This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

\externaldocument

[pmcs:]pmcs[https://arxiv.org/pdf/2009.14093.pdf]

Permutation modules, Mackey functors,
and Artin motives

Paul Balmer Paul Balmer, UCLA Mathematics Department, Los Angeles, CA 90095-1555, USA [email protected] https://www.math.ucla.edu/ balmer  and  Martin Gallauer Martin Gallauer, Oxford Mathematical Institute, Oxford, OX2 6GG, UK [email protected] https://people.maths.ox.ac.uk/gallauer
Abstract.

We explain in detail the connections between the three concepts in the title, and we discuss how the ‘big’ derived category of permutation modules introduced in [BG20b] fits into the picture.

Key words and phrases:
Artin motive, permutation module, Mackey functor, derived category
First-named author supported by NSF grant DMS-1901696.

1. Introduction

Objectives

This article is a companion to our work in progress on Artin-Tate motives from the point of view of tensor-triangular geometry, which we have started to document in [BG19, BG20a, BG20b]. As such, its goal is to explain in detail the beautiful connections between that subject matter and certain representation theoretic topics. Partly, these connections are used in the work alluded to in order to infer from representation theory to algebraic geometry, and partly they make it possible to deduce consequences for representation theoretic questions from our results in algebraic geometry.

In a nutshell, the main topics to be discussed are depicted in Figure 1, with the names of those mathematicians who arguably contributed the most to our understanding of the corresponding interrelations between these topics.

Artin motivespermutation modulescoh. Mackey functorsGalois-GrothendieckVoevodskyYoshida
Figure 1. Diagrammatic representation of main topics

In their most basic form, these connections are classical. Grothendieck’s Galois theory describes an equivalence between finite étale-algebras over a field \FF\FF and finite sets with an action by the absolute Galois group Γ=Γ\FF\Gamma=\Gamma_{\FF}. Permutation modules are obtained by linearizing Γ\Gamma-sets, and the corresponding process under the Galois equivalence results precisely in étale correspondences, the zero-dimensional analogue of smooth correspondences that are so central in Voevodsky’s approach to motives. This connects sheaves with transfers (and thus eventually Artin motives) and additive presheaves on permutation modules. Finally, the latter are nothing but cohomological Mackey functors, as observed by Yoshida.

Our interest is ultimately in these objects at the derived level, and more precisely in their ‘big derived categories’ (that is, compactly generated triangulated categories). Let us fix a commutative ring RR. As the category of RR-linear cohomological Mackey functors for Γ\Gamma, denoted 𝖬𝖺𝖼𝗄R𝖼𝗈𝗁Γ\mathop{\mathsf{Mack}^{\mathsf{coh}}_{R}}{\Gamma}, is abelian, deriving it poses no difficulty. Similarly, Voevodsky’s motives are intrinsically derived, and therefore so are his Artin motives DAM(\FF;R)\operatorname{DAM}(\FF;R). However, permutation modules form an additive category, and it does not seem obvious what its ‘derived’ category should be. In [BG20b], we proposed a candidate, denoted D𝖯𝖾𝗋𝗆(Γ;R)\operatorname{D\mathsf{Perm}}(\Gamma;R), and discussed it briefly. Our second goal in this article then is to discuss this candidate in more detail and to justify our proposal. In particular, we will give a motivated definition which is intrinsic to permutation modules, establish fundamental properties of the resulting category, and relate it to Artin motives and cohomological Mackey functors. (111 Due to space limitations, we do not discuss in this article a fourth incarnation of D𝖯𝖾𝗋𝗆(Γ;R)\operatorname{D\mathsf{Perm}}(\Gamma;R). To wit, in the context of equivariant homotopy theory it may also be identified with the homotopy category of the \infty-category 𝖬𝗈𝖽HR¯(SH(Γ))\operatorname{\mathsf{Mod}}_{\mathrm{H}\underline{R}}(\mathrm{SH}(\Gamma)). Here, SH(Γ)\mathrm{SH}(\Gamma) is the stable homotopy category of (genuine) Γ\Gamma-equivariant spectra, and HR¯\mathrm{H}\underline{R} is the Eilenberg-Maclane ring spectrum associated to the constant Mackey functor with value RR.)

Content

We now turn to the contents of this paper in more detail, and we start by recalling our proposal for the derived category of permutation modules. Throughout, Γ\Gamma is a profinite group and RR is a commutative ring.

To motivate the definition of D𝖯𝖾𝗋𝗆(Γ;R)\operatorname{D\mathsf{Perm}}(\Gamma;R), let us take a page from equivariant homotopy theory. If GG is a finite group, then a GG-equivariant map f:XYf\colon X\to Y between GG-spaces XX and YY is called a GG-weak-equivalence if the induced maps on fixed points fH:XHYHf^{H}\colon X^{H}\to Y^{H} are weak equivalences, for all subgroups HGH\leq G. A conceptual reason is that orbits G/HG/H are ‘equivariant points’ and MapG(G/H,X)XH\operatorname{Map}_{G}(G/H,X)\cong X^{H}. Transposing to representation theory, where Hom𝖬𝗈𝖽(Γ;R)(R(Γ/H),M)MH\operatorname{Hom}_{\operatorname{\mathsf{Mod}}(\Gamma;R)}(R(\Gamma/H),M)\cong M^{H}, we define Γ\Gamma-quasi-isomorphisms as those morphisms f:MNf\colon M\to N of complexes of discrete (Γ;R)(\Gamma;R)-modules such that fH:MHNHf^{H}\colon M^{H}\to N^{H} is a quasi-isomorphism for all open subgroups HΓH\leq\Gamma.

1.1 Definition.

The derived category of permutation modules is the Verdier localization

D𝖯𝖾𝗋𝗆(Γ;R)=K(𝖯𝖾𝗋𝗆(Γ;R))[{Γ-quasi-isos}1]\operatorname{D\mathsf{Perm}}(\Gamma;R)=\operatorname{K}(\operatorname{\mathsf{Perm}}(\Gamma;R))\big{[}\{\Gamma\textrm{-quasi-isos}\}^{-1}\big{]}

of the homotopy category of (not necessarily finitely generated) permutation modules with respect to Γ\Gamma-quasi-isomorphisms.

Among other things, we will establish the following:

  1. (a)

    The category D𝖯𝖾𝗋𝗆(Γ;R)\operatorname{D\mathsf{Perm}}(\Gamma;R) is tensor triangulated, compactly generated, and its compact part is the idempotent-completion of Kb(𝗉𝖾𝗋𝗆(Γ;R))\operatorname{K}_{\operatorname{b}}(\operatorname{\mathsf{perm}}(\Gamma;R)), the bounded homotopy category of finitely generated permutation modules.

  2. (b)

    If Γ\Gamma is the absolute Galois group of a field \FF\FF, then D𝖯𝖾𝗋𝗆(Γ;R)\operatorname{D\mathsf{Perm}}(\Gamma;R) fits into the following diagram of tensor-triangulated equivalences:

    (1.2) DAM(\FF;R)\textstyle{\operatorname{DAM}(\FF;R)\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}\scriptstyle{\sim}\scriptstyle{\sim}D𝖯𝖾𝗋𝗆(Γ;R)\textstyle{\operatorname{D\mathsf{Perm}}(\Gamma;R)\ignorespaces\ignorespaces\ignorespaces\ignorespaces}\scriptstyle{\sim}D(𝖬𝖺𝖼𝗄R𝖼𝗈𝗁Γ)\textstyle{\operatorname{D}(\mathop{\mathsf{Mack}^{\mathsf{coh}}_{R}}{\Gamma})}

    This realizes the interrelations set out in Figure 1 in a precise form. Note also that D𝖯𝖾𝗋𝗆(Γ;R)\operatorname{D\mathsf{Perm}}(\Gamma;R) is therefore a bona fide derived category of an abelian category. In particular, it admits a t-structure – which, alas, does not restrict to the compact part.

As for the structure of the document, in Section 2 we recall some basics on discrete and permutation modules, and in Section 3 we define D𝖯𝖾𝗋𝗆(Γ;R)\operatorname{D\mathsf{Perm}}(\Gamma;R) and establish property (a). Much of the article (Sections 4 to 7) is devoted to the connections mentioned at the beginning of this introduction and depicted in Figure 1, culminating in property (b). Finally, since the Mackey functoriality plays such an important role in this story, it would be a shame not to discuss the higher-level Mackey (22-)functoriality which the three categories in (1.2) exhibit in the argument Γ\Gamma and \FF\FF, respectively. We do this in Section 8, and establish that the equivalences in (1.2) are in spirit equivalences of Mackey 2-functors in the sense of [BD20].

Intended audience

Most, if not all, results in this article have appeared in the literature in one form or another, although not always in the present generality nor from the present point of view. Instead, our intention was to produce a unified treatment of topics which are strongly related but stretch across different disciplines. To cater for readers with various backgrounds, we have tried to be more thorough and elementary than it would otherwise have been necessary. We therefore hope that, at least, algebraic geometers might learn something from representation theory, and conversely, representation theorists something from algebraic geometry.

Notation and conventions

Throughout we fix a ring RR of coefficients, commutative and with unit. Also, Γ\Gamma denotes a profinite group. In Sections 6 and 7 it will often be the absolute Galois group of some field with a fixed separable algebraic closure.

All RR-linear categories and functors are implicitly assumed to be additive. A tensor category is an additive category with a symmetric monoidal structure, additive in both variables. Similarly, an RR-linear tensor category is RR-linear and a tensor category such that the tensor product is RR-linear in both variables.

Given an additive category 𝒜\mathscr{A}, we denote by 𝒜\mathscr{A}^{\natural} its idempotent-completion (also called the Karoubi envelope).

2. Discrete and permutation modules

In this section we are going to recall basic facts about discrete (Γ;R)(\Gamma;R)-modules and, most relevantly for us, the subcategory of permutation modules.

2.1 Recollection.

Recall the category Γ𝖲𝖾𝗍𝗌\Gamma\mathsf{\mathchar 45\relax Sets}, whose objects are sets (viewed as discrete topological spaces) on which Γ\Gamma acts continuously, and whose morphisms are Γ\Gamma-equivariant maps. Continuity of the action on a set XX is equivalent to every stabilizer subgroup Γx:={γΓ|γx=x}\Gamma_{x}:=\big{\{}\,\gamma\in\Gamma\,\big{|}\,\gamma\cdot x=x\,\big{\}} being open, i.e. closed and of finite index, for every xXx\in X. The category Γ𝖲𝖾𝗍𝗌\Gamma\mathsf{\mathchar 45\relax Sets} has arbitrary coproducts, given by disjoint union. We may thus write every XΓ𝖲𝖾𝗍𝗌X\in\Gamma\mathsf{\mathchar 45\relax Sets} as a coproduct of transitive Γ\Gamma-sets. By continuity, each transitive Γ\Gamma-set is finite, (non-canonically) isomorphic to Γ/H\Gamma/H for some open subgroup HΓH\leq\Gamma.

The Cartesian product of sets on which Γ\Gamma acts diagonally, endows Γ𝖲𝖾𝗍𝗌\Gamma\mathsf{\mathchar 45\relax Sets} with a symmetric monoidal structure, and the Cartesian product commutes with arbitrary coproducts.

We will also be interested in the full subcategory Γ𝗌𝖾𝗍𝗌\Gamma\mathsf{\mathchar 45\relax sets} of finite Γ\Gamma-sets. The symmetric monoidal structure restricts to Γ𝗌𝖾𝗍𝗌\Gamma\mathsf{\mathchar 45\relax sets}.

2.2 Recollection.

Consider the category 𝖬𝗈𝖽(Γ;R)\operatorname{\mathsf{Mod}}(\Gamma;R) of discrete (Γ;R)(\Gamma;R)-modules, that is, RR-modules endowed with the discrete topology, on which Γ\Gamma acts continuously. Continuity of the action on an RR-module MM is equivalent to every stabilizer subgroup Γm:={γΓ|γm=m}\Gamma_{m}:=\big{\{}\,\gamma\in\Gamma\,\big{|}\,\gamma\cdot m=m\,\big{\}} being open.

The tensor product over RR with the diagonal Γ\Gamma-action endows 𝖬𝗈𝖽(Γ;R)\operatorname{\mathsf{Mod}}(\Gamma;R) with a tensor structure:

MRN,g(mn)=gmgn.M\otimes_{R}N,\qquad g(m\otimes n)=gm\otimes gn.

Similarly, the RR-module HomR(M,N)\operatorname{Hom}_{R}(M,N) admits an ‘(anti)diagonal’ Γ\Gamma-action defined by (gf)(m)=gf(g1m)(g\,f)(m)=g\,f(g^{-1}m). The case N=RN=R with trivial Γ\Gamma-action yields the RR-linear dual M=HomR(M,R)M^{*}=\operatorname{Hom}_{R}(M,R).

2.3 Notation.

In this article we will not consider anything but discrete (Γ;R)(\Gamma;R)-modules, and we will therefore often omit the adjective.

The notation HΓH\leq\Gamma will always denote an open subgroup of Γ\Gamma. Similarly, NΓN\vartriangleleft\Gamma will denote an open normal subgroup of Γ\Gamma.

2.4 Notation.

Let XX be a Γ\Gamma-set. We denote the associated discrete (Γ,R)(\Gamma,R)-module by R(X)R(X). In other words, R(X)R(X) is the free RR-module on the basis XX, and the Γ\Gamma-action is RR-linearly extended from the action on XX. Thus a functor

(2.5) R():Γ𝖲𝖾𝗍𝗌𝖬𝗈𝖽(Γ;R)R(-):\Gamma\mathsf{\mathchar 45\relax Sets}\to\operatorname{\mathsf{Mod}}(\Gamma;R)

from Γ\Gamma-sets to discrete modules, that preserves coproducts, and sends finite products to tensor products, in other words, is symmetric monoidal. An object in the essential image of this functor is called a permutation module, and we denote the full subcategory on permutation modules by 𝖯𝖾𝗋𝗆(Γ;R)\operatorname{\mathsf{Perm}}(\Gamma;R).

The finitely generated permutation modules are those in the essential image of Γ𝗌𝖾𝗍𝗌\Gamma\mathsf{\mathchar 45\relax sets} under R()R(-). They span a full subcategory denoted by 𝗉𝖾𝗋𝗆(Γ;R)\operatorname{\mathsf{perm}}(\Gamma;R). Thus every object in 𝖯𝖾𝗋𝗆(Γ;R)\operatorname{\mathsf{Perm}}(\Gamma;R) (respectively, 𝗉𝖾𝗋𝗆(Γ;R)\operatorname{\mathsf{perm}}(\Gamma;R)) is a (respectively, finite) direct sum of permutation modules of the form R(Γ/H)R(\Gamma/H), HΓH\leq\Gamma. Both are tensor categories (cf. our conventions set out on section 1).

Recall that a family 𝒢\mathscr{G} of objects in an abelian category is generating if the functor g𝒢Hom(g,)\prod_{g\in\mathscr{G}}\operatorname{Hom}(g,-) is faithful. Having a generating set is a necessary condition for an abelian category to be Grothendieck. Recall also that an object MM in a Grothendieck abelian category is called finitely presented if every map McolimiMiM\to\mathop{\mathrm{colim}}_{i}M_{i} into a filtered colimit factors through some MiM_{i}.

2.6 Proposition.

The category 𝖬𝗈𝖽(Γ;R)\operatorname{\mathsf{Mod}}(\Gamma;R) is Grothendieck abelian. A family of finitely presented generators is given by {R(Γ/H)|HΓ open}\big{\{}\,R(\Gamma/H)\,\big{|}\,H\leq\Gamma\text{ open}\,\big{\}}.

Proof.

One easily verifies that the (conservative) forgetful functor 𝖬𝗈𝖽(Γ;R)𝖬𝗈𝖽(R)\operatorname{\mathsf{Mod}}(\Gamma;R)\to\operatorname{\mathsf{Mod}}(R) creates finite limits and finite colimits as well as filtered colimits. In other words, those constructions, performed in RR-modules still admit a continuous Γ\Gamma-action. Then 𝖬𝗈𝖽(Γ;R)\operatorname{\mathsf{Mod}}(\Gamma;R) admits filtered colimits (hence coproducts), and filtered colimits preserve monomorphisms. Since {R(Γ/H)|HΓ open}\big{\{}\,R(\Gamma/H)\,\big{|}\,H\leq\Gamma\textrm{ open}\,\big{\}} is a family of generators, 𝖬𝗈𝖽(Γ;R)\operatorname{\mathsf{Mod}}(\Gamma;R) is a Grothendieck category. That the objects in this family are finitely presented is clear. ∎

2.7 Remark.

The objects in 𝗉𝖾𝗋𝗆(Γ;R)\operatorname{\mathsf{perm}}(\Gamma;R) are self-dual with respect to the tensor product. Explicitly, if XX is a finite Γ\Gamma-set viewed as an RR-basis for R(X)R(X), and if we denote the dual basis of R(X)=HomR(R(X),R)R(X)^{*}=\operatorname{Hom}_{R}(R(X),R) by (δx)xX(\delta_{x})_{x\in X}, then the map

(2.8) R(X)\displaystyle R(X) R(X)\displaystyle\to R(X)^{*}
x\displaystyle x δx\displaystyle\mapsto\delta_{x}

is Γ\Gamma-equivariant, and therefore an isomorphism in 𝗉𝖾𝗋𝗆(Γ;R)\operatorname{\mathsf{perm}}(\Gamma;R).

2.9 Lemma.

Let f:XYf:X\to Y be a morphism in Γ𝗌𝖾𝗍𝗌\Gamma\mathsf{\mathchar 45\relax sets}, and the associated morphism f:R(X)R(Y)f:R(X)\to R(Y) in 𝗉𝖾𝗋𝗆(Γ;R)\operatorname{\mathsf{perm}}(\Gamma;R). Its dual admits the following explicit description:

R(Y)(2.8)R(Y)\displaystyle R(Y)\stackrel{{\scriptstyle\text{\eqref{eq:perm-self-dual}}}}{{\simeq}}R(Y)^{*} fR(X)(2.8)R(X)\displaystyle\xrightarrow{f^{*}}R(X)^{*}\stackrel{{\scriptstyle\text{\eqref{eq:perm-self-dual}}}}{{\simeq}}R(X)
y\displaystyle y f(x)=yx.\displaystyle\mapsto\sum_{f(x)=y}x.
Proof.

This is straightforward verification, using Remark 2.7. ∎

2.10 Recollection.

Let ΓΓ\Gamma^{\prime}\leq\Gamma be an open subgroup and γΓ\gamma\in\Gamma. Given M𝖬𝗈𝖽(Γ;R)M\in\operatorname{\mathsf{Mod}}(\Gamma;R) we may restrict the action to obtain ResΓΓM𝖬𝗈𝖽(Γ;R)\operatorname{Res}^{\Gamma}_{\Gamma^{\prime}}M\in\operatorname{\mathsf{Mod}}(\Gamma^{\prime};R). This defines a restriction functor which has an adjoint (on both sides) called induction:

IndΓΓ:𝖬𝗈𝖽(Γ;R)𝖬𝗈𝖽(Γ;R):ResΓΓ\operatorname{Ind}^{\Gamma}_{\Gamma^{\prime}}:\operatorname{\mathsf{Mod}}(\Gamma^{\prime};R)\rightleftarrows\operatorname{\mathsf{Mod}}(\Gamma;R):\operatorname{Res}^{\Gamma}_{\Gamma^{\prime}}

It is easy to see that they restrict to an adjunction on permutation modules.

Given M𝖬𝗈𝖽(Γ;R)M\in\operatorname{\mathsf{Mod}}(\Gamma^{\prime};R) we denote by cγ(M)c_{\gamma}(M) the same RR-module on which gΓγ=γΓγ1g\in{}^{\gamma}\Gamma^{\prime}=\gamma\Gamma^{\prime}\gamma^{-1} acts via γ1gγ\gamma^{-1}g\gamma. This defines an adjoint equivalence (isomorphism)

cγ:𝖬𝗈𝖽(Γ;R)𝖬𝗈𝖽(Γγ;R):cγ1c_{\gamma}:\operatorname{\mathsf{Mod}}(\Gamma^{\prime};R)\simeq\operatorname{\mathsf{Mod}}({}^{\gamma}\Gamma^{\prime};R):c_{\gamma^{-1}}

that restricts to permutation modules. The c?c_{?} are called conjugation functors.

These functors satisfy axioms reminiscent of Mackey functors (see Section 4) and we will say more about this in Section 8. Here, we recall only the most substantial of these axioms, namely the Mackey formula.

2.11 Remark.

Fix two (open, as always) subgroups H,KΓH,K\leq\Gamma. The Mackey formula is a natural (but non-canonical) isomorphism of functors 𝖬𝗈𝖽(H;R)𝖬𝗈𝖽(K;R)\operatorname{\mathsf{Mod}}(H;R)\to\operatorname{\mathsf{Mod}}(K;R)

ResKΓIndHΓ[g]K\Γ/HIndKHgKcgResKgHH\operatorname{Res}^{\Gamma}_{K}\circ\operatorname{Ind}^{\Gamma}_{H}\simeq\oplus_{[g]\in K\backslash{}\Gamma/H}\ \operatorname{Ind}^{K}_{K\cap{}^{g\!}H}\circ c_{g}\circ\operatorname{Res}^{H}_{K^{\!g}\cap H}

where we write [g]K\Γ/H[g]\in K\backslash{}\Gamma/H to mean that we have fixed a choice of a representative gγg\in\gamma for every class γK\Γ/H\gamma\in K\backslash{}\Gamma/H. From this, one deduces a Mackey formula for tensor products:

IndKΓRIndHΓWIndKΓ(ResKΓIndHΓW)[g]K\Γ/HIndKHgΓcgResKgHHW.\operatorname{Ind}^{\Gamma}_{K}R\otimes\operatorname{Ind}^{\Gamma}_{H}W\simeq\operatorname{Ind}^{\Gamma}_{K}\left(\operatorname{Res}^{\Gamma}_{K}\operatorname{Ind}^{\Gamma}_{H}W\right)\simeq\oplus_{[g]\in K\backslash{}\Gamma/H}\operatorname{Ind}^{\Gamma}_{K\cap{}^{g\!}H}c_{g}\operatorname{Res}^{H}_{K^{\!g}\cap H}W.

