

{x1+x2+x3+x2¯0x1x2ix3+x2¯i0x1x2+x3x2¯0x1+x2ix3x2¯i0.\displaystyle\left\{\begin{array}[]{*{9}{l}}x_{1}&+&x_{2}&+&x_{3}&+&\overline{x_{2}}&\geqslant&0\\ x_{1}&-&x_{2}i&-&x_{3}&+&\overline{x_{2}}i&\geqslant&0\\ x_{1}&-&x_{2}&+&x_{3}&-&\overline{x_{2}}&\geqslant&0\\ x_{1}&+&x_{2}i&-&x_{3}&-&\overline{x_{2}}i&\geqslant&0\end{array}\right..
Theorem 7.8.

If m,nm,n\in\mathbb{N}, then FmFnF_{m}\otimes F_{n} is ideal, extremal, and dim𝒞(FmFn)=mn\dim\mathcal{C}(F_{m}\otimes F_{n})=mn.

Proof.

Immediate from \threfkronideal and \threfdftconetope. ∎

Theorem 7.9 (half-space description).

If m,nm,n\in\mathbb{N}, then

𝒞(FmFn)=k[n]𝖧k,\mathcal{C}(F_{m}\otimes F_{n})=\bigcap_{k\in\left[n\right]}\mathsf{H}_{k},

where

𝖧k𝖧(fk)𝖧(𝗂fk)𝖧(𝗂fk)\mathsf{H}_{k}\coloneqq\mathsf{H}({f_{k}})\cap\mathsf{H}(\mathsf{i}{f_{k}})\cap\mathsf{H}(-\mathsf{i}{f_{k}})

and fk(FmFn)ekf_{k}\coloneqq(F_{m}\otimes F_{n})e_{k}, k[mn]k\in\left[mn\right].

Proposition 7.10.

If m,nm,n\in\mathbb{N}, then:

  1. (i)

    𝒞(FmFn)=𝒞(Fm¯Fn¯)\mathcal{C}({F_{m}}\otimes{F_{n}})=\mathcal{C}\left(\overline{F_{m}}\otimes\overline{F_{n}}\right);

  2. (ii)

    Fm¯Fn¯\overline{F_{m}}\otimes\overline{F_{n}} is ideal; and

  3. (iii)

    𝒫(Fm¯Fn¯)=𝒫r(Fm¯Fn¯)\mathcal{P}(\overline{F_{m}}\otimes\overline{F_{n}})=\mathcal{P}_{r}(\overline{F_{m}}\otimes\overline{F_{n}}).

Proof.

Analogous to the proof of \threfpropF using (7.2) and properties of the Kronecker product. ∎

Corollary 7.11.

If xnx\in\mathbb{C}^{n}, then Λ(x)\Lambda(x) is realizable by an (m,n)(m,n) block-circulant matrix with circulant blocks if and only if (FmFn)x0(F_{m}\otimes F_{n})x\geqslant 0.

Theorem 7.12.

If k0k\in\mathbb{N}_{0} and nn\in\mathbb{N}, then FnH2kF_{n}\otimes H_{2^{k}} is ideal, extremal, and dim𝒞(FnH2k)=2kn\dim\mathcal{C}(F_{n}\otimes H_{2^{k}})=2^{k}n

Corollary 7.13.

If xnx\in\mathbb{C}^{n}, then Λ(x)\Lambda(x) is realizable by a Klein block matrix with circulant blocks if and only if (FnH2k)x0(F_{n}\otimes H_{2^{k}})x\geqslant 0.

Remark 7.14.

If A𝖬m()A\in\mathsf{M}_{m}(\mathbb{C}) and B𝖬n()B\in\mathsf{M}_{n}(\mathbb{C}), then there is a permutation matrix PP such that AB=P(BA)PA\otimes B=P(B\otimes A)P^{\top} [12, Corollary 4.3.10]. As a consequence, FmFnFnFmF_{m}\otimes F_{n}\sim F_{n}\otimes F_{m}. Furthermore, if mm and nn are relatively prime, then there are permutation matrices PP and QQ such that Fmn=P(FmFn)QF_{mn}=P(F_{m}\otimes F_{n})Q [10, 29]. Thus, FmnFmFnF_{mn}\sim F_{m}\otimes F_{n} whenever gcd(m,n)=1\gcd(m,n)=1. It is also clear that Fmn≁FmFnF_{mn}\not\sim F_{m}\otimes F_{n} whenever gcd(m,n)>1\gcd(m,n)>1.