In particular, for W=RW=R, we get

(2.12) R(Γ/K)R(Γ/H)[g]K\Γ/HR(Γ/(KHg))R(\Gamma/K)\otimes R(\Gamma/H)\simeq\oplus_{[g]\in K\backslash{}\Gamma/H}\,R(\Gamma/(K\cap{}^{g\!}H))

where the isomorphism may be explicitly described on the canonical RR-basis as

[γ]K[γg]H[γ]KHg.[\gamma]_{K}\otimes[\gamma g]_{H}\mapsfrom[\gamma]_{K\cap{}^{g\!}H}\,.
2.13 Corollary.

Fix H,KΓH,K\leq\Gamma. There is an RR-linear isomorphism

R(K\Γ/H)Hom𝗉𝖾𝗋𝗆(Γ;R)(R(Γ/K),R(Γ/H)).R(K\backslash\Gamma/H)\simeq\operatorname{Hom}_{\operatorname{\mathsf{perm}}(\Gamma;R)}(R(\Gamma/K),R(\Gamma/H)).

Explicitly, the isomorphism sends [g][g] to the map ([γ]K[x]K/KHg[γxg]H)([\gamma]_{K}\mapsto\sum_{[x]\in K/K\cap{}^{g\!}H}[\gamma xg]_{H}).

Proof.

By Remark 2.7, morphisms R(Γ/K)R(Γ/H)R(\Gamma/K)\to R(\Gamma/H) are in bijection with morphisms

RR(Γ/K)R(Γ/H)(2.12)[g]K\Γ/HR(Γ/KHg),R\to R(\Gamma/K)\otimes R(\Gamma/H)\stackrel{{\scriptstyle\text{\eqref{eq:mackey-formula-tensor-special}}}}{{\simeq}}\oplus_{[g]\in K\backslash{}\Gamma/H}R(\Gamma/K\cap{}^{g\!}H),

that is, with Γ\Gamma-invariant elements of [g]K\Γ/HR(Γ/KHg)\oplus_{[g]\in K\backslash{}\Gamma/H}R(\Gamma/K\cap{}^{g\!}H). Thus the first claim. The explicit description of this isomorphism follows from the explicit description of (2.12) in Remark 2.11. ∎

2.14 Remark.

Let NΓN\subseteq\Gamma be a closed but not necessarily open normal subgroup and set Γ¯=Γ/N\bar{\Gamma}=\Gamma/N. Restriction along the quotient map ΓΓ¯\Gamma\to\bar{\Gamma} induces the inflation functor

InflΓ¯Γ:𝖬𝗈𝖽(Γ¯;R)𝖬𝗈𝖽(Γ;R).\operatorname{Infl}_{\bar{\Gamma}}^{\Gamma}:\operatorname{\mathsf{Mod}}(\bar{\Gamma};R)\to\operatorname{\mathsf{Mod}}(\Gamma;R).

For later use we record the following fact.

2.15 Lemma.

The inflation functor is fully faithful on permutation modules:

InflΓ¯Γ:𝗉𝖾𝗋𝗆(Γ¯;R)𝗉𝖾𝗋𝗆(Γ;R).\operatorname{Infl}_{\bar{\Gamma}}^{\Gamma}:\operatorname{\mathsf{perm}}(\bar{\Gamma};R)\mathop{\rightarrowtail}\operatorname{\mathsf{perm}}(\Gamma;R).
Proof.

This follows immediately from 2.13. Indeed, if NK,HΓN\subset K,H\leq\Gamma and if we set H¯=H/N\bar{H}=H/N, K¯=K/N\bar{K}=K/N, then the map on hom sets induced by inflation

Hom𝗉𝖾𝗋𝗆(Γ¯;R)(R(Γ¯/K¯),R(Γ¯/H¯))Hom𝗉𝖾𝗋𝗆(Γ;R)(R(Γ/K),R(Γ/H))\operatorname{Hom}_{\operatorname{\mathsf{perm}}(\bar{\Gamma};R)}(R(\bar{\Gamma}/\bar{K}),R(\bar{\Gamma}/\bar{H}))\to\operatorname{Hom}_{\operatorname{\mathsf{perm}}(\Gamma;R)}(R(\Gamma/K),R(\Gamma/H))

corresponds to the isomorphism R(K¯\Γ¯/H¯)R(K\Γ/H)R(\bar{K}\backslash\bar{\Gamma}/\bar{H})\cong R(K\backslash\Gamma/H) of double cosets. ∎

3. The derived category of permutation modules

In this section we define one of the central objects in this paper, the derived category of permutation modules, and establish some of its fundamental properties.

3.1 Definition.

An object XK(𝖯𝖾𝗋𝗆(Γ;R))X\in\operatorname{K}(\operatorname{\mathsf{Perm}}(\Gamma;R)) is said to be Γ\Gamma-acyclic if for each open subgroup HΓH\leq\Gamma, the complex XHX^{H} of HH-fixed points is acyclic. A morphism ff in K(𝖯𝖾𝗋𝗆(Γ;R))\operatorname{K}(\operatorname{\mathsf{Perm}}(\Gamma;R)) is said to be a Γ\Gamma-quasi-isomorphism if its cone is Γ\Gamma-acyclic. The full subcategory of Γ\Gamma-acyclic objects is denoted by KΓ-ac(𝖯𝖾𝗋𝗆(Γ;R))\operatorname{K}_{\Gamma\textrm{-}\mathrm{ac}}(\operatorname{\mathsf{Perm}}(\Gamma;R)), and the class of Γ\Gamma-quasi-isomorphisms is denoted by QIΓQI_{\Gamma}.

3.2 Remark.

Of course, f:XYf:X\to Y is a Γ\Gamma-quasi-isomorphism if and only if, for each open HΓH\leq\Gamma, the morphism fH:XHYHf^{H}:X^{H}\to Y^{H} is a quasi-isomorphism.

3.3 Remark.

For all XK(𝖯𝖾𝗋𝗆(Γ;R))X\in\operatorname{K}(\operatorname{\mathsf{Perm}}(\Gamma;R)), HΓH\leq\Gamma, and n\bbZn\in\bbZ, we have

HomK(𝖬𝗈𝖽(Γ;R))(R(Γ/H)[n],X)=HomK(𝖬𝗈𝖽(R))(R[n],XH)=Hn(XH).\operatorname{Hom}_{\operatorname{K}(\operatorname{\mathsf{Mod}}(\Gamma;R))}(R(\Gamma/H)[n],X)=\operatorname{Hom}_{\operatorname{K}(\operatorname{\mathsf{Mod}}(R))}(R[n],X^{H})=\operatorname{H}_{n}(X^{H}).

Hence we obtain the identification

(3.4) KΓ-ac(𝖯𝖾𝗋𝗆(Γ;R))={R(Γ/H)HΓ}=(Kb(𝗉𝖾𝗋𝗆(Γ;R)))\operatorname{K}_{\Gamma\textrm{-}\mathrm{ac}}(\operatorname{\mathsf{Perm}}(\Gamma;R))=\{R(\Gamma/H)\mid H\leq\Gamma\}^{\perp}=\left(\operatorname{K}_{\operatorname{b}}(\operatorname{\mathsf{perm}}(\Gamma;R))\right)^{\perp}

with the right orthogonal complement of finitely generated permutation modules in K(𝖯𝖾𝗋𝗆(Γ;R))\operatorname{K}(\operatorname{\mathsf{Perm}}(\Gamma;R)).

3.5 Remark.

In general, KΓ-ac(𝖯𝖾𝗋𝗆(Γ;R))\operatorname{K}_{\Gamma\textrm{-}\mathrm{ac}}(\operatorname{\mathsf{Perm}}(\Gamma;R)) is non-zero. For example, let Γ=Cp=σσp=1\Gamma=C_{p}=\langle\sigma\mid\sigma^{p}=1\rangle be a cyclic group of odd prime order, let R=kR=k be a field of characteristic pp, and consider the complex

X=\textstyle{X=}\textstyle{\cdots\ignorespaces\ignorespaces\ignorespaces\ignorespaces}(σ1ηϵ0)\scriptstyle{\left(\begin{smallmatrix}\sigma-1&\eta\\ \epsilon&0\end{smallmatrix}\right)}kCpk\textstyle{kC_{p}\oplus k\ignorespaces\ignorespaces\ignorespaces\ignorespaces}(αηϵ0)\scriptstyle{\left(\begin{smallmatrix}\alpha&\eta\\ \epsilon&0\end{smallmatrix}\right)}kCpk\textstyle{kC_{p}\oplus k\ignorespaces\ignorespaces\ignorespaces\ignorespaces}(σ1ηϵ0)\scriptstyle{\left(\begin{smallmatrix}\sigma-1&\eta\\ \epsilon&0\end{smallmatrix}\right)}kCpk\textstyle{kC_{p}\oplus k\ignorespaces\ignorespaces\ignorespaces\ignorespaces}(αηϵ0)\scriptstyle{\left(\begin{smallmatrix}\alpha&\eta\\ \epsilon&0\end{smallmatrix}\right)},\textstyle{\cdots,}

where η:kkCp\eta:k\to kC_{p} and ϵ:kCpk\epsilon:kC_{p}\to k are the unit and counit, respectively, and where α\alpha is multiplication by i=0p1iσi\sum_{i=0}^{p-1}i\sigma^{i}. It is acyclic and stays so after taking CpC_{p}-fixed points. On the other hand, XX is not contractible. Indeed, the inclusion K=ker(σ1ηϵ0)kCpkK=\ker\left(\begin{smallmatrix}\sigma-1&\eta\\ \epsilon&0\end{smallmatrix}\right)\mathop{\rightarrowtail}kC_{p}\oplus k cannot split in 𝖬𝗈𝖽(Cp;k)\operatorname{\mathsf{Mod}}(C_{p};k) by Krull-Schmidt, because the kk-vector space KK is 2-dimensional and p>2p>2.

3.6 Definition.

The (big) derived category of permutation modules of Γ\Gamma with coefficients in RR is the Verdier localization:

D𝖯𝖾𝗋𝗆(Γ;R)=K(𝖯𝖾𝗋𝗆(Γ;R))[QIΓ1]=K(𝖯𝖾𝗋𝗆(Γ;R))KΓ-ac(𝖯𝖾𝗋𝗆(Γ;R)).\operatorname{D\mathsf{Perm}}(\Gamma;R)=\operatorname{K}(\operatorname{\mathsf{Perm}}(\Gamma;R))[QI_{\Gamma}^{-1}]=\frac{\operatorname{K}(\operatorname{\mathsf{Perm}}(\Gamma;R))}{\operatorname{K}_{\Gamma\textrm{-}\mathrm{ac}}(\operatorname{\mathsf{Perm}}(\Gamma;R))}.

All we know a priori is that D𝖯𝖾𝗋𝗆(Γ;R)\operatorname{D\mathsf{Perm}}(\Gamma;R) is a triangulated category. Before establishing some of its additional fundamental structures and properties we need to recall general facts from [Nee92]; see [Nee01, Chapter 9] or [Kra10].

3.7 Recollection.

Let 𝒮\mathscr{S} be a triangulated category with all (small) coproducts. An object X𝒮X\in\mathscr{S} is called compact if Hom𝒮(X,)\operatorname{Hom}_{\mathscr{S}}(X,-) preserves coproducts. The subcategory of compact objects is denoted by 𝒮c\mathscr{S}^{c}. And 𝒮\mathscr{S} is compactly generated if there is a set of compact objects 𝒢𝒮c\mathscr{G}\subset\mathscr{S}^{c} which generates 𝒮\mathscr{S} as a localizing subcategory. The latter condition is equivalent to the right orthogonal complement 𝒢={Y𝒮Hom(ΣnX,Y)=0,n\bbZ,X𝒢}\mathscr{G}^{\perp}=\{Y\in\mathscr{S}\mid\operatorname{Hom}(\Sigma^{n}X,Y)=0,\forall n\in\bbZ,X\in\mathscr{G}\} being zero.

3.8 Recollection.

Let 𝒮\mathscr{S} and 𝒯\mathscr{T} be triangulated categories with all coproducts.

  1. (a)

    Brown Representability: If 𝒮\mathscr{S} is compactly generated, an exact functor F:𝒮𝒯F\colon\mathscr{S}\to\mathscr{T} preserves coproducts if and only if it admits a right adjoint. A left adjoint preserves compacts if and only if its right adjoint preserves coproducts.

  2. (b)

    Neeman-Thomason Localization: Let 𝒢𝒯c\mathscr{G}\subseteq\mathscr{T}^{c} be a set of compacts objects. Then 𝒮=Loc(𝒢)\mathscr{S}=\operatorname{Loc}(\mathscr{G}) is compactly generated and the inclusion 𝒮𝒯\mathscr{S}\mathop{\rightarrowtail}\mathscr{T} admits a right adjoint Δ\Delta, by (a). Moreover 𝒮c=thick(𝒢)\mathscr{S}^{c}=\operatorname{thick}(\mathscr{G}) and the composite 𝒮𝒯𝒯/𝒮\mathscr{S}\mathop{\rightarrowtail}\mathscr{T}\mathop{\twoheadrightarrow}\mathscr{T}/\mathscr{S}^{\perp} is an equivalence, with quasi-inverse induced by Δ\Delta.

  3. (c)

    In the situation of (b), if moreover 𝒯\mathscr{T} is compactly generated, that right adjoint Δ\Delta admits another right adjoint and we have a recollement of triangulated categories

    𝒮\textstyle{\mathscr{S}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}incl\scriptstyle{\operatorname{incl}}𝒯\textstyle{\mathscr{T}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}L\scriptstyle{L}Δ\scriptstyle{\Delta}𝒮\textstyle{\mathscr{S}^{\perp}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}incl\scriptstyle{\operatorname{incl}}

Note that K(𝖯𝖾𝗋𝗆(Γ;R))\operatorname{K}(\operatorname{\mathsf{Perm}}(\Gamma;R)) admits small coproducts. We may therefore consider the localizing subcategory generated by permutation modules.

3.9 Proposition.

The composite

Loc(R(Γ/H)HΓ)K(𝖯𝖾𝗋𝗆(Γ;R))D𝖯𝖾𝗋𝗆(Γ;R)\operatorname{Loc}(R(\Gamma/H)\mid H\leq\Gamma)\mathop{\rightarrowtail}\operatorname{K}(\operatorname{\mathsf{Perm}}(\Gamma;R))\mathop{\twoheadrightarrow}\operatorname{D\mathsf{Perm}}(\Gamma;R)

is an equivalence.

Proof.

Since homology and the fixed-point functors preserve coproducts, it follows from Remark 3.3 that the R(Γ/H)R(\Gamma/H) are compact objects in K(𝖯𝖾𝗋𝗆(Γ;R))\operatorname{K}(\operatorname{\mathsf{Perm}}(\Gamma;R)), for all HΓH\leq\Gamma. The result then follows directly from 3.8 (b) for 𝒢:={R(Γ/H)|HΓ}\mathscr{G}:=\big{\{}\,R(\Gamma/H)\,\big{|}\,H\leq\Gamma\,\big{\}} and 𝒯:=K(𝖯𝖾𝗋𝗆(Γ;R))\mathscr{T}:=\operatorname{K}(\operatorname{\mathsf{Perm}}(\Gamma;R)). Indeed, by (3.4), the right orthogonal of 𝒮=Loc(𝒢)\mathscr{S}=\operatorname{Loc}(\mathscr{G}) is 𝒮=KΓ-ac(𝖯𝖾𝗋𝗆(Γ;R))\mathscr{S}^{\perp}=\operatorname{K}_{\Gamma\textrm{-}\mathrm{ac}}(\operatorname{\mathsf{Perm}}(\Gamma;R)). ∎

3.10 Corollary.

The triangulated category D𝖯𝖾𝗋𝗆(Γ;R)\operatorname{D\mathsf{Perm}}(\Gamma;R) is compactly generated and its subcategory of compact objects is canonically equivalent to the thick subcategory of K(𝖯𝖾𝗋𝗆(Γ;R))\operatorname{K}(\operatorname{\mathsf{Perm}}(\Gamma;R)) generated by permutation modules:

(3.11) D𝖯𝖾𝗋𝗆(Γ;R)cthick(𝗉𝖾𝗋𝗆(Γ;R))=Kb(𝗉𝖾𝗋𝗆(Γ;R))\operatorname{D\mathsf{Perm}}(\Gamma;R)^{c}\cong\operatorname{thick}(\operatorname{\mathsf{perm}}(\Gamma;R))=\operatorname{K}_{\operatorname{b}}(\operatorname{\mathsf{perm}}(\Gamma;R)^{\natural})
Proof.

This follows from Proposition 3.9, by 3.8 (b). ∎

3.12 Remark.

In [BG20b, LABEL:pmcs:Rem:DPerm] we defined D𝖯𝖾𝗋𝗆(Γ;R)\operatorname{D\mathsf{Perm}}(\Gamma;R) as the localizing subcategory of K(𝖯𝖾𝗋𝗆(Γ;R))\operatorname{K}(\operatorname{\mathsf{Perm}}(\Gamma;R)) generated by (transitive) permutation modules. Proposition 3.9 shows that this definition is compatible with ours, and from now on, we will switch freely between viewing D𝖯𝖾𝗋𝗆(Γ;R)\operatorname{D\mathsf{Perm}}(\Gamma;R) as a quotient or a subcategory of K(𝖯𝖾𝗋𝗆(Γ;R))\operatorname{K}(\operatorname{\mathsf{Perm}}(\Gamma;R)).

Since 𝖯𝖾𝗋𝗆(Γ;R)\operatorname{\mathsf{Perm}}(\Gamma;R) is a tensor category (2.4) and the tensor product commutes with coproducts, the category K(𝖯𝖾𝗋𝗆(Γ;R))\operatorname{K}(\operatorname{\mathsf{Perm}}(\Gamma;R)) is tensor triangulated and the tensor product commutes with coproducts. We now observe that this tensor structure restricts to D𝖯𝖾𝗋𝗆(Γ;R)\operatorname{D\mathsf{Perm}}(\Gamma;R).

3.13 Corollary.

The subcategory D𝖯𝖾𝗋𝗆(Γ;R)K(𝖯𝖾𝗋𝗆(Γ;R))\operatorname{D\mathsf{Perm}}(\Gamma;R)\subseteq\operatorname{K}(\operatorname{\mathsf{Perm}}(\Gamma;R)) is closed under tensor products and thereby inherits a tensor triangulated structure. In particular, the tensor product commutes with small coproducts.

Proof.

It suffices to observe that the subcategory of compact objects Kb(𝗉𝖾𝗋𝗆(Γ;R))\operatorname{K}_{\operatorname{b}}(\operatorname{\mathsf{perm}}(\Gamma;R)^{\natural}) is closed under tensor products in K(𝖯𝖾𝗋𝗆(Γ;R))\operatorname{K}(\operatorname{\mathsf{Perm}}(\Gamma;R)). ∎

3.14 Remark.

The quotient functor 𝒦𝒦[QIΓ1]\mathscr{K}\mathop{\twoheadrightarrow}\mathscr{K}[QI_{\Gamma}^{-1}] realizes D𝖯𝖾𝗋𝗆(Γ;R)\operatorname{D\mathsf{Perm}}(\Gamma;R) as a Bousfield colocalization of 𝒦=K(𝖯𝖾𝗋𝗆(Γ;R))\mathscr{K}=\operatorname{K}(\operatorname{\mathsf{Perm}}(\Gamma;R)). We will later see (Remark 5.12) that it is also a Bousfield localization (i.e. that quotient also admits a fully faithful right adjoint), at least if Γ\Gamma is finite. This will become more transparent once we translate the question into the language of cohomological Mackey functors as we start doing in the next section.

We end this section with the ‘derived’ analogue of 2.15.

3.15 Lemma.

Let NΓN\subseteq\Gamma be a closed but not necessarily open normal subgroup and set Γ¯=Γ/N\bar{\Gamma}=\Gamma/N. Then inflation induces a fully faithful embedding

InflΓ¯Γ:D𝖯𝖾𝗋𝗆(Γ¯;R)D𝖯𝖾𝗋𝗆(Γ;R)\operatorname{Infl}_{\bar{\Gamma}}^{\Gamma}:\operatorname{D\mathsf{Perm}}(\bar{\Gamma};R)\to\operatorname{D\mathsf{Perm}}(\Gamma;R)

with image the localizing subcategory generated by R(Γ/K)R(\Gamma/K) where NKΓN\subseteq K\leq\Gamma.

Proof.

Inflation induces a functor on compact objects (by 3.10):

InflΓ¯Γ:Kb(𝗉𝖾𝗋𝗆(Γ¯;R))Kb(𝗉𝖾𝗋𝗆(Γ;R)).\operatorname{Infl}_{\bar{\Gamma}}^{\Gamma}:\operatorname{K}_{\operatorname{b}}(\operatorname{\mathsf{perm}}(\bar{\Gamma};R)^{\natural})\to\operatorname{K}_{\operatorname{b}}(\operatorname{\mathsf{perm}}(\Gamma;R)^{\natural}).

This functor is fully faithful, by 2.15. The claim follows immediately. ∎

3.16 Remark.

On compact objects, the fully faithfulness of inflation allows us to reduce many questions to the case where Γ\Gamma is a finite group. Indeed, it follows that

Kb(𝗉𝖾𝗋𝗆(Γ;R))=NΓKb(𝗉𝖾𝗋𝗆(Γ/N;R)).\operatorname{K}_{\operatorname{b}}(\operatorname{\mathsf{perm}}(\Gamma;R)^{\natural})=\bigcup_{N\vartriangleleft\Gamma}\operatorname{K}_{\operatorname{b}}(\operatorname{\mathsf{perm}}(\Gamma/N;R)^{\natural}).

4. Mackey functors

4.1 Recollection.

Mackey functors for a finite group GG may be defined in several different ways, and we refer to [TW95] or [Del19] for ample details. In an elementary way, Mackey functors associate RR-modules to subgroups of GG, together with RR-linear induction, restriction, and conjugation actions which satisfy a list of very sensible axioms, including the “Mackey axiom” which stipulates that Mackey’s formula should hold (and gives the Mackey functors their name).

Equivalently, Mackey functors may be viewed as “bifunctors”

(M,M):G𝗌𝖾𝗍𝗌𝖬𝗈𝖽(R)(M_{*},M^{*}):G\mathsf{\mathchar 45\relax sets}\to\operatorname{\mathsf{Mod}}(R)

on the category of finite GG-sets, where the covariant part MM_{*} encodes induction and the contravariant part MM^{*} encodes restriction (and they both encode conjugation). These bifunctors are meant to satisfy two axioms: additivity and, again, the Mackey axiom which can now be expressed as a base change formula for commuting the covariant and the contravariant part.

Both of these definitions readily generalize to profinite groups, and they are again shown to be equivalent in [BB04, Theorem 2.7]. Note that in the formulation in terms of bivariant functors, Mackey functors are perhaps better known as “Γ\Gamma-modulations” [NSW08, Definition 1.5.10].

4.2 Recollection.

The most convenient description of Mackey functors for us is the following. It is a special case of Mackey functors on compact closed categories [PS07]. Recall (2.1) that Γ𝗌𝖾𝗍𝗌\Gamma\mathsf{\mathchar 45\relax sets} denotes the category of finite Γ\Gamma-sets, and consider the associated category of spans, denoted span(Γ𝗌𝖾𝗍𝗌)\operatorname{span}(\Gamma\mathsf{\mathchar 45\relax sets}). In other words, the objects are the same as those of Γ𝗌𝖾𝗍𝗌\Gamma\mathsf{\mathchar 45\relax sets}, and a morphism from XX to YY is an isomorphism class of spans

Z\textstyle{Z\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}X\textstyle{X}Y\textstyle{Y}

where two spans (X,Z,Y)(X,Z,Y) and (X,Z,Y)(X,Z^{\prime},Y) are considered isomorphic if there is an isomorphism ZZZ\overset{\sim}{\,\to\,}Z^{\prime} making the two obvious triangles commute. The composite of two spans (X,Z,Y)(X,Z,Y) and (Y,V,W)(Y,V,W) is obtained by forming the Cartesian square

Z×YV\textstyle{Z\times_{Y}V\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}Z\textstyle{Z\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}V\textstyle{V\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}X\textstyle{X}Y\textstyle{Y}W.\textstyle{W.}

We sometimes denote a span from XX to YY by the symbol X+YX\mathrel{\mkern 3.0mu\vbox{\hbox{$\scriptscriptstyle+$}}\mkern-12.0mu{\to}}Y.

Note that if ϕ:ΓΓ\phi:\Gamma\to\Gamma^{\prime} is a morphism of pro-finite groups, there is a canonical functor Γ𝗌𝖾𝗍𝗌Γ𝗌𝖾𝗍𝗌\Gamma^{\prime}\mathsf{\mathchar 45\relax sets}\to\Gamma\mathsf{\mathchar 45\relax sets} by restricting along ϕ\phi, and an induced functor span(Γ𝗌𝖾𝗍𝗌)span(Γ𝗌𝖾𝗍𝗌)\operatorname{span}(\Gamma^{\prime}\mathsf{\mathchar 45\relax sets})\to\operatorname{span}(\Gamma\mathsf{\mathchar 45\relax sets}). If ϕ\phi is surjective, we will typically denote the induced functor by InflΓΓ\operatorname{Infl}_{\Gamma^{\prime}}^{\Gamma}.

4.3 Lemma.

Let NΓN\subseteq\Gamma be a closed but not necessarily open normal subgroup. The functor

InflΓ/NΓ:span(Γ/N𝗌𝖾𝗍𝗌)span(Γ𝗌𝖾𝗍𝗌)\operatorname{Infl}_{\Gamma/N}^{\Gamma}:\operatorname{span}(\Gamma/N\mathsf{\mathchar 45\relax sets})\to\operatorname{span}(\Gamma\mathsf{\mathchar 45\relax sets})

is faithful.

Proof.

The functor InflΓ/NΓ:Γ/N𝗌𝖾𝗍𝗌Γ𝗌𝖾𝗍𝗌\operatorname{Infl}_{\Gamma/N}^{\Gamma}:\Gamma/N\mathsf{\mathchar 45\relax sets}\to\Gamma\mathsf{\mathchar 45\relax sets} is fully faithful from which the claim immediately follows. ∎

4.4 Corollary.

The category span(Γ𝗌𝖾𝗍𝗌)\operatorname{span}(\Gamma\mathsf{\mathchar 45\relax sets}) is the filtered colimit of the (possibly non-full) subcategories span(Γ/N𝗌𝖾𝗍𝗌)\operatorname{span}(\Gamma/N\mathsf{\mathchar 45\relax sets}) for normal open subgroups NΓN\vartriangleleft\Gamma. ∎

4.5 Definition.

The disjoint union endows span(Γ𝗌𝖾𝗍𝗌)\operatorname{span}(\Gamma\mathsf{\mathchar 45\relax sets}) with both finite coproducts and finite products. It follows that group completing the hom-sets (which are commutative monoids) makes the category additive. We denote the resulting additive category by

Ω(Γ).\Omega(\Gamma).

An (RR-linear) Mackey functor is an additive functor Ω(Γ)op𝖬𝗈𝖽(R)\Omega(\Gamma)^{\operatorname{op}}\to\operatorname{\mathsf{Mod}}(R). It is called cohomological if, in addition, it sends the span Γ/H𝜋Γ/K𝜋Γ/H\Gamma/H\xleftarrow{\pi}\Gamma/K\xrightarrow{\pi}\Gamma/H to multiplication by the index [H:K][H:K] whenever KHK\leq H, and where π\pi denotes the canonical projection. A morphism of (cohomological) Mackey functors is a natural transformation of functors. This defines abelian categories

𝖬𝖺𝖼𝗄R𝖼𝗈𝗁Γ𝖬𝖺𝖼𝗄RΓ.\mathop{\mathsf{Mack}^{\mathsf{coh}}_{R}}{\Gamma}\subseteq\mathop{\mathsf{Mack}_{R}}{\Gamma}.

Note that we may extend scalars to RR formally, denoting the resulting category by ΩR(Γ)\Omega_{R}(\Gamma), in which case Mackey functors are identified with RR-linear (additive) functors ΩR(Γ)op𝖬𝗈𝖽(R)\Omega_{R}(\Gamma)^{\operatorname{op}}\to\operatorname{\mathsf{Mod}}(R).

4.6 Remark.

There are canonical faithful embeddings

Γ𝗌𝖾𝗍𝗌\textstyle{\Gamma\mathsf{\mathchar 45\relax sets}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}span(Γ𝗌𝖾𝗍𝗌)\textstyle{\operatorname{span}(\Gamma\mathsf{\mathchar 45\relax sets})}(Γ𝗌𝖾𝗍𝗌)op\textstyle{(\Gamma\mathsf{\mathchar 45\relax sets})^{\operatorname{op}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}(f:XY)\textstyle{(f:X\to Y)\ignorespaces\ignorespaces\ignorespaces\ignorespaces}(X=X𝑓Y)\textstyle{(X=X\xrightarrow{f}Y)}(Y𝑓X=X)\textstyle{(Y\xleftarrow{f}X=X)}(f:XY)\textstyle{(f:X\to Y)\ignorespaces\ignorespaces\ignorespaces\ignorespaces}

Composing with these embeddings (followed by the canonical functor to Ω(Γ)\Omega(\Gamma)) we obtain from every Mackey functor M:Ω(Γ)op𝖬𝗈𝖽(R)M:\Omega(\Gamma)^{\operatorname{op}}\to\operatorname{\mathsf{Mod}}(R) a bifunctor (M,M)(M_{*},M^{*}) on Γ𝗌𝖾𝗍𝗌\Gamma\mathsf{\mathchar 45\relax sets}. For Γ\Gamma finite, this identifies Mackey functors in the ‘new’ sense of 4.5 with Mackey functors in the ‘old’ sense of 4.1 [Lin76]. It now follows formally from 4.4 that the same is true for pro-finite groups Γ\Gamma.

4.7 Remark.

There is an auto-duality Ω(Γ)opΩ(Γ)\Omega(\Gamma)^{\operatorname{op}}\simeq\Omega(\Gamma) which sends a span XZYX\leftarrow Z\to Y to YZXY\leftarrow Z\to X (and is the identity on objects). In particular, we could also define a Mackey functor to be an additive functor Ω(Γ)𝖬𝗈𝖽(R)\Omega(\Gamma)\to\operatorname{\mathsf{Mod}}(R).

The symmetric monoidal structure on Γ𝗌𝖾𝗍𝗌\Gamma\mathsf{\mathchar 45\relax sets} (which is the Cartesian product on underlying sets, see 2.1) induces a tensor structure on Ω(Γ)\Omega(\Gamma).

4.8 Lemma.

Let R():Γ𝗌𝖾𝗍𝗌𝗉𝖾𝗋𝗆(Γ;R)R(-):\Gamma\mathsf{\mathchar 45\relax sets}\to\operatorname{\mathsf{perm}}(\Gamma;R) be the functor of (2.5), and let R():Γ𝗌𝖾𝗍𝗌op𝗉𝖾𝗋𝗆(Γ;R)R(-)^{*}:\Gamma\mathsf{\mathchar 45\relax sets}^{\operatorname{op}}\to\operatorname{\mathsf{perm}}(\Gamma;R) be that functor followed by taking duals. There is an essentially unique (necessarily additive) functor R():Ω(Γ)𝗉𝖾𝗋𝗆(Γ;R)R(-):\Omega(\Gamma)\to\operatorname{\mathsf{perm}}(\Gamma;R) such that the following diagram commutes up to isomorphisms (the horizontal arrows being the canonical embeddings, Remark 4.6):

Γ𝗌𝖾𝗍𝗌\textstyle{\Gamma\mathsf{\mathchar 45\relax sets}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}R()\scriptstyle{R(-)}Ω(Γ)\textstyle{\Omega(\Gamma)\ignorespaces\ignorespaces\ignorespaces\ignorespaces}R()\scriptstyle{R(-)}Γ𝗌𝖾𝗍𝗌op\textstyle{\Gamma\mathsf{\mathchar 45\relax sets}^{\operatorname{op}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}R()\scriptstyle{R(-)^{*}}𝗉𝖾𝗋𝗆(Γ;R)\textstyle{\operatorname{\mathsf{perm}}(\Gamma;R)}
Proof.

As the category Ω(Γ)\Omega(\Gamma) is obtained from span(Γ𝗌𝖾𝗍𝗌)\operatorname{span}(\Gamma\mathsf{\mathchar 45\relax sets}) by group-completing the homomorphism monoids, and since 𝗉𝖾𝗋𝗆(Γ;R)\operatorname{\mathsf{perm}}(\Gamma;R) is additive, it is clear that it suffices to prove the same statement with span(Γ𝗌𝖾𝗍𝗌)\operatorname{span}(\Gamma\mathsf{\mathchar 45\relax sets}) instead of Ω(Γ)\Omega(\Gamma). In that case, we can verify the universal property of the category of spans [BD20, Prop. A.5.3].

The extension R():span(Γ𝗌𝖾𝗍𝗌)𝗉𝖾𝗋𝗆(Γ;R)R(-):\operatorname{span}(\Gamma\mathsf{\mathchar 45\relax sets})\to\operatorname{\mathsf{perm}}(\Gamma;R) is given by

X\displaystyle X R(X)R(X)\displaystyle\mapsto R(X)\simeq R(X)^{*} (Remark 2.7)
(X𝑓Z𝑔Y)\displaystyle(X\xleftarrow{f}Z\xrightarrow{g}Y) (R(X)R(X)fR(Z)R(Z)𝑔R(Y)).\displaystyle\mapsto\left(R(X)\simeq R(X)^{*}\xrightarrow{f^{*}}R(Z)^{*}\simeq R(Z)\xrightarrow{g}R(Y)\right).

It suffices to show the following property. Given a Cartesian square in Γ𝗌𝖾𝗍𝗌\Gamma\mathsf{\mathchar 45\relax sets}:

X\textstyle{X\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}δ\scriptstyle{\delta}γ\scriptstyle{\gamma}Y\textstyle{Y\ignorespaces\ignorespaces\ignorespaces\ignorespaces}α\scriptstyle{\alpha}W\textstyle{W\ignorespaces\ignorespaces\ignorespaces\ignorespaces}β\scriptstyle{\beta}Z\textstyle{Z}

we want to show that αβ=δγ\alpha^{*}\circ\beta=\delta\circ\gamma^{*} as morphisms R(W)R(Y)R(W)\to R(Y) in 𝗉𝖾𝗋𝗆(Γ;R)\operatorname{\mathsf{perm}}(\Gamma;R). Using 2.9, we recognize the two morphisms as sending wWw\in W to

yYα(y)=β(w)y and xXγ(x)=wδ(x)\sum_{y\in Y\,\mid\,\alpha(y)=\beta(w)}y\qquad\text{ and }\qquad\sum_{x\in X\,\mid\,\gamma(x)=w}\delta(x)

respectively. The fact that the square was Cartesian to start with implies that these two elements in R(Y)R(Y) are equal. ∎

4.9 Remark.

We record for later the following explicit description of the functor R():Ω(Γ)𝗉𝖾𝗋𝗆(Γ;R)R(-):\Omega(\Gamma)\to\operatorname{\mathsf{perm}}(\Gamma;R) on spans such as

(4.10) Z\textstyle{Z\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}f\scriptstyle{f}g\scriptstyle{g}X\textstyle{X}Y.\textstyle{Y.}

It follows from 4.8 and 2.9 that (4.10) gets sent to the RR-linear map R(X)R(Y)R(X)\to R(Y) extending

xzZf(z)=xg(z).x\longmapsto\sum_{z\in Z\,\mid\,f(z)=x}g(z).
4.11 Recollection.

We will need the following description of the monoids of homomorphisms in span(Γ𝗌𝖾𝗍𝗌)\operatorname{span}(\Gamma\mathsf{\mathchar 45\relax sets}) from [TW95, Proposition 2.2]. Let H,KΓH,K\leq\Gamma. Then Homspan(Γ𝗌𝖾𝗍𝗌)(Γ/K,Γ/H)\operatorname{Hom}_{\operatorname{span}(\Gamma\mathsf{\mathchar 45\relax sets})}(\Gamma/K,\Gamma/H) is the free abelian monoid on the basis represented by diagrams

(4.12) Γ/L\textstyle{\Gamma/L\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}πLKg\scriptstyle{{}^{g}\pi^{K}_{L}}πLH\scriptstyle{\pi^{H}_{L}}Γ/K\textstyle{\Gamma/K}Γ/H\textstyle{\Gamma/H}

where [g]K\Γ/H[g]\in K\backslash{}\Gamma/H and LKgHL\leq K^{\!g}\cap H up to KgHK^{\!g}\cap H-conjugacy. The maps πLKg{}^{g}\pi^{K}_{L} and πLH\pi^{H}_{L} are the obvious (twisted) projections sending [γ]L[\gamma]_{L} to [γg]K[{}^{g}\gamma]_{K} and [γ]H[\gamma]_{H} respectively. It follows that the group HomΩ(Γ)(Γ/K,Γ/H)\operatorname{Hom}_{\Omega(\Gamma)}(\Gamma/K,\Gamma/H) is free abelian on the same basis.

Note that by Remark 4.9, the image of the span (4.12) in 𝗉𝖾𝗋𝗆(Γ;R)\operatorname{\mathsf{perm}}(\Gamma;R) is the RR-linear map R(Γ/K)R(Γ/H)R(\Gamma/K)\to R(\Gamma/H) extending

(4.13) [γ]K[x]K/Lg[γxg]H.[\gamma]_{K}\longmapsto\sum_{[x]\in K/{}^{g\!}L}[\gamma xg]_{H}.
4.14 Remark.

On pro-finite groups, an important difference between Mackey functors and cohomological Mackey functors is that the latter are more strongly controlled by their values on finite quotients. To make this precise, we start with the following elementary observation. Consider a prototypical span (4.12). We may rewrite it as

Γ/L\textstyle{\Gamma/L\ignorespaces\ignorespaces\ignorespaces\ignorespaces}πLKgH\scriptstyle{\pi^{K^{\!g}\cap H}_{L}}Γ/KgH\textstyle{\Gamma/K^{\!g}\cap H\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}πKgHKg\scriptstyle{{}^{g}\pi^{K}_{K^{\!g}\cap H}}πKgHH\scriptstyle{\pi_{K^{\!g}\cap H}^{H}}Γ/K\textstyle{\Gamma/K}Γ/H\textstyle{\Gamma/H}

and thereby recognize that it factors as a composite:

Γ/KgH\textstyle{\Gamma/K^{\!g}\cap H\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}πKgHKg\scriptstyle{{}^{g}\pi^{K}_{K^{\!g}\cap H}}Γ/L\textstyle{\Gamma/L\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}πLKgH\scriptstyle{\pi_{L}^{K^{\!g}\cap H}}πLKgH\scriptstyle{\pi_{L}^{K^{\!g}\cap H}}Γ/KgH\textstyle{\Gamma/K^{\!g}\cap H\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}πKgHH\scriptstyle{\pi^{H}_{K^{\!g}\cap H}}Γ/K\textstyle{\Gamma/K}Γ/KgH\textstyle{\Gamma/K^{\!g}\cap H}Γ/KgH\textstyle{\Gamma/K^{\!g}\cap H}Γ/H.\textstyle{\Gamma/H.}

Recall that the span in the middle is taken to multiplication by [KgH:L][K^{\!g}\cap H:L] by each cohomological Mackey functor. In other words, the values a cohomological Mackey functor takes on spans Γ/K+Γ/H\Gamma/K\mathrel{\mkern 3.0mu\vbox{\hbox{$\scriptscriptstyle+$}}\mkern-12.0mu{\to}}\Gamma/H, are determined by its restriction to Γ/N\Gamma/N for any NΓN\vartriangleleft\Gamma contained in HKH\cap K.

4.15 Notation.

Consider the additive category ΩR(Γ)\Omega_{R}(\Gamma). We define a two-sided ideal of homomorphisms R(Γ)\mathscr{I}_{R}(\Gamma) by giving a set of generators:

(4.16) Γ/KπKHπKHΓ/HΓ/H[H:K]idΓ/H\begin{split}\lx@xy@svg{\hbox{\raise 0.0pt\hbox{\kern 15.13188pt\hbox{\ignorespaces\ignorespaces\ignorespaces\hbox{\vtop{\kern 0.0pt\offinterlineskip\halign{\entry@#!@&&\entry@@#!@\cr&\\&&\crcr}}}\ignorespaces{\hbox{\kern-3.0pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{}$}}}}}}}{\hbox{\kern 39.13188pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\Gamma/K\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces{}\ignorespaces\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 17.69519pt\raise-4.62639pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.50694pt\hbox{$\scriptstyle{\pi^{H}_{K}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 15.1319pt\raise-15.14822pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}\ignorespaces\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces\ignorespaces\ignorespaces{}\ignorespaces\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 77.27554pt\raise-4.62639pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.50694pt\hbox{$\scriptstyle{\pi^{H}_{K}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 93.47902pt\raise-15.16301pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}\ignorespaces\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces{\hbox{\lx@xy@drawline@}}{\hbox{\kern-15.13188pt\raise-21.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\Gamma/H}$}}}}}}}{\hbox{\kern 51.30545pt\raise-21.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{}$}}}}}}}{\hbox{\kern 93.47902pt\raise-21.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\Gamma/H}$}}}}}}}\ignorespaces}}}}\ignorespaces\end{split}\quad-\quad[H:K]\cdot\operatorname{id}_{\Gamma/H}

for each KHΓK\leq H\leq\Gamma.

4.17 Proposition.

The functor R():ΩR(Γ)𝗉𝖾𝗋𝗆(Γ;R)R(-):\Omega_{R}(\Gamma)\to\operatorname{\mathsf{perm}}(\Gamma;R) of 4.8 induces an equivalence of additive categories

(4.18) ΩR(Γ)R(Γ)𝗉𝖾𝗋𝗆(Γ;R).\frac{\Omega_{R}(\Gamma)}{\mathscr{I}_{R}(\Gamma)}\overset{\sim}{\,\to\,}\operatorname{\mathsf{perm}}(\Gamma;R).
Proof.

It is clear from (4.13) that every generator (4.16) is sent to 0 in 𝗉𝖾𝗋𝗆(Γ;R)\operatorname{\mathsf{perm}}(\Gamma;R). As the functor R()R(-) is additive, this yields the functor (4.18) of the statement.

It is also clear that the functor is essentially surjective, and it remains to prove fully faithfulness. Fix H,KΓH,K\leq\Gamma and consider the induced homomorphism

(4.19) HomΩR(Γ)(Γ/K,Γ/H)Hom𝗉𝖾𝗋𝗆(Γ;R)(R(Γ/K),R(Γ/H)).\operatorname{Hom}_{\Omega_{R}(\Gamma)}(\Gamma/K,\Gamma/H)\to\operatorname{Hom}_{\operatorname{\mathsf{perm}}(\Gamma;R)}(R(\Gamma/K),R(\Gamma/H)).

The codomain of this homomorphism is isomorphic to R(K\Γ/H)R(K\backslash{}\Gamma/H) by 2.13, and from (4.13) we deduce that the span

(4.20) Γ/KgH\textstyle{\Gamma/K^{\!g}\cap H\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}πKgHKg\scriptstyle{{}^{g}\pi^{K}_{K^{\!g}\cap H}}πKgHH\scriptstyle{\pi^{H}_{K^{\!g}\cap H}}Γ/K\textstyle{\Gamma/K}Γ/H\textstyle{\Gamma/H}

gets sent to [g]R(K\Γ/H)[g]\in R(K\backslash{}\Gamma/H). In other words, we have found an RR-free submodule MM (on the basis of spans as in (4.20), cf. 4.11) of HomΩR(Γ)(Γ/K,Γ/H)\operatorname{Hom}_{\Omega_{R}(\Gamma)}(\Gamma/K,\Gamma/H) which maps isomorphically onto Hom𝗉𝖾𝗋𝗆(Γ;R)(R(Γ/K),R(Γ/H))\operatorname{Hom}_{\operatorname{\mathsf{perm}}(\Gamma;R)}(R(\Gamma/K),R(\Gamma/H)). On the other hand, we saw in Remark 4.14 that every span Γ/K+Γ/H\Gamma/K\mathrel{\mkern 3.0mu\vbox{\hbox{$\scriptscriptstyle+$}}\mkern-12.0mu{\to}}\Gamma/H is equivalent, modulo R(Γ)\mathscr{I}_{R}(\Gamma), to a linear combination of spans as in (4.20). This shows that the composite

MHomΩR(Γ)(Γ/K,Γ/H)HomΩR(Γ)(Γ/K,Γ/H)R(Γ)(Γ/K,Γ/H)M\mathop{\rightarrowtail}\operatorname{Hom}_{\Omega_{R}(\Gamma)}(\Gamma/K,\Gamma/H)\mathop{\twoheadrightarrow}\frac{\operatorname{Hom}_{\Omega_{R}(\Gamma)}(\Gamma/K,\Gamma/H)}{\mathscr{I}_{R}(\Gamma)(\Gamma/K,\Gamma/H)}

is also surjective and hence an isomorphism, and this concludes the proof. ∎

4.21 Corollary.

Let M:Ω(Γ)op𝖬𝗈𝖽(R)M:\Omega(\Gamma)^{\operatorname{op}}\to\operatorname{\mathsf{Mod}}(R) be a Mackey functor and consider the following solid-arrows diagram:

Ω(Γ)op\textstyle{\Omega(\Gamma)^{\operatorname{op}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}M\scriptstyle{M}R()\scriptstyle{R(-)}𝖬𝗈𝖽(R)\textstyle{\operatorname{\mathsf{Mod}}(R)}𝗉𝖾𝗋𝗆(Γ;R)op\textstyle{\operatorname{\mathsf{perm}}(\Gamma;R)^{\operatorname{op}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}M¯\scriptstyle{\bar{M}}

If an RR-linear factorization M¯\bar{M} as indicated exists then it is unique. Moreover, it does exist if and only if MM is cohomological.