Recall that if A1,,AmA_{1},\ldots,A_{m} are matrices with Ak𝖬mk×nk()A_{k}\in\mathsf{M}_{m_{k}\times n_{k}}(\mathbb{C}), then

k=1mAk{A1,k=1(k=1m1Ak)Am,k>1.\bigotimes_{k=1}^{m}A_{k}\coloneqq\begin{cases}A_{1},&k=1\\ \left(\bigotimes_{k=1}^{m-1}A_{k}\right)\otimes A_{m},&k>1.\end{cases}
Theorem 7.15.

If S1,,SmS_{1},\ldots,S_{m} are Perron similarities with Sk𝖦𝖫nk()S_{k}\in\mathsf{GL}_{n_{k}}(\mathbb{C}), then k=1mSk\bigotimes_{k=1}^{m}S_{k} is a Perron similarity.

Proof.

Follows by a straightforward proof by induction on mm in conjunction with \threfkronPS. ∎

Theorem 7.16.

If S1,,SmS_{1},\ldots,S_{m} are ideal with Sk𝖦𝖫nk()S_{k}\in\mathsf{GL}_{n_{k}}(\mathbb{C}), then k=1mSk\bigotimes_{k=1}^{m}S_{k} is ideal.

Proof.

Follows by a straightforward proof by induction on mm in conjunction with \threfkronideal. ∎

Corollary 7.17.

If

S(j=1NFnj)H2k,k0,nj,j[N],S\coloneqq\left(\bigotimes_{j=1}^{N}F_{n_{j}}\right)\otimes H_{2^{k}},\ k\in\mathbb{N}_{0},\ n_{j}\in\mathbb{N},\ j\in\left[N\right],

then SS is ideal and extremal.

Example 7.18.

The matrices F24F_{24}, H2F12H_{2}\otimes F_{12}, H4F6H_{4}\otimes F_{6}, H8F3H_{8}\otimes F_{3}, and F4F6F_{4}\otimes F_{6} are ideal and extremal Perron similarities of order 2424.

8. Geometrical representation of the spectra of 4-by-4 matrices

The problem of finding a geometric representation of all vectors [λαω]\begin{bmatrix}\lambda&\alpha&\omega\end{bmatrix}^{\top} in 3\mathbb{R}^{3} such that {1,λ,α+ω𝗂,αω𝗂}\{1,\lambda,\alpha+\omega\mathsf{i},\alpha-\omega\mathsf{i}\} is the spectrum of a 4-by-4 nonnegative matrix (we denote this region by 𝔹\mathbb{B}) was posed by Egleston et al. [8, Problem 1].

In 2007, Torre-Mayo et al. [33] characterized the coefficients of the characteristic polynomials of four-by-four nonnegative matrices and in 2014, Benvenuti [2] used these results to produce the region given in Figure 1. It is worth noting here that this approach is not applicable to any other dimension.

Refer to caption
Figure 1. Geometrical representation of the spectra of four-by-four matrices by Benvenuti [2, Figure 11].

8.1. Region Generated by Spectratopes

Lemma 8.1.

If

S=[1e10Fn]𝖦𝖫n+1(),S=\begin{bmatrix}1&e_{1}^{\top}\\ 0&F_{n}\end{bmatrix}\in\mathsf{GL}_{n+1}(\mathbb{C}),

then

S1=[1e/n0Fn1].S^{-1}=\begin{bmatrix}1&-e^{\top}/n\\ 0&F_{n}^{-1}\end{bmatrix}.
Proof.

Notice that

[1e10Fn][1e/n0Fn1]=[1e/n+e1Fn10In]\displaystyle\begin{bmatrix}1&e_{1}^{\top}\\ 0&F_{n}\end{bmatrix}\begin{bmatrix}1&-e^{\top}/n\\ 0&F_{n}^{-1}\end{bmatrix}=\begin{bmatrix}1&-e^{\top}/n+e_{1}^{\top}F_{n}^{-1}\\ 0&I_{n}\end{bmatrix}

and since Fn1=1nFn¯F_{n}^{-1}=\frac{1}{n}\overline{F_{n}}, it follows that e1Fn1=e/ne_{1}^{\top}F_{n}^{-1}=e^{\top}/n and the result follows. ∎

Theorem 8.2.
\thlabel

cartprodFn If

S=[1e10Fn],S=\begin{bmatrix}1&e_{1}^{\top}\\ 0&F_{n}\end{bmatrix},

then 𝒫(S)=[0,1]×𝒫(Fn)=[0,1]×𝒫r(Fn)\mathcal{P}(S)=[0,1]\times\mathcal{P}(F_{n})=[0,1]\times\mathcal{P}_{r}(F_{n}). Furthermore, SS is extremal.

Proof.

Let xn+1x\in\mathbb{C}^{n+1} and let y=π1(x)ny=\pi_{1}(x)\in\mathbb{C}^{n}. Since

e1DyFn1=y1ne,e_{1}^{\top}D_{y}F_{n}^{-1}=\frac{y_{1}}{n}e^{\top},

it follows that

SDxS1\displaystyle SD_{x}S^{-1} =[1e10Fn][x100Dy][1e/n0Fn1]\displaystyle=\begin{bmatrix}1&e_{1}^{\top}\\ 0&F_{n}\end{bmatrix}\begin{bmatrix}x_{1}&0\\ 0&D_{y}\end{bmatrix}\begin{bmatrix}1&-e^{\top}/n\\ 0&F_{n}^{-1}\end{bmatrix}
=[x1x1ne+e1DyFn10FnDyFn1]\displaystyle=\begin{bmatrix}x_{1}&-\frac{x_{1}}{n}e^{\top}+e_{1}^{\top}D_{y}F_{n}^{-1}\\ 0&F_{n}D_{y}F_{n}^{-1}\end{bmatrix}
=[x1y1x1ne0FnDyFn1].\displaystyle=\begin{bmatrix}x_{1}&\frac{y_{1}-x_{1}}{n}e^{\top}\\ 0&F_{n}D_{y}F_{n}^{-1}\end{bmatrix}.

If x𝒫(S)x\in\mathcal{P}(S), then the matrix above is stochastic. Thus, x1[0,1]x_{1}\in[0,1] and y𝒫(Fn)=𝒫r(Fn)y\in\mathcal{P}(F_{n})=\mathcal{P}_{r}(F_{n}), i.e., x[0,1]×𝒫r(Fn)x\in[0,1]\times\mathcal{P}_{r}(F_{n}).

If x[0,1]×𝒫r(Fn)x\in[0,1]\times\mathcal{P}_{r}(F_{n}), then yπ1(x)𝒫r(Fn)=𝒫(Fn)y\coloneqq\pi_{1}(x)\in\mathcal{P}_{r}(F_{n})=\mathcal{P}(F_{n}). Since the first column of Fne1=eF_{n}e_{1}=e, it follows that y1=1y_{1}=1 and the matrix

SDxS1=[x11x1ne0FnDyFn1]SD_{x}S^{-1}=\begin{bmatrix}x_{1}&\frac{1-x_{1}}{n}e^{\top}\\ 0&F_{n}D_{y}F_{n}^{-1}\end{bmatrix}

is clearly stochastic, i.e., x𝒫(S)x\in\mathcal{P}(S).

Finally, note that SS is extremal because FnF_{n} is extremal. ∎

If S𝖦𝖫4()S\in\mathsf{GL}_{4}(\mathbb{C}) is a Perron similarity, then

S[11111λ2α2+ω2𝗂α2ω2𝗂1λ3α3+ω3𝗂α3ω3𝗂1λ4α4+ω4𝗂α4ω4𝗂].S\sim\begin{bmatrix}1&1&1&1\\ 1&\lambda_{2}&\alpha_{2}+\omega_{2}\mathsf{i}&\alpha_{2}-\omega_{2}\mathsf{i}\\ 1&\lambda_{3}&\alpha_{3}+\omega_{3}\mathsf{i}&\alpha_{3}-\omega_{3}\mathsf{i}\\ 1&\lambda_{4}&\alpha_{4}+\omega_{4}\mathsf{i}&\alpha_{4}-\omega_{4}\mathsf{i}\end{bmatrix}.