Proof.

Both R()R(-) and MM factor uniquely through ΩR(Γ)op\Omega_{R}(\Gamma)^{\operatorname{op}}, and we may translate the diagram and the statement into one with Ω(Γ)op\Omega(\Gamma)^{\operatorname{op}} replaced by ΩR(Γ)op\Omega_{R}(\Gamma)^{\operatorname{op}}. By Proposition 4.17, 𝗉𝖾𝗋𝗆(Γ;R)\operatorname{\mathsf{perm}}(\Gamma;R) is a quotient of ΩR(Γ)\Omega_{R}(\Gamma) from which the first statement follows. It also follows from Proposition 4.17 that M¯\bar{M} exists if and only if MM sends generators (4.16) of R(Γ)\mathscr{I}_{R}(\Gamma) to 0 which is precisely the condition that MM be cohomological. ∎

Let us also state explicitly the following immediate consequence, essentially due to Yoshida [Yos83].

4.22 Corollary.

Precomposition with R():Ω(Γ)𝗉𝖾𝗋𝗆(Γ;R)R(-):\Omega(\Gamma)\to\operatorname{\mathsf{perm}}(\Gamma;R) induces an equivalence of RR-linear Grothendieck abelian categories

𝖬𝖺𝖼𝗄R𝖼𝗈𝗁ΓPShR(𝗉𝖾𝗋𝗆(Γ;R))\mathop{\mathsf{Mack}^{\mathsf{coh}}_{R}}{\Gamma}\simeq\mathrm{PSh}_{R}(\operatorname{\mathsf{perm}}(\Gamma;R))

where we write PShR(𝗉𝖾𝗋𝗆(Γ;R))\mathrm{PSh}_{R}(\operatorname{\mathsf{perm}}(\Gamma;R)) for the category of RR-linear (additive) presheaves 𝗉𝖾𝗋𝗆(Γ;R)op𝖬𝗈𝖽(R)\operatorname{\mathsf{perm}}(\Gamma;R)^{\operatorname{op}}\to\operatorname{\mathsf{Mod}}(R), a. k. a. the category of right-modules over the additive category 𝗉𝖾𝗋𝗆(Γ;R)\operatorname{\mathsf{perm}}(\Gamma;R). ∎

4.23 Remark.

4.22 allows us to define a tensor structure on cohomological Mackey functors. For this, recall that 𝗉𝖾𝗋𝗆(Γ;R)\operatorname{\mathsf{perm}}(\Gamma;R) is an RR-linear tensor category. There is an essentially unique way of endowing RR-linear presheaves with an RR-linear closed tensor structure such that the Yoneda functor 𝗉𝖾𝗋𝗆(Γ;R)PShR(𝗉𝖾𝗋𝗆(Γ;R))\operatorname{\mathsf{perm}}(\Gamma;R)\to\mathrm{PSh}_{R}(\operatorname{\mathsf{perm}}(\Gamma;R)) is tensor, called the Day convolution product. We will from now on view 𝖬𝖺𝖼𝗄R𝖼𝗈𝗁Γ\mathop{\mathsf{Mack}^{\mathsf{coh}}_{R}}{\Gamma} as an RR-linear tensor category via 4.22 and Day convolution.

Concretely, given a cohomological Mackey functor MM viewed as an RR-linear presheaf on 𝗉𝖾𝗋𝗆(Γ;R)\operatorname{\mathsf{perm}}(\Gamma;R), we may write it canonically as a colimit of representables, indexed by the category of permutation modules PP over MM:

colimPMPM.\mathop{\mathrm{colim}}_{P\to M}P\overset{\sim}{\,\to\,}M.

In particular, we find that

MMcolimPM,PMPP.M\otimes M^{\prime}\cong\mathop{\mathrm{colim}}_{P\to M,\,P^{\prime}\to M^{\prime}}P\otimes P^{\prime}.

5. The functor of fixed-points

We now want to establish one of the equivalences of (1.2), namely

(5.1) D𝖯𝖾𝗋𝗆(Γ;R)D(𝖬𝖺𝖼𝗄R𝖼𝗈𝗁Γ)\operatorname{D\mathsf{Perm}}(\Gamma;R)\overset{\sim}{\,\to\,}\operatorname{D}(\mathop{\mathsf{Mack}^{\mathsf{coh}}_{R}}{\Gamma})

between the derived category of permutation modules D𝖯𝖾𝗋𝗆(Γ;R)\operatorname{D\mathsf{Perm}}(\Gamma;R) introduced in Section 3 and the derived category of the abelian category 𝖬𝖺𝖼𝗄R𝖼𝗈𝗁Γ\mathop{\mathsf{Mack}^{\mathsf{coh}}_{R}}{\Gamma} of cohomological Mackey functors discussed in Section 4. To this end, we identify 𝖬𝖺𝖼𝗄R𝖼𝗈𝗁Γ\mathop{\mathsf{Mack}^{\mathsf{coh}}_{R}}{\Gamma} with the category of contravariant RR-linear functors from 𝗉𝖾𝗋𝗆(Γ;R)\operatorname{\mathsf{perm}}(\Gamma;R) to 𝖬𝗈𝖽(R)\operatorname{\mathsf{Mod}}(R), as in 4.22. Let us start by defining the functor in (5.1).

5.2 Construction.

Note that 𝗉𝖾𝗋𝗆(Γ;R)\operatorname{\mathsf{perm}}(\Gamma;R) is a subcategory of 𝖬𝗈𝖽(Γ;R)\operatorname{\mathsf{Mod}}(\Gamma;R). Hence any discrete module M𝖬𝗈𝖽(Γ;R)M\in\operatorname{\mathsf{Mod}}(\Gamma;R) defines by ‘restricted Yoneda’ an RR-linear functor

FP(M)=Hom𝖬𝗈𝖽(Γ;R)(,M)|𝗉𝖾𝗋𝗆(Γ;R):𝗉𝖾𝗋𝗆(Γ;R)op𝖬𝗈𝖽(R).\mathrm{FP}(M)=\operatorname{Hom}_{\operatorname{\mathsf{Mod}}(\Gamma;R)}(-,M)_{|_{\scriptstyle\operatorname{\mathsf{perm}}(\Gamma;R)}}\colon\operatorname{\mathsf{perm}}(\Gamma;R)^{\operatorname{op}}\to\operatorname{\mathsf{Mod}}(R).

This defines a functor FP:𝖬𝗈𝖽(Γ;R)PShR(𝗉𝖾𝗋𝗆(Γ;R))=𝖬𝖺𝖼𝗄R𝖼𝗈𝗁Γ\mathrm{FP}\colon\operatorname{\mathsf{Mod}}(\Gamma;R)\to\mathrm{PSh}_{R}(\operatorname{\mathsf{perm}}(\Gamma;R))=\mathop{\mathsf{Mack}^{\mathsf{coh}}_{R}}{\Gamma}.

5.3 Remark.

The notation FP\mathrm{FP} should evoke ‘fixed points’. Indeed, when evaluated at one of the additive generators R(Γ/H)R(\Gamma/H) of 𝗉𝖾𝗋𝗆(Γ;R)\operatorname{\mathsf{perm}}(\Gamma;R), where HΓH\leq\Gamma, we get

(FP(M))(R(Γ/H))=Hom(R(Γ/H),M)MH.\big{(}\mathrm{FP}(M)\big{)}\big{(}R(\Gamma/H)\big{)}=\operatorname{Hom}(R(\Gamma/H),M)\cong M^{H}.
5.4 Remark.

The functor FP\mathrm{FP} admits a left adjoint LP:𝖬𝖺𝖼𝗄R𝖼𝗈𝗁Γ𝖬𝗈𝖽(Γ;R)\mathrm{LP}\colon\mathop{\mathsf{Mack}^{\mathsf{coh}}_{R}}{\Gamma}\to\operatorname{\mathsf{Mod}}(\Gamma;R) given by left Kan extension of the inclusion 𝗉𝖾𝗋𝗆(Γ;R)𝖬𝗈𝖽(Γ;R)\operatorname{\mathsf{perm}}(\Gamma;R)\mathop{\rightarrowtail}\operatorname{\mathsf{Mod}}(\Gamma;R) along the (RR-linear) Yoneda embedding 𝗉𝖾𝗋𝗆(Γ;R)PShR(𝗉𝖾𝗋𝗆(Γ;R))\operatorname{\mathsf{perm}}(\Gamma;R)\mathop{\rightarrowtail}\mathrm{PSh}_{R}(\operatorname{\mathsf{perm}}(\Gamma;R)):

𝗉𝖾𝗋𝗆(Γ;R)\textstyle{\operatorname{\mathsf{perm}}(\Gamma;R)\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}Yoneda𝖬𝗈𝖽(Γ;R)\textstyle{\operatorname{\mathsf{Mod}}(\Gamma;R)}PShR(𝗉𝖾𝗋𝗆(Γ;R))=𝖬𝖺𝖼𝗄R𝖼𝗈𝗁Γ\textstyle{\mathrm{PSh}_{R}(\operatorname{\mathsf{perm}}(\Gamma;R))=\mathop{\mathsf{Mack}^{\mathsf{coh}}_{R}}{\Gamma}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}LP\scriptstyle{\mathrm{LP}}

The value of LP\mathrm{LP} on a cohomological Mackey functor MM is the colimit colimPMP\mathop{\mathrm{colim}}_{P\to M}P in 𝖬𝗈𝖽(Γ;R)\operatorname{\mathsf{Mod}}(\Gamma;R) of all finitely generated permutation modules PP over MM in 𝖬𝖺𝖼𝗄R𝖼𝗈𝗁Γ\mathop{\mathsf{Mack}^{\mathsf{coh}}_{R}}{\Gamma}. This is a standard universal property of the presheaf category. The functor LP\mathrm{LP} is automatically a colimit-preserving tensor functor (cf. Remark 4.23).

5.5 Lemma.

The functor FP:𝖬𝗈𝖽(Γ;R)𝖬𝖺𝖼𝗄R𝖼𝗈𝗁Γ\mathrm{FP}:\operatorname{\mathsf{Mod}}(\Gamma;R)\to\mathop{\mathsf{Mack}^{\mathsf{coh}}_{R}}{\Gamma} of 5.2

  1. (a)

    is RR-linear and lax monoidal,

  2. (b)

    preserves filtered colimits (and thus coproducts), and

  3. (c)

    is fully faithful.

Proof.

The first item is obvious (as right adjoint of a tensor functor) and so is the second by Remark 5.3. For the last item, we evaluate the counit of the adjunction LPFP\mathrm{LP}\dashv\mathrm{FP} on a discrete module M𝖬𝗈𝖽(Γ;R)M\in\operatorname{\mathsf{Mod}}(\Gamma;R), and find that it is given by the canonical morphism

colimPMPM\mathop{\mathrm{colim}}_{P\to M}P\to M

where the colimit is indexed by finitely generated permutation modules PP over MM (cf. Remark 5.4). As MM is discrete, this morphism is surjective (cf. 2.2). To prove that the morphism is injective as well, let f:PMf:P\to M be a map from a permutation module PP, and let pPp\in P such that f(p)=0f(p)=0. There exists some HΓH\leq\Gamma such that pPHp\in P^{H}, thus a map R(Γ/H)PR(\Gamma/H)\to P which sends [e]H[e]_{H} to pp. In the indexing category for the colimit we therefore find a span

(P𝑓M)\textstyle{(P\xrightarrow{f}M)}(R(Γ/H)0M)\textstyle{(R(\Gamma/H)\xrightarrow{0}M)\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}p\scriptstyle{p}0\scriptstyle{0}(00M)\textstyle{(0\xrightarrow{0}M)}

from which it follows that pPp\in P vanishes in the colimit. ∎

We can now identify projective cohomological Mackey functors.

5.6 Proposition (cf. [TW95, Theorem 16.5]).

The fixed-point functor FP\mathrm{FP} induces equivalences of tensor categories:

𝖯𝖾𝗋𝗆(Γ;R)\textstyle{\operatorname{\mathsf{Perm}}(\Gamma;R)^{\natural}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}\scriptstyle{\sim}FP\scriptstyle{\mathrm{FP}}Proj(𝖬𝖺𝖼𝗄R𝖼𝗈𝗁Γ)\textstyle{\operatorname{Proj}(\mathop{\mathsf{Mack}^{\mathsf{coh}}_{R}}{\Gamma})}𝗉𝖾𝗋𝗆(Γ;R)\textstyle{\operatorname{\mathsf{perm}}(\Gamma;R)^{\natural}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}\scriptstyle{\sim}FP\scriptstyle{\mathrm{FP}}proj(𝖬𝖺𝖼𝗄R𝖼𝗈𝗁Γ)\textstyle{\operatorname{proj}(\mathop{\mathsf{Mack}^{\mathsf{coh}}_{R}}{\Gamma})\ignorespaces\ignorespaces\ignorespaces\ignorespaces}

where Proj\operatorname{Proj} stands for the subcategory of projective objects and proj\operatorname{proj} for that of the finitely presented projective objects, in the Grothendieck category 𝖬𝖺𝖼𝗄R𝖼𝗈𝗁Γ\mathop{\mathsf{Mack}^{\mathsf{coh}}_{R}}{\Gamma}.

Proof.

By Yoneda, we have for every P𝗉𝖾𝗋𝗆(Γ;R)P\in\operatorname{\mathsf{perm}}(\Gamma;R) that Hom𝖬𝖺𝖼𝗄R𝖼𝗈𝗁Γ(P,?)?(P)\operatorname{Hom}_{\mathop{\mathsf{Mack}^{\mathsf{coh}}_{R}}{\Gamma}}(P,?)\cong?(P) preserves all colimits (computed objectwise). It follows that every PP in 𝗉𝖾𝗋𝗆(Γ;R)\operatorname{\mathsf{perm}}(\Gamma;R) is finitely presented projective in 𝖬𝖺𝖼𝗄R𝖼𝗈𝗁Γ\mathop{\mathsf{Mack}^{\mathsf{coh}}_{R}}{\Gamma}. Note that on 𝗉𝖾𝗋𝗆(Γ;R)\operatorname{\mathsf{perm}}(\Gamma;R), the functor FP\mathrm{FP} is nothing but the Yoneda embedding. In particular it is fully-faithful, and remains so on 𝗉𝖾𝗋𝗆(Γ;R)\operatorname{\mathsf{perm}}(\Gamma;R)^{\natural} and on 𝖯𝖾𝗋𝗆(Γ;R)\operatorname{\mathsf{Perm}}(\Gamma;R)^{\natural} (closure under coproducts). So the two functors FP\mathrm{FP} of the statement are fully faithful and take values inside projectives, as indicated. Only their essential surjectivity remains to be seen.

Let M:𝗉𝖾𝗋𝗆(Γ;R)op𝖬𝗈𝖽(R)M\colon\operatorname{\mathsf{perm}}(\Gamma;R)^{\operatorname{op}}\to\operatorname{\mathsf{Mod}}(R) be in 𝖬𝖺𝖼𝗄R𝖼𝗈𝗁Γ\mathop{\mathsf{Mack}^{\mathsf{coh}}_{R}}{\Gamma}. Again by Yoneda, the map

(P𝗉𝖾𝗋𝗆(Γ;R)PMP)M\Big{(}\coprod_{P\in\operatorname{\mathsf{perm}}(\Gamma;R)\atop P\to M}\!P\ \Big{)}\quad\mathop{\longrightarrow}\limits\quad M

is an epimorphism in 𝖬𝖺𝖼𝗄R𝖼𝗈𝗁Γ\mathop{\mathsf{Mack}^{\mathsf{coh}}_{R}}{\Gamma}. If MM is projective then this map must admit a section, showing that MM is a direct summand of a coproduct of PP’s. If moreover MM is finitely presented, that section must factor via a finite coproduct. ∎

We now come to the announced equivalence (5.1). In view of Proposition 5.6, consider the functor FP:K(𝖯𝖾𝗋𝗆(Γ;R))K(Proj(𝖬𝖺𝖼𝗄R𝖼𝗈𝗁Γ))\mathrm{FP}\colon\operatorname{K}(\operatorname{\mathsf{Perm}}(\Gamma;R))\to\operatorname{K}(\operatorname{Proj}(\mathop{\mathsf{Mack}^{\mathsf{coh}}_{R}}{\Gamma})) on chain complexes. Post-composing with the canonical quotient functor and pre-composing with the inclusion of Remark 3.12, we obtain

D𝖯𝖾𝗋𝗆(Γ;R)K(𝖯𝖾𝗋𝗆(Γ;R))FPK(Proj(𝖬𝖺𝖼𝗄R𝖼𝗈𝗁Γ))D(𝖬𝖺𝖼𝗄R𝖼𝗈𝗁Γ).\operatorname{D\mathsf{Perm}}(\Gamma;R)\mathop{\rightarrowtail}\operatorname{K}(\operatorname{\mathsf{Perm}}(\Gamma;R))\xrightarrow{\mathrm{FP}}\operatorname{K}(\operatorname{Proj}(\mathop{\mathsf{Mack}^{\mathsf{coh}}_{R}}{\Gamma}))\mathop{\twoheadrightarrow}\operatorname{D}(\mathop{\mathsf{Mack}^{\mathsf{coh}}_{R}}{\Gamma}).
5.7 Corollary.

The above is an equivalence of tensor triangulated categories:

(5.8) FP:D𝖯𝖾𝗋𝗆(Γ;R)D(𝖬𝖺𝖼𝗄R𝖼𝗈𝗁Γ).\mathrm{FP}:\operatorname{D\mathsf{Perm}}(\Gamma;R)\overset{\sim}{\,\to\,}\operatorname{D}(\mathop{\mathsf{Mack}^{\mathsf{coh}}_{R}}{\Gamma}).
Proof.

The functor (5.8) is a coproduct-preserving triangulated functor, since it is defined as the composite of three such functors. It restricts to an equivalence

(5.9) Kb(𝗉𝖾𝗋𝗆(Γ;R))Kb(proj(𝖬𝖺𝖼𝗄R𝖼𝗈𝗁Γ))\operatorname{K}_{\operatorname{b}}(\operatorname{\mathsf{perm}}(\Gamma;R)^{\natural})\overset{\sim}{\,\to\,}\operatorname{K}_{\operatorname{b}}(\operatorname{proj}(\mathop{\mathsf{Mack}^{\mathsf{coh}}_{R}}{\Gamma}))

by Proposition 5.6 and the fact that, as for every abelian category, the functor

Kb(proj(𝖬𝖺𝖼𝗄R𝖼𝗈𝗁Γ))D(𝖬𝖺𝖼𝗄R𝖼𝗈𝗁Γ)\operatorname{K}_{\operatorname{b}}(\operatorname{proj}(\mathop{\mathsf{Mack}^{\mathsf{coh}}_{R}}{\Gamma}))\to\operatorname{D}(\mathop{\mathsf{Mack}^{\mathsf{coh}}_{R}}{\Gamma})

is fully faithful. Since the left-hand side of (5.9) is the compact part of D𝖯𝖾𝗋𝗆(Γ;R)\operatorname{D\mathsf{Perm}}(\Gamma;R) by 3.10, it suffices to prove that the right-hand side of (5.9) is the compact part of D(𝖬𝖺𝖼𝗄R𝖼𝗈𝗁Γ)\operatorname{D}(\mathop{\mathsf{Mack}^{\mathsf{coh}}_{R}}{\Gamma}) and generates the latter. For every P𝗉𝖾𝗋𝗆(Γ;R)P\in\operatorname{\mathsf{perm}}(\Gamma;R), we have

(5.10) HomD(𝖬𝖺𝖼𝗄R𝖼𝗈𝗁Γ)(FP(P),X)\displaystyle\operatorname{Hom}_{\operatorname{D}(\mathop{\mathsf{Mack}^{\mathsf{coh}}_{R}}{\Gamma})}(\mathrm{FP}(P),X) =HomK(𝖬𝖺𝖼𝗄R𝖼𝗈𝗁Γ)(FP(P),X)\displaystyle=\operatorname{Hom}_{\operatorname{K}(\mathop{\mathsf{Mack}^{\mathsf{coh}}_{R}}{\Gamma})}(\mathrm{FP}(P),X)
=H0(X(P)).\displaystyle=\operatorname{H}_{0}(X(P)).

Since homology and evaluation at PP commute with coproducts, this shows that the right-hand side of (5.9) consists of compact objects in D(𝖬𝖺𝖼𝗄R𝖼𝗈𝗁Γ)\operatorname{D}(\mathop{\mathsf{Mack}^{\mathsf{coh}}_{R}}{\Gamma}). Similarly, these FP(P)\mathrm{FP}(P) generate D(𝖬𝖺𝖼𝗄R𝖼𝗈𝗁Γ)\operatorname{D}(\mathop{\mathsf{Mack}^{\mathsf{coh}}_{R}}{\Gamma}) since a complex XX of cohomological Mackey functors that is right-orthogonal to FP(P)[i]\mathrm{FP}(P)[i] for all i\bbZi\in\bbZ must have trivial homology by (5.10), i.e. be zero in the derived category.

It remains to show that the equivalence in the statement is compatible with the tensor structures. We know that FP\mathrm{FP} of 5.5 is lax monoidal, hence so is the functor (5.8). Since the equivalence on compacts (5.9) is tensor, and since the tensor product commutes with coproducts in each variable, the claim follows. ∎

5.11 Remark.

In [TW95, § 16] it was shown that 𝖬𝖺𝖼𝗄R𝖼𝗈𝗁G\mathop{\mathsf{Mack}^{\mathsf{coh}}_{R}}{G} for GG finite is the category of modules over the so-called cohomological Mackey algebra. The interested reader can verify that a similar description of 𝖬𝖺𝖼𝗄R𝖼𝗈𝗁Γ\mathop{\mathsf{Mack}^{\mathsf{coh}}_{R}}{\Gamma} exists for profinite groups Γ\Gamma, at the cost of using the possibly non-unital ring

=H,KΓHom𝗉𝖾𝗋𝗆(Γ;R)(R(Γ/H),R(Γ/K)).\mathscr{E}=\sqcup_{H,K\leq\Gamma}\operatorname{Hom}_{\operatorname{\mathsf{perm}}(\Gamma;R)}(R(\Gamma/H),R(\Gamma/K)).

The multiplication of this generalized cohomological Mackey algebra is given by composition. Cohomological Mackey functors for Γ\Gamma are then identified with unital right modules over \mathscr{E} (that is, right modules MM such that M=MM\cdot\mathscr{E}=M).

We found it easier to use modules over an additive category, i.e. presheaves (as in 4.22), rather than modules over non-unital rings.

5.12 Remark.

Let us return to the localization K(𝖯𝖾𝗋𝗆(Γ;R))D𝖯𝖾𝗋𝗆(Γ;R)\operatorname{K}(\operatorname{\mathsf{Perm}}(\Gamma;R))\mathop{\twoheadrightarrow}\operatorname{D\mathsf{Perm}}(\Gamma;R) of 3.6 (cf. Remark 3.14). First note that K(𝖯𝖾𝗋𝗆(Γ;R))\operatorname{K}(\operatorname{\mathsf{Perm}}(\Gamma;R)) is a triangulated category with small coproducts, hence is idempotent-complete. It follows easily that K(𝖯𝖾𝗋𝗆(Γ;R))K(𝖯𝖾𝗋𝗆(Γ;R))\operatorname{K}(\operatorname{\mathsf{Perm}}(\Gamma;R))\cong\operatorname{K}(\operatorname{\mathsf{Perm}}(\Gamma;R)^{\natural}). So we can identify K(𝖯𝖾𝗋𝗆(Γ;R))\operatorname{K}(\operatorname{\mathsf{Perm}}(\Gamma;R)) with the homotopy category of projectives K(Proj(𝖬𝖺𝖼𝗄R𝖼𝗈𝗁Γ))\operatorname{K}(\operatorname{Proj}(\mathop{\mathsf{Mack}^{\mathsf{coh}}_{R}}{\Gamma})) by Proposition 5.6.

Assume now that Γ=G\Gamma=G is finite and that RR is coherent. In that case, 𝖬𝖺𝖼𝗄R𝖼𝗈𝗁Γ\mathop{\mathsf{Mack}^{\mathsf{coh}}_{R}}{\Gamma} is the category of modules over the cohomological Mackey algebra \mathscr{E} of [TW95], as in Remark 5.11. And the ring \mathscr{E} remains coherent. We can then invoke [Nee08] to conclude that the homotopy category of projectives \mathscr{E}-modules is compactly generated. Hence so is K(𝖯𝖾𝗋𝗆(G;R))\operatorname{K}(\operatorname{\mathsf{Perm}}(G;R)) in that case. Applying the general results of 3.8 (c) to the triangulated category 𝒯=K(𝖯𝖾𝗋𝗆(G;R))\mathscr{T}=\operatorname{K}(\operatorname{\mathsf{Perm}}(G;R)) and to the set of compact objects 𝒢={R(G/H)|HG}\mathscr{G}=\big{\{}\,R(G/H)\,\big{|}\,H\leq G\,\big{\}} we obtain the following left-hand recollement of triangulated categories

D𝖯𝖾𝗋𝗆(G;R)\textstyle{\operatorname{D\mathsf{Perm}}(G;R)\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}incl\scriptstyle{\operatorname{incl}}K(𝖯𝖾𝗋𝗆(G;R))\textstyle{\operatorname{K}(\operatorname{\mathsf{Perm}}(G;R))\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}Q\scriptstyle{Q}KG-ac(𝖯𝖾𝗋𝗆(G;R))\textstyle{\operatorname{K}_{G\textrm{-}\mathrm{ac}}(\operatorname{\mathsf{Perm}}(G;R))\ignorespaces\ignorespaces\ignorespaces\ignorespaces}incl\scriptstyle{\operatorname{incl}}            D(𝖬𝖺𝖼𝗄R𝖼𝗈𝗁G)\textstyle{\operatorname{D}(\mathop{\mathsf{Mack}^{\mathsf{coh}}_{R}}{G})\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}incl\scriptstyle{\operatorname{incl}}K(Proj(𝖬𝖺𝖼𝗄R𝖼𝗈𝗁G))\textstyle{\operatorname{K}(\operatorname{Proj}(\mathop{\mathsf{Mack}^{\mathsf{coh}}_{R}}{G}))\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}Q\scriptstyle{Q}Kac(Proj(𝖬𝖺𝖼𝗄R𝖼𝗈𝗁G))\textstyle{\operatorname{K}_{\mathrm{ac}}(\operatorname{Proj}(\mathop{\mathsf{Mack}^{\mathsf{coh}}_{R}}{G}))\ignorespaces\ignorespaces\ignorespaces\ignorespaces}incl\scriptstyle{\operatorname{incl}}

Under the equivalences of Proposition 5.6 and 5.7, this recollement can be translated into the recollement depicted on the right-hand side above.

At the moment, we do not know if this can be extended to profinite groups. The main issue is whether K(Proj(𝖬𝖺𝖼𝗄R𝖼𝗈𝗁Γ))\operatorname{K}(\operatorname{Proj}(\mathop{\mathsf{Mack}^{\mathsf{coh}}_{R}}{\Gamma})) remains compactly generated.

6. Sheaves with transfers

In Voevodsky’s approach to motives of algebraic varieties over a field, a central concept is the one of transfers. His observation was that for a well-behaved theory it is not enough to consider morphisms of varieties but one has to allow for (finitely) multi-valued maps. Equivalently, one has to allow certain ‘wrong-way’ morphisms, that is, transfers. In this section we recall this notion and some basic facts about sheaves with transfers.

The mention of ‘wrong-way’ morphisms and multi-valued maps should ring a bell. As we saw in Section 2, adding ‘wrong-way’ morphisms to Γ\Gamma-sets results in the span category and this is only one step away from permutation modules. The other goal of this section then is to explain the connections between transfers, permutation modules and cohomological Mackey functors. The basic dictionary between the two sides is provided by Galois theory, and looks as follows (with notation to be introduced in the present section), cf. [KY15].

algebraic geometry representation theory
𝖲𝗆\FF0\operatorname{\mathsf{Sm}}^{0}_{\FF} Γ𝗌𝖾𝗍𝗌\Gamma\mathsf{\mathchar 45\relax sets}
span(𝖲𝗆\FF0)\operatorname{span}(\operatorname{\mathsf{Sm}}^{0}_{\FF}) span(Γ𝗌𝖾𝗍𝗌)\operatorname{span}(\Gamma\mathsf{\mathchar 45\relax sets})
Ω(\FF)\Omega(\FF) Ω(Γ)\Omega(\Gamma)
𝖢𝗈𝗋\FFR\mathsf{Cor}_{\FF}\otimes R 𝗉𝖾𝗋𝗆(Γ;R)\operatorname{\mathsf{perm}}(\Gamma;R)
ShNis(𝖢𝗈𝗋\FF;R)\mathrm{Sh}_{\textup{Nis}}(\mathsf{Cor}_{\FF};R) 𝖬𝖺𝖼𝗄R𝖼𝗈𝗁Γ\mathop{\mathsf{Mack}^{\mathsf{coh}}_{R}}{\Gamma}
6.1 Hypothesis.

Let \FF\FF be a field with a choice of separable algebraic closure \FF¯\overline{\FF} and absolute Galois group Γ=Γ\FF:=Gal(\FF¯/\FF)\Gamma=\Gamma_{\FF}:=\operatorname{Gal}(\overline{\FF}/\FF). All schemes are assumed to be separated and of finite type over their base field (which is often \FF\FF, or a finite extension thereof).

6.2 Recollection.

Let XX and YY be smooth \FF\FF-schemes. The free abelian group on integral subschemes of X×YX\times Y, finite and surjective over a connected component of XX, is denoted Cor(X,Y)\operatorname{Cor}(X,Y), or Cor\FF(X,Y)\operatorname{Cor}_{\FF}(X,Y) to be more precise. These are the finite correspondences from XX to YY. The category whose objects are smooth \FF\FF-schemes and whose morphisms are finite correspondences is denoted 𝖢𝗈𝗋\FF\mathsf{Cor}_{\FF}. The composition is defined in terms of push-forward and intersection of cycles [CD19, § 9.1]. There is a faithful functor 𝖲𝗆\FF𝖢𝗈𝗋\FF\operatorname{\mathsf{Sm}}_{\FF}\to\mathsf{Cor}_{\FF} from smooth \FF\FF-schemes to the category of \FF\FF-correspondences, which takes a morphism to its graph (and is the identity on objects). Note that the cartesian product endows 𝖢𝗈𝗋\FF\mathsf{Cor}_{\FF} with the structure of a tensor category (finite biproducts are given by the disjoint union of schemes).

6.3 Example.

Let XX be a zero-dimensional smooth \FF\FF-scheme, i.e. a scheme étale over Spec(\FF)\operatorname{Spec}(\FF). Then X=i=1nSpec(\KKi)X=\coprod_{i=1}^{n}\operatorname{Spec}(\KK_{i}) is a finite disjoint union of spectra of finite separable extensions of \FF\FF. A finite correspondence from XX to YY is a finite linear combination of closed points of X×Y=iY\KKiX\times Y=\coprod_{i}Y_{\KK_{i}}, that is, Cor(X,Y)\operatorname{Cor}(X,Y) is the group of zero cycles in X×YX\times Y, denoted Z0(X×Y)Z_{0}(X\times Y). Moreover, the finite correspondences in Cor(Y,X)\operatorname{Cor}(Y,X) are finite linear combinations of connected components of Y×XY\times X, that is, the free abelian group on π0(Y×X)\pi_{0}(Y\times X).

We denote the full subcategory of 𝖢𝗈𝗋\FF\mathsf{Cor}_{\FF} spanned by the zero-dimensional smooth \FF\FF-schemes by 𝖢𝗈𝗋\FF0\mathsf{Cor}^{0}_{\FF}. Of course, it is a tensor subcategory of 𝖢𝗈𝗋\FF\mathsf{Cor}_{\FF}.

6.4 Recollection.

Let XX be a scheme over \FF\FF and consider the set of \FF¯\overline{\FF}-points:

X(\FF¯):=Hom\FF¯(Spec(\FF¯),X\FF¯).X(\overline{\FF}):=\operatorname{Hom}_{\overline{\FF}}(\operatorname{Spec}(\overline{\FF}),X_{\overline{\FF}}).

The action of Γ\Gamma on X\FF¯X_{\overline{\FF}} endows X(\FF¯)X(\overline{\FF}) with the structure of a Γ\Gamma-set, and elaborating a bit one finds a functor

Sch\FFΓ𝖲𝖾𝗍𝗌.\operatorname{Sch}_{\FF}\to\Gamma\mathsf{\mathchar 45\relax Sets}.

Galois theory (for example in the form of [Gro63, Exposé V]) tells us that this functor restricts to an equivalence

𝖲𝗆\FF0Γ𝗌𝖾𝗍𝗌\operatorname{\mathsf{Sm}}_{\FF}^{0}\overset{\sim}{\,\to\,}\Gamma\mathsf{\mathchar 45\relax sets}

between finite étale \FF\FF-schemes and finite Γ\Gamma-sets. The inverse of this equivalence sends a transitive Γ\Gamma-set Γ/H\Gamma/H to Spec(\FF¯H)\operatorname{Spec}(\overline{\FF}^{H}).

6.5 Remark.

From the equivalence of 6.4 we deduce an equivalence of span categories:

span(𝖲𝗆\FF0)span(Γ𝗌𝖾𝗍𝗌).\operatorname{span}(\operatorname{\mathsf{Sm}}_{\FF}^{0})\overset{\sim}{\,\to\,}\operatorname{span}(\Gamma\mathsf{\mathchar 45\relax sets}).

Let us denote by Ω(\FF)\Omega(\FF) the additive category obtained from span(𝖲𝗆\FF0)\operatorname{span}(\operatorname{\mathsf{Sm}}_{\FF}^{0}) by group completing the monoids of homomorphisms. Thus a further equivalence (cf. 4.5):

Ω(\FF)Ω(Γ).\Omega(\FF)\overset{\sim}{\,\to\,}\Omega(\Gamma).

The objects of Ω(\FF)\Omega(\FF) and 𝖢𝗈𝗋\FF0\mathsf{Cor}^{0}_{\FF} coincide, and are in both cases the zero-dimensional smooth \FF\FF-schemes. Morphisms between two zero-dimensional smooth \FF\FF-schemes XX and YY in the two categories are also closely related. Indeed, in Ω(\FF)\Omega(\FF) the group of morphisms XYX\to Y is generated by spans f:ZX×Yf:Z\to X\times Y with ZZ another smooth zero-dimensional \FF\FF-scheme. In 𝖢𝗈𝗋\FF0\mathsf{Cor}^{0}_{\FF} the group of morphisms XYX\to Y is generated by spans f:ZX×Yf:Z\to X\times Y as before, where ff is a closed immersion. (And composition of morphisms coincides.) Reminding ourselves of Remark 4.14, we should view the passage from Ω(\FF)\Omega(\FF) to 𝖢𝗈𝗋\FF0\mathsf{Cor}^{0}_{\FF} as being analogous to the passage from ΩR(Γ)\Omega_{R}(\Gamma) to 𝗉𝖾𝗋𝗆(Γ;R)\operatorname{\mathsf{perm}}(\Gamma;R). And this is indeed precisely right, as one can easily show. We will deduce it later (Proposition 6.14) from more general considerations but, as an illustration of the notions just introduced, we sketch the main idea here.

Let f:ZX×Yf:Z\to X\times Y be a span describing a morphism X+YX\mathrel{\mkern 3.0mu\vbox{\hbox{$\scriptscriptstyle+$}}\mkern-12.0mu{\to}}Y in Ω(\FF)\Omega(\FF) and assume that ZZ is connected. We may push-forward cycles along the finite map ff,

f[Z]Z0(X×Y)=Cor(X,Y),f_{*}[Z]\in Z_{0}(X\times Y)=\operatorname{Cor}(X,Y),

as seen in 6.3. Recall that this is very concrete: ff factors through one of the points PP of X×YX\times Y, and is described simply by a finite field extension \FF(P)\FF(Z)\FF(P)\subseteq\FF(Z). The 0-cycle f[Z]f_{*}[Z] is then nothing but [\FF(Z):\FF(P)]P[\FF(Z):\FF(P)]\cdot P.

In particular, let \FF\KK\LL\FF\subseteq\KK\subseteq\LL be a pair of finite separable field extensions and consider the span

(6.6) Spec(\LL)\textstyle{\operatorname{Spec}(\LL)\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}π\scriptstyle{\pi}π\scriptstyle{\pi}Spec(\KK)\textstyle{\operatorname{Spec}(\KK)}Spec(\KK)\textstyle{\operatorname{Spec}(\KK)}

corresponding to the composite morphism \KK\FF\KK\LL\FF\LL𝑚\LL\KK\otimes_{\FF}\KK\mathop{\rightarrowtail}\LL\otimes_{\FF}\LL\overset{m}{\,\mathop{\twoheadrightarrow}\,}\LL with mm being the multiplication in \LL\LL. This also factors as \KK\FF\KK𝑚\KK\LL\KK\otimes_{\FF}\KK\overset{m}{\,\mathop{\twoheadrightarrow}\,}\KK\mathop{\rightarrowtail}\LL from which we deduce that the closed point PP in this case is Spec(\KK)\operatorname{Spec}(\KK) and its 0-cycle in Spec(\KK)×Spec(\KK)\operatorname{Spec}(\KK)\times\operatorname{Spec}(\KK) is the graph of the identity morphism. It follows that the image of (6.6) in correspondences is [\LL:\KK]IdSpec(\KK)[\LL:\KK]\cdot\operatorname{Id}_{\operatorname{Spec}(\KK)}. So Ω(\FF)𝖢𝗈𝗋\FF\Omega(\FF)\to\mathsf{Cor}_{\FF} factors through the analogous quotient as in Proposition 4.17. It is then not difficult to see that the induced functor on the quotient is an equivalence.

6.7 Recollection ([CD19, § 10]).

A presheaf with transfers is an additive presheaf on 𝖢𝗈𝗋\FF\mathsf{Cor}_{\FF} with values in RR-modules. Such a presheaf is called a sheaf with transfers if its restriction to 𝖲𝗆\FF\operatorname{\mathsf{Sm}}_{\FF} is a sheaf. Here we are interested in the Nisnevich and the étale topology. Recall that covering families in the latter are finite families (XiX)(X_{i}\to X) of étale morphisms that are jointly surjective. For the Nisnevich topology one requires in addition that for every point xXx\in X there exists ii and yXiy\in X_{i} mapping to xx and inducing an isomorphism κ(x)κ(y)\kappa(x)\overset{\sim}{\,\to\,}\kappa(y) on residue fields.

This gives rise to Grothendieck abelian categories ShNis(𝖢𝗈𝗋\FF;R)\mathrm{Sh}_{\textup{Nis}}(\mathsf{Cor}_{\FF};R) and Shét(𝖢𝗈𝗋\FF;R)\mathrm{Sh}_{\textup{\'{e}t}}(\mathsf{Cor}_{\FF};R). For every smooth \FF\FF-scheme XX, the associated presheaf with transfers Cor\FF(,X)R\operatorname{Cor}_{\FF}(-,X)\otimes R is a sheaf for both topologies, and these objects form a dense generating family for the categories of sheaves with transfers. We employ similar terminology for presheaves on the full subcategory 𝖢𝗈𝗋\FF0\mathsf{Cor}^{0}_{\FF}, yielding Grothendieck abelian categories ShNis(𝖢𝗈𝗋\FF0;R)\mathrm{Sh}_{\textup{Nis}}(\mathsf{Cor}^{0}_{\FF};R) and Shét(𝖢𝗈𝗋\FF0;R)\mathrm{Sh}_{\textup{\'{e}t}}(\mathsf{Cor}^{0}_{\FF};R).

6.8 Recollection ([CD19, § 10.3]).

In the sequel we will write τ\tau for any of the two topologies Nis or ét. We will write invariably 𝗈tr\mathsf{o}_{\mathrm{tr}} for the functor on (pre)sheaves which ‘forgets transfers’, i.e. is induced by restriction along 𝖲𝗆\FF(0)𝖢𝗈𝗋\FF(0)\operatorname{\mathsf{Sm}}_{\FF}^{(0)}\mathop{\rightarrowtail}\mathsf{Cor}_{\FF}^{(0)}. The functor 𝗈tr\mathsf{o}_{\mathrm{tr}} is faithful and exact (in fact, it commutes with all limits and colimits) hence it is conservative.

The canonical inclusion Shτ(𝖢𝗈𝗋\FF(0);R)PSh(𝖢𝗈𝗋\FF(0);R)\mathrm{Sh}_{\tau}(\mathsf{Cor}^{(0)}_{\FF};R)\mathop{\rightarrowtail}\mathrm{PSh}_{\oplus}(\mathsf{Cor}^{(0)}_{\FF};R) into the category of additive presheaves admits a left adjoint 𝖺τ\mathsf{a}_{\tau} such that the canonical natural transformation is an equivalence 𝖺τ𝗈tr𝗈tr𝖺τ\mathsf{a}_{\tau}\mathsf{o}_{\mathrm{tr}}\overset{\sim}{\,\to\,}\mathsf{o}_{\mathrm{tr}}\mathsf{a}_{\tau}. In other words, the sheafification of the underlying presheaf without transfers admits a canonical structure of presheaf with transfers. In particular, the sheafification functor at the level of (pre)sheaves with transfers is exact as well.

Finally, sheafification and Day convolution endow the categories of sheaves with transfers with a closed tensor structure extending the one on 𝖢𝗈𝗋\FF(0)\mathsf{Cor}_{\FF}^{(0)}.

We will use the following technical result.

6.9 Lemma.

The inclusion ι:𝖢𝗈𝗋\FF0𝖢𝗈𝗋\FF\iota:\mathsf{Cor}^{0}_{\FF}\mathop{\rightarrowtail}\mathsf{Cor}_{\FF} and étale sheafification induce a commutative square of left adjoint exact tensor functors

ShNis(𝖢𝗈𝗋\FF0;R)\textstyle{\mathrm{Sh}_{\textup{Nis}}(\mathsf{Cor}^{0}_{\FF};R)\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}ι!\scriptstyle{\iota_{!}}𝖺ét\scriptstyle{\mathsf{a}_{\textup{\'{e}t}}}ShNis(𝖢𝗈𝗋\FF;R)\textstyle{\ \mathrm{Sh}_{\textup{Nis}}(\mathsf{Cor}_{\FF};R)\ignorespaces\ignorespaces\ignorespaces\ignorespaces}𝖺ét\scriptstyle{\mathsf{a}_{\textup{\'{e}t}}}Shét(𝖢𝗈𝗋\FF0;R)\textstyle{\mathrm{Sh}_{\textup{\'{e}t}}(\mathsf{Cor}^{0}_{\FF};R)\ignorespaces\ignorespaces\ignorespaces\ignorespaces}ι!\scriptstyle{\iota_{!}}Shét(𝖢𝗈𝗋\FF;R)\textstyle{\ \mathrm{Sh}_{\textup{\'{e}t}}(\mathsf{Cor}_{\FF};R)}

where both horizontal arrows ι!\iota_{!} are fully faithful.

Proof.

The inclusion ι:𝖢𝗈𝗋\FF0𝖢𝗈𝗋\FF\iota:\mathsf{Cor}_{\FF}^{0}\mathop{\rightarrowtail}\mathsf{Cor}_{\FF} induces an adjunction ι^!ι^=()ι\hat{\iota}_{!}\dashv\hat{\iota}^{*}=(-)\circ\iota at the level of presheaves with values in RR-modules, which restricts to an adjunction (denoted by the same symbols) at the level of additive presheaves. It is clear that the restriction ι^=()ι\hat{\iota}^{*}=(-)\circ\iota preserves τ\tau-sheaves with transfers. We denote the induced functor by ι:Shτ(𝖢𝗈𝗋\FF;R)Shτ(𝖢𝗈𝗋\FF0;R)\iota^{*}:\mathrm{Sh}_{\tau}(\mathsf{Cor}_{\FF};R)\to\mathrm{Sh}_{\tau}(\mathsf{Cor}_{\FF}^{0};R). It admits a left adjoint ι!=𝖺τι^!\iota_{!}=\mathsf{a}_{\tau}\hat{\iota}_{!}, and consequently the square of left adjoints in the statement of the lemma commutes, as claimed. It remains to prove that the horizontal arrows are fully faithful and exact tensor functors.