Furthermore, if SS is ideal and x𝒫r(S)x\in\mathcal{P}_{r}(S), then there are nonnegative scalars γ1\gamma_{1}, γ2\gamma_{2}, γ3\gamma_{3}, and γ4\gamma_{4} such that i=14γi=1\sum_{i=1}^{4}\gamma_{i}=1 and

x\displaystyle x =[1γ1+i=24γiλiγ1+i=24γi(αi+ωi𝗂)γ1+i=24γi(α4ω4𝗂)]\displaystyle=\begin{bmatrix}1&\gamma_{1}+\sum_{i=2}^{4}\gamma_{i}\lambda_{i}&\gamma_{1}+\sum_{i=2}^{4}\gamma_{i}\left(\alpha_{i}+\omega_{i}\mathsf{i}\right)&\gamma_{1}+\sum_{i=2}^{4}\gamma_{i}\left(\alpha_{4}-\omega_{4}\mathsf{i}\right)\end{bmatrix}
=[1γ1+i=24γiλiγ1+i=24γiαi+i=24γiωi𝗂γ1+i=24γiαii=24γiωi𝗂].\displaystyle=\begin{bmatrix}1&\gamma_{1}+\sum_{i=2}^{4}\gamma_{i}\lambda_{i}&\gamma_{1}+\sum_{i=2}^{4}\gamma_{i}\alpha_{i}+\sum_{i=2}^{4}\gamma_{i}\omega_{i}\mathsf{i}&\gamma_{1}+\sum_{i=2}^{4}\gamma_{i}\alpha_{i}-\sum_{i=2}^{4}\gamma_{i}\omega_{i}\mathsf{i}\end{bmatrix}.

Consequently,

[γ1+i=24γiλiγ1+i=24γiαii=24γiωi]𝔹\begin{bmatrix}\gamma_{1}+\sum_{i=2}^{4}\gamma_{i}\lambda_{i}&\gamma_{1}+\sum_{i=2}^{4}\gamma_{i}\alpha_{i}&\sum_{i=2}^{4}\gamma_{i}\omega_{i}\end{bmatrix}\in\mathbb{B}

and

[γ1+i=24γiλiγ1+i=24γiαii=24γiωi]𝔹.\begin{bmatrix}\gamma_{1}+\sum_{i=2}^{4}\gamma_{i}\lambda_{i}&\gamma_{1}+\sum_{i=2}^{4}\gamma_{i}\alpha_{i}&-\sum_{i=2}^{4}\gamma_{i}\omega_{i}\end{bmatrix}\in\mathbb{B}.

When n=4n=4, the K-arcs in the upper-half region are:

  • K4(0,1)K_{4}(0,1) (Type 0);

  • K4(1/4,1/3)K_{4}(1/4,1/3) (Type I); and

  • K4(1/3,1/2)K_{4}(1/3,1/2) (Type II).

However, it is known that K4(1/3,1/2)=K42(1/4,1/3)¯K_{4}(1/3,1/2)=\overline{K_{4}^{2}(1/4,1/3)} [27, Remark 5.3]. As mentioned earlier, the Type 0 arc is subsumed in the Type I arc. Thus, it suffices to consider Perron similarities of realizing matrices corresponding to the arc K4(1/4,1/3)K_{4}(1/4,1/3). Figure 2 depicts the projected spectratope corresponding to F4F_{4}.

Refer to caption
Figure 2. Projected spectratope of F4F_{4}.

Figure 4 contains spectra derived from the projected spectratopes of these Peron similarities. Notice that Figure 4 matches the Karpelevich region when n=4n=4.

Refer to caption
Figure 3. Projected spectratopes of Peron similarities arising from K4(0,1)K_{4}(0,1) and K4(1/4,1/3)K_{4}(1/4,1/3).
Refer to caption
Figure 4. The αω\alpha\omega-view of Figure 3 matching Θ4\Theta_{4}.