Since the tensor structure on sheaves with transfers is obtained from Day convolution and sheafification from the tensor structure on 𝖢𝗈𝗋\FF(0)\mathsf{Cor}_{\FF}^{(0)}, and since the inclusion ι:𝖢𝗈𝗋\FF0𝖢𝗈𝗋\FF\iota:\mathsf{Cor}_{\FF}^{0}\mathop{\rightarrowtail}\mathsf{Cor}_{\FF} is tensor, it follows immediately that ι!\iota_{!} is tensor as well.

For full-faithfulness and exactness we start with the following observation. There is a canonical isomorphism 𝗈trιι𝗈tr\mathsf{o}_{\mathrm{tr}}\iota^{*}\cong\iota^{*}\mathsf{o}_{\mathrm{tr}} where on the right hand side, ι\iota^{*} denotes the analogous restriction functor on sheaves without transfer. We claim that the induced comparison morphism ι!𝗈tr𝗈trι!:Shτ(𝖢𝗈𝗋\FF0;R)Shτ(𝖲𝗆\FF;R)\iota_{!}\mathsf{o}_{\mathrm{tr}}\to\mathsf{o}_{\mathrm{tr}}\iota_{!}:\mathrm{Sh}_{\tau}(\mathsf{Cor}^{0}_{\FF};R)\to\mathrm{Sh}_{\tau}(\operatorname{\mathsf{Sm}}_{\FF};R) is an isomorphism too. Since all functors preserve colimits, it suffices to show that the comparison morphism is invertible when evaluated on ‘representable’ sheaves with transfers Cor\FF0(,X)R\operatorname{Cor}^{0}_{\FF}(-,X)\otimes R, where XX is an étale \FF\FF-scheme. This follows from [CD16, Corollary 2.1.9] (in fact, both sides are equal to the RR-linear τ\tau-sheaf on 𝖲𝗆\FF\operatorname{\mathsf{Sm}}_{\FF} represented by XX). We conclude that exactness of ι!\iota_{!} at the level of sheaves with transfers would follow from the same property of ι!\iota_{!} at the level of sheaves without transfers (since 𝗈tr\mathsf{o}_{\mathrm{tr}} is faithful exact). And since fully faithfulness of ι!\iota_{!} is equivalent to the unit Idιι!\operatorname{Id}\to\iota^{*}\iota_{!} being an equivalence, this would also follow from the same property of ι!\iota_{!} at the level of sheaves without transfers.

The inclusion ι:𝖲𝗆\FF0𝖲𝗆\FF\iota:\operatorname{\mathsf{Sm}}_{\FF}^{0}\mathop{\rightarrowtail}\operatorname{\mathsf{Sm}}_{\FF} is a continuous and cocontinuous functor for both topologies [SGA72a, III, Corollary 3.4] and it follows from general topos theory [SGA72a, III, Proposition 2.6] that

(6.10) ι!:Shτ(𝖲𝗆\FF0;R)Shτ(𝖲𝗆\FF;R)\iota_{!}:\mathrm{Sh}_{\tau}(\operatorname{\mathsf{Sm}}^{0}_{\FF};R)\to\mathrm{Sh}_{\tau}(\operatorname{\mathsf{Sm}}_{\FF};R)

is fully faithful. The inclusion ι:𝖲𝗆\FF0𝖲𝗆\FF\iota:\operatorname{\mathsf{Sm}}_{\FF}^{0}\mathop{\rightarrowtail}\operatorname{\mathsf{Sm}}_{\FF} also admits a left adjoint which sends a connected smooth \FF\FF-scheme XX to the spectrum of the separable closure of \FF\FF in H0(X,𝒪X)\operatorname{H}^{0}(X,\mathcal{O}_{X}). It follows from [SGA72a, III, Proposition 2.5] that (6.10) is exact, and this concludes the proof. ∎

6.11 Notation.

Let MShét(𝖢𝗈𝗋\FF0;R)M\in\mathrm{Sh}_{\textup{\'{e}t}}(\mathsf{Cor}_{\FF}^{0};R) be an étale sheaf with transfers. We define the RR-module M(\FF¯)M(\overline{\FF}) as the following colimit in RR-modules

M(\FF¯):=colim\KKM(Spec(\KK)),M(\overline{\FF}):=\mathop{\mathrm{colim}}_{\KK}M(\operatorname{Spec}(\KK)),

where \KK\KK runs over the finite field extensions of \FF\FF contained in \FF¯\overline{\FF}. This RR-module M(\FF¯)M(\overline{\FF}) comes with a canonical action of Γ=Gal(\FF¯/\FF)\Gamma=\operatorname{Gal}(\overline{\FF}/\FF), inducing a functor

(6.12) Ψ\FF¯:Shét(𝖢𝗈𝗋\FF0;R)𝖬𝗈𝖽(Γ;R).\Psi_{\overline{\FF}}:\mathrm{Sh}_{\textup{\'{e}t}}(\mathsf{Cor}_{\FF}^{0};R)\to\operatorname{\mathsf{Mod}}(\Gamma;R).
6.13 Lemma.

The functor Ψ\FF¯\Psi_{\overline{\FF}} of (6.12) is an equivalence of RR-linear tensor categories.

Proof.

It is clear that M(\FF¯)M(\overline{\FF}) only depends on the sheaf without transfers underlying MM, that is, we have a factorization

Ψ\FF¯:Shét(𝖢𝗈𝗋\FF0;R)𝗈trShét(𝖲𝗆\FF0;R)𝖬𝗈𝖽(Γ;R).\Psi_{\overline{\FF}}:\mathrm{Sh}_{\textup{\'{e}t}}(\mathsf{Cor}_{\FF}^{0};R)\xrightarrow{\mathsf{o}_{\mathrm{tr}}}\mathrm{Sh}_{\textup{\'{e}t}}(\operatorname{\mathsf{Sm}}_{\FF}^{0};R)\overset{\sim}{\,\to\,}\operatorname{\mathsf{Mod}}(\Gamma;R).

The second functor is the well-known RR-linear tensor equivalence induced by Galois theory [SGA72b, VIII, Corollaire 2.2], and it therefore suffices to show that 𝗈tr\mathsf{o}_{\mathrm{tr}} is an equivalence of RR-linear tensor categories too. It admits a left adjoint 𝖺tr\mathsf{a}_{\mathrm{tr}} for formal reasons, and we want to show that the unit η\eta of this adjunction is invertible. Since both functors preserve colimits, it suffices to show that η\eta is invertible when evaluated on representable sheaves. This follows from [CD16, Corollary 2.1.9].

Now, 𝖺tr\mathsf{a}_{\mathrm{tr}} is colimit preserving and fully faithful, and its essential image contains the generating family of Shét(𝖢𝗈𝗋\FF0;R)\mathrm{Sh}_{\textup{\'{e}t}}(\mathsf{Cor}^{0}_{\FF};R) given by the ‘representable’ sheaves with transfers. This shows that 𝖺tr\mathsf{a}_{\mathrm{tr}} is an equivalence, with quasi-inverse 𝗈tr\mathsf{o}_{\mathrm{tr}}. Finally, we note that 𝖺tr\mathsf{a}_{\mathrm{tr}} is RR-linear and tensor, and this completes the proof. ∎

6.14 Proposition.

Consider the exact tensor functor Ψ\FF¯𝖺ét:ShNis(𝖢𝗈𝗋\FF0;R)𝖬𝗈𝖽(Γ;R)\Psi_{\overline{\FF}}\circ\mathsf{a}_{\textup{\'{e}t}}:\mathrm{Sh}_{\textup{Nis}}(\mathsf{Cor}^{0}_{\FF};R)\to\operatorname{\mathsf{Mod}}(\Gamma;R). It restricts to an equivalence of RR-linear tensor categories

𝖢𝗈𝗋\FF0R𝗉𝖾𝗋𝗆(Γ;R).\mathsf{Cor}^{0}_{\FF}\otimes\,R\overset{\sim}{\,\to\,}\operatorname{\mathsf{perm}}(\Gamma;R).
Proof.

The composite

𝖢𝗈𝗋\FF0RShNis(𝖢𝗈𝗋\FF0;R)𝖺étShét(𝖢𝗈𝗋\FF0;R)\mathsf{Cor}^{0}_{\FF}\otimes R\to\mathrm{Sh}_{\textup{Nis}}(\mathsf{Cor}^{0}_{\FF};R)\xrightarrow{\mathsf{a}_{\textup{\'{e}t}}}\mathrm{Sh}_{\textup{\'{e}t}}(\mathsf{Cor}^{0}_{\FF};R)

is fully faithful, and it is easy to see that under the equivalence Ψ\FF¯\Psi_{\overline{\FF}} the image corresponds precisely to the permutation modules. ∎

6.15 Remark.

We may summarize Proposition 6.14 by the commutative diagram

𝗉𝖾𝗋𝗆(Γ;R)\textstyle{\operatorname{\mathsf{perm}}(\Gamma;R)\ignorespaces\ignorespaces\ignorespaces\ignorespaces}𝖢𝗈𝗋\FF0R\textstyle{\mathsf{Cor}_{\FF}^{0}\otimes R\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}\scriptstyle{\sim}ShNis(𝖢𝗈𝗋\FF0;R)\textstyle{\mathrm{Sh}_{\textup{Nis}}(\mathsf{Cor}_{\FF}^{0};R)\ignorespaces\ignorespaces\ignorespaces\ignorespaces}𝖺ét\scriptstyle{\mathsf{a}_{\textup{\'{e}t}}}𝖬𝗈𝖽(Γ;R)\textstyle{\operatorname{\mathsf{Mod}}(\Gamma;R)}Shét(𝖢𝗈𝗋\FF0;R)\textstyle{\mathrm{Sh}_{\textup{\'{e}t}}(\mathsf{Cor}_{\FF}^{0};R)\ignorespaces\ignorespaces\ignorespaces\ignorespaces}\scriptstyle{\sim}Ψ\FF¯\scriptstyle{\Psi_{\overline{\FF}}}

where the left vertical arrow is the canonical inclusion, and the first vertical arrow on the right is the Yoneda embedding.

6.16 Remark.

The Nisnevich topology on 𝖢𝗈𝗋\FF0\mathsf{Cor}^{0}_{\FF} is very simple: Every cover splits, and a presheaf with transfers on 𝖢𝗈𝗋\FF0\mathsf{Cor}^{0}_{\FF} (i.e. an additive contravariant functor) is therefore automatically a Nisnevich sheaf with transfers. It follows that we may extend Ψ\FF¯\Psi_{\overline{\FF}} to Nisnevich sheaves with transfers and deduce the following consequence.

6.17 Corollary.

There is an equivalence of RR-linear (abelian) categories

Ψ\FF¯:ShNis(𝖢𝗈𝗋\FF0;R)𝖬𝖺𝖼𝗄R𝖼𝗈𝗁Γ\Psi_{\overline{\FF}}:\mathrm{Sh}_{\textup{Nis}}(\mathsf{Cor}^{0}_{\FF};R)\overset{\sim}{\,\to\,}\mathop{\mathsf{Mack}^{\mathsf{coh}}_{R}}{\Gamma}

between sheaves with transfers on zero-dimensional smooth schemes, and cohomological Mackey functors. ∎

6.18 Remark.

The equivalences established in the last few results are related through the two commutative squares (of left and right adjoints, respectively):

𝖬𝖺𝖼𝗄R𝖼𝗈𝗁Γ\textstyle{\mathop{\mathsf{Mack}^{\mathsf{coh}}_{R}}{\Gamma}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}\scriptstyle{\dashv}LP\scriptstyle{\mathrm{LP}}ShNis(𝖢𝗈𝗋\FF0;R)\textstyle{\mathrm{Sh}_{\textup{Nis}}(\mathsf{Cor}^{0}_{\FF};R)\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}\scriptstyle{\dashv}𝖺ét\scriptstyle{\mathsf{a}_{\textup{\'{e}t}}}Ψ\FF¯\scriptstyle{\Psi_{\overline{\FF}}}\scriptstyle{\sim}𝖬𝗈𝖽(Γ;R)\textstyle{\operatorname{\mathsf{Mod}}(\Gamma;R)\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}FP\scriptstyle{\mathrm{FP}}Shét(𝖢𝗈𝗋\FF0;R)\textstyle{\mathrm{Sh}_{\textup{\'{e}t}}(\mathsf{Cor}^{0}_{\FF};R)\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}\scriptstyle{\sim}Ψ\FF¯\scriptstyle{\Psi_{\overline{\FF}}}

Here, the right adjoint to étale sheafification is just the obvious inclusion, and LPFP\mathrm{LP}\dashv\mathrm{FP} is the adjunction of Remark 5.4.

7. Artin motives

In this section, we want to explain the connection with Artin motives alluded to in the introduction. This is originally due to Voevodsky [Voe00, § 3.4]. We keep the notation and hypotheses of 6.1, that is, \FF\FF is a field with absolute Galois group Γ=Gal(\FF¯/\FF)\Gamma=\operatorname{Gal}(\overline{\FF}/\FF).

To avoid cumbersome notation, we will from now on write XShτ(𝖢𝗈𝗋\FF;R)X\in\mathrm{Sh}_{\tau}(\mathsf{Cor}_{\FF};R) for the sheaf with transfers Cor\FF(,X)R\operatorname{Cor}_{\FF}(-,X)\otimes R whenever XX is a smooth \FF\FF-scheme.

7.1 Recollection.

The category of effective motives over \FF\FF (with RR-linear coefficients) is the Verdier localization of the derived category of sheaves with transfers

(7.2) DMeff(\FF;R):=D(ShNis(𝖢𝗈𝗋\FF;R))Loc({cone(𝔸X1X)|X𝖲𝗆\FF})\operatorname{DM^{\mathrm{eff}}}(\FF;R):=\frac{\operatorname{D}(\mathrm{Sh}_{\textup{Nis}}(\mathsf{Cor}_{\FF};R))}{\operatorname{Loc}(\big{\{}\,\operatorname{cone}(\mathbb{A}^{1}_{X}\to X)\,\big{|}\,X\in\operatorname{\mathsf{Sm}}_{\FF}\,\big{\}})}

obtained by inverting 𝔸X1X\mathbb{A}^{1}_{X}\to X for every smooth \FF\FF-scheme XX.

The compact part of DMeff(\FF;R)\operatorname{DM^{\mathrm{eff}}}(\FF;R) is called the category of effective geometric motives, and is denoted

DMgm,eff(\FF;R):=DMeff(\FF;R)c.\operatorname{DM^{\operatorname{gm},\mathrm{eff}}}(\FF;R):=\operatorname{DM^{\mathrm{eff}}}(\FF;R)^{c}.

Let XX be a smooth \FF\FF-scheme. The image of XX in DMgm,eff(\FF;R)\operatorname{DM^{\operatorname{gm},\mathrm{eff}}}(\FF;R) is called the (effective) motive of XX. (Since we will deal exclusively with effective motives in the sequel, we will often drop the adjective.)

7.3 Remark.

The tensor product on sheaves with transfers induces a tensor product on the derived category [CD19, § 5, or 11.1.2]. The kernel of the Verdier localization in (7.2) is an ideal hence DMeff(\FF;R)\operatorname{DM^{\mathrm{eff}}}(\FF;R) inherits the structure of a tensor category. Also, the triangulated category D(ShNis(𝖢𝗈𝗋\FF;R))\operatorname{D}(\mathrm{Sh}_{\textup{Nis}}(\mathsf{Cor}_{\FF};R)) is compactly generated by (the sheaves with transfers representing) smooth \FF\FF-schemes. (This follows from the finite cohomological dimension with respect to the Nisnevich topology [KS86, 1.2.5].) It follows that DMeff(\FF;R)\operatorname{DM^{\mathrm{eff}}}(\FF;R) is compactly generated by motives of smooth schemes.

7.4 Proposition.
  1. (a)

    The functor induced by 6.9,

    ι!:D(ShNis(𝖢𝗈𝗋\FF0;R))D(ShNis(𝖢𝗈𝗋\FF;R)),\iota_{!}:\operatorname{D}(\mathrm{Sh}_{\textup{Nis}}(\mathsf{Cor}^{0}_{\FF};R))\mathop{\rightarrowtail}\operatorname{D}(\mathrm{Sh}_{\textup{Nis}}(\mathsf{Cor}_{\FF};R)),

    is tensor triangulated and fully faithful.

  2. (b)

    Its composite with the quotient of (7.2) remains fully faithful:

    ι!:D(ShNis(𝖢𝗈𝗋\FF0;R))DMeff(\FF;R).\iota_{!}:\operatorname{D}(\mathrm{Sh}_{\textup{Nis}}(\mathsf{Cor}^{0}_{\FF};R))\mathop{\rightarrowtail}\operatorname{DM^{\mathrm{eff}}}(\FF;R).
Proof.

The functor ι!\iota_{!} of 6.9 was shown to be tensor, fully faithful and exact. As it also has an exact right adjoint ι\iota^{*}, it follows that the unit of the adjunction at the level of derived categories remains an isomorphism. This shows the first statement.

For the second statement, it suffices to prove that the image of each 0-dimensional smooth \FF\FF-scheme in D(ShNis(𝖢𝗈𝗋\FF;R))\operatorname{D}(\mathrm{Sh}_{\textup{Nis}}(\mathsf{Cor}_{\FF};R)) is local with respect to the morphisms

𝔸X1X\mathbb{A}^{1}_{X}\to X

for each smooth \FF\FF-scheme XX. Thus let \FF/\FF\FF^{\prime}/\FF be a finite separable field extension. We want to prove that the map

HomD(ShNis(𝖢𝗈𝗋\FF;R))(X,ΣiSpec(\FF))HomD(ShNis(𝖢𝗈𝗋\FF;R))(𝔸X1,ΣiSpec(\FF))\operatorname{Hom}_{\operatorname{D}(\mathrm{Sh}_{\textup{Nis}}(\mathsf{Cor}_{\FF};R))}(X,\Sigma^{i}\operatorname{Spec}(\FF^{\prime}))\to\operatorname{Hom}_{\operatorname{D}(\mathrm{Sh}_{\textup{Nis}}(\mathsf{Cor}_{\FF};R))}(\mathbb{A}^{1}_{X},\Sigma^{i}\operatorname{Spec}(\FF^{\prime}))

is bijective for each i\bbZi\in\bbZ. As the objects of 𝖢𝗈𝗋\FF0\mathsf{Cor}_{\FF}^{0} are their own tensor duals, this is equivalent to showing

HomD(ShNis(𝖢𝗈𝗋\FF;R))(X,ΣiR)HomD(ShNis(𝖢𝗈𝗋\FF;R))(𝔸X1,ΣiR)\operatorname{Hom}_{\operatorname{D}(\mathrm{Sh}_{\textup{Nis}}(\mathsf{Cor}_{\FF};R))}(X^{\prime},\Sigma^{i}R)\to\operatorname{Hom}_{\operatorname{D}(\mathrm{Sh}_{\textup{Nis}}(\mathsf{Cor}_{\FF};R))}(\mathbb{A}^{1}_{X^{\prime}},\Sigma^{i}R)

bijective, where we set X=X\FFX^{\prime}=X_{\FF^{\prime}}. But by [Voe00, Proposition 3.1.8], this identifies with the canonical map

HNisi(X,R)HNisi(𝔸X1,R).\operatorname{H}_{\textup{Nis}}^{i}(X^{\prime},R)\to\operatorname{H}_{\textup{Nis}}^{i}(\mathbb{A}^{1}_{X^{\prime}},R).

Both sides vanish for i>0i>0 by 7.5 below and for i<0i<0, and the map is an isomorphism for i=0i=0:

Rπ0(X)Rπ0(𝔸X1).R^{\pi_{0}(X^{\prime})}\overset{\sim}{\,\to\,}R^{\pi_{0}(\mathbb{A}^{1}_{X^{\prime}})}.\qed
7.5 Lemma.

Let XX be an irreducible, geometrically unibranch (e.g. normal) scheme, and FF a constant sheaf of RR-modules on the small Nisnevich site XNisX_{\textup{Nis}}. Then HNisi(X,F)=0\operatorname{H}^{i}_{\textup{Nis}}(X,F)=0 for all i>0i>0.

Proof.

Let K(X)K(X) denote the function field of XX, and consider the inclusion

η:Spec(K(X))X\eta:\operatorname{Spec}(K(X))\mathop{\rightarrowtail}X

which induces a morphism of sites

()η:XNisSpec(K(X))Nis(-)_{\eta}:X_{\textup{Nis}}\to\operatorname{Spec}(K(X))_{\textup{Nis}}

and associated morphism of topoi

η:ShNis(ÉtX;R)ShNis(ÉtSpec(K(X));R):η.\eta^{*}:\mathrm{Sh}_{\textup{Nis}}(\textup{\'{E}t}_{X};R)\rightleftarrows\mathrm{Sh}_{\textup{Nis}}(\textup{\'{E}t}_{\operatorname{Spec}(K(X))};R):\eta_{*}.

It follows directly from the properties of étale morphisms with target XX in [Gro67, Proposition 18.10.7] that the canonical morphism

(7.6) FηηFF\to\eta_{*}\eta^{*}F

is an isomorphism. Note that every Nisnevich cover in ÉtSpec(K(X))\textup{\'{E}t}_{\operatorname{Spec}(K(X))} splits and hence every sheaf is flabby. As direct images preserve flabby sheaves, it follows from the isomorphism (7.6) that FF is flabby as well. This concludes the proof. ∎

7.7 Remark.

Alternatively, if \FF\FF is a perfect field, the subcategory of 𝔸1\mathbb{A}^{1}-local objects in D(ShNis(𝖢𝗈𝗋\FF;R))\operatorname{D}(\mathrm{Sh}_{\textup{Nis}}(\mathsf{Cor}_{\FF};R)) identifies with those complexes whose homology sheaves are 𝔸1\mathbb{A}^{1}-invariant. (In [Voe00, Proposition 3.2.3] this is stated only for right-bounded complexes; the general case is in [BV08, Theorem 4.4].) By 6.3, we see that an object of 𝖢𝗈𝗋\FF0\mathsf{Cor}^{0}_{\FF} defines an 𝔸1\mathbb{A}^{1}-invariant Nisnevich sheaf with transfers, and this yields a shorter proof of Proposition 7.4 for \FF\FF perfect.