If S=[1e10F3]𝖦𝖫4(),S=\begin{bmatrix}1&e_{1}^{\top}\\ 0&F_{3}\end{bmatrix}\in\mathsf{GL}_{4}(\mathbb{C}), then 𝒫(S)=[0,1]×𝒫r(F3)\mathcal{P}(S)=[0,1]\times\mathcal{P}_{r}(F_{3}) by \threfcartprodFn. Figure 5 adds the projected spectratope of SS.

Refer to caption
Figure 5. Geometric representation of the spectra of 44-by-44 matrices via spectratopes.

Notice that the missing region, which is small relative to the entire region, contains spectra such that 1λ0-1\leqslant\lambda\leqslant 0, 0α10\leqslant\alpha\leqslant 1, and 1ω0-1\leqslant\omega\leqslant 0.

9. Implications for Further Inquiry

Theorems LABEL:hadamardcones and LABEL:CSpolyconePSpolytope demonstrate that 𝒞(S)\mathcal{C}(S) (𝒫(S)\mathcal{P}(S)) is a polyhedral cone (polytope) that is closed with respect to the Hadamard product. As such we pose the following.

Question 9.1.

If KK is a polyhedral cone (polytope) that is closed with respect to the Hadamard product, is there an invertible matrix SS such that K=𝒞(S)K=\mathcal{C}(S) (K=𝒫(S)K=\mathcal{P}(S))?

The following conjecture, which fails when n=2n=2 and n=3n=3, would demonstrate that characterizing the extreme points is enough to characterize 𝕊𝕃1n\mathbb{SL}_{1}^{n}.

Conjecture 9.2.

If n>3n>3, then 𝕊𝕃1n𝔼n\partial\mathbb{SL}_{1}^{n}\subseteq\mathbb{E}^{n}, i.e., points on the boundary are extremal.