7.8 Notation.

We define DAM(\FF;R)\operatorname{DAM}(\FF;R) as the localizing subcategory of DMeff(\FF;R)\operatorname{DM^{\mathrm{eff}}}(\FF;R) generated by the motives of 0-dimensional smooth \FF\FF-schemes, and we call it the category of Artin motives. It is a compactly generated tensor triangulated category. Its compact part, the category of geometric Artin motives,

DAMgm(\FF;R):=DAM(\FF;R)c\operatorname{DAM^{\operatorname{gm}}}(\FF;R):=\operatorname{DAM}(\FF;R)^{c}

can also be described as the thick subcategory of DMgm,eff(\FF;R)\operatorname{DM^{\operatorname{gm},\mathrm{eff}}}(\FF;R) generated by the motives of 0-dimensional smooth \FF\FF-schemes (3.8 (b)).

7.9 Remark.

Recall that DMgm,eff(\FF;R)\operatorname{DM^{\operatorname{gm},\mathrm{eff}}}(\FF;R) is a full subcategory of the category of Voevodsky motives DMgm(\FF;R)\operatorname{DM^{\operatorname{gm}}}(\FF;R) [Voe00, Theorem 4.3.1]. The latter is obtained from the former by tensor-inverting the Tate object R(1)R(1), and thereby turning each object rigid (for the tensor structure). As we observed above, the motives of 0-dimensional smooth \FF\FF-schemes are rigid; in fact, they are their own tensor duals. It follows that DAMgm(\FF;R)\operatorname{DAM^{\operatorname{gm}}}(\FF;R) is already a rigid tensor triangulated category, and this explains why one does not distinguish between an effective and non-effective version of Artin motives.

Artin representations are typically understood as finite dimensional representations of the absolute Galois group of a field. Originally the vector spaces were over the field of complex number, and the base field was the field of rational numbers. Later, other base fields were considered, and in the motivic community it is not unusual to consider more general coefficients. This sheds some light on the terminology introduced in 7.8.

The following result completes the picture (1.2) discussed in the introduction.

7.10 Corollary.

There are canonical equivalences of tensor triangulated categories

D𝖯𝖾𝗋𝗆(Γ;R)Ψ\FF¯1FPD(ShNis(𝖢𝗈𝗋\FF0;R))ι!DAM(\FF;R).\operatorname{D\mathsf{Perm}}(\Gamma;R)\xrightarrow[\sim]{\Psi_{\overline{\FF}}^{-1}\circ\mathrm{FP}}\operatorname{D}(\mathrm{Sh}_{\textup{Nis}}(\mathsf{Cor}^{0}_{\FF};R))\xrightarrow[\sim]{\iota_{!}}\operatorname{DAM}(\FF;R).

They restrict to equivalences of tensor triangulated categories of compacts

Kb(𝗉𝖾𝗋𝗆(Γ;R))Kb((𝖢𝗈𝗋\FF0R))DAMgm(\FF;R).\operatorname{K}_{\operatorname{b}}(\operatorname{\mathsf{perm}}(\Gamma;R)^{\natural})\overset{\sim}{\,\to\,}\operatorname{K}_{\operatorname{b}}((\mathsf{Cor}_{\FF}^{0}\otimes R)^{\natural})\overset{\sim}{\,\to\,}\operatorname{DAM^{\operatorname{gm}}}(\FF;R).
Proof.

The first equivalence is 6.17 and 5.7. And the fully-faithful functor of Proposition 7.4 has image DAM(\FF;R)\operatorname{DAM}(\FF;R). ∎

7.11 Remark.

Of course, the inverse of the composite equivalence sends the motive of a finite separable field extension \FF\FF\FF\subseteq\FF^{\prime} corresponding to an open subgroup ΓΓ\Gamma^{\prime}\leq\Gamma to the permutation module R(Γ/Γ)R(\Gamma/\Gamma^{\prime}), cf. 6.4.

7.12 Remark.

Assume \FF\FF is perfect. We may identify DMeff(\FF;R)\operatorname{DM^{\mathrm{eff}}}(\FF;R) with the full subcategory of D(ShNis(𝖢𝗈𝗋\FF;R))\operatorname{D}(\mathrm{Sh}_{\textup{Nis}}(\mathsf{Cor}_{\FF};R)) of complexes with 𝔸1\mathbb{A}^{1}-invariant homology sheaves (Remark 7.7). Restrict attention to the full subcategory

DM,eff(\FF;R)\operatorname{DM^{\,--,\mathrm{eff}}}(\FF;R)

spanned by those complexes whose homology is right-bounded (in addition to being 𝔸1\mathbb{A}^{1}-invariant). This is Voevodsky’s ‘big’ category of effective motives [Voe00].

Note that D(ShNis(𝖢𝗈𝗋\FF0;R))\operatorname{D}^{-}(\mathrm{Sh}_{\textup{Nis}}(\mathsf{Cor}^{0}_{\FF};R)) does not have all coproducts. Yet, it is the smallest triangulated subcategory (of itself) containing Kb(𝗉𝖾𝗋𝗆(Γ;R))\operatorname{K}_{\operatorname{b}}(\operatorname{\mathsf{perm}}(\Gamma;R)) and closed under coproducts. So it follows from Proposition 7.4 that we have an equivalence

D(ShNis(𝖢𝗈𝗋\FF0;R))DAM(\FF;R)DM,eff(\FF;R).\operatorname{D}^{-}(\mathrm{Sh}_{\textup{Nis}}(\mathsf{Cor}^{0}_{\FF};R))\overset{\sim}{\,\to\,}\operatorname{DAM}(\FF;R)\cap\operatorname{DM^{\,--,\mathrm{eff}}}(\FF;R).

If R=\bbZR=\bbZ, this recovers [Voe00, Proposition 3.4.1].

7.13 Remark.

Let us follow up on the picture presented in Remark 6.15. Replacing Nisnevich by étale sheaves in 7.1 one obtains similarly a tensor triangulated category DMéteff(\FF;R)\operatorname{DM_{\textup{\'{e}t}}^{\mathrm{eff}}}(\FF;R). The sheafification functor 𝖺ét\mathsf{a}_{\textup{\'{e}t}} passes to the level of motives and we obtain a diagram:

(7.14) D𝖯𝖾𝗋𝗆(Γ;R)\textstyle{\operatorname{D\mathsf{Perm}}(\Gamma;R)\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}\scriptstyle{\sim}Ψ\FF¯1FP\scriptstyle{\Psi_{\overline{\FF}}^{-1}\circ\mathrm{FP}}D(ShNis(𝖢𝗈𝗋\FF0;R))\textstyle{\operatorname{D}(\mathrm{Sh}_{\textup{Nis}}(\mathsf{Cor}^{0}_{\FF};R))\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}ι!\scriptstyle{\iota_{!}}𝖺ét\scriptstyle{\mathsf{a}_{\textup{\'{e}t}}}DMeff(\FF;R)\textstyle{\operatorname{DM^{\mathrm{eff}}}(\FF;R)\ignorespaces\ignorespaces\ignorespaces\ignorespaces}𝖺ét\scriptstyle{\mathsf{a}_{\textup{\'{e}t}}}D(𝖬𝗈𝖽(Γ;R))\textstyle{\operatorname{D}(\operatorname{\mathsf{Mod}}(\Gamma;R))}D(Shét(𝖢𝗈𝗋\FF0;R))\textstyle{\operatorname{D}(\mathrm{Sh}_{\textup{\'{e}t}}(\mathsf{Cor}^{0}_{\FF};R))\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}ι!\scriptstyle{\iota_{!}}\scriptstyle{\sim}Ψ\FF¯\scriptstyle{\Psi_{\overline{\FF}}}DMéteff(\FF;R).\textstyle{\operatorname{DM_{\textup{\'{e}t}}^{\mathrm{eff}}}(\FF;R).}

Here the left square is the derived analogue of the commutative square in Remark 6.15, and the right square is (induced from) a derived analogue of the commutative square in 6.9.

7.15 Corollary.

Assume that RR is nn-torsion with n\bbZn\in\bbZ invertible in \FF\FF. Under the equivalence of 7.10, the étale realization on Artin motives corresponds to the canonical functor which is the identity on objects:

(7.16) D𝖯𝖾𝗋𝗆(Γ;R)\textstyle{\operatorname{D\mathsf{Perm}}(\Gamma;R)\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}Cor. 7.10\scriptstyle{\sim}DAM(\FF;R)\textstyle{\operatorname{DAM}(\FF;R)\ignorespaces\ignorespaces\ignorespaces\ignorespaces}Reét\scriptstyle{\mathrm{Re}_{\textup{\'{e}t}}}D(𝖬𝗈𝖽(Γ;R))\textstyle{\operatorname{D}(\operatorname{\mathsf{Mod}}(\Gamma;R))\ignorespaces\ignorespaces\ignorespaces\ignorespaces}=\scriptstyle{=}D(𝖬𝗈𝖽(Γ;R)).\textstyle{\operatorname{D}(\operatorname{\mathsf{Mod}}(\Gamma;R)).}
Proof.

The Rigidity Theorem (in the form of [CD16, Theorem 4.5.2]) implies that the bottom right horizontal arrow ι!\iota_{!} in (7.14) becomes an equivalence. Recall also that the étale realization may then be described as the composite

Reét:DMeff(\FF;R)𝖺étDMéteff(\FF;R)D(𝖬𝗈𝖽(Γ;R))\mathrm{Re}_{\textup{\'{e}t}}:\operatorname{DM^{\mathrm{eff}}}(\FF;R)\xrightarrow{\mathsf{a}_{\textup{\'{e}t}}}\operatorname{DM_{\textup{\'{e}t}}^{\mathrm{eff}}}(\FF;R)\simeq\operatorname{D}(\operatorname{\mathsf{Mod}}(\Gamma;R))

from the top right to the bottom left in (7.14). Hence (7.16) commutes. ∎

8. Mackey functoriality

In previous sections we have established the equivalences between three theories as described in Figure 1 and more precisely in (1.2). Each of these theories comes with a dependence on a profinite group (or base field), and the variance of the theory as a function of the group may be seen to satisfy axioms reminiscent of Mackey functors. Although this can be formalized as a Mackey (2-)functoriality in the sense of [BD20], we restrict ourselves to the key ingredients without theoretical elaboration. Namely, we will exhibit the functoriality for each of the theories, and show that it is compatible with the equivalences between the theories.

8.1 Remark.

We recalled the restriction, induction, and conjugation functors on discrete modules in 2.10 and we noted that they restrict to permutation modules. As each of these operations is both a left and a right adjoint, they pass to Kb(𝗉𝖾𝗋𝗆(;R))\operatorname{K}_{\operatorname{b}}(\operatorname{\mathsf{perm}}(-;R)) and then to D𝖯𝖾𝗋𝗆(;R)\operatorname{D\mathsf{Perm}}(-;R).

8.2 Remark.

In order to quickly define the Mackey structure on cohomological Mackey functors, we view them as (RR-linear) presheaves on permutation modules (4.21). A similar approach is taken by Thévenaz and Webb [TW90], and is equivalent to the more elementary constructions by Yoshida [Sas82].

Given an open subgroup ΓΓ\Gamma^{\prime}\leq\Gamma, an element γΓ\gamma\in\Gamma, and cohomological Mackey functors M𝖬𝖺𝖼𝗄R𝖼𝗈𝗁(Γ)M\in\mathop{\mathsf{Mack}^{\mathsf{coh}}_{R}}(\Gamma^{\prime}), N𝖬𝖺𝖼𝗄R𝖼𝗈𝗁ΓN\in\mathop{\mathsf{Mack}^{\mathsf{coh}}_{R}}{\Gamma}, we define

(8.3) ρΓΓ(N)=NIndΓΓ,τΓΓ(M)=MResΓΓ,σγ(M)=Mcγ1,\rho^{\Gamma}_{\Gamma^{\prime}}(N)=N\circ\operatorname{Ind}^{\Gamma}_{\Gamma^{\prime}},\qquad\tau^{\Gamma}_{\Gamma^{\prime}}(M)=M\circ\operatorname{Res}^{\Gamma}_{\Gamma^{\prime}},\qquad\sigma_{\gamma}(M)=M\circ c_{\gamma^{-1}},

where we used the corresponding Mackey functoriality on permutation modules (2.10). As the latter functors are all RR-linear, we conclude that the newly defined functors in (8.3) remain cohomological Mackey functors.

These operations satisfy analogues of the axioms for Mackey functors, and this follows essentially from the corresponding axioms for permutation modules. As an example, we give details for the Mackey formula. Let H,KΓH,K\leq\Gamma and M𝖬𝖺𝖼𝗄R𝖼𝗈𝗁(K)M\in\mathop{\mathsf{Mack}^{\mathsf{coh}}_{R}}(K). Then we find

ρHΓτKΓM\displaystyle\rho^{\Gamma}_{H}\tau^{\Gamma}_{K}M =τKΓMIndHΓ\displaystyle=\tau^{\Gamma}_{K}M\circ\operatorname{Ind}^{\Gamma}_{H}
=MResKΓIndHΓ\displaystyle=M\circ\operatorname{Res}^{\Gamma}_{K}\circ\operatorname{Ind}^{\Gamma}_{H}
=M[g]K\Γ/HIndKHgKcgResKgHH\displaystyle=M\circ\oplus_{[g]\in K\backslash{}{\Gamma}/H}\operatorname{Ind}^{K}_{K\cap{}^{g\!}H}\circ c_{g}\circ\operatorname{Res}^{H}_{K^{\!g}\cap H}
=[g]K\Γ/HMIndKHgKcgResKgHH\displaystyle=\oplus_{[g]\in K\backslash{}{\Gamma}/H}M\circ\operatorname{Ind}^{K}_{K\cap{}^{g\!}H}\circ c_{g}\circ\operatorname{Res}^{H}_{K^{\!g}\cap H}
=[g]K\Γ/HτKgHH(MIndKHgKcg)\displaystyle=\oplus_{[g]\in K\backslash{}{\Gamma}/H}\tau^{H}_{K^{\!g}\cap H}(M\circ\operatorname{Ind}^{K}_{K\cap{}^{g\!}H}\circ c_{g})
=[g]K\Γ/HτKgHHσg1(MIndKHgK)\displaystyle=\oplus_{[g]\in K\backslash{}{\Gamma}/H}\tau^{H}_{K^{\!g}\cap H}\sigma_{g^{-1}}(M\circ\operatorname{Ind}^{K}_{K\cap{}^{g\!}H})
=[g]K\Γ/HτKgHHσg1ρKHgKM\displaystyle=\oplus_{[g]\in K\backslash{}{\Gamma}/H}\tau^{H}_{K^{\!g}\cap H}\sigma_{g^{-1}}\rho^{K}_{K\cap{}^{g\!}H}M
=[γ]H\Γ/KτKγHHσγρKHγKM\displaystyle=\oplus_{[\gamma]\in H\backslash{}{\Gamma}/K}\tau^{H}_{{}^{\gamma}K\cap H}\sigma_{\gamma}\rho^{K}_{K\cap H^{\gamma}}M

where the last equality is obtained upon replacing gg by γ=g1\gamma=g^{-1}.

8.4 Remark.

The operations ρ??\rho^{?}_{?}, τ??\tau^{?}_{?}, σ?\sigma_{?} on cohomological Mackey functors are exact and therefore trivially induce functors (denoted by the same symbols) on the derived categories. Indeed, induction and restriction are adjoints to each other on both sides, at the level of permutation modules. It follows that the same is true for ρ??\rho^{?}_{?} and τ??\tau^{?}_{?} at the level of cohomological Mackey functors. In particular, these functors are exact. The functor σγ\sigma_{\gamma} is an isomorphism with inverse σγ1\sigma_{\gamma^{-1}}.

8.5 Proposition.

Let ΓΓ\Gamma^{\prime}\leq\Gamma be an open subgroup, and γΓ\gamma\in\Gamma. The equivalence of 5.7 identifies the operations on the left with the operations on the right in the following diagram:

D𝖯𝖾𝗋𝗆(Γ;R){\operatorname{D\mathsf{Perm}}(\Gamma;R)}D(𝖬𝖺𝖼𝗄R𝖼𝗈𝗁Γ){\operatorname{D}(\mathop{\mathsf{Mack}^{\mathsf{coh}}_{R}}{\Gamma})}D𝖯𝖾𝗋𝗆(Γ;R){\operatorname{D\mathsf{Perm}}(\Gamma^{\prime};R)}D(𝖬𝖺𝖼𝗄R𝖼𝗈𝗁(Γ)){\operatorname{D}(\mathop{\mathsf{Mack}^{\mathsf{coh}}_{R}}(\Gamma^{\prime}))}D𝖯𝖾𝗋𝗆(Γγ;R){\operatorname{D\mathsf{Perm}}({}^{\gamma}\Gamma^{\prime};R)}D(𝖬𝖺𝖼𝗄R𝖼𝗈𝗁(Γγ)){\operatorname{D}(\mathop{\mathsf{Mack}^{\mathsf{coh}}_{R}}({}^{\gamma}\Gamma^{\prime}))}\scriptstyle{\sim}ResΓΓ\scriptstyle{\operatorname{Res}^{\Gamma}_{\Gamma^{\prime}}}ρΓΓ\scriptstyle{\rho^{\Gamma}_{\Gamma^{\prime}}}IndΓΓ\scriptstyle{\operatorname{Ind}^{\Gamma}_{\Gamma^{\prime}}}\scriptstyle{\sim}cγ\scriptstyle{c_{\gamma}}τΓΓ\scriptstyle{\tau^{\Gamma}_{\Gamma^{\prime}}}σγ\scriptstyle{\sigma_{\gamma}}\scriptstyle{\sim}
Proof.

Suppose G:𝖬𝗈𝖽(H;R)𝖬𝗈𝖽(K;R)G:\operatorname{\mathsf{Mod}}(H;R)\to\operatorname{\mathsf{Mod}}(K;R) is a functor with left adjoint FF. Then for any (H;R)(H;R)-module MM we have

FP(M)F=Hom𝖬𝗈𝖽(K;R)(F(),M)=Hom𝖬𝗈𝖽(H;R)(,G(M))=FP(G(M)).\displaystyle\mathrm{FP}(M)\circ F=\operatorname{Hom}_{\operatorname{\mathsf{Mod}}(K;R)}(F(-),M)=\operatorname{Hom}_{\operatorname{\mathsf{Mod}}(H;R)}(-,G(M))=\mathrm{FP}(G(M)).

By the existing adjunctions for restriction, induction, and conjugation, and by our definition of the operations on cohomological Mackey functors, we see from this that the functor

FP:𝖬𝗈𝖽(?;R)𝖬𝖺𝖼𝗄R𝖼𝗈𝗁(?)\mathrm{FP}:\operatorname{\mathsf{Mod}}(?;R)\to\mathop{\mathsf{Mack}^{\mathsf{coh}}_{R}}(?)

is compatible with the operations in the statement. The same is then true for the induced functor

FP:K(𝖬𝗈𝖽(?;R))K(𝖬𝖺𝖼𝗄R𝖼𝗈𝗁(?)).\mathrm{FP}:\operatorname{K}(\operatorname{\mathsf{Mod}}(?;R))\to\operatorname{K}(\mathop{\mathsf{Mack}^{\mathsf{coh}}_{R}}(?)).

We conclude after restricting to D𝖯𝖾𝗋𝗆(?;R)\operatorname{D\mathsf{Perm}}(?;R) and composing with K(𝖬𝖺𝖼𝗄R𝖼𝗈𝗁(?))D(𝖬𝖺𝖼𝗄R𝖼𝗈𝗁(?))\operatorname{K}(\mathop{\mathsf{Mack}^{\mathsf{coh}}_{R}}(?))\to\operatorname{D}(\mathop{\mathsf{Mack}^{\mathsf{coh}}_{R}}(?)), by Remark 8.4. ∎

We now turn our focus to Artin motives. The following functoriality is a special case of the adjunction fff_{\sharp}\dashv f^{*} at the level of effective motives, for any smooth morphism ff of schemes.

8.6 Remark.

Let \FF\FF\FF\subset\FF^{\prime} be a finite separable field extension and let us denote by π\FF/\FF:Spec(\FF)Spec(\FF)\pi_{\FF^{\prime}/\FF}:\operatorname{Spec}(\FF^{\prime})\to\operatorname{Spec}(\FF) the associated étale morphism of schemes. The scalar extension functor \FF×\FF\FF^{\prime}\times_{\FF}- admits a left adjoint

(8.7) π\FF/\FF:𝖢𝗈𝗋\FF𝖢𝗈𝗋\FF:\FF×\FF\pi_{\FF^{\prime}/\FF}\circ-:\mathsf{Cor}_{\FF^{\prime}}\rightleftarrows\mathsf{Cor}_{\FF}:\FF^{\prime}\times_{\FF}-

which takes a smooth \FF\FF^{\prime}-scheme XX to itself viewed as a smooth \FF\FF-scheme [CD19, Lemma 9.3.7]. Left Kan extension and sheafification induce a similar adjunction on sheaves with transfers:

(π\FF/\FF):ShNis(𝖢𝗈𝗋\FF;R)ShNis(𝖢𝗈𝗋\FF;R):π\FF/\FF.(\pi_{\FF^{\prime}/\FF})_{\sharp}:\mathrm{Sh}_{\textup{Nis}}(\mathsf{Cor}_{\FF^{\prime}};R)\rightleftarrows\mathrm{Sh}_{\textup{Nis}}(\mathsf{Cor}_{\FF};R):\pi_{\FF^{\prime}/\FF}^{*}\,.

Explicitly, π\FF/\FF(F)=F(π\FF/\FF)\pi_{\FF^{\prime}/\FF}^{*}(F)=F\circ(\pi_{\FF^{\prime}/\FF}\circ-), while (π\FF/\FF)(\pi_{\FF^{\prime}/\FF})_{\sharp} is essentially determined by sending the sheaf with transfers represented by X𝖢𝗈𝗋\FFX\in\mathsf{Cor}_{\FF^{\prime}} to the sheaf with transfers represented by XX viewed in 𝖢𝗈𝗋\FF\mathsf{Cor}_{\FF}. The pullback functor is exact and passes to the derived category, where its left adjoint is given by left deriving (π\FF/\FF)(\pi_{\FF^{\prime}/\FF})_{\sharp}. By the description given above, it is clear that these two functors pass to an adjunction on the quotients (7.2), which in line with the literature we abusively denote by

(π\FF/\FF):DMeff(\FF;R)DMeff(\FF;R):π\FF/\FF.(\pi_{\FF^{\prime}/\FF})_{\sharp}:\operatorname{DM^{\mathrm{eff}}}(\FF^{\prime};R)\rightleftarrows\operatorname{DM^{\mathrm{eff}}}(\FF;R):\pi_{\FF^{\prime}/\FF}^{*}\,.