References

  • [1] Adi Ben-Israel, Linear equations and inequalities on finite dimensional, real or complex, vector spaces: A unified theory, J. Math. Anal. Appl. 27 (1969), 367–389. MR 242865
  • [2] Luca Benvenuti, A geometrical representation of the spectra of four dimensional nonnegative matrices, Linear Algebra Appl. 445 (2014), 162–180. MR 3151269
  • [3] Mike Boyle and David Handelman, The spectra of nonnegative matrices via symbolic dynamics, Ann. of Math. (2) 133 (1991), no. 2, 249–316. MR 1097240 (92d:58057)
  • [4] Alfred Brauer, Limits for the characteristic roots of a matrix. IV. Applications to stochastic matrices, Duke Math. J. 19 (1952), 75–91. MR 47003
  • [5] Philip J. Davis, Circulant matrices, John Wiley & Sons, New York-Chichester-Brisbane, 1979, A Wiley-Interscience Publication, Pure and Applied Mathematics. MR 543191
  • [6] N. Dmitriev and E. Dynkin, On characteristic roots of stochastic matrices, Bull. Acad. Sci. URSS. Sér. Math. [Izvestia Akad. Nauk SSSR] 10 (1946), 167–184. MR 0017269
  • [7] Janelle M. Dockter, Pietro Paparella, Robert L. Perry, and Jonathan D. Ta, Kronecker products of Perron similarities, Electron. J. Linear Algebra 38 (2022), 114–122. MR 4387576
  • [8] Patricia D. Egleston, Terry D. Lenker, and Sivaram K. Narayan, The nonnegative inverse eigenvalue problem, Linear Algebra Appl. 379 (2004), 475–490, Tenth Conference of the International Linear Algebra Society. MR 2039754 (2005b:15040)
  • [9] Shmuel Friedland, On an inverse problem for nonnegative and eventually nonnegative matrices, Israel J. Math. 29 (1978), no. 1, 43–60. MR 492634 (80h:15010)
  • [10] I. J. Good, The interaction algorithm and practical Fourier analysis, J. Roy. Statist. Soc. Ser. B 20 (1958), 361–372. MR 102888
  • [11] Olga Holtz, MM-matrices satisfy Newton’s inequalities, Proc. Amer. Math. Soc. 133 (2005), no. 3, 711–717. MR 2113919
  • [12] Roger A. Horn and Charles R. Johnson, Topics in matrix analysis, Cambridge University Press, Cambridge, 1994, Corrected reprint of the 1991 original. MR 1288752 (95c:15001)
  • [13] by same author, Matrix analysis, second ed., Cambridge University Press, Cambridge, 2013. MR 2978290
  • [14] Hisashi Ito, A new statement about the theorem determining the region of eigenvalues of stochastic matrices, Linear Algebra Appl. 267 (1997), 241–246. MR 1479122 (98i:15016)
  • [15] Charles R. Johnson, Row stochastic matrices similar to doubly stochastic matrices, Linear and Multilinear Algebra 10 (1981), no. 2, 113–130. MR 618581 (82g:15016)
  • [16] Charles R. Johnson, Carlos Marijuán, Pietro Paparella, and Miriam Pisonero, The NIEP, Operator theory, operator algebras, and matrix theory, Oper. Theory Adv. Appl., vol. 267, Birkhäuser/Springer, Cham, 2018, pp. 199–220. MR 3837638
  • [17] Charles R. Johnson and Pietro Paparella, Perron spectratopes and the real nonnegative inverse eigenvalue problem, Linear Algebra Appl. 493 (2016), 281–300. MR 3452738
  • [18] by same author, A matricial view of the Karpelevič Theorem, Linear Algebra Appl. 520 (2017), 1–15. MR 3611453
  • [19] by same author, Row cones, perron similarities, and nonnegative spectra, Linear Multilinear Algebra 65 (2017), no. 10, 2124–2130. MR 3733402
  • [20] Dan Kalman and James E. White, Polynomial equations and circulant matrices, Amer. Math. Monthly 108 (2001), no. 9, 821–840. MR 1864053
  • [21] Fridrikh I. Karpelevič, On the characteristic roots of matrices with nonnegative elements, Izvestiya Akad. Nauk SSSR. Ser. Mat. 15 (1951), 361–383. MR 0043063 (13,201a)
  • [22] Victor Klee, Some characterizations of convex polyhedra, Acta Math. 102 (1959), 79–107. MR 105651
  • [23] Thomas J. Laffey, A constructive version of the Boyle-Handelman theorem on the spectra of nonnegative matrices, Linear Algebra Appl. 436 (2012), no. 6, 1701–1709. MR 2890950
  • [24] Chi-Kwong Li and Fuzhen Zhang, Eigenvalue continuity and Geršgorin’s theorem, Electron. J. Linear Algebra 35 (2019), 619–625. MR 4044371
  • [25] Raphael Loewy and David London, A note on an inverse problem for nonnegative matrices, Linear and Multilinear Algebra 6 (1978/79), no. 1, 83–90. MR 0480563 (58 #722)
  • [26] Judith J. McDonald and Pietro Paparella, A short and elementary proof of Brauer’s theorem, The Teaching of Mathematics XXIV (2021), 85–86.
  • [27] Devon N. Munger, Andrew L. Nickerson, and Pietro Paparella, Demystifying the Karpelevič theorem, Linear Algebra Appl. 702 (2024), 46–62. MR 4788244
  • [28] R. Tyrrell Rockafellar, Convex analysis, Princeton Landmarks in Mathematics, Princeton University Press, Princeton, NJ, 1997, Reprint of the 1970 original, Princeton Paperbacks. MR 1451876
  • [29] Donald J. Rose, Matrix identities of the fast Fourier transform, Linear Algebra Appl. 29 (1980), 423–443. MR 562772
  • [30] Alexander Schrijver, Theory of linear and integer programming, Wiley-Interscience Series in Discrete Mathematics, John Wiley & Sons, Ltd., Chichester, 1986, A Wiley-Interscience Publication. MR 874114
  • [31] Ben Silver (ed.), American Mathematical Society Translations. Series 2. Vol. 140, American Mathematical Society Translations, Series 2, vol. 140, American Mathematical Society, Providence, RI, 1988, Eleven papers translated from the Russian. MR 982759
  • [32] Joanne Swift, The location of characteristic roots of stochastic matrices, Master’s thesis, McGill University, Montréal, 1972.
  • [33] J. Torre-Mayo, M. R. Abril-Raymundo, E. Alarcia-Estévez, C. Marijuán, and M. Pisonero, The nonnegative inverse eigenvalue problem from the coefficients of the characteristic polynomial. EBL digraphs, Linear Algebra Appl. 426 (2007), no. 2-3, 729–773. MR 2350690 (2008k:15014)