It is also true, although we will not need it, that the functor π\FF/\FF\pi_{\FF^{\prime}/\FF}^{*} admits a right adjoint (π\FF/\FF)(\pi_{\FF^{\prime}/\FF})_{*}.

8.8 Remark.

The adjunction of Remark 8.6 clearly restricts to the subcategories of Artin motives, since on motives of smooth schemes they coincide with the adjunction of (8.7). Thus we obtain

(π\FF/\FF):DAM(\FF;R)DAM(\FF;R):π\FF/\FF.(\pi_{\FF^{\prime}/\FF})_{\sharp}:\operatorname{DAM}(\FF^{\prime};R)\rightleftarrows\operatorname{DAM}(\FF;R):\pi_{\FF^{\prime}/\FF}^{*}.

We also note that the adjunction restricts to geometric Artin motives for the same reason.

8.9 Remark.

Let \FF\FF be a field with a fixed separable algebraic closure \FF¯\overline{\FF} and absolute Galois group Γ=Gal(\FF¯/\FF)\Gamma=\operatorname{Gal}(\overline{\FF}/\FF). For any element γΓ\gamma\in\Gamma and finite field extension \FF\FF\FF\subseteq\FF^{\prime} contained in \FF¯\overline{\FF} we obtain an equivalence γ:𝖲𝗆γ1(\FF)0𝖲𝗆\FF0\gamma:\operatorname{\mathsf{Sm}}^{0}_{\gamma^{-1}(\FF^{\prime})}\overset{\sim}{\,\to\,}\operatorname{\mathsf{Sm}}^{0}_{\FF^{\prime}} which takes the spectrum of \KK\KK (for γ1(\FF)\KK\FF¯\gamma^{-1}(\FF^{\prime})\subset\KK\subset\overline{\FF}) to the spectrum of γ(\KK)\gamma(\KK). We denote by the same symbol γ:𝖢𝗈𝗋γ1(\FF)0𝖢𝗈𝗋\FF0\gamma:\mathsf{Cor}^{0}_{\gamma^{-1}(\FF^{\prime})}\overset{\sim}{\,\to\,}\mathsf{Cor}^{0}_{\FF^{\prime}} the associated equivalence on correspondences, and by γ=γ\gamma^{*}=-\circ\gamma the induced equivalence on sheaves with transfers. Since it is exact, it passes to the derived category. Through the equivalence of 6.17 we obtain an adjoint equivalence

γ:DAM(\FF;R)DAM(γ1(\FF);R):(γ1).\gamma^{*}:\operatorname{DAM}(\FF^{\prime};R)\simeq\operatorname{DAM}(\gamma^{-1}(\FF^{\prime});R):(\gamma^{-1})^{*}.
8.10 Proposition.

Let \FF\FF\FF\subset\FF^{\prime} be a finite separable extension, let \FF¯\overline{\FF} be a separable algebraic closure of \FF\FF with Galois group Γ=Gal(\FF¯/\FF)\Gamma=\operatorname{Gal}(\overline{\FF}/\FF). Assume that \FF\FF¯\FF^{\prime}\subset\overline{\FF} corresponds to the open subgroup ΓΓ\Gamma^{\prime}\leq\Gamma. Also let γΓ\gamma\in\Gamma.

The equivalences of 6.17 and 7.10 identify the operations on the left with the operations on the right in the following diagram:

D(𝖬𝖺𝖼𝗄R𝖼𝗈𝗁Γ){\operatorname{D}(\mathop{\mathsf{Mack}^{\mathsf{coh}}_{R}}{\Gamma})}DAM(\FF;R){\operatorname{DAM}(\FF;R)}D(𝖬𝖺𝖼𝗄R𝖼𝗈𝗁Γ){\operatorname{D}(\mathop{\mathsf{Mack}^{\mathsf{coh}}_{R}}{\Gamma^{\prime}})}DAM(\FF;R){\operatorname{DAM}(\FF^{\prime};R)}D(𝖬𝖺𝖼𝗄R𝖼𝗈𝗁Γγ){\operatorname{D}(\mathop{\mathsf{Mack}^{\mathsf{coh}}_{R}}{{}^{\gamma}\Gamma^{\prime}})}DAM(γ1(\FF);R){\operatorname{DAM}(\gamma^{-1}(\FF^{\prime});R)}ρΓΓ\scriptstyle{\rho^{\Gamma}_{\Gamma^{\prime}}}\scriptstyle{\sim}π\FF/\FF\scriptstyle{\pi_{\FF^{\prime}/\FF}^{*}}τΓΓ\scriptstyle{\tau^{\Gamma}_{\Gamma^{\prime}}}\scriptstyle{\sim}σγ\scriptstyle{\sigma_{\gamma}}(π\FF/\FF)\scriptstyle{(\pi_{\FF^{\prime}/\FF})_{\sharp}}γ\scriptstyle{\gamma^{*}}\scriptstyle{\sim}
Proof.

We start with conjugation, that is, the bottom square. If γ1(\FF)\KK\FF¯\gamma^{-1}(\FF^{\prime})\subseteq\KK\subseteq\overline{\FF} corresponds to K(Γ)γK\leq(\Gamma^{\prime})^{\gamma} then γ(\KK)\gamma(\KK) corresponds to KγΓ{}^{\gamma}K\leq\Gamma^{\prime}. Under the equivalence between categories of correspondences and permutation modules of Proposition 6.14, the operation γ\gamma is therefore induced by R((Γ)γ/H)R(Γ/Hγ)R((\Gamma^{\prime})^{\gamma}/H)\mapsto R(\Gamma^{\prime}/{}^{\gamma}H), that is, cγ1c_{\gamma^{-1}}. By definition (Remarks 8.2 and 8.9), it then follows that the operations σγ=cγ1\sigma_{\gamma}=-\circ c_{\gamma^{-1}} and γ=γ\gamma^{*}=-\circ\gamma correspond to each other under the equivalence of 6.17. Passing to the derived categories we see that the bottom square in the statement commutes.

For the top square, by uniqueness of adjoints, it suffices to discuss restriction. Now, given a 0-dimensional smooth \FF\FF-scheme XX, it is clear that the corresponding Γ\Gamma-set is in bijection with the Γ\Gamma^{\prime}-set corresponding to the \FF\FF^{\prime}-scheme \FF×\FFX\FF^{\prime}\times_{\FF}X:

Hom\FF(\FF\FF𝒪(X),\FF¯)Hom\FF(𝒪(X),\FF¯).\operatorname{Hom}_{\FF^{\prime}}(\FF^{\prime}\otimes_{\FF}\mathcal{O}(X),\overline{\FF})\cong\operatorname{Hom}_{\FF}(\mathcal{O}(X),\overline{\FF}).

It follows that the functor \FF×\FF\FF^{\prime}\times_{\FF}- on correspondences (8.7) identifies with restriction on permutation modules. Left Kan extending we obtain that the functor π\FF/\FF\pi^{*}_{\FF^{\prime}/\FF} on sheaves with transfers identifies with the left Kan extension of restriction on cohomological Mackey functors, under the equivalence of 6.17. The latter is left adjoint to the functor τΓΓ=ResΓΓ\tau^{\Gamma}_{\Gamma^{\prime}}=-\circ\operatorname{Res}^{\Gamma}_{\Gamma^{\prime}} of (8.3), thus coincides with ρΓΓ\rho^{\Gamma}_{\Gamma^{\prime}}. Passing to derived categories, we conclude that the top square(s) commute(s) as well. ∎

Combining Propositions 8.5 and 8.10 we obtain that the Mackey functoriality on the derived category of permutation modules identifies with the one on Artin motives.

8.11 Corollary.

With the notation and assumptions of Proposition 8.10, the equivalence of 7.10 identifies the operations on the left with the operations on the right in the following diagram:

D𝖯𝖾𝗋𝗆(Γ;R)DAM(\FF;R)D𝖯𝖾𝗋𝗆(Γ;R)DAM(\FF;R)D𝖯𝖾𝗋𝗆(Γγ;R)DAM(γ1(\FF);R)ResΓΓπ\FF/\FFIndΓΓcγ(π\FF/\FF)γ\leavevmode\hbox{\raise 0.0pt\hbox{\set@color\resizebox{}{}{{\leavevmode\hbox{\set@color{ \leavevmode\hbox to186.82pt{\vbox to89.84pt{\pgfpicture\makeatletter\hbox{\hskip 93.40822pt\lower-44.96788pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{}{}{}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{\offinterlineskip{}{}{{{}}{{}}{{}}{{}}{{}}{{}}}{{{}}}{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-93.40822pt}{-44.86804pt}\pgfsys@invoke{ }\hbox{\vbox{\halign{\pgf@matrix@init@row\pgf@matrix@step@column{\pgf@matrix@startcell#\pgf@matrix@endcell}&#\pgf@matrix@padding&&\pgf@matrix@step@column{\pgf@matrix@startcell#\pgf@matrix@endcell}&#\pgf@matrix@padding\cr\hfil\hskip 32.80731pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-28.50177pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${\operatorname{D\mathsf{Perm}}(\Gamma;R)}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}}}&\hskip 32.80731pt\hfil&\hfil\hskip 66.80045pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-26.4948pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${\operatorname{DAM}(\FF;R)}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 30.80034pt\hfil\cr\vskip 18.00005pt\cr\hfil\hskip 33.5773pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-29.27176pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${\operatorname{D\mathsf{Perm}}(\Gamma^{\prime};R)}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 33.5773pt\hfil&\hfil\hskip 67.57045pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-27.2648pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${\operatorname{DAM}(\FF^{\prime};R)}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 31.57034pt\hfil\cr\vskip 18.00005pt\cr\hfil\hskip 35.02695pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-30.7214pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${\operatorname{D\mathsf{Perm}}({}^{\gamma}\Gamma^{\prime};R)}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 35.02695pt\hfil&\hfil\hskip 76.38133pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-36.07568pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${\operatorname{DAM}(\gamma^{-1}(\FF^{\prime});R)}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 40.38123pt\hfil\cr}}}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}{{{{}}}{{}}{{}}{{}}{{}}{{}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}{}{}{{{}{}}}{}{{}}{}{}{}{{{}{}}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{-23.37396pt}{30.04861pt}\pgfsys@lineto{19.62671pt}{30.04861pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{19.82669pt}{30.04861pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-4.39587pt}{32.40138pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{$\scriptstyle{\sim}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{ {}{}{}}{}{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}{}{}{{{}{}}}{}{}{{{}{}}}\hbox{\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{{}}{}{}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{{}}{}{}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}{}{{}}{}{{{{}}}{{{}}}}{{}}{{{}}{{}}}{}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{{}}{}{}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}{{{}}{{}}}{}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{{}}{}{}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}{}{{}}{}{{}} {}{}{}{}{{{}{}}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{-48.38126pt}{19.1889pt}\pgfsys@lineto{-48.38126pt}{5.98882pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{0.0}{-1.0}{1.0}{0.0}{-48.38126pt}{5.78883pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-46.02849pt}{10.21944pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{$\scriptstyle{\operatorname{Res}^{\Gamma}_{\Gamma^{\prime}}}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{ {}{}{}}{}{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}{}{}{{{}{}}}{}{}{{{}{}}}\hbox{\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{{}}{}{}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{{}}{}{}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}{}{{}}{}{{{{}}}{{{}}}}{{}}{{{}}{{}}}{}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{{}}{}{}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}{{{}}{{}}}{}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{{}}{}{}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}{}{{}}{}{{}} {}{}{}{}{{{}{}}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{63.02702pt}{19.1889pt}\pgfsys@lineto{63.02702pt}{5.98882pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{0.0}{-1.0}{1.0}{0.0}{63.02702pt}{5.78883pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{65.37979pt}{11.82222pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{$\scriptstyle{\pi_{\FF^{\prime}/\FF}^{*}}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{ {}{}{}}{}{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}{}{}{{{}{}}}{}{}{{{}{}}}\hbox{\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{{}}{}{}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{{}}{}{}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}{}{{}}{}{{{{}}}{{{}}}}{{}}{{{}}{{}}}{}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{{}}{}{}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}{{{}}{{}}}{}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{{}}{}{}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}{}{{}}{}{{}} {}{}{}{}{{{}{}}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{-68.38129pt}{5.58885pt}\pgfsys@lineto{-68.38129pt}{18.78894pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{0.0}{1.0}{-1.0}{0.0}{-68.38129pt}{18.98892pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{{}{}}}{{}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-83.53963pt}{10.18054pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{$\scriptstyle{\operatorname{Ind}^{\Gamma}_{\Gamma^{\prime}}}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}{}{}{{{}{}}}{}{{}}{}{}{}{{{}{}}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{-22.60397pt}{-6.15971pt}\pgfsys@lineto{18.8567pt}{-6.15971pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{19.05669pt}{-6.15971pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-4.39589pt}{-3.80695pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{$\scriptstyle{\sim}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}{}{}{{{}{}}}{}{{}}{}{}{}{{{}{}}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{-58.38127pt}{-17.01942pt}\pgfsys@lineto{-58.38127pt}{-30.21951pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{0.0}{-1.0}{1.0}{0.0}{-58.38127pt}{-30.4195pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-56.0285pt}{-24.50694pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{$\scriptstyle{c_{\gamma}}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{ {}{}{}}{}{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}{}{}{{{}{}}}{}{}{{{}{}}}\hbox{\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{{}}{}{}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{{}}{}{}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}{}{{}}{}{{{{}}}{{{}}}}{{}}{{{}}{{}}}{}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{{}}{}{}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}{{{}}{{}}}{}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{{}}{}{}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}{}{{}}{}{{}} {}{}{}{}{{{}{}}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{43.027pt}{5.58885pt}\pgfsys@lineto{43.027pt}{18.78894pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{0.0}{1.0}{-1.0}{0.0}{43.027pt}{18.98892pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{{}{}}}{{}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{19.5485pt}{11.16942pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{$\scriptstyle{(\pi_{\FF^{\prime}/\FF})_{\sharp}}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}{}{}{{{}{}}}{}{{}}{}{}{}{{{}{}}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{53.02701pt}{-17.01942pt}\pgfsys@lineto{53.02701pt}{-30.21951pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{0.0}{-1.0}{1.0}{0.0}{53.02701pt}{-30.4195pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{55.37978pt}{-25.11111pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{$\scriptstyle{\gamma^{*}}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}{}{}{{{}{}}}{}{{}}{}{}{}{{{}{}}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{-21.15433pt}{-42.36804pt}\pgfsys@lineto{10.04582pt}{-42.36804pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{10.2458pt}{-42.36804pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-8.0765pt}{-40.01527pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{$\scriptstyle{\sim}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}} }}}}}}\qed

We finish with an observation about inflation. Let NΓN\subseteq\Gamma be a closed but not necessarily open normal subgroup, corresponding to a Galois extension \FF\EE\FF¯\FF\subseteq\EE\subseteq\overline{\FF}.

8.12 Definition.

We denote by DAM(\EE/\FF;R)\operatorname{DAM}(\EE/\FF;R) the localizing subcategory of DAM(\FF;R)\operatorname{DAM}(\FF;R) generated by the motives of Spec(\FF)\operatorname{Spec}(\FF^{\prime}), where \FF\FF\EE\FF\subseteq\FF^{\prime}\subseteq\EE is a finite subextension of \FF\FF.

8.13 Proposition.

The equivalence of 7.10 identifies the subcategory on the left with the subcategory on the right in the following diagram:

D𝖯𝖾𝗋𝗆(Γ¯;R){\operatorname{D\mathsf{Perm}}(\bar{\Gamma};R)}DAM(\EE/\FF;R){\operatorname{DAM}(\EE/\FF;R)}D𝖯𝖾𝗋𝗆(Γ;R){\operatorname{D\mathsf{Perm}}(\Gamma;R)}DAM(\FF;R).{\operatorname{DAM}(\FF;R).}\scriptstyle{\sim}InflΓ¯Γ\scriptstyle{\operatorname{Infl}_{\bar{\Gamma}}^{\Gamma}}\scriptstyle{\sim}
Proof.

The vertical functor on the left is fully faithful, by 3.15. The claim then follows from the observation that the composite of 7.10 with inflation takes the compact generators R(Γ¯/K¯)R(\bar{\Gamma}/\bar{K}) of D𝖯𝖾𝗋𝗆(Γ¯;R)\operatorname{D\mathsf{Perm}}(\bar{\Gamma};R) defined by NKΓN\subseteq K\leq\Gamma to the compact generators of DAM(\EE/\FF;R)\operatorname{DAM}(\EE/\FF;R), namely the motive of Spec(\FF¯K)\operatorname{Spec}(\overline{\FF}^{K}). ∎

8.14 Remark.

Note that DAMgm(\FF;R)\operatorname{DAM^{\operatorname{gm}}}(\FF;R) is the union of DAMgm(\EE/\FF;R)\operatorname{DAM^{\operatorname{gm}}}(\EE/\FF;R) where \EE\EE runs through finite Galois extensions, and where DAMgm(\EE/\FF;R)=DAM(\EE/\FF;R)DAMgm(\FF;R)\operatorname{DAM^{\operatorname{gm}}}(\EE/\FF;R)=\operatorname{DAM}(\EE/\FF;R)\cap\operatorname{DAM^{\operatorname{gm}}}(\FF;R) is the compact part. This corresponds, by Proposition 8.13, to the remark made about the derived category of permutation modules in Remark 3.16.

References

  • [BB04] Werner Bley and Robert Boltje. Cohomological Mackey functors in number theory. J. Number Theory, 105(1):1–37, 2004.
  • [BD20] Paul Balmer and Ivo Dell’Ambrogio. Mackey 2-functors and Mackey 2-motives. EMS, 2020.
  • [BG19] Paul Balmer and Martin Gallauer. Three real Artin-Tate motives. Available at arxiv/1906.02941, 2019.
  • [BG20a] Paul Balmer and Martin Gallauer. Finite permutation resolutions. Available at arxiv/2009.14091, 2020.
  • [BG20b] Paul Balmer and Martin Gallauer. Permutation modules and cohomological singularity. Available at arxiv/2009.14093, 2020.
  • [BV08] Alexander Beilinson and Vadim Vologodsky. A DG guide to Voevodsky’s motives. Geom. Funct. Anal., 17(6):1709–1787, 2008.
  • [CD16] Denis-Charles Cisinski and Frédéric Déglise. Étale motives. Compositio Mathematica, 152(3):556–666, 2016.
  • [CD19] Denis-Charles Cisinski and Frédéric Déglise. Triangulated categories of mixed motives. Springer Monographs in Mathematics. Springer, Cham, 2019.
  • [Del19] Ivo Dell’Ambrogio. Axiomatic representation theory of finite groups by way of groupoids. Available at arxiv/1910.03369, 2019.
  • [Gro63] Alexander Grothendieck. Revêtements étales et groupe fondamental. Fasc. I: Exposés 1 à 5. IHÉS, Paris, 1963. Troisième édition, corrigée, SGA, 1960/61.
  • [Gro67] A. Grothendieck. Éléments de géométrie algébrique. IV. Étude locale des schémas et des morphismes de schémas. Inst. Hautes Études Sci. Publ. Math., IV(32):361, 1967.
  • [Kra10] Henning Krause. Localization theory for triangulated categories. In Triangulated categories, volume 375 of LMS Lecture Note Ser., pages 161–235. CUP, 2010.
  • [KS86] Kazuya Kato and Shuji Saito. Global class field theory of arithmetic schemes. In Applications of algebraic KK-theory to algebraic geometry and number theory, Part I, II, volume 55 of Contemp. Math., pages 255–331. Amer. Math. Soc., Providence, RI, 1986.
  • [KY15] Bruno Kahn and Takao Yamazaki. Correction to “Voevodsky’s motives and Weil reciprocity,”. Duke Math. J., 164(10):2093–2098, 2015.
  • [Lin76] Harald Lindner. A remark on Mackey-functors. Manuscripta Math., 18(3):273–278, 1976.
  • [Nee92] Amnon Neeman. The connection between the KK-theory localization theorem of Thomason, Trobaugh and Yao and the smashing subcategories of Bousfield and Ravenel. Ann. Sci. École Norm. Sup. (4), 25(5):547–566, 1992.
  • [Nee01] Amnon Neeman. Triangulated categories, volume 148 of Annals of Mathematics Studies. Princeton University Press, Princeton, NJ, 2001.
  • [Nee08] Amnon Neeman. The homotopy category of flat modules, and Grothendieck duality. Invent. Math., 174(2):255–308, 2008.
  • [NSW08] Jürgen Neukirch, Alexander Schmidt, and Kay Wingberg. Cohomology of number fields, volume 323 of Grundlehren der Mathematischen Wissenschaften. Springer, 2. edition, 2008.
  • [PS07] Elango Panchadcharam and Ross Street. Mackey functors on compact closed categories. J. Homotopy Relat. Struct., 2(2):261–293, 2007.
  • [Sas82] Hiroki Sasaki. Green correspondence and transfer theorems of Wielandt type for GG-functors. J. Algebra, 79(1):98–120, 1982.
  • [SGA72a] Théorie des topos et cohomologie étale des schémas. Tome 1: Théorie des topos. Lecture Notes in Mathematics, Vol. 269. Springer, 1972. SGA 4, 1963–1964.
  • [SGA72b] Théorie des topos et cohomologie étale des schémas. Tome 2. Lecture Notes in Mathematics, Vol. 270. Springer, 1972. SGA 4, 1963–1964.
  • [TW90] Jacques Thévenaz and Peter J. Webb. Simple Mackey functors. In Proceedings of the Second International Group Theory Conference, number 23, pages 299–319, 1990.
  • [TW95] Jacques Thévenaz and Peter Webb. The structure of Mackey functors. Trans. Amer. Math. Soc., 347(6):1865–1961, 1995.
  • [Voe00] Vladimir Voevodsky. Triangulated categories of motives over a field. In Cycles, transfers, and motivic homology theories, volume 143 of Ann. of Math. Stud., pages 188–238. Princeton Univ. Press, Princeton, NJ, 2000.
  • [Yos83] Tomoyuki Yoshida. On GG-functors. II. Hecke operators and GG-functors. J. Math. Soc. Japan, 35(1):179–190, 1983